Caustic ulcers caused by cement aqua: report of a case.
Machovcova, Alena
2010-01-01
Chromium is widely used in various industries including construction sector. Skin contact with cement has been associated with allergic or irritant contact dermatitis. Contact dermatitis is one of the most frequently reported health problems among construction workers. Irritant contact dermatitis from cement ranges from cement burns to cumulative irritant contact dermatitis. Cement burns are rarely reported and are considered a severe form of acute irritant contact dermatitis. They are associated with amateur user working in a short ready-mix time-frame with poor protective measures. They usually result in significant morbidity and initially are associated with minimal discomfort. We report a typical case.
Portland cement concrete pavement best practices summary report.
DOT National Transportation Integrated Search
2010-08-01
This report summarizes the work and findings from WA-RD 744. This work consisted of four separate efforts related to best practices for portland cement concrete (PCC) pavement design and construction: (1) a review of past and current PCC pavement, (2...
New System of Shrinkage Measurement through Cement Mortars Drying
Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa
2017-01-01
Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297
Halioua, Bruno; Bensefa-Colas, Lynda; Crepy, Marie-Noëlle; Bouquiaux, Barbara; Assier, Haudrey; Billon, Stéphane; Chosidow, Olivier
2013-03-01
Active employees in the construction industry are particularly exposed to occupational cement eczema (OCE) which affects the hands in 80 to 90% of cases. The importance of OCE in France and the impact of the application of decree n(o). 2005-577 on 26 May 2005 were estimated from data collected by the Occupational risks division of the French national health insurance fund for salaried workers (CNAMTS). This decree prohibits the placing on the market and use of cement (and preparations containing it) with a chromium VI content above 0.0002% in order to reduce its hazardousness. All cases of OCE reported to and recognized by the CNAMTS between 1 January 2004 and 31 December 2008 among construction workers were selected. The following parameters were noted in each case: age, gender, industrial sector concerned, local French National health insurance agency, causal agent and the number of working days lost. The incidence per 100,000 salaried workers could be determined from the total number of salaried workers followed up by occupational medicine as well as those working in the construction industry. For the five years studied, 3698 cases of occupational eczema (OE) were reported in construction workers and this was 17.1% of the total number of cases of OE for all salaried employees (n=12.689). Cement was the causal agent most frequently involved in the construction sector (57.8%, 2139/3698). The annual incidence of OCE decreased from 37.8 to 21.1 new cases per 100,000 employees in the construction industry per year between 2004 and 2008. The total number of days lost from work due to OCE decreased by 39% during the study period. This descriptive study highlights the importance and socio-economic impact of OCE in the construction industry. Application of decree n(o). 2005-577 on 26 May 2005 may explain a reduction in OCE. Copyright © 2012. Published by Elsevier Masson SAS.
Comparing the use of sewage sludge ash and glass powder in cement mortars.
Chen, Zhen; Poon, Chi Sun
2017-06-01
This study explored the suitability of using sewage sludge ash (SSA) and mixed-colored glass powder (MGP) as construction materials in cement mortars. Positive findings from this study may help promote the recycling of waste SSA and MGP in construction works. The results indicated that the SSA decreased while MGP improved the mortar workability. The SSA exhibited very low pozzolanic activity, but the cement mortar prepared with 20% SSA yielded strength values slightly superior to those of the glass mortars due to its water absorption ability. MGP can serve as a pozzolan and when 20% of cement was replaced by MGP, apparent compressive strength gains were found at later curing ages. The SSA could be used to mitigate ASR expansion while the MGP was superior in resisting drying shrinkage.
Effects of Metric Change on Workers’ Tools and Training.
1981-07-01
understanding of the metric system, and particularly a lack of fluency in converting customary measurements to metric measuremerts, may increase the...assembly, installing, and repairing occupations 84 Painting, plastering, waterproofing, cementing , and related occupations 85 Excavating, grading... cementing , and related occupations 85 Excavating, grading, paving, and related occupations 86 Construction occupations, n.e.c. 89 Structural work
NASA Astrophysics Data System (ADS)
Dahmani, Saci; Kriker, Abdelouahed
2016-07-01
The Portland cements are increasingly used for the manufacture of cement materials (mortar or concrete). Sighting the increasing demand of the cement in the field of construction, and the wealth of our country of minerals. It is time to value these local materials in construction materials and in the manufacture of cement for the manufacture of a new type of cement or for the improvement of the cement of characteristics for several reasons either technical, or ecological or economic or to improve certain properties to the State fees or hardened. The uses of mineral additions remain associated to disadvantages on the time of solidification and the development of the mechanical resistance at the young age [8]. The objective of our work is to study the effects of the incorporation of additions minerals such the pozzolan (active addition) [3], slag of blast furnace (active addition) [4] and the sand dune powder (inert addition) on the physico-mechanical properties of compositions of mortar collaborated compositions according to different binary combinations basis of these additions. This will allow selecting of optimal dosages of these combinations the more efficient, from the point of view of mechanical resistanceas well. The results of this research work confirm that the rate of 10% of pozzolan, slag or powder of dune sand contributes positively on the development of resistance in the long term, at of this proportion time,there is a decrease in the latter except for the slag (20 - 40%) [4]Seems the more effective resistors and physical properties.
NASA Astrophysics Data System (ADS)
Saeli, Manfredi; Novais, Rui M.; Seabra, Maria Paula; Labrincha, João A.
2017-11-01
Sustainability in construction is a major concern worldwide, due to the huge volume of materials and energy consumed by this sector. Associated supplementing industries (e.g. Portland cement production) constitute a significant source of CO2 emissions and global warming. Valorisation and reuse of industrial wastes and by-products make geopolymers a solid and sustainable via to be followed as a valid alternative to Portland cement. In this work the mix design of a green fly ash-based geopolymer is evaluated as an environmentally friendly construction material. In the pursuit of sustainability, wastes from a regional kraft pulp industry are exploited for the material processing. Furthermore, a simple, reproducible, and low-cost manufacture is used. The mix design is hence optimised in order to improve the desirable mechanical performance of the material intended for structural applications in construction. Tests indicate that geopolymers may efficiently substitute the ordinary Portland cement as a mortar/concrete binder. Furthermore, valorisation and reuse of wastes in geopolymers is a suboptimal way of gaining financial surplus for the involved industrial players, while contributes for the implementation of a desirable circular economy.
40 CFR 146.12 - Construction requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; and (B) A cement bond, temperature, or density log after the casing is set and cemented. (ii) For... cement bond, temperature, or density log after the casing is set and cemented. (e) At a minimum, the... water. The casing and cement used in the construction of each newly drilled well shall be designed for...
Crushed cement concrete substitution for construction aggregates; a materials flow analysis
Kelly, Thomas
1998-01-01
An analysis of the substitution of crushed cement concrete for natural construction aggregates is performed by using a materials flow diagram that tracks all material flows into and out of the cement concrete portion of the products made with cement concrete: highways, roads, and buildings. Crushed cement concrete is only one of the materials flowing into these products, and the amount of crushed cement concrete substituted influences the amount of other materials in the flow. Factors such as availability and transportation costs, as well as physical properties, that can affect stability and finishability, influence whether crushed cement concrete or construction aggregates should be used or predominate for a particular end use.
[Occupational dermatitis in construction and public workers].
Frimat, Paul
2002-09-01
Construction workers perform a large variety of duties concerned with building, repairing, and wrecking buildings, bridges, dams, roads, railways and so on. The work may include mixing, pouring and spreading concrete, asphalt, gravel and other materials. Despite the increasing mechanization of construction and the more frequent use of precast concrete sections, contact with wet cement still occurs, particularly in small jobs. The work is hard physical labor, often under difficult conditions, including hot, cold, and wet weather. Occupational diseases of the skin in the construction have paralleled industrial development.
2016-09-01
NSDA Nigerian Steel Development Authority OPC ordinary Portland cement PDF population density factor RCC Reynolds Construction Company RHA rice...construction. Byproducts include blast furnace slag cement and gas. The increased use of steel scrap in production creates less dependence on the raw...The construction resources are gravel, cement , ready-mix concrete, lumber, steel , and brick. In some cases, there are multiple central areas in a
40 CFR 146.32 - Construction requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... would result. The casing and cement used in the construction of each newly drilled well shall be... and confining zones; and (7) Type and grade of cement. (b) Appropriate logs and other tests shall be... pilot holes and reaming are used, unless the hole will be cased and cemented by circulating cement to...
Asbestos Exposure and Cancer Risk
... strengthening cement and plastics as well as for insulation, roofing, fireproofing, and sound absorption. The shipbuilding industry ... manufacturing of asbestos textiles and other asbestos products, insulation work in the construction and building trades, and ...
40 CFR 146.22 - Construction requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... caliper logs before casing is installed; and (B) A cement bond, temperature, or density log after the...; and (C) A cement bond, temperature, or density log after the casing is set and cemented. (g) At a... drinking water. The casing and cement used in the construction of each newly drilled well shall be designed...
Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?
Walling, Sam A; Provis, John L
2016-04-13
This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis.
The mechanical effect of the existing cement mantle on the in-cement femoral revision.
Keeling, Parnell; Lennon, Alexander B; Kenny, Patrick J; O'Reilly, Peter; Prendergast, Patrick J
2012-08-01
Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct. Primary cement mantles were formed by cementing a polished stem into sections of tubular steel. If in the test group, the mantle underwent conditioning in saline to simulate ageing and was subject to a fatigue of 1 million cycles. If in the control group no such conditioning or fatigue was carried out. The cement-in-cement procedure was then undertaken. Both groups underwent a fatigue of 1 million cycles subsequent to the revision procedure. Application of a Mann-Whitney test on the recorded subsidence (means: 0.51, 0.46, n=10+10, P=0.496) and inducible displacement (means: 0.38, 0.36, P=0.96) revealed that there was no statistical difference between the groups. This study represents further biomechanical investigation of the mechanical behaviour of cement-in-cement revision constructs. Results suggest that pre-revision fatigue and ageing of the cement may not be deleterious to the mechanical performance of the revision construct. Thus, this study provides biomechanical evidence to back-up recent successes with this useful revision technique. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
1982-01-01
This report summarizes the work performed on the subject study from June through September 1982. In accordance with the revised work plan for Task 4 of the project approved May 24, 1982, the new completion date for the project is April 30, 1983.
Study on Strength and Durability Characteristics of Concrete with Ternary Blend
NASA Astrophysics Data System (ADS)
Nissi Joy, C.; Ramakrishnan, K.; Snega, M.; Ramasundram, S.; Venkatasubramanian, C.; Muthu, D.
2017-07-01
In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of Ordinary Portland Cement (OPC) and different mineral admixtures is the wise choice for the construction industry. In this research work, M20 grade mix of concrete (with water - binder ratio as 0.48) is adopted with glass powder (GP) and Sugar Cane Bagasse Ash (SCBA) as partial replacement of cement. GP is an inert material, they occupy the landfill space for considerable amount of time unless there is a potential for recycling. Such glass wastes in the crushed form have a good potential in the infrastructure industry. Replacement of cement by GP from 30% to 0% by weight of cement in step of 5% and by SCBA from 0% to 30% in step of 5% respectively was adopted. In total, seven different combinations of mixes were studied at two different ages of concrete namely 7 and 28 days. Compressive strength of cubes for various percentage of replacement were investigated and compared with conventional concrete to find out the maximum mix ratio. Flexural strength of concrete for the maximum mix ratio was found out and durability parameters viz., water absorption and sorptivity were studied. From the experimental study, 20% SCBA and 10% GP combination was found to be the maximum mix ratio.
Study and evaluation of ferro-cement for use in wind tunnel construction
NASA Technical Reports Server (NTRS)
Larsen, H. J., Jr. (Compiler)
1972-01-01
The structural suitability and cost effectiveness of ferro-cement for large subsonic wind tunnel structures is investigated. This investigation was carried out in the following four main categories: (1) a state-of-the-art survey into the uses, properties, and costs of ferro-cement; (2) an evaluation of those ferro-cement properties critical to construction of large, subsonic wind tunnels, which have not been adequately established to date; (3) a laboratory testing program to determine preliminary values for those properties; and (4) a study to establish cost factors for ferro-cement as related to a preliminary construction scheme for a nacelle and shroud unit.
Race, Amos; Miller, Mark A; Mann, Kenneth A
2008-10-20
Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.
1990-09-01
and grouting were performed from the rock surface using expandable-air packers . Grouting was performed by injecting, into a hole, a neat grout ( cement ...Water & cement type I & II Mix: ........................... 6:1 to 0.75:1 Connection: .................... Air packer , close to surface...pressure tested then backfilled. The holes were hydraulic-pressure tested with a single air- expanding packer near the surface at 5 psi gauge pressure. If
Cement and Concrete Nanoscience and Nanotechnology
Raki, Laila; Beaudoin, James; Alizadeh, Rouhollah; Makar, Jon; Sato, Taijiro
2010-01-01
Concrete science is a multidisciplinary area of research where nanotechnology potentially offers the opportunity to enhance the understanding of concrete behavior, to engineer its properties and to lower production and ecological cost of construction materials. Recent work at the National Research Council Canada in the area of concrete materials research has shown the potential of improving concrete properties by modifying the structure of cement hydrates, addition of nanoparticles and nanotubes and controlling the delivery of admixtures. This article will focus on a review of these innovative achievements.
Nelson, T.I.; Bolen, W.P.
2007-01-01
Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.
Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei
2016-01-01
This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517
Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei
2016-05-20
This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.
Use of discarded tires in highway construction.
DOT National Transportation Integrated Search
1980-01-01
In August 1978, bituminous surface treatments in which vulcanized rubber was blended with the asphalt cement were placed on two secondary roads by the Sahuaro Petroleum and Asphalt Company and the Whitehurst Paving Company. The work was jointly finan...
34. TOP O THE BOILER SHOWING CONSTRUCTION DETAILS. NOTE THE ...
34. TOP O THE BOILER SHOWING CONSTRUCTION DETAILS. NOTE THE 1/2-INCH ROUND IRON REINFORCING ROD AND GALVANIZED FARM FENCING IN THE RIGHT FOREGROUND. AND THE EXPANDED METAL LATH WITH CEMENT COATING IN THE CEILING ABOVE THE BOILER. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA
Valorisation of waste ilmenite mud in the manufacture of sulphur polymer cement.
Contreras, Manuel; Gázquez, Manuel Jesús; García-Díaz, Irene; Alguacil, Francisco J; López, Félix A; Bolívar, Juan Pedro
2013-10-15
This paper reports the preparation of sulphur polymer cements (SPCs) incorporating waste ilmenite mud for use in concrete construction works. The ilmenite mud raw material and the mud-containing SPCs (IMC-SPCs) were characterised physico-chemically and radiologically. The optimal IMC-SPC mixture had a sulphur/mud ratio (w/w) of 1.05 (mud dose 20 wt%); this cement showed the greatest compressive strength (64 MPa) and the lowest water absorption coefficient (0.4 g cm(-2) at 28 days). Since ilmenite mud is enriched in natural radionuclides, such as radium isotopes (2.0·10(3) Bq kg(-1)(228)Ra and 5.0·10(2) Bq kg(-1)(226)Ra), the IMC-SPCs were subjected to leaching experiments, which showed their environmental impact to be negligible. The activity concentration indices for the different radionuclides in the IMC-SPCs containing 10% and 20% ilmenite mud met the demands of international standards for materials used in the construction of non-residential buildings. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rahman, R.; Nemmang, M. S.; Hazurina, Nor; Shahidan, S.; Khairul Tajuddin Jemain, Raden; Abdullah, M. E.; Hassan, M. F.
2017-11-01
The main issue related to this research was to examine the feasibility of natural rubber SMR 20 in the manufacturing of cement mortar for sub-base layer construction. Subbase layers have certain functions that need to be fulfilled in order to assure strong and adequate permeability of pavement performance. In a pavement structure, sub-base is below the base and serves as the foundation for the overall pavement structure, transmitting traffic loads to the sub-grade and providing drainage. Based on this research, the natural rubber, SMR 20 was with the percentages of 0%, 5%, 10% and 15% to mix with sand in the manufacture of the cement mortar. This research describes some of the properties and cost of the materials for the natural rubber and sand in cement mortar manufacturing by laboratory testing. Effects of the natural rubber replacement on mechanical properties of mortar were investigated by laboratory testing such as compressive strength test and density. This study obtained the 5% of natural rubber replaced in sand can achieved the strength of normal mortar after 7 days and 28 days. The strength of cement mortar depends on the density of cement mortar. According to the cost of both materials, sand shows the lower cost in material for the cement mortar manufacturing than the uses of natural rubber. Thus, the convectional cement mortar which used sand need lower cost than the modified rubber cement mortar and the most economical to apply in industrial. As conclusion, the percentage of 5% natural rubber in the cement mortar would have the same with normal cement mortar in terms of the strength. However, in terms of the cost of the construction, it will increase higher than cost of normal cement mortar production. So that, this modified cement mortar is not economical for the road sub-base construction.
Natural Cellulose Nanofibers As Sustainable Enhancers in Construction Cement
Jiao, Li; Su, Ming; Chen, Liao; Wang, Yuangang; Zhu, Hongli; Dai, Hongqi
2016-01-01
Cement is one of the mostly used construction materials due to its high durability and low cost, but it suffers from brittle fracture and facile crack initiation. This article describes the use of naturally-derived renewable cellulose nanofibers (CNFs) to reinforce cement. The effects of CNFs on the mechanical properties, degree of hydration (DOH), and microstructure of cement pastes have been studied. It is found that an addition of 0.15% by weight of CNFs leads to a 15% and 20% increase in the flexural and compressive strengths of cement paste. The enhancement in mechanical strength is attributed to high DOH and dense microstructure of cement pastes after adding CNFs. PMID:28005917
Production and construction technology of C100 high strength concrete filled steel tube
NASA Astrophysics Data System (ADS)
Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu
2017-10-01
In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.
Approved Request for Coverage under General Air Quality Permit for New or Modified Minor Source Cement Batch Plants in Indian Country for FNF Construction Inc. Window Rock Airport Soil Cement Mixing Plant Project, Beacon Road, Window Rock, Arizona 86515.
Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content
López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José
2016-01-01
In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works. PMID:28787874
Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content.
López-Uceda, Antonio; Ayuso, Jesús; López, Martin; Jimenez, José Ramón; Agrela, Francisco; Sierra, María José
2016-01-26
In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.
Research of cost aspects of cement pavements construction
NASA Astrophysics Data System (ADS)
Bezuglyi, Artem; Illiash, Sergii; Tymoshchuk, Oleksandr
2017-09-01
The tendency to increasing traffic volume on public roads and to increased axle loads of vehicles makes the road scientists to develop scientifically justified methods for preserving the existing and developing the new transport network of Ukraine. One of the options for solving such issues is the construction of roads with rigid (cement concrete) pavement. However, any solution must be justified considering technical and economic components. This paper presents the results of the research of cost aspects of cement pavements construction.
Solidification/stabilization of dredged marine sediments for road construction.
Wang, Dong Xing; Abriak, Nor Edine; Zentar, Rachid; Xu, WeiYa
2012-01-01
Cement/lime-based solidification is an environmentally sound solution for the management of dredged marine sediments, instead of traditional solutions such as immersion. Based on the mineralogical composition and physical characteristics of Dunkirk sediments, the effects of cement and lime are assessed through Atterberg limits, modified Proctor compaction, unconfined compressive strength and indirect tensile strength tests. The variation of Atterberg limits and the improvement in strength are discussed at different binder contents. The potential of sediments solidified with cement or lime for road construction is evaluated through a proposed methodology from two aspects: I-CBR value and material classification. The test results show the feasibility of solidified dredged sediments for beneficial use as a material in road construction. Cement is superior to lime in terms of strength improvement, and adding 6% cement is an economic and reasonable method to stabilize fine sediments.
Low Shrinkage Cement Concrete Intended for Airfield Pavements
NASA Astrophysics Data System (ADS)
Małgorzata, Linek
2017-10-01
The work concerns the issue of hardened concrete parameters improvement intended for airfield pavements. Factors which have direct or indirect influence on rheological deformation size were of particular interest. The aim of lab testing was to select concrete mixture ratio which would make hardened concrete less susceptible to influence of basic operating factors. Analyses included two research groups. External and internal factors were selected. They influence parameters of hardened cement concrete by increasing rheological deformations. Research referred to innovative cement concrete intended for airfield pavements. Due to construction operation, the research considered the influence of weather conditions and forced thermal loads intensifying concrete stress. Fresh concrete mixture parameters were tested and basic parameters of hardened concrete were defined (density, absorbability, compression strength, tensile strength). Influence of the following factors on rheological deformation value was also analysed. Based on obtained test results, it has been discovered that innovative concrete, made on the basis of modifier, which changes internal structure of concrete composite, has definitely lower values of rheological deformation. Observed changes of microstructure, in connection with reduced deformation values allowed to reach the conclusion regarding advantageous characteristic features of the newly designed cement concrete. Applying such concrete for airfield construction may contribute to extension of its operation without malfunction and the increase of its general service life.
40 CFR 146.86 - Injection well construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stages. (4) Circulation of cement may be accomplished by staging. The Director may approve an alternative... injection tubing and long string casing. (b) Casing and cementing of Class VI wells. (1) Casing and cement... confining zone(s); (viii) Type or grade of cement and cement additives; and (ix) Quantity, chemical...
Bastos, Guillermo; Patiño-Barbeito, Faustino; Patiño-Cambeiro, Faustino; Armesto, Julia
2016-01-01
For more than a century, several inclusions have been mixed with Portland cement—nowadays the most-consumed construction material worldwide—to improve both the strength and durability required for construction. The present paper describes the different families of inclusions that can be combined with cement matrix and reviews the achievements reported to date regarding mechanical performance, as well as two other innovative functionalities of growing importance: reducing the high carbon footprint of Portland cement, and obtaining new smart features. Nanomaterials stand out in the production of such advanced features, allowing the construction of smart or multi-functional structures by means of thermal- and strain-sensing, and photocatalytic properties. The first self-cleaning concretes (photocatalytic) have reached the markets. In this sense, it is expected that smart concretes will be commercialized to address specialized needs in construction and architecture. Conversely, other inclusions that enhance strength or reduce the environmental impact remain in the research stage, in spite of the promising results reported in these issues. Despite the fact that such functionalities are especially profitable in the case of massive cement consumption, the shift from the deeply established Portland cement to green cements still has to overcome economic, institutional, and technical barriers. PMID:28774091
Influences of Steelmaking Slags on Hydration and Hardening of Concretes
NASA Astrophysics Data System (ADS)
Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.
2017-11-01
It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.
Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions
NASA Astrophysics Data System (ADS)
Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.
2014-09-01
This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.
Disability Pensions due to Skin Diseases: A Cohort Study in Swedish Construction Workers.
Meding, Birgitta; Wrangsjö, Karin; Burdorf, Alex; Järvholm, Bengt
2016-02-01
Disability pensions due to skin diseases in Swedish male construction workers were studied by linking data from pension registers and an occupational health service. Incidence rates of disability pensions for cement workers, painters and plumbers were compared with 2 control groups. A total of 623 disability pensions were granted during 4 decades of follow-up. The main diagnoses were eczema (36%) and psoriasis (49%). Pensions were mostly granted in the age range 55-64 years. Among painters, cement workers and plumbers the incidence rates for disability pensions were 33.3, 24.5 and 20.4 cases/100,000 person-years, respectively, compared with 13.7 and 9.2 cases/100,000 person-years in control groups. Relative risks were highest for eczema, and were notable for psoriasis. Attributable fractions for eczema were 90% in cement workers and painters and 75% in plumbers compared with control groups. Attributable fractions for psoriasis in the occupational groups studied were in the range 54-67%. In conclusion, eczema and psoriasis have a high impact on loss of work ability, as reflected by disability pensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William
Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less
DOT National Transportation Integrated Search
1968-05-01
Conditions arise during construction of bases with Portland cement stabilized soils which require close programming of work. Therefore, time is of significant importance. : That is the objective of this report; to evaluate a method by which considera...
Mineral resource of the month: hydraulic cement
van Oss, Hendrik G.
2012-01-01
Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.
NASA Astrophysics Data System (ADS)
Alexandre, J.; Azevedo, A. R. G.; Theophilo, M. M. D.; Xavier, C. G.; Paes, A. L. C.; Monteiro, S. N.; Margem, F. M.; Azeredo, N. G.
The use of bricks of soil-cement is proving to be an important constructive methodology due to low environmental impact in the production process of these blocks comparing with conventional bricks are burnt, besides being easy to produce. However during the process of production of bricks, which are compressed, knowledge of the properties of the soil used is critical to the quality and durability of the blocks. The objective of this work is to evaluate the feasibility of using soil from the municipality of Goytacazes for the production of soil-cement bricks. Assays were performed the compaction, liquid limit, plastic limit, particle size analysis, EDX and X-Ray diffraction for later pressed blocks and analyze their compressive strength and water absorption.
Wellbore Cement Porosity Evolution in Response to Mineral Alteration during CO 2 Flooding
Cheshire, Michael C.; Stack, Andrew G.; Carey, J. William; ...
2016-12-13
Mineral reactions during CO 2 sequestration will change the pore-size distribution and pore surface characteristics, complicating permeability and storage security predictions. In this study, we report a small/wide angle scattering study of wellbore cement that has been exposed to carbon dioxide for three decades. We have constructed detailed contour maps that describe local porosity distributions and the mineralogy of the sample and relate these quantities to the carbon dioxide reaction front on the cement. We find that the initial bimodal distribution of pores in the cement, 1–2 and 10–20 nm, is affected differently during the course of carbonation reactions. Initialmore » dissolution of cement phases occurs in the 10–20 nm pores and leads to the development of new pore spaces that are eventually sealed by CaCO 3 precipitation, leading to a loss of gel and capillary nanopores, smoother pore surfaces, and reduced porosity. This suggests that during extensive carbonation of wellbore cement, the cement becomes less permeable because of carbonate mineral precipitation within the pore space. Additionally, the loss of gel and capillary nanoporosities will reduce the reactivity of cement with CO 2 due to reactive surface area loss. Finally, this work demonstrates the importance of understanding not only changes in total porosity but also how the distribution of porosity evolves with reaction that affects permeability.« less
Portland cement concrete pavement restoration : final summary report.
DOT National Transportation Integrated Search
1988-07-01
This final summary report is comprised of an Initial Construction Report; a Final Report; and two Interim Reports. These reports document the construction of Louisiana's Portland Cement Concrete Pavement Restoration project and its performance during...
A novel way to upgrade the coarse part of a high calcium fly ash for reuse into cement systems.
Antiohos, S K; Tsimas, S
2007-01-01
Reject fly ash (rFA) represents a significant portion of the fly ashes produced from coal-fired power plants. Due to the high carbon content and large particle mean diameter, rFA is not utilized in the construction sector (for example, as supplementary cementing material) and is currently dumped into landfills, thus representing an additional environmental burden. Recently, the feasibility of using rFA in a relatively small number of applications, like solidification/stabilization of other wastes, has been investigated by different researchers. However, as the overall amount of fly ash utilized in such applications is still limited, there is a need to investigate other possibilities for rFA utilization starting from a deeper understanding of its properties. In the work presented herein, mechanical and hydration properties of cementitious materials prepared by blending the coarse fraction of a lignite high-calcium fly ash with ordinary cement were monitored and compared with the respective ones of a good quality fly ash-cement mixture. The results of this work reveal that a relatively cheap, bilateral classification-grinding method is able to promote the pozzolanic behavior of the rFAs, so that the overall performances of rFA containing cements are drastically improved. The evaluation of these results supports the belief that appropriate utilization of non-standardized materials may lead to new environmental-friendly products of superior quality.
Civil construction work: The unseen contributor to the occupational and global disease burden
Sitalakshmi, R.; Saikumar, P.; Jeyachandran, P.; Manoharan; Thangavel; Thomas, Jayakar
2016-01-01
Background: Construction industry is the second largest employment giving industry in India with many semi-skilled or unskilled workers taking up the occupation for livelihood without any training and proper guidance. Aim: To evaluate the pathogenic association of cement exposure to occupational contact dermatoses as evidenced by immune markers and to correlate their pulmonary functions with years of exposure to cement. Setting and Design: This was a cross-sectional study conducted among randomly selected cement workers. Methods and material: Evaluation of socioeconomic status (SES) and years of exposure of cement workers was done using a questionnaire. Clinical examination of skin lesions and strip patch test with application of potassium dichromate on unexposed skin was performed. Results were interpreted after 48 hours. Absolute eosinophil count (AEC) and IgE levels measured, and spirometric evaluation was performed. Statistical Analysis: Analysis of variance and Pearson's correlation test were used for data analysis. P < 0.05 was considered to be statistically significant. Results: Clinically, skin lesions were noticed in 51%, elevated AEC in 47%, and raised Anti IgE in 73%. Two participants developed positive reactions to the skin strip patch test. Duration of exposure to cement and SES were compared with clinical skin lesions. Spirometry result was normal in 81%, obstruction in 8%, restriction in 10%, and mixed pattern in 1%. Forced expiratory volume at 1.0 second, forced expiratory flow (25–75%), and (PEFR) Peak Expiratory Flow Rate were markedly reduced with years of exposure. Workers who had greater skin lesions and with increase in exposure had increased AEC and IgE levels, although statistically not significant. Conclusions: Exposure to cement and poor SES is strongly correlated to increased prevalence of skin lesions and reduced pulmonary functions. PMID:28194084
Civil construction work: The unseen contributor to the occupational and global disease burden.
Sitalakshmi, R; Saikumar, P; Jeyachandran, P; Manoharan; Thangavel; Thomas, Jayakar
2016-01-01
Construction industry is the second largest employment giving industry in India with many semi-skilled or unskilled workers taking up the occupation for livelihood without any training and proper guidance. To evaluate the pathogenic association of cement exposure to occupational contact dermatoses as evidenced by immune markers and to correlate their pulmonary functions with years of exposure to cement. This was a cross-sectional study conducted among randomly selected cement workers. Methods and material: Evaluation of socioeconomic status (SES) and years of exposure of cement workers was done using a questionnaire. Clinical examination of skin lesions and strip patch test with application of potassium dichromate on unexposed skin was performed. Results were interpreted after 48 hours. Absolute eosinophil count (AEC) and IgE levels measured, and spirometric evaluation was performed. Analysis of variance and Pearson's correlation test were used for data analysis. P < 0.05 was considered to be statistically significant. Clinically, skin lesions were noticed in 51%, elevated AEC in 47%, and raised Anti IgE in 73%. Two participants developed positive reactions to the skin strip patch test. Duration of exposure to cement and SES were compared with clinical skin lesions. Spirometry result was normal in 81%, obstruction in 8%, restriction in 10%, and mixed pattern in 1%. Forced expiratory volume at 1.0 second, forced expiratory flow (25-75%), and (PEFR) Peak Expiratory Flow Rate were markedly reduced with years of exposure. Workers who had greater skin lesions and with increase in exposure had increased AEC and IgE levels, although statistically not significant. Exposure to cement and poor SES is strongly correlated to increased prevalence of skin lesions and reduced pulmonary functions.
Possibilities of using aluminate cements in high-rise construction
NASA Astrophysics Data System (ADS)
Kaddo, Maria
2018-03-01
The article describes preferable ways of usage of alternative binders for high-rise construction based on aluminate cements. Possible areas of rational use of aluminate cements with the purpose of increasing the service life of materials and the adequacy of the durability of materials with the required durability of the building are analyzed. The results of the structure, shrinkage and physical and mechanical properties of concrete obtained from dry mixes on the base of aluminate cements for self-leveling floors are presented. To study the shrinkage mechanism of curing binders and to evaluate the role of evaporation of water in the development of shrinkage was undertaken experiment with simple unfilled systems: gypsum binder, portland cement and «corrosion resistant high alumina cement + gypsum». Principle possibility of binder with compensated shrinkage based on aluminate cement, gypsum and modern superplasticizers was defined, as well as cracking resistance and corrosion resistance provide durability of the composition.
The contemporary cement cycle of the United States
Kapur, A.; Van Oss, H. G.; Keoleian, G.; Kesler, S.E.; Kendall, A.
2009-01-01
A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000-2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement. ?? 2009 Springer Japan.
Excavation and aggregation as organizing factors in de novo construction by mound-building termites.
Green, Ben; Bardunias, Paul; Turner, J Scott; Nagpal, Radhika; Werfel, Justin
2017-06-14
Termites construct complex mounds that are orders of magnitude larger than any individual and fulfil a variety of functional roles. Yet the processes through which these mounds are built, and by which the insects organize their efforts, remain poorly understood. The traditional understanding focuses on stigmergy, a form of indirect communication in which actions that change the environment provide cues that influence future work. Termite construction has long been thought to be organized via a putative 'cement pheromone': a chemical added to deposited soil that stimulates further deposition in the same area, thus creating a positive feedback loop whereby coherent structures are built up. To investigate the detailed mechanisms and behaviours through which termites self-organize the early stages of mound construction, we tracked the motion and behaviour of major workers from two Macrotermes species in experimental arenas. Rather than a construction process focused on accumulation of depositions, as models based on cement pheromone would suggest, our results indicated that the primary organizing mechanisms were based on excavation. Digging activity was focused on a small number of excavation sites, which in turn provided templates for soil deposition. This behaviour was mediated by a mechanism of aggregation, with termites being more likely to join in the work at an excavation site as the number of termites presently working at that site increased. Statistical analyses showed that this aggregation mechanism was a response to active digging, distinct from and unrelated to putative chemical cues that stimulate deposition. Agent-based simulations quantitatively supported the interpretation that the early stage of de novo construction is primarily organized by excavation and aggregation activity rather than by stigmergic deposition. © 2017 The Author(s).
Excavation and aggregation as organizing factors in de novo construction by mound-building termites
Bardunias, Paul; Turner, J. Scott; Nagpal, Radhika; Werfel, Justin
2017-01-01
Termites construct complex mounds that are orders of magnitude larger than any individual and fulfil a variety of functional roles. Yet the processes through which these mounds are built, and by which the insects organize their efforts, remain poorly understood. The traditional understanding focuses on stigmergy, a form of indirect communication in which actions that change the environment provide cues that influence future work. Termite construction has long been thought to be organized via a putative ‘cement pheromone’: a chemical added to deposited soil that stimulates further deposition in the same area, thus creating a positive feedback loop whereby coherent structures are built up. To investigate the detailed mechanisms and behaviours through which termites self-organize the early stages of mound construction, we tracked the motion and behaviour of major workers from two Macrotermes species in experimental arenas. Rather than a construction process focused on accumulation of depositions, as models based on cement pheromone would suggest, our results indicated that the primary organizing mechanisms were based on excavation. Digging activity was focused on a small number of excavation sites, which in turn provided templates for soil deposition. This behaviour was mediated by a mechanism of aggregation, with termites being more likely to join in the work at an excavation site as the number of termites presently working at that site increased. Statistical analyses showed that this aggregation mechanism was a response to active digging, distinct from and unrelated to putative chemical cues that stimulate deposition. Agent-based simulations quantitatively supported the interpretation that the early stage of de novo construction is primarily organized by excavation and aggregation activity rather than by stigmergic deposition. PMID:28615497
13. GROOVED FOOTING (CONSTRUCTION KEY) EXTENDING ABOVE CEMENT FLOOR IN ...
13. GROOVED FOOTING (CONSTRUCTION KEY) EXTENDING ABOVE CEMENT FLOOR IN FIRST UNLINED SECTION BEYOND SOUTH PORTAL. - Salinas River Project, Cuesta Tunnel, Southeast of U.S. 101, San Luis Obispo, San Luis Obispo County, CA
Shoulder rehabilitation using portland cement and recycled asphalt pavement.
DOT National Transportation Integrated Search
2007-04-01
Maine has hundreds of miles of roadway originally constructed with Portland Cement Concrete that now : are covered with Hot Mix Asphalt overlays. In 2001 the Maine Department of Transportation utilized an : experimental construction technique on one ...
Cement Mason's Curriculum. Instructional Units.
ERIC Educational Resources Information Center
Hendirx, Laborn J.; Patton, Bob
To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…
Asphalt cement chip seals in Oregon : construction report
DOT National Transportation Integrated Search
2000-06-01
Most chip seals in Oregon have been constructed using an emulsified asphalt binder. However, chip seals using an asphalt cement (hot oil) binder have been tried in limited situations in Oregon. This report includes a literature review and summarizes ...
40 CFR 147.2104 - Requirements for all wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (PVC, ABS, or others) casings shall: (1) Not construct a well deeper than 500 feet; (2) Use cement and additives compatible with such casing material; and (3) Cement the annular space above the injection... feet below the lowermost USDW; (ii) Cementing surface casing by recirculating the cement to the surface...
40 CFR 147.305 - Requirements for all wells.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and others) casings shall: (1) Not construct a well deeper than 500 feet; (2) Use cement and additives compatible with such casing material; (3) Cement the annular space above the injection interval from the... base of the lowermost USDW; (ii) Cementing surface casing by recirculating the cement to the surface...
40 CFR 147.2104 - Requirements for all wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (PVC, ABS, or others) casings shall: (1) Not construct a well deeper than 500 feet; (2) Use cement and additives compatible with such casing material; and (3) Cement the annular space above the injection... feet below the lowermost USDW; (ii) Cementing surface casing by recirculating the cement to the surface...
40 CFR 147.305 - Requirements for all wells.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and others) casings shall: (1) Not construct a well deeper than 500 feet; (2) Use cement and additives compatible with such casing material; (3) Cement the annular space above the injection interval from the... base of the lowermost USDW; (ii) Cementing surface casing by recirculating the cement to the surface...
DOT National Transportation Integrated Search
2016-12-01
This research on Type IL cements for high early strength concretes demonstrated that Type IL cements satisfying AASHTO M 240 specifications may be used in place of Type I/II cements which satisfy AASHTO M 85 specifications for construction of transpo...
2017-06-30
At NASA's Kennedy Space Center in Florida, cement is poured as part of a construction project to upgrade the turn basin wharf. The work includes driving multiple precast concrete piles to a depth of about 70 feet to accommodate arrival of the core stage for the agency's Space Launch System (SLS) rocket. When the stage for NASA's SLS departs the Michoud Assembly Facility in New Orleans, it will be shipped by the agency's modified barge to the Launch Complex 39 turn basin.
10. Downstream face of Mormon Flat Dam under construction. Cement ...
10. Downstream face of Mormon Flat Dam under construction. Cement storage shed is at center right. Photographer unknown, September 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ
Construction of a thin-bonded Portland cement concrete overlay using accelerated paving techniques.
DOT National Transportation Integrated Search
1992-01-01
The report describes the Virginia Department of Transportations' first modern experience with the construction of thin-bonded Portland cement concrete overlays of existing concrete pavements and with the fast track mode of rigid paving. The study was...
A Navy User’s Guide for Quality Assurance of New Concrete Construction
2012-06-01
types and blends of cements, fly ash, silica fume, and blast furnace slag . During construction, concrete samples are taken to test and document the...chemical compositions provided by specific types and blends of cements, fly ash, silica fume, and blast furnace slag when used with specific aggregates...of portland cement and blast furnace slag . Before the 11 owner accepts the completed structure, all cracks transverse to the steel rebar in excess
Results of Laboratory Tests of the Filtration Characteristics of Clay-Cement Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sol’skii, S. V., E-mail: solskiysv@vniig.ru; Lopatina, M. G., E-mail: LoptainaMG@vniig.ru; Legina, E. E.
Laboratory studies of the filtration characteristics of clay-cement concrete materials for constructing filtering diaphragms of earth dams by the method of secant piles are reported. Areas for further study aimed at improving the quality of construction, increasing operational safety, and developing a standards base for the design, construction, and operation of these systems are discussed.
DOT National Transportation Integrated Search
2000-08-01
To minimize the lane closure time for construction, Caltrans is exploring the use of fast-setting hydraulic cement concrete (FSHCC). The principal property of the FSHCC is its high early strength gain. This accelerated strength gain would increase th...
Low Carbon Footprint mortar from Pozzolanic Waste Material
NASA Astrophysics Data System (ADS)
Mehmannavaz, Taha; Mehman navaz, Hossein Ali; Moayed Zefreh, Fereshteh; Aboata, Zahra
2017-04-01
Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA) and Pulverized Fuel Ash (PFA) as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC) was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.
Pozzolan cement study : final report.
DOT National Transportation Integrated Search
1979-12-01
An experimental section using Type 1P cement concrete was poured on an active construction project in south Louisiana, near Franklin. A comparison in quality was made between this section and the normal Type 1(B) cement concrete poured on the remaind...
Assessment of limestone blended cements for transportation applications : final report.
DOT National Transportation Integrated Search
2017-09-01
This research assessed the applicability of Type IL cements satisfying AASHTO M 240 specifications for use in transportation applications in place of Type I/II cements which satisfy AASHTO M 85 specifications for construction of transportation struct...
DOT National Transportation Integrated Search
2009-03-01
INTRODUCTION: Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base material, temporary haul roads, and in hot mix asphalt construction. Several states allow the use of RAP combined with cement for stabilized base c...
DOT National Transportation Integrated Search
2002-08-01
The purpose of this research was to evaluate the effectiveness of soil cement shrinkage crack mitigation techniques. The contents of this report reflect an evaluation of the construction of the test sections and a two-year evaluation of the test sect...
DOT National Transportation Integrated Search
2002-08-01
The purpose of this research is to evaluate the effectiveness of soil cement shrinkage crack mitigation techniques. Ten test sections, 1000 feet long, were constructed on LA 89 in Vermilion Parish. The shrinkage crack mitigation methods being evaluat...
DOT National Transportation Integrated Search
2011-12-01
Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base material, temporary haul roads, : and, in the case of RAP, hot mix asphalt construction. Several states currently allow the use of RAP combined with cement : for...
2017-06-30
Across from the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, cement trucks stand by to support a construction project to upgrade the turn basin wharf. The work includes driving multiple precast concrete piles to a depth of about 70 feet to accommodate arrival of the core stage for the agency's Space Launch System (SLS) rocket. When the stage for NASA's SLS departs the Michoud Assembly Facility in New Orleans, it will be shipped by the agency's modified barge to the Launch Complex 39 turn basin.
2017-06-30
Across from the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, cement is poured as part of a construction project to upgrade the turn basin wharf. The work includes driving multiple precast concrete piles to a depth of about 70 feet to accommodate arrival of the core stage for the agency's Space Launch System (SLS) rocket. When the stage for NASA's SLS departs the Michoud Assembly Facility in New Orleans, it will be shipped by the agency's modified barge to the Launch Complex 39 turn basin.
Wastewater Sludge Used as Material for Bricks Fabrication
NASA Astrophysics Data System (ADS)
Jianu, N. R.; Moga, I. C.; Pricop, F.; Chivoiu, A.
2018-06-01
Current world trends related to wastewater sludges are: reuse in agriculture, utilization as retaining material for petroleum products or utilization in construction. Bricks from sand-cement or autoclaved cellular concrete are commonly used in construction. The authors propose innovative receipts for bricks and plasters based on textile wastewaters sludge. Centrifuged sludge is mixed with cement to obtain bricks and plaster. For bricks, the mixture is represented by 45% cement and 55% sludge. The paper presents the obtained results and the new materials used for bricks fabrication.
Evaluation of cement treated base courses : technical assistance report.
DOT National Transportation Integrated Search
2000-12-01
The objectives of this project are to determine the strength characteristics of soil cement bases that were constructed under stabilized procedures (DOTD TR 432M/432-99) and the cement treated design philosophy. This was accomplished by using the Fal...
Evaluation of hydraulic cement concretes containing slag added at the mixer.
DOT National Transportation Integrated Search
1985-01-01
The study evaluated the effect of ground, granulated, iron slags on the properties of hydraulic cement concretes such as normally used in highway construction. Two cements with different alkali contents and two slags with different activity indices, ...
Innovative solutions to buried Portland concrete cement roadways : construction report.
DOT National Transportation Integrated Search
1999-01-01
Maine has hundreds of miles of highway that were constructed of Portland Concrete Cement : (PCC) roughly 6 to 6.1 meters (18 to 20 feet) wide forty or more years ago. Since that time these : same highways have been paved and widened to 6.7 or 7 meter...
Review of palm oil fuel ash and ceramic waste in the production of concrete
NASA Astrophysics Data System (ADS)
Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar
2017-11-01
High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.
Self-curing concrete with different self-curing agents
NASA Astrophysics Data System (ADS)
Gopala krishna sastry, K. V. S.; manoj kumar, Putturu
2018-03-01
Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.
Repair and protection of hydraulic cement concrete bridge decks.
DOT National Transportation Integrated Search
1994-01-01
The report is an updated version of "A Manual for the Repair and Protection of Hydraulic Cement Concrete Bridge Decks" (VTRC 90-TAR2). The report was prepared for Chapter 2 of the Hydraulic Cement Concrete Construction School Study Guide which is dis...
These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement thickening products, and many ...
40 CFR 146.12 - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... water. The casing and cement used in the construction of each newly drilled well shall be designed for... intervals; and (7) Type or grade of cement. (c) All Class I injection wells, except those municipal wells... injection zone, or tubing with an approved fluid seal as an alternative. The tubing, packer, and fluid seal...
Research of cement mixtures with additions of industrial by-products
NASA Astrophysics Data System (ADS)
Papesch, R.; Klus, L.; Svoboda, J.; Zajac, R.
2017-10-01
The main goal of the article is the comparison of the possible use of secondary energy products. Used fly ashes, respectively steel dusts in cement mixes derive from production in Moravian-Silesian Region. The research focused on their influence on the chemical and physico-mechanical characteristics of the fresh and solid mixture. The aim was to find suitable formulations for grouting works, highway construction possibly rehabilitation of underground cavities created by mining activities. The introduction is mentioned the history of waste utilization up to current use as a product and the overall state of the problem. The conclusion is an evaluation of possible use in practice, including recommendations to carry out further tests.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1997-04-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1998-12-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1997-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1998-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
The Development of Electrical Strain Gages
NASA Technical Reports Server (NTRS)
De Forest, A V; Leaderman, H
1940-01-01
The design, construction, and properties of an electrical-resistance strain gage consisting of fine wires molded in a laminated plastic are described. The properties of such gages are discussed and also the problems of molding of wires in plastic materials, temperature compensation, and cementing and removal of the gages. Further work to be carried out on the strain gage, together with instrument problems, is discussed.
van Oss, Hendrik G.
2006-01-01
Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.
Tentative to use wastes from thermal power plants for construction building materials
NASA Astrophysics Data System (ADS)
Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien
2018-04-01
Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).
NASA Astrophysics Data System (ADS)
Paris, E.; Radica, F.; Stabile, P.; Ansaloni, F.; Giuli, G.; Carroll, M. R.
2017-12-01
Currently, more than half of all materials extracted globally (over three billion tonnes/year in the EU only) are transformed for use in construction. Before year 2020, the EU aims to reduce the environmental impact of the construction sector by recycling or re-using large amounts of these materials, thus reducing the consumption of raw materials and helping promote the sector's economic stability. With this challenge in mind an aesthetically pleasant and fully recycled (up to 78%) pre-cast cement based tile (Terrazzo tiles) was designed by replacing raw materials with Glass Waste (GW) and Construction/Demolition Waste (CDW). Several recent studies explored the effect of the addition of GW in the manufacture of urban pavements, concluding that the use of GW can improve various phases of pavement life and structure by enhancing the structural performance, durability, environmental friendliness, and aesthetic features. In this study we extend this knowledge also to interior cement-based tiles by evaluating the technical performances of this this novel designed tile, in particular by focusing on the interface between the GW aggregates and different Portland cement based matrix at extreme environmental conditions. For this work three representative waste material based "terrazzo" tiles were selected and characterized by means of XRD and SEM imaging in order to study the boundary effect between GW aggregate and different binding materials: limestone powder, quartz powder and fine ground WG powder. A fourth additional mixture of Portland cement and CDW material was characterized. Fragments of a Limestone matrix tile were also thermally threated at -18°C and at 60°C for one week to witness the possible formation of new harmful phases at the grain-matrix boundary. Preliminary results on X-ray diffraction patterns show that 1 year after manufacture and/or thermal treatment there is no new formation of harmful phases other than the starting ones. High magnification SEM imaging further confirmed this observation also highlighting the good binding performances of a mixture composed by the 78% of recycled WG.
Investigating the Influence of Waste Basalt Powder on Selected Properties of Cement Paste and Mortar
NASA Astrophysics Data System (ADS)
Dobiszewska, Magdalena; Beycioğlu, Ahmet
2017-10-01
Concrete is the most widely used man-made construction material in civil engineering applications. The consumption of cement and thus concrete, increases day by day along with the growth of urbanization and industrialization and due to new developments in construction technologies, population growing, increasing of living standard. Concrete production consumes much energy and large amounts of natural resources. It causes environmental, energy and economic losses. The most important material in concrete production is cement. Cement industry contributes to production of about 7% of all CO2 generated in the world. Every ton of cement production releases nearly one ton of CO2 to atmosphere. Thus the concrete and cement industry changes the environment appearance and influences it very much. Therefore, it has become very important for construction industry to focus on minimizing the environmental impact, reducing energy consumption and limiting CO2 emission. The need to meet these challenges has spurred an interest in the development of a blended Portland cement in which the amount of clinker is reduced and partially replaced with mineral additives - supplementary cementitious materials (SCMs). Many researchers have studied the possibility of using another mineral powder in mortar and concrete production. The addition of marble dust, basalt powder, granite or limestone powder positively affects some properties of cement mortar and concrete. This paper presents an experimental study on the properties of cement paste and mortar containing basalt powder. The basalt powder is a waste emerged from the preparation of aggregate used in asphalt mixture production. Previous studies have shown that analysed waste used as a fine aggregate replacement, has a beneficial effect on some properties of mortar and concrete, i.e. compressive strength, flexural strength and freeze resistance also. The present study shows the results of the research concerning the modification of cement paste and mortar with basalt powder. The modification consists in that the powder waste was added as partial replacement of cement. Four types of common cement were examined, i.e. CEM I, CEM II/A-S, CEM II/A-V and CEM II/B-V. The percentages of basalt powder in this research are 0%, 1%, 2%, 3%, 4%, 6%, 8% and 10% by mass. Results showed that the addition of basalt powder improved the strength of cement mortar. The use of mineral powder as the partial substitution of cement allows the effective management of industrial waste and improves some properties of cement mortar.
Research on and Application to BH-HTC High Density Cementing Slurry System on Tarim Region
NASA Astrophysics Data System (ADS)
Yuanhong, Song; Fei, Gao; Jianyong, He; Qixiang, Yang; Jiang, Yang; Xia, Liu
2017-08-01
A large section of salt bed is contented in Tarim region Piedmont which constructs complex geological conditions. For high-pressure gas well cementing difficulties from the region, high density cement slurry system has been researched through reasonable level of particle size distribution and second weighting up. The results of laboratory tests and field applications show that the high density cementing slurry system is available to Tarim region cementing because this system has a well performance in slurry stability, gas breakthrough control, fluidity, water loss, and strength.
Moretti, Laura; Di Mascio, Paola; Bellagamba, Simona
2017-06-16
The attention to sustainability-related issues has grown fast in recent decades. The experience gained with these themes reveals the importance of considering this topic in the construction industry, which represents an important sector throughout the world. This work consists on conducting a multicriteria analysis of four cement powders, with the objective of calculating and analysing the environmental, human health and socio-economic effects of their production processes. The economic, technical, environmental and safety performances of the examined powders result from official, both internal and public, documents prepared by the producers. The Analytic Hierarchy Process permitted to consider several indicators (i.e., environmental, human health related and socio-economic parameters) and to conduct comprehensive and unbiased analyses which gave the best, most sustainable cement powder. As assumed in this study, the contribution of each considered parameter to the overall sustainability has a different incidence, therefore the procedure could be used to support on-going sustainability efforts under different conditions. The results also prove that it is not appropriate to regard only one parameter to identify the 'best' cement powder, but several impact categories should be considered and analysed if there is an interest for pursuing different, often conflicting interests.
Evaluation of ternary cementitious combinations : tech summary.
DOT National Transportation Integrated Search
2012-02-01
Portland cement concrete (PCC) is the worlds most versatile and utilized construction material. Modern concrete consists of six : main ingredients: coarse aggregate, sand, portland cement, supplementary cementitious materials (SCMs), chemical admi...
Kovler, Konstantin
2006-01-01
The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces.
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun
2015-01-01
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability. PMID:28793563
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Tae-Kyun; Kim, Byung-Yun
2015-09-17
In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder). To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability.
Variability of cement-treated layers in MDOT road projects.
DOT National Transportation Integrated Search
2011-12-01
The Mississippi Department of Transportation revised the specifications for cement-treated : bases between the 1990 and 2004 editions of Mississippi Standard Specifications for Road and Bridge : Construction. The required compressive strength o...
Khader, Basel A.; Curran, Declan J.; Peel, Sean; Towler, Mark R.
2016-01-01
Glass polyalkenoate cements (GPCs) have potential for skeletal cementation. Unfortunately, commercial GPCs all contain, and subsequently release, aluminum ions, which have been implicated in degenerative brain disease. The purpose of this research was to create a series of aluminum-free GPCs constructed from silicate (SiO2), calcium (CaO), zinc (ZnO) and sodium (Na2O)-containing glasses mixed with poly-acrylic acid (PAA) and to evaluate the potential of these cements for cranioplasty applications. Three glasses were formulated based on the SiO2-CaO-ZnO-Na2O parent glass (KBT01) with 0.03 mol % (KBT02) and 0.06 mol % (KBT03) germanium (GeO2) substituted for ZnO. Each glass was then mixed with 50 wt % of a patented SiO2-CaO-ZnO-strontium (SrO) glass composition and the resultant mixtures were subsequently reacted with aqueous PAA (50 wt % addition) to produce three GPCs. The incorporation of Ge in the glass phase was found to result in decreased working (142 s to 112 s) and setting (807 s to 448 s) times for the cements manufactured from them, likely due to the increase in crosslink formation between the Ge-containing glasses and the PAA. Compressive (σc) and biaxial flexural (σf) strengths of the cements were examined at 1, 7 and 30 days post mixing and were found to increase with both maturation and Ge content. The bonding strength of a titanium cylinder (Ti) attached to bone by the cements increased from 0.2 MPa, when placed, to 0.6 MPa, after 14 days maturation. The results of this research indicate that Germano-Silicate based GPCs have suitable handling and mechanical properties for cranioplasty fixation. PMID:27023623
Soil-cement study : final report.
DOT National Transportation Integrated Search
1973-11-01
This study consisted of an examination of the compressive strengths of soil-cement mixtures on 15 construction projects from the standpoint of design and actual achievement. The laboratory design test was examined closely along with the present field...
Latex-modified concrete overlay containing Type K cement.
DOT National Transportation Integrated Search
2005-01-01
Hydraulic cement concrete overlays are usually placed on bridges to reduce the infiltration of water and chloride ions and to improve skid resistance, ride quality, and surface appearance. Constructed in accordance with prescription specifications, s...
Utilizing Coal Fly Ash and Recycled Glass in Developing Green Concrete Materials
DOT National Transportation Integrated Search
2012-06-01
The environmental impact of Portland cement concrete production has motivated researchers and the construction industry to evaluate alternative technologies for incorporating recycled cementing materials and recycled aggregates in concrete. One such ...
NASA Astrophysics Data System (ADS)
Pearson, Paul N.; Expedition 363 Shipboard Scientific Party, IODP
2018-01-01
Agglutinated foraminifera are marine protists that show apparently complex behaviour in constructing their shells, involving selecting suitable sedimentary grains from their environment, manipulating them in three dimensions, and cementing them precisely into position. Here we illustrate a striking and previously undescribed example of complex organisation in fragments of a tube-like foraminifer (questionably assigned to Rhabdammina) from 1466 m water depth on the northwest Australian margin. The tube is constructed from well-cemented siliciclastic grains which form a matrix into which hundreds of planktonic foraminifer shells are regularly spaced in apparently helical bands. These shells are of a single species, Turborotalita clarkei, which has been selected to the exclusion of all other bioclasts. The majority of shells are set horizontally in the matrix with the umbilical side upward. This mode of construction, as is the case with other agglutinated tests, seems to require either an extraordinarily selective trial-and-error process at the site of cementation or an active sensory and decision-making system within the cell.
Self-cleaning geopolymer concrete - A review
NASA Astrophysics Data System (ADS)
Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor
2016-06-01
Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.
NASA Astrophysics Data System (ADS)
Wattanachai, Pitiwat; Suwan, Teewara
2017-06-01
At the present day, a concept of environmentally friendly construction materials has been intensively studying to reduce the amount of releasing greenhouse gases. Geopolymer is one of the cementitious binders which can be produced by utilising pozzolanic wastes (e.g. fly ash or furnace slag) and also receiving much more attention as a low-CO2 emission material. However, to achieve excellent mechanical properties, heat curing process is needed to apply to geopolymer cement in a range of temperature around 40 to 90°C. To consume less oven-curing energy and be more convenience in practical work, the study on geopolymer curing at ambient temperature (around 20 to 25°C) is therefore widely investigated. In this paper, a core review of factors and approaches for non-oven curing geopolymer has been summarised. The performance, in term of strength, of each non-oven curing method, is also presented and analysed. The main aim of this review paper is to gather the latest study of ambient temperature curing geopolymer and to enlarge a feasibility of non-oven curing geopolymer development. Also, to extend the directions of research work, some approaches or techniques can be combined or applied to the specific properties for in-field applications and embankment stabilization by using soil-cement column.
Construction materials as a waste management solution for cellulose sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modolo, R., E-mail: regina.modolo@ua.pt; Ferreira, V.M.; Machado, L.M.
2011-02-15
Sustainable waste management system for effluents treatment sludge has been a pressing issue for pulp and paper sector. Recycling is always recommended in terms of environmental sustainability. Following an approach of waste valorisation, this work aims to demonstrate the technical viability of producing fiber-cement roof sheets incorporating cellulose primary sludge generated on paper and pulp mills. From the results obtained with preliminary studies it was possible to verify the possibility of producing fiber-cement sheets by replacing 25% of the conventional used virgin long fiber by primary effluent treatment cellulose sludge. This amount of incorporation was tested on an industrial scale.more » Environmental parameters related to water and waste, as well as tests for checking the quality of the final product was performed. These control parameters involved total solids in suspension, dissolved salts, chlorides, sulphates, COD, metals content. In the product, parameters like moisture, density and strength were controlled. The results showed that it is possible to replace the virgin long fibers pulp by primary sludge without impacts in final product characteristics and on the environment. This work ensures the elimination of significant waste amounts, which are nowadays sent to landfill, as well as reduces costs associated with the standard raw materials use in the fiber-cement industrial sector.« less
The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China.
Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue
2016-06-24
This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO₂e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO₂e is 8215.31 tons. Based on the evaluation results, the CO₂e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO₂e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO₂e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO₂ in each phase, which accounts for more than 98% of total emissions. N₂O and CH₄ emissions are relatively insignificant.
Dust exposure and the risk of cancer in cement industry workers in Korea.
Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seunghee; Ryu, Hyang-Woo
2013-03-01
Cement is used widely in the construction industry, though it contains hazardous chemicals such as hexavalent chromium. Several epidemiological studies have examined the association between cement dust exposure and cancer, but these associations have proved inconclusive. In the present study, we examined the association between dust exposure and cancer in cement industry workers in Korea. Our cohort consisted of 1,324 men who worked at two Portland cement manufacturing factories between 1997 and 2005. We calculated cumulative dust exposures, then categorized workers into high and low dust exposure groups. Cancer cases were identified between 1997 and 2005 by linking with the national cancer registry. Standardized incidence ratios (SIRs) were calculated for all workers and the high and low dust exposure groups, respectively. The SIR for overall cancers in all workers was increased (1.35, 95% CI: 1.01-1.78). The SIR for stomach cancer in the high dust exposure group was increased (2.18, 95% CI: 1.19-3.65), but there was no increased stomach cancer risk in the low dust exposure group. The SIR for rectal cancer in all workers was increased (3.05, 95% CI: 1.32-6.02). Rectal cancer risk was similar in the high and low exposure groups. Our findings suggest a potential association between exposure in the cement industry and an increased risk of stomach and rectal cancers. However, due to the small number of cases, this association should be further investigated in a study with a longer follow-up period and adjustment for confounders. Copyright © 2012 Wiley Periodicals, Inc.
Life Cycle Cost Analysis of Portland Cement Concrete Pavements
DOT National Transportation Integrated Search
1999-09-01
This report describes the development of a new life cycle cost analysis methodology for Portland cement concrete pavements - one that considers all aspects of pavement design, construction, maintenance, and user impacts throughout the analysis period...
Guide for curing of portland cement. Volume I
DOT National Transportation Integrated Search
2005-01-01
This document provides guidance on details of concrete curing practice as they pertain to construction of portland cement concrete pavements. The guide is organized around the major events in curing pavements: curing immediately after placement (init...
Stabilization of marly soils with portland cement
NASA Astrophysics Data System (ADS)
Piskunov, Maksim; Karzin, Evgeny; Lukina, Valentina; Lukinov, Vitaly; Kholkin, Anatolii
2017-10-01
Stabilization of marlous soils with Portland cement will increase the service life of motor roads in areas where marl is used as a local road construction material. The result of the conducted research is the conclusion about the principal possibility of stabilization of marlous soils with Portland cement, and about the optimal percentage of the mineral part and the binding agent. When planning the experiment, a simplex-lattice plan was implemented, which makes it possible to obtain a mathematical model for changing the properties of a material in the form of polynomials of incomplete third order. Brands were determined for compressive strength according to GOST 23558-94 and variants of stabilized soils were proposed for road construction.
Microstructural characterization of catalysis product of nanocement based materials: A review
NASA Astrophysics Data System (ADS)
Sutan, Norsuzailina Mohamed; Izaitul Akma Ideris, Nur; Taib, Siti Noor Linda; Lee, Delsye Teo Ching; Hassan, Alsidqi; Kudnie Sahari, Siti; Mohamad Said, Khairul Anwar; Rahman Sobuz, Habibur
2018-03-01
Cement as an essential element for cement-based products contributed to negative environmental issues due to its high energy consumption and carbon dioxide emission during its production. These issues create the need to find alternative materials as partial cement replacement where studies on the potential of utilizing silica based materials as partial cement replacement come into picture. This review highlights the effectiveness of microstructural characterization techniques that have been used in the studies that focus on characterization of calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) formation during hydration process of cement-based product incorporating nano reactive silica based materials as partial cement replacement. Understanding the effect of these materials as cement replacement in cement based product focusing on the microstructural development will lead to a higher confidence in the use of industrial waste as a new non-conventional material in construction industry that can catalyse rapid and innovative advances in green technology.
Eco-friendly GGBS Concrete: A State-of-The-Art Review
NASA Astrophysics Data System (ADS)
Saranya, P.; Nagarajan, Praveen; Shashikala, A. P.
2018-03-01
Concrete is the most commonly used material in the construction industry in which cement is its vital ingredient. Although the advantages of concrete are many, there are side effects leading to environmental issues. The manufacturing process of cement emits considerable amount of carbon dioxide (CO2). Therefore is an urgent need to reduce the usage of cement. Ground Granulated Blast furnace Slag (GGBS) is a by-product from steel industry. It has good structural and durable properties with less environmental effects. This paper critically reviews the literatures available on GGBS used in cement concrete. In this paper, the literature available on GGBS are grouped into engineering properties of GGBS concrete, hydraulic action of GGBS in concrete, durability properties of GGBS concrete, self- compacting GGBS concrete and ultrafine GGBS are highlighted. From the review of literature, it was found that the use of GGBS in concrete construction will be eco-friendly and economical. The optimum percentage of replacement of cement by GGBS lies between 40 - 45 % by weight. New materials that can be added in addition to GGBS for getting better strength and durability also highlighted.
High early strength latex modified concrete overlay.
DOT National Transportation Integrated Search
1988-01-01
This report describes the condition of the first high early strength latex modified concrete (LMC-HE) overlay to be constructed for the Virginia Department of Transportation. The overlay was prepared with type III cement and with more cement and less...
Investigation of concrete containing slag : Hampton River Bridge.
DOT National Transportation Integrated Search
1986-01-01
The study evaluated the properties of concretes containing slag in a 50% replacement of the portland cement to assess their suitability as an alternative to the portland cement concretes normally used in the construction of bridge substructures. For ...
Yetkinler, D N; Ladd, A L; Poser, R D; Constantz, B R; Carter, D
1999-03-01
The purpose of this study was to compare the biomechanical efficacy of an injectable calcium-phosphate bone cement (Skeletal Repair System [SRS]) with that of Kirschner wires for the fixation of intraarticular fractures of the distal part of the radius. Colles fractures (AO pattern, C2.1) were produced in ten pairs of fresh-frozen human cadaveric radii. One radius from each pair was randomly chosen for stabilization with SRS bone cement. These ten radii were treated with open incision, impaction of loose cancellous bone with use of a Freer elevator, and placement of the SRS bone cement by injection. In the ten control specimens, the fracture was stabilized with use of two horizontal and two oblique Kirschner wires. The specimens were cyclically loaded to a peak load of 200 newtons for 2000 cycles to evaluate the amount of settling, or radial shortening, under conditions simulating postoperative loading with the limb in a cast. Each specimen then was loaded to failure to determine its ultimate strength. The amount of radial shortening was highly variable among the specimens, but it was consistently higher in the Kirschner-wire constructs than in the bone fixed with SRS bone cement within each pair of radii. The range of shortening for all twenty specimens was 0.18 to 4.51 millimeters. The average amount of shortening in the SRS constructs was 50 percent of that in the Kirschner-wire constructs (0.51+/-0.34 compared with 1.01+/-1.23 millimeters; p = 0.015). With the numbers available, no significant difference in ultimate strength was detected between the two fixation groups. This study showed that fixation of an intra-articular fracture of the distal part of a cadaveric radius with biocompatible calcium-phosphate bone cement produced results that were biomechanically comparable with those produced by fixation with Kirschner wires. However, the constructs that were fixed with calcium-phosphate bone cement demonstrated less shortening under simulated cyclic load-bearing.
Moretti, Laura; Di Mascio, Paola; Bellagamba, Simona
2017-01-01
The attention to sustainability-related issues has grown fast in recent decades. The experience gained with these themes reveals the importance of considering this topic in the construction industry, which represents an important sector throughout the world. This work consists on conducting a multicriteria analysis of four cement powders, with the objective of calculating and analysing the environmental, human health and socio-economic effects of their production processes. The economic, technical, environmental and safety performances of the examined powders result from official, both internal and public, documents prepared by the producers. The Analytic Hierarchy Process permitted to consider several indicators (i.e., environmental, human health related and socio-economic parameters) and to conduct comprehensive and unbiased analyses which gave the best, most sustainable cement powder. As assumed in this study, the contribution of each considered parameter to the overall sustainability has a different incidence, therefore the procedure could be used to support on-going sustainability efforts under different conditions. The results also prove that it is not appropriate to regard only one parameter to identify the ‘best’ cement powder, but several impact categories should be considered and analysed if there is an interest for pursuing different, often conflicting interests. PMID:28621754
Osterhoff, Georg; Dodd, Andrew E; Unno, Florence; Wong, Angus; Amiri, Shahram; Lefaivre, Kelly A; Guy, Pierre
2016-11-01
Sacroiliac screw fixation in elderly patients with pelvic fractures is prone to failure owing to impaired bone quality. Cement augmentation has been proposed as a possible solution, because in other anatomic areas this has been shown to reduce screw loosening. However, to our knowledge, this has not been evaluated for sacroiliac screws. We investigated the potential biomechanical benefit of cement augmentation of sacroiliac screw fixation in a cadaver model of osteoporotic bone, specifically with respect to screw loosening, construct survival, and fracture-site motion. Standardized complete sacral ala fractures with intact posterior ligaments in combination with ipsilateral upper and lower pubic rami fractures were created in osteoporotic cadaver pelves and stabilized by three fixation techniques: sacroiliac (n = 5) with sacroiliac screws in S1 and S2, cemented (n = 5) with addition of cement augmentation, and transsacral (n = 5) with a single transsacral screw in S1. A cyclic loading protocol was applied with torque (1.5 Nm) and increasing axial force (250-750 N). Screw loosening, construct survival, and sacral fracture-site motion were measured by optoelectric motion tracking. A sample-size calculation revealed five samples per group to be required to achieve a power of 0.80 to detect 50% reduction in screw loosening. Screw motion in relation to the sacrum during loading with 250 N/1.5 Nm was not different among the three groups (sacroiliac: 1.2 mm, range, 0.6-1.9; cemented: 0.7 mm, range, 0.5-1.3; transsacral: 1.1 mm, range, 0.6-2.3) (p = 0.940). Screw subsidence was less in the cemented group (3.0 mm, range, 1.2-3.7) compared with the sacroiliac (5.7 mm, range, 4.7-10.4) or transsacral group (5.6 mm, range, 3.8-10.5) (p = 0.031). There was no difference with the numbers available in the median number of cycles needed until failure; this was 2921 cycles (range, 2586-5450) in the cemented group, 2570 cycles (range, 2500-5107) for the sacroiliac specimens, and 2578 cycles (range, 2540-2623) in the transsacral group (p = 0.153). The cemented group absorbed more energy before failure (8.2 × 10 5 N*cycles; range, 6.6 × 10 5 -22.6 × 10 5 ) compared with the transsacral group (6.5 × 10 5 N*cycles; range, 6.4 × 10 5 -6.7 × 10 5 ) (p = 0.016). There was no difference with the numbers available in terms of fracture site motion (sacroiliac: 2.9 mm, range, 0.7-5.4; cemented: 1.2 mm, range, 0.6-1.9; transsacral: 2.1 mm, range, 1.2-4.8). Probability values for all between-group comparisons were greater than 0.05. The addition of cement to standard sacroiliac screw fixation seemed to change the mode and dynamics of failure in this cadaveric mechanical model. Although no advantages to cement were observed in terms of screw motion or cycles to failure among the different constructs, a cemented, two-screw sacroiliac screw construct resulted in less screw subsidence and greater energy absorbed to failure than an uncemented single transsacral screw. In osteoporotic bone, the addition of cement to sacroiliac screw fixation might improve screw anchorage. However, larger mechanical studies using these findings as pilot data should be performed before applying these preliminary findings clinically.
Recycling of red muds with the extraction of metals and special additions to cement
NASA Astrophysics Data System (ADS)
Zinoveev, D. V.; Diubanov, V. G.; Shutova, A. V.; Ziniaeva, M. V.
2015-01-01
The liquid-phase reduction of iron oxides from red mud is experimentally studied. It is shown that, in addition to a metal, a slag suitable for utilization in the construction industry can be produced as a result of pyrometallurgical processing of red mud. Portland cement is shown to be produced from this slag with mineral additions and a high-aluminate expansion addition to cement.
NASA Astrophysics Data System (ADS)
Barrett, Timothy J.
In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested where the limestone was blended (i.e., not interground) as needed, enabling variation of the size of the limestone particles. In addition, one of the commercially produced OPCs and PLCs were used with fly ash. A series of standardized tests were run to assess the physical effects of intergrinding limestone in portland cement, the effect of limestone presence and method of inclusion on the hydration reaction, and the associated mechanical and transport properties of concretes made with these limestone cements. The second phase of the study used a commercially produced OPC, a PLC, and a PLC-slag all made from the same parent clinker to quantify the early age shrinkage and cracking potential. The study presents a series of tests that quantify the fundamental origins of shrinkage in cementitious materials to elucidate the differences between PLC and OPC. The bulk shrinkage of these systems is then quantified under free and restrained conditions to provide an assessment of the susceptibility for cracking in portland limestone cements. The results of the first phase of this thesis showed that in general the PLC and OPC systems have similar hydration, set, and mechanical performance. Transport properties in this study show behavior that is +/- 30% of the conventional OPC system depending on the system. Literature has shown similar freeze-thaw resistance when these materials are used in properly air entrained mixtures, and the results for PLC systems with fly ash show added performance. Based on these results it appears that PLC that meets ASTM C595/AASHTO M234 should be able to be used interchangeably with OPC, while it should also be noted that the investigation of the influence of salts and sulfates on PLCs is still ongoing and should be monitored. The results of the second phase of this thesis showed that while the PLCs are finer, this comes primarily by reducing the very large particles (clinker particles greater than 30 microns) using advanced separator technology and increasing the number of very fine limestone particles. This results in the cements tested having similar autogenous shrinkage development in the PLC systems compared to the OPC, with slightly less shrinkage in the PLC-slag system. The stress that develops when this shrinkage is restrained is very similar in comparing the OPC, PLC and PLC-slag systems and the PLC mixture tends to crack at a similar or slightly earlier times.
Influence of dunite mineral additive on strength of cement
NASA Astrophysics Data System (ADS)
Vasilyeva, A. A.; Moskvitina, L. V.; Moskvitin, S. G.; Lebedev, M. P.; Fedorova, G. D.
2017-12-01
The work studies the applicability of dunite rocks from Inagli massif (South Yakutia) for the production of mixed (composite) cement. The paper reviews the implementation of dunite for manufacturing materials and products. The chemical and mineral compositions of Inagli massif dunite rocks are presented, which relegate the rocks to magnesia-silicate rocks of low-quality in terms of its application as refractory feedstock due to appreciable serpentinization of dunite. The work presents the results of dunite study in terms of its applicability as an additive to Portland cement. The authors have established that dunite does not feature hydraulicity and can be used as a filling additive to Portland cement in the amount of up to 40%. It was unveiled that the mixed grinding of Portland cement and dunite sand with specific surface area of 5500 cm2/g yields the cement that complies with GOST 31108-2016 for CEM II and CEM V normal-cured cements with strength grades of 32.5 and 42.5. The work demonstrates the benefits of the studies of dunite as a filling additive for producing both Portland cement with mineral component and composite (mixed) cement.
The use of shale ash in dry mix construction materials
NASA Astrophysics Data System (ADS)
Gulbe, L.; Setina, J.; Juhnevica, I.
2017-10-01
The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.
The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China
Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue
2016-01-01
This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO2e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO2e is 8215.31 tons. Based on the evaluation results, the CO2e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO2e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO2e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO2 in each phase, which accounts for more than 98% of total emissions. N2O and CH4 emissions are relatively insignificant. PMID:27347987
Incorporation of bitumen and calcium silicate in cement and lime stabilized soil blocks
NASA Astrophysics Data System (ADS)
Kwan, W. H.; Cheah, C. B.; Ramli, M.; Al-Sakkaf, Y. K.
2017-04-01
Providing affordable housing is the most critical problem in many of the developing countries. Using earth materials in building construction is one of the feasible methods to address this issue and it can be a way towards sustainable construction as well. However, the published information on the stabilized soil blocks is limited. Therefore, the present study is conducted to examine the characterization of the soils and engineering properties of the stabilized soil blocks. Four types of stabilizer were used in the study, namely; cement, slaked lime, bitumen emulsion and calcium silicate. Cement and slaked lime were added at different percentages in the range of 5% to 15%, with interval of 2.5%. The percentage was determined based on weight of soil. Meanwhile, bitumen emulsion and calcium silicate were incorporated at various percentages together with 10% of cement. Dosage of bitumen emulsion is in the range of 2% to 10% at interval of 2% while calcium silicate was incorporated at 0.50%, 0.75%, 1.00%, 1.25%, 1.50% and 2.00%. Results show that cement is the most viable stabilizer for the soil block among all stabilizers in this study. The bulk density, optimum moisture content and compressive strengths were increased with the increasing cement content. The most suitable cement content was 10% added at moisture content of 12%. Lime, bitumen and calcium contents were recommended at 5.0%, 6.0% and 1.25%, respectively.
Evaluation of Nontraditional Airfield Pavement Surfaces for Contingency Operations
2014-01-01
such as asphalt or portland cement concrete are not readily available or are too cost-, labor-, or equipment-intensive to use. This report presents a...courses) are generally constructed using hot mix asphalt (HMA) or portland cement concrete (PCC), both of which are suitable for C-17 and C-130...associated with PCC or HMA surfacing. Stabilization can be accomplished by blending additives such as portland cement , lime, fly ash, asphalt binder
Design and Construction of Airport Pavements on Expansive Soils
1976-06-01
Selection of the type anc amount of stabilizing agent (lime, cement , asphalt, only) (4) Test methods to determine the physical properties of sta...7 8.3 5.4 3.3 6.5 1 4.7 3-3, 1 (8) Investigate the effect of sulfate on cement -stabilized soils and establish...terested because the properties of soil/ cement mixtures and the relationships existing among these properties and various test values are discussed
Center for Coal-Derived Low Energy Materials for Sustainable Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewell, Robert; Robl, Tom; Rathbone, Robert
2012-06-30
The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCB’s (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.
Design and construction control guidance for chemically stabilized pavement base layers.
DOT National Transportation Integrated Search
2013-12-01
A laboratory and field study was conducted related to chemically stabilized pavement layers, which is also : referred to as soil-cement. Soil-cement practices within MDOT related to Class 9C soils used for base layers : were evaluated in this report....
NASA Astrophysics Data System (ADS)
Rees, D.; Fuller-Rowell, T. J.; Lyons, A.; Killeen, T. L.; Hays, P. B.
1982-11-01
The cemented etalons are shown to be rugged and highly stable for high-resolution spectroscopy and to be well suited to space applications. The etalons will be of considerable value as the tuning elements of dye laser systems and as the stable spectral disperser for pulse and CW laser spectroscopy. Even for etalons 15 cm in diameter, the strength of the cemented bond is greatly in excess of the maximum steady and impulsive forces experienced from the much larger etalon plate mass (2-4 kg rather than 200 g). It is thought that the small but systematic and significant positive increment in the thermal expansion coefficient which occurs when an etalon and its spacers are cemented may be linked to the cessation of the microscopic migration that occurs with an optically contacted bond under thermal or mechanical stress. The etalon comprises two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives.
Occupational characteristics of respiratory cancer patients exposed to asbestos in Lithuania
NASA Astrophysics Data System (ADS)
Everatt, R. Petrauskaitdot e.; Smolianskiedot n, G.; Tossavainen, A.; Cicdot enas, S.; Jankauskas, R.
2009-02-01
Objective: To assess characteristics of asbestos exposure in respiratory cancer patients in Lithuania. Methods. Information on occupational exposure to asbestos was collected by personal interviews and occupational characteristics were evaluated among 183 lung cancer and mesothelioma patients with cumulative asbestos exposure >=0.01 fibre years hospitalized at the Institute of Oncology, Vilnius. Additionally, some results of workplace air measurements were reviewed. Results. Cases with estimated cumulative exposure >=5 fibre years had worked mainly in the construction industry (49%), installation and maintenance (13%), foundry and metal products manufacturing (6%), heating trades and boilerhouses (6%) as fitters/maintenance technicians, construction workers, welders, electricians or foremen. Typical asbestos materials used by the patients were asbestos powder, asbestos cement sheets and pipes, asbestos cord, brake and clutch linings. Patients were exposed to asbestos when insulating boilers, furnaces, pipes in power stations, industrial facilities, ships, locomotives, buildings, while covering and repairing roofs, at the asbestos cement plant or unloading asbestos products. Most patients with estimated cumulative exposure of >=0.01-4.9 fibre years worked as lorry, bus or tractor drivers and motor vehicle mechanics. In 2002-2007 workplace air asbestos concentrations exceeded the limit value of 0.1 f/cm3 in 11 samples out of 208 measurements. Conclusion. The results of this study indicate that since the 1960s occupational exposure to chrysotile asbestos was extensive in Lithuania.
Research on Reasons for Repeated Falling of Tiles in Internal Walls of Construction
NASA Astrophysics Data System (ADS)
Xu, LiBin; Chen, Shangwei; He, Xinzhou; Zhu, Guoliang
2018-03-01
In view of the quality problem of repeated falling of facing tiles in some construction, the essay had a comparative trial in laboratory on cement mortar which is often used to paste tiles, special tile mortar and dry-hang glue, and measured durability of tile adhesive mortar through freezing and thawing tests. The test results indicated that ordinary cement mortar cannot meet standards due to reasons like big shrinkage and low adhesive. In addition, the ten times of freezing and thawing tests indicated that ordinary cement mortar would directly shell and do not have an adhesive force, and moreover, adhesive force of special tile mortar would reduce. Thus, for tiles of large size which are used for walls, dry-hang techniques are recommended to be used.
Life Cycle Assessment of Completely Recyclable Concrete.
De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele
2014-08-21
Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.
Life Cycle Assessment of Completely Recyclable Concrete
De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele
2014-01-01
Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete. PMID:28788174
The use of waste materials for concrete production in construction applications
NASA Astrophysics Data System (ADS)
Teara, Ashraf; Shu Ing, Doh; Tam, Vivian WY
2018-04-01
To sustain the environment, it is crucial to find solutions to deal with waste, pollution, depletion and degradation resources. In construction, large amounts of concrete from buildings’ demolitions made up 30-40 % of total wastes. Expensive dumping cost, landfill taxes and limited disposal sites give chance to develop recycled concrete. Recycled aggregates were used for reconstructing damaged infrastructures and roads after World War II. However, recycled concrete consists fly ash, slag and recycled aggregate, is not widely used because of its poor quality compared with ordinary concrete. This research investigates the possibility of using recycled concrete in construction applications as normal concrete. Methods include varying proportion of replacing natural aggregate by recycled aggregate, and the substitute of cement by associated slag cement with fly ash. The study reveals that slag and fly ash are effective supplementary elements in improving the properties of the concrete with cement. But, without cement, these two elements do not play an important role in improving the properties. Also, slag is more useful than fly ash if its amount does not go higher than 50%. Moreover, recycled aggregate contributes positively to the concrete mixture, in terms of compression strength. Finally, concrete strength increases when the amount of the RA augments, related to either the high quality of RA or the method of mixing, or both.
Ground-water problems in highway construction and maintenance
Rasmussen, W.C.; Haigler, L.B.
1953-01-01
This report discusses the occurrence of ground water in relation to certain problems in highway construction and maintenance. These problems are: the subdrainage of roads; quicksand; the arrest of soil creep in road cuts; the construction of lower and larger culverts necessitated by the farm-drainage program; the prevention of failure of bridge abutments and retaining walls; and the water-cement ratio of sub-water-table concrete. Although the highway problems and suggested solutions are of general interest, they are considered with special reference to the State of Delaware, in relation to the geology of that State. The new technique of soil stabilization by electroosmosis is reviewed in the hope that it might find application here in road work and pile setting, field application by the Germans and Russians is reviewed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... cement. Clinker cooler means equipment into which clinker product leaving the kiln is placed to be cooled... system in a portland cement production process where a dry kiln system is integrated with the raw mill so... construction after May 6, 2009, for purposes of determining the applicability of the kiln, clinker cooler and...
Innovative solutions to buried portland cement concrete roadways : first interim report.
DOT National Transportation Integrated Search
2000-05-01
Maine has hundreds of miles of highway that were constructed of Portland Cement : Concrete (PCC) roughly 6 to 6.1 meters (18 to 20 feet) wide forty or more years ago. Since that : time these same highways have been paved and widened to 6.7 or 7 meter...
NASA Technical Reports Server (NTRS)
Mueller, R. P.; Townsend, I. I.; Tamasy, G. J.; Evers, C. J.; Sibille, L. J.; Edmunson, J. E.; Fiske, M. R.; Fikes, J. C.; Case, M.
2018-01-01
The purpose of the Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) project is to incorporate the Liquid Goods Delivery System (LGDS) into the Dry Goods Delivery System (DGDS) structure to create an integrated and automated Materials Delivery System (MDS) for 3D printing structures with ordinary Portland cement (OPC) concrete. ACES 3 is a prototype for 3-D printing barracks for soldiers in forward bases, here on Earth. The LGDS supports ACES 3 by storing liquid materials, mixing recipe batches of liquid materials, and working with the Dry Goods Feed System (DGFS) previously developed for ACES 2, combining the materials that are eventually extruded out of the print nozzle. Automated Construction of Expeditionary Structures, Phase 3 (ACES 3) is a project led by the US Army Corps of Engineers (USACE) and supported by NASA. The equivalent 3D printing system for construction in space is designated Additive Construction with Mobile Emplacement (ACME) by NASA.
Cement burns: retrospective study of 18 cases and review of the literature.
Poupon, M; Caye, N; Duteille, F; Pannier, M
2005-11-01
Cement is increasingly used in the construction industry, but the occurrence of cement burns is rarely reported. This retrospective study concerns patients treated for cement burns in our unit between 1997 and 2002. Eighteen patients 18-64 years of age, treated previously in our unit for cement burns, were interviewed by telephone for evaluation. The mean time since treatment was 39 months. Burns were predominantly seen on the lower limbs, and a third occurred during an accident on the job. All deep burns were excised, and 16 patients received grafts. Mean hospital stay was 10 days, and mean sick leave 2 months. Our study indicated that all patients were poorly informed about cement-related risks. Surgical treatment of full-thickness cement burns at diagnosis enables rapid healing with a minimum of sequelae and reduces the high socioeconomic costs resulting from these lesions. This study indicates once again the need to improve preventive measures; which are very often inadequate because of lack of awareness of risks.
Reduction of soil pollution by usingwaste of the limestone in the cement industry
NASA Astrophysics Data System (ADS)
Muñoz, M. Cecilia Soto; Robles Castillo, Marcelo; Blanco Fernandez, David; Diaz Gonzalez, Marcos; Naranjo Lamilla, Pedro; Moore Undurraga, Fernando; Pardo Fabregat, Francisco; Vidal, Manuel Miguel Jordan; Bech, Jaume; Roca, Nuria
2016-04-01
In the cement manufacturing process (wet) a residue is generated in the flotation process. This builds up causing contamination of soil, groundwater and agricultural land unusable type. In this study to reduce soil and water pollution 10% of the dose of cement was replaced by waste of origin limestone. Concretes were produced with 3 doses of cement and mechanical strengths of each type of concrete to 7, 28 and 90 days were determined. the results indicate that the characteristics of calcareous residue can replace up to 10% of the dose of cement without significant decreases in strength occurs. It is noted that use of the residue reduces the initial resistance, so that the dose of cement should not be less than 200 kg of cement per m3. The results allow recommends the use of limestone waste since it has been observed decrease in soil and water contamination without prejudice construction material Keywords: Soil contamination; Limestone residue; Adding concrete
Magnesium-phosphate-glass cements with ceramic-type properties
Sugama, T.; Kukacka, L.E.
1982-09-23
Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.
Magnesium phosphate glass cements with ceramic-type properties
Sugama, Toshifumi; Kukacka, Lawrence E.
1984-03-13
Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.
Nano-scale hydrogen-bond network improves the durability of greener cements
Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.
2013-01-01
More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676
NASA Technical Reports Server (NTRS)
Ordonez, Erick; Edmunson, Jennifer; Fiske, Michael; Christiansen, Eric; Miller, Josh; Davis, Bruce Alan; Read, Jon; Johnston, Mallory; Fikes, John
2017-01-01
Additive Construction is the process of building infrastructure such as habitats, garages, roads, berms, etcetera layer by layer (3D printing). The National Aeronautics and Space Administration (NASA) and the United States Army Corps of Engineers (USACE) are pursuing additive construction to build structures using resources available in-situ. Using materials available in-situ reduces the cost of planetary missions and operations in theater. The NASA team is investigating multiple binders that can be produced on planetary surfaces, including the magnesium oxide-based Sorel cement; the components required to make Ordinary Portland Cement (OPC), the common cement used on Earth, have been found on Mars. The availability of OPC-based concrete on Earth drove the USACE to pursue additive construction for base housing and barriers for military operations. Planetary and military base structures must be capable of resisting micrometeoroid impacts with velocities ranging from 11 to 72km/s for particle sizes 200 micrometers or more (depending on protection requirements) as well as bullets and shrapnel with a velocity of 1.036km/s with projectiles 5.66mm diameter and 57.40mm in length, respectively.
Properties of lightweight cement-based composites containing waste polypropylene
NASA Astrophysics Data System (ADS)
Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek
2016-07-01
Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.
Wee, Hwabok; Armstrong, April D; Flint, Wesley W; Kunselman, Allen R; Lewis, Gregory S
2015-11-01
Aseptic loosening of cemented joint replacements is a complex biological and mechanical process, and remains a clinical concern especially in patients with poor bone quality. Utilizing high resolution finite element analysis of a series of implanted cadaver glenoids, the objective of this study was to quantify relationships between construct morphology and resulting mechanical stresses in cement and trabeculae. Eight glenoid cadavers were implanted with a cemented central peg implant. Specimens were imaged by micro-CT, and subject-specific finite element models were developed. Bone volume fraction, glenoid width, implant-cortex distance, cement volume, cement-cortex contact, and cement-bone interface area were measured. Axial loading was applied to the implant of each model and stress distributions were characterized. Correlation analysis was completed across all specimens for pairs of morphological and mechanical variables. The amount of trabecular bone with high stress was strongly negatively correlated with both cement volume and contact between the cement and cortex (r = -0.85 and -0.84, p < 0.05). Bone with high stress was also correlated with both glenoid width and implant-cortex distance. Contact between the cement and underlying cortex may dramatically reduce trabecular bone stresses surrounding the cement, and this contact depends on bone shape, cement amount, and implant positioning. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Effects of Using Pozzolan and Portland Cement in the Treatment of Dispersive Clay
Vakili, A. H.; Selamat, M. R.; Moayedi, H.
2013-01-01
Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone. PMID:23864828
Effects of using pozzolan and Portland cement in the treatment of dispersive clay.
Vakili, A H; Selamat, M R; Moayedi, H
2013-01-01
Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.
DOT National Transportation Integrated Search
1997-09-01
The purpose of this project was to design and construct lime/fly ash stabilized base course test sections which would be economical compared to a soil cement stabilized base, utilize a recyclable material, and possibly reduce shrinkage cracking on ba...
Innovative solutions to buried portland cement concrete roadways.
DOT National Transportation Integrated Search
2005-03-01
Forty or more years ago hundreds of miles of Maine highways were constructed of Portland Cement : Concrete (PCC) to a width of 5.5 to 6.0 m (18 to 20 ft). Since that time these same highways have been : paved and widened to 6.7 or 7.3 m (22 or 24 ft)...
Innovative solutions to buried portland cement concrete roadways : second interim.
DOT National Transportation Integrated Search
2001-04-01
Maine has hundreds of miles of highway that were constructed of : Portland Cement Concrete (PCC) roughly 6 to 6.1 m (18 to 20 ft) wide forty : or more years ago. Since that time these same highways have been paved : and widened to 6.7 or 7 m (22 or 2...
40 CFR 146.32 - Construction requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Construction requirements. 146.32... to Class III Wells § 146.32 Construction requirements. (a) All new Class III wells shall be cased and... would result. The casing and cement used in the construction of each newly drilled well shall be...
40 CFR 146.32 - Construction requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Construction requirements. 146.32... to Class III Wells § 146.32 Construction requirements. (a) All new Class III wells shall be cased and... would result. The casing and cement used in the construction of each newly drilled well shall be...
NASA Astrophysics Data System (ADS)
Carey, J. W.; Mori, H.; Porter, M. L.; Lewis, K. C.; Kelkar, S.
2013-12-01
Potential leakage from wells is an important issue in the protection of groundwater resources, CO2 sequestration, and hydraulic fracturing. The first defense in all of these applications is a properly constructed well with adequate Portland cement that effectively isolates the subsurface. The chief threat for such wells is mechanical disruption of the cement, cement/steel, or cement/caprock interfaces. This can occur through wellbore operations that pressurize/depressurize the steel tubing or create temperature transients (e.g., injection, production, hydraulic fracturing, and mechanical testing) as well as reservoir-scale stresses (e.g., filling or depletion of the reservoir) and tectonic stresses (e.g., the mobility of salt). However, there is relatively limited information available on the hydrologic consequences of such processes. Toward this end, we discuss recent experiments and computational models of coupled geomechanical and hydrologic processes in wellbore systems. Triaxial coreflood experiments with tomography were conducted on synthetic wellbore systems including cement-steel, rock-cement and rock-cement-steel composites. The aim of the experiments was to induce stresses through application of axial loads in order to create defects within the cement or at the cement/steel or cement/rock interface. High injection fluid pressures (supercritical CO2 × brine) were applied to the base of the initially impermeable composites. Mechanical failure resulted in creation of permeability, which was measured as a function of time (allowing for the possibility of Portland cement to deform and modify permeability). In addition, fracture patterns were characterized using x-ray tomography. We used the computer code FEHM to study coupled hydrologic and mechanical processes in the near-wellbore environment. The wellbore model was developed as a wedge within a radially symmetric 3D volume. The grid elements consist of the steel casing, the casing-cement interface, the cement, the cement-rock interface, caprock, and reservoir rock. We used a model that is 1 m in radius, and extends 5 m along the wellbore. The model consisted of a lower storage aquifer, a caprock and an upper aquifer that received leaking fluids. We coupled flow and geomechanics using a shear-failure model that represents shear-induced damage and is similar to a Mohr-Coulomb slip mechanism. In this model, damage occurs for any excess shear stress with permeability enhancement a function of stress with a maximum magnitude set by the user. Stresses were induced by application of an elevated constant pressure within the injection reservoir representing a far-field injection process. The initial permeability of the cement was 1 mD and stress-enhanced permeability was limited to an increase by a factor of 10-100. The simulations show that shear-failure modes lead to enhanced permeability of the wellbore system. Continuing work will examine sensitivity of the results to mechanical properties and initial permeability distributions, the impact of relative permeability models, and the development of permeability-stress models including an aperture-opening tensile-failure model.
The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength
NASA Astrophysics Data System (ADS)
Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.
2016-04-01
Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.
Li, Mengmeng; Zhu, Xuejiao; Mukherjee, Abhijit; Huang, Minsheng; Achal, Varenyam
2017-05-05
The role of industrial byproduct as supplementary cementitious material to partially replace cement has greatly contributed to sustainable environment. Metakaolin (MK), one of such byproduct, is widely used to partial replacement of cement; however, during cement replacement at high percentage, it may not be a good choice to improve the strength of concrete. Thus, in the present study, biocement, a product of microbially induced carbonate precipitation is utilized in MK-modified cement mortars to improve its compressive strength. Despite of cement replacement with MK as high as 50%, the presented technology improved compressive strength of mortars by 27%, which was still comparable to those mortars with 100% cement. The results proved that biomineralization could be effectively used in reducing cement content without compromising compressive strength of mortars. Biocementation also reduced the porosity of mortars at all ages. The process was characterized by SEM-EDS to observe bacterially-induced carbonate crystals and FTIR spectroscopy to predict responsible bonding in the formation of calcium carbonate. Further, XRD analysis identified bio/minerals formed in the MK-modified mortars. The study also encourages combining biological role in construction engineering to solve hazardous nature of cement and at same time solve the disposal problem of industrial waste for sustainable environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings
Zhang, Qinli; Xiao, Chongchun; Chen, Xin
2017-01-01
To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72–74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection. PMID:28662072
Separability studies of construction and demolition waste recycled sand.
Ulsen, Carina; Kahn, Henrique; Hawlitschek, Gustav; Masini, Eldon A; Angulo, Sérgio C
2013-03-01
The quality of recycled aggregates from construction and demolition waste (CDW) is strictly related to the content of porous and low strength phases, and specifically to the patches of cement that remain attached to the surface of natural aggregates. This phase increases water absorption and compromises the consistency and strength of concrete made from recycled aggregates. Mineral processing has been applied to CDW recycling to remove the patches of adhered cement paste on coarse recycled aggregates. The recycled fine fraction is usually disregarded due to its high content of porous phases despite representing around 50% of the total waste. This paper focus on laboratory mineral separability studies for removing particles with a high content of cement paste from natural fine aggregate particles (quartz/feldspars). The procedure achieved processing of CDW by tertiary impact crushing to produce sand, followed by sieving and density and magnetic separability studies. The attained results confirmed that both methods were effective in reducing cement paste content and producing significant mass recovery (80% for density concentration and 60% for magnetic separation). The production of recycled sand contributes to the sustainability of the construction environment by reducing both the consumption of raw materials and disposal of CDW, particularly in large Brazilian centers with a low quantity of sand and increasing costs of this material due to long transportation distances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings.
Chen, Qiusong; Zhang, Qinli; Xiao, Chongchun; Chen, Xin
2017-01-01
To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72-74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection.
Oxalate Acid-Base Cements as a Means of Carbon Storage
NASA Astrophysics Data System (ADS)
Erdogan, S. T.
2017-12-01
Emission of CO2 from industrial processes poses a myriad of environmental problems. One such polluter is the portland cement (PC) industry. PC is the main ingredient in concrete which is the ubiquitous binding material for construction works. Its production is responsible for 5-10 % of all anthropogenic CO2 emissions. Half of this emission arises from the calcination of calcareous raw materials and half from kiln fuel burning and cement clinker grinding. There have long been efforts to reduce the carbon footprint of concrete. Among the many ways, one is to bind CO2 to the phases in the cement-water paste, oxides, hydroxides, and silicates of calcium, during early hydration or while in service. The problem is that obtaining calcium oxide cheaply requires the decarbonation of limestone and the uptake of CO2 is slow and limited mainly to the surface of the concrete due to its low gas permeability. Hence, a faster method to bind more CO2 is needed. Acid-base (AB) cements are fast-setting, high-strength systems that have high durability in many environments in which PC concrete is vulnerable. They are made with a powder base such as MgO and an acid or acid salt, like phosphates. Despite certain advantages over PC cement systems, AB cements are not feasible, due to their high acid content. Also, the phosphoric acid used comes from non-renewable sources of phosphate. A potential way to reduce the drawbacks of using phosphates could be to use organic acids. Oxalic acid or its salts could react with the proper powder base to give concrete that could be used for infrastructure hence that would have very high demand. In addition, methods to produce oxalates from CO2, even atmospheric, are becoming widespread and more economical. The base can also be an industrial byproduct to further lower the environmental impact. This study describes the use of oxalic acid and industrial byproducts to obtain mortars with mechanical properties comparable to those of PC mortars. It is demonstrated that an oxalate AB (OAB) cement concrete can partially replace PC concrete, for various applications. The strength gain of the OAB system is significantly faster, its heat of reaction higher, its chemical durability higher but its thermal durability lower than PC systems. OAB cements can put to good use oxalates produced from captured CO2.
Elaborating the History of Our Cementing Societies: An in-Use Stock Perspective.
Cao, Zhi; Shen, Lei; Løvik, Amund N; Müller, Daniel B; Liu, Gang
2017-10-03
Modern cities and societies are built fundamentally based on cement and concrete. The global cement production has risen sharply in the past decades due largely to urbanization and construction. Here we deployed a top-down dynamic material flow analysis (MFA) model to quantify the historical development of cement in-use stocks in residential, nonresidential, and civil engineering sectors of all world countries. We found that global cement production spreads unevenly among 184 countries, with China dominating the global production and consumption after the 1990s. Nearly all countries have shown an increasing trend of per capita cement in-use stock in the past century. The present per capita cement in-use stocks vary from 10 to 40 tonnes in major industrialized and transiting countries and are below 10 tonnes in developing countries. Evolutionary modes identified from historical patterns suggest that per capita in-use cement stock growth generally complies with an S-shape curve and relates closely to affluence and urbanization of a country, but more in-depth and bottom-up investigations are needed to better understand socioeconomic drivers behind stock growth. These identified in-use stock patterns can help us better estimate future demand of cement, explore strategies for emissions reduction in the cement industry, and inform CO 2 uptake potentials of cement based products and infrastructure in service.
Wang, Xuanwen; Dong, Xiuwen Sue; Choi, Sang D; Dement, John
2017-05-01
Examine trends and patterns of work-related musculoskeletal disorders (WMSDs) among construction workers in the USA, with an emphasis on older workers. WMSDs were identified from the 1992-2014 Survey of Occupational Injuries and Illnesses (SOII), and employment was estimated from the Current Population Survey (CPS). Risk of WMSDs was measured by number of WMSDs per 10 000 full-time equivalent workers and stratified by major demographic and employment subgroups. Time series analysis was performed to examine the trend of WMSDs in construction. The number of WMSDs significantly dropped in the US construction industry, following the overall injury trends. However, the rate of WMSDs in construction remained higher than in all industries combined; the median days away from work increased from 8 days in 1992 to 13 days in 2014, and the proportion of WMSDs for construction workers aged 55 to 64 years almost doubled. By occupation, construction labourers had the largest number of WMSD cases, while helpers, heating and air-conditioning mechanics, cement masons and sheet metal workers had the highest rates of WMSDs. The major cause of WMSDs in construction was overexertion, and back injuries accounted for more than 40% of WMSDs among construction workers. The estimated wage loss for private wage-and-salary construction workers was $46 million in 2014. Construction workers continue to face a higher risk of WMSDs. Ergonomic solutions that reduce overexertion-the primary exposure for WMSDs-should be adopted extensively at construction sites, particularly for workers with a higher risk of WMSDs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Evaluation of super-water reducers for highway applications
NASA Astrophysics Data System (ADS)
Whiting, D.
1981-03-01
Super-water reducers were characterized and evaluated as potential candidates for production of low water to cement ratio, high strength concretes for highway construction applications. Admixtures were composed of either naphthalene or melamine sulfonated formaldehyde condensates. A mini-slump procedure was used to assess dosage requirements and behavior of workability with time of cement pastes. Required dosage was found to be a function of tricalcium aluminate content, alkali content, and fineness of the cement. Concretes exhibited high rates of slump loss when super-water reducers were used. The most promising area of application of these products appears to be in production of dense, high cement content concrete using mobile concrete mixer/transporters.
Carbon footprint hotspots of prefabricated sandwich panels for hostel construction in Perlis
NASA Astrophysics Data System (ADS)
Razali, Norashikin; Ayob, Afizah; Chandra, Muhammad Erwan Shah; Zaki, Mohd Faiz Mohammad; Ahmad, Abdul Ghapar
2017-10-01
Sustainable design and construction have gained increasing research interest, and reduction of carbon from building construction has become the main focus of environmental strategies in Malaysia. This study uses life cycle assessment and life cycle inventory analysis frameworks to estimate the amount of carbon footprint expressed in carbon dioxide equivalent tons (CO2e) produced by manufacturing prefabricated Industrialized Building System sandwich panels and its installation for a five-story hostel in Perlis, Malaysia. Results show that the carbon footprint hotspots were centered on boiler machine operation and cement with 4.52 and 369.04 tons CO2e, respectively. This finding is due to the extensive energy used for steam heating and high engine rating for the boiler. However, for cement, the carbon footprint hotspots are caused by the large quantity of cement applied in shotcrete mixture and its high extraction and production CO2 emission values. The overall onsite materials generated 96.36% of the total carbon footprint. These carbon footprint hotspot results constitute a necessary base for the Malaysian government in accomplishing an adequate dimensioning of carbon emissions in the building sector.
Polymer-Cement Composites with Self-Healing Ability for Geothermal and Fossil Energy Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, M. Ian; Nguyen, Manh-Thuong; Rod, Kenton A.
Sealing of wellbores in geothermal and tight oil/gas reservoirs by filling the annulus with cement is a well-established practice. Failure of the cement as a result of physical and/or chemical stress is a common problem with serious environmental and financial consequences. Numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This work reports on a novel polymer-cement composite with remarkable self-healing ability that maintains the required properties of typical wellbore cements and may be stable at most geothermal temperatures.more » We combine for the first time experimental analysis of physical and chemical properties with density functional theory simulations to evaluate cement performance. The thermal stability and mechanical strength are attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. Self-healing was demonstrated by sealing fractures with 0.3–0.5 mm apertures, 2 orders of magnitude larger than typical wellbore fractures. This polymer-cement composite represents a major advance in wellbore cementing that could improve the environmental safety and economics of enhanced geothermal energy and tight oil/gas production.« less
de Menezes, Fernando Carlos Hueb; Junior, Geraldo Thedei; de Oliveira, Wildomar Jose; Paulino, Tony de Paiva; de Moura, Marcelo Boaventura; da Silva, Igor Lima; de Moura, Marcos Boaventura
2011-09-01
Indirect restorations are increasingly used in dentistry, and the cementation interface is possibly the most critical region of the work. The objective of the present work was to evaluate the influence of exposure to a culture medium containing S. mutans on the hardness and solubility of four different cementing agents (zinc phosphate, glass ionomer, glass ionomer modified with resin and resin cement). Test specimens composed of these cements were exposed for 30 days in a culture medium containing S. mutans. After leaching, the test materials were assessed in terms of their solubility (loss of mass) and Knoop (KHN) microhardness. Changes in surface morphology were identified using scanning electron microscopy (SEM). The resin cement showed no significant solubility and its hardness increased following exposure and leaching, while the zinc phosphate cement was the most soluble and its hardness decreased after exposure to the culture medium. SEM analyses identified morphological alterations on the surfaces of the test materials that were compatible with the solubility results. It is concluded that resinous cements perform better than water-based cements when exposed to acidic conditions. The effects of acids from Streptococcus mutans can interfere with the efficiency and properties of some cements used for fixation of indirect restorations, exposed to the buccal environment.
Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; van Holland, Berry J; Frings-Dresen, Monique H W
2013-01-01
Screed floors are bound by sand-cement (SF) or by anhydrite (AF). Sand-cement floors are levelled manually and anhydrite floors are self-levelling and therefore differences in work demands and prevalences of musculoskeletal complaints might occur. The objective was to assess among SF layers and AF layers (1) the prevalence of musculoskeletal complaints and (2) the physical work demands, energetic workload, perceived workload and discomfort. A questionnaire survey and an observational field study were performed. Compared with AF layers (n = 35), SF layers (n = 203) had higher, however, not statistically significant different, prevalences of neck (20% vs. 7%), shoulder (27% vs. 13%), low back (39% vs. 26%) and ankles/feet (9% vs. 0%) complaints. Sand-cement-bound screed floor layers (n = 18) bent and kneeled significantly longer (Δ77 min and Δ94 min; respectively), whereas AF layers (n = 18) stood significantly longer (Δ60 min). The work demands of SF layers exceeded exposure criteria for low back and knee complaints and therefore new working measures should be developed and implemented. In comparison with anhydrite-bound screed floor layers, sand-cement-bound screed floor layers exceeded exposure criteria for work-related low back and knee complaints. New working methods and measures for sand-cement-bound screed floor layers should be developed and implemented to reduce the risk for work-related musculoskeletal complaints.
[Results of patch tests using basic allergens in construction workers].
Kieć-Swierczyńska, M
1983-01-01
A group of 853 construction industry workers exposed to irritants and allergens (mainly cement, lime, sand, water, lubricants and antiadhesive oils and a control group of 74 subjects (sawers) underwent patch tests after Jadassohn--Bloch with seven allergens most common in the construction industry working environment (compounds of chromium, nickel and cobalt, turpentine and three rubber allergens--mercantobenzothiazole, thiocarbamoyl and diphenylguanidine). Allergy was found in 25.5% of the construction industry workers, in this 7.7% were those with eczema and dermatitis, 17.8%--those with latent allergy (in 12.2% allergy was accompanied by dermatoses of non-allergic etiology, 5.6% construction workers no skin changes). The highest number of skin positive tests was that with chromium (22.4% of affected workers) and cobalt (12.4%). Most susceptible to allergy were: painters, bricklayers, carpenters, joiners, reinforcing concretors, terrazers, concretors, electricians, smiths and reinforcers. In addition, allergy was found to be dependent on age and length of employment.
Evaluation of performance of light-weight profilometers
DOT National Transportation Integrated Search
2003-10-01
Several lightweight, non-contact profilometers (LWP) are now available to measure profiles of newly constructed Portland Cement Concrete Pavement (PCCP). As constructed smoothness measurements by four LWP's and the California-type profilograph were c...
Recycling the construction and demolition waste to produce polymer concrete
NASA Astrophysics Data System (ADS)
Hamza, Mohammad T.; Hameed, Awham M., Dr.
2018-05-01
The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.
Soil mixing design methods and construction techniques for use in high organic soils : [summary].
DOT National Transportation Integrated Search
2015-10-01
The soils which serve as foundations for construction projects may be roughly classified as : inorganic or organic. Inorganic soils vary in firmness and suitability for construction. Soft : or loose inorganic soils may be stabilized using cement or s...
DOT National Transportation Integrated Search
2010-09-01
The focus of this study was on exploring the use of nanotechnology-based nano-filaments, such as carbon : nanotubes (CNTs) and nanofibers (CNFs), as reinforcement in improving the mechanical properties of Portland : cement paste as a construction mat...
46 CFR 160.049-4 - Construction and workmanship.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or less in each layer, cemented together with an all-purpose vinyl adhesive such as or equivalent to U.S. Rubber No. M-6256 or Minnesota Mining No. EC-870 and No. EC-1070; (ii) Three layers or less that may be cemented; and (iii) Staggered butts and seams of adjacent layers. (d) Grab Straps. Grab...
Polymer-Cement Composites Containing Waste Perlite Powder
Łukowski, Paweł
2016-01-01
Polymer-cement composites (PCCs) are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction. PMID:28773961
Madfa, Ahmed A; Al-Hamzi, Mohsen A; Al-Sanabani, Fadhel A; Al-Qudaimi, Nasr H; Yue, Xiao-Guang
2015-01-01
This study aimed to analyse and compare the stability of two dental posts cemented with four different luting agents by examining their shear stress transfer through the FEM. Eight three-dimensional finite element models of a maxillary central incisor restored with glass fiber and Ni-Cr alloy cast dental posts. Each dental post was luted with zinc phosphate, Panavia resin, super bond C&B resin and glass ionomer materials. Finite element models were constructed and oblique loading of 100 N was applied. The distribution of shear stress was investigated at posts and cement/dentine interfaces using ABAQUS/CAE software. The peak shear stress for glass fiber post models minimized approximately three to four times of those for Ni-Cr alloy cast post models. There was negligible difference in peak of shear stress when various cements were compared, irrespective of post materials. The shear stress had same trend for all cement materials. This study found that the glass fiber dental post reduced the shear stress concentration at interfacial of post and cement/dentine compared to Ni-Cr alloy cast dental post.
Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites
NASA Astrophysics Data System (ADS)
Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.
2017-10-01
Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.
Optimization of Cost of Building with Concrete Slabs Based on the Maturity Method
NASA Astrophysics Data System (ADS)
Skibicki, Szymon
2017-10-01
The maturity method is a well-known technique for determination of mechanical properties of the concrete (e.g. compressive strength) based on the development of temperature during hardening. The compressive strength of concrete can be used to determine necessary striking time of the formwork. Use of this method for this purpose is economically effective and provides necessary safety measures. This method is used in many construction sites. Time of formwork striking depends on many factors e. g. class of concrete, grade of cement, type of cement, temperature, size of the element and air humidity. The existing technical Standards and scientific research on the striking of formwork present different estimated for the striking time. Striking time for the main structural elements ranges from 14 to 21 days. For structura elements such as slabs or beams with a span of more than 6 m need to reach the minimum of 70-85% of their designed strength to remove the formwork depend on the Standards. During the construction of the buildings in summer concrete acquires the required strength for striking of the formwork faster due to the higher ambient temperature. Knowing the maturity method, we are able to estimate the compressive strength of concrete. If concrete have the required strength, the striking time can be shortened. This allows to reduce the overall costs of construction. The more concrete works are done during the construction phase the bigger the generated savings. In this article formwork striking time for concrete slabs in building based on maturity method was determined. The structure was subjected to 10 different simulated weather conditions typical for the Central and Western Europe that varied by localization of the construction. Based on simulated weather conditions the temperature in structural elements was established. The results allowed to determine the formwork striking time using the maturity method. Presented analysis shows that use of the maturity method on construction site can result in lower overall costs due to shorter time of constructing.
Bamboo leaf ash as the stabilizer for soft soil treatment
NASA Astrophysics Data System (ADS)
Rahman, A. S. A.; Jais, I. B. M.; Sidek, N.; Ahmad, J.; Rosli, M. I. F.
2018-04-01
Soft soil is a type of soil that have the size of particle less than 0.063mm. The strength of the soft soil does not fulfil the requirement for construction. The present of soft soil at the construction site always give a lot of problems and issues to geotechnical sector. Soil settlement is one of the problems that related to soft soil. The determination of the soft soil physical characteristics will provide a detail description on its characteristic. Soft soil need to be treated in order to gain the standard strength for construction. One of the method to strengthen the soft soil is by using pozzolanic material as a treatment method for soft soil. Furthermore bamboo leaf ash is one of the newly founded materials that contain pozzolanic material. Any material that consist of Silicon Dioxide (SiO2) as the main component and followed by Aluminium Oxide (Al2O3) and Iron Oxide (Fe2O3) are consider as pozzolanic material. Bamboo leaf ash is mix with the cement as the treatment material. Bamboo leaf ash will react with the cement to produce additional cement binder. Thus, it will increase the soil strength and will ease the geotechnical sector to achieve high quality of construction product.
40 CFR 146.22 - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... such a fashion that they inject into a formation which is separated from any USDW by a confining zone... drinking water. The casing and cement used in the construction of each newly drilled well shall be designed...
Axial compression behaviour of reinforced wallettes fabricated using wood-wool cement panel
NASA Astrophysics Data System (ADS)
Noh, M. S. Md; Kamarudin, A. F.; Mokhatar, S. N.; Jaudin, A. R.; Ahmad, Z.; Ibrahim, A.; Muhamad, A. A.
2018-04-01
Wood-wool cement composite panel (WWCP) is one of wood based composite material that produced in a stable panel form and suitable to be used as building wall system to replace non-ecofriendly material such as brick and other masonry element. Heavy construction material such as brick requires more manpower and consume a lot of time to build the wall panel. WWCP is a lightweight material with a density range from 300 kg/m3 to 500 kg/m3 and also capable to support an imposed load from the building. This study reported on the axial compression behaviour of prefabricated reinforced wallettes constructed with wood-wool cement panel. A total of six specimens were fabricated using two layers of cross laminated WWCP bonded with normal mortar paste (Portland cement) at a mix ratio of 1:3 (cement : sand). As part of lifting mechanism, the wallettes were equipped with three steel reinforcement (T12) that embedded inside the core of wallettes. Three replicates of wallettes specimens with dimension 600 mm width and 600 mm length were fabricated without surface plaster and with 16 mm thickness of surface plaster. The wallettes were tested under axial compression load after 28 days of fabrication until failure. The result indicated that, the application of surface plaster significantly increases the loading capacity about 35 % and different orientation of the panels improve the bonding strength of the wall.
Experimental study on the performance of pervious concrete
NASA Astrophysics Data System (ADS)
Liu, Haojie; Liu, Rentai; Yang, Honglu; Ma, Chenyang; Zhou, Heng
2018-02-01
With the construction of sponge city, the pervious concrete material has been developed rapidly. A high-performance pervious concrete is developed by using cement, silica fume (SF) and superplasticizer (SP). The effects of SF, SP, aggregate size, water-cement ration and aggregate-cement ratio on the permeability coefficient, compressive strength and flexural strength are studied by controlling variables, and exploring the corrosion resistance and abrasion resistance of pervious concrete. The results show that using 0.5% SP, 5% SF and small aggregate can greatly improve the strength. There is an optimum value for water-cement ratio to make the strength and permeability coefficient maximum. Compared to ordinary pervious concrete, the corrosion resistance and abrasion resistance of this pervious concrete are very good.
DOT National Transportation Integrated Search
1998-04-01
A study has been conducted to evaluate and analyze Portland cement concrete (PCC) pavements in order to develop recommendations for the design and construction of long-lived concrete pavements. In involved a detailed evaluation and analysis of the PC...
Iowa task report : US 18 concrete overlay construction under traffic.
DOT National Transportation Integrated Search
2012-05-01
The National Concrete Pavement Technology Center, Iowa Department of Transportation, and Federal Highway Administration set out to demonstrate and document the design and construction of portland cement concrete (PCC) overlays on two-lane roadways wh...
AC/CRC adjacent lane surfacing : construction report.
DOT National Transportation Integrated Search
1991-06-01
Asphaltic Concrete (AC) and Portland Cement Concrete (PCC) are common roadway materials used in Oregon. In a recent construction project -- Poverty Flats/Mecham Section -- the Oregon State Highway Division (OSHD) designed, as part of the project, a "...
NASA Astrophysics Data System (ADS)
Cao, P.; Karpyn, Z.; Li, L.
2013-12-01
CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine
Sustainability assessment and prioritisation of bottom ash management in Macao.
Sou, W I; Chu, Andrea; Chiueh, P T
2016-12-01
In Macao, about 7200 t yr -1 of bottom ash (BA) is generated and conventionally landfilled with construction waste. Because the properties of BA are similar to those of natural aggregates, it is suitable to be recycled as construction material. However, pre-treatment processes for BA reuse may require more resource input and may generate additional environmental impacts. Life cycle assessment, multi-media transport model analysis, cost-benefit analysis and the analytical hierarchy process were conducted to evaluate the impacts of current and potential BA management scenarios regarding environmental, economic, social and regulatory aspects. The five analysed scenarios are as follows: (0) BA buried with construction and demolition waste (current system); (1) pre-treated BA used to replace 25% of the natural aggregate in asphalt concrete; (2) pre-treated BA used to replace 25% of the natural aggregate in cement concrete; (3) pre-treated BA used to replace 25% of cement in cement concrete; and (4) pre-treated BA sent to China, blended with municipal solid waste for landfill. The results reveal the following ranking of the scenarios: 3 > 2 > 0 > 1 > 4. Scenario 3 shows the best conditions for BA recycling, because the quantity of cement concrete output is the highest and this brings the greatest economic benefits. Our use of integrated analysis provides multi-aspect investigations for BA management systems, particularly in accounting for site-specific characteristics. This approach is suitable for application in other non-western regions. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Oldani, C. R.; Dominguez, A. A.
2007-11-01
In a previous work a finite elements model was constructed to simulate a fatigue assay according to the norm IRAM 9422-3. Three materials were studied, two of them are the most used in this type of implant (Stainless steel 3161 and alloy T16A14V) and the third was a new developed titanium alloy (Ti35Nb7Zr5Ta). Static loads were applied to the model according to the highest requirements of the norm and the stress - strain distribution were determined. In this study a simplified analysis of the material's fatigue was done according to the previous work. The best behavior of the titanium alloys vs. the stainless steel was evident. With the objective of studying the behavior of both: the implant and the femur bone, new finite elements models were realized, in which the presence of the bone was considered. Inside the bone, the femoral component of the implant was placed in a similar way of a cemented prosthesis in a total hip arthroplasty. The advantage of the titanium implant related to the stainless steel one, was very clear.
Mossotti, Victor G.
2014-01-01
Over the past decade, the U.S. Government has invested more than $106 billion for physical, societal, and governmental reconstruction assistance to Afghanistan (Special Inspector General for Afghanistan Reconstruction, 2012a). This funding, along with private investment, has stimulated a growing demand for particular industrial minerals and construction materials. In support of this effort, the U.S. Geological Survey released a preliminary mineral assessment in 2007 on selected Afghan nonfuel minerals (Peters and others, 2007). More recently, the 2007 mineral assessment was updated with the inclusion of a more extensive array of Afghan nonfuel minerals (Peters and others, 2011). As a follow-up on the 2011 assessment, this report provides an analysis of the current use and prospects of the following Afghan industrial minerals required to manufacture construction materials: clays of various types, bauxite, gypsum, cement-grade limestone, aggregate (sand and gravel), and dimension stone (sandstone, quartzite, granite, slate, limestone, travertine, marble). The intention of this paper is to assess the: Use of Afghan industrial minerals to manufacture construction materials, Prospects for growth in domestic construction materials production sectors, Factors controlling the competitiveness of domestic production relative to foreign imports of construction materials, and Feasibility of using natural gas as the prime source of thermal energy and for generating electrical energy for cement production. The discussion here is based on classical principles of supply and demand. Imbedded in these principles is an understanding that the attributes of supply and demand are highly variable. For construction materials, demand for a given product may depend on seasons of the year, location of construction sites, product delivery time, political factors, governmental regulations, cultural issues, price, and how essential a given product might be to the buyer. Moreover, failure on the supply side to mirror such attributes can be deal-breakers in a transaction. For qualitative interpretation of the findings in this report, the value chain was used to conceptualize the relation between supply and demand. Although quantitative data on the Afghan construction materials sector have been hard to come by, the premise herein was that qualitative aspects of supply and demand are revealed by following the flow of funding through projects of varying sizes. It was found that the spectrum of attributes on the demand side of large multimillion dollar reconstruction projects is generally high dimensional, distributed over a broad line of construction materials at diverse locations, and in varying quantities. As interpreted herein, project funds dispensed at the higher hierarchical levels of a project are often concentrated on procurement of construction materials and services at the upper end of the value chain. In contrast, project funds dispensed at the lower hierarchical levels are disseminated across a multiplicity of subprojects, thus restricting project acquisitions to the lower end of the value chain. Evidence suggests that under the current conditions in Afghanistan producers of construction materials at the lower end of the value chain (adobe brick, aggregate, low-end marble products) can successfully compete in local markets and turn a profit. In contrast, producers of energy-intensive products such as cement will continue to face intense competition from imports, at least in the near-term. In the long-term, as infrastructure issues are resolved, and as business conditions in Afghanistan improve, domestic producers will have a locational advantage in establishing a solid niche in their respective home markets. In the process of tendering properties for cement production, the pivotal issues of abundant, reliable, and cost-effective thermal and electrical energy sources for cement production have become prominent. Over the past 50 years, powdered coal and natural gas have been proven to be excellent fuels for firing kilns at cement plants, and both fuels are used as energy sources for electricity generation. After reviewing the main aspects of the coal and natural gas sectors, it is concluded here that the issues for plant design are not that of energy source feasibility but rather that of optimization of energy technologies for a given plant at a particular time and place, based on a diverse mix of energy and transport technologies.
Alternative Fuel for Portland Cement Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindler, Anton K; Duke, Steve R; Burch, Thomas E
2012-06-30
The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burnmore » characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted at a full-scale cement plant with alternative fuels to examine their compatibility with the cement production process. Construction and demolition waste, woodchips, and soybean seeds were used as alternative fuels at a full-scale cement production facility. These fuels were co-fired with coal and waste plastics. The alternative fuels used in this trial accounted for 5 to 16 % of the total energy consumed during these burns. The overall performance of the portland cement produced during the various trial burns performed for practical purposes very similar to the cement produced during the control burn. The cement plant was successful in implementing alternative fuels to produce a consistent, high-quality product that increased cement performance while reducing the environmental footprint of the plant. The utilization of construction and demolition waste, woodchips and soybean seeds proved to be viable replacements for traditional fuels. The future use of these fuels depends on local availability, associated costs, and compatibility with a facility's production process.« less
Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions.
Xie, Dong; Weng, Yiming; Guo, Xia; Zhao, Jun; Gregory, Richard L; Zheng, Cunge
2011-05-01
The objective of this study was to use the newly synthesized poly(quaternary ammonium salt) (PQAS)-containing polyacid to formulate the light-curable glass-ionomer cements and study the effect of the PQAS on the compressive strength and antibacterial activity of the formed cements. The functional QAS and their constructed PQAS were synthesized, characterized and formulated into the experimental high-strength cements. Compressive strength (CS) and Streptococcus mutans viability were used to evaluate the mechanical strength and antibacterial activity of the cements. Fuji II LC cement was used as control. The specimens were conditioned in distilled water at 37°C for 24 h prior to testing. The effects of the substitute chain length, loading as well as grafting ratio of the QAS and aging on CS and S. mutans viability were investigated. All the PQAS-containing cements showed a significant antibacterial activity, accompanying with an initial CS reduction. The effects of the chain length, loading and grafting ratio of the QAS were significant. Increasing chain length, loading, grafting ratio significantly enhanced antibacterial activity but reduced the initial CS. Under the same substitute chain length, the cements containing QAS bromide were found to be more antibacterial than those containing QAS chloride although the CS values of the cements were not statistically different from each other, suggesting that we can use QAS bromide directly without converting bromide to chloride. The experimental cement showed less CS reduction and higher antibacterial activity than Fuji II LC. The long-term aging study suggests that the cements may have a long-lasting antibacterial function. This study developed a novel antibacterial glass-ionomer cement. Within the limitations of this study, it appears that the experimental cement is a clinically attractive dental restorative due to its high mechanical strength and antibacterial function. Published by Elsevier Ltd.
Laboratory fatigue evaluation of continuously fiber-reinforced concrete pavement.
DOT National Transportation Integrated Search
2013-09-01
Portland cement concrete (PCC) is the worlds most versatile construction material. PCC has : been in use in the United States for over 100 years. PCC pavement is generally constructed as : either continually reinforced concrete pavement (CRCP) or ...
Testing guide for implementing concrete paving quality control procedures.
DOT National Transportation Integrated Search
2008-03-01
Construction of portland cement concrete pavements is a complex process. A small fraction of the concrete pavements constructed in the : United States over the last few decades have either failed prematurely or exhibited moderate to severe distress. ...
Spectroscopic investigation of Ni speciation in hardened cement paste.
Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M
2006-04-01
Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.
Photoactive glazed polymer-cement composite
NASA Astrophysics Data System (ADS)
Baltes, Liana; Patachia, Silvia; Tierean, Mircea; Ekincioglu, Ozgur; Ozkul, Hulusi M.
2018-04-01
Macro defect free cements (MDF), a kind of polymer-cement composites, are characterized by remarkably high mechanical properties. Their flexural strengths are 20-30 times higher than those of conventional cement pastes, nearly equal to that of an ordinary steel. The main drawback of MDF cements is their sensitivity to water. This paper presents a method to both diminish the negative impact of water on MDF cements mechanical properties and to enlarge their application by conferring photoactivity. These tasks were solved by glazing MDF cement with an ecological glaze containing nano-particles of TiO2. Efficiency of photocatalytic activity of this material was tested against methylene blue aqueous solution (4.4 mg/L). Influence of the photocatalyst concentration in the glaze paste and of the contact time on the photocatalysis process (efficiency and kinetic) was studied. The best obtained photocatalysis yield was of 97.35%, after 8 h of exposure to 254 nm UV radiation when used an MDF glazed with 10% TiO2 in the enamel paste. Surface of glazed material was characterized by optic microscopy, scratch test, SEM, XRD, and EDS. All these properties were correlated with the aesthetic aspect of the glazed surface aiming to propose using of this material for sustainable construction development.
Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young
2016-05-01
In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.
Structural and microstructural aspects of asbestos-cement waste vitrification
NASA Astrophysics Data System (ADS)
Iwaszko, Józef; Zawada, Anna; Przerada, Iwona; Lubas, Małgorzata
2018-04-01
The main goal of the work was to evaluate the vitrification process of asbestos-cement waste (ACW). A mixture of 50 wt% ACW and 50 wt% glass cullet was melted in an electric furnace at 1400 °C for 90 min and then cast into a steel mold. The vitrified product was subjected to annealing. Optical microscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were used to evaluate the effects of the vitrification. The chemical constitution of the material before and after the vitrification process was also analyzed. It was found that the vitrified product has an amorphous structure in which the components of asbestos-cement waste are incorporated. MIR spectroscopy showed that the absorption bands of chrysotile completely disappeared after the vitrification process. The results of the spectroscopic studies were confirmed by X-ray studies - no diffraction reflections from the chrysotile crystallographic planes were observed. As a result of the treatment, the fibrous asbestos construction, the main cause of its pathogenic properties, completely disappeared. The vitrified material was characterized by higher resistance to ion leaching in an aquatic environment than ACW and a smaller volume of nearly 72% in relation to the apparent volume of the substrates. The research has confirmed the high effectiveness of vitrification in neutralizing hazardous waste containing asbestos and the FT-IR spectroscopy was found to be useful to identify asbestos varieties and visualizing changes caused by the vitrification process. The work also presents the current situation regarding the utilization of asbestos-containing products.
NASA Astrophysics Data System (ADS)
Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.
2017-12-01
Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.
Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures
Yim, Hong Jae; Kim, Jae Hong; Kwon, Seung Hee
2016-01-01
When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50. PMID:28773273
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, I., E-mail: ippei@dali.nuac.nagoya-u.ac.jp; Teramoto, A.
Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflectionmore » point and with increase in temperature inside concrete members with large cross sections.« less
Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús
2012-07-01
This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P < 0.05). Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable.
Use of reinforced inorganic cement materials for spark wire and drift chamber wire frames
NASA Technical Reports Server (NTRS)
1987-01-01
The results of a survey, materials test, and analysis study directed toward the development of an inorganic glass-fiber reinforced cement material for use in the construction of space qualified spark wire frames and drift chamber frames are presented. The purpose for this research was to evaluate the feasibility of using glass fiber reinforced cement (GFRC) for large dimensioned structural frames for supporting a number of precisely located spark wires in multiple planes. A survey of the current state of the art in fiber reinforced cement materials was made; material sample mixes were made and tested to determine their laboratory performances. Tests conducted on sample materials showed that compressive and flexural strengths of this material could approach values which would enable fabrication of structural spark wire frames.
Pofale, Arun D; Nadeem, Mohammed
2012-01-01
This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.
Recycling of porcelain tile polishing residue in portland cement: hydration efficiency.
Pelisser, Fernando; Steiner, Luiz Renato; Bernardin, Adriano Michael
2012-02-21
Ceramic tiles are widely used by the construction industry, and the manufacturing process of ceramic tiles generates as a major residue mud derived from the polishing step. This residue is too impure to be reused in the ceramic process and is usually discarded as waste in landfills. But the analysis of the particle size and concentration of silica of this residue shows a potential use in the manufacture of building materials based on portland cement. Tests were conducted on cement pastes and mortars using the addition of 10% and 20% (mass) of the residue. The results of compressive strength in mortars made up to 56 days showed a significant increase in compressive strength greater than 50%. The result of thermogravimetry shows that portlandite is consumed by the cement formed by the silica present in the residue in order to form calcium silicate hydrate and featuring a pozzolanic reaction. This effect improves the performance of cement, contributes to research and application of supplementary cementitious materials, and optimizes the use of portland cement, reducing the environmental impacts of carbon dioxide emissions from its production.
Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.
DOT National Transportation Integrated Search
1993-06-01
Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...
Design and construction guidelines for thermally insulated concrete pavements.
DOT National Transportation Integrated Search
2013-01-01
The report describes the construction and design of composite pavements as a viable design strategy to use an : asphalt concrete (AC) wearing course as the insulating material and a Portland cement concrete (PCC) structural : layer as the load-carryi...
The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading
NASA Astrophysics Data System (ADS)
Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila
2017-08-01
Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.
Effect of Split-File Digital Workflow on Crown Margin Adaptation
2017-03-30
you in your future publication/presentation efforts. LINDA STEEL -GOODWIN, Col, USAF, BSC Director, Clinical Investigations & Research Support...METHODS Multiple pilot studies were completed to define a working model with appropriate restoration settings ( cement gap 20 µm, extra cement gap 40...depressions for standardization. Right: Zirconia and e.max restorations had a cement gap (CG) = 20 µm ; extra cement gap (ECG) = 40 µm, and distance to
Study on cement mortar and concrete made with sewage sludge ash.
Chang, F C; Lin, J D; Tsai, C C; Wang, K S
2010-01-01
This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.
NASA Astrophysics Data System (ADS)
Mahedi, Masrur
Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two, three and four parameter modeling were also done for characterizing the resilient modulus response. It is anticipated that, derived correlations can be useful in estimating the strength and stiffness response of cement treated base materials with satisfactory level of confidence, if the P-wave velocity remains within the range of 500 ft/sec to 1500 ft/sec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmuth, R.A.
1979-03-01
Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.
Mortality among unionized construction plasterers and cement masons.
Stern, F; Lehman, E; Ruder, A
2001-04-01
Plasterers perform a variety of duties including interior and exterior plastering of drywall, cement, stucco, and stone imitation; the preparation, installation, and repair of all interior and exterior insulation systems; and the fireproofing of steel beams and columns. Some of the current potential toxic exposures among plasterers include plaster of Paris, silica, fiberglass, talc, and 1,1,1-trichloroethylene; asbestos had been used by the plasterers in the past. Cement masons, on the other hand, are involved in concrete construction of buildings, bridges, curbs and gutters, sidewalks, highways, streets and roads, floors and pavements and the finishing of same, when necessary, by sandblasting or any other method. Exposures include cement dust, silica, asphalt, and various solvents. Proportionate mortality ratios (PMRs) and proportionate cancer mortality ratios (PCMRs) were calculated for 99 causes of death among 12,873 members of the Operative Plasterers' and Cement Masons' International Association who died between 1972 and 1996 using United States age-, race-, and calender-specific death rates. Statistical significance (P value) of results was based upon the Poisson distribution. Among plasterers, statistically significant elevated mortality was observed for asbestosis, where the PMR reached 1,657 (P < 0.01) with eleven observed deaths and less than one death expected, for lung cancer (PCMR = 124, P < 0.01), and for benign neoplasms (PMR = 210, P < 0.05). Among cement masons, statistically significant elevated mortality was observed for cancer of the stomach (PCMR = 133, P < 0.01), benign neoplasms (PMR = 132, P < 0.01), and poisonings (PMR = 159, P < 0.05). Except for poisonings, which were not thought to be occupationally related, all of the statistically significant results occurred among those members who entered the union prior to 1950. However, the risk for lung cancer among plasterers was still elevated among those entering the union after 1970 as was the risk for stomach cancer among cement masons who entered the union after 1950. The present study suggests that plasterers and cement masons still have elevated risks for certain diseases, especially lung and stomach cancer. Therefore, union members currently living should be screened for asbestos-related diseases and educated about the future risks for these diseases.
DOT National Transportation Integrated Search
2016-06-01
Finding constructive uses for construction waste byproducts contributes to green engineering principles. One such plentiful material is recycled asphalt pavement (RAP). This report looks at the mechanical viability of including RAP in a high strength...
DOT National Transportation Integrated Search
2001-03-01
Three test lanes were constructed at the Louisiana Pavement Research Facility to study the performance of Reclaimed Asphalt Pavement (RAP) as a stress relieving layer between the cement treated base and asphalt concrete layers in lieu of crushed ston...
DOT National Transportation Integrated Search
1974-01-01
Deflection tests conducted during the construction and shortly after the completion of a large experimental pavement project are reported. Four different pavement designs, as follows, are compared: 1. 6-inch cement stabilized subgrade, 6-inch crushed...
Using Frozen Barriers for Containment of Contaminants
2017-09-21
barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based
Conlisk, N.; Gray, H.; Pankaj, P.; Howie, C. R.
2012-01-01
Objectives Orthopaedic surgeons use stems in revision knee surgery to obtain stability when metaphyseal bone is missing. No consensus exists regarding stem size or method of fixation. This in vitro study investigated the influence of stem length and method of fixation on the pattern and level of relative motion at the bone–implant interface at a range of functional flexion angles. Methods A custom test rig using differential variable reluctance transducers (DVRTs) was developed to record all translational and rotational motions at the bone–implant interface. Composite femurs were used. These were secured to permit variation in flexion angle from 0° to 90°. Cyclic loads were applied through a tibial component based on three peaks corresponding to 0°, 10° and 20° flexion from a normal walking cycle. Three different femoral components were investigated in this study for cementless and cemented interface conditions. Results Relative motions were found to increase with flexion angle. Stemmed implants reduced relative motions in comparison to stemless implants for uncemented constructs. Relative motions for cemented implants were reduced to one-third of their equivalent uncemented constructs. Conclusions Stems are not necessary for cemented implants when the metaphyseal bone is intact. Short cemented femoral stems confer as much stability as long uncemented stems. PMID:23610659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthrie, George Drake Jr.; Pawar, Rajesh J.; Carey, James William
2017-07-28
This report analyzes the dynamics and mechanisms of the interactions of carbonated brine with hydrated Portland cement. The analysis is based on a recent set of comprehensive reactive-transport simulations, and it relies heavily on the synthesis of the body of work on wellbore integrity that we have conducted for the Carbon Storage Program over the past decade.
NASA Astrophysics Data System (ADS)
Slane, Joshua A.
Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly increase the cumulative antibiotic release from acrylic cement, and (3) silver nanoparticles are a potential alternative to traditional antibiotics in cement, such as gentamicin.
Mohammad Al Alfy, Ibrahim
2018-01-01
A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peculiarities of hydration of Portland cement with synthetic nano-silica
NASA Astrophysics Data System (ADS)
Kotsay, Galyna
2017-12-01
Application of nano-materials in cement products significantly, improves their properties. Of course, the effectiveness of the materials depends on their quantity and the way they are introduced into the system. So far, amongst nano-materials used in construction, the most preferred was nano-silica. This research investigated the effect of synthetic precipitated nano-silica on the cement hydration as well as, on the physical and mechanical properties of pastes and mortars. Obtained results showed that admixture of nano-silica enhanced flexural and compressive strength of cement after 2 and 28 days, however, only when admixture made up 0.5% and 1.0%. On the other hand, the use of nano-silica in the amount 2% had some limitations, due to its ability to agglomerate, which resulted in deterioration of the rheological and mechanical properties.
NASA Astrophysics Data System (ADS)
Samshuri, S. F.; Daud, R.; Rojan, M. A.; Mat, F.; Basaruddin, K. S.; Hassan, R.
2017-10-01
This paper presents the energy method to evaluate fracture behavior of enamel-cement-bracket system based on cement thickness. Finite element (FE) model of enamel-cement-bracket was constructed by using ANSYS Parametric Design Language (APDL). Three different thickness were used in this study, 0.05, 0.2, and 0.271 mm which assigned as thin, medium and thick for both enamel-cement and cement bracket interface cracks. Virtual crack closure technique (VCCT) was implemented as a simulation method to calculated energy release rate (ERR). Simulation results were obtained for each thickness are discussed by using Griffith’s energy balance approach. ERR for thin thickness are found to be the lowest compared to medium and thick. Peak value of ERR also showed a significant different between medium and thick thickness. Therefore, weakest bonding occurred at low cement thickness because less load required to produce enough energy to detach the bracket. For medium and thick thickness, both increased rapidly in energy value at about the mid-point of the enamel-cement interface. This behavior occurred because of the increasing in mechanical and surface energy when the cracks are increasing. However, result for thick thickness are higher at mid-point compared to thin thickness. In conclusion, fracture behavior of enamel cracking process for medium most likely the safest to avoid enamel fracture and withstand bracket debonding.
Corneal permeability for cement dust: prognosis for occupational safety
NASA Astrophysics Data System (ADS)
Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.
2018-02-01
The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.
Evaluation of ternary blended cements for use in transportation concrete structures
NASA Astrophysics Data System (ADS)
Gilliland, Amanda Louise
This thesis investigates the use of ternary blended cement concrete mixtures for transportation structures. The study documents technical properties of three concrete mixtures used in federally funded transportation projects in Utah, Kansas, and Michigan that used ternary blended cement concrete mixtures. Data were also collected from laboratory trial batches of ternary blended cement concrete mixtures with mixture designs similar to those of the field projects. The study presents the technical, economic, and environmental advantages of ternary blended cement mixtures. Different barriers of implementation for using ternary blended cement concrete mixtures in transportation projects are addressed. It was concluded that there are no technical, economic, or environmental barriers that exist when using most ternary blended cement concrete mixtures. The technical performance of the ternary blended concrete mixtures that were studied was always better than ordinary portland cement concrete mixtures. The ternary blended cements showed increased durability against chloride ion penetration, alkali silica reaction, and reaction to sulfates. These blends also had less linear shrinkage than ordinary portland cement concrete and met all strength requirements. The increased durability would likely reduce life cycle costs associated with concrete pavement and concrete bridge decks. The initial cost of ternary mixtures can be higher or lower than ordinary portland cement, depending on the supplementary cementitious materials used. Ternary blended cement concrete mixtures produce less carbon dioxide emissions than ordinary portland cement mixtures. This reduces the carbon footprint of construction projects. The barriers associated with implementing ternary blended cement concrete for transportation projects are not significant. Supplying fly ash returns any investment costs for the ready mix plant, including silos and other associated equipment. State specifications can make designing ternary blended cements more acceptable by eliminating arbitrary limitations for supplementary cementitious materials (SCMs) use and changing to performance-based standards. Performance-based standards require trial batching of concrete mixture designs, which can be used to optimize ternary combinations of portland cement and SCMs. States should be aware of various SCMs that are appropriate for the project type and its environment.
Development of monetite-nanosilica bone cement: a preliminary study.
Zhou, Huan; Luchini, Timothy J F; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B
2014-11-01
In this paper, we reported the results of our efforts in developing DCPA/nanosilica composite orthopedic cement. It is motivated by the significances of DCPA and silicon in bone physiological activities. More specifically, this paper examined the effects of various experimental parameters on the properties of such composite cements. In this work, DCPA cement powders were synthesized using a microwave synthesis technique. Mixing colloidal nanosilica directly with synthesized DCPA cement powders can significantly reduce the washout resistance of DCPA cement. In contrast, a DCPA-nanosilica cement powder prepared by reacting Ca(OH)2 , H3 PO4 and nanosilica together showed good washout resistance. The incorporation of nanosilica in DCPA can improve compressive strength, accelerate cement solidification, and intensify surface bioactivity. In addition, it was observed that by controlling the content of NaHCO3 during cement preparation, the resulting composite cement properties could be modified. Allowing for the development of different setting times, mechanical performance and crystal features. It is suggested that DCPA-nanosilica composite cement can be a potential candidate for bone healing applications. © 2014 Wiley Periodicals, Inc.
Substandard Materials for Pavement Construction
1988-09-01
aggregates, dure sands and coastal deposits, shales, laterite gravels, and duricrusts are reviewed in this paper. These substandard materials may also...16 Laterite gravels ................... .......................... 18 Duricrusts ...ability to predict field performance. Other construction materials such as laterites or cemented materials such as duricrusts are difficult to analyze
CEMENT. "A Concrete Experience." A Curriculum Developed for the Cement Industry.
ERIC Educational Resources Information Center
Taylor, Mary Lou
This instructor's guide contains 11 lesson plans for inplant classes on workplace skills for employees in a cement plant. The 11 units cover the following topics: goals; interpreting memoranda; applying a standard set of work procedures; qualities of a safe worker; accident prevention; insurance forms; vocabulary development; inventory control…
Brand, Stephan; Klotz, Johannes; Hassel, Thomas; Petri, Maximilian; Ettinger, Max; Krettek, Christian; Goesling, Thomas; Bach, Friedrich-Wilhelm
2013-10-01
The purpose of this study was to evaluate the different temperature levels whilst drilling cemented and cementless hip prostheses implanted in bovine femora, and to evaluate the insulating function of the cement layer. Standard hip prostheses were implanted in bovine donor diaphyses, with or without a cement layer. Drilling was then performed using high-performance-cutting drills with a reinforced core, a drilling diameter of 5.5 mm and cooling channels through the tip of the drill for constantly applied internal cooling solution. An open type cooling model was used in this setup. Temperature was continuously measured by seven thermocouples placed around the borehole. Thermographic scans were also performed during drilling. At the cemented implant surface, the temperature never surpassed 24.7 °C when constantly applied internal cooling was used. Without the insulating cement layer (i.e. during drilling of the cementless bone-prosthesis construct), the temperature increased to 47 °C. Constantly applied internal cooling can avoid structural bone and soft tissue damage during drilling procedures. With a cement layer, the temperatures only increased to non-damaging levels. The results could be useful in the treatment of periprosthetic fractures with intraprosthetic implant fixation.
Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V
2015-06-01
The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.
Spectroscopy of Loose and Cemented Sulfate-Bearing Soils: Implications for Duricrust on Mars
NASA Astrophysics Data System (ADS)
Cooper, Christopher D.; Mustard, John F.
2002-07-01
The goal of this work is to determine the spectroscopic properties of sulfate in martian soil analogs over the wavelength range 0.3 to 25 μm (which is relevant to existing and planned remotely sensed data sets for Mars). Sulfate is an abundant component of martian soil (up to 9% SO 3 by weight) and apparently exists as a particulate in the soil but also as a cement. Although previous studies have addressed the spectroscopic identity of sulfates on Mars, none have used laboratory mixtures of materials with sulfates at the abundances measured by landed spacecraft, nor have any works considered the effect of salt-cementation on spectral properties of soil materials. For this work we created mixtures of a palagonitic soil (JSC Mars-1) and sulfates (MgSO 4 and CaSO 4·2H 2O). The effects of cementation were determined and separated from the effects of packing and hydration by measuring the samples as loose powders, packed powders, cemented materials, and disaggregated materials. The results show that the presence of particulate sulfate is best observed in the 4-5 μm region. Soils cemented with sulfate exhibit a pronounced restrahlen band between 8 and 9 μm as well as well-defined absorptions in the 4-5 μm region. Cementation effects are distinct from packing effects and disaggregation of cemented samples rapidly diminishes the strength of the restrahlen bands. The results of this study show that sulfate in loose materials is more detectable in the near infrared (4-5 μm) than in the thermal infrared (8-9 μm). However, cemented materials are easily distinguished from loose mixtures in the thermal infrared because of the high values of their absorption coefficient in this region. Together these results suggest that both wavelength regions are important for determining the spatial extent and physical form of sulfates on the surface of Mars.
NASA Astrophysics Data System (ADS)
Chee Siang, GO
2017-07-01
Experimental test was carried out to determine the temperature rise characteristics of Portland-Fly-Ash Cement (CEM II/B-V, 42.5N) of Blaine fineness 418.6m2/kg and 444.6m2/kg respectively for 20MPa mass concrete under adiabatic condition. The estimation on adiabatic temperature rise by way of CIRIA C660 method (Construction Industry Research & Information Information) was adopted to verify and validate the hot-box test results by simulating the heat generation curve of the concrete under semi-adiabatic condition. Test result found that Portland fly-ash cement has exhibited decrease in the peak value of temperature rise and maximum temperature rise rate. The result showed that the temperature development and distribution profile, which is directly contributed from the heat of hydration of cement with time, is affected by the insulation, initial placing temperature, geometry and size of concrete mass. The mock up data showing the measured temperature differential is significantly lower than the technical specifications 20°C temperature differential requirement and the 27.7°C limiting temperature differential for granite aggregate concrete as stipulated in BS8110-2: 1985. The concrete strength test result revealed that the 28 days cubes compressive strength was above the stipulated 20MPa characteristic strength at 90 days. The test demonstrated that with proper concrete mix design, the use of Portland flyash cement, combination of chilled water and flake ice, and good insulation is effective in reducing peak temperature rise, temperature differential, and lower adiabatic temperature rise for mass concrete pours. As far as the determined adiabatic temperature rise result was concern, the established result could be inferred for in-situ thermal properties of 20MPa mass concrete application, as the result could be repeatable on account of similar type of constituent materials and concrete mix design adopted for permanent works at project site.
Laboratory studies of dune sand for the use of construction industry in Sri Lanka
NASA Astrophysics Data System (ADS)
de Silva Jayawardena, Upali; Wijesuriya, Roshan; Abayaweera, Gayan; Viduranga, Tharaka
2015-04-01
With the increase of the annual sand demand for the construction industry the excessive excavation of river sand is becoming a serious environmental problem in Sri Lanka. Therefore, it is necessary to explore the possibility for an alternative to stop or at least to minimize river sand mining activities. Dune sand is one of the available alternative materials to be considered instead of river sand in the country. Large quantities of sand dunes occur mainly along the NW and SE coastal belt which belong to very low rainfall Dry Zone coasts. The height of dune deposits, vary from 1m to about 30 meters above sea level. The objective of this paper is to indicate some studies and facts on the dune sand deposits of Sri Lanka. Laboratory studies were carried out for visual observations and physical properties at the initial stage and then a number of tests were carried out according to ASTM standards to obtain the compressive strength of concrete cylinders and mortar cubes mixing dune sand and river sand in different percentages keeping a constant water cement ratio. Next the water cement ratio was changed for constant dune sand and river sand proportion. Microscopic analysis shows that the dune sand consist of 95 % of quartz and 5 % of garnet, feldspar, illmenite and other heavy minerals with clay, fine dust, fine shell fragments and organic matters. Grains are sub-rounded to angular and tabular shapes. The grain sizes vary from fine to medium size of sand with silt. The degree of sorting and particle size observed with dune sands are more suited with the requirement of fine aggregates in the construction industry. The test result indicates that dune sand could be effectively used in construction work without sieving and it is ideal for wall plastering due to its'-uniformity. It could also be effectively used in concrete and in mortars mixing with river sand. The best mixing ratio is 75% dune sand and 25% river sand as the fine aggregate of concrete. For mortar the mixing percentage is 50%. The best water cement ratio for mix proportion is 0.45. It was observed that the available amount of dune sand can be extracted to meet the demand for sand in construction industry. However, the extraction of dune sand from the areas close to the sea will cause several social, environmental and legal problems. Therefore sand mining from dunes must be commenced after making a detailed Environmental Impact Assessment.
Schoenen, D; Thofern, E
1981-12-01
The observation of a microbial growth in form of macrocolonies upon the joints of a tiled drinking water reservoir caused the microbiological testing of different pure mineral and some plastic containing cement mortar. Besides the conditions allowing the growth of macrocolonies on tiled plates with a construction like in a reservoir were examined.
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho
2014-01-01
In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction. PMID:28788171
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho
2014-08-19
In order to reduce carbon dioxide (CO₂) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction.
Mechanical properties on geopolymer brick: A review
NASA Astrophysics Data System (ADS)
Deraman, L. M.; Abdullah, M. M. A.; Ming, L. Y.; Ibrahim, W. M. W.; Tahir, M. F. M.
2017-09-01
Bricks has stand for many years as durable construction substantial, especially in the area of civil engineering to construct buildings. Brick commonly used in the structure of buildings as a construction wall, cladding, facing perimeter, paving, garden wall and flooring. The contribution of ordinary Portland cement (OPC) in cement bricks production worldwide to greenhouse gas emissions. Due to this issue, some researchers have done their study with other materials to produce bricks, especially as a by-product material. Researchers take effort in this regard to synthesizing from by-product materials such as fly ash, bottom ash and kaolin that are rich in silicon and aluminium in the development of inorganic alumina-silicate polymer, called geopolymer Geopolymer is a polymerization reaction between various aluminosilicate oxides with silicates solution or alkali hydroxide solution forming polymerized Si-O-Al-O bonds. This paper summarized some research finding of mechanical properties of geopolymer brick using by-product materials.
Two-course bonded concrete bridge deck construction : condition and performance after six years.
DOT National Transportation Integrated Search
1981-01-01
This report presents the findings from a six-year study of two-course bonded concrete bridge decks constructed in Virginia. Each of three special portland cement concretes was applied as an overlay, or wearing course, on two experimental spans. The o...
DOT National Transportation Integrated Search
2011-12-01
INTRODUCTION: Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base materials, temporary haul roads, and, in the case of RAP, hot mix asphalt construction. Several : states currently allow the use of RAP combined wi...
DOT National Transportation Integrated Search
1998-10-01
A study has been conducted to evaluate and analyze portland cement concrete (PCC) pavements in order to : develop recommendations for the design and construction of long-lived concrete pavements. It involved a : detailed evaluation and analysis of th...
Utilization of Palm Oil Clinker as Cement Replacement Material
Kanadasan, Jegathish; Abdul Razak, Hashim
2015-01-01
The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized. PMID:28793748
Utilization of Palm Oil Clinker as Cement Replacement Material.
Kanadasan, Jegathish; Abdul Razak, Hashim
2015-12-16
The utilization of waste materials from the palm oil industry provides immense benefit to various sectors of the construction industry. Palm oil clinker is a by-product from the processing stages of palm oil goods. Channelling this waste material into the building industry helps to promote sustainability besides overcoming waste disposal problems. Environmental pollution due to inappropriate waste management system can also be drastically reduced. In this study, cement was substituted with palm oil clinker powder as a binder material in self-compacting mortar. The fresh, hardened and microstructure properties were evaluated throughout this study. In addition, sustainability component analysis was also carried out to assess the environmental impact of introducing palm oil clinker powder as a replacement material for cement. It can be inferred that approximately 3.3% of cement production can be saved by substituting palm oil clinker powder with cement. Reducing the utilization of cement through a high substitution level of this waste material will also help to reduce carbon emissions by 52%. A cleaner environment free from pollutants can be created to ensure healthier living. Certain industries may benefit through the inclusion of this waste material as the cost and energy consumption of the product can be minimized.
NASA Astrophysics Data System (ADS)
Sinha, Deepa A., Dr; Verma, A. K., Dr
2017-08-01
This paper presents the results of M60 grade of concrete. M60 grade of concrete is achieved by maximum density technique. Concrete is brittle and weak in tension and develops cracks during curing and due to thermal expansion / contraction over a period ot time. Thus the effect of addition of 1% steel fibre is studied. For ages, concrete has been one of the widely used materials for construction. When cement is manufactured, every one ton of cement produces around one ton of carbon dioxide leading to global warming and also as natural resources are finishing, so use of supplementary cementitious material like alccofine and flyash is used as partial replacement of cement is considered. The effect of binary and ternary blend on the strength characteristics is studied. The results indicate that the concrete made with alccofine and flyash generally show excellent fresh and hardened properties. The ternary system that is Portland cement-fly ash-Alccofine concrete was found to increase the strength of concrete when compared to concrete made with Portland cement or even from Portland cement and fly ash.
NASA Astrophysics Data System (ADS)
Averina, G. F.; Chernykh, T. N.; Kramar, L. Ya
2017-11-01
The paper studies the process of volume deformation changes in magnesium cement at its hardening in accordance with its composition and structural peculiarities, which result from the roasting parameters of the raw materials. The study has been carried out with the aim of broadening raw materials sources for production of magnesia cements and construction materials through the use waste products of ore-dressing and processing enterprises. The mineralogical and phase composition of magnesium cements, obtained on the basis of magnesite with high content of impurity minerals from the mine dumps, has been studied by the X-ray phase analysis and derivatography. The roasting of the initial raw materials was carried out at various temperature conditions in order to get cements of different activities. The typical content of hydrated phases has been found for the hardened magnesian stone obtained from cements with different activity degrees. The characteristics of volume deformations developed in the magnesian stone have been described in relation to its phase composition. The influence of low- and high-activity crystals and calcium oxide crystals on the soundness and the structural integrity of magnesian stone has been covered.
Park, Sung-Jin; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl
2012-03-01
The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.
Elasticity and expansion test performance of geopolymer as oil well cement
NASA Astrophysics Data System (ADS)
Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.
2018-04-01
History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.
,
2013-01-01
Trends in other sectors of the domestic economy were similar to those in mineral production and consumption rates (Table 1). After continued decline following the 2008-2009 recession, the construction industry began to show signs of improvement late in 2011 and throughout 2012, with increased production and consumption of cement, construction sand and gravel, crushed stone and gypsum, mineral commodities that are used almost exclusively in construction.
Song, Ha-Won; Saraswathy, Velu
2006-11-16
The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.
Sulfate and acid resistant concrete and mortar
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1998-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.
Sulfate and acid resistant concrete and mortar
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1998-06-30
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance. 6 figs.
Cement manufacture and the environment - Part I: Chemistry and technology
Van Oss, H. G.; Padovani, A.C.
2002-01-01
Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.
Analyses of heavy metals in mineral trioxide aggregate and Portland cement.
Schembri, Matthew; Peplow, George; Camilleri, Josette
2010-07-01
Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Demonstration of close-coupled barriers for subsurface containment of buried waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.
1996-05-01
A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed wastemore » remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.« less
Time-Lapse Measurement of Wellbore Integrity
NASA Astrophysics Data System (ADS)
Duguid, A.
2017-12-01
Well integrity is becoming more important as wells are used longer or repurposed. For CO2, shale gas, and other projects it has become apparent that wells represent the most likely unintended migration pathway for fluids out of the reservoir. Comprehensive logging programs have been employed to determine the condition of legacy wells in North America. These studies provide examples of assessment technologies. Logging programs have included pulsed neutron logging, ultrasonic well mapping, and cement bond logging. While these studies provide examples of what can be measured, they have only conducted a single round of logging and cannot show if the well has changed over time. Recent experience with time-lapse logging of three monitoring wells at a US Department of Energy sponsored CO2 project has shown the full value of similar tools. Time-lapse logging has shown that well integrity changes over time can be identified. It has also shown that the inclusion of and location of monitoring technologies in the well and the choice of construction materials must be carefully considered. Two of the wells were approximately eight years old at the time of study; they were constructed with steel and fiberglass casing sections and had lines on the outside of the casing running to the surface. The third well was 68 years old when it was studied and was originally constructed as a production well. Repeat logs were collected six or eight years after initial logging. Time-lapse logging showed the evolution of the wells. The results identified locations where cement degraded over time and locations that showed little change. The ultrasonic well maps show clearly that the lines used to connect the monitoring technology to the surface are visible and have a local effect on cement isolation. Testing and sampling was conducted along with logging. It provided insight into changes identified in the time-lapse log results. Point permeability testing was used to provide an in-situ point estimate of the cement isolating capacity. Cased-hole sidewall cores in the steel and fiberglass casing sections allowed analysis of bulk cement and the cement at the casing- and formation-interface. This presentation will cover how time-lapse logging was conducted, how the results may be applicable to other wells, and how monitoring well design may affect wellbore integrity.
46 CFR 72.01-25 - Additional structural requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CONSTRUCTION AND ARRANGEMENT Hull Structure § 72.01-25 Additional structural requirements. (a) Vessels required.... The construction of the bulkheads shall be to the satisfaction of the Commandant. (2) Steps and... deck, such bulkhead or deck shall be made structurally watertight without the use of wood, cement, or...
DOT National Transportation Integrated Search
1998-10-01
A study has been conducted to evaluate and analyze Portland cement concrete (PCC) pavements in order to develop recommendations for the design and construction of long-lived concrete pavements. In involved a detailed evaluation and analysis of the PC...
DOT National Transportation Integrated Search
2003-08-26
The 3-mile long SHRP pavement project is located on US 23, 25-miles north of Columbus, Ohio, : in Delaware County. Northbound lanes were constructed of portland cement concrete (PCC), : while southbound lanes were constructed of asphalt concrete (AC)...
A Review of the Mechanical Properties of Concrete Containing Biofillers
NASA Astrophysics Data System (ADS)
Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.
2016-11-01
Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.
NASA Astrophysics Data System (ADS)
Weiyi, Xie; Pengcheng
2018-03-01
The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.
An unusual case of extensive self-inflicted cement burn.
Catalano, F; Mariano, F; Maina, G; Bianco, C; Nuzzo, J; Stella, M
2013-03-31
Cement is a fine powder used to bind sand and stones into a matrix of concrete, making up the world's most frequently used building material in the construction industry. First described by Ramazzini in his book "De Morbis Artificia Diatriba" in 1700, the effect of cement on the skin was presumed to be due to contact dermatitis. The first cement burns case was published by Rowe and Williams in 1963. Cement handling has been found to be responsible for many cases of occupational burns (generally full-thickness) usually affecting a limited TBSA, rarely greater than 5%, with localization especially in the lower limbs. We describe an unusual case of a self-inflicted cement burn involving 75% TBSA. A 28-yr-old building worker attempted suicide by jumping into a cement mixer in a truck. Upon arrival at our burn centre, clinical examination revealed extensive burn (75% TBSA - 40% full-thickness) involving face, back, abdomen, upper limbs and circumferentially lower limbs, sparing the hands and feet. The patient was sedated, mechanically ventilated, and subjected to escharotomy of the lower limbs in the emergency room. The following day, the deep burns in the lower limbs were excised down to the fascia and covered with meshed allografts. Owing to probable intestinal and skin absorption of cement, metal toxicity was suspected and dialysis and forced diuresis were therefore initiated on day 3. The patient's clinical conditions gradually worsened and he died on day 13 from the multi-organ failure syndrome.
An unusual case of extensive self-inflicted cement burn
Catalano, F.; Mariano, F.; Maina, G.; Bianco, C.; Nuzzo, J.; Stella, M.
2013-01-01
Summary Cement is a fine powder used to bind sand and stones into a matrix of concrete, making up the world’s most frequently used building material in the construction industry. First described by Ramazzini in his book “De Morbis Artificia Diatriba” in 1700, the effect of cement on the skin was presumed to be due to contact dermatitis. The first cement burns case was published by Rowe and Williams in 1963. Cement handling has been found to be responsible for many cases of occupational burns (generally full-thickness) usually affecting a limited TBSA, rarely greater than 5%, with localization especially in the lower limbs. We describe an unusual case of a self-inflicted cement burn involving 75% TBSA. A 28-yr-old building worker attempted suicide by jumping into a cement mixer in a truck. Upon arrival at our burn centre, clinical examination revealed extensive burn (75% TBSA - 40% full-thickness) involving face, back, abdomen, upper limbs and circumferentially lower limbs, sparing the hands and feet. The patient was sedated, mechanically ventilated, and subjected to escharotomy of the lower limbs in the emergency room. The following day, the deep burns in the lower limbs were excised down to the fascia and covered with meshed allografts. Owing to probable intestinal and skin absorption of cement, metal toxicity was suspected and dialysis and forced diuresis were therefore initiated on day 3. The patient’s clinical conditions gradually worsened and he died on day 13 from the multi-organ failure syndrome. PMID:23966898
A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall
Huang, Shiping; Hu, Mengyu; Cui, Nannan; Wang, Weifeng
2018-01-01
The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry. PMID:29673176
A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.
Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng
2018-04-17
The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.
NASA Astrophysics Data System (ADS)
Sant, Gaurav Niteen
The increased use of high-performance, low water-to-cement (w/c) ratio concretes has led to increased occurrences of early-age shrinkage cracking in civil engineering structures. To reduce the magnitude of early-age shrinkage and the potential for cracking, mitigation strategies using shrinkage reducing admixtures (SRAs), saturated lightweight aggregates, expansive cements and extended moist curing durations in construction have been recommended. However, to appropriately utilize these strategies, it is important to have a complete understanding of the driving forces of early-age volume change and how these methods work from a materials perspective to reduce shrinkage. This dissertation uses a first-principles approach to understand the mechanism of shrinkage reducing admixtures (SRAs) to generate an expansion and mitigate shrinkage at early-ages, quantify the influence of a CaO-based expansive additive in reducing unrestrained shrinkage, residual stress development and the cracking potential at early-ages and quantify the influence of shrinkage reducing admixtures (SRAs) and cement hydration (pore structure refinement) on the reduction induced in the fluid transport properties of the material. The effects of shrinkage reducing admixtures (SRAs) are described in terms of inducing autogenous expansions in cement pastes at early ages. An evaluation comprising measurements of autogenous deformation, x-ray diffraction (Rietveld analysis), pore solution and thermogravimetric analysis and electron microscopy is performed to understand the chemical nature and physical effects of the expansion. Thermodynamic calculations performed on the measured liquid-phase compositions indicate the SRA produces elevated Portlandite super-saturations in the pore solution which results in crystallization stress driven expansions. The thermodynamic calculations are supported by deformation measurements performed on cement pastes mixed in solutions saturated with Portlandite or containing additional Sodium Hydroxide. Further, to quantify the influence of temperature on volume changes in SRA containing materials, deformation measurements are performed at different temperatures. The results indicate maturity transformations are incapable of simulating volume changes over any temperature regime due to the influence of temperature on salt solubility and pore solution composition, crystallization stresses and self-desiccation. The performance of a CaO-based expansive additive is evaluated over a range of additive concentrations and curing conditions to quantify the reduction in restrained and unrestrained volume changes effected in low w/c cement pastes. The results suggest, under unrestrained sealed conditions the additive generates an expansion and reduces the magnitude of total shrinkage experienced by the material. However, the extent of drying shrinkage developed is noted to be similar in all systems and independent of the additive dosage. Under restrained sealed conditions, the additive induces a significant compressive stress which delays tensile stress development in the system. However, a critical additive concentration (around four percent) needs to be exceeded to appreciably reduce the risk of cracking at early-ages. The influence of shrinkage reducing admixtures (SRAs) is quantified in terms of the effects of SRA addition on fluid transport in cement-based materials. The change in the cement paste's pore solution properties, i.e., the surface tension and fluid-viscosity, induced by the addition of a SRA is observed to depress the fluid-sorption and wetting moisture diffusion coefficients, with the depression being a function of the SRA concentration. The experimental results are compared to analytical descriptions of water sorption and a good correlation is observed. These results allow for the change in pore-solution and fluid-transport properties to be incorporated from a fundamental perspective in models which aim to describe the service-life of structures. Several experimental techniques such as chemical shrinkage, low temperature calorimetry and electrical impedance spectroscopy are evaluated in terms of their suitability to identify capillary porosity depercolation in cement pastes. The evidence provided by the experiments is: (1) that there exists a capillary porosity depercolation threshold around 20% capillary porosity in cement pastes and (2) low temperature calorimetry is not suitable to detect porosity depercolation in cement pastes containing SRAs. Finally, the influence of porosity depercolation is demonstrated in terms of the reduction effected in the transport properties (i.e., the fluid-sorption coefficient) of the material as quantified using x-ray attenuation measurements. The study relates the connectivity of the pore structure to the fluid transport response providing insights related to the development of curing technologies and the specification of wet curing regimes during construction.
La Industria Cementera (industrial international data base: the cement industry)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
This report addresses the need for a greater degree of international cooperation with respect to energy end-use conservation in particular industries. The purpose of this report is to cover the cement industry and to provide the details and the results of energy and technology comparisons for the various nations who participated in the study. Areas for possible improvement in energy efficiency are discussed, and a comparison is made of the energy content of various construction materials.
Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China
Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao
2016-01-01
In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196
Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.
Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao
2016-03-22
In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.
Occupational skin problems in construction workers.
Shah, Kartik R; Tiwari, Rajnarayan R
2010-10-01
Construction workers handle cement which has constituents to produce both irritant contact dermatitis and corrosive effects (from alkaline ingredients, such as lime) and sensitization, leading to allergic contact dermatitis (from ingredients, such as chromium). The present study has been carried out among unorganized construction workers to find the prevalence of skin problems. The present cross-sectional study was conducted in 92 construction workers of Ahmedabad and Vadodara. All the workers were subjected to clinical examination after collection of information regarding demographic characteristics, occupational characteristics and clinical history on a predesigned proforma. Of them, 47.8% had morbid skin conditions. Frictional callosities in palm were observed in 18 (19.6%) subjects while 4 (4.3%) subjects had contact dermatitis. Other conditions included dry, fissured and scaly skin, infectious skin lesion, tinea cruris, lesion and ulcers on hands and/or soles. The skin conditions were common in the age group of 20-25 years, males, those having ≥1 year exposure and those working for longer hours. Half of the workers not using personal protective equipment had reported skin-related symptoms.
Application of antifungal CFB to increase the durability of cement mortar.
Park, Jong-Myong; Park, Sung-Jin; Kim, Wha-Jung; Ghim, Sa-Youl
2012-07-01
Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calciteforming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed CaCO3 precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at 18 degrees C for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the CaCO3 precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.
Use of industrial waste for the manufacturing of sustainable building materials.
Sugrañez, Rafael; Cruz-Yusta, Manuel; Mármol, Isabel; Martín, Francisco; Morales, Julián; Sánchez, Luis
2012-04-01
Presently, appropriate waste management is one of the main requisites for sustainable development; this task is tackled by the material construction industry. The work described herein is focused on the valorization of granite waste through incorporation, as a filler-functional admixture, into cement-based mortar formulations. The main components of the waste are SiO(2) (62.1 %), Al(2)O(3) (13.2 %), Fe(2)O(3) (10.1 %), and CaO (4.6 %). The presence of iron oxides is used to develop the photocatalytic properties of the waste. Following heating at 700 °C, α-Fe(2)O(3) forms in the waste. The inclusion of the heated sample as a filler admixture in a cement-based mortar is possible. Moreover, this sample exhibits a moderate ability in the photodegradation of organic dye solutions. Also, the plastering mortars, in which the heated samples have been used, show self-cleaning properties. The preparation of sustainable building materials is demonstrated through the adequate reuse of the granite waste. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Industrial waste utilization for foam concrete
NASA Astrophysics Data System (ADS)
Krishnan, Gokul; Anand, K. B.
2018-02-01
Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.
Conversion of coal-fired bottom ash to fuel and construction materials.
Koca, Huseyin; Aksoy, Derya Oz; Ucar, Reyhan; Koca, Sabiha
2017-07-01
In this study, solid wastes taken from Seyitomer coal-fired power plant bottom ashes were subjected to experimental research to obtain a carbon-rich fraction. The possible recycling opportunities of remaining inorganic fraction in the cement and concrete industry was also investigated. Flotation technique was used to separate unburned carbon from inorganic bottom ashes. Collector type, collector, dispersant and frother amounts, and pulp density are the most important variables in the flotation technique. A number of flotation collectors were tested in the experiments including new era flotation reactives. Optimum collector, dispersant and frother dosages as well as optimum pulp density were also determined. After experimental work, an inorganic fraction was obtained, which included 5.41% unburned carbon with 81.56% weight yield. These properties meets the industrial specifications for the cement and concrete industry. The carbon content of the concentrate fraction, obtained in the same experiment, was enhanced to 49.82%. This fraction accounts for 18.44% of the total amount and can be mixed to the power plant fuel. Therefore total amount of the solid waste can possibly be recycled according to experimental results.
Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling
NASA Astrophysics Data System (ADS)
Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip
2016-06-01
Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.
The influence of carbon nanotubes on the properties of water solutions and fresh cement pastes
NASA Astrophysics Data System (ADS)
Leonavičius, D.; Pundienė, I.; Girskas, G.; Pranckevičienė, J.; Kligys, M.; Sinica, M.
2017-10-01
It is known, that the properties of cement-based materials can be significantly improved by addition of carbon nanotubes (CNTs). The dispersion of CNTs is an important process due to an extremely high specific surface area. This aspect is very relevant and is one of the main factors for the successful use of CNTs in cement-based materials. The influence of CNTs in different amounts (from 0 to 0.5 percent) on the pH values of water solutions and fresh cement pastes, and also on rheological properties, flow characteristics, setting time and EXO reaction of the fresh cement pastes was analyzed in this work. It was found that the increment of the amount of CNTs leads to decreased pH values of water solutions and fresh cement pastes, and also increases viscosity, setting times and EXO peak times of fresh cement pastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yong; Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996; Liu Fengxiao
Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered {eta}-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit ({approx}100 MPa) than the conventional ones undermore » the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides.« less
Dose response effect of cement dust on respiratory muscles competence in cement mill workers.
Meo, Sultan A; Azeem, Muhammad A; Qureshi, Aijaz A; Ghori, G Moinudin; Al-Drees, Abdul Majeed; Feisal Subhan, Mirza Muhammad
2006-12-01
Electromyography (EMG) of respiratory muscles is a reliable method of assessing the ventilatory muscle function, but still its use has not been fully utilized to determine the occupational and environmental hazards on respiratory muscles. Therefore, EMG of intercostal muscles was performed to determine the dose response effect of cement dust on respiratory muscles competence. Matched cross-sectional study of EMG in 50 non-smoking cement mill workers with an age range of 20 - 60 years, who worked without the benefit of cement dust control ventilation or respiratory protective devices. EMG was performed by using surface electrodes and chart recorder. Significant reduction was observed in number of peaks (p < 0.0005), maximum peak amplitude (p < 0.0005), peak-to-peak amplitude (p < 0.0005) and duration of response (p < 0.0005) in cement mill workers compared to their matched control. Cement dust impairs the intercostal muscle competence and stratification of results shows a dose-effect of years of exposure in cement mill.
Crowns and other extra-coronal restorations: try-in and cementation of crowns.
Wassell, R W; Barker, D; Steele, J G
2002-07-13
Having successfully negotiated the planning, preparation, impression and prescription of your crown, the cementation stage represents the culmination of all your efforts. This stage is not difficult, but a successful outcome needs as much care as the preceding stages. Once a restoration is cemented there is no scope for modification or repeat You have to get it right first time. Decemented crowns often have thick layers of residual cement suggesting problems with either initial seating or cement handling. When the fate of restorations costing hundreds of pounds depends on correct proportioning of cements and the quality of the mix, the value of a well-trained and experienced dental nurse is easy to see. Both dentist and nurse need a working knowledge of the materials they are handling.
NASA Astrophysics Data System (ADS)
Wang, Y.; Li, C. H.
2017-07-01
Researchers have recently realized that the natural fractures in shale reservoirs are often cemented or sealed with various minerals. However, the influence of cement characteristics of natural fracture on fracturing network propagation is still not well understood. In this work, laboratory-scaled experiments are proposed to prepare model blocks with discrete orthogonal fractures network with different strength of natural fracture, in order to reveal the influence of cemented natural fractures on the interactions between hydraulic fractures and natural fractures. A series of true triaxial hydraulic fracturing experiments were conducted to investigate the mechanism of hydraulic fracture initiation and propagation in model blocks with natural fractures of different cement strength. The results present different responses of interactions between hydraulic and natural fractures, which can be reflected on the pump pressure profiles and block failure morphology. For model blocks with fluctuated pump pressure curves, the communication degree of hydraulic and natural fractures is good, which is confirmed by a proposed new index of "P-SRV." The most significant finding is that too high and too low strength properties of cemented natural fracture are adverse to generate complex fracturing network. This work can help us better understand how cemented natural fractures affect the fracturing network propagation subsurface and give us reference to develop more accurate hydraulic fracturing models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T
2013-08-01
Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, inmore » particular the ratio of the initial portlandite content to porosity (defined here as φ), in determining the evolution of cement properties. Portlandite-rich cement with large φ values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large φ values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.« less
Performance of Michigan's concrete barriers.
DOT National Transportation Integrated Search
2007-08-01
Modifications to design standards, material specifications, construction methods, and roadway : maintenance practices are believed to be major contributing causes for the observed premature : deterioration of Michigans Portland cement concrete bri...
Developing design methods of concrete mix with microsilica additives for road construction
NASA Astrophysics Data System (ADS)
Dmitrienko, Vladimir; Shrivel, Igor; Kokunko, Irina; Pashkova, Olga
2017-10-01
Based on the laboratory test results, regression equations having standard cone and concrete strength, to determine the available amount of cement, water and microsilica were obtained. The joint solution of these equations allowed the researchers to develop the algorithm of designing heavy concrete compositions with microsilica additives for road construction.
NASA Astrophysics Data System (ADS)
Mochida, Y.; Sakurai, Y.; Indra, H.; Karimi, A. L.
2017-11-01
Problems caused by poor quality control and quality assurance of the pre-boring embedded pile construction, such as on domestic apartment house is still occurring nowadays. An adequate consideration for invisible risks inside or below the ground is important in pile foundation construction therefore the demand for advanced and reliable quality assurance is increase in the future. In this research, to understand the quality of the construction at early stage, the compressive strength of cement-soil mixture of pile construction after 28 days is estimated using electrical resistivity value of the mixture. More accurate measurement for electrical resistivity value is conducted by inserting the electrodes without using potassium chloride solution as a catalyst. The result showed that there is a certain tendency in the electric resistivity value at the early age regarding to the type of soil (sand, clay) mixed in. The most accurate estimation was achieved from the electric resistivity value at the first day and several days onwards, and from the compressive strength after 3 days.
Influence of ferrite phase in alite-calcium sulfoaluminate cements
NASA Astrophysics Data System (ADS)
Duvallet, Tristana Yvonne Francoise
Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition. The mechanical data were equivalent to OPC strengths for some compositions with 25% ferrite. This preliminary work constitutes the first research phase of this novel cement and requires additional research for its improvement. Topics for additional research are identified in this dissertation. KEYWORDS: alite, calcium sulfoaluminate, ferrite, low-energy cement, triisopropanolamine.
Dement, John M; Welch, Laura; Ringen, Knut; Bingham, Eula; Quinn, Patricia
2010-03-01
A study of chronic obstructive pulmonary disease (COPD) among 7,579 current and former workers participating in medical screening programs at Department of Energy (DOE) nuclear weapons facilities through September 2008 was undertaken. Participants provided a detailed work and exposure history and underwent a respiratory examination that included a respiratory history, respiratory symptoms, a posterior-anterior (P-A) chest radiograph classified by International Labour Office (ILO) criteria, and spirometry. Statistical models were developed to generate group-level exposure estimates that were used in multivariate logistic regression analyses to explore the risk of COPD in relation to exposures to asbestos, silica, cement dust, welding, paints, solvents, and dusts/fumes from paint removal. Risk for COPD in the study population was compared to risk for COPD in the general US population as determined in National Health and Nutrition Examination Survey (NHANES III). The age-standardized prevalence ratio of COPD among DOE workers compared to all NHANES III data was 1.3. Internal analyses found the odds ratio of COPD to range from 1.6 to 3.1 by trade after adjustment for age, race, sex, smoking, and duration of DOE employment. Statistically significant associations were observed for COPD and exposures to asbestos, silica, welding, cement dusts, and some tasks associated with exposures to paints, solvents, and removal of paints. Our study of construction workers employed at DOE sites demonstrated increased COPD risk due to occupational exposures and was able to identify specific exposures increasing risk. This study provides additional support for prevention of both smoking and occupational exposures to reduce the burden of COPD among construction workers. 2009 Wiley-Liss, Inc.
Cyndari, Karen I; Goodheart, Jacklyn R; Miller, Mark A; Oest, Megan E; Damron, Timothy A; Mann, Kenneth A
2017-07-01
Loss of mechanical interlock between cement and bone with in vivo service has been recently quantified for functioning, nonrevised, cemented total knee arthroplasties (TKAs). The cause of interlocking trabecular resorption is not known. The goal of this study is to quantify the distribution of PE debris at the cement-bone interface and determine if polyethylene (PE) debris is locally associated with loss of interlock. Fresh, nonrevised, postmortem-retrieved TKAs (n = 8) were obtained en bloc. Laboratory-prepared constructs (n = 2) served as negative controls. The intact cement-bone interface of each proximal tibia was embedded in Spurr's resin, sectioned, and imaged under polarized light to identify birefringent PE particles. PE wear particle number density was quantified at the cement-bone interface and distal to the interface, and then compared with local loss of cement-bone interlock. The average PE particle number density for postmortem-retrieved TKAs ranged from 8.6 (1.3) to 24.9 (3.1) particles/mm 2 (standard error) but was weakly correlated with years in service. The average particle number density was twice as high as distal (>5mm) to the interface compared to at the interface. The local loss of interlock at the interface was not related to the presence, absence, or particle density of PE. PE debris can migrate extensively along the cement-bone interface of well-fixed tibial components. However, the amount of local bone loss at the cement-bone interface was not correlated with the amount of PE debris at the interface, suggesting that the observed loss of trabecular interlock in these well-fixed TKAs may be due to alternative factors. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming
2009-02-01
Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.
NASA Astrophysics Data System (ADS)
Tabares Tamayo, Juan D.
The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking. This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent. This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium). The commercial SAP adopted for this study was used with "as-supplied" gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP's, such as the shape and size of the particles, were determined by optical microscopy combined with image analysis. The second stage, the absorption capacity of SAP's, involved determination of the swelling behavior and the absorption capacity of polymers exposed to artificial pore solutions with different levels of alkalinity. The swelling behavior was followed using the optical microscope while the absorption capacity was characterized using the tea bag method. It was found that changes in the chemical compositions of the pore solutions influence the adsorption kinetics and result in different absorption isotherms. In the third stage, the internal curing effects of inclusion of SAP in cement pastes were evaluated. Mixture proportions of pastes used in this stage of the study were selected based on the absorption capacity of the SAP determined in stage two. The testing of the pastes involved determination of their set times, heat of hydration, and autogenous shrinkage.
Characterization of Cement Thickening Time Properties and Modeling of Thickening Time
NASA Astrophysics Data System (ADS)
Coryell, Tyler Neil
A comprehensive way of modelling cement thickening time, as applied in the oil field, has never been created which incorporates all the properties internal to the cement design. To address this issue different variables were tested for; including barite particle size, Hydroxyethylcellulose (HEC) concentration, age or exposure of the cement to humidity, downhole temperature, and the particle size of the cement. Barite particle size was shown to have no significant effect on thickening time. Age of the sample was also shown to have no significant effect on thickening time, at least for our storage conditions in the laboratory. The testing for nano cement particles currently shows that there is the possibility that the smaller particles can increase thickening time. While such a result is not absent from other works, it is unusual. Due to the lack of conclusive evidence for nano particle cement, the work as it currently stands is included but not taken it into consideration for our models. The temperature downhole and the HEC concentration are used to create our models. With this research, it is shown that creating a numerical model is a practical investment in our future understanding of cement’s field use. Three model systems are used, the first uses equations for predicting the time when thickening first begins and the thickness at that time. In the second equation set, the rate of change that can be expected is used to find curvature to define the acceleration. The third model improves on some scatter that could not be controlled in the second model by using the first derivative to find the point of maximum slope and the time it occurs. By using this maximum slope point, the ‘pumpable’ time of the cement before it thickens can be estimated. All the models can be used in tandem to describe the cement thickening process. However, the most accurate system is using the first model with the third model, i.e. using the direct model for when acceleration begins and the first derivative model to find the end of the thickening time. All the models can be extended in future work to include a broader test matrix and can be extended to include other chemical additives for the base cement.
Highlights of worldwide production and utilization of coal ash -- A survey for the period 1959--1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, O.E.; Stewart, B.R.
1997-09-01
In 1960, the Coal Committee for the United Nations Economic Committee for Europe requested a group of rapporteurs to undertaken work on the utilization of ash from coal fueling thermal power stations. This later became the Group of Experts on the Utilization of Ash. In 1959, out of a world production of 100 million tons of ash, only 2% was put to use, whereas in 1969, about 15% of a production of 200 million tons was used. In 1989, 562 million tons were produced, and 90.5 million tons were used. The main uses of coal ash have been in cementmore » and concrete manufacture; in road construction and as filler on construction sites; in cellular concrete; and in lightweight aggregate and brick. Worldwide, in 1989, 27.7 million tons were used in cement and concrete manufacture, 23.6 million tons in road construction and as filler on construction sites, 2.8 million tons in cellular concrete, and 6.8 million tons in lightweight aggregate and bricks. This paper presents a worldwide survey of the production and utilization of coal ash from 1959 to 1989. The data were collected from various working papers of the US Group of Experts on the utilization of Ash and from two papers by O.E. Manz on the worldwide production and utilization of coal ash.« less
Utilization of sugarcane bagasse ash in concrete as partial replacement of cement
NASA Astrophysics Data System (ADS)
Mangi, Sajjad Ali; Jamaluddin, N.; Ibrahim, M. H. Wan; Halid Abdullah, Abd; Awal, A. S. M. Abdul; Sohu, Samiullah; Ali, Nizakat
2017-11-01
This research addresses the suitability of sugarcane bagasse ash (SCBA) in concrete used as partial cement replacement. Two grades of concrete M15 and M20 were used for the experimental analysis. The cement was partially replaced by SCBA at 0%, 5%, and 10%, by weight in normal strength concrete (NSC). The innovative part of this study is to consider two grades of concrete mixes to evaluate the performance of concrete while cement is replaced by sugarcane bagasse ash. The cylindrical specimens having size 150 mm × 300 mm were used and tested after curing period of 7, 14 and 28 days. It was observed through the experimental work that the compressive strength increases with incorporating SCBA in concrete. Results indicated that the use of SCBA in concrete (M20) at 5% increased the average amount of compressive strength by 12% as compared to the normal strength concrete. The outcome of this work indicates that maximum strength of concrete could be attained at 5% replacement of cement with SCBA. Furthermore, the SCBA also gives compatible slump values which increase the workability of concrete.
Prospective observation of a new bioactive luting cement: 2-year follow-up.
Jefferies, Steven R; Pameijer, Cornelis H; Appleby, David C; Boston, Daniel; Galbraith, Colin; Lööf, Jesper; Glantz, Per-Olof
2012-01-01
A pilot study was conducted to determine the 2-year clinical performance of a new bioactive dental cement (Ceramir C&B, formerly XeraCem) for permanent cementation. The cement used in this study is a new formulation class, a hybrid material comprising calcium aluminate and glass ionomer. Thirty-eight crowns and fixed partial denture (FPD) abutments were cemented in 17 patients. Thirty-one of the abutment teeth were vital, 7 nonvital. Six reconstructions were FPDs comprising 14 abutment teeth (12 vital/2 nonvital). A two-unit fixed splint was also included. Preparation parameters and cement characteristics (dispensing, working time, seating characteristics, ease of cement removal) were recorded. Baseline and postcementation data were recorded for marginal integrity, marginal discoloration, secondary caries, retention, and gingival inflammation. Tooth sensitivity was assessed at pre- and postcementation time points using categorical and visual analogue scale (VAS) assessment measures. Mixing of the cement was reported as "easy." Clinical working time for this cement was deemed acceptable. Assessment of seating characteristics indicated all restorations were seated completely after cementation. Cement removal was determined to be "easy." Fifteen of 17 subjects were available for 1-year recall examination; 13 patients were available for the 2-year recall examination. Restorations at 2-year recall examination included 17 single-unit, full-coverage crown restorations, four 3-unit FPDs comprising 8 abutments, and one 2-unit splint. No retentive failures or sensitivity were recorded at 2-year recall. Marginal integrities of all restorations/abutments at 2 years were rated in the "alpha" category. Average VAS score for tooth sensitivity decreased from 7.63 mm at baseline to 0.44 mm at 6-month recall, 0.20 mm at 1-year recall, and 0.00 mm at 2-year recall. The average gingival index score for gingival inflammation decreased from 0.56 at baseline to 0.11 at 6-month recall, then 0.16 at 1-year recall, and 0.21 at 2-year recall. Two-year recall data yielded no loss of retention, no secondary caries, no marginal discolorations, and no subjective sensitivity. All restorations rated "alpha" for marginal integrity at the 2-year recall. After periodic recalls up to 2 years, the new bioactive cement tested thus far has performed favorably as a luting agent for permanent cementation. © 2011 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Ouargui, Ahmed; Belouaggadia, Naoual; Elbouari, Abdeslam; Ezzine, Mohammed
2018-05-01
Buildings are responsible for 36% of the final energy consumption in Morocco [1-2], and a reduction of this energy consumption of buildings is a priority for the kingdom in order to reach its energy saving goals. One of the most effective actions to reduce energy consumption is the selection and development of innovative and efficient building materials [3]. In this work, we present an experimental study of the effect of adding treated organic waste (paper, cardboard, hash) on mechanical and thermal properties of cement and clay bricks. Thermal conductivity, specific heat and mechanical resistance were investigated in terms of content and size additives. Soaking time and drying temperature were also taken into account. The results reveal that thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. In the case of the composite paper-cement, it is found that, for an additives quantity exceeding 15%, the compressive strength exceeds the standard for the hollow non-load bearing masonry. However, the case of paper-clay mixture seems to give more interesting results, related to the compressive strength, for a mass composition of 15% in paper. Given the positive results achieved, it seems possible to use these composites for the construction of walls, ceilings and roofs of housing while minimizing the energy consumption of the building.
Babo, Pedro S; Cai, Xinjie; Plachokova, Adelina S; Reis, Rui L; Jansen, John; Gomes, Manuela E; Walboomers, X Frank
2018-02-01
With currently available therapies, full regeneration of lost periodontal tissues after periodontitis cannot be achieved. In this study, a combined compartmentalized system was tested, composed of (a) a platelet lysate (PL)-based construct, which was placed along the root aiming to regenerate the root cementum and periodontal ligament, and (b) a calcium phosphate cement composite incorporated with hyaluronic acid microspheres loaded with PL, aiming to promote the regeneration of alveolar bone. This bilayered system was assessed in a 3-wall periodontal defect in Wistar rats. The periodontal healing and the inflammatory response of the materials were scored for a period up to 6 weeks after implantation. Furthermore, histomorphometrical measurements were performed to assess the epithelial downgrowth, the formation of alveolar bone, and the formation of new connective tissue attachment. Our data showed that the stabilization of platelet-origin proteins on the root surface increased the overall periodontal healing score and restricted the formation of long epithelial junctions. Nevertheless, the faster degradation of the cement component with incorporated hyaluronic acid microspheres compromised the stability of the system, which hampered the periodontal regeneration. Overall, in this work, we proved the positive therapeutic effect of the immobilization of a PL-based construct over the root surface in a combined compartmentalized system to assist predictable healing of functional periodontium. Therefore, after optimization of the hard tissue analogue, the system should be further elaborated in (pre)clinical validation studies. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Bede, Andrea; Ardelean, Ioan
2017-12-01
Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.
Lu, Liulei; Ouyang, Dong
2017-07-20
In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0-0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study.
Mechanical properties of cement concrete composites containing nano-metakaolin
NASA Astrophysics Data System (ADS)
Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana
2017-11-01
The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.
Field testing of stiffened deep cement mixing piles under lateral cyclic loading
NASA Astrophysics Data System (ADS)
Raongjant, Werasak; Jing, Meng
2013-06-01
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation
NASA Astrophysics Data System (ADS)
Zemskov, Serguey V.; Ahmad, Bilal; Copuroglu, Oguzhan; Vermolen, Fred J.
2013-02-01
In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, which is incorporated into the impregnation of the sodium mono-fluorophosphate (Na-MFP) solution. The model of the self-healing process is built under the assumption that the position of the carbonation front changes in time where the rate of diffusion of Na-MFP into the carbonated cement matrix and the reaction rates of the free phosphate and fluorophosphate with the components of the cement are comparable to the speed of the carbonation front under accelerated carbonation conditions. The model is based on an initial-boundary value problem for a system of partial differential equations which is solved using a Galerkin finite element method. The results obtained are discussed and generalized to a three-dimensional case.
Clay-cement suspensions - rheological and functional properties
NASA Astrophysics Data System (ADS)
Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.
2017-01-01
The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.
Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste
This work investigates the combined influence of borate and lithium ions on the hydration of two calcium sulfoaluminate (CSA) cements containing 0 or 10 wt% gypsum. On the one hand, borates are known to retard CSA cement hydration due to the rapid precipitation of ulexite. On the other hand, lithium ions accelerate CSA cement hydration thanks to the fast precipitation of Li-containing aluminum hydroxide. When borates and lithium are present simultaneously, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later convertedmore » into a borated AFt phase when hydration accelerates. Lithium salts can counteract the retardation by sodium borate. However, their influence is limited once a sufficient amount of Li-containing Al(OH){sub 3} seeds is formed. For the CSA cements under investigation, the threshold lithium concentration is close to 0.03 mmol/g of cement and similar with or without borate.« less
Appendix for the Final Technical Report - DE FE0009284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duguid, Andrew
2017-05-29
Carbon capture utilization storage (CCUS) is a potential technology to store anthropogenic emissions for CO 2. Utilization often refers to CO 2-enhanced oil recovery (CO 2-EOR). An important factor in the success of CO 2 storage in saline formations or CO 2-EOR reservoirs is ensuring that the storage occurs safely and is long-term. Assessment of well integrity has become more important for CCS and CO 2-EOR as it has become apparent that wells represent the most likely migration pathway for CO 2 to leave a CCS storage unit or a CO 2-EOR reservoir. Although wells represent a migration pathway theymore » are also the best vehicle for employing technology monitoring CO 2 injection and storage. This contradiction of being a potential migration path and key monitoring technology leads to a need to understand how monitoring wells may be similar or different in comparison to other types of wells with respect to migration risk. The maturation and completion US Department of Energy sponsored research projects presents an opportunity to assess the integrity of monitoring wells that have been exposed to injected CO 2. This paper discusses an integrity assessment of two monitoring wells in an operating CO 2-EOR flood in Mississippi, USA. The CFU31F-2 and CFU31F-3 monitoring wells were constructed to test monitoring technologies in and above a commercial CO 2-EOR project. The materials selected and the design of the well were optimized for monitoring. Carbonation in CFU31-F2 was seen as high as 7900 ft, above what was considered top of cement based on the logs. Time-lapse comparison of cement bond amplitude data and acoustic impedance maps show a deterioration of signal that implies a deterioration of cement bond or cement along much of the cemented annulus in the long-string section. Analysis of sidewall cores using XRD and LA-ICP-MS validated the log interpretation by confirming the degradation of cement (carbonation) along the casing-cement interface. The ultrasonic image maps also clearly identify the control lines and monitoring technology attached to the outside of the of the long-string casing on each well studied. The control lines appear as microdebonded or fluid filled vertical features implying that they could act as leakage pathways. The sidewall core through the control line at 10380 ft confirms that CO 2 is migrating along the control line with heavily carbonated cement at the control line interface. LA-ICP-MS and XRD on formation interface of the sidewall cores collected in both wells indicates that CO 2 is also moving of the cement-formation interface. LA-ICP-MS and XRD indicate that the amount carbonation in the center of the cores was less than the carbonation at the interfaces. Indicating that CO 2 is reaching the center of the cores by diffusing in from the interfaces and not migrating up from the reservoir though the porous matrix of the cement. This agrees with Duguid et al. [5] and Carey et al. [1] who have found that the interfaces in the well are more conductive than the porous network of the cement. Both the materials used to construct the well and the decision to attach monitoring technology to the outside of the well may have contributed to the migration of CO 2 along the interfaces. Careful consideration should be given to material selection to ensure that it does not degrade when in contact with the fluids in the reservoir and overlying strata. The addition of the control line on the outside of the casing complicated the cement placement and likely caused no cement to bond to the casing adjacent to the control line leading out of the reservoir. Further study of other wells with external lines should be conducted to see of the results of the construction of CFU31-F2 and -F3 is normal or an exception.« less
Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús
2012-07-01
This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.
Investigation of Effect Additive Phase Change Materials on the Thermal Conductivity
NASA Astrophysics Data System (ADS)
Nakielska, Magdalena; Chalamoński, Mariusz; Pawłowski, Krzysztof
2017-10-01
The aim of worldwide policy is to reduce the amount of consumed energy and conventional fuels. An important branch of the economy that affects the energy balance of the country is construction industry. In Poland, since January 1st, 2017 new limit values have been valid regarding energy saving and thermal insulation of buildings. To meet the requirements of more and more stringent technical and environmental standards, new technological solutions are currently being looked for. When it comes to the use of new materials, phase-change materials are being widely introduced into construction industry. Thanks to phase-change materials, we can increase the amount of heat storage. Great thermal inertia of the building provides more stable conditions inside the rooms and allows the use of unconventional sources of energy such as solar energy. A way to reduce the energy consumption of the object is the use of modern solutions for ventilation systems. An example is the solar chimney, which supports natural ventilation in order to improve internal comfort of the rooms. Numerous studies are being carried out in order to determine the optimal construction of solar chimneys in terms of materials and construction parameters. One of the elements of solar chimneys is an absorption plate, which affects the amount of accumulated heat in the construction. In order to carry out the research on the thermal capacity of the absorption plate, the first research work has been already planned. The work presents the research results of a heat-transfer coefficient of the absorption plates samples made of cement, aggregate, water, and phase-change material in different volume percentage. The work also presents methodology and the research process of phase-change material samples.
40 CFR 278.4 - Certification and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES (CONTINUED) CRITERIA FOR THE MANAGEMENT OF GRANULAR MINE TAILINGS (CHAT) IN ASPHALT CONCRETE AND PORTLAND CEMENT CONCRETE IN TRANSPORTATION CONSTRUCTION PROJECTS FUNDED IN WHOLE OR IN PART BY FEDERAL...
Wiater, Brett P; Moravek, James E; Kurdziel, Michael D; Baker, Kevin C; Wiater, J Michael
2016-01-01
Newer glenoid components that allow for hybrid cement fixation via traditional cementation of peripheral pegs and bony ingrowth into an interference-fit central peg introduce the possibility of long-term biological fixation. However, little biomechanical work has been done on the initial stability of these components and the various fixation options. We conducted a study in which all-polyethylene glenoid components with a centrally fluted peg were implanted in polyurethane blocks with interference-fit, hybrid cement, and fully cemented fixation (5 per fixation group). Biomechanical evaluation of glenoid loosening, according to ASTM Standard F-2028-12, subjected the glenoids to 50,000 cycles of rim loading, and glenoid component motion was recorded with 2 differential variable reluctance transducers fixed to each glenoid prosthesis. Fully cemented fixation exhibited significantly less mean distraction in comparison with interference-fit fixation (P < .001) and hybrid cement fixation (P < .001). Hybrid cement fixation exhibited significantly less distraction (P < .001), more compression (P < .001), and no significant difference in glenoid translation (P = .793) in comparison with interference-fit fixation. Fully cemented fixation exhibited the most resistance to glenoid motion in comparison with hybrid cement fixation and interference-fit fixation. However, hybrid cement fixation and interference-fit fixation exhibited equivocal motion. Given these results, cementation of peripheral pegs may confer no additional initial stability over that provided by uncemented interference-fit fixation.
Effects of asphalt cement rejuvenating agents : final report.
DOT National Transportation Integrated Search
1980-08-01
Louisiana's initial work in the recycling of asphaltic concrete pavements has demonstrated the need to obtain a base of knowledge in the area of rejuvenating age-hardened reclaimed asphalt cement. In this report, eight rejuvenating agents are examine...
Performance of pavements designed with low-cost materials
NASA Astrophysics Data System (ADS)
Grau, R. W.; Yrjanson, W. A.; Packard, R. G.; Barksdale, R. D.; Potts, C. F.; Ruth, B. E.; Smith, L. L.; Huddleston, I. J.; Vinson, T. S.; Hicks, R. G.
1980-04-01
The following areas are discussed. Utilization of marginal aggregate materials for secondary road surface layers; econocrete pavements; current practices; construction and performance of sand-asphalt bases and performance of sand-asphalt and limerock pavements in Florida. Cement stabilization of degrading aggregates use of crushed stone screenings in highway construction (abridgement); and sulfur-asphalt pavement technology are also reviewed.
2015-04-01
or earth bricks, rammed earth, and sometimes a cement binder. Adobe type construction has been around for thousands of years. It has many benefits...they were steel, they heated up like an oven and required large amounts of foam insulation which turned out to be highly flammable.15 The end result
Cabrera, Manuel; Galvin, Adela P.; Agrela, Francisco; Beltran, Manuel G.; Ayuso, Jesus
2016-01-01
This research is focused on analyzing the environmental pollution potential of biomass bottom ashes as individual materials, as mixtures manufactured with biomass bottom ashes and granular construction aggregates, and these mixtures treated with cement. For the environmental assessment of all of the samples and materials mentioned, the following leaching procedures have been performed: the compliance batch test of UNE-EN 12457-3:2003 for aggregates and bottom ashes; the column test according to NEN 7343:1994 for the mixtures prepared in the laboratory; and the tank test by EA NEN 7375:2004 for analyzing the behavior of mixtures after their solidification/stabilization with 5% cement. After the discussion of the data, the reduction of the pollution load of the most hazardous biomass bottom ashes after their combination with different aggregates can be confirmed, which implies their possible application in civil infrastructures, such as filler embankments and road construction layers, without negatively impacting the environment. In addition, the positive effect of the stabilization/solidification of the cement-treated mixtures with a reduction of the heavy metals that were released at the highest levels, namely As, Hg Cr, Ni, Cu, Se and Mo, was proven. PMID:28773352
Performance and Characterization of Geopolymer Concrete Reinforced with Short Steel Fiber
NASA Astrophysics Data System (ADS)
Abdullah, M. M. A. B.; Faris, M. A.; Tahir, M. F. M.; Kadir, A. A.; Sandu, A. V.; Mat Isa, N. A. A.; Corbu, O.
2017-06-01
In the recent years, geopolymer concrete are reporting as the greener construction technology compared to conventional concrete that made up of ordinary Portland cement. Geopolymer concrete is an innovative construction material that utilized fly ash as one of waste material in coal combustion industry as a replacement for ordinary Portland cement in concrete. The uses of fly ash could reduce the carbon dioxide emission to the atmosphere, redundant of fly ash waste and costs compared to ordinary Portland cement concrete. However, the plain geopolymer concrete suffers from numerous drawbacks such as brittleness and low durability. Thus, in this study the addition of steel fiber is introduced in plain geopolymer concrete to improve its mechanical properties especially in compressive and flexural strength. Characterization of raw materials also determined by using chemical composition analysis. Short type of steel fiber is added to the mix in weight percent of 1 wt%, 3 wt%, 5 wt% and 7 wt% with fixed molarity of sodium hydroxide of 12M and solid to liquid ratio as 2.0. The addition of steel fiber showed the excellent improvement in the mechanical properties of geopolymer concrete that are determined by various methods available in the literature and compared with each other.
NASA Astrophysics Data System (ADS)
Padilla Espinosa, Ingrid Marcela
Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also, these systems exhibited a high bulk modulus, compared to the elastic modulus. These results are an indication and concur with the high compression strength of cement paste seen at engineering length scale. In addition, the bulk modulus of two-phase systems consisting of hydrated CSH and unhydrated C3S or C2S was found to increase with higher levels of unhydrated components. The interaction energies of two-phase cement paste molecular structures studied in the present work were calculated, showing that a higher interaction is attained when the two phases are admixed as small components instead of cluster of phases. Finally, the mechanical behavior under shear deformation was predicted by using a quasi-static deformation method and analyzed for a representative two-phase (CSH and C2S) macromolecular structure of cement paste.
Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete
NASA Astrophysics Data System (ADS)
Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.
2016-06-01
This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.
2016-12-30
Operational Variable LeakFinderRT Equipment Logistics Portable Case Pipe Material Pit Cast Iron, Spun Cast Iron, Steel , Ductile Iron, Asbestos Cement ...AND ACRONYMS AC asbestos cement AMI advanced metering infrastructure AWWA American Water Works Association CI cast iron DI ductile iron DoD...assessing their ability to detect and accurately locate leaks in challenging pipe types such as polyvinyl chloride (PVC), asbestos cement (AC), and
Kopinski, Judith E; Aggarwal, Ajay; Nunley, Ryan M; Barrack, Robert L; Nam, Denis
2016-11-01
Recent literature has shown debonding of the tibial implant-cement interface as a potential cause for implant loosening. The purpose of this case series is to report this phenomenon in a historically well-performing implant when used with high-viscosity cement (HVC). Thirteen primary cemented Biomet Vanguard total knee arthroplasties were referred to 1 of 2 institutions with complaints of persistent pain after their index procedure. A radiographic and infectious work-up was completed for each patient. All 13 patients underwent a revision of the index surgery with intraoperative diagnosis of tibial component debonding at the implant-cement interface. HVC (Cobalt, DJO Surgical, Vista, CA and Depuy HVC; Depuy Inc, Warsaw, IN) was used in all index cases. The average time to revision surgery for the 13 patients was 2.7 ± 1.9 years from the index surgery. Laboratory infectious markers were within normal in most cases, and all intra-articular aspirations showed no bacterial, fungal, or anaerobic growth. Eleven of 13 patients showed no radiographic evidence of loosening; however, all cases demonstrated tibial component debonding intraoperatively. Given our institution's experience and previously reported data demonstrating excellent survivorship with this total knee arthroplasty prosthesis, we propose that the early failures seen in this case series may be associated with the use of HVC cement. In the setting of a negative infectious work-up and no radiographic evidence to suggest loosening, the surgeon should consider debonding of the tibial component as a potential cause for persistent pain if HVC cement was used with this prosthetic design. Copyright © 2016 Elsevier Inc. All rights reserved.
Durability of saw-cut joints in plain cement concrete pavements.
DOT National Transportation Integrated Search
2011-01-01
The objective of this project was to evaluate factors influencing the durability of the joints in portland cement concrete : pavement in the state of Indiana. Specifically this work evaluated the absorption of water, the absorption of deicing solutio...
The fatigue behavior of an amorphous brittle composite material
NASA Astrophysics Data System (ADS)
Kumar, Brijesh
The use of poly methyl methacrylate (PMMA) based bone cement as a grouting agent for the in-vivo fixation of orthopaedic implants has been in practice for nearly fifty years. Fatigue failure of the bone cement has been identified as the primary cause of cement failure. Implant loosening due to the failure of the cement is one of the major reasons necessitating revision surgery. The need for a more fatigue resistant bone cement is well documented in the literature. One method of producing a more fatigue resistant bone cement is to reinforce it with short fibers. The fundamental purpose of this work was to investigate the possible improvement of the fatigue characteristics of bone cement provided by the following two types of fiber reinforcements: short flexible Polyethylene Terephalate (PET) fibers and stiff milled carbon fibers. It has been shown that the reinforcement of the bone cement with fibers provides substantial improvement of the fracture toughness of the bone cement. In this investigation the impact of fiber reinforcement on the fatigue properties of the bone cement was studied. The effects of the fiber reinforcement on the fatigue life of bone cement has been determined experimentally. Since fatigue characteristics are known to have considerable scatter, a methodology was developed to analyze the experimental data in a statistically rigorous manner. The effect of the fiber reinforcement on bone cement was also analyzed using a theoretical approach and by conducting extensive Scanning Electron Microscopy (SEM) of the fractured surfaces. The results of this study indicate that fiber reinforcement improves the fatigue life of bone cement at a very high level of reliability. This could potentially lead to a more fatigue tolerant bone cement, which would delay the need for revision surgery due to implant loosening.
Thermal isotherms in PMMA and cell necrosis during total hip arthroplasty.
Gundapaneni, Dinesh; Goswami, Tarun
2014-12-30
Polymethylmethacrylate (PMMA), also known as bone cement, is a commonly used adhesive material to fix implants in Total Hip Arthroplasty (THA). During implantation, bone cement undergoes a polymerization reaction which is an exothermic reaction and results in the release of heat to the surrounding bone tissue, which ultimately leads to thermal necrosis. Necrosis in the bony tissue results in early loosening of the implant, which causes pain and reduces the life of the implant. The main objective of the present study was to understand the thermal isotherms in PMMA and to determine the optimal cement mantle thickness to prevent cell necrosis during THA. In this study, the environment in the bony tissue during implantation was simulated by constructing 3D solid models to observe the temperature distribution in the bony tissue at different cement mantle thicknesses (1 mm, 3 mm and 5 mm), by applying the temperature conditions that exist during the surgery. Stems made with Co-Cr-Mo, 316L stainless steel and Ti6Al4V were used, which acted as heat sinks, and a thermal damage equation was used to measure the bone damage. FEA was conducted based on temperature conditions and thermal isotherms at different cement mantle thicknesses were obtained. Thermal isotherms derived with respect to distance in the bony tissue from the center of the cement mantle, and cell necrosis was determined at different mantle thicknesses. Based on the deduced results, cement mantle thickness of 1-5 mm does not cause thermal damage in the bony tissue. Considering the long term stability of the implant, cement mantle thickness range from 3 mm-5 mm was found to be optimal in THA to prevent cell necrosis.
NASA Astrophysics Data System (ADS)
Galińska, Anna; Czarnecki, Sławomir
2017-10-01
In recent years, concrete has been the most popular construction material. The main component of the concrete is cement. However, its production and transport causes significant emissions of CO2. Reports in the literature show that many laboratories are attempting to modify the composition of the concrete using various additives. These attempts are primarily designed to eliminate parts of cement. The greater part of the cement will be replaced with the selected additive, the more significant is the economic and ecological effect. Most attempts are related to the replacement of the selected additive in an amount of from 10 to 30% by weight of cement. Mineral powders, which are waste material producing crushed aggregate, are increasingly used for this purpose. Management of the waste carries significant cost related to their storage and disposal. With this in mind, the aim of this study was to evaluate the effect of mineral powders derived from industrial wastes on selected mechanical properties of concrete. In particular, the aim was to determine the effect of quartz and quartz-feldspar powders. For this purpose, 40, 50, 60% by weight of the cement was replaced by the selected powders. The results obtained were analysed and compared with previous attempts to replace the selected additive in an amount of from 10 to 30% by weight of cement.
Singh, Kuldeep; Semwal, Poonam; Pant, Preeti; Gusain, G S; Joshi, Manish; Sapra, B K; Ramola, R C
2016-10-01
The indoor concentrations of radon ( 222 Rn), thoron ( 220 Rn) and their daughter products were measured in the dwellings of Almora district in Kumaun Himalaya, India using pin-hole dosemeters and deposition progeny sensors. The measurements were made in the residential houses built of mud, stone with cement plaster and cemented house during winter season. Average [geometric mean (GM) values] radon and thoron concentrations for all dwellings were found to be 99.82 and 79.70 Bq m -3 , respectively, while average equilibrium equivalent radon concentration and equilibrium equivalent thoron concentration (measured for the first time for this region) were measured at 35.22 and 2.52 Bq m -3 , respectively. Radon concentration (GM values) was found to be 110.73, 97.00 and 93.85 Bq m -3 for mud houses, stone with cemented plaster houses and cemented houses, respectively. On the other hand, thoron concentration values were 87.10, 75.79 and 75.68 Bq m -3 for cemented houses, mud houses and stone with cemented plaster houses, respectively. Interpretations have been made on the basis of measured radon/thoron and progeny concentration values with respect to the difference of construction material of the dwellings. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Educating the Community: A Watershed Model Project.
ERIC Educational Resources Information Center
Perryess, C. S.
2001-01-01
Focuses on the construction and use of a schoolyard model of the Morrow Bay watershed in California. Describes the design and use of materials that include styrofoam insulation, crushed granite, cement, and stucco. (DDR)
Relation of asphalt chemistry to physical properties and specifications.
DOT National Transportation Integrated Search
1984-01-01
This report constitutes a synthesis of published information concerning the chemical composition and characteristics of asphalt cements used in highway construction. The general relations between chemical composition and physical properties and speci...
Evaluation of composite pavement unbonded overlays : phase III.
DOT National Transportation Integrated Search
2007-08-01
In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested, allowing researchers to identify the important elements ...
40 CFR 146.32 - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... designed for the life expectancy of the well. In determining and specifying casing and cementing... affected by the mining operation. These wells shall be located in such a fashion as to detect any excursion...
40 CFR 146.65 - Construction requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Director may require more than 120% when the geology or other circumstances warrant it. (3) At least one...% when the geology or other circumstances warrant it. (4) Circulation of cement may be accomplished by...
40 CFR 146.65 - Construction requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Director may require more than 120% when the geology or other circumstances warrant it. (3) At least one...% when the geology or other circumstances warrant it. (4) Circulation of cement may be accomplished by...
40 CFR 146.65 - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Director may require more than 120% when the geology or other circumstances warrant it. (3) At least one...% when the geology or other circumstances warrant it. (4) Circulation of cement may be accomplished by...
40 CFR 146.65 - Construction requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Director may require more than 120% when the geology or other circumstances warrant it. (3) At least one...% when the geology or other circumstances warrant it. (4) Circulation of cement may be accomplished by...
40 CFR 146.65 - Construction requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Director may require more than 120% when the geology or other circumstances warrant it. (3) At least one...% when the geology or other circumstances warrant it. (4) Circulation of cement may be accomplished by...
Katona, T R; Chen, J
1994-08-01
The stress levels within the cement layer (hence, the apparent strength) of a direct bonded orthodontic bracket depends, to a large extent, on the alignment of the tensile loads that are applied to the specimen. The purpose of this analysis was to determine how the construction of a ligature wire harness affects the alignment of the applied loads. Tensile tests conducted on a modified bracket/cement system showed large variations in the force-elongation curve profiles. An engineering model was developed to explain these deviations. The results indicate that it is virtually impossible to evenly apply tensile loads to the bracket. It was also proposed that long harnesses constructed with thin ligature wire, prestressing the harness, and lubrication may reduce some of the effects of unavoidable load-bracket misalignment.
NASA Astrophysics Data System (ADS)
Semenov, A. P.; Smirnyagina, N. N.; Tsyrenov, B. O.; Dasheev, D. E.; Khaltarov, Z. M.
2017-05-01
This paper considers a method of synthesis fullerenes and carbon nanotubes at atmospheric pressure. Carbon evaporates into the plasma arc. The paper discusses the method of synthesis of helium at a pressure of 105 Pa. We show the dependence yield of fullerenes and carbon nanotubes from the buffer gas pressure. It has been found that the fullerene yield increased with increasing pressure. The obtained fullerenes and nanotubes find their application in the modification of construction materials. The use of carbon nanomodifiers in the modification of the construction is promising since their introduction significantly improves the physico-mechanical properties using a small quantity of additives. With the introduction of the carbon nanomodifier decrease the porosity of cement stone, which leads to high strength and frost-resistant indicators of the modified cement.
NASA Astrophysics Data System (ADS)
Malahayati, Nurul; Hayati, Yulia; Nursaniah, Cut; Firsa, T.; Fachrurrazi; Munandar, Aris
2018-05-01
Red brick and interlocking brick are the building materials that are often used for wall installation work on houses construction. In the development of building materials technology and cost savings, interlocking brick can be alternative to replace red bricks. In Aceh Province, the use of interlocking bricks is less popular compared to other big cities in Indonesia. Interlocking brick is made from a mixture of clay, concrete sand and compacted cement and one of the environmentally friendly materials because it does not burn the process like red brick material. It is named interlocking brick because the installation method is locked together and it serves as a structural and partition wall of residential buildings. The aims of this study are to compare the cost of building a house in Banda Aceh City using red brick and interlock brick building materials. The data were obtained from interviews and questionnaires distributed to respondents who had built houses in Banda Aceh City. The results concluded that the house construction cost using interlock brick offer lower construction cost at comparable quality rather than using red brick.
Dynamic properties of composite cemented clay.
Cai, Yuan-Qiang; Liang, Xu
2004-03-01
In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.
Investigation on the potential of waste cooking oil as a grinding aid in Portland cement.
Li, Haoxin; Zhao, Jianfeng; Huang, Yuyan; Jiang, Zhengwu; Yang, Xiaojie; Yang, Zhenghong; Chen, Qing
2016-12-15
Although there are several methods for managing waste cooking oil (WCO), a significant result has not been achieved in China. A new method is required for safe WCO management that minimizes the environmental threat. In this context, this work was developed in which cement clinker and gypsum were interground with various WCOs, and their properties, such as grindability, water-cement ratio required to achieve a normal consistency, setting times, compressive strength, contents of calcium hydroxide and ettringite in the hardened paste, microstructure and economic and environmental considerations, were addressed in detail. The results show that, overall, WCO favorably improves cement grinding. WCO prolonged the cement setting times and resulted in longer setting times. Additionally, more remarkable effects were found in cements in which WCO contained more unsaturated fatty acid. WCOs increased the cement strength. However, this enhancement was rated with respect to the WCO contents and components. WCOs decreased the CH and AFt contents in the cement hardened paste. Even the AFt content at later ages was reduced when WCO was used. WCO also densify microstructure of the hardened cement paste. It is economically and environmentally feasible to use WCOs as grinding aids in the cement grinding process. These results contribute to the application of WCOs as grinding aids and to the safe management of WCO. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stimuli-responsive cement-reinforced rubber.
Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef
2014-05-14
In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.
Degradable borate glass polyalkenoate cements.
Shen, L; Coughlan, A; Towler, M; Hall, M
2014-04-01
Glass polyalkenoate cements (GPCs) containing aluminum-free borate glasses having the general composition Ag2O-Na2O-CaO-SrO-ZnO-TiO2-B2O3 were evaluated in this work. An initial screening study of sixteen compositions was used to identify regions of glass formation and cement compositions with promising rheological properties. The results of the screening study were used to develop four model borate glass compositions for further study. A second round of rheological experiments was used to identify a preferred GPC formulation for each model glass composition. The model borate glasses containing higher levels of TiO2 (7.5 mol %) tended to have longer working times and shorter setting times. Dissolution behavior of the four model GPC formulations was evaluated by measuring ion release profiles as a function of time. All four GPC formulations showed evidence of incongruent dissolution behavior when considering the relative release profiles of sodium and boron, although the exact dissolution profile of the glass was presumably obscured by the polymeric cement matrix. Compression testing was undertaken to evaluate cement strength over time during immersion in water. The cements containing the borate glass with 7.5 mol % TiO2 had the highest initial compressive strength, ranging between 20 and 30 MPa. No beneficial aging effect was observed-instead, the strength of all four model GPC formulations was found to degrade with time.
The influence of fine aggregates on the 3D printing performance
NASA Astrophysics Data System (ADS)
Lin, J. C.; Wu, X.; Yang, W.; Zhao, R. X.; Qiao, L. G.
2018-01-01
Influences of nature Particle, size, grain shape and fineness modulus of fine aggregates on the 3D printing performance of cement-based mortar were investigated. Results showed that the working performance of the mortar is not only dependent on the fineness of the aggregate, but also the gradation and grain size of the aggregate. And the mechanical properties of the mortar are increasing with the increase of Mx in the same test condition. The research shows that it is effective to choose different properties of materials for different design requirements, and the fluidity of mortar must be decreased under assuring construction quality and the pumpability of 3D printing materials.
Properties of Cement Mortar and Ultra-High Strength Concrete Incorporating Graphene Oxide Nanosheets
Ouyang, Dong
2017-01-01
In this work, the effect of graphene oxide nanosheet (GONS) additives on the properties of cement mortar and ultra-high strength concrete (UHSC) is reported. The resulting GONS-cement composites were easy to prepare and exhibited excellent mechanical properties. However, their fluidity decreased with increasing GONS content. The UHSC specimens were prepared with various amounts of GONSs (0–0.03% by weight of cement). Results indicated that using 0.01% by weight of cement GONSs caused a 7.82% in compressive strength after 28 days of curing. Moreover, adding GONSs improved the flexural strength and deformation ability, with the increase in flexural strength more than that of compressive strength. Furthermore, field-emission scanning electron microscopy (FE-SEM) was used to observe the morphology of the hardened cement paste and UHSC samples. FE-SEM observations showed that the GONSs were well dispersed in the matrix and the bonding of the GONSs and the surrounding cement matrix was strong. Furthermore, FE-SEM observation indicated that the GONSs probably affected the shape of the cement hydration products. However, the growth space for hydrates also had an important effect on the morphology of hydrates. The true hydration mechanism of cement composites with GONSs needs further study. PMID:28726750
Environmental assessment of cement/foundry sludge products.
Ruiz, M C; Andrés, A; Irabien, A
2003-05-01
This work deals with the environmental assessment of products based on cement and a waste from a cast iron activity. The waste is a foundry sludge from wastewater treatment previously characterized. This industrial waste shows a high water content (62.4%) and a hazardous behavior due to its metallic content mainly Zn (16.5%), together with a low fraction of organic pollutants, mainly phenolic compounds. The feasibility of immobilizing both typs of contaminants was studied using Portland cement as binder at different cement/waste ratios. The parameters of environmental control were the ecotoxicity and mobilization of zinc and phenolic compounds, all determined on the basis of compliance leaching tests. The acid neutralization capacity of the cement/waste products was measured in order to obtain information on their buffering capacity. Experimental results from chemical analysis of leachates led to a non ecotoxic character of cement/waste products Although the metallic ions were mobilized within the cement mattices, the organic matter did not allow the formation of monolithic forms and an efficient immobilization of phenolic compounds. Concerning the acid neutralization capacity, this parameter was shown to depend mainly on the quantity of cement, although a decrease in alkalinity was observed when the amount of water in the cement/waste products increased.
DOT National Transportation Integrated Search
2010-05-01
In the summer of 2008 two CKD stabilization test sections were constructed on the I-75/I-96 Gateway roadway : reconstruction project in Detroit near the Ambassador Bridge. : Through observation and testing, CKD adequately stabilized both subgrade tes...
2016-08-01
of the operational environment to anticipate the impacts that siting and operating CBs will have on the local context, and to consider the effects ...17 Figure 7. Density and effective proximity factor (McNulty 2009b...Area-wise consumption of cement, FY2010 (Nahar 2011). ...............................44 Figure 23. Overview of Bangladesh [green: office, orange
Self-healing polymer cement composites for geothermal wellbore applications
NASA Astrophysics Data System (ADS)
Rod, K. A.; Fernandez, C.; Childers, I.; Koech, P.; Um, W.; Roosendaal, T.; Nguyen, M.; Huerta, N. J.; Chun, J.; Glezakou, V. A.
2017-12-01
Cement is vital for controlling leaks from wellbores employed in oil, gas, and geothermal operations by sealing the annulus between the wellbore casing and geologic formation. Wellbore cement failure due to physical and chemical stresses is common and can result in significant environmental consequences and ultimately significant financial costs due to remediation efforts. To date numerous alternative cement blends have been proposed for the oil and gas industry. Most of these possess poor mechanical properties, or are not designed to work in high temperature environments. This research investigates novel polymer-cement composites which could function at most geothermal temperatures. Thermal stability and mechanical strength of the polymer is attributed to the formation of a number of chemical interactions between the polymer and cement matrix including covalent bonds, hydrogen bonding, and van der Waals interactions. It has been demonstrated that the bonding between cement and casing is more predictable when polymer is added to cement and can even improve healing of adhesion break when subjected to stresses such as thermal shock. Fractures have also been healed, effectively reducing permeability with fractures up to 0.3-0.5mm apertures, which is two orders of magnitude larger than typical wellbore fractures. Additionally, tomography analysis was used to determine internal structure of the cement polymer composite and imaging reveals that polymers fill fractures in the cement and between the cement and casing. By plugging fractures that occur in wellbore cement, reducing permeability of fractures, both environmental safety and economics of subsurface operations will be improved for geothermal energy and oil and gas production.
Effect of different mixing methods on the physical properties of Portland cement.
Shahi, Shahriar; Ghasemi, Negin; Rahimi, Saeed; Yavari, Hamidreza; Samiei, Mohammad; Jafari, Farnaz
2016-12-01
The Portland cement is hydrophilic cement; as a result, the powder-to-liquid ratio affects the properties of the final mix. In addition, the mixing technique affects hydration. The aim of this study was to evaluate the effect of different mixing techniques (conventional, amalgamator and ultrasonic) on some selective physical properties of Portland cement. The physical properties to be evaluated were determined using the ISO 6786:2001 specification. One hundred sixty two samples of Portland cement were prepared for three mixing techniques for each physical property (each 6 samples). Data were analyzed using descriptive statistics, one-way ANOVA and post hoc Tukey tests. Statistical significance was set at P <0.05. The mixing technique had no significant effect on the compressive strength, film thickness and flow of Portland cement ( P >0.05). Dimensional changes (shrinkage), solubility and pH increased significantly by amalgamator and ultrasonic mixing techniques ( P <0.05). The ultrasonic technique significantly decreased working time, and the amalgamator and ultrasonic techniques significantly decreased the setting time ( P <0.05). The mixing technique exerted no significant effect on the flow, film thickness and compressive strength of Portland cement samples. Key words: Physical properties, Portland cement, mixing methods.
Cement-based piezoelectric ceramic composites for sensor applications in civil engineering
NASA Astrophysics Data System (ADS)
Dong, Biqin
The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.
Barbudo, Auxi; Galvín, Adela P; Agrela, Francisco; Ayuso, Jesús; Jiménez, Jose Ramón
2012-06-01
In some recycled aggregates applications, such as component of new concrete or roads, the total content of soluble sulphates should be measured and controlled. Restrictions are usually motivated by the resistance or stability of the new structure, and in most cases, structural concerns can be remedied by the use of techniques such as sulphur-resistant cements. However, environmental risk assessment from recycling and reuse construction products is often forgotten. The purpose of this study is to analyse the content of soluble sulphate on eleven recycled aggregates and six samples prepared in laboratory by the addition of different gypsum percentages. As points of reference, two natural aggregates were tested. An analysis of the content of the leachable amount of heavy metals regulated by European regulation was included. As a result, the correlation between solubility and leachability data allow suggest a limiting gypsum amount of 4.4% on recycled aggregates. This limit satisfies EU Landfill Directive criteria, which is currently used as reference by public Spanish Government for recycled aggregates in construction works. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mechanical aspects of degree of cement bonding and implant wedge effect.
Yoon, Yong-San; Oxland, Thomas R; Hodgson, Antony J; Duncan, Clive P; Masri, Bassam A; Choi, Donok
2008-11-01
The degree of bonding between the femoral stem and cement in total hip replacement remains controversial. Our objective was to determine the wedge effect by debonding and stem taper angle on the structural behavior of axisymmetric stem-cement-bone cylinder models. Stainless steel tapered plugs with a rough (i.e. bonded) or smooth (i.e. debonded) surface finish were used to emulate the femoral stem. Three different stem taper angles (5 degrees , 7.5 degrees , 10 degrees ) were used for the debonded constructs. Non-tapered and tapered (7.5 degrees ) aluminum cylindrical shells were used to emulate the diaphyseal and metaphyseal segments of the femur. The cement-aluminum cylinder interface was designed to have a shear strength that simulated bone-cement interfaces ( approximately 8MPa). The test involved applying axial compression at a rate of 0.02mm/s until failure. Six specimens were tested for each combination of the variables. Finite element analysis was used to enhance the understanding of the wedge effect. The debonded stems sustained about twice as much load as the bonded stem, regardless of taper angle. The metaphyseal model carried 35-50% greater loads than the diaphyseal models and the stem taper produced significant differences. Based on the finite element analysis, failure was most probably by shear at the cement-bone interface. Our results in this simplified model suggest that smooth (i.e. debonded) stems have greater failure loads and will incur less slippage or shear failure at the cement-bone interface than rough (i.e. bonded) stems.
Concrete aggregate durability study.
DOT National Transportation Integrated Search
2009-06-01
There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...
DOT National Transportation Integrated Search
1984-05-01
Past construction methods have resulted in the need for leveling : wedges of asphaltic cement concrete or mud jacking at locations where a : reinforced concrete box culvert was replaced with a pipe culvert . : With the restraint of limited funds, mor...
Magnetic Tomography - Assessing Tie Bar and Dowel Bar Placement Accuracy
DOT National Transportation Integrated Search
2017-12-01
The Kansas Department of Transportation (KDOT) constructs portland cement concrete pavements (PCCP) for new highway expansions and/or for replacement of existing highway pavement using slip-form paving operations. Typical concrete pavement constructi...
Deterioration of jointed Portland cement concrete pavements.
DOT National Transportation Integrated Search
1975-01-01
Information has been gathered regarding the performance of more than 400 lane-miles of jointed PCC interstate pavements located in five construction districts in Virginia. The factors causing pavement deterioration have been identified, the processes...
Alternatives to Full-Depth Patching on Resurfacing Projects
DOT National Transportation Integrated Search
1993-09-01
The vast majority of Illinois' non-interstate network is constructed of jointed Portland cement concrete (PCC). Typically, Illinois' first significant rehabilitation efforts for jointed PCC pavements are in the form of full-depth bituminous concrete ...
Research notes : AC/CRC adjacent lane surfacing.
DOT National Transportation Integrated Search
1991-10-01
Asphaltic Concrete (AC) and Portland Cement Concrete (PCC) are common roadway materials used in Oregon. In a recent construction project, Poverty Flats - Mecham Section, the Oregon State Highway Division (OSHD) designed a "test section" consisting of...
NASA Astrophysics Data System (ADS)
Farina, S.; Schulz Rodriguez, F.; Duffó, G.
2013-07-01
The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.
Compressive strength of concrete by partial replacement of cement with metakaolin
NASA Astrophysics Data System (ADS)
Ganesh, Y. S. V.; Durgaiyya, P.; Shivanarayana, Ch.; Prasad, D. S. V.
2017-07-01
Metakaolin or calcined kaolin, other type of pozzolan, produced by calcination has the capability to replace silica fume as an alternative material. Supplementary cementitious materials have been widely used all over the world in concrete due to their economic and environmental benefits; hence, they have drawn much attention in recent years. Mineral admixtures such as fly ash, rice husk ash, silica fume etc. are more commonly used SCMs. They help in obtaining both higher performance and economy. Metakaolin is also one of such non - conventional material, which can be utilized beneficially in the construction industry. This paper presents the results of an experimental investigations carried out to find the suitability of metakaolin in production of concrete. In the present work, the results of a study carried out to investigate the effects of Metakaolin on compressive strength of concrete are presented. The referral concrete M30 was made using 43 grade OPC and the other mixes were prepared by replacing part of OPC with Metakaolin. The replacement levels were 5%, 10%, 15% and 20%(by weight) for Metakaolin. The various results, which indicate the effect of replacement of cement by metakalion on concrete, are presented in this paper to draw useful conclusions.
Radioactive analysis and radiological hazards in different types of Egyptian cement
NASA Astrophysics Data System (ADS)
Shousha, Hany A.
Studies of the natural γ-emitting radionuclides in different types of cements manufactured by different companies in Egypt (e.g. Iron (HI), Karnak (HK), and Super fine (HSu) products from Helwan Ltd.) have been done to determine their natural levels of radioactivity using a high-purity germanium detector (HPGe). Knowledge of radioactivity present in cement materials enables one to assess any possible radiological risks to human health. The results show that the highest mean values of 226Ra and 232Th activity are 234.01±20.12 and 46.56±4.65 Bq kg-1, respectively, measured in cement sample `Iron' from Helwan company (HI). The corresponding value of 40K is 333.53±26.68 Bq kg-1 measured in cement sample `Karnak' from Helwan company (HK). For 137Cs, this value is 3.27±0.31 Bq kg-1 measured in cement sample (HI). The average concentrations of measured radionuclides in the different cement samples are 72.21±6.39, 24.98±2.24, 134.49±10.45, and 0.58±0.08 Bq kg-1 for 226Ra, 232Th, 40K, and 137Cs, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries. Radium equivalent (Raeq) activities and different hazard indices were calculated to assess the radiation hazard. Iron HI cement sample shows a higher Raeq activity of 311.91±31.10 Bq kg-1. Calculations of absorbed doses in nGy h-1 show that the Iron (HI), Karnak (HK), and Super fine (HSu) products from Helwan company have higher activities than the permissible level (80 nGy h-1). On the basis of the external hazard index (Hex), Raeq activities, and annual effective dose rates for organs (Horgan), the natural radioactivity of cement samples is not greater than the recommended values in the established standards and hence safe for use in building constructions and therefore for inhabitants.
Reactions in Portland cement-clay mixtures : final report.
DOT National Transportation Integrated Search
1970-01-01
This study was an extension of earlier work by Sherwood and Noble to determine the nature of the clay content of common Virginia soils and the strength development of those soils in cement mixtures. In addition attempts were made (1) to study the rel...
Fiber-enriched double-setting calcium phosphate bone cement.
dos Santos, Luís Alberto; Carrodéguas, Raúl Garcia; Boschi, Anselmo Ortega; Fonseca de Arruda, Antônio Celso
2003-05-01
Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phosphate cement compositions with mechanical properties more closely resembling those of human bone would broaden the range of applications, which is currently limited to sites subjected to low loads. This study investigated the influence of added polypropylene, nylon, and carbon fibers on the mechanical properties of double setting alpha-tricalcium phosphate-based cement, using calcium phosphate cement added to an in situ polymerizable acrylamide-based system recently developed by the authors. Although the addition of fibers was found to reduce the compression strength of the double-setting calcium phosphate cement because of increased porosity, it strongly increased the cement's toughness (J(IC)) and tensile strength. The composites developed in this work, therefore, have a potential application in shapes subjected to flexure. Copyright 2003 Wiley Periodicals, Inc.
Kieć-Swierczyńska, M; Woźniak, H; Wojtczak, J
1989-01-01
The study involved 461 building workers exposed to ashes, cement and ash-cement mixtures in direct production and at auxiliary posts (fitters, welders, mechanics, electricians etc.). In addition, all those workers were exposed to lubricants ans machine oils, as well as anti-adhesive oils used to lubricate moulds. All the subjects underwent patch tests. Dermatitis was found in 18.9%, whereas oil acne in 7.4% of subjects, 23.0% exhibited chromium allergy, 15.2% - cobalt allergy and 5.0% - nickel allergy. Two workers were ++hypersensitive to zinc. No differences were found in the rates of dermatitis, oil acne and metal allergy between production workers and auxiliary ones. Airborne dust concentrations at those workplaces were similar. Cement and ashes contained compounds of chromium, cobalt and nickel.
Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag
2017-02-01
Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking. Copyright © 2016 Elsevier Ltd. All rights reserved.
Immobilization of Fast Reactor First Cycle Raffinate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langley, K. F.; Partridge, B. A.; Wise, M.
This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cyclemore » raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.« less
Utilization of barite/cement composites for gamma rays attenuation
NASA Astrophysics Data System (ADS)
Sakr, Khaled; Ramadan, Wageeh; Sayed, Magda; El-Zakla, Tarek; El-Desouqy, Mohamed; El-Faramawy, Nabil
2018-04-01
The present work is directed to investigate the contribution of adding barite aggregates to cement as a shielding material for radioactive wastes disposal facilities. The percentages of barite from 5% up to 20% mixed with cement with different grain sizes were examined. Mechanical and physical properties such as compressive strength, wet and dry densities, water absorption, and porosity have been investigated. The thermogravimetric analysis and X-ray diffraction were used to examine the thermal stability and the characterizations of studied samples, respectively. The linear attenuation coefficient, mean free path, half value layer, and transmission fraction were evaluated. All the nuclear shielding parameters revealed the uppermost values for cement mixed with 5% barite of size range 250-600 µm. The attenuation coefficient of the investigated samples displayed an increase by more than 125% than that of neat cement.
Antimicrobial activity of ProRoot MTA in contact with blood
Farrugia, C.; Baca, P.; Camilleri, J.; Arias Moliz, M. T.
2017-01-01
Dental materials based on Portland cement, which is used in the construction industry have gained popularity for clinical use due to their hydraulic properties, the interaction with tooth tissue and their antimicrobial properties. The antimicrobial properties are optimal in vitro. However in clinical use contact with blood may affect the antimicrobial properties. This study aims to assess whether antimicrobial properties of the Portland cement-based dental cements such as mineral trioxide aggregate (MTA) are also affected by contact with blood present in clinical situations. ProRoot MTA, a Portland cement-based dental cement was characterized following contact with water, or heparinized blood after 1 day and 7 days aging. The antimicrobial activity under the mentioned conditions was assessed using 3 antimicrobial tests: agar diffusion test, direct contact test and intratubular infection test. MTA in contact with blood was severely discoloured, exhibited an additional phosphorus peak in elemental analysis, no calcium hydroxide peaks and no areas of bacterial inhibition growth in the agar diffusion test were demonstrated. ProRoot MTA showed limited antimicrobial activity, in both the direct contact test and intratubular infection test. When aged in water ProRoot MTA showed higher antimicrobial activity than when aged in blood. Antimicrobial activity reduced significantly after 7 days. Further assessment is required to investigate behaviour in clinical situations. PMID:28128328
Concretes and mortars with waste paper industry: Biomass ash and dregs.
Martínez-Lage, Isabel; Velay-Lizancos, Miriam; Vázquez-Burgo, Pablo; Rivas-Fernández, Marcos; Vázquez-Herrero, Cristina; Ramírez-Rodríguez, Antonio; Martín-Cano, Miguel
2016-10-01
This article describes a study on the viability of using waste from the paper industry: biomass boiler ash and green liquor dregs to fabricate mortars and concretes. Both types of ash were characterized by obtaining their chemical and mineralogical composition, their organic matter content, granulometry, adsorption and other common tests for construction materials. Seven different mortars were fabricated, one for reference made up of cement, sand, and water, three in which 10, 20, or 30% of the cement was replaced by biomass ash, and three others in which 10, 20, or 30% of the cement was replaced with dregs. Test specimens were fabricated with these mortars to conduct flexural and compression tests. Flexural strength is reduced for all the mortars studied. Compressive strength increases for the mortars fabricated with biomass ash and decreases for the mortar with dregs. Finally, 5 concretes were made, one of them as a reference (neither biomass ash nor dregs added), two of them with replacements of 10 and 20% of biomass ash instead of cement and another two with replacements of 10 and 20% of dregs instead of cement. The compressive and tensile splitting strength increase when a 10% of ash is replaced and decrease in all the other cases. The modulus of elasticity always decreases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Airway disease in highway and tunnel construction workers exposed to silica.
Oliver, L Christine; Miracle-McMahill, Heidi
2006-12-01
Construction workers employed in a unique type of tunnel construction known as tunnel jacking were exposed over an 18-month period to respirable crystalline silica at concentrations that exceeded the OSHA permissible exposure limit. The present study examines workplace exposures and occurrence of airway disease in these workers. Medical and occupational histories and chest radiographs were obtained on 343 active construction workers who had worked on the site during the period in question. Chest radiographs were interpreted according to the ILO-1980 system of classification. Standardized questions were used to develop an algorithm to define symptoms consistent with asthma (SCA) and to determine these respiratory outcomes: chronic bronchitis, shortness of breath (SOB), and physician-diagnosed asthma (current vs. not current). Relationships with each of three work activities were examined: slurry wall breakthrough (SWB), chipping caisson overpour, and tunneling/mining. Participants included laborers, carpenters, tunnel workers, ironworkers, operating engineers, and electricians. No cases of silicosis were found on chest X-ray. Overall prevalence of chronic bronchitis, SCA, SOB, and physician-diagnosed asthma was 10.7%, 25%, 29%, and 6.6%, respectively. Odds ratios (OR) for carpenters compared to laborers were significantly elevated for chronic bronchitis, SCA, and SOB. SWB was associated with chronic bronchitis and SCA (OR 4.93, 95% CI = 1.01, 24.17; OR 3.32, 95% CI = 1.25, 8.84, respectively). The interaction between SWB, SCA, and trade was significant for carpenters (OR 6.87, 95% CI = 1.66, 28.39). Inverse trends were observed for months on the site and chronic bronchitis, SCA, and SOB (P = 0.0374, 0.0006, and 0.0307, respectively). Tunnel construction workers exposed to respirable crystalline silica and cement dust are at increased risk for airway disease. Extent of risk varies by trade and work activity. Our data indicate the importance of bystander exposures and suggest that tunnel jacking may be associated with greater risk compared to more traditional methods of tunnel construction. A healthy worker effect is suggested.
DOT National Transportation Integrated Search
1987-09-01
ADOT has approximately 550 lane miles of jointed portland cement pavement under its jurisdiction. The current practice is to saw and seal the joints at the time of construction and reseal the joints under a rehabilitation project. ADOT does not speci...
Very-early-strength latex-modified concrete overlay.
DOT National Transportation Integrated Search
1998-12-01
This paper describes the installation and condition of the first two very-early-strength latex modified concrete (LMC-VE) overlays constructed for the Virginia Department of Transportation. The overlays were prepared with a special blended cement rat...
Performance specification for high performance concrete overlays on bridges.
DOT National Transportation Integrated Search
2004-01-01
Hydraulic cement concrete overlays are usually placed on bridges to reduce the infiltration of water and chloride ions and to improve skid resistance, ride quality, and surface appearance. Constructed in accordance with prescription specifications, s...
Evaluation of curing compound application time on concrete surface durability : [brief].
DOT National Transportation Integrated Search
2015-05-01
Roadways that are both durable and aesthetically pleasing are primary goals of Wisconsin : Department of Transportation (WisDOT) paving projects. Recently, Portland Cement Concrete : (PCC) pavement projects constructed by WisDOT have experienced incr...
High performance concrete pavement in Indiana.
DOT National Transportation Integrated Search
2011-01-01
Until the early 1990s, curling and warping of Portland cement concrete pavement did not concern : pavement engineers in many transportation agencies. Since beginning construction of the interstate system in the : United States in the late 1950s throu...
Evaluation of ternary cementitious combinations.
DOT National Transportation Integrated Search
2012-02-01
Portland cement concrete (PCC) is the worlds most versatile and most used construction materials. Global demand for PCC sustainability has risen as of late. To meet that need, engineers have looked to alternative binders such as fly ash, silica fu...
Bridge deck resurfacing using Rosphalt 50 : construction report.
DOT National Transportation Integrated Search
2003-01-01
Most bridge decks in Maine are comprised of Reinforced Portland Cement Concrete (RPCC). Although a : durable product, RPCC is permeable and susceptible to chloride penetration leading to corrosion of the : steel reinforcement and eventual cracking of...
Wang, Xiao-Yong
2017-01-26
Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel-space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.
Wang, Xiao-Yong
2017-01-01
Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods. PMID:28772472
Fatta, Despo; Papadopoulos, Achilleas; Stefanakis, Nikos; Loizidou, Maria; Savvides, Chrysanthos
2004-08-01
The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.
Molecular architecture requirements for polymer-grafted lignin superplasticizers.
Gupta, Chetali; Sverdlove, Madeline J; Washburn, Newell R
2015-04-07
Superplasticizers are a class of anionic polymer dispersants used to inhibit aggregation in hydraulic cement, lowering the yield stress of cement pastes to improve workability and reduce water requirements. The plant-derived biopolymer lignin is commonly used as a low-cost/low-performance plasticizer, but attempts to improve its effects on cement rheology through copolymerization with synthetic monomers have not led to significant improvements. Here we demonstrate that kraft lignin can form the basis for high-performance superplasticizers in hydraulic cement, but the molecular architecture must be based on a lignin core with a synthetic-polymer corona that can be produced via controlled radical polymerization. Using slump tests of ordinary Portland cement pastes, we show that polyacrylamide-grafted lignin prepared via reversible addition-fragmentation chain transfer polymerization can reduce the yield stress of cement paste to similar levels as a leading commercial polycarboxylate ether superplasticizer at concentrations ten-fold lower, although the lignin material produced via controlled radical polymerization does not appear to reduce the dynamic viscosity of cement paste as effectively as the polycarboxylate superplasticizer, despite having a similar affinity for the individual mineral components of ordinary Portland cement. In contrast, polyacrylamide copolymerized with a methacrylated kraft lignin via conventional free radical polymerization having a similar overall composition did not reduce the yield stress or the viscosity of cement pastes. While further work is required to elucidate the mechanism of this effect, these results indicate that controlling the architecture of polymer-grafted lignin can significantly enhance its performance as a superplasticizer for cement.
Sánchez-Turrión, Andrés; López-Lozano, José F.; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria J.
2012-01-01
Objectives. This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Study Design. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. Results. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Conclusions. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range. Key words:Dental alloy, laser sintering, implant-supported prostheses, vertical discrepancy, vertical misfit. PMID:22322524
Primary cement spacers: a cost-effective, durable limb salvage option for knee tumors.
Puri, Ajay; Gulia, Ashish; Pruthi, Manish; Koushik, S
2012-08-01
Of a total of 818 limb sparing resections in the lower limb requiring reconstruction between December 2002 and April 2010 at our centre, primary cement spacers were used in 15 cases. In three cases they were used as joint sparing intercalary reconstructions and in 12 cases knee arthrodesis was done. Implants used to provide stability to the construct included stacked intramedullary Kuntscher nails in four, an interlocking nail in one, plates in two and a combination of nail with plate in eight. Mean length of bone resected was 18 cm. Mean follow-up was 26 months (10-87 months). There were no local recurrences and none of the spacers needed revision for mechanical failure. The Musculoskeletal Tumor Society score for patients ranged from 20 to 29 with a mean of 24 (80%). Patients with intercalary resection had better functional scores than those with arthrodesis. The construct was successfully revised to a vascularised fibula arthrodesis or prosthesis with good eventual function in three cases. Cement spacers are a suitable cost-effective, durable reconstruction modality in selected patients with good functional outcomes. They are an option to amputation in patients with financial constraints and those that present with large volume or infected fungating tumors. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wedekind, Wanja; Protz, Andreas
2016-04-01
The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.
NASA Astrophysics Data System (ADS)
Hu, Cairong; Benally, Aaron D.; Case, Tobias; Zoughi, Reza; Kurtis, Kimberly
2000-07-01
Corrosion of steel rebar in reinforced concrete structures, can be induced by the presence of chloride in the structure. Corrosion of steel rebar is a problematic issue in the construction industry as it compromises the strength and integrity of the structure. Although techniques exist for chloride detection and its migration into a structure, they are destructive, time consuming and cannot be used for the interrogation of large surfaces. In this investigation three different portland cement types; namely, ASTM types II, III and V were used, and six cubic (8' X 8' X 8') mortar specimens were produced all with water-to-cement (w/c) ratio of 0.6 and sand-to-cement (s/c) ratio of 1.5. Tap water was used when producing three of these specimens (one of each cement type). For the other three specimens calcium chloride was added to the mixing tap water resulting in a salinity of 2.5%. These specimens were placed in a hydration room for one day and thereafter left it the room temperature with low humidity. The reflection properties of these specimens, using an open-ended rectangular waveguide probe, were monitored daily at 3 GHz (S-band) and 10 GHz (X-band). The results show the influence of cement type on the reflection coefficient as well as the influence of chloride on the curing process and setting time.
Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions.
Obla, K; Hong, R; Sherman, S; Bentz, D P; Jones, S Z
2018-01-01
Characterization of fresh concrete is critical for assuring the quality of our nation's constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K + , Na + , and OH - ) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass ( w/c ), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c , paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture's paste content or the product w*c ; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed.
Relating the Electrical Resistance of Fresh Concrete to Mixture Proportions
Obla, K.; Hong, R.; Sherman, S.; Bentz, D.P.; Jones, S.Z.
2018-01-01
Characterization of fresh concrete is critical for assuring the quality of our nation’s constructed infrastructure. While fresh concrete arriving at a job site in a ready-mixed concrete truck is typically characterized by measuring temperature, slump, unit weight, and air content, here the measurement of the electrical resistance of a freshly cast cylinder of concrete is investigated as a means of assessing mixture proportions, specifically cement and water contents. Both cement and water contents influence the measured electrical resistance of a sample of fresh concrete: the cement by producing ions (chiefly K+, Na+, and OH-) that are the main source of electrical conduction; and the water by providing the main conductive pathways through which the current travels. Relating the measured electrical resistance to attributes of the mixture proportions, such as water-cement ratio by mass (w/c), is explored for a set of eleven different concrete mixtures prepared in the laboratory. In these mixtures, w/c, paste content, air content, fly ash content, high range water reducer dosage, and cement alkali content are all varied. Additionally, concrete electrical resistance data is supplemented by measuring the resistivity of its component pore solution obtained from 5 laboratory-prepared cement pastes with the same proportions as their corresponding concrete mixtures. Only measuring the concrete electrical resistance can provide a prediction of the mixture’s paste content or the product w*c; conversely, when pore solution resistivity is also available, w/c and water content of the concrete mixture can be reasonably assessed. PMID:29882546
Lim, T T; Chu, J; Goi, M H
2006-01-01
The suitability of using cement-stabilized sludge products as artificial soils in earth works was evaluated. The sludge products investigated were cemented sludge, cement-treated clay-amended sludge (SS+MC), and cement-treated copper slag-amended sludge (SS+CS). The leachability of lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) were assessed using the sequential extraction technique, toxicity characteristic leaching procedure (TCLP), NEN 7341 availability test, and column leaching test. The results indicated that Zn leachability was reduced in all the cement-stabilized sludge products. In contrast, Cu was transferred from the organic fraction to the readily leachable phases in the cement-stabilized sludge products and therefore exhibited increased leachability. The increased Cu leachability could be attributed to dissolution of humic substances in the sludge as a result of elevated pH. Good correlation between dissolved organic carbon (DOC) and heavy metal leaching from the cement-stabilized sludge products was observed in the column leaching experiment. Even with a cement percentage as small as 12.5%, calcium silicate hydrate (C-S-H) was formed in the SS+MC and SS+CS products. Inclusion of the marine clay in the SS+MC products could reduce the leaching potentials of Zn, and this was the great advantage of the marine clay over the copper slag for sludge amendment.
Rodriguez, Lucas C.; Chari, Jonathan; Aghyarian, Shant; Gindri, Izabelle M.; Kosmopoulos, Victor; Rodrigues, Danieli C.
2014-01-01
Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the properties investigated. This alternative material may find applications in systems requiring highly injectable and viscous cements such as in the treatment of spinal fractures and bone defects. PMID:28788212
Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C
2017-08-15
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.
Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.
2017-07-25
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Susan A.; Iyer, Jaisree; Walsh, Stuart D. C.
Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids frommore » the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The broader context of this paper is to use our experimentally calibrated chemical, mechanical, and transport model to illustrate when, where, and in what conditions fracture pathways seal in CO 2 storage wells, to reduce their risk to groundwater resources. We do this by defining the amount of cement and the time required to effectively seal the leakage pathways associated with peak and postinjection overpressures, within the context of oil and gas industry standards for leak detection, mitigation, and repairs. Our simulations suggest that for many damage scenarios chemical and mechanical processes lower leakage risk by reducing or sealing fracture pathways. Leakage risk would remain high in wells with a large amount of damage, modeled here as wide fracture apertures, where fast flowing fluids are too dilute for carbonate precipitation and subsurface stress does not compress the altered cement. Fracture sealing is more likely as reservoir pressures decrease during the postinjection phase where lower fluxes aid chemical alteration and mechanical deformation of cement. Our results hold promise for the development of mitigation framework to avoid impacting groundwater resources above any geologic CO 2 storage reservoir by correlating operational pressures and barrier lengths.« less
DOT National Transportation Integrated Search
1999-06-25
In order to accurately predict the strength and durability of an adequately mixed and compacted concrete mix it is useful, if not necessary, to know the water-cement ratio of the fresh concrete mix. In this work near-infrared reflection spectroscopy ...
Biodeterioration of the Cement Composites
NASA Astrophysics Data System (ADS)
Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana
2016-10-01
The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising
Cause Analysis on the Void under Slabs of Cement Concrete Pavement
NASA Astrophysics Data System (ADS)
Wen, Li; Zhu, Guo Xin; Baozhu
2017-06-01
This paper made a systematic analysis on the influence of the construction, environment, water and loads on the void beneath road slabs, and also introduced the formation process of structural void and pumping void, and summarizes the deep reasons for the bottom of the cement concrete pavement. Based on the analysis above, this paper has found out the evolution law of the void under slabs which claimed that the void usually appeared in the slab corners and then the cross joint, resulting void in the four sides with the void area under the front slab larger than the rear one.
Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Farina, S. B.; Schulz, F. M.
2013-07-01
Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.
Experimental Evaluation of Cement Replacement Fillers on the Performance of Slurry Seal
NASA Astrophysics Data System (ADS)
Fakhri, Mansour; Alrezaei, Hossein Ali; Naji Almasi, Soroush
2016-10-01
Reducing the level of roads service is a process that starts from the first day of the operation of road and the slope of deterioration curve of road sustainability becomes faster with the passage of time. After building the road, adopting an economic approach in order to maintain the road is very important. Slurry seal as one type of protective asphalts that works by sealing inactive cracks of the road and increasing skid resistance is the most effective types of restoration with environmentally friendly behaviour. Fillers are responsible for adjusting set time in slurry seal. Cement is the most common filler used in slurry seal. Cements having suitable properties as a filler, has a very energy demanding manufacturing process and a notable amount of energy is used for manufacturing cement in the country annually. On the other hand, manufacturing process and application of cement have increased levels of pollutant gases, followed by significant environmental pollution. So in this study other options as a filler such as hydrated lime, stone powder and the slag from iron melting furnace were compared with two common types of cement (Portland and type-v cement) in the mixtures of slurry seal by wet abrasion and cohesion tests. Results indicated that, in both tests, lime and slag fillers had behaviours close to the cement filler.
Portland cement hydration and early setting of cement stone intended for efficient paving materials
NASA Astrophysics Data System (ADS)
Grishina, A.
2017-10-01
Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.
Moshaverinia, Alireza; Roohpour, Nima; Ansari, Sahar; Moshaverinia, Maryam; Schricker, Scott; Darr, Jawwad A; Rehman, Ihtesham U
2009-10-01
It has been found that polyacids containing an N-vinylpyrrolidinone (NVP) comonomer produces a glass inomer cement with improved mechanical and handling properties. The objective of this study was to investigate the effect of NVP modified polyelectrolytes on the surface properties and shear bond strength to dentin of glass ionomer cements. Poly(acrylic acid (AA)-co-itaconic acid (IA)-co-N-vinylpyrrolidone) was synthesized by free radical polymerization. The terpolymer was characterized using (1)H NMR, FTIR spectroscopy and viscometry for solution properties. The synthesized polymers were used in glass ionomer cement formulations (Fuji II commercial GIC). Surface properties (wettability) of modified cements were studied by water contact angle measurements as a function of time. Work of adhesion values of different surfaces was also determined. The effect of NVP modified polyacid, on bond strength of glass-ionomer cement to dentin was also investigated. The mean data obtained from contact angle and bonding strength measurements were subjected to one- and two-way analysis of variance (ANOVA) at alpha=0.05. Results showed that NVP modified glass ionomer cements showed significantly lower contact angles (theta=47 degrees) and higher work of adhesion (WA=59.4 erg/cm(2)) in comparison to commercially available Fuji II GIC (theta=60 degrees and WA=50.3 erg/cm(2), respectively). The wettability of dentin surfaces conditioned with NVP containing terpolymer was higher (theta=21 degrees, WA=74.2 erg/cm(2)) than dentin conditioned with Fuji conditioner (theta=30 degrees, WA=69 erg/cm(2)). The experimental cement also showed higher but not statistically significant values for shear bond strength to dentin (7.8 MPa), when compared to control group (7.3 MPa). It was concluded that NVP containing polyelectrolytes are better dentin conditioners than the commercially available dentin conditioner (Fuji Cavity Conditioner, GC). NVP containing terpolymers can enhance the surface properties of GICs and also increase their bond strength to the dentin.
Preparation and evaluation of a novel star-shaped polyacid-constructed dental glass-ionomer system.
Howard, Leah; Weng, Yiming; Xie, Dong
2014-06-01
The objective of this study was to synthesize and characterize novel star-shaped poly(acrylic acid-co-itaconic acid)s via chain-transfer radical polymerization technique, use these polyacids to formulate the resin-modified glass-ionomer cements, and evaluate the mechanical strengths of the formed cements The star-shaped poly(acrylic acid-co-itaconic acid)s were synthesized via a chain-transfer radical polymerization reaction using a newly synthesized star-shaped chain-transfer agent. The effects of MW, GM-tethering ratio, P/L ratio and aging on the compressive properties of the formed experimental cements were studied. Compressive, diametral tensile as well as flexural strengths were evaluated and compared to those of Fuji II and Fuji II LC cements. The star-shaped polyacids showed significantly lower viscosities in water as compared to their linear counterparts. The cements formulated with these novel polyacids showed significantly improved mechanical strengths i.e., 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS and 36% in FS, higher than commercial Fuji II LC. After aging in water for 30 days, the compressive strengths of the experimental cements were significantly changed with an increase of 29% in YS, 19% in modulus as well as 23% in CS and a decrease of 5% in toughness, indicating that aging in water enhances the salt-bridge formation and increases brittleness. A novel light-cured glass-ionomer cement system composed of the star-shaped poly(carboxylic acid)s has been developed via a cost-effective and time-efficient chain-transfer radical polymerization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.
DOT National Transportation Integrated Search
2011-12-01
"This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulat...
Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.
DOT National Transportation Integrated Search
2011-12-01
This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulate...
Stabilometer "S" value comparison using anti-stripping additives.
DOT National Transportation Integrated Search
1985-07-01
from January through July, 1985, asphalt mixes from five construction projects, with and without an anti-stripping additive, were compared for stability. Ten mix samples for each project, at varying asphalt cement content, were prepared and tested in...
Design and construction of a new asphalt drainage layer.
DOT National Transportation Integrated Search
2004-01-01
Because of the importance of having a good drainage mechanism built into a pavement structure to prevent premature failure, the Virginia Department of Transportation (VDOT) has used drainage layers under both portland cement concrete and asphalt conc...
Ultra-thin whitetopping for general aviation airports in New Mexico.
DOT National Transportation Integrated Search
2002-06-01
Whitetopping is a pavement rehabilitation construction practice where portland cement concrete (PCC) is placed over an existing asphalt concrete pavement as an overlay. Ultra-thin whitetopping (UTW) is generally a thin overlay with a thickness betwee...
Longitudinal cracking in widened portland cement concrete pavements.
DOT National Transportation Integrated Search
2013-02-01
The Wisconsin Department of Transportation constructed certain concrete pavements with lane widths greater : than the standard 12 feet in order to reduce stress and deflection caused by vehicle tires running near the edge of : the concrete slabs. Man...
Investigation of nuclear asphalt content gauge : final report.
DOT National Transportation Integrated Search
1995-07-01
The introduction of new aggregate sources to Louisiana in the mid 1980s has presented problems in asphalt concrete mix design and construction. Absorptive aggregates such as reclaimed portland cement concrete and some stones now being supplied have m...
Fly ash in concrete : final report.
DOT National Transportation Integrated Search
1990-08-01
This study was initiated to develop information regarding the use of fly ash in portland cement concrete for state construction projects. : Concrete mixes containing 10%, 20%, 30%, 40% and 60% fly ash were evaluated in the laboratory in combination w...
DOT National Transportation Integrated Search
2003-01-01
The Louisiana Department of Transportation and Development (DOTD) receives many requests to use new products for soil treatment, soil stabilization, or reinforcements on construction projects. The product information provided by the manufacturer gene...
Evaluation of Grade 120 Granulated Ground blast Furnace Slag.
DOT National Transportation Integrated Search
1999-06-01
This study evaluates Grade 120 Granulated Ground Blast Furnace Slag (GGBFS) and its effect on the properties of hydraulic cement concretes used in structural and pavement construction. Several mix designs, structural and pavement, were used for this ...
Polymethylmethacrylate bone cements and additives: A review of the literature
Arora, Manit; Chan, Edward KS; Gupta, Sunil; Diwan, Ashish D
2013-01-01
Polymethylmethacrylate (PMMA) bone cement technology has progressed from industrial Plexiglass administration in the 1950s to the recent advent of nanoparticle additives. Additives have been trialed to address problems with modern bone cements such as the loosening of prosthesis, high post-operative infection rates, and inflammatory reduction in interface integrity. This review aims to assess current additives used in PMMA bone cements and offer an insight regarding future directions for this biomaterial. Low index (< 15%) vitamin E and low index (< 5 g) antibiotic impregnated additives significantly address infection and inflammatory problems, with only modest reductions in mechanical strength. Chitosan (15% w/w PMMA) and silver (1% w/w PMMA) nanoparticles have strong antibacterial activity with no significant reduction in mechanical strength. Future work on PMMA bone cements should focus on trialing combinations of these additives as this may enhance favourable properties. PMID:23610754
Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr
Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorlymore » crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.« less
Pourdeyhimi, B; Robinson, H H; Schwartz, P; Wagner, H D
1986-01-01
A study of the fracture behaviour of Kevlar 29 reinforced dental cement is undertaken using both linear elastic and nonlinear elastic fracture mechanics techniques. Results from both approaches--of which the nonlinear elastic is believed to be more appropriate--indicate that a reinforcing effect is obtained for the fracture toughness even at very low fibre content. The flexural strength and modulus are apparently not improved, however, by the incorporation of Kevlar 29 fibres in the PMMA cement, probably because of the presence of voids, the poor fibre/matrix interfacial bonding and unsatisfying cement mixing practice. When compared to other PMMA composite cements, the present system appears to be probably more effective than carbon/PMMA, for example, in terms of fracture toughness. More experimental and analytical work is needed so as to optimize the mechanical properties with respect to structural parameters and cement preparation technique.
Chromium-induced skin damage among Taiwanese cement workers.
Chou, Tzu-Chieh; Wang, Po-Chih; Wu, Jyun-De; Sheu, Shiann-Cherng
2016-10-01
Little research has been done on the relationships between chromium exposure, skin barrier function, and other hygienic habits in cement workers. Our purpose was to investigate chromium-induced skin barrier disruption due to cement exposure among cement workers. One hundred and eight cement workers were recruited in this study. Urinary chromium concentration was used to characterize exposure levels. The biological exposure index was used to separate high and low chromium exposure. Transepidermal water loss (TEWL) was used to assess the skin barrier function. TEWL was significantly increased in workers with high chromium exposure levels than those with low chromium exposure levels (p = 0.048). A positive correlation was also found between urinary chromium concentration and TEWL (R = 0.28, p = 0.004). After adjusting for smoking status and glove use, a significant correlation between urinary chromium concentrations and TEWL remained. Moreover, workers who smoked and had a high chromium exposure had significantly increased TEWL compared to nonsmokers with low chromium exposure (p = 0.01). Skin barrier function of cement workers may have been disrupted by chromium in cement, and smoking might significantly enhance such skin barrier perturbation with chromium exposure. Decreased chromium skin exposure and smoking cessation should be encouraged at work. © The Author(s) 2015.
Quantum Mechanical Metric for Internal Cohesion in Cement Crystals
Dharmawardhana, C. C.; Misra, A.; Ching, Wai-Yim
2014-01-01
Calcium silicate hydrate (CSH) is the main binding phase of Portland cement, the single most important structural material in use worldwide. Due to the complex structure and chemistry of CSH at various length scales, the focus has progressively turned towards its atomic level comprehension. We study electronic structure and bonding of a large subset of the known CSH minerals. Our results reveal a wide range of contributions from each type of bonding, especially hydrogen bonding, which should enable critical analysis of spectroscopic measurements and construction of realistic C-S-H models. We find the total bond order density (TBOD) as the ideal overall metric for assessing crystal cohesion of these complex materials and should replace conventional measures such as Ca:Si ratio. A rarely known orthorhombic phase Suolunite is found to have higher cohesion (TBOD) in comparison to Jennite and Tobermorite, which are considered the backbone of hydrated Portland cement. PMID:25476741
Kotwal, Suhel Y; Farid, Yasser R; Patil, Suresh S; Alden, Kris J; Finn, Henry A
2012-02-01
Two-stage reimplantation, with interval antibiotic-impregnated cement spacer, is the preferred treatment of prosthetic knee joint infections. In medically compromised hosts with prior failed surgeries, the outcomes are poor. Articulating spacers in such patients render the knee unstable; static spacers have risks of dislocation and extensor mechanism injury. We examined 58 infected total knee arthroplasties with extensive bone and soft tissue loss, treated with resection arthroplasty and intramedullary tibiofemoral rod and antibiotic-laden cement spacer. Thirty-seven patients underwent delayed reimplantation. Most patients (83.8%) were free from recurrent infection at mean follow-up of 29.4 months. Reinfection occurred in 16.2%, which required debridement. Twenty-one patients with poor operative risks remained with the spacer for 11.4 months. All patients, during spacer phase, had brace-free ambulation with simulated tibiofemoral fusion, without bone loss or loss of limb length. Copyright © 2012 Elsevier Inc. All rights reserved.
Comparison of Hexavalent Chromium Leaching Levels of Zeoliteand Slag-based Concretes
NASA Astrophysics Data System (ADS)
Oravec, Jozef; Eštoková, Adriana
2017-06-01
In this experiment, the reference concrete samples containing Portland cement as binder and the concrete samples with the addition of ground granulated blast furnace slag (85% and 95%, respectively as replacement of Portland cement) and other samples containing ground zeolite (8% and 13%, respectively as replacement of Portland cement) were analyzed regarding the leachability of chromium. The prepared concrete samples were subjected to long-term leaching test for 300 days in three different leaching agents (distilled water, rainwater and Britton-Robinson buffer). Subsequently, the concentration of hexavalent chromium in the various leachates spectrophotometrically was measured. The leaching parameters as values of the pH and the conductivity were also studied. This experiment clearly shows the need for the regulation and control of the waste addition to the construction materials and the need for long-term study in relation to the leaching of heavy metals into the environment.
Development of low-pH cementitious materials for HLRW repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia Calvo, J.L., E-mail: jolgac@ietcc.csic.e; Hidalgo, A.; Alonso, C.
One of the most accepted engineering construction concepts of underground repositories for high radioactive waste considers the use of low-pH cementitious materials. This paper deals with the design of those based on Ordinary Portland Cements with high contents of silica fume and/or fly ashes that modify most of the concrete 'standard' properties, the pore fluid composition and the microstructure of the hydrated products. Their resistance to long-term groundwater aggression is also evaluated. The results show that the use of OPC cement binders with high silica content produces low-pH pore waters and the microstructure of these cement pastes is different frommore » the conventional OPC ones, generating C-S-H gels with lower CaO/SiO{sub 2} ratios that possibly bind alkali ions. Leaching tests show a good resistance of low-pH concretes against groundwater aggression although an altered front can be observed.« less
Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity
NASA Astrophysics Data System (ADS)
Provost, R.
2015-12-01
This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND #: SAND2015-6523 A
Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U
2009-06-01
Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water.
The Promotion Strategy of Green Construction Materials: A Path Analysis Approach.
Huang, Chung-Fah; Chen, Jung-Lu
2015-10-14
As one of the major materials used in construction, cement can be very resource-consuming and polluting to produce and use. Compared with traditional cement processing methods, dry-mix mortar is more environmentally friendly by reducing waste production or carbon emissions. Despite the continuous development and promotion of green construction materials, only a few of them are accepted or widely used in the market. In addition, the majority of existing research on green construction materials focuses more on their physical or chemical characteristics than on their promotion. Without effective promotion, their benefits cannot be fully appreciated and realized. Therefore, this study is conducted to explore the promotion of dry-mix mortars, one of the green materials. This study uses both qualitative and quantitative methods. First, through a case study, the potential of reducing carbon emission is verified. Then a path analysis is conducted to verify the validity and predictability of the samples based on the technology acceptance model (TAM) in this study. According to the findings of this research, to ensure better promotion results and wider application of dry-mix mortar, it is suggested that more systematic efforts be invested in promoting the usefulness and benefits of dry-mix mortar. The model developed in this study can provide helpful references for future research and promotion of other green materials.
In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model.
Nakahara, Ichiro; Takao, Masaki; Bandoh, Shunichi; Bertollo, Nicky; Walsh, William R; Sugano, Nobuhiko
2013-03-01
Carbon fiber-reinforced polyetheretherketone (CFR/PEEK) is theoretically suitable as a material for use in hip prostheses, offering excellent biocompatibility, mechanical properties, and the absence of metal ions. To evaluate in vivo fixation methods of CFR/PEEK hip prostheses in bone, we examined radiographic and histological results for cementless or cemented CFR/PEEK hip prostheses in an ovine model with implantation up to 52 weeks. CFR/PEEK cups and stems with rough-textured surfaces plus hydroxyapatite (HA) coatings for cementless fixation and CFR/PEEK cups and stems without HA coating for cement fixation were manufactured based on ovine computed tomography (CT) data. Unilateral total hip arthroplasty was performed using cementless or cemented CFR/PEEK hip prostheses. Five cementless cups and stems and six cemented cups and stems were evaluated. On the femoral side, all cementless stems demonstrated bony ongrowth fixation and all cemented stems demonstrated stable fixation without any gaps at both the bone-cement and cement-stem interfaces. All cementless cases and four of the six cemented cases showed minimal stress shielding. On the acetabular side, two of the five cementless cups demonstrated bony ongrowth fixation. Our results suggest that both cementless and cemented CFR/PEEK stems work well for fixation. Cup fixation may be difficult for both cementless and cemented types in this ovine model, but bone ongrowth fixation on the cup was first seen in two cementless cases. Cementless fixation can be achieved using HA-coated CFR/PEEK implants, even under load-bearing conditions. Copyright © 2012 Orthopaedic Research Society.
This work reports the results of an investigation on the treatment and encapsulation of arsenic-containing materials by Portland cement with ferrous sulfate and lime (PFL) and Terra-BondTM, a commercially available patented technology. The arsenic materials treated we...
Evaluating Pavement Design Features: Five Year Performance Evaluation of FA 401 and FA 409
DOT National Transportation Integrated Search
1993-02-01
In the summer of 1986, the Illinois Department of Transportation began the construction of four demonstration projects which focused on evaluating proposed mechanistically-based asphalt concrete (AC) and Portland cement concrete (PCC) pavement design...
High performance concrete pavement in Indiana : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
Until the early 1990s, curling and warping of Portland cement concrete pavement did not concern pavement engineers in many transportation agencies. Since beginning construction of the interstate system in the United States in the late 1950s through t...
Test procedure for determining organic matter content in soils : UV-VIS method.
DOT National Transportation Integrated Search
2010-11-01
The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...
2017-03-08
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
Chung, Joseph Y; Kowal-Vern, Areta; Latenser, Barbara A; Lewis, Robert W
2007-01-01
The spectrum of cement-related injuries encompasses contact dermatitis, abrasions, ulcerations, chemical burns, and burns from explosions during the manufacturing process. The purpose of this study was to compile cement-related conditions seen in two burn units (1999-2005), literature case reports and series (1950-2006) and the (1989-2001) National Burn Repository (NBR). There were 3597 admissions in two Midwestern burn units, of which 12 cases (0.8%) were cement burns. They occurred in men, aged 15 to 64 years with a burn range of 0.25 to 10% TBSA, exposure time of 1 to 6 hours, treatment delay of 1 day to 2 weeks, hospitalization (2-14 days). Literature review of 109 cases indicated that cement-related injuries were predominantly seen in men, aged 26 to 45 years; with a cement-exposure time of 1.5 to 4 hours, treatment delay (1 day to 5 weeks), hospitalization (10-33 days), and healing time (2-7 weeks). There were 52,219 burn admissions in the NBR, of which 44 (0.08%) were cement-related burns; 95% were men with a mean age of 41 years, 6% TBSA cement burn and an 8-day hospital stay. The demographic characteristics of the burn units and NBR cases were similar to those in the literature. This preventable injury occurred primarily in the working age male patient and was associated with long healing times. Public awareness and enhanced manufacturer package warnings and education may decrease future cement-related injuries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue
Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less
Wang, Song; Yang, Han; Yang, Jian; Kang, Jianping; Wang, Qing; Song, Yueming
2017-12-01
To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the "porous composite cement") for repairing lumbar vertebral bone defect in a rabbit model. BMG was extracted from adult New Zealand rabbits according to the Urist's method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L 3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n =15) or CPC (control group, n =15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements ( t =4.254, P =0.006; t =2.476, P =0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between 2 groups at each time point ( P <0.05). Histological observation revealed that there was new-born bone in the cement with the time extending in 2 groups. Among them, bony connection was observed between the new-born bone and the host in the experimental group, which was prior to the control group. The porous composite cement has dual bioactivity of osteoinductivity and osteoconductivity, which are effective to promote bone defect healing and reconstruction.
Influence of MWCNT/surfactant dispersions on the mechanical properties of Portland cement pastes
NASA Astrophysics Data System (ADS)
Rodríguez, B.; Quintero, J. H.; Arias, Y. P.; Mendoza-Reales, O. A.; Ochoa-Botero, J. C.; Toledo-Filho, R. D.
2017-12-01
This work studies the reinforcing effect of Multi Walled Carbon Nanotubes (MWCNT) on cement pastes. A 0.35% solid concentration of MWCNT in powder was dispersed in deionized water with sodium dodecyl sulfate (cationic surfactant), cetylpyridinium chloride (anionic surfactant) and triton X-100 (amphoteric surfactant) using an ultrasonic tip processor. Three concentrations of each surfactant (1mM, 10mM and 100mM) were tested, and all samples were sonicated until an adequate dispersion degree was obtained. Cement pastes with additions of carbon nanotubes of 0.15% by mass of cement were produced in two steps; first the dispersions of MWCNT were combined with the mixing water using an ultrasonic tip processor to guarantee homogeneity, and then cement was added and mixed until a homogeneous paste was obtained. Direct tensile strength, apparent density and open porosity of the pastes were measured after 7 days of curing. It was found that the MWCNT/surfactants dispersions decrease the mechanical properties of the cement based matrix due to an increased porosity caused by the presence of surfactants.
[Use of pedicle percutaneous cemented screws in the management of patients with poor bone stock].
Pesenti, S; Graillon, T; Mansouri, N; Adetchessi, T; Tropiano, P; Blondel, B; Fuentes, S
2016-12-01
Management of patients with poor bone stock remains difficult due to the risks of mechanical complications such as screws pullouts. At the same time, development of minimal invasive spinal techniques using a percutaneous approach is greatly adapted to these fragile patients with a reduction in operative time and complications. The aim of this study was to report our experience with cemented percutaneous screws in the management of patients with a poor bone stock. Thirty-five patients were included in this retrospective study. In each case, a percutaneous osteosynthesis using cemented screws was performed. Indications were osteoporotic fractures, metastasis or fractures on ankylosing spine. Depending on radiologic findings, short or long constructs (2 levels above and below) were performed and an anterior column support (kyphoplasty or anterior approach) was added. Evaluation of patients was based on pre and postoperative CT-scans associated with clinical follow-up with a minimum of 6 months. Eleven men and 24 women with a mean age of 73 years [60-87] were included in the study. Surgical indication was related to an osteoporotic fracture in 20 cases, a metastasis in 13 cases and a fracture on ankylosing spine in the last 2 cases. Most of the fractures were located between T10 and L2 and a long construct was performed in 22 cases. Percutaneous kyphoplasty was added in 24 cases and a complementary anterior approach in 3 cases. Average operative time was 86minutes [61-110] and blood loss was estimated as minor in all the cases. In the entire series, average volume of cement injected was 1.8 cc/screw. One patient underwent a major complication with a vascular leakage responsible for a cement pulmonary embolism. With a 9 months average follow-up [6-20], no cases of infection or mechanical complication was reported. Minimal invasive spinal techniques are greatly adapted to the management of fragile patients. The use of percutaneous cemented screws is, in our experience, a valuable alternative for spinal fixation in patients with poor bone stock. This technique allows a good bony fixation with a low rate of complications. However, rigorous preoperative planning is necessary in order to avoid complications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Saidi, M.; Safi, B.
2016-04-01
The objective of our work consists of the study of the substitution effects of clinker by mineral additions such as: natural pozzolana (PZ) and the sand of dunes (SD) finely crushed on the mechanical properties and the durability of the mortars worked out according to various combinations containing these additions. The results from this research confirm that the substitution of 20% to 30% of cement APC (Artificial Portland Cement) by additions in binary cement (APC + PZ) or ternary (APC + PZ + SD) contributes positively to the mechanical strength of mortars and resistance to the chemical attacks in various corrosive conditions such as: hydrochloric acid, sulfuric acid and nitric acid. The mechanical strength of the different variants is comparable to those of the APC. The test results of the weight loss and phenolphthalein shows that the chemical resistance of variants (PZ20) and (PZ20 with SD5) are larger compared to the reference mortar APC and other variants. This study shows that adding value by substituting a part of clinker. This substitution can save 20% to 30% of clinker used for the manufacture of cement; this will have a beneficial effect for cement and economically (less energy spent for the clinker burning). This study contributes to the protection of the environment as to produce one ton of clinker generates about one ton of CO2 is harmful to the atmosphere. Based on our results we will reduce from 20% to 30% CO2 gas responsible for the greenhouse effect.
Nie, Qingke; Zhou, Changjun; Shu, Xiang; He, Qiang; Huang, Baoshan
2014-05-13
Over the vast Northwest China, arid desert contains high concentrations of sulfate, chloride, and other chemicals in the ground water, which poses serious challenges to infrastructure construction that routinely utilizes portland cement concrete. Rapid industrialization in the region has been generating huge amounts of mineral admixtures, such as fly ash and slags from energy and metallurgical industries. These industrial by-products would turn into waste materials if not utilized in time. The present study evaluated the suitability of utilizing local mineral admixtures in significant quantities for producing quality concrete mixtures that can withstand the harsh chemical environment without compromising the essential mechanical properties. Comprehensive chemical, mechanical, and durability tests were conducted in the laboratory to characterize the properties of the local cementitious mineral admixtures, cement mortar and portland cement concrete mixtures containing these admixtures. The results from this study indicated that the sulfate resistance of concrete was effectively improved by adding local class F fly ash and slag, or by applying sulfate resistance cement to the mixtures. It is noteworthy that concrete containing local mineral admixtures exhibited much lower permeability (in terms of chloride ion penetration) than ordinary portland cement concrete while retaining the same mechanical properties; whereas concrete mixtures made with sulfate resistance cement had significantly reduced strength and much increased chloride penetration comparing to the other mixtures. Hence, the use of local mineral admixtures in Northwest China in concrete mixtures would be beneficial to the performance of concrete, as well as to the protection of environment.
Nie, Qingke; Zhou, Changjun; Shu, Xiang; He, Qiang; Huang, Baoshan
2014-01-01
Over the vast Northwest China, arid desert contains high concentrations of sulfate, chloride, and other chemicals in the ground water, which poses serious challenges to infrastructure construction that routinely utilizes portland cement concrete. Rapid industrialization in the region has been generating huge amounts of mineral admixtures, such as fly ash and slags from energy and metallurgical industries. These industrial by-products would turn into waste materials if not utilized in time. The present study evaluated the suitability of utilizing local mineral admixtures in significant quantities for producing quality concrete mixtures that can withstand the harsh chemical environment without compromising the essential mechanical properties. Comprehensive chemical, mechanical, and durability tests were conducted in the laboratory to characterize the properties of the local cementitious mineral admixtures, cement mortar and portland cement concrete mixtures containing these admixtures. The results from this study indicated that the sulfate resistance of concrete was effectively improved by adding local class F fly ash and slag, or by applying sulfate resistance cement to the mixtures. It is noteworthy that concrete containing local mineral admixtures exhibited much lower permeability (in terms of chloride ion penetration) than ordinary portland cement concrete while retaining the same mechanical properties; whereas concrete mixtures made with sulfate resistance cement had significantly reduced strength and much increased chloride penetration comparing to the other mixtures. Hence, the use of local mineral admixtures in Northwest China in concrete mixtures would be beneficial to the performance of concrete, as well as to the protection of environment. PMID:28788648
Production of Lunar Concrete Using Molten Sulfur
NASA Technical Reports Server (NTRS)
Omar, Husam A.
1993-01-01
The United States has made a commitment to go back to the moon to stay in the early part of the next century. In order to achieve this objective it became evident to NASA that a Lunar Outpost will be needed to house scientists and astronauts who will be living on the moon for extended periods of time. A study has been undertaken by the authors and supported by NASA to study the feasibility of using lunar regolith with different binders such as molten sulfur, epoxy or hydraulic cement as a construction material for different lunar structures. The basic premise of this study is that it will be more logical and cost effective to manufacture lunar construction materials utilizing indigenous resources rather than transporting needed materials from earth. Lunar concrete (made from Hydraulic Cement and lunar soil) has been studied and suggested as the construction material of choice for some of the lunar projects. Unfortunately, its hydration requires water which is going to be a precious commodity on the moon. Therefore this study explores the feasibility of using binders other than hydraulic cement such as sulfur or epoxy with lunar regolith as a construction material. This report describes findings of this study which deals specifically with using molten sulfur as a binder for Lunar concrete. It describes laboratory experiments in which the sulfur to lunar soil simulant ratios by weight were varied to study the minimum amount of sulfur required to produce a particular strength. The compressive and tensile strengths of these mixes were evaluated. Metal and fiber glass fibers were added to some of the mixes to study their effects on the compressive and tensile strengths. This report also describes experiments where the sulfur is melted and mixed with the lunar regolith in a specially designed vacuum chamber. The properties of the produced concrete were compared to those of concrete produced under normal pressure.
In Vitro Evaluation of Cell Compatibility of Dental Cements Used with Titanium Implant Components.
Marvin, Jason C; Gallegos, Silvia I; Parsaei, Shaida; Rodrigues, Danieli C
2018-03-09
To evaluate the biocompatibility of five dental cement compositions after directly exposing human gingival fibroblast (HGF) and MC3T3-E1 preosteoblast cells to cement alone and cement applied on commercially pure titanium (cpTi) specimens. Nanostructurally integrated bioceramic (NIB), resin (R), resin-modified glass ionomer (RMGIC), zinc oxide eugenol (ZOE), and zinc phosphate (ZP) compositions were prepared according to the respective manufacturer's instructions. Samples were prepared in cylindrical Teflon molds or applied over the entire surface of polished cpTi discs. All samples were cured for 0.5, 1, 12, or 24 hours post-mixing. Direct contact testing was conducted according to ISO 10993 by seeding 6-well plates at 350,000 cells/well. Plates were incubated at 37°C in a humidified atmosphere with 5% CO 2 for 24 hours before individually plating samples and cpTi control discs. Plates were then incubated for an additional 24 hours. Microtetrazolium (MTT) cell viability assays were used to measure sample cytotoxicity. For samples that cured for 24 hours prior to direct contact exposure, only NIB and ZP cements when cemented on cpTi demonstrated cell viability percentages above the minimum biocompatibility requirement (≥70%) for both the investigative cell lines. R, RMGIC, and ZOE cements exhibited moderate to severe cytotoxic effects on both cell lines in direct contact and when cemented on cpTi specimens. For HGF cells, ZOE cemented-cpTi specimens exhibited significantly decreased cytotoxicity, whereas RMGIC cemented-cpTi specimens exhibited significantly increased cytotoxicity. Despite previous studies that showed enhanced cpTi corrosion activity for fluoride-containing compositions (NIB and ZP), there was no significant difference in cytotoxicity between cement alone and cemented-cpTi. In general, the MC3T3-E1 preosteoblast cells were more sensitive than HGF cells to cement composition. Ultimately, cement composition played a significant role in maintaining host cell compatibility. Results of this work help illustrate the impact of different cement formulations on host cell health and emphasize the need for understanding material properties when selecting certain formulations of dental cements, which can ultimately influence the survival of dental implant systems. © 2018 by the American College of Prosthodontists.
The effect of cement on hip stem fixation: a biomechanical study.
Çelik, Talip; Mutlu, İbrahim; Özkan, Arif; Kişioğlu, Yasin
2017-06-01
This study presents the numerical analysis of stem fixation in hip surgery using with/without cement methods since the use of cement is still controversial based on the clinical studies in the literature. Many different factors such as stress shielding, aseptic loosening, material properties of the stem, surgeon experiences etc. play an important role in the failure of the stem fixations. The stem fixation methods, cemented and uncemented, were evaluated in terms of mechanical failure aspects using computerized finite element method. For the modeling processes, three dimensional (3D) femur model was generated from computerized tomography (CT) images taken from a patient using the MIMICS Software. The design of the stem was also generated as 3D CAD model using the design parameters taken from the manufacturer catalogue. These 3D CAD models were generated and combined with/without cement considering the surgical procedure using SolidWorks program and then imported into ANSYS Workbench Software. Two different material properties, CoCrMo and Ti6Al4V, for the stem model and Poly Methyl Methacrylate (PMMA) for the cement were assigned. The material properties of the femur were described according to a density calculated from the CT images. Body weight and muscle forces were applied on the femur and the distal femur was fixed for the boundary conditions. The calculations of the stress distributions of the models including cement and relative movements of the contacts examined to evaluate the effects of the cement and different stem material usage on the failure of stem fixation. According to the results, the use of cement for the stem fixation reduces the stress shielding but increases the aseptic loosening depending on the cement crack formations. Additionally, using the stiffer material for the stem reduces the cement stress but increases the stress shielding. Based on the results obtained in the study, even when taking the disadvantages into account, the cement usage is more suitable for the hip fixations.
Microsilica modified concrete for bridge deck overlays : construction report.
DOT National Transportation Integrated Search
1990-10-01
The study objective was to see if microsilica concrete (MC) is a viable alternative to the latex modified concrete (LMC) usually used on bridge deck overlays in Oregon. The study addresses MC overlays placed in 1989 on Portland cement concrete (PCC) ...
MUNICIPAL SOLID WASTE COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"
The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...
DOT National Transportation Integrated Search
2015-02-01
The ability to efficiently rehabilitate and maintain the State of Vermonts Highway infrastructure in a : cost-effective manner is a daunting task. Historically, pavement overlay treatments were specified : because it was a rapid low cost solution ...
40 CFR 60.540 - Applicability and designation of affected facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Performance for the Rubber Tire Manufacturing Industry § 60.540 Applicability and designation of affected... each of the following affected facilities in rubber tire manufacturing plants that commence... cementing operation in rubber tire manufacturing plants that commenced construction, modification, or...
NASA Astrophysics Data System (ADS)
Jung, Sang Hwa; Kwon, Seung-Jun
2013-09-01
Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.
Estrada, Nicolas; Lizcano, Arcesio; Taboada, Alfredo
2010-07-01
This is the first of two papers investigating the mechanical response of cemented granular materials by means of contact dynamics simulations. In this paper, a two-dimensional polydisperse sample with high-void ratio is constructed and then sheared in a simple shear numerical device at different confinement levels. We study the macroscopic response of the material in terms of mean and deviatoric stresses and strains. We show that the introduction of a local force scale, i.e., the tensile strength of the cemented bonds, causes the material to behave in a rigid-plastic fashion, so that a yield surface can be easily determined. This yield surface has a concave-down shape in the mean:deviatoric stress plane and it approaches a straight line, i.e., a Coulomb strength envelope, in the limit of a very dense granular material. Beyond yielding, the cemented structure gradually degrades until the material eventually behaves as a cohesionless granular material. Strain localization is also investigated, showing that the strains concentrate in a shear band whose thickness increases with the confining stress. The void ratio inside the shear band at the steady state is shown to be a material property that depends only on contact parameters.
Matrix model of the grinding process of cement clinker in the ball mill
NASA Astrophysics Data System (ADS)
Sharapov, Rashid R.
2018-02-01
In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.
Constitution of green rust and its significance to the corrosion of steel in Portland cement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagoe-Crentsil, K.K.; Glasser, F.P.
1993-06-01
Studies of the corrosion of pure iron showed green rust, approximately Fe[sub 4][sup 2+]Fe[sub 2][sup 3+] (OH)[sub 12](Cl,OH)[sub 2], was a stable corrosion product at high pH and low E[sub h] in the presence of chloride. The structure, constitution, preparation, and characterization of green rust was reviewed. A diagram relevant to the corrosion of iron in cement, constructed for pH 12, showed stability fields of green rust, [alpha],[delta] FeO(OH), and [beta]FeO(OH,Cl). Overall implications of chloride to the corrosion process were investigated.
On Deterioration Mechanism of Concrete Exposed to Freeze-Thaw Cycles
NASA Astrophysics Data System (ADS)
Trofimov, B. Ya; Kramar, L. Ya; Schuldyakov, K. V.
2017-11-01
At present, concrete and reinforced concrete are gaining ground in all sectors of construction including construction in the extreme north, on shelves, etc. Under harsh service conditions, the durability of reinforced concrete structures is related to concrete frost resistance. Frost resistance tests are accompanied by the accumulation of residual dilation deformations affected by temperature-humidity stresses, ice formation and other factors. Porosity is an integral part of the concrete structure which is formed as a result of cement hydration. The prevailing hypothesis of a deterioration mechanism of concrete exposed to cyclic freezing, i.e. the hypothesis of hydraulic pressure of unfrozen water in microcapillaries, does not take into account a number of phenomena that affect concrete resistance to frost aggression. The main structural element of concrete, i.e. hardened cement paste, contains various hydration products, such as crystalline, semicrystalline and gel-like products, pores and non-hydrated residues of clinker nodules. These structural elements in service can gain thermodynamic stability which leads to the concrete structure coarsening, decrease in the relaxation capacity of concrete when exposed to cycling. Additional destructive factors are leaching of portlandite, the difference in thermal dilation coefficients of hydration products, non-hydrated relicts, aggregates and ice. The main way to increase concrete frost resistance is to reduce the macrocapillary porosity of hardened cement paste and to form stable gel-like hydration products.
De Boever, A L; Keersmaekers, K; Vanmaele, G; Kerschbaum, T; Theuniers, G; De Boever, J A
2006-11-01
One hundred and seventy-two fixed reconstructions (317 prosthetic units), made on 283 ITI implants in 105 patients (age range 25-86 years) with a minimum follow-up period of 40 months, were taken into the study to analyse technical complication rate, complication type and costs for repair. The mean evaluation time was 62.5 +/- 25.3 months. Eighty were single crowns and 92 different types of fixed partial dentures (FPDs). In 45 cases the construction was screw retained and in 127 cases cemented with zinc phosphate cement or an acrylic-based cement. Complications occurred after a minimum period of 2 months and a maximum period of 100 months (mean: 35.9 +/- 21.4 months). Fifty-five prosthetic interventions were needed on 44 constructions (25%) of which 88% in the molar/premolar region. The lowest percentage of complications occurred in single crowns (25%), the highest in 3-4 unit FPDs (35%) and in FPDs with an extension (44%). Of the necessary clinical repair, 36% was recementing and 38% tightening the screws. Of all interventions, 14% were classified as minor (no treatment or <10 min chair time), 70% as moderate (>10 min but <60 min chair time) and 14% as major interventions (>60 min and additional costs for replacement of parts and/or laboratory). For seven patients the additional costs ranged from euro 28 to euro 840. Bruxing seemed to play a significant role in the frequency of complications. Longer constructions seemed to be more prone to complications. The relatively high occurrence of technical complications should be discussed with the patient before the start of the treatment.
Multiphasic modelling of bone-cement injection into vertebral cancellous bone.
Bleiler, Christian; Wagner, Arndt; Stadelmann, Vincent A; Windolf, Markus; Köstler, Harald; Boger, Andreas; Gueorguiev-Rüegg, Boyko; Ehlers, Wolfgang; Röhrle, Oliver
2015-01-01
Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution μCT image data. The multiphasic model is based on the Theory of Porous Media, providing the theoretical basis to describe within one set of coupled equations the interaction of an elastically deformable solid skeleton, of liquid bone cement and the displacement of liquid bone marrow. The simulation results are validated against an experiment, in which bone cement was injected into a human vertebra under realistic conditions. The major advantage of this comprehensive modelling approach is the fact that one can not only predict the complex cement flow within an entire vertebra but is also capable of taking into account solid deformations in a fully coupled manner. The presented work is the first step towards the ultimate and future goal of extending this framework to a clinical tool allowing for pre-operative cement distribution predictions by means of numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.
Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel
2017-05-30
Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the "Wenner" resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC.
Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel
2017-01-01
Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958
NASA Astrophysics Data System (ADS)
Eftekhari Zadeh, E.; Feghhi, S. A. H.; Roshani, G. H.; Rezaei, A.
2016-05-01
Due to variation of neutron energy spectrum in the target sample during the activation process and to peak overlapping caused by the Compton effect with gamma radiations emitted from activated elements, which results in background changes and consequently complex gamma spectrum during the measurement process, quantitative analysis will ultimately be problematic. Since there is no simple analytical correlation between peaks' counts with elements' concentrations, an artificial neural network for analyzing spectra can be a helpful tool. This work describes a study on the application of a neural network to determine the percentages of cement elements (mainly Ca, Si, Al, and Fe) using the neutron capture delayed gamma-ray spectra of the substance emitted by the activated nuclei as patterns which were simulated via the Monte Carlo N-particle transport code, version 2.7. The Radial Basis Function (RBF) network is developed with four specific peaks related to Ca, Si, Al and Fe, which were extracted as inputs. The proposed RBF model is developed and trained with MATLAB 7.8 software. To obtain the optimal RBF model, several structures have been constructed and tested. The comparison between simulated and predicted values using the proposed RBF model shows that there is a good agreement between them.
Optimizing the Construction of the A1 Collaboration Neutron Detector
NASA Astrophysics Data System (ADS)
Chinn, Edward; A1 Collaboration
2016-09-01
We report on the design and construction of a frame designed to optimize both the time efficiency and construction quality of the large scintillator elements These elements will be assembled to form a neutron detector for use by the A1 Collaboration at the Institute for Nuclear Physics in Mainz, Germany. The design had to provide adequate support for the 20 kg scintillator bars while gluing light guides and photomultiplier tubes to both sides of the bars using optical cement. The optical cement requires approximately 24 hours to dry and 100 bars have to be glued with this apparatus. To address each of these issues, several different prototypes were designed and reviewed. The selected apparatus minimized size to meet space constraints, with reduced material cost and provided the most time-efficient way to build the neutron detector. Once the schematic design was selected, we produced technical drawings in AutoDesk Inventor. Assembled the structure and completed gluing of the first batch of scintillators, in order to verify the performance. This apparatus was successful at producing high quality scintillators which were evaluated using cosmic rays. National Science Foundation Grant No. IIA-1358175.
Optical coherence tomography investigations of ceramic lumineers
NASA Astrophysics Data System (ADS)
Fernandes, Luana O.; Graça, Natalia D. R. L.; Melo, Luciana S. A.; Silva, Claudio H. V.; Gomes, Anderson S. L.
2016-02-01
Lumineers are veneer laminates used as an alternative for aesthetic dental solutions of the highest quality, but the only current means of its performance assessment is visual inspection. The objective of this study was to use the Optical Coherence Tomography (OCT) technique working in spectral domain to analyze in vivo in a single patient, 14 lumineers 180 days after cementation. It was possible to observe images in various kinds of changes in the cementing line and the laminate. It was concluded that the OCT is an effective and promising method to clinical evaluation of the cementing line in lumineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcelo, Laurent, E-mail: laurent.barcelo@lafarge.com; Lafarge Centre de Recherche, 95 rue du Montmurier, 38291 St Quentin Fallavier; Gartner, Ellis
2014-09-15
Blended Portland cements containing up to 15% limestone have recently been introduced into Canada and the USA. These cements were initially not allowed for use in sulfate environments but this restriction has been lifted in the Canadian cement specification, provided that the “limestone cement” includes sufficient SCM and that it passes a modified version of the CSA A3004-C8 (equivalent to ASTM C1012) test procedure run at a low temperature (5 °C). This new procedure is proposed as a means of predicting the risk of the thaumasite form of sulfate attack in concretes containing limestone cements. The goal of the presentmore » study was to better understand how this approach works both in practice and in theory. Results from three different laboratories utilizing the CSA A3004-C8 test procedure are compared and analyzed, while also taking into account the results of thermodynamic modeling and of thaumasite formation experiments conducted in dilute suspensions.« less
NASA Astrophysics Data System (ADS)
Nemani, Ravi Dakshina Murthy; Rao, M. V. S.; Grandhe, Veera Venkata Satya Naranyana
2016-09-01
The present work is an effort to quantify the punching shear load resistance effect on two way simply supported slab specimens with replacement of cement by Ground Granulated Blast Furnace Slag (GGBS) with different edge conditions at various replacement levels and evaluate its efficiency. GGBS replacement has emerged as a major alternative to conventional concrete and has rapidly drawn the concrete industry attention due to its cement savings, cost savings, environmental and socio-economic benefits. The two way slab specimens were subjected to punching shear load by in house fabricated apparatus. The slab specimens were cast using M30 grade concrete with HYSD bars. The cement was partially replaced with GGBS at different percentages i.e., 0 to 30 % at regular intervals of 10 %. The test results indicate that the two way slab specimens with partial replacement of cement by GGBS exhibit high resistance against punching shear when compared with conventional concretes slab specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Céline, E-mail: celine.cau-dit-coumes@cea.fr; Dhoury, Mélanie; Champenois, Jean-Baptiste
This work investigates the influence of lithium ions on the hydration at 25 °C of two calcium sulfoaluminate (CSA) cements comprising 0 or 10% gypsum. Small concentrations of lithium salts (LiOH, LiNO{sub 3}) accelerate the early hydration of both CSA cements either in paste or in diluted and stirred suspension. The effect of the lithium cation is much stronger than its counter-ion. Hydration is accelerated by an increase in the lithium concentration up to 30 μmol Li/g of the used CSA cement (with a high ye'elimite content), and then levels off. The postulated mechanism relies on a fast precipitation ofmore » amorphous Li-containing Al(OH){sub 3}, which acts as seeds for accelerating the precipitation of amorphous Al(OH){sub 3} that speeds up the whole hydration process. This process seems to be closely related to the one involved in the acceleration of the hydration of calcium aluminate cement by lithium ions.« less
NASA Astrophysics Data System (ADS)
Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.
2017-01-01
This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.
Cement waste-form development for ion-exchange resins at the Rocky Flats Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veazey, G.W.; Ames, R.L.
1997-03-01
This report describes the development of a cement waste form to stabilize ion-exchange resins at Rocky Flats Environmental Technology Site (RFETS). These resins have an elevated potential for ignition due to inadequate wetness and contact with nitrates. The work focused on the preparation and performance evaluation of several Portland cement/resin formulations. The performance standards were chosen to address Waste Isolation Pilot Plant and Environmental Protection Agency Resource Conservation and Recovery Act requirements, compatibility with Rocky Flats equipment, and throughput efficiency. The work was performed with surrogate gel-type Dowex cation- and anion-exchange resins chosen to be representative of the resin inventorymore » at RFETS. Work was initiated with nonactinide resins to establish formulation ranges that would meet performance standards. Results were then verified and refined with actinide-containing resins. The final recommended formulation that passed all performance standards was determined to be a cement/water/resin (C/W/R) wt % ratio of 63/27/10 at a pH of 9 to 12. The recommendations include the acceptable compositional ranges for each component of the C/W/R ratio. Also included in this report are a recommended procedure, an equipment list, and observations/suggestions for implementation at RFETS. In addition, information is included that explains why denitration of the resin is unnecessary for stabilizing its ignitability potential.« less
Chemical modification of uniform soils and soils with high/low plasticity index.
DOT National Transportation Integrated Search
2016-08-01
The addition of chemicals into the subgrade has been widely used during construction to improve the soil properties. The chemicals, often Lime Kiln Dust (LKD) and Portland cement, are added to the soil to improve its workability, compactability and e...
DOT National Transportation Integrated Search
2014-12-01
It is common for local street and road pavements to be constructed using : portland cement concrete (PCC) directly supported on natural subgrade : without considering subgrade treatment or structural support layers such : as granular subbase. In orde...
Determination of mechanical properties of materials used in WAY-30 test pavements.
DOT National Transportation Integrated Search
2010-05-01
The US Route 30 bypass of Wooster, Ohio, in Wayne County, WAY-30, was constructed to demonstrate two types of : extended service pavements, a long-life Portland cement concrete (PCC) pavement on the eastbound lanes and an asphalt : concrete (AC...
DOT National Transportation Integrated Search
2015-10-01
Each year, the US highway : industry produces : over 100 million tons : of reclaimed asphalt : pavement (RAP) through : standard rehabilitation and : construction of the nations : roads. Although this product : has been reused in several : applica...
Sawing and sealing joints in bituminous pavements to control cracking
DOT National Transportation Integrated Search
1996-03-01
The practice of sawing and sealing joints in pavements is not a new one. In fact, it is common practice in the construction of jointed Portland Cement Concrete (PCC) pavements. The idea of sawing and sealing joints in bituminous pavements is much les...
Monitoring and modeling of pavement response and performance task B : New York volume 2, I86 PCC.
DOT National Transportation Integrated Search
2012-05-01
In Cattaraugus County, New York State, Interstate 86 exhibited major distresses, and the jointed reinforced : portland cement concrete pavement (JRCP) and was in need of rehabilitation by 2004. Three experimental sections : were constructed in June 2...
Implementation of the UV-VIS method to measure organic content in clay soils : technical report.
DOT National Transportation Integrated Search
2011-05-01
The Texas Department of Transportation has been having problems with organic matter in soils that they : stabilize for use as subgrade layers in road construction. The organic matter reduces the effectiveness of : common soil additives (lime/cement) ...
The application of waste fly ash and construction-waste in cement filling material in goaf
NASA Astrophysics Data System (ADS)
Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.
2018-01-01
As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.
Properties of microcement mortar with nano particles
NASA Astrophysics Data System (ADS)
Alimeneti, Narasimha Reddy
Carbon nanotubes (CNT) and Carbon nanofibers (CNF) are one of the toughest and stiffest materials in the world presently with extreme properties yet to be discovered in terms of elastic modulus and tensile strength. Due to the advanced properties of these materials they are being used in almost all fields of science at nanolevel and are being used in construction industry recently for improvement of material properties. Microcement is fine ground cement which as half the particle size of ordinary Portland cement. In this research the behavior of cement mortar of micro cement with the addition of nanoparticles is studied. Due to high aspect ratio and strong van der Waal forces between the particles of CNT and CNF, they agglomerate and form bundles when mixed with water, sonication method is used to mix nanoparticles with few drops of surfactant and super plasticizer. Mechanical properties such as compressive strength and flexural strength with CNT and CNF composites are examined and compared with control samples. 0.1% and 0.05 % of nanoparticles (both CNT and CNF) by the weight of cement are used in this research and 0.8% of super plasticizer by weight of cement was also used along with 0.4, 0.45 and 0.50 water cement ratios for making specimens for compression test. The compressive strength results are not satisfactory as there was no constant increase in strength with all the composites, however strength of few nanocomposites increased by a good percentage. 0.5 water cement ratio cement mortar had compressive strength of 7.15 ksi (49.3 MPa), whereas sample with 0.1% CNT showed 8.38 ksi (57.8 MPa) with 17% increase in strength after 28 days. Same trend was followed by 0.4 water cement ratio as the compressive strength of control sample was 8.89 ksi (61.3 MPa), with 0.05% of CNT strength increased to 10.90 ksi (75.2 MPa) with 23% increase in strength. 0.4 water cement ratio was used for flexural tests including 0.1%, 0.05% of CNT and 0.1%, 0.05% of CNF with 0.008 ratio of super plasticizer. Results showed that there was a significant increase in strength initially but gradually decreased as the time increase and showed decreased strength at 28 days when compared to control samples. Flow cone results are quite satisfying as the flow is significantly increased with the addition of nanoparticles. Time of efflux of control sample is 16.22 sec whereas for specimen with CNT had a time of efflux 12.67 sec and sample with CNF showed 13.65 seconds. Setting time test was carried on 0.4 water cement ratio. Composites with nanoparticles exhibited faster setting when compared to its control sample. Bleeding was not observed with the nanoparticles in the cement mortar. Shrinkage test was conducted on sample with 0.4 water cement ratio with 0.05% of CNT and CNF. Shrinkage was very small in the samples with nanoparticles.
Theoretical backgrounds of non-tempered materials production based on new raw materials
NASA Astrophysics Data System (ADS)
Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.
2018-03-01
One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.
Characterization of a sustainable sulfur polymer concrete using activated fillers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence
Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less
Characterization of a sustainable sulfur polymer concrete using activated fillers
Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence; ...
2016-01-02
Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less
Griffiths, Jamie T; Taheri, Arash; Day, Robert E; Yates, Piers J
2015-12-01
The aim of this study was to biomechanically evaluate the Locking attachment plate (LAP) construct in comparison to a Cable plate construct, for the fixation of periprosthetic femoral fractures after cemented total hip arthroplasty. Each construct incorporated a locking compression plate with bi-cortical locking screws for distal fixation. In the Cable construct, 2 cables and 2 uni-cortical locking screws were used for proximal fixation. In the LAP construct, the cables were replaced by a LAP with 4 bi-cortical locking screws. The LAP construct was significantly stiffer than the cable construct under axial load with a bone gap (P=0.01). The LAP construct offers better axial stiffness compared to the cable construct in the fixation of comminuted Vancouver B1 proximal femoral fractures. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, Eduardo G.A.; Marumo, Julio T.; Vicente, Roberto
2012-07-01
Portland cement materials are widely used as engineered barriers in repositories for radioactive waste. The capacity of such barriers to avoid the disposed of radionuclides to entering the biosphere in the long-term depends on the service life of those materials. Thus, the performance assessment of structural materials under a series of environmental conditions prevailing at the environs of repositories is a matter of interest. The durability of cement paste foreseen as backfill in a deep borehole for disposal of disused sealed radioactive sources is investigated in the development of the repository concept. Results are intended to be part of themore » body of evidence in the safety case of the proposed disposal technology. This paper presents the results of X-Ray Diffraction (XRD) Analysis of cement paste exposed to varying temperatures and simulated groundwater after samples received the radiation dose that the cement paste will accumulate until complete decay of the radioactive sources. The XRD analysis of cement paste samples realized in this work allowed observing some differences in the results of cement paste specimens that were submitted to different treatments. The cluster analysis of results was able to group tested samples according to the applied treatments. Mineralogical differences, however, are tenuous and, apart from ettringite, are hardly observed. The absence of ettringite in all the seven specimens that were kept in dry storage at high temperature had hardly occurred by natural variations in the composition of hydrated cement paste because ettringite is observed in all tested except the seven specimens. Therefore this absence is certainly the result of the treatments and could be explained by the decomposition of ettringite. Although the temperature of decomposition is about 110-120 deg. C, it may be initially decomposed to meta-ettringite, an amorphous compound, above 50 deg. C in the absence of water. Influence of irradiation on the mineralogical composition was not observed when the treatment was analyzed individually or when analyzed under the possible synergic effect with other treatments. However, the radiation dose to which specimens were exposed is only a fraction of the accumulated dose in cement paste until complete decay of some sources. Therefore, in the short term, the conditions deemed to prevail in the repository environment may not influence the properties of cement paste at detectable levels. Under the conditions presented in this work, it is not possible to predict the long term evolution of these properties. (authors)« less
Occupational skin disease in the construction industry.
Bock, M; Schmidt, A; Bruckner, T; Diepgen, T L
2003-12-01
Construction workers have a substantial risk of developing irritant and/or allergic contact dermatitis. Unfortunately, however, there is little population-based epidemiological data relating to occupational skin diseases (OSD) in the European construction industry that allow assessment of preventive measures. In this investigation, the yearly incidence rates and causes of OSD in the construction industry were analysed on the basis of our register in Northern Bavaria. From 1990 until 1999, all incidences of OSD in the construction industry were recorded prospectively. This enables the calculation of incidence rates of OSD in relation to the employed population in Northern Bavaria as recorded by the German Federal Employment Office. In the construction industry, a total of 335 OSD were registered. These comprise 9.0% of all OSD in the register. We classified them into four relevant groups: (A) tile setters and terrazzo workers (incidence per 10 000 employees = 19.9); (B) painters (7.8); (C) construction and cement workers (5.2); and (D) wood processors (2.6). The overall incidence was 5.1 per 10 000 employees over 10 years, which is a little below average for the entire register (6.7). Of these, 43.6% were at least 40 years old. Allergic contact dermatitis (61.5%) occurred more often than irritant contact dermatitis (44.5%). Potassium dichromate caused roughly half of all cases of sensitization found to be occupationally relevant in the construction industry (152 cases) followed by epoxy resin (40) and cobalt chloride (32). The results indicate that potassium dichromate is still the most important allergen in the construction industry of Northern Bavaria; there has been no significant decline during the 1990s. This contrasts with the Scandinavian countries, where the prevalence of potassium dichromate sensitization declined following the reduction of chromium VI levels resulting from the addition of ferrous sulphate to cement. Within the construction industry, tile setters and terrazzo workers have a strikingly high incidence of OSD.
Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study.
Jackson, J Benjamin; Crimaldi, Anthony J; Peindl, Richard; Norton, H James; Anderson, William E; Patt, Joshua C
2017-01-01
Cadaveric model. To compare the effect of PEEK versus conventional implants on scatter radiation to a simulated tumor bed in the spine SUMMARY OF BACKGROUND DATA.: Given the highly vasculature nature of the spine, it is the most common place for bony metastases. After surgical treatment of a spinal metastasis, adjuvant radiation therapy is typically administered. Radiation dosing is primarily limited by toxicity to the spinal cord. The scatter effect caused by metallic implants decreases the accuracy of dosing and can unintentionally increase the effective dose seen by the spinal cord. This represents a dose-limiting factor for therapeutic radiation postoperatively. A cadaveric thorax specimen was utilized as a metastatic tumor model with two separate three-level spine constructs (one upper thoracic and one lower thoracic). Each construct was examined independently. All four groups compared included identical posterior instrumentation. The anterior constructs consisted of either: an anterior polyether ether ketone (PEEK) cage, an anterior titanium cage, an anterior bone cement cage (polymethyl methacrylate), or a control group with posterior instrumentation alone. Each construct had six thermoluminescent detectors to measure the radiation dose. The mean dose was similar across all constructs and locations. There was more variability in the upper thoracic spine irrespective of the construct type. The PEEK construct had a more uniform dose distribution with a standard deviation of 9.76. The standard deviation of the others constructs was 14.26 for the control group, 19.31 for the titanium cage, and 21.57 for the cement (polymethyl methacrylate) construct. The PEEK inter-body cage resulted in a significantly more uniform distribution of therapeutic radiation in the spine when compared with the other constructs. This may allow for the application of higher effective dosing to the tumor bed for spinal metastases without increasing spinal cord toxicity with either fractionated or hypofractionated radiotherapy. N/A.
An economic analysis of alternative paving materials
NASA Astrophysics Data System (ADS)
Mustain, J. L.
1982-12-01
The purpose of this paper is to present a means for economic analysis of alternative equivalent pavement designs, considering such factors as initial construction cost, annual maintenance cost, salvage value and the various intangibles which occur during the analysis period. Having established a means of economic comparison, it is then the intent of this paper to show that Portland Cement Concrete has been and is a viable pavement alternative and ought to receive due consideration in the military construction program.
The Promotion Strategy of Green Construction Materials: A Path Analysis Approach
Huang, Chung-Fah; Chen, Jung-Lu
2015-01-01
As one of the major materials used in construction, cement can be very resource-consuming and polluting to produce and use. Compared with traditional cement processing methods, dry-mix mortar is more environmentally friendly by reducing waste production or carbon emissions. Despite the continuous development and promotion of green construction materials, only a few of them are accepted or widely used in the market. In addition, the majority of existing research on green construction materials focuses more on their physical or chemical characteristics than on their promotion. Without effective promotion, their benefits cannot be fully appreciated and realized. Therefore, this study is conducted to explore the promotion of dry-mix mortars, one of the green materials. This study uses both qualitative and quantitative methods. First, through a case study, the potential of reducing carbon emission is verified. Then a path analysis is conducted to verify the validity and predictability of the samples based on the technology acceptance model (TAM) in this study. According to the findings of this research, to ensure better promotion results and wider application of dry-mix mortar, it is suggested that more systematic efforts be invested in promoting the usefulness and benefits of dry-mix mortar. The model developed in this study can provide helpful references for future research and promotion of other green materials. PMID:28793613
Castillo-Oyagüe, Raquel; Lynch, Christopher D; Turrión, Andrés S; López-Lozano, José F; Torres-Lagares, Daniel; Suárez-García, María-Jesús
2013-01-01
This study evaluated the marginal misfit and microleakage of cement-retained implant-supported crown copings. Single crown structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC) and (3) vacuum-cast Ni-Cr-Ti (CN). Samples of each alloy group were randomly luted in standard fashion onto machined titanium abutments using: (1) GC Fuji PLUS (FP); (2) Clearfil Esthetic Cement (CEC); (3) RelyX Unicem 2 Automix (RXU) and (4) DentoTemp (DT) (n=15 each). After 60 days of water ageing, vertical discrepancy was SEM-measured and cement microleakage was scored using a digital microscope. Misfit data were subjected to two-way ANOVA and Student-Newman-Keuls multiple comparisons tests. Kruskal-Wallis and Dunn's tests were run for microleakage analysis (α=0.05). Regardless of the cement type, LS samples exhibited the best fit, whilst CC and CN performed equally well. Despite the framework alloy and manufacturing technique, FP and DT provide comparably better fit and greater microleakage scores than did CEC and RXU, which showed no differences. DMLS of Co-Cr may be a reliable alternative to the casting of base metal alloys to obtain well-fitted implant-supported crowns, although all the groups tested were within the clinically acceptable range of vertical discrepancy. No strong correlations were found between misfit and microleakage. Notwithstanding the framework alloy, definitive resin-modified glass-ionomer (FP) and temporary acrylic/urethane-based (DT) cements demonstrated comparably better marginal fit and greater microleakage scores than did 10-methacryloxydecyl-dihydrogen phosphate-based (CEC) and self-adhesive (RXU) dual-cure resin agents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Watson, Timothy F; Atmeh, Amre R; Sajini, Shara; Cook, Richard J; Festy, Frederic
2014-01-01
Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin-restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement-dentin interface samples behavior over time. The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Granular Materials and the Risks They Pose for Success on the Moon and Mars
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen; Behringer, Robert P.; Jenkins, James T.; Louge, Michel Y.
2004-01-01
Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to do it on the Moon and Mars as we do it on Earth. This paper brings to the fore how little these processes are understood and the millennia-long trial-and-error practices that lead to today's massive over-design, high failure rate, and extensive incremental scaling up of industrial processes because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, and what understanding is needed to greatly reduce the risks.
Granular Materials and the Risks They Pose for Success on the Moon and Mars
NASA Astrophysics Data System (ADS)
Wilkinson, R. Allen; Behringer, Robert P.; Jenkins, James T.; Louge, Michel Y.
2005-02-01
Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to do it on the Moon and Mars as we do it on Earth. This paper brings to the fore how little these processes are understood and the millennia-long trial-and-error practices that lead to today's massive over-design, high failure rate, and extensive incremental scaling up of industrial processes because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, and what understanding is needed to greatly reduce the risks.
Evaluation of maintenance/rehabilitation alternatives for continuously reinforced concrete pavement
NASA Astrophysics Data System (ADS)
Barnett, T. L.; Darter, M. I.; Laybourne, N. R.
1981-05-01
The design, construction, performance, and costs of several maintenance and rehabilitation methods were evaluated. Patching, cement grout and asphalt undersealing, epoxying of cracks, and an asphalt overlay were considered. Nondestructive testing, deflections, reflection cracking, cost, and statistical analyses were used to evaluate the methods.
DOT National Transportation Integrated Search
1999-02-01
This report (FHWA-RD-98-155), the first of a four-volume set of reports, presents guidelines and recommendations to assist a highway agency in developing and using performance-related specifications for portland cement concrete pavement construction....
DOT National Transportation Integrated Search
2007-09-01
Resin Modified Pavement (RMP) is a composite paving material consisting of a thin layer (2 inches) : of open graded hot mix asphalt (HMA) whose internal air voids (approximately 30% voids) are : filled with a latex rubber-modified portland cement gro...
DOT National Transportation Integrated Search
2014-06-01
Volatility in price of critical materials used in transportation projects, such as asphalt cement, leads to : considerable uncertainty about project cost. This uncertainty may lead to price speculation and inflated : bid prices submitted by highway c...
Rapid test methods for the evaluation of concrete properties.
DOT National Transportation Integrated Search
1982-01-01
The objective of the project was to place a CERL/Kelly-Vail testing unit and a microwave oven in the field to perform tests of plastic concrete on construction projects. : The CERL/K-V tests were to determine water and cement content of the concrete ...
DOT National Transportation Integrated Search
2009-07-01
Current roadway quality control and quality acceptance (QC/QA) procedures : for Louisiana include coring for thickness, density, and air void checks in hot : mix asphalt (HMA) pavements and thickness and compressive strength for : Portland cement con...
Design of rapid hardening engineered cementitious composites for sustainable construction
NASA Astrophysics Data System (ADS)
Marushchak, Uliana; Sanytsky, Myroslav; Sydor, Nazar
2017-12-01
This paper deals with design of environmentally friendly Rapid Hardening Engineered Cementitious Composite (RHECC) nanomodified with ultrafine mineral additives, polycarboxylate ether based superplasticizer, calcium hydrosilicate nanoparticles and dispersal reinforced by fibers. The incremental coefficient of surface activity was proposed in order to estimation of ultrafine supplementary materials (fly ash, methakaolin, microsilica) efficiency. A characterization of RHECC's compressive and flexural properties at different ages is reported in this paper. Early compressive strength of ECC is 45-50 MPa, standard strength - 84-95 MPa and parameter Rc2/Rc28 - 65-70%. The microstructure of the cement matrix and RHECC was investigated. The use of ultrafine mineral supplementary materials provides reinforcement of structure on micro- and nanoscale level (cementing matrix) due to formation of sub-microreinforcing hydrate phase as AFt- and C-S-H phases in unclinker part of cement matrix, resulting in the phenomena of "self-reinforcement" on the microstructure level. Designed RHECC may be regarded as lower brittle since the crack resistance coefficient is higher comparison to conventional fine grain concrete.
NASA Astrophysics Data System (ADS)
Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan
2018-04-01
Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.
GIS Based Multi-Criteria Decision Analysis For Cement Plant Site Selection For Cuddalore District
NASA Astrophysics Data System (ADS)
Chhabra, A.
2015-12-01
India's cement industry is a vital part of its economy, providing employment to more than a million people. On the back of growing demands, due to increased construction and infrastructural activities cement market in India is expected to grow at a compound annual growth rate (CAGR) of 8.96 percent during the period 2014-2019. In this study, GIS-based spatial Multi Criteria Decision Analysis (MCDA) is used to determine the optimum and alternative sites to setup a cement plant. This technique contains a set of evaluation criteria which are quantifiable indicators of the extent to which decision objectives are realized. In intersection with available GIS (Geographical Information System) and local ancillary data, the outputs of image analysis serves as input for the multi-criteria decision making system. Moreover, the following steps were performed so as to represent the criteria in GIS layers, which underwent the GIS analysis in order to get several potential sites. Satellite imagery from LANDSAT 8 and ASTER DEM were used for the analysis. Cuddalore District in Tamil Nadu was selected as the study site as limestone mining is already being carried out in that region which meets the criteria of raw material for cement production. Several other criteria considered were land use land cover (LULC) classification (built-up area, river, forest cover, wet land, barren land, harvest land and agriculture land), slope, proximity to road, railway and drainage networks.
Koh, Bryan T H; Tan, J H; Ramruttun, Amit Kumarsing; Wang, Wilson
2015-11-17
In cemented joint arthroplasty, the handling characteristics (doughing, working, and setting times) of polymethyl methacrylate (PMMA) bone cement is important as it determines the amount of time surgeons have to optimally position an implant. Storage conditions (temperature and humidity) and the time given for PMMA cement to equilibrate to ambient operating theater (OT) temperatures are often unregulated and may lead to inconsistencies in its handling characteristics. This has not been previously studied. Hence, the purpose of this study was to investigate the effect of storage temperatures on the handling characteristics of PMMA cement and the duration of equilibration time needed at each storage temperature to produce consistent and reproducible doughing, setting, and working times. SmartSet® HV cement was stored at three different controlled temperatures: 20 °C (control), 24 °C, and 28 °C for at least 24 h prior to mixing. The cement components were then brought into a room kept at 20 °C and 50 % humidity. Samples were allowed to equilibrate to ambient conditions for 15, 30, 45, and 60 min. The cement components were mixed and the dough time, temperature-versus-time curve (Lutron TM-947SD, Lutron Electronics, Inc., Coopersburg, PA), and setting time were recorded. Analysis was performed using the two-way ANOVA test (IBM SPSS Statistics V.22). At 20 °C (control) storage temperature, the mean setting time was 534 ± 17 s. At 24 °C storage temperature, the mean setting time was 414 ± 6 s (p < 0.001*) with 15 min of equilibration, 446 ± 11 s (p < 0.001*) with 30 min of equilibration, 501 ± 12 s (p < 0.001*) with 45 min of equilibration, and 528 ± 15 (p > 0.05) with 60 min of equilibration. At 28 °C storage temperature, the mean setting time was 381 ± 8 s (p < 0.001*) with 15 min of equilibration, 432 ± 30 s (p < 0.001*) with 30 min of equilibration, 487 ± 9 (p < 0.001*) with 45 min of equilibration, and 520 ± 16 s (p > 0.05) with 60 min of equilibration. This study reflects the extent to which storage temperatures and equilibration times can potentially affect the handling characteristics of PMMA cement. We recommend institutions to have a well-regulated temperature and humidity-controlled facility for storage of bone cements and a protocol to standardize the equilibration time of cements prior to use in the OT to improve consistency and reproducibility of the handling characteristics of PMMA cement.
Vallo, Claudia I
2002-01-01
The present work is concerned with applications of a kinetic model for free-radical polymerization of a polymethylmethacrylate-based bone cement. Autocatalytic behavior at the first part of the reaction as well as a diffusion control phenomenon near vitrification are described by the model. Comparison of theoretical computations with experimental measurements for the temperature evolution during batch casting demonstrated the capacity of the proposed model to represent the kinetic behavior of the polymerization reaction. Temperature evolution and monomer conversion were simulated for the cure of the cement in molds made of different materials. The maximum monomer conversion fraction was markedly influenced by the physical properties of the mold material. The unreacted monomer acts as a plasticizer that influences the mechanical behavior of the cement. Hence, the same cement formulation cured in molds of different materials may result in different mechanical response because of the differences in the amounts of residual monomer. Standardization of the mold type to prepare specimens for the mechanical characterization of bone cements is recommended. Theoretical prediction of temperature evolution during hip replacement indicated that for cement thickness lower than 6 mm the peak temperature at the bone-cement interface was below the limit stated for thermal injury (50 degrees C for more than 1 min). The use of thin cement layers is recommended to diminish the risk of thermal injury; however, it is accompanied by an increase in the amount of unreacted monomer present in the cured material. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 627-642, 2002
Kovanda, M; Havlícek, V; Hudec, J
2009-04-01
PURPOSE OF THE STUDY The mid-term longevity of femoral components varies considerably, with some showing failure due to early aseptic loosening. Since the hip joint is subject to heavy mechanical loads, it can be assumed that the mechanical interaction of the implant, bone cement and femur will play a key role in the resultant reliability of an arthroplasty. This study was designed to examine this mechanical interaction in four femoral components different in construction (Poldi-Cech, CF-30, MS-30 and PFC) using mathematical simulation. MATERIAL AND METHODS Four stem/cement/femur 3-D mathematical models, comparable in quality, infolving the Poldi-Cech, CF-30, MS-30 and PFC stems, respectively, were constructed. A 3-D model for each stem was created according to its real, middle-size femoral component. Each 3-D model of the cement mantle corresponded in shape to the mantle of the appropriate real stem, with its thickness based on the recommended values of 4-7 mm in the proximal and 1-3 mm in the distal part, and with the cement mantle reaching as far as 10 mm distal to the femoral stem tip. For simplicitys sake the outer surface of the cement mantle was simulated as smooth. A 3-D model involving the proximal epiphysis and the metaphysis of a femur was reconstructed, based on a series of CT cross-sections obtained periodically at 10.5-mm and 2.5-mm distances. The sten/cement/femur model with the MS-30 stem also included a centraliser. The mechanical interaction of the stem, bone cement and bone tissue was examined by means of mathematical stimulation using ANSYS 5.7 software based on finite element analysis. RESULTS For the sake of simplicity, only two key parameters are presented, namely, contact stress at the stem-cement interface and equivalent deformation in the stem/cement/femur system. The least satisfactory stress loading was in the CF-30 stem whose sharp edges showed the values of contact stress about six-times higher than on the mid-medial portion of the stem, with the sharp edges behaving as stress concentrators. A satisfactory stress loading was found in Poldi-Cech, MS-30 and PFC stems, in which contact stress was evenly distributed along the whole lenght of the stem and the values at the edges and on the midmedial portion did not differ much. DISCUSSION The distribution of contact stress is one of the most important factors for the long-term longevity of implants. It was found least satisfactory in the CF-30 stem whose sharp edges act as stress condenser adversely affecting not only the stemcement interface, but also the resultant stress distribution within the femur. The most satisfactory results of stress distribution were recorded in the Poldi-Cech and MS-30 stems. The PFC stem also responded satisfactorily to the simulated stress loading. However, on loading whose substantial part would be torsion, the stems circular or oval cross-section could interfere with rotation stability of the implant; but this was impossible to detect by the mathematical simulation used in this study. CONCLUSIONS The results presented here show that, in the Poldi-Cech, CF-30, MS-30 and PFC femoral stems, a good agreement was achieved between the results of their clinical application and those of mathematical modelling of their mechanical properties. It can be concluded that mechanical interaction among the femoral stem, cement mantle and bone tissue plays the key role in the long-term longevity of such an implant. Key words: Poldi-Cech, CF-30, MS-30, PFC, mechanical interaction, contact stress.
Durability of base courses with mineral-cement-emulsion mixes (MCEM)
NASA Astrophysics Data System (ADS)
Kukiełka, J.; Sybilski, D.
2018-05-01
Base courses with mineral-cement-emulsion mixes (MCEM) have been the subject of research, surveys and development of e.g. new requirements included in the Guidelines of 2014 [15]. In this paper the results of sample test and survey of road sections, assessment of transverse cracks and load-bearing capacity with FWD after 13 years of exploitation are presented. On the MCEM samples the following tests were carried out: resilient modulus using NAT, complex stiffness modulus (E*), phase shift angle at various temperatures and loading frequencies thereby obtaining master curves, fatigue life and low-temperature resistance by identifying the tensile stress restrained (TSRST) which allowed for general assessment of constructed base courses.
Möbius, R; Schleifenbaum, S; Grunert, R; Löffler, S; Werner, M; Prietzel, T; Hammer, N
2016-10-01
The removal of well-fixed acetabular components following THA (total hip arthroplasty) is a difficult operation and could be accompanied by the loss of acetabular bone stock. The optimal method for fixation is still under debate. The aim of this pilot study was to compare the tear-out resistance and failure behavior between osseo-integrated and non-integrated screw cups. Furthermore, we examined whether there are differences in the properties mentioned between screw sockets and cemented polyethylene cups. Tear-out resistance and related mechanical work required for the tear-out of osseo-integrated screw sockets are higher than in non-integrated screw sockets. Ten human coxal bones from six cadavers with osseo-integrated screw sockets (n=4), non-integrated (implanted post-mortem, n=3) screw sockets and cemented polyethylene cups (n=3) were used for tear-out testing. The parameters axial failure load and mechanical work for tear-out were introduced as measures for determining the stability of acetabular components following THA. The osseo-integrated screw sockets yielded slightly higher tear-out resistance (1.61±0.26kN) and related mechanical work compared to the non-integrated screw sockets (1.23±0.39kN, P=0.4). The cemented polyethylene cups yielded the lowest tear-out resistance with a failure load of 1.18±0.24kN. Compared to the screw cups implanted while alive, they also differ on a non-significant level (P=0.1). Osseous failure patterns differed especially for the screw sockets compared to the cemented polyethylene cups. Osseo-integration did not greatly influence the tear-out stability in cementless screw sockets following axial loading. Furthermore, the strength of the bone-implant-interface of cementless screw sockets appears to be similar to cemented polyethylene cups. However, given the high failure load, high mechanical load and because of the related bone failure patterns, removal should not be performed by means of tear-out but rather by osteotomes or other curved cutting devices to preserve the acetabular bone stock. Level III, case-control-study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOT National Transportation Integrated Search
2012-05-01
Premature deterioration of concrete pavement due to D-Cracking has been a problem in Kansas since the 1930s. : Limestone is the major source of coarse aggregate in eastern Kansas where the majority of the concrete pavements are : constructed. D-Crack...
29 CFR 776.27 - Construction which is related to covered production.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., gravel, asphalt, cement, crushed rock, railroad ties, pipes, conduits, wires, concrete pilings and other... designed”, or meeting particular specifications, for use in production of particular kinds of goods for... contemplated, will not ordinarily be considered covered. However, if the new building is designed as a...
Abestos in Buildings: The State Role.
ERIC Educational Resources Information Center
Neilander, Dennis K.; Sacarto, Douglas M.
1988-01-01
The widespread use of asbestos for several decades in building construction has created major public health concerns for state governments. If asbestos is not thoroughly bound in cement, plaster, resin or some other stable material, it will flake and powder, releasing countless microscopic fibers into the air. Asbestos fibers penetrate deep into…
DOT National Transportation Integrated Search
2010-05-01
ODOT selected a relocation of US Route 30 near Wooster : in Wayne County, the WAY-30 project, as the site for : testing long life pavements. The eastbound lanes were : constructed with a long-life Portland Cement Concrete : (PCC) pavement, and the we...