Sample records for consumer battery baseline

  1. Acute effects of caffeine in volunteers with different patterns of regular consumption.

    PubMed

    Hewlett, Paul; Smith, Andrew

    2006-04-01

    The effects of caffeine on mood and performance are well established. One explanation of these effects is that caffeine removes negative effects induced by prior caffeine withdrawal. This was tested here by comparing effects of caffeine in withdrawn consumers and non-consumers (who by definition were not withdrawn). The present study aimed to determine whether caffeine withdrawal influenced mood and performance by comparing regular consumers who had been withdrawn from caffeine overnight with non-consumers. Following this the effects of acute caffeine challenges were compared in withdrawn consumers and non-consumers. In addition, comparisons were made between those with higher and lower caffeine consumption. One hundred seventy-six volunteers participated in the study. Regular caffeine consumption was assessed by questionnaire and this showed that 56 of the sample did not regularly consume caffeinated beverages. Volunteers were instructed to abstain from caffeine overnight and then completed a baseline session measuring mood and a range of cognitive functions at 08.00 the next day. Following this approximately half of the volunteers were given 1 mg/kg caffeine in a milkshake or water (in the 'no caffeine' condition they were given just the milkshake or water) and the test battery repeated one hour later. A second test battery was carried out at 12.00 and a second caffeine challenge at 13.00. A final test session was carried out at 15.00. The baseline data revealed little evidence of effects of caffeine withdrawal on performance and mood. In contrast to this, caffeine produced a number of significant improvements in performance. There were some differences in the effects of caffeine on regular and non-consumers, with caffeine tending to reduce reaction time in regular consumers while the opposite was true for non-consumers. The present results show little evidence of effects of caffeine withdrawal on performance. In contrast, caffeine challenge produced improvements in aspects of performance and these were often not modified by regular caffeine consumption patterns. The differences in effects of caffeine that were observed between non-consumers and regular consumers were in functions that were unaffected by caffeine withdrawal. These findings show that the observed beneficial effects of caffeine cannot be interpreted in terms of a reversal of caffeine withdrawal. Copyright (c) 2006 John Wiley & Sons, Ltd.

  2. Primary lithium batteries, some consumer considerations

    NASA Technical Reports Server (NTRS)

    Bro, P.

    1983-01-01

    In order to determine whether larger size lithium batteries would be commercially marketable, the performance of several D size lithium batteries was compared with that of an equivalent alkaline manganese battery, and the relative costs of the different systems were compared. It is concluded that opportunities exist in the consumer market for the larger sizes of the low rate and moderate rate lithium batteries, and that the high rate lithium batteries need further improvements before they can be recommended for consumer applications.

  3. The cost of lithium is unlikely to upend the price of Li-ion storage systems

    NASA Astrophysics Data System (ADS)

    Ciez, Rebecca E.; Whitacre, J. F.

    2016-07-01

    As lithium ion batteries become more common in electric vehicles and other storage applications, concerns about the cost of their namesake material, and its impact on the cost of these batteries, will continue. However, examining the constituent materials of these devices shows that lithium is a relatively small contributor to both the battery mass and manufacturing cost. The use of more expensive lithium precursor materials results in less than 1% increases in the cost of lithium ion cells considered. Similarly, larger fluctuations in the global lithium price (from 0 to 25/kg from a baseline of 7.50 per kg of Li2CO3) do not change the cost of lithium ion cells by more than 10%. While this small cost increase will not have a substantial impact on consumers, it could affect the manufacturers of these lithium ion cells, who already operate with small profit margins.

  4. Baseline Field Testing of BB-2590 Lithium-Ion Batteries using an iRobot FasTac 510 Robot

    DTIC Science & Technology

    2010-09-17

    No. 21320 Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an iRobot FasTac 510 Robot U.S. Army Tank...SEP 2010 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an iRobot...COVERED (From - To) Baseline Field Testing of BB-2590 Lithium - Ion Batteries using an 4. TITLE AND SUBTITLE iRobot FasTac 510 Robot 5a. CONTRACT

  5. Recall Listing

    MedlinePlus

    ... Monitors Due to Burn Hazard The video monitor’s batteries can overheat, swell and expand and cause the battery cover to open or come off and expose hot batteries, posing a burn hazard to consumers. Remedy: Consumers ...

  6. 77 FR 38743 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Battery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Efficiency Program for Consumer Products: Energy Conservation Standards for Battery Chargers and External... energy conservation standards for battery chargers and external power supplies. DATES: Comments must be... (``Notice of Proposed Rulemaking to Establish Energy Conservation Standards for Battery Chargers and...

  7. Effects of Panax ginseng, consumed with and without glucose, on blood glucose levels and cognitive performance during sustained 'mentally demanding' tasks.

    PubMed

    Reay, Jonathon L; Kennedy, David O; Scholey, Andrew B

    2006-11-01

    Single doses of the traditional herbal treatment Panax ginseng have recently been shown to lower blood glucose levels and elicit cognitive improvements in healthy, overnight-fasted volunteers. The specific mechanisms responsible for these effects are not known. However, cognitive improvements may be related to the glycaemic properties of Panax ginseng. Using a double-blind, placebo-controlled, balanced-crossover design, 27 healthy young adults completed a 10 minute "cognitive demand" test battery at baseline. They then consumed capsules containing either ginseng (extract G115) or a placebo and 30 minutes later a drink containing glucose or placebo. A further 30 minutes later (i.e. 60 minutes post-baseline/capsules) they completed the "cognitive demand" battery six times in immediate succession. Depending on the condition to which the participant was allocated on that particular day, the combination of capsules/drink treatments corresponded to a dose of: 0mg G115/0 mg glucose (placebo); 200mg G115/0 mg glucose (ginseng); 0 mg G115/25 g glucose (glucose) or 200 mg G115/25 g glucose (ginseng/glucose combination). The 10 minute "cognitive demand" battery comprised a Serial Threes subtraction task (2 min); a Serial Sevens subtraction task (2 min); a Rapid Visual Information Processing task (5 min); and a "mental fatigue" visual analogue scale. Blood glucose levels were measured prior to the day's treatment, and before and after the post-dose completions of the battery. The results showed that both Panax ginseng and glucose enhanced performance of a mental arithmetic task and ameliorated the increase in subjective feelings of mental fatigue experienced by participants during the later stages of the sustained, cognitively demanding task performance. Accuracy of performing the Rapid Visual Information Processing task (RVIP) was also improved following the glucose load. There was no evidence of a synergistic relationship between Panax ginseng and exogenous glucose ingestion on any cognitive outcome measure. Panax ginseng caused a reduction in blood glucose levels 1 hour following consumption when ingested without glucose. These results confirm that Panax ginseng may possess glucoregulatory properties and can enhance cognitive performance.

  8. Strategic exploration of battery waste management: A game-theoretic approach.

    PubMed

    Kaushal, Rajendra Kumar; Nema, Arvind K; Chaudhary, Jyoti

    2015-07-01

    Electronic waste or e-waste is the fastest growing stream of solid waste today. It contains both toxic substances as well as valuable resources. The present study uses a non-cooperative game-theoretic approach for efficient management of e-waste, particularly batteries that contribute a major portion of any e-waste stream and further analyses the economic consequences of recycling of these obsolete, discarded batteries. Results suggest that the recycler would prefer to collect the obsolete batteries directly from the consumer rather than from the manufacturer, only if, the incentive return to the consumer is less than 33.92% of the price of the battery, the recycling fee is less than 6.46% of the price of the battery, and the price of the recycled material is more than 31.08% of the price of the battery. The manufacturer's preferred choice of charging a green tax from the consumer can be fruitful for the battery recycling chain. © The Author(s) 2015.

  9. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine.

    PubMed

    Haskell, Crystal F; Kennedy, David O; Wesnes, Keith A; Scholey, Andrew B

    2005-06-01

    The cognitive and mood effects of caffeine are well documented. However, the majority of studies in this area involve caffeine-deprived, habitual caffeine users. It is therefore unclear whether any beneficial findings are due to the positive effects of caffeine or to the alleviation of caffeine withdrawal. The present placebo-controlled, double-blind, balanced crossover study investigated the acute cognitive and mood effects of caffeine in habitual users and habitual non-users of caffeine. Following overnight caffeine withdrawal, 24 habitual caffeine consumers (mean=217 mg/day) and 24 habitual non-consumers (20 mg/day) received a 150 ml drink containing either 75 or 150 mg of caffeine or a matching placebo, at intervals of > or =48 h. Cognitive and mood assessments were undertaken at baseline and 30 min post-drink. These included the Cognitive Drug Research computerised test battery, two serial subtraction tasks, a sentence verification task and subjective visual analogue mood scales. There were no baseline differences between the groups' mood or performance. Following caffeine, there were significant improvements in simple reaction time, digit vigilance reaction time, numeric working memory reaction time and sentence verification accuracy, irrespective of group. Self-rated mental fatigue was reduced and ratings of alertness were significantly improved by caffeine independent of group. There were also group effects for rapid visual information processing false alarms and spatial memory accuracy with habitual consumers outperforming non-consumers. There was a single significant interaction of group and treatment effects on jittery ratings. Separate analyses of each groups' responses to caffeine revealed overlapping but differential responses to caffeine. Caffeine tended to benefit consumers' mood more while improving performance more in the non-consumers. These results do not support a withdrawal alleviation model. Differences in the patterns of responses to caffeine by habitual consumers and habitual non-consumers may go some way to explaining why some individuals become caffeine consumers.

  10. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.

    PubMed

    Dunn, Jennifer B; Gaines, Linda; Sullivan, John; Wang, Michael Q

    2012-11-20

    This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%.

  11. Miniature fuel cells relieve gas pressure in sealed batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1971-01-01

    Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries.

  12. 77 FR 68069 - Outbound International Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... (Rechargeable) Cells and Batteries Small consumer-type lithium-ion cells and batteries like those used to power... of only four lithium-ion cells or two lithium-ion batteries. c. The lithium content must not exceed... POSTAL SERVICE 39 CFR Part 20 Outbound International Mailings of Lithium Batteries AGENCY: Postal...

  13. 77 FR 28259 - Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... containing lithium metal or lithium-ion cells or batteries and applies regardless of quantity, size, watt... ``lithium content'' for secondary lithium-ion batteries when describing maximum quantity limits. In addition...-ion (Rechargeable) Cells and Batteries [Revise 10.20.6 as follows:] Small consumer-type lithium-ion...

  14. Batteries, from Cradle to Grave

    ERIC Educational Resources Information Center

    Smith, Michael J.; Gray, Fiona M.

    2010-01-01

    As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…

  15. 76 FR 53056 - Outbound International Mailings of Lithium Batteries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... or lithium-ion batteries in accordance with Packing Instruction 967, Section II, or Packing... Secondary Lithium-ion (Rechargeable) Cells and Batteries. Small consumer-type lithium-ion cells and... shipment may contain a maximum of four lithium-ion cells or two lithium-ion batteries. c. The lithium...

  16. Electric Vehicle Battery Development Gains Momentum - Continuum Magazine

    Science.gov Websites

    to improve and accelerate battery design and boost EDV performance and consumer appeal - and chemistry, cell design, and battery pack options for particular vehicle platforms Factor in electrochemical separate, competitive, validated, and easy-to-use CAEBAT software tools for battery pack design. The three

  17. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  18. Use of COTS Batteries on ISS and Shuttle: Payload Safety and Mission Success

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.

    2004-01-01

    Contents: Current program requirements; Challenges with COTS batteries; manned vehicle COTS methodology in use; List of typical flight COTS batteries; Energy content and toxicity; Hazards, failure modes and controls for different battery chemistries; JSC test details; List of incidents from Consumer Protection Safety Commission; Conclusions ans recommendations.

  19. Market Impact | Transportation Research | NREL

    Science.gov Websites

    , airplanes, and astronauts' spacesuits rely on lithium-ion (Li-ion) batteries for high energy density in a Battery Internal Short-Circuit Device is helping industry partners improve the safety of Li-ion batteries Partners Use Breakthrough Device to Improve Battery Safety Electric vehicles, consumer electronics

  20. Multi-stakeholder policy modeling for collection and recycling of spent portable battery waste.

    PubMed

    Gupta, Vimal Kumar; Kaushal, Rajendra Kumar; Shukla, Sheo Prasad

    2018-06-01

    Policies have been structured for collection and recycling of spent portable battery waste within a framework of stakeholders (recycling council body, producer, recycler and consumer) especially for those battery units that are discarded worldwide because of their expensive cost of recycling. Applicability of stakeholders' policies in their coalition framework have been reviewed and critically analyzed using the Shapley value of cooperative game theory models. Coalition models for 'manufacturer and recycler' indicated the dominating role of manufacturers over the recyclers, and waste management is highly influenced by producer responsibility. But, the take-back policy enables recyclers' dominance role in the management and yields maximum benefit to both recyclers and consumers. The polluter pays principle has been implemented in formulating policies to key stakeholders, 'manufacturers' as well as 'consumers', of battery products by the introduction of penalties to encourage their willingness to join the Environment, Health and Safety program. Results indicated that the policies of the framework have the potential to be implemented within a marginal rise in battery price by 12% to 14.3% in the range of recycling cost per tonne of US$2000 to US$5000. The policy of the stakeholders' framework presented in the study could be an important aid to achieve high collection and recycling rates of spent portable batteries.

  1. Review of storage battery system cost estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  2. 76 FR 31749 - Energy Conservation Program for Certain Consumer Appliances: Test Procedures for Battery Chargers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    .... 6 at p. 1; AHAM, No. 10 at p. 8) Delta-Q cautioned ``against some overlap with any solar industry... electrical grid and the battery of many consumer photovoltaic (PV) and wind energy systems, as well as rapid... for residential PV systems that employ these higher output voltage devices. (ASAP, No. 11 at p. 2; PG...

  3. Cognitive and psychomotor performance, mood, and pressor effects of caffeine after 4, 6 and 8 h caffeine abstinence.

    PubMed

    Heatherley, Susan V; Hayward, Robert C; Seers, Helen E; Rogers, Peter J

    2005-04-01

    Many studies have found that caffeine consumed after overnight caffeine abstinence improves cognitive performance and mood. Much less is known, however, about the effects of caffeine after shorter periods of caffeine abstinence. The aim of this study was to measure the effects on psychomotor and cognitive performance, mood, hand steadiness, blood pressure and heart rate of caffeine administration after periods of 4, 6, and 8 h of caffeine abstinence. Participants (n = 49, 27 female) were moderate to moderate-high caffeine consumers (mean daily intake 370 mg/day). Following overnight caffeine abstinence, a 'pre-dose' of caffeine (1.2 mg/kg) was administered at 9 A.M, 11 A.M or 1 P.M. The participants started a baseline battery of measurements at 4 P.M.: before receiving caffeine (1.2 mg/kg) or placebo at 5 P.M.: They then performed the battery of tests again, starting at 5:30 P.M. This was a double-blind, placebo-controlled, randomised study. Performance and mood measurements confirmed a psychostimulant action of caffeine (versus placebo), but only after 8 h of caffeine abstinence. Caffeine also increased blood pressure after 8-h abstinence, whereas hand steadiness was decreased and perception of task demand was increased by caffeine after 4 h, but not after 6- and 8-h abstinence. A second cup-of-coffee equivalent dose of caffeine only reliably affected cognitive performance and mood after an 8-h interval between doses, but not after shorter intervals (when caffeine had some adverse effects). These results show that, apart from caffeine consumption soon after waking, the daily pattern of caffeine intake of many typical caffeine consumers is not well explained by the short-term psychostimulant effects of caffeine.

  4. Micro Calorimeter for Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhanagopalan, Shriram

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  5. 46 CFR 161.013-13 - Manufacturer certification and labeling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Manufacturer's name; (2) Replacement battery type; (3) Lamp size; and (4) The following words— “Night Visual... Only.” (c) If an electric light is designed for use with dry cell batteries the label must advise the consumer on the battery replacement schedule which under normal conditions would maintain performance...

  6. 46 CFR 161.013-13 - Manufacturer certification and labeling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Manufacturer's name; (2) Replacement battery type; (3) Lamp size; and (4) The following words— “Night Visual... Only.” (c) If an electric light is designed for use with dry cell batteries the label must advise the consumer on the battery replacement schedule which under normal conditions would maintain performance...

  7. 46 CFR 161.013-13 - Manufacturer certification and labeling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Manufacturer's name; (2) Replacement battery type; (3) Lamp size; and (4) The following words— “Night Visual... Only.” (c) If an electric light is designed for use with dry cell batteries the label must advise the consumer on the battery replacement schedule which under normal conditions would maintain performance...

  8. 46 CFR 161.013-13 - Manufacturer certification and labeling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Manufacturer's name; (2) Replacement battery type; (3) Lamp size; and (4) The following words— “Night Visual... Only.” (c) If an electric light is designed for use with dry cell batteries the label must advise the consumer on the battery replacement schedule which under normal conditions would maintain performance...

  9. 46 CFR 161.013-13 - Manufacturer certification and labeling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Manufacturer's name; (2) Replacement battery type; (3) Lamp size; and (4) The following words— “Night Visual... Only.” (c) If an electric light is designed for use with dry cell batteries the label must advise the consumer on the battery replacement schedule which under normal conditions would maintain performance...

  10. Evaluation Method for Low-Temperature Performance of Lithium Battery

    NASA Astrophysics Data System (ADS)

    Wang, H. W.; Ma, Q.; Fu, Y. L.; Tao, Z. Q.; Xiao, H. Q.; Bai, H.; Bai, H.

    2018-05-01

    In this paper, the evaluation method for low temperature performance of lithium battery is established. The low temperature performance level was set up to determine the best operating temperature range of the lithium battery using different cathode materials. Results are shared with the consumers for the proper use of lithium battery to make it have a longer service life and avoid the occurrence of early rejection.

  11. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terazono, Atsushi, E-mail: terazono@nies.go.jp; Oguchi, Masahiro; Iino, Shigenori

    Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobilemore » phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using insulation (tape) on waste batteries to prevent fires, only 2.0% of discarded cylindrical dry batteries were insulated. Our field study of small WEEE showed that batteries made up an average of 4.6% of the total collected small WEEE on a weight basis. Exchangeable batteries were used in almost all of mobile phones, digital cameras, radios, and remote controls, but the removal rate was as low as 22% for mobile phones. Given the safety issues and the rapid changes occurring with mobile phones or other types of small WEEE, discussion is needed among stakeholders to determine how to safely collect and recycle WEEE and waste batteries.« less

  12. An area and power-efficient analog li-ion battery charger circuit.

    PubMed

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  13. 75 FR 30014 - Consumers Energy Company; Notice of Baseline Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-25-000] Consumers Energy Company; Notice of Baseline Filing May 21, 2010. Take notice that on May 17, 2010, Consumers Energy Company (Consumers) submitted a baseline filing of its Statement of Operating Conditions for the...

  14. Effects of repeated doses of caffeine on performance and alertness: new data and secondary analyses.

    PubMed

    Hewlett, Paul; Smith, Andrew

    2007-08-01

    The effects of caffeine on mood and performance are well established. Some authors suggest that caffeine merely reverses effects of caffeine withdrawal rather than having direct behavioural effects. It has also been suggested that withdrawal may be removed by a first dose of caffeine and further doses have little subsequent effect. These issues are examined here. The present study aimed to determine whether caffeine withdrawal influenced mood and performance by comparing regular consumers who had been withdrawn from caffeine overnight with non-consumers. Following this repeated caffeine doses were administered to test the claim that repeated dosing has no extra effect on mood or performance. Secondary analyses of data collected after a day of normal caffeine consumption were also carried out to examine some alternative explanations of their results which showed effects of caffeine after a day of normal caffeine consumption. One hundred and twenty volunteers participated in the study. Regular caffeine consumption was assessed by questionnaire and this showed that 36 of the volunteers did not regularly consume caffeinated beverages. Volunteers were instructed to abstain from caffeine overnight and then completed a baseline session measuring mood and a range of cognitive functions at 08.00 the next day. Following this volunteers were given 0, or 1 mg/kg caffeine in a milkshake, glucose solution or water (at 09:00), followed by a second 0 or 1 mg/kg caffeine dose (at 09:40) and the test battery repeated at 10:00. The baseline data showed no effect of overnight caffeine withdrawal on mood or performance. In contrast, caffeine challenge improved vigilance performance and prevented decreases in alertness induced by completion of the task battery. The magnitude of these effects increased as a function of the number of doses of caffeine given. Secondary analyses of data from Christopher et al. (2003) also confirmed that effects of caffeine did not depend on length of withdrawal. The present findings show no effect of overnight caffeine withdrawal on mood and performance. Caffeine challenge did have the predicted effect on alertness and vigilance, with the size of the effects increasing with caffeine dose. These findings suggest that the effects of caffeine are not due to reversal of effects of withdrawal, a view confirmed by secondary analyses of data collected after a day of normal caffeine consumption. Copyright 2007 John Wiley & Sons, Ltd.

  15. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  16. Waste battery treatment options: comparing their environmental performance.

    PubMed

    Briffaerts, K; Spirinckx, C; Van der Linden, A; Vrancken, K

    2009-08-01

    Waste consumer batteries are recycled using different routes based on hydrometallurgical and pyrometallurgical processes. Two hydrometallurgical and two pyrometallurgical treatment scenarios are compared starting from an average composition of Belgian waste batteries. The environmental performance is compared using life cycle analysis (LCA). The recycling rate is studied through mass balance calculation. Each treatment scenario results in a specific recycling rate. The environmental impact and benefits also vary between the treatment options. There is no such thing as a typical hydrometallurgical or pyrometallurgical treatment. When applying a hydrometallurgical treatment scenario, the focus lies on zinc and iron recycling. When allowing manganese recycling, the energy demand of the hydrometallurgical process increases considerably. Both pyrometallurgical options recycle zinc, iron and manganese. According to the LCA, none of the treatment scenarios performs generally better or worse than the others. Each option has specific advantages and disadvantages. The Batteries Directive 2006/66/EC sets out a recycling rate of 50% for consumer waste batteries. Based on metal recycling alone, the mass balances show that the target is difficult to obtain.

  17. Measuring the power consumption of social media applications on a mobile device

    NASA Astrophysics Data System (ADS)

    Dunia, A. I. M.; Suherman; Rambe, A. H.; Fauzi, R.

    2018-03-01

    As fully connected social media applications become popular and require all time connection, the power consumption on mobile device battery increases significantly. As power supplied by a battery is limited, social media application should be designed to be less power consuming. This paper reports the power consumption measurement of social media running on a mobile device. Experimental circuit was developed by using a microcontroller measuring an android smartphone on a 802.11 controlled network. The experiment results show that whatsapp consumes the power less than others in stand by and chat. While other states are dominated by line. The blackberry consumes the power the worst.

  18. Membranes in Lithium Ion Batteries

    PubMed Central

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  19. Battery collection in municipal waste management in Japan: challenges for hazardous substance control and safety.

    PubMed

    Terazono, Atsushi; Oguchi, Masahiro; Iino, Shigenori; Mogi, Satoshi

    2015-05-01

    To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6-10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using insulation (tape) on waste batteries to prevent fires, only 2.0% of discarded cylindrical dry batteries were insulated. Our field study of small WEEE showed that batteries made up an average of 4.6% of the total collected small WEEE on a weight basis. Exchangeable batteries were used in almost all of mobile phones, digital cameras, radios, and remote controls, but the removal rate was as low as 22% for mobile phones. Given the safety issues and the rapid changes occurring with mobile phones or other types of small WEEE, discussion is needed among stakeholders to determine how to safely collect and recycle WEEE and waste batteries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Organic electronics: Battery-like artificial synapses

    NASA Astrophysics Data System (ADS)

    Yang, J. Joshua; Xia, Qiangfei

    2017-04-01

    Borrowing the operating principles of a battery, a three-terminal organic switch has been developed on a flexible plastic substrate. The device consumes very little power and can be used as an artificial synapse for brain-inspired computing.

  1. Exploding the Black Box: Personal Computing, the Notebook Battery Crisis, and Postindustrial Systems Thinking.

    PubMed

    Eisler, Matthew N

    Historians of science and technology have generally ignored the role of power sources in the development of consumer electronics. In this they have followed the predilections of historical actors. Research, development, and manufacturing of batteries has historically occurred at a social and intellectual distance from the research, development, and manufacturing of the devices they power. Nevertheless, power source technoscience should properly be understood as an allied yet estranged field of electronics. The separation between the fields has had important consequences for the design and manufacturing of mobile consumer electronics. This paper explores these dynamics in the co-construction of notebook batteries and computers. In so doing, it challenges assumptions of historians and industrial engineers and planners about the nature of computer systems in particular and the development of technological systems. The co-construction of notebook computers and batteries, and the occasional catastrophic failure of their compatibility, challenges systems thinking more generally.

  2. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  3. Results of electric-vehicle propulsion system performance on three lead-acid battery systems

    NASA Technical Reports Server (NTRS)

    Ewashinka, J. G.

    1984-01-01

    Three types of state of the art 6 V lead acid batteries were tested. The cycle life of lead acid batteries as a function of the electric vehicle propulsion system design was determined. Cycle life, degradation rate and failure modes with different battery types (baseline versus state of the art tubular and thin plate batteries) were compared. The effects of testing strings of three versus six series connected batteries on overall performance were investigated. All three types do not seem to have an economically feasible battery system for the propulsion systems. The tubular plate batteries on the load leveled profile attained 235 cycles with no signs of degradation and minimal capacity loss.

  4. NREL Blows Up Batteries to Make the World Safer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Making lithium-ion batteries safer for earthlings and astronauts is something NREL excels at. In this video you’ll meet Matt Keyser, a senior energy storage engineer who is on a mission to improve the thermal performance of batteries for electric vehicles, consumer gadgets, and technology used by NASA in outer space. Matt and his team study battery failure using innovative technologies, such as the award-winning Battery Internal Short Circuit (ISC) Device that can precisely identify weak spots in battery cells. This cutting-edge research helps battery manufacturers develop advanced materials that can deliver superior results. Who benefits from all of this ingenuitymore » rooted in fundamental science? We all do!« less

  5. The voice of the customer--Part 2: Benchmarking battery chargers against the Consumer's Ideal Product.

    PubMed

    Bauer, S M; Lane, J P; Stone, V I; Unnikrishnan, N

    1998-01-01

    The Rehabilitation Engineering Research Center on Technology Evaluation and Transfer is exploring how the end users of assistive technology devices define the ideal device. This work is called the Consumer Ideal Product program. In this work, end users identify and establish the importance of a broad range of product design features, along with the related product support and service provided by manufacturers and vendors. This paper describes a method for systematically transforming end-user defined requirements into a form that is useful and accessible to product designers, manufacturers, and vendors. In particular, product requirements, importance weightings, and metrics are developed from the Consumer Ideal Product battery charger outcomes. Six battery charges are benchmarked against these product requirements using the metrics developed. The results suggest improvements for each product's design, service, and support. Overall, the six chargers meet roughly 45-75% of the ideal product's requirements. Many of the suggested improvements are low-cost changes that, if adopted, could provide companies a competitive advantage in the marketplace.

  6. Mineral of the month: cadmium

    USGS Publications Warehouse

    Klimasauskas, Edward

    2005-01-01

    Cadmium, which was once used almost exclusively for pigments, now has many diverse applications. Cadmium’s low melting point, excellent electrical conductivity and resistance to corrosion make it valuable for many products including batteries, electroplated coatings, stabilizers for plastics, solar cells and nonferrous alloys. Today’s cadmium is primarily used in rechargeable batteries, accounting for about 78 percent of consumption in 2004. In 2000, an estimated 3.5 billion consumer batteries were sold in the United States, of which almost 10 percent were nickel-cadmium batteries.

  7. Impairment due to combined sleep restriction and alcohol is not mitigated by decaying breath alcohol concentration or rest breaks.

    PubMed

    Manousakis, Jessica E; Anderson, Clare

    2017-09-01

    Epidemiological and laboratory-based driving simulator studies have shown the detrimental impact of moderate, legal levels of alcohol consumption on driving performance in sleepy drivers. As less is known about the time course of decaying alcohol alongside performance impairment, our study examined impairment and recovery of performance alongside decaying levels of alcohol, with and without sleep restriction. Sixteen healthy young males (18-27 years) underwent 4 counterbalanced conditions: Baseline, Alcohol (breath alcohol concentration [BrAC] < 0.05%), Sleep Restriction (5 hr time in bed), and Combined. Participants consumed alcohol (or control drink) ~4.5 hr post wake (12:30 p.m.). To test on the descending limb of alcohol, attention and vigilance test batteries commenced 1 hr after consumption and were completed every 30 min for 2 hr (1:30 p.m.-3:30 p.m.). The Combined condition impaired subjective and objective sleepiness. Here, performance deficits peaked 90 min after alcohol consumption or 30 min after the BrAC peak. Performance did not return to baseline levels until 2.5 hr following consumption, despite receiving rest breaks in between testing. These findings suggest that (a) falling BrACs are an inadequate guide for performance/safety and (b) rest breaks without sleep are not a safety measure for mitigating performance impairment when consuming alcohol following restricted sleep. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Machine Learning Based Diagnosis of Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed algorithms are evaluated experimentally using two different batteries namely lithium iron phosphate (LiFePO 4) and lithium titanate (LTO), both subjected to constant and dynamic current profiles. Results highlight the robustness of these algorithms to battery's nonlinear dynamic nature, hysteresis, aging, dynamic current profile, and parametric uncertainties. Consequently, these methods are susceptible and effective if incorporated with the BMS of EVs', HEVs', and other battery powered devices.

  9. A review on the key issues for lithium-ion battery management in electric vehicles

    NASA Astrophysics Data System (ADS)

    Lu, Languang; Han, Xuebing; Li, Jianqiu; Hua, Jianfeng; Ouyang, Minggao

    2013-03-01

    Compared with other commonly used batteries, lithium-ion batteries are featured by high energy density, high power density, long service life and environmental friendliness and thus have found wide application in the area of consumer electronics. However, lithium-ion batteries for vehicles have high capacity and large serial-parallel numbers, which, coupled with such problems as safety, durability, uniformity and cost, imposes limitations on the wide application of lithium-ion batteries in the vehicle. The narrow area in which lithium-ion batteries operate with safety and reliability necessitates the effective control and management of battery management system. This present paper, through the analysis of literature and in combination with our practical experience, gives a brief introduction to the composition of the battery management system (BMS) and its key issues such as battery cell voltage measurement, battery states estimation, battery uniformity and equalization, battery fault diagnosis and so on, in the hope of providing some inspirations to the design and research of the battery management system.

  10. Use of COTS Batteries on ISS and Shuttle

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.

    2004-01-01

    This presentation focuses on COTS Battery testing for energy content, toxicity, hazards, failures modes and controls for different battery chemistries. It also discusses the current program requirements, challenges with COTS Batteries in manned vehicle COTS methodology, JSC test details, and gives a list of incidents from consumer protection safety commissions. The Battery test process involved testing new batteries for engineering certification, qualification of batteries, flight acceptance, cell and battery, environment, performance and abuse. Their conclusions and recommendations were that: high risk is undertaken with the use of COTS batteries, hazard control verification is required to allow the use of these batteries on manned space flights, failures during use cannot be understood if different scenarios of failure are not tested on the ground, and that testing is performed on small sample numbers due to restrictions on cost and time. They recommend testing of large sample size to gain more confidence in the operation of the hazard controls.

  11. Architectural innovation foresight of thermoelectric generator charger integrated portable power supply for portable consumer electronic device in metropolitan market: The case study of Thailand

    NASA Astrophysics Data System (ADS)

    Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.

    2012-06-01

    In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for the potential innovations represents a case study in the pilot commercialization of TEG technology for some interesting niche markets in metropolitan area of Thailand, and, thus, can be the clue for product development related to TEG for market-driven application in other similar requirement conditions and contexts as well.

  12. Optimal Battery Utilization Over Lifetime for Parallel Hybrid Electric Vehicle to Maximize Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Chinmaya; Naghshtabrizi, Payam; Verma, Rajeev

    This paper presents a control strategy to maximize fuel economy of a parallel hybrid electric vehicle over a target life of the battery. Many approaches to maximizing fuel economy of parallel hybrid electric vehicle do not consider the effect of control strategy on the life of the battery. This leads to an oversized and underutilized battery. There is a trade-off between how aggressively to use and 'consume' the battery versus to use the engine and consume fuel. The proposed approach addresses this trade-off by exploiting the differences in the fast dynamics of vehicle power management and slow dynamics of batterymore » aging. The control strategy is separated into two parts, (1) Predictive Battery Management (PBM), and (2) Predictive Power Management (PPM). PBM is the higher level control with slow update rate, e.g. once per month, responsible for generating optimal set points for PPM. The considered set points in this paper are the battery power limits and State Of Charge (SOC). The problem of finding the optimal set points over the target battery life that minimize engine fuel consumption is solved using dynamic programming. PPM is the lower level control with high update rate, e.g. a second, responsible for generating the optimal HEV energy management controls and is implemented using model predictive control approach. The PPM objective is to find the engine and battery power commands to achieve the best fuel economy given the battery power and SOC constraints imposed by PBM. Simulation results with a medium duty commercial hybrid electric vehicle and the proposed two-level hierarchical control strategy show that the HEV fuel economy is maximized while meeting a specified target battery life. On the other hand, the optimal unconstrained control strategy achieves marginally higher fuel economy, but fails to meet the target battery life.« less

  13. Panasonic Small Cell Testing for AHPS

    NASA Technical Reports Server (NTRS)

    Pearson, C.; Blackmore, P.; Lain, M.; Walpole, A.; Darcy, Eric

    2006-01-01

    AEA selection and successful Interim Design Review for AHPS proves maturity of small cell approach for very large batteries. Cells show excellent opportunity for battery mass reduction for AHPS and other low cycle applications. Lack of cycle and extended calendar life make EOL battery performance difficult (AHPS 8 year mission). Preliminary design, AEA retained SONY 18650HC cell as baseline: a) Well characterized performance; b) Wealth of safety test data.

  14. A Consumer-Oriented Control Framework for Performance Analysis in Hybrid Electric Vehicles

    DOE PAGES

    Shaltout, Mohamed L.; Malikopoulos, Andreas A.; Pannala, Sreekanth; ...

    2014-12-09

    Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce fuel consumption and emissions. Our objective with this paper is to enhance our understanding of the associated tradeoffs among the HEV subsystems, e.g., the engine, the motor, and the battery, and investigate the related implications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences. The results of the proposed optimization approach can also be used to investigate the implications for HEV costs related to ownership and warranty.

  15. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... power (i.e., watts) consumed as the time series integral of the power consumed over a 1-hour test period...) consumed as the time series integral of the power consumed over a 1-hour test period, divided by the period...-maintenance mode and standby mode over time periods defined in the test procedure. b. Active mode is the...

  16. 10 CFR Appendix Y to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Battery Chargers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power (i.e., watts) consumed as the time series integral of the power consumed over a 1-hour test period...) consumed as the time series integral of the power consumed over a 1-hour test period, divided by the period...-maintenance mode and standby mode over time periods defined in the test procedure. b. Active mode is the...

  17. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for Space Station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  18. A 37.5-kW point design comparison of the nickel-cadmium battery, bipolar nickel-hydrogen battery, and regenerative hydrogen-oxygen fuel cell energy storage subsystems for low Earth orbit

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.; Hoberecht, M. A.

    1984-01-01

    Nickel-cadmium batteries, bipolar nickel-hydrogen batteries, and regenerative fuel cell storage subsystems were evaluated for use as the storage subsystem in a 37.5 kW power system for space station. Design requirements were set in order to establish a common baseline for comparison purposes. The storage subsystems were compared on the basis of effective energy density, round trip electrical efficiency, total subsystem weight and volume, and life.

  19. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE PAGES

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.; ...

    2017-05-03

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  20. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  1. State-of-the-art of alkaline rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Morioka, Y.; Narukawa, S.; Itou, T.

    Alkaline rechargeable batteries represented by Ni-Cd and Ni-MH batteries are expanding their market, continuously meeting an increasing demand. Approximately 30 years have elapsed since the first sealed Ni-Cd battery was commercialized for consumer use, and the production of these alkaline batteries is still expanding. The high power performance and good cost performance of these batteries are the outstanding features, which are leading to new battery applications. Continuous R&D of many researchers and engineers has improved these features. Since first coming to the market in 1990, Ni-MH batteries have been extending their application as power sources for portable advanced information and communication equipment. Improvements in electrode materials and other components have increased the energy density of current Ni-MH batteries to values of 91 Wh/kg and 340 Wh/l. Recently, novel metallic alloys for hydrogen storage have been proposed to increase their capacity further, and further improvement in the performance of these batteries is expected.

  2. Failure Analysis of Batteries Using Synchrotron-based Hard X-ray Microtomography

    PubMed Central

    Harry, Katherine J.; Parkinson, Dilworth Y.; Balsara, Nitash P.

    2015-01-01

    Imaging morphological changes that occur during the lifetime of rechargeable batteries is necessary to understand how these devices fail. Since the advent of lithium-ion batteries, researchers have known that the lithium metal anode has the highest theoretical energy density of any anode material. However, rechargeable batteries containing a lithium metal anode are not widely used in consumer products because the growth of lithium dendrites from the anode upon charging of the battery causes premature cell failure by short circuit. Lithium dendrites can also form in commercial lithium-ion batteries with graphite anodes if they are improperly charged. We demonstrate that lithium dendrite growth can be studied using synchrotron-based hard X-ray microtomography. This non-destructive imaging technique allows researchers to study the growth of lithium dendrites, in addition to other morphological changes inside batteries, and subsequently develop methods to extend battery life. PMID:26382323

  3. An improved high-performance lithium-air battery.

    PubMed

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-06-10

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  4. Ni-MH battery electrodes made by a dry powder process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Z.; Sakai, T.; Noreus, D.

    1995-12-01

    A dry powder roller pressing process, once developed for making both of the electrodes in low cost Ni-Cd consumer batteries, has been utilized to make electrodes for Ni-MH batteries. The process was evaluated by manually making a series of sub-C type cells that were characterized with respect to specific capacity, cycle life, and self-discharge. The performance was comparable in several respects with that of cells made by more complex Ni-foam technologies.

  5. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    PubMed

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.

  6. Sea water rope batteries

    NASA Astrophysics Data System (ADS)

    Walsh, M.

    1984-05-01

    This research demonstrated the feasibility of supplying approximately 1 watt of electrical power for one year on the sea bed with a novel battery, the rope battery. The proposed battery would look very much like a small diameter wire rope, possibly hundreds of feet long. This unusual shape permits the rope battery to take full advantage of the vastness of the ocean floor and permits at great pressure the steady diffusion of reaction products away from the battery itself. A sea water battery is described consisting of an inner bundle of coated wires which slowly corrode and an outer layer of fine wires which simultaneously provides strength, armor and surface area for slow hydrogen evolution. Two variations are examined. The fuse utilizes magnesium wires and burns slowly from the end. The rope utilizes lithium-zinc alloys and is slowly consumed along its entire length.

  7. Battery manganese dioxide - a survey of its history and etymology

    NASA Astrophysics Data System (ADS)

    Euler, Karl-Jaochim

    1982-10-01

    Manganese dioxide was known two thousand years ago. It was described by Plinius. Later, Basilius Valentinus named it "Braunstein", the brownstone. Its chemical nature was recognized by Scheele and his student Gahn. Its first application in the field of batteries seems to have been by Ritter. Following Leclanchéś invention it has been used on a large scale in dry batteries. In 1977 about 300 000 metric tons of battery grade manganese dioxide were consumed. More than 50% of the oxide is derived from natural ores, and about one third is obtained as electrochemically deposited dioxide.

  8. Ovonic nickel metal hydride batteries for space applications

    NASA Technical Reports Server (NTRS)

    Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.

    1993-01-01

    Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.

  9. Design considerations for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

    1993-01-01

    Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

  10. Non-pulsed electrochemical impregnation of flexible metallic battery plaques

    DOEpatents

    Maskalick, Nicholas J.

    1982-01-01

    A method of loading active battery material into porous, flexible, metallic battery plaques, comprises the following steps: precipitating nickel hydroxide active material within the plaque, by making the plaque cathodic, at a high current density, in an electro-precipitation cell also containing a consumable nickel anode and a solution comprising nickel nitrate, having a pH of between 2.0 and 2.8; electrochemically oxidizing the precipitate in caustic formation solution; and repeating the electro-precipitation step at a low current density.

  11. Smart Multifunctional Fluids for Lithium Ion Batteries: Enhanced Rate Performance and Intrinsic Mechanical Protection

    NASA Astrophysics Data System (ADS)

    Ding, Jie; Tian, Tongfei; Meng, Qing; Guo, Zaiping; Li, Weihua; Zhang, Peng; Ciacchi, Fabio T.; Huang, Jewel; Yang, Wenrong

    2013-08-01

    Lithium ion batteries are attractive power sources for the consumer electronics market and are being aggressively developed for road transportation. Nevertheless, issues with safety and reliability need to be solved prior to the large-scale uptake of these batteries. There have recently been significant development and assessment of materials with resistance to mechanical abuse, with the aims of reinforcing the battery and preventing puncturing during a crash. Most of the work on battery mechanical safety has concentrated on the external packaging of batteries, with little attention being paid to the enclosed electrolyte. We report on smart multifunctional fluids that act as both highly conductive electrolytes and intrinsic mechanical protectors for lithium ion batteries. These fluids exhibit a shear thickening effect under pressure or impact and thus demonstrate excellent resistance to crushing. Also, the fluids show higher ionic conductivities and comparable redox stability windows to the commercial liquid electrolytes.

  12. Enabling fast charging - Battery thermal considerations

    NASA Astrophysics Data System (ADS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  13. Recycling of nickel-metal hydride battery scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyman, J.W.; Palmer, G.R.

    1994-12-31

    Nickel-metal hydride (Ni-MH) battery technology is being developed as a NiCd replacement for applications in consumer cells and electric vehicle batteries. The U.S. Bureau of Mines is investigating hydrometallurgical recycling technology that separates and recovers individual components from Ni-MH battery scrap. Acid dissolution and metal recovery techniques such as precipitation and solvent extraction produced purified products of rare-earths, nickel, and other metals associated with AB{sub 2} and AB{sub 5} Ni-MH scrap. Tests were conducted on scrap cells of a single chemistry that had been de-canned to reduce iron content. Although recovery techniques have been identified in principal, their applicability tomore » mixed battery waste stream and economic attractiveness remain to be demonstrated. 14 refs.« less

  14. Progress in the development of Ovonic nickel-metal hydride batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatesan, S.; Corrigan, D.A.; Gifford, P.R.

    1993-05-01

    Proprietary, multicomponent hydrogen storage alloys using the principles of atomic engineering form the heart of Ovonic Nickel-Metal Hydride (Ni/MH) battery technology. This battery system, in development for 10 years, has been licensed to several manufacturers both for consumer cells and electric vehicle batteries. These cells have achieved a specific energy of over 80 Wh/kg, a peak power in excess of 200 W/kg, and over 1000 cycles at 100% depth of discharge. They also have an intrinsic ability to withstand overcharge and overdischarge abuse. Ovonic Ni/MH batteries are environmentally friendly and can be recycled. Performance data will be presented showing themore » successful scale-up of this technology for electric vehicle applications.« less

  15. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fergus, Jeffrey W.

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries.

  16. Impedance Measurement Box

    ScienceCinema

    Christophersen, Jon; Morrison, Bill

    2018-02-14

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  17. Advances and Future Challenges in Printed Batteries.

    PubMed

    Sousa, Ricardo E; Costa, Carlos M; Lanceros-Méndez, Senentxu

    2015-11-01

    There is an increasing interest in thin and flexible energy storage devices to meet modern society's needs for applications such as radio frequency sensing, interactive packaging, and other consumer products. Printed batteries comply with these requirements and are an excellent alternative to conventional batteries for many applications. Flexible and microbatteries are also included in the area of printed batteries when fabricated using printing technologies. The main characteristics, advantages, disadvantages, developments, and printing techniques of printed batteries are presented and discussed in this Review. The state-of-the-art takes into account both the research and industrial levels. On the academic level, the research progress of printed batteries is divided into lithium-ion and Zn-manganese dioxide batteries and other battery types, with emphasis on the different materials for anode, cathode, and separator as well as in the battery design. With respect to the industrial state-of-the-art, materials, device formulations, and manufacturing techniques are presented. Finally, the prospects and challenges of printed batteries are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microbatteries for Combinatorial Studies of Conventional Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; Bugga, Ratnakumar

    2003-01-01

    Integrated arrays of microscopic solid-state batteries have been demonstrated in a continuing effort to develop microscopic sources of power and of voltage reference circuits to be incorporated into low-power integrated circuits. Perhaps even more importantly, arrays of microscopic batteries can be fabricated and tested in combinatorial experiments directed toward optimization and discovery of battery materials. The value of the combinatorial approach to optimization and discovery has been proven in the optoelectronic, pharmaceutical, and bioengineering industries. Depending on the specific application, the combinatorial approach can involve the investigation of hundreds or even thousands of different combinations; hence, it is time-consuming and expensive to attempt to implement the combinatorial approach by building and testing full-size, discrete cells and batteries. The conception of microbattery arrays makes it practical to bring the advantages of the combinatorial approach to the development of batteries.

  19. Baseline tests of the EPC Hummingbird electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Slavik, R. J.; Maslowski, E. A.; Sargent, N. B.; Birchenough, A. G.

    1977-01-01

    The rear-mounted internal combustion engine in a four-passenger Volkswagen Thing was replaced with an electric motor made by modifying an aircraft generator and powered by 12 heavy-duty, lead-acid battery modules. Vehicle performance tests were conducted to measure vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics. Test results are presented in tables and charts.

  20. Active lithium chloride cell for spacecraft power

    NASA Technical Reports Server (NTRS)

    Fleischmann, C. W.; Horning, R. J.

    1988-01-01

    An active thionyl chloride high rate battery is under development for spacecraft operations. It is a 540kC (150 Ah) battery capable of pulses up to 75A. This paper describes the design and initial test data on a 'state-of-the-art' cell that has been selected to be the baseline for the prototype cell for that battery. Initial data indicate that the specification can be met with fresh cells. Data for stored cells and additional environmental test data are in the process of being developed.

  1. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste.

    PubMed

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A

    2013-05-21

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163,544 mg/kg; σ = 62,897; limit 8000), copper (average 98,694 mg/kg; σ = 28,734; limit 2500), and nickel (average 9525 mg/kg; σ = 11,438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and reuse of lithium battery materials.

  2. Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste

    PubMed Central

    Kang, Daniel Hsing Po; Chen, Mengjun; Ogunseitan, Oladele A.

    2013-01-01

    Rechargeable lithium-ion (Li-ion) and lithium-polymer (Li-poly) batteries have recently become dominant in consumer electronic products because of advantages associated with energy density and product longevity. However, the small size of these batteries, the high rate of disposal of consumer products in which they are used, and the lack of uniform regulatory policy on their disposal means that lithium batteries may contribute substantially to environmental pollution and adverse human health impacts due to potentially toxic materials. In this research, we used standardized leaching tests, life-cycle impact assessment (LCIA), and hazard assessment models to evaluate hazardous waste classification, resource depletion potential, and toxicity potentials of lithium batteries used in cellphones. Our results demonstrate that according to U.S. federal regulations, defunct Li-ion batteries are classified hazardous due to their lead (Pb) content (average 6.29 mg/L; σ = 11.1; limit 5). However, according to California regulations, all lithium batteries tested are classified hazardous due to excessive levels of cobalt (average 163 544 mg/kg; σ = 62 897; limit 8000), copper (average 98 694 mg/kg; σ = 28 734; limit 2500), and nickel (average 9525 mg/kg; σ = 11 438; limit 2000). In some of the Li-ion batteries, the leached concentrations of chromium, lead, and thallium exceeded the California regulation limits. The environmental impact associated with resource depletion and human toxicity is mainly associated with cobalt, copper, nickel, thallium, and silver, whereas the ecotoxicity potential is primarily associated with cobalt, copper, nickel, thallium, and silver. However, the relative contribution of aluminum and lithium to human toxicity and ecotoxicity could not be estimated due to insufficient toxicity data in the models. These findings support the need for stronger government policy at the local, national, and international levels to encourage recovery, recycling, and reuse of lithium battery materials. PMID:23638841

  3. Method and apparatus for maintaining the pH in zinc-bromine battery systems

    DOEpatents

    Grimes, Patrick G.

    1985-09-10

    A method and apparatus for maintaining the pH level in a zinc-bromine battery features reacting decomposition hydrogen with bromine in the presence of a catalyst. The catalyst encourages the formation of hydrogen and bromine ions. The decomposition hydrogen is therefore consumed, alloying the pH of the system to remain substantially at a given value.

  4. Extending the Life of Lithium-Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator

    DOE PAGES

    Liu, Kai; Zhuo, Denys; Lee, Hyun -Wook; ...

    2016-11-22

    A reaction-protective separator that slows the growth of lithium dendrites penetrating into the separator is produced by sandwiching silica nanoparticles between two polymer separators. Here, the reaction between lithium dendrites and silica nanoparticles consumes the dendrites and can extend the life of the battery by approximately five times.

  5. 40 CFR 74.20 - Data for baseline and alternative baseline.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consumed, expressed in thousands of tons for coal, thousands of barrels for oil, and million standard cubic... measure. (ii) Monthly or annual heat content of fuel consumed for each type of fuel consumed, expressed in British thermal units (Btu) per pound for coal, Btu per barrel for oil, and Btu per standard cubic foot...

  6. Development of Thin-Film Battery Powered Transdermal Medical Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, J.B.; Sein, T.

    1999-07-06

    Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-filmmore » battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.« less

  7. Printed batteries and conductive patterns in technical textiles

    NASA Astrophysics Data System (ADS)

    Willert, Andreas; Meuser, Carmen; Baumann, Reinhard R.

    2018-05-01

    Various applications of functional devices need a tailored and reliable supply of electrical energy. Batteries are electrochemical systems that deliver energy for functional devices and applications. Due to the common use, several rigid types of batteries have been standardized. To fully integrate the battery into a product that is bendable, free in geometry and less than 1 mm thick, printing of power adaptable batteries is a challenging area of research. Therefore, the well-known zinc-manganese system, which is very promising due to its environmental sustainability and its simplicity, has been used to manufacture battery solutions on a new kind of substrate: technical textiles. Another challenge is the deposition of conductive patterns. At present, embroidery with metallic yarn is the only possibility to provide conducting paths on technical textiles, a time-consuming and elaborate process. Screen printed conductive pathways will generate a new momentum in the manufacturing of conductivity on textiles.

  8. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  9. Enabling fast charging – Battery thermal considerations

    DOE PAGES

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; ...

    2017-10-23

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  10. An Automated Classification Technique for Detecting Defects in Battery Cells

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2006-01-01

    Battery cell defect classification is primarily done manually by a human conducting a visual inspection to determine if the battery cell is acceptable for a particular use or device. Human visual inspection is a time consuming task when compared to an inspection process conducted by a machine vision system. Human inspection is also subject to human error and fatigue over time. We present a machine vision technique that can be used to automatically identify defective sections of battery cells via a morphological feature-based classifier using an adaptive two-dimensional fast Fourier transformation technique. The initial area of interest is automatically classified as either an anode or cathode cell view as well as classified as an acceptable or a defective battery cell. Each battery cell is labeled and cataloged for comparison and analysis. The result is the implementation of an automated machine vision technique that provides a highly repeatable and reproducible method of identifying and quantifying defects in battery cells.

  11. Progress in Modeling and Simulation of Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, John A

    2016-01-01

    Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilitiesmore » * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.« less

  12. Enabling fast charging – Battery thermal considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  13. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1996-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphorus lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  14. Rechargeable lithium battery for use in applications requiring a low to high power output

    DOEpatents

    Bates, John B.

    1997-01-01

    Rechargeable lithium batteries which employ characteristics of thin-film batteries can be used to satisfy power requirements within a relatively broad range. Thin-film battery cells utilizing a film of anode material, a film of cathode material and an electrolyte of an amorphous lithium phosphorus oxynitride can be connected in series or parallel relationship for the purpose of withdrawing electrical power simultaneously from the cells. In addition, such battery cells which employ a lithium intercalation compound as its cathode material can be connected in a manner suitable for supplying power for the operation of an electric vehicle. Still further, by incorporating within the battery cell a relatively thick cathode of a lithium intercalation compound, a relatively thick anode of lithium and an electrolyte film of lithium phosphorus oxynitride, the battery cell is rendered capable of supplying power for any of a number of consumer products, such as a laptop computer or a cellular telephone.

  15. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.

    1987-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  16. Battery with modular air cathode and anode cage

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Niksa, Andrew J.; Schue, Thomas J.; Turk, Thomas R.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  17. 16 CFR 700.6 - Designation of warranties.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... battery or muffler warranty may be designated as “full warranty for as long as you own your car.” Because this type of warranty leads the consumer to believe that proof of purchase is not needed so long as he... consumer under this type of warranty. The burden is on the warrantor to prove that a particular claimant...

  18. 16 CFR 700.6 - Designation of warranties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... battery or muffler warranty may be designated as “full warranty for as long as you own your car.” Because this type of warranty leads the consumer to believe that proof of purchase is not needed so long as he... consumer under this type of warranty. The burden is on the warrantor to prove that a particular claimant...

  19. 16 CFR 700.6 - Designation of warranties.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... battery or muffler warranty may be designated as “full warranty for as long as you own your car.” Because this type of warranty leads the consumer to believe that proof of purchase is not needed so long as he... consumer under this type of warranty. The burden is on the warrantor to prove that a particular claimant...

  20. 16 CFR 700.6 - Designation of warranties.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... battery or muffler warranty may be designated as “full warranty for as long as you own your car.” Because this type of warranty leads the consumer to believe that proof of purchase is not needed so long as he... consumer under this type of warranty. The burden is on the warrantor to prove that a particular claimant...

  1. 16 CFR 700.6 - Designation of warranties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... battery or muffler warranty may be designated as “full warranty for as long as you own your car.” Because this type of warranty leads the consumer to believe that proof of purchase is not needed so long as he... consumer under this type of warranty. The burden is on the warrantor to prove that a particular claimant...

  2. Primary and secondary battery consumption trends in Sweden 1996-2013: method development and detailed accounting by battery type.

    PubMed

    Patrício, João; Kalmykova, Yuliya; Berg, Per E O; Rosado, Leonardo; Åberg, Helena

    2015-05-01

    In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows - due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996-2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese dioxide batteries, the value achieved 74%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Balancing autonomy and utilization of solar power and battery storage for demand based microgrids

    NASA Astrophysics Data System (ADS)

    Lawder, Matthew T.; Viswanathan, Vilayanur; Subramanian, Venkat R.

    2015-04-01

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows the relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.

  4. State-of-charge coulometer

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J. (Inventor)

    1985-01-01

    A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.

  5. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.

    PubMed

    Graver, Brandon M; Frey, H Christopher; Choi, Hyung-Wook

    2011-10-15

    Plug-in hybrid electric vehicles (PHEVs) could reduce transportation air emissions and energy use. However, a method is needed for estimating on-road emissions of PHEVs. To develop a framework for quantifying microscale energy use and emissions (EU&E), measurements were conducted on a Toyota Prius retrofitted with a plug-in battery system on eight routes. Measurements were made using the following: (1) a data logger for the hybrid control system; (2) a portable emissions measurement system; and (3) a global positioning system with barometric altimeter. Trends in EU&E are estimated based on vehicle specific power. Energy economy is quantified based on gasoline consumed by the engine and grid energy consumed by the plug-in battery. Emissions from electricity consumption are estimated based on the power generation mix. Fuel use is approximately 30% lower during plug-in battery use. Grid emissions were higher for CO₂, NO(x), SO₂, and PM compared to tailpipe emissions but lower for CO and hydrocarbons. EU&E depends on engine and plug-in battery operation. The use of two energy sources must be addressed in characterizing fuel economy; overall energy economy is 11% lower if including grid energy use than accounting only for fuel consumption.

  6. Effects of repeated doses of caffeine on mood and performance of alert and fatigued volunteers.

    PubMed

    Smith, Andrew; Sutherland, David; Christopher, Gary

    2005-11-01

    Evidence for behavioural effects of caffeine is well documented in the literature. It is associated with increased subjective alertness, improved reaction time and enhanced encoding of new information. These effects are most prominent in low arousal situations. However, there is an ongoing debate as to whether such changes are in fact improvements or merely a reversal of the negative effects of a period of caffeine withdrawal (e.g. overnight abstinence). To avoid such a confound this study included multiple doses of caffeine which were administered under double-blind conditions to participants who had ingested their normal daily quota of caffeine. In the present study participants were fatigued by carrying out a prolonged testing schedule in the evening. Sixty volunteers, all regular caffeine consumers, took part in the study. They attended for three sessions on separate days. They were instructed to consume normal amounts of caffeinated beverages. Consumption was measured by a diary and saliva samples were taken and caffeine assays conducted. A baseline test session was carried out at 18.00h and following this a double blind placebo controlled caffeine challenge (1.5mg/kg) conducted. The test battery was repeated twice approximately 30 minutes after the caffeine challenge. Following this another drink was administered and the test battery repeated twice more. On one test session volunteers had placebo in both drinks, in another they had caffeine in both drinks and another caffeine in the first and placebo in the second. Order of conditions was balanced across subjects. The results showed that caffeine led to a more positive mood and improved performance on a number of tasks. Different effects of caffeine were seen depending on the person's level of arousal. Linear effects of caffeine dose were also observed. This is evidence against the argument that behavioural changes due to caffeine are merely the reversal of negative effects of a long period of caffeine abstinence. The findings are discussed in relation to both noradrenergic and cholinergic neurotransmitter systems.

  7. Hardware Architecture for Measurements for 50-V Battery Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Bald; Evan Juras; Jon P. Christophersen

    Energy storage devices, especially batteries, have become critical for several industries including automotive, electric utilities, military and consumer electronics. With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. Because many of the systems these batteries integrated into are critical, there is an increased need for an accurate in-situ method of monitoring battery state-of-health. Over the past decade the Idaho National Laboratory (INL), Montana Tech ofmore » the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of a compact IMB system that will perform rapid accurate measurements of a battery impedance spectrum working with higher voltage batteries of up to 300 volts. This paper discusses the successful realization of a system that will work up to 50 volts.« less

  8. A material flow of lithium batteries in Taiwan.

    PubMed

    Chang, T C; You, S J; Yu, B S; Yao, K F

    2009-04-30

    Li batteries, including secondary and cylindrical/button primary Li batteries, are used worldwide in computers, communications and consumer electronics products. However, there are several dangerous issues that occur during the manufacture, shipping, and storage of Li batteries. This study analyzes the material flow of lithium batteries and their valuable heavy metals in Taiwan for the year 2006 by material flow analysis. According to data from the Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, Bureau of Foreign Trade, Directorate General of Customs, and the Li batteries manufactures/importers/exporters. It was found that 2,952,696 kg of Li batteries was input into Taiwan for the year 2006, including 2,256,501 kg of imported Li batteries and 696,195 kg of stock Li batteries in 2005. In addition, 1,113,867 and 572,215 kg of Li batteries was domestically produced and sold abroad, revealing that 3,494,348 kg of different types of Li batteries was sold in Taiwan. Of these domestically sold batteries, 504,663 and 146,557 kg were treated domestically and abroad. Thus, a total of 2,843,128 kg of Li batteries was stored by individual/industry users or illegally disposed. In addition, it was also observed that 2,120,682 kg of heavy metals contained in Li batteries, including Ni, Co, Al, Cu and Ni, was accumulated in Taiwan, with a recycled value of 38.8 million USD. These results suggest that these heavy metals should be recovered by suitable collection, recycling and reuse procedures.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew A

    Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type ofmore » battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  10. Performance analysis of ten brands of batteries for hearing aids

    PubMed Central

    Penteado, Silvio Pires; Bento, Ricardo Ferreira

    2013-01-01

    Summary Introduction: Comparison of the performance of hearing instrument batteries from various manufacturers can enable otologists, audiologists, or final consumers to select the best products, maximizing the use of these materials. Aim: To analyze the performance of ten brands of batteries for hearing aids available in the Brazilian marketplace. Methods: Hearing aid batteries in four sizes were acquired from ten manufacturers and subjected to the same test conditions in an acoustic laboratory. Results: The results obtained in the laboratory contrasted with the values reported by manufacturers highlighted significant discrepancies, besides the fact that certain brands in certain sizes perform better on some tests, but does not indicate which brand is the best in all sizes. Conclusions: It was possible to investigate the performance of ten brands of hearing aid batteries and describe the procedures to be followed for leakage, accidental intake, and disposal. PMID:25992026

  11. Performance and cost of materials for lithium-based rechargeable automotive batteries

    NASA Astrophysics Data System (ADS)

    Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin

    2018-04-01

    It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.

  12. High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.

    PubMed

    Agostini, Marco; Brutti, Sergio; Hassoun, Jusef

    2016-05-04

    The achievement of a new generation of lithium-ion battery, suitable for a continuously growing consumer electronic and sustainable electric vehicle markets, requires the development of new, low-cost, and highly performing materials. Herein, we propose a new and efficient lithium-ion battery obtained by coupling exfoliated graphite/graphene nanosheets (EGNs) anode and high-voltage, spinel-structure cathode. The anode shows a capacity exceeding by 40% that ascribed to commercial graphite in lithium half-cell, at very high C-rate, due to its particular structure and morphology as demonstrated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Li-ion battery reveals excellent efficiency and cycle life, extending up to 150 cycles, as well as an estimated practical energy density of about 260 Wh kg(-1), that is, a value well exceeding the one associated with the present-state Li-ion battery.

  13. Baseline tests of the power-train electric delivery van

    NASA Technical Reports Server (NTRS)

    Lumannick, S.; Dustin, M. O.; Bozek, J. M.

    1977-01-01

    Vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics were determined for a modified utility van powered by sixteen 6-volt batteries connected in series. A chopper controller actuated by a foot accelerator pedal changes the voltage applied to the 22-kilowatt (30-hp) series-wound drive motor. In addition to the conventional hydraulic braking system, the vehicle has hydraulic regenerative braking. Cycle tests and acceleration tests were conducted with and without hydraulic regeneration.

  14. Tracking the metal of the goblins: cobalt's cycle of use.

    PubMed

    Harper, E M; Kavlak, G; Graedel, T E

    2012-01-17

    Cobalt is a vital element in many technological applications, which, together with its increasing end-use in batteries, makes it important to quantify its cycle of use. We have done so for the planet as a whole and for the three principal cobalt-using countries - China, Japan, and the United States - for 2005. Together, China, Japan, and the United States accounted for approximately 65% of the cobalt fabricated and manufactured into end-use products (a total of 37 Gg Co). A time residence model allowed calculations of in-use stock accumulation and recycled and landfilled flows. China had the largest accumulation of in-use stock at some 4.3 Gg Co, over half of which was comprised of consumer battery stock. More than half of the stock accumulation in the United States was estimated to be in aircraft, rocket, and gas turbine engines, with a total in-use stock accumulation of approximately 3 Gg Co. The largest amounts of cobalt landfilled in China, the United States, and the planet were from the "chemical and other uses" category, and Japan's largest landfilled flow was in consumer batteries.

  15. Descriptive Analysis of a Baseline Concussion Battery Among U.S. Service Academy Members: Results from the Concussion Assessment, Research, and Education (CARE) Consortium.

    PubMed

    O'Connor, Kathryn L; Dain Allred, C; Cameron, Kenneth L; Campbell, Darren E; D'Lauro, Christopher J; Houston, Megan N; Johnson, Brian R; Kelly, Tim F; McGinty, Gerald; O'Donnell, Patrick G; Peck, Karen Y; Svoboda, Steven J; Pasquina, Paul; McAllister, Thomas; McCrea, Michael; Broglio, Steven P

    2018-03-28

    The prevalence and possible long-term consequences of concussion remain an increasing concern to the U.S. military, particularly as it pertains to maintaining a medically ready force. Baseline testing is being used both in the civilian and military domains to assess concussion injury and recovery. Accurate interpretation of these baseline assessments requires one to consider other influencing factors not related to concussion. To date, there is limited understanding, especially within the military, of what factors influence normative test performance. Given the significant physical and mental demands placed on service academy members (SAM), and their relatively high risk for concussion, it is important to describe demographics and normative profile of SAMs. Furthermore, the absence of available baseline normative data on female and non-varsity SAMs makes interpretation of post-injury assessments challenging. Understanding how individuals perform at baseline, given their unique individual characteristics (e.g., concussion history, sex, competition level), will inform post-concussion assessment and management. Thus, the primary aim of this manuscript is to characterize the SAM population and determine normative values on a concussion baseline testing battery. All data were collected as part of the Concussion Assessment, Research and Education (CARE) Consortium. The baseline test battery included a post-concussion symptom checklist (Sport Concussion Assessment Tool (SCAT), psychological health screening inventory (Brief Symptom Inventory (BSI-18) and neurocognitive evaluation (ImPACT), Balance Error Scoring System (BESS), and Standardized Assessment of Concussion (SAC). Linear regression models were used to examine differences across sexes, competition levels, and varsity contact levels while controlling for academy, freshman status, race, and previous concussion. Zero inflated negative binomial models estimated symptom scores due to the high frequency of zero scores. Significant, but small, sex effects were observed on the ImPACT visual memory task. While, females performed worse than males (p < 0.0001, pη2 = 0.01), these differences were small and not larger than the effects of the covariates. A similar pattern was observed for competition level on the SAC. There was a small, but significant difference across competition level. SAMs participating in varsity athletics did significantly worse on the SAC compared to SAMs participating in club or intramural athletics (all p's < 0.001, η2 = 0.01). When examining symptom reporting, males were more than two times as likely to report zero symptoms on the SCAT or BSI-18. Intramural SAMs had the highest number of symptoms and severity compared to varsity SAMs (p < 0.0001, Cohen's d < 0.2). Contact level was not associated with SCAT or BSI-18 symptoms among varsity SAMs. Notably, the significant differences across competition level on SCAT and BSI-18 were sub-clinical and had small effect sizes. The current analyses provide the first baseline concussion battery normative data among SAMs. While statistically significant differences may be observed on baseline tests, the effect sizes for competition and contact levels are very small, indicating that differences are likely not clinically meaningful at baseline. Identifying baseline differences and significant covariates is important for future concussion-related analyses to inform concussion evaluations for all athlete levels.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawder, Matthew T.; Viswanathan, Vilayanur V.; Subramanian, Venkat R.

    The growth of intermittent solar power has developed a need for energy storage systems in order to decouple generation and supply of energy. Microgrid (MG) systems comprising of solar arrays with battery energy storage studied in this paper desire high levels of autonomy, seeking to meet desired demand at all times. Large energy storage capacity is required for high levels of autonomy, but much of this expensive capacity goes unused for a majority of the year due to seasonal fluctuations of solar generation. In this paper, a model-based study of MGs comprised of solar generation and battery storage shows themore » relationship between system autonomy and battery utilization applied to multiple demand cases using a single particle battery model (SPM). The SPM allows for more accurate state-of-charge and utilization estimation of the battery than previous studies of renewably powered systems that have used empirical models. The increased accuracy of battery state estimation produces a better assessment of system performance. Battery utilization will depend on the amount of variation in solar insolation as well as the type of demand required by the MG. Consumers must balance autonomy and desired battery utilization of a system within the needs of their grid.« less

  17. Rapid restoration of electric vehicle battery performance while driving at cold temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Guangsheng; Ge, Shanhai; Yang, Xiao-Guang; Leng, Yongjun; Marple, Dan; Wang, Chao-Yang

    2017-12-01

    Electric vehicles (EVs) driven in cold weather experience two major drawbacks of Li-ion batteries: drastic power loss (up to 10-fold at -30 °C) and restriction of regenerative braking at temperatures below 5-10 °C. Both factors greatly reduce cruise range, exacerbating drivers' range anxiety in winter. While preheating the battery before driving is a practice widely adopted to maintain battery power and EV drivability, it is time-consuming (on the order of 40 min) and prohibits instantaneous mobility. Here we reveal a control strategy that can rapidly restore EV battery power and permit full regeneration while driving at temperatures as low as -40 °C. The strategy involves heating the battery internally during regenerative braking and rest periods of driving. We show that this technique fully restores room-temperature battery power and regeneration in 13, 33, 46, 56 and 112 s into uninterrupted driving in 0, -10, -20, -30 and -40 °C environments, respectively. Correspondingly, the strategy significantly increases cruise range of a vehicle operated at cold temperatures, e.g. 49% at -40 °C in simulated US06 driving cycle tests. The present work suggests that smart batteries with embedded sensing/actuation can leapfrog in performance.

  18. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    NASA Astrophysics Data System (ADS)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-10-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, amore » coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.« less

  20. Material Use in the United States - Selected Case Studies for Cadmium, Cobalt, Lithium, and Nickel in Rechargeable Batteries

    USGS Publications Warehouse

    Wilburn, David R.

    2008-01-01

    This report examines the changes that have taken place in the consumer electronic product sector as they relate to (1) the use of cadmium, cobalt, lithium, and nickel contained in batteries that power camcorders, cameras, cell phones, and portable (laptop) computers and (2) the use of nickel in vehicle batteries for the period 1996 through 2005 and discusses forecasted changes in their use patterns through 2010. Market penetration, material substitution, and technological improvements among nickel-cadmium (NiCd), nickel-metal-hydride (NiMH), and lithium-ion (Li-ion) rechargeable batteries are assessed. Consequences of these changes in light of material consumption factors related to disposal, environmental effects, retail price, and serviceability are analyzed in a series of short case studies.

  1. LiCoO2 and SnO2 Thin Film Electrodes for Lithium-Ion Battery Applications

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Hepp, Aloysius F.; Kumta, Prashant N.

    2004-01-01

    There is an increasing need for small dimension, ultra-lightweight, portable power supplies due to the miniaturization of consumer electronic devices. Rechargeable thin film lithium-ion batteries have the potential to fulfill the growing demands for micro-energy storage devices. However, rechargeable battery technology and fabrication processes have not kept paced with the advances made in device technology. Economical fabrication methods lending excellent microstructural and compositional control in the thin film battery electrodes have yet to be fully developed. In this study, spin coating has been used to demonstrate the flexibility of the approach to produce both anode (SnO2) and cathode (LiCoO2) thin films. Results on the microstructure crystal structure and electrochemical properties of the thin film electrodes are described and discussed.

  2. Analysis of the economics of photovoltaic-diesel-battery energy systems for remote applications

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.

    1983-01-01

    Computer simulations were conducted to analyze the performance and operating cost of a photovoltaic energy source combined with a diesel generator system and battery storage. The simulations were based on the load demand profiles used for the design of an all photovoltaic energy system installed in the remote Papago Indian Village of Schuchuli, Arizona. Twenty year simulations were run using solar insolation data from Phoenix SOLMET tapes. Total energy produced, energy consumed, operation and maintenance costs were calculated. The life cycle and levelized energy costs were determined for a variety of system configurations (i.e., varying amounts of photovoltaic array and battery storage).

  3. [Normalisation and validation of the Brief Neuropsychological Battery as the reference neuropsychological test in multiple sclerosis].

    PubMed

    Duque, P; Ibanez, J; Del Barco, A; Sepulcre, J; de Ramon, E; Fernandez-Fernandez, O

    2012-03-01

    INTRODUCTION. The current batteries such as the Brief Repeatable Battery of Neuropsychological Tests (BRB-N) for evaluating cognitive decline in patients with multiple sclerosis are complex and time-consuming. AIM. To obtain normative values and validate a new battery. SUBJECTS AND METHODS. Four neuropsychological tests were finally included (episodic memory, the Symbol-Digit Modalities Test, a category fluency test, and the Paced Auditory Serial Addition Test). Normative values (overall and by age group) were derived by administering the battery to healthy subjects (5th percentile was the limit of normal). External validity was explored by comparison with the BRB-N. The new battery was also administered to a subsample after 4 weeks to assess reproducibility. RESULTS. To provide normative data, 1036 healthy subjects were recruited. The mean completion time was 18.5 ± 5.2 minutes. For the 229 subjects who were administered the new battery and the BRB-N, no statistically significant differences were found except for mean completion time (19 ± 4 vs 25 ± 5 minutes). In the reproducibility study, there were no significant differences except in the memory tests. CONCLUSION. The scores on the new battery and the BRB-N were strongly correlated although the shorter completion time and ease of administration could make the new battery preferable in clinical practice.

  4. Passive hybridization of a photovoltaic module with lithium-ion battery cells: A model-based analysis

    NASA Astrophysics Data System (ADS)

    Joos, Stella; Weißhar, Björn; Bessler, Wolfgang G.

    2017-04-01

    Standard photovoltaic battery systems based on AC or DC architectures require power electronics and controllers, including inverters, MPP tracker, and battery charger. Here we investigate an alternative system design based on the parallel connection of a photovoltaic module with battery cells without any intermediate voltage conversion. This approach, for which we use the term passive hybridization, is based on matching the solar cell's and battery cell's respective current/voltage behavior. A battery with flat discharge characteristics can allow to pin the solar cell to its maximum power point (MPP) independently of the external power consumption. At the same time, upon battery full charge, voltage increase will drive the solar cell towards zero current and therefore self-prevent battery overcharge. We present a modeling and simulation analysis of passively hybridizing a 5 kWp PV system with a 5 kWh LFP/graphite lithium-ion battery. Dynamic simulations with 1-min time resolution are carried out for three exemplary summer and winter days using historic weather data and a synthetic single-family household consumer profile. The results demonstrate the feasibility of the system. The passive hybrid allows for high self-sufficiencies of 84.6% in summer and 25.3% in winter, which are only slightly lower than those of a standard system.

  5. A new early cognitive screening measure to detect cognitive side-effects of electroconvulsive therapy?

    PubMed

    Martin, Donel M; Katalinic, Natalie; Ingram, Anna; Schweitzer, Isaac; Smith, Deidre J; Hadzi-Pavlovic, Dusan; Loo, Colleen K

    2013-12-01

    Cognitive side-effects from electroconvulsive therapy (ECT) can be distressing for patients and early detection may have an important role in guiding treatment decisions over the ECT course. This prospective study examined the utility of an early cognitive screening battery for predicting cognitive side-effects which develop later in the ECT course. The screening battery, together with the Mini Mental Status Examination (MMSE), was administered to 123 patients at baseline and after 3 ECT treatments. A more detailed cognitive battery was administered at baseline, after six treatments (post ECT 6) and after the last ECT treatment (post treatment) to assess cognitive side-effects across several domains: global cognition, anterograde memory, executive function, speed and concentration, and retrograde memory. Multivariate analyses examined the predictive utility of change on items from the screening battery for later cognitive changes at post ECT 6 and post treatment. Results showed that changes on a combination of items from the screening battery were predictive of later cognitive changes at post treatment, particularly for anterograde memory (p < 0.01), after controlling for patient and treatment factors. Change on the MMSE predicted cognitive changes at post ECT 6 but not at post treatment. A scoring method for the new screening battery was tested for discriminative ability in a sub-sample of patients. This study provides preliminary evidence that a simple and easy-to-administer measure may potentially be used to help guide clinical treatment decisions to optimise efficacy and cognitive outcomes. Further development of this measure and validation in a more representative ECT clinical population is required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Injuries Associated With Hazards Involving Motor Vehicle Batteries

    DOT National Transportation Integrated Search

    1997-07-01

    National Highway Traffic Safety Administration's (NHTSA) National Center for : Statistics recently examined data from the Consumer Product Safety Commission's : (CPSC) National Electronic Injury Surveillance (NEISS) on cases involving : injuries burn...

  7. High-Quality TiS2 For Li/TiS2 Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Shen, David H.; Delgiannis, Fotios; Halpert, Gerald

    1992-01-01

    Modified process for synthesis of battery-grade titanium sulfide (TiS2) yields substantially improved material for Li/TiS2 electrochemical cells. Includes all-vapor-phase reaction between sulfur and titanium. Product less dense and more homogeneous, consists of smaller particles of higher crystalline quality, and purer. Cells have high cathode utilization and long cycle life performance. Expected to find applications in rechargeable lithium batteries for spacecraft, military equipment, telecommunication systems, automobiles, and consumer products.

  8. Primary and secondary battery consumption trends in Sweden 1996–2013: Method development and detailed accounting by battery type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrício, João, E-mail: joao.patricio@chalmers.se; Kalmykova, Yuliya; Berg, Per E.O.

    2015-05-15

    Highlights: • Developed MFA method was validated by the national statistics. • Exponential increase of EEE sales leads to increase in integrated battery consumption. • Digital convergence is likely to be a cause for primary batteries consumption decline. • Factors for estimation of integrated batteries in EE are provided. • Sweden reached the collection rates defined by European Union. - Abstract: In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production andmore » export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows – due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996–2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese dioxide batteries, the value achieved 74%.« less

  9. Baseline tests of the Kordesh hybrid passenger vehicle

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.

    1978-01-01

    Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.

  10. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE PAGES

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei; ...

    2017-06-12

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  11. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Daniel L.; Vossos, Vagelis; Feng, Wei

    Direct current (DC) power distribution has recently gained traction in buildings research due to the proliferation of on-site electricity generation and battery storage, and an increasing prevalence of internal DC loads. The research discussed in this paper uses Modelica-based simulation to compare the efficiency of DC building power distribution with an equivalent alternating current (AC) distribution. The buildings are all modeled with solar generation, battery storage, and loads that are representative of the most efficient building technology. A variety of paramet ric simulations determine how and when DC distribution proves advantageous. These simulations also validate previous studies that use simplermore » approaches and arithmetic efficiency models. This work shows that using DC distribution can be considerably more efficient: a medium sized office building using DC distribution has an expected baseline of 12% savings, but may also save up to 18%. In these results, the baseline simulation parameters are for a zero net energy (ZNE) building that can island as a microgrid. DC is most advantageous in buildings with large solar capacity, large battery capacity, and high voltage distribution.« less

  12. Baseline tests of the Zagato Elcar electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.; Maslowski, E. A.; Slavick, R. J.; Soltis, R. F.

    1977-01-01

    The Elcar vehicle performance test results are presented. The Elcar Model 2000 is a two-passenger vehicle with a reinforced fiberglass body. It is powered by eight 12-volt batteries. The batteries are connected to the motor through an arrangement of contactors operated from a foot pedal in conjunction with a hand-operated switch. These contactors change the voltage applied to the 2-kilowatt motor. Acceleration tests, operating characteristics, and instrumentation are described.

  13. Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, J.; Smith, K.; Wood, E.

    2015-02-01

    Both the market penetration of plug-in electric vehicles (PEVs) and deployment of grid-connected energy storage systems are presently restricted by the high cost of batteries. Battery second use (B2U) strategies--in which a single battery first serves an automotive application, then is redeployed into a secondary market--could help address both issues by reducing battery costs to the primary (automotive) and secondary (electricity grid) users. This study investigates the feasibility of and major barriers to the second use of lithium-ion PEV batteries by posing and answering the following critical B2U questions: 1. When will used automotive batteries become available, and how healthymore » will they be? 2. What is required to repurpose used automotive batteries, and how much will it cost? 3. How will repurposed automotive batteries be used, how long will they last, and what is their value? Advanced analysis techniques are employed that consider the electrical, thermal, and degradation response of batteries in both the primary (automotive) and secondary service periods. Second use applications are treated in detail, addressing operational requirements, economic value, and market potential. The study concludes that B2U is viable and could provide considerable societal benefits due to the large possible supply of repurposed automotive batteries and substantial remaining battery life following automotive service. However, the only identified secondary market large enough to consume the supply of these batteries (utility peaker plant replacement) is expected to be a low margin market, and thus B2U is not expected to affect the upfront cost of PEVs.« less

  14. A novel thermal management system for improving discharge/charge performance of Li-ion battery packs under abuse

    NASA Astrophysics Data System (ADS)

    Arora, Shashank; Kapoor, Ajay; Shen, Weixiang

    2018-02-01

    Parasitic load, which describes electrical energy consumed by battery thermal management system (TMS), is an important design criterion for battery packs. Passive TMSs using phase change materials (PCMs) are thus generating much interest. However, PCMs suffer from low thermal conductivities. Most current thermal conductivity enhancement techniques involve addition of foreign particles to PCMs. Adding foreign particles increases effective thermal conductivity of PCM-systems but at expense of their latent heat capacity. This paper presents an alternate approach for improving thermal performance of PCM-based TMSs. The introduced technique involves placing battery cells in a vertically inverted position within the battery-pack. It is demonstrated through experiments that inverted cell-layout facilitates build-up of convection current in the pack, which in turn minimises thermal variations within the PCM matrix by enabling PCM mass transfer between the top and the bottom regions of the battery pack. The proposed system is found capable of maintaining tight control over battery cell temperature even during abusive usage, defined as high-rate repetitive cycling with minimal rest periods. In addition, this novel TMS can recover waste heat from PCM-matrix through thermoelectric devices, thereby resulting in a negative parasitic load for TMS.

  15. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    NASA Astrophysics Data System (ADS)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  16. Anticipatory and reactive responses to chocolate restriction in frequent chocolate consumers.

    PubMed

    Keeler, Chelsey L; Mattes, Richard D; Tan, Sze-Yen

    2015-06-01

    Many individuals have difficulty adhering to a weight loss diet. One possible explanation could be that dietary restriction paradoxically contributes to overconsumption. The objective of this study was to examine ingestive behavior under a forced chocolate restriction with a focus on the anticipatory restriction period and the post-restriction period in frequent chocolate consumers. Fifty-six male (N = 18) and female (N = 38) high chocolate consumers with high (N = 25) or low (N = 31) cognitive disinhibition participated. Chocolate snacks were provided for a week each to establish baseline, pre-restriction, and post-restriction consumption, Chocolate snacks were replaced with nonchocolate snacks during a 3-week chocolate restriction period. Highly disinhibited participants felt more guilty and consumed significantly more energy than low disinhibited participants across snack conditions. Low disinhibited participants consumed significantly less in the post-restriction period compared to baseline and the pre-restriction period, while high disinhibited participants consumed the same amount across all conditions. Aggregating the data, high and low disinhibited chocolate consumers ate snacks more frequently in the pre- and post-restriction periods compared to the baseline period. This study suggests that for some individuals, restriction of a preferred food like chocolate may be contraindicated for energy restriction and weight management. © 2015 The Obesity Society.

  17. An electrochemical modeling of lithium-ion battery nail penetration

    NASA Astrophysics Data System (ADS)

    Chiu, Kuan-Cheng; Lin, Chi-Hao; Yeh, Sheng-Fa; Lin, Yu-Han; Chen, Kuo-Ching

    2014-04-01

    Nail penetration into a battery pack, resulting in a state of short-circuit and thus burning, is likely to occur in electric car collisions. To demonstrate the behavior of a specific battery when subject to such incidents, a standard nail penetration test is usually performed; however, conducting such an experiment is money consuming. The purpose of this study is to propose a numerical electrochemical model that can simulate the test accurately. This simulation makes two accurate predictions. First, we are able to model short-circuited lithium-ion batteries (LIBs) via electrochemical governing equations so that the mass and charge transfer effect could be considered. Second, the temperature variation of the cell during and after nail penetration is accurately predicted with the help of simulating the temperature distribution of thermal runaway cells by thermal abuse equations. According to this nail penetration model, both the onset of battery thermal runaway and the cell temperature profile of the test are obtained, both of which are well fitted with our experimental results.

  18. Hybrid electric vehicles and electrochemical storage systems — a technology push-pull couple

    NASA Astrophysics Data System (ADS)

    Gutmann, Günter

    In the advance of fuel cell electric vehicles (EV), hybrid electric vehicles (HEV) can contribute to reduced emissions and energy consumption of personal cars as a short term solution. Trade-offs reveal better emission control for series hybrid vehicles, while parallel hybrid vehicles with different drive trains may significantly reduce fuel consumption as well. At present, costs and marketing considerations favor parallel hybrid vehicles making use of small, high power batteries. With ultra high power density cells in development, exceeding 1 kW/kg, high power batteries can be provided by adapting a technology closely related to consumer cell production. Energy consumption and emissions may benefit from regenerative braking and smoothing of the internal combustion engine (ICE) response as well, with limited additional battery weight. High power supercapacitors may assist the achievement of this goal. Problems to be solved in practice comprise battery management to assure equilibration of individual cell state-of-charge for long battery life without maintenance, and efficient strategies for low energy consumption.

  19. Application of electrochemical methods in corrosion and battery research

    NASA Astrophysics Data System (ADS)

    Sun, Zhaoli

    Various electrochemical methods have been applied in the development of corrosion protection methods for ammonia/water absorption heat pumps and the evaluation of the stability of metallic materials in Li-ion battery electrolyte. Rare earth metal salts (REMSs) and organic inhibitors have been evaluated for corrosion protection of mild steel in the baseline solution of 5 wt% NH 3 + 0.2 wt% NaOH to replace the conventionally used toxic chromate salt inhibitors. Cerium nitrate provided at least comparable corrosion inhibition efficiency as dichromate in the baseline solution at 100°C. The cerium (IV) oxide formed on mild steel through the cerating process exhibited increasing corrosion protection for mild steel with prolonged exposure time in the hot baseline solution. The optimum cerating process was found to be first cerating in a solution of 2.3 g/L CeCl3 + 4.4 wt% H2O2 + appropriate additives for 20 minutes at pH 2.2 at room temperature with 30 minutes solution aging prior to use, then sealing in 10% sodium (meta) silicate or sodium molybdate at 50°C for 30 minutes. Yttrium salts provided less corrosion protection for mild steel in the baseline solution than cerium salts. Glycerophosphate was found to be a promising chromate-free organic inhibitor for mild steel; however, its thermostability in hot ammonia/water solutions has not been confirmed yet. The stability of six metallic materials used in Li-ion batteries has been evaluated in 1M lithium hexafluorophosphate (LiPF6) dissolved in a 1:1 volume mixture of ethylene carbonate and diethyl carbonate at 37°C in a dry-box. Aluminum is the most stable material, while Copper is active under anodic potentials and susceptible to localized corrosion and galvanic corrosion. The higher the concentration of the alloying elements Al and/or V in a titanium alloy, the higher was the stability of the titanium alloy in the battery electrolyte. 90Pt-10Ir can cause decomposition of the electrolyte resulting in a low stable potential window.

  20. Minimization of the energy storage requirements of a stand-alone wind power installation by means of photovoltaic panels

    NASA Astrophysics Data System (ADS)

    Kaldellis, J. K.; Kostas, P.; Filios, A.

    2006-07-01

    Autonomous wind power systems are among the most interesting and environmentally friendly technological solutions for the electrification of remote consumers. In many cases, however, the battery contribution to the initial or the total operational cost is found to be dominant, discouraging further penetration of the available wind resource. This is basically the case for areas possessing a medium-low wind potential. On the other hand, several isolated consumers are located in regions having the regular benefit of an abundant and reliable solar energy supply. In this context the present study investigates the possibility of reducing the battery size of a stand-alone wind power installation by incorporating a small photovoltaic generator. For this purpose an integrated energy production installation based exclusively on renewable energy resources is hereby proposed. Subsequently a new numerical algorithm is developed that is able to estimate the appropriate dimensions of a similar system. According to the results obtained by long-term experimental measurements, the introduction of the photovoltaic panels considerably improves the operational and financial behaviour of the complete installation owing to the imposed significant battery capacity diminution. Copyright

  1. Performance evaluation of solar photovoltaic panel driven refrigeration system

    NASA Astrophysics Data System (ADS)

    Rajoria, C. S.; Singh, Dharmendra; Gupta, Pankaj Kumar

    2018-03-01

    The solar photovoltaic (PV) panel driven refrigeration system employs solar PV panel and play a vital role when combined with storage batteries. The variation in performance of solar PV panel driven refrigeration system has been experimentally investigated in this paper. The change in battery voltage is analyzed with respect to panel size. Different series and parallel combinations have been applied on four solar PV panels of 35W each to get 24V. With the above combination a current in the range of 3-5 ampere has been obtained depending upon the solar intensity. A refrigerator of 110 W and 50 liters is used in the present investigation which requires 0.80 ampere AC at 230 V. The required current and voltage has been obtained from an inverter which draws about 7 ampere DC from the battery bank at 24V. The compressor of the refrigerator consumed 110W which required a PV panel size of 176 W approximately. It is important to note that the compressor consumed about 300W for first 50 milliseconds, 130 W for next five seconds and gradually comes to 110 W in 65 seconds. Thus panel size should be such that it may compensate for the initial load requirement.

  2. Why Do Some Batteries Last Longer Than Others?

    NASA Astrophysics Data System (ADS)

    Smith, Michael J.; Vincent, Colin A.

    2002-07-01

    The criteria used by manufacturers to determine the market price of a commercial product are often only indirectly related to what the consumer recognizes as important. This is certainly true of the battery industry; the most expensive battery or cell does not always provide the best service. Even when the electrochemical basis for energy conversion is apparently the same, cells produced by different manufacturers often provide markedly different quantities of energy. In this experiment samples of cathode composite are removed from commercial cells and their electrochemical performance is compared using a test cell and identical discharge conditions. The results confirm that the cell with the most energy does not always have the highest price and suggest that some cell manufacturers may attribute a higher priority to other aspects of performance (power, shelf-life or resistance to abuse, for example), which increase the price without improving the quantity of deliverable energy. The objective of the experiment described in this paper is to provide information that gives the chemically aware consumer a frame of reference for future choice of cells and contributes to an improved understanding of the structure and operational basis of primary cells based on the Leclanché system.

  3. Hybrid optimal online-overnight charging coordination of plug-in electric vehicles in smart grid

    NASA Astrophysics Data System (ADS)

    Masoum, Mohammad A. S.; Nabavi, Seyed M. H.

    2016-10-01

    Optimal coordinated charging of plugged-in electric vehicles (PEVs) in smart grid (SG) can be beneficial for both consumers and utilities. This paper proposes a hybrid optimal online followed by overnight charging coordination of high and low priority PEVs using discrete particle swarm optimization (DPSO) that considers the benefits of both consumers and electric utilities. Objective functions are online minimization of total cost (associated with grid losses and energy generation) and overnight valley filling through minimization of the total load levels. The constraints include substation transformer loading, node voltage regulations and the requested final battery state of charge levels (SOCreq). The main challenge is optimal selection of the overnight starting time (toptimal-overnight,start) to guarantee charging of all vehicle batteries to the SOCreq levels before the requested plug-out times (treq) which is done by simultaneously solving the online and overnight objective functions. The online-overnight PEV coordination approach is implemented on a 449-node SG; results are compared for uncoordinated and coordinated battery charging as well as a modified strategy using cost minimizations for both online and overnight coordination. The impact of toptimal-overnight,start on performance of the proposed PEV coordination is investigated.

  4. Examination of the Test-Retest Reliability of a Computerized Neurocognitive Test Battery.

    PubMed

    Nakayama, Yusuke; Covassin, Tracey; Schatz, Philip; Nogle, Sally; Kovan, Jeff

    2014-08-01

    Test-retest reliability is a critical issue in the utility of computer-based neurocognitive assessment paradigms employing baseline and postconcussion tests. Researchers have reported low test-retest reliability for the Immediate Post Concussion Assessment and Cognitive Testing (ImPACT) across an interval of 45 and 50 days. To re-examine the test-retest reliability of the ImPACT between baseline, 45 days, and 50 days. Descriptive laboratory study. Eighty-five physically active college students (51 male, 34 female) volunteered for this study. Participants completed the ImPACT as well as a 15-item memory test at baseline, 45 days, and 50 days. Intraclass correlation coefficients (ICCs) were calculated for ImPACT composite scores, and change scores were calculated using reliable change indices (RCIs) and regression-based methods (RBMs) at 80% and 95% confidence intervals (CIs). The respective ICCs for baseline to day 45, day 45 to day 50, baseline to day 50, and overall were as follows: verbal memory (0.76, 0.69, 0.65, and 0.78), visual memory (0.72, 0.66, 0.60, and 0.74), visual motor (processing) speed (0.87, 0.88, 0.85, and 0.91), and reaction time (0.67, 0.81, 0.71, and 0.80). All ICCs exceeded the threshold value of 0.60 for acceptable test-retest reliability. All cases fell well within the 80% CI for both the RCI and RBM, while 1% to 5% of cases fell outside the 95% CI for the RCI and 1% for the RBM. Results suggest that the ImPACT is a reliable neurocognitive test battery at 45 and 50 days after the baseline assessment. The current findings agree with those of other reliability studies that have reported acceptable ICCs across 30-day to 1-year testing intervals, and they support the utility of the ImPACT for the multidisciplinary approach to concussion management. This study suggests that the computerized neurocognitive test battery, ImPACT, is a reliable test for postconcussion serial assessments. However, when managing concussed athletes, the ImPACT should not be used as a stand-alone measure. © 2014 The Author(s).

  5. High-capacity electrode materials for electrochemical energy storage: Role of nanoscale effects

    DOE PAGES

    Nanda, Jagjit; Martha, Surendra K.; Kalyanaraman, Ramki

    2015-06-02

    In this review, we summarize the current state-of-the art electrode materials used for high-capacity lithium-ion-based batteries and their significant role towards revolutionizing the electrochemical energy storage landscape in the area of consumer electronics, transportation and grid storage application. We discuss the role of nanoscale effects on the electrochemical performance of high-capacity battery electrode materials. Decrease in the particle size of the primary electrode materials from micron to nanometre size improves the ionic and electronic diffusion rates significantly. Nanometre-thick solid electrolyte (such as lithium phosphorous oxynitride) and oxides (such as Al 2O 3, ZnO, TiO 2 etc.) material coatings also improvemore » the interfacial stability and rate capability of a number of battery chemistries. Finally, we elucidate these effects in terms of different high-capacity battery chemistries based on intercalation and conversion mechanism.« less

  6. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission - Concept and laboratory testing

    NASA Astrophysics Data System (ADS)

    Gold, Lukas; Bach, Tobias; Virsik, Wolfgang; Schmitt, Angelika; Müller, Jana; Staab, Torsten E. M.; Sextl, Gerhard

    2017-03-01

    For electrically powered applications such as consumer electronics and especially for electric vehicles a precise state-of-charge estimation for their lithium-ion batteries is desired to reduce aging, e.g. avoiding detrimental states-of-charge. Today, this estimation is performed by battery management systems that solely rely on charge bookkeeping and cell voltage measurements. In the present work we introduce a new, physical probe for the state-of-charge based on ultrasonic transmission. Within the simple experimental setup raised cosine pulses are applied to lithium-ion battery pouch cells, whose signals are sensitive to changes in porosity of the graphite anode during charging/dis-charging and, therefore, to the state-of-charge. The underlying physical principle can be related to Biot's theory about propagation of waves in fluid saturated porous media and by including scattering by boundary layers inside the cell.

  7. Waste minimization charges up recycling of spent lead-acid batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queneau, P.B.; Troutman, A.L.

    Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less

  8. Electric bicycle cost calculation models and analysis based on the social perspective in China.

    PubMed

    Yan, Xuetong; He, Jie; King, Mark; Hang, Wen; Zhou, Bojian

    2018-05-10

    Electric bicycles (EBs) are increasingly popular around the world. In April 2014, EB ownership in China reached 181 million. While some aspects of the impact of EBs have been studied, most of the literature analyzing the cost of EBs has been conducted from the buyer's point of view and the perspective of social cost has not been covered, which is therefore the focus of this paper. From the consumer's point of view, only the costs paid from purchase until retirement are included in the cost of EBs, i.e., the EB acquisition cost, battery replacement cost, charging cost, and repair and maintenance cost are included. Considered from the perspective of the social cost (including impact on the environment), costs that are not paid directly by consumers should also be included in the cost of EBs, i.e., the lead-acid battery scrap processing cost, the cost of pollution caused by wastewater, and the traffic-related costs. Data are obtained from secondary sources and surveys, and calculations demonstrate that in the life cycle of an EB, the consumer cost is 6386.2 CNY, the social cost is 10,771.2 CNY, and the ratio of consumer to social cost is 1:1.69. By comparison, the ratio for motor vehicles is 1:1.06, so that the share of the life cycle cost of EBs that is not borne by the consumer is much higher than that for motor vehicles, which needs to be addressed.

  9. Results of baseline tests of the EVA metro sedan, citi-car, jet industries electra-van, CDA town car, and OTIS P-500 van

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenger, F.J.; Bozek, J.M.; Soltis, R.F.

    1976-10-01

    Five electric vehicles were tested at vehicle test tracks using the SAE. The tests provide range data at steady speeds and for several driving cycles. Most tests were conducted with lead-acid traction batteries. The Otis Van and the Copper Electric Town Car were also tested with lead-acid and nickel-zinc batteries. The tests showed a range increase of from 82 to 101 percent depending on vehicle, speed, and test cycle.

  10. Results of baseline tests of the EVA Metro sedan, Citi-car, Jet Industries Electra-van, CDA town car, and Otis P-500 van

    NASA Technical Reports Server (NTRS)

    Stenger, F. J.; Bozek, J. M.; Soltis, R. F.

    1976-01-01

    Five electric vehicles were tested at vehicle test tracks using the SAE. The tests provide range data at steady speeds and for several driving cycles. Most tests were conducted with lead-acid traction batteries. The Otis Van and the Copper Electric Town Car were also tested with lead-acid and nickel-zinc batteries. The tests showed a range increase of from 82 to 101 percent depending on vehicle, speed, and test cycle.

  11. The requirements for batteries for electric vehicles

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1976-01-01

    The paper reassesses the role of electric vehicles in the modern transportation system and their potential impact on oil consumption. Three major factors determining the size of this impact are discussed: the market potential, the date of introduction, and the rate of consumer acceptance. The strategy of selecting the battery type for an urban car to introduce in coming years is analyzed. The results of the analysis suggest that the research and development emphasis should be placed on near- and mid-term battery technology. From the standpoint of maximizing both the cumulative impact and the benefits derived in the year 2000, however, a strategy of early introduction of near-term and mid-term cars followed by the far-term vehicles seems to produce the optimum result.

  12. Enhanced recycling network for spent e-bicycle batteries: A case study in Xuzhou, China.

    PubMed

    Chen, Fu; Yang, Baodan; Zhang, Wangyuan; Ma, Jing; Lv, Jie; Yang, Yongjun

    2017-02-01

    Electric bicycles (e-bicycles) are a primary means of commuting in China because of their light weight, speed, and low maintenance costs. Owing to short service life and environmental pollution hazards, recycling and reuse of e-bicycle batteries has always been a focus of industry and academia. As a typical case of both production and use of large electric bicycles, 113 major sellers, 378 corporate and individual buyers, 147 large e-bicycle repair centers, and 1317 e-bicycle owners in Xuzhou City were investigated in order to understand the sales, use, recycling, and disposal of spent e-bicycle batteries. The findings show that the existing distempered recycling system is the main limitation of spent battery recovery, and the actual recovery rate of spent batteries is lower than the estimated output (QW) for the years 2011-2014. Electric bicycle sellers play a fundamental role in the collection of spent batteries in Xuzhou, accounting for 42.3±8.3% of all batteries recovered. The widespread use of lithium batteries in recent years has resulted in a reduction in spent battery recycling because of lower battery prices. Furthermore, consumer preferences are another important factor affecting the actual recovery rate according to survey results evaluated using canonical correspondence analysis. In this paper, we suggest that a reverse logistics network system for spent battery recycling should be established in the future; in addition, enhancing producer responsibility, increasing publicity, raising of public awareness, developing green public transport, and reducing dependence on e-bicycles also should be pursued. This study seeks to provide guidance for planning construction and management policies for an effective spent battery recycling system in China and other developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. 3-D lithium ion microbattery

    NASA Astrophysics Data System (ADS)

    Yeh, Yuting

    The lithium-ion battery has emerged as a common power source for portable consumer electronics since its debut two decades ago. Due to the low atomic weight and high electrochemical activity of lithium chemistry, lithium-ion battery has a higher energy density as compared to other battery systems, such as Ni-Cd, Ni-MH, and lead-acid batteries. As a result, use of lithium-ion batteries enables the size of batteries to be effectively reduced without compromising capacity. More importantly, as battery size is reduced, it enhances the applications of portable electronics, increasing the convenience of use. The 3-D battery architecture described in the dissertation is believed to be a new paradigm for future batteries. The architecture features coupled 3-D electrodes to provide better charge/discharge kinetics and a higher charge capacity per footprint area. The overarching objective of this dissertation is to implement the 3-D architecture using the lithium-ion chemistry. The 3-D lithium-ion batteries are designed to provide high areal energy density without compromising power density. The dissertation is comprised of four interrelated sections. First, a simulation was conducted to identify key battery parameters and to define an ideal three-dimensional cell structure. The second part of the research involved identifying fabrication routes to build the 3-D electrode, which was the key design element in the 3-D paradigm. The third part of the dissertation was to correlate the electrode performance with its geometric features. In particular, the influence of aspect ratio was investigated. Lastly, an electrolyte/separator was designed and fabricated based on the existing 3-D electrode configuration. This enabled 3-D battery to be assembled.

  14. The effect of water-containing electrolyte on lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wu, Heng-Liang; Haasch, Richard T.; Perdue, Brian R.; Apblett, Christopher A.; Gewirth, Andrew A.

    2017-11-01

    Dissolved polysulfides, formed during Li-S battery operation, freely migrate and react with both the Li anode and the sulfur cathode. These soluble polysulfides shuttle between the anode and cathode - the so-called shuttle effect - resulting in an infinite recharge process and poor Columbic efficiency. In this study, water present as an additive in the Li-S battery electrolyte is found to reduce the shuttle effect in Li-S batteries. Batteries where water content was below 50 ppm exhibited a substantial shuttle effect and low charge capacity. Alternatively, addition of 250 ppm water led to stable charge/discharge behavior with high Coulombic efficiency. XPS results show that H2O addition results in the formation of solid electrolyte interphase (SEI) film with more LiOH on Li anode which protects the Li anode from the polysulfides. Batteries cycled without water result in a SEI film with more Li2CO3 likely formed by direct contact between the Li metal and the solvent. Intermediate quantities of H2O in the electrolyte result in high cycle efficiency for the first few cycles which then rapidly decays. This suggests that H2O is consumed during battery cycling, likely by interaction with freshly exposed Li metal formed during Li deposition.

  15. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    NASA Astrophysics Data System (ADS)

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-08-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10-3 S cm-1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  16. Online estimation of lithium-ion battery capacity using sparse Bayesian learning

    NASA Astrophysics Data System (ADS)

    Hu, Chao; Jain, Gaurav; Schmidt, Craig; Strief, Carrie; Sullivan, Melani

    2015-09-01

    Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years' continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.

  17. A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

    PubMed Central

    Song, Shufeng; Duong, Hai M.; Korsunsky, Alexander M.; Hu, Ning; Lu, Li

    2016-01-01

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10−3 S cm−1. We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor. PMID:27572915

  18. Mechanically refuelable zinc/air electric vehicle cells

    NASA Astrophysics Data System (ADS)

    Noring, J.; Gordon, S.; Maimoni, A.; Spragge, M.; Cooper, J. F.

    1992-12-01

    Refuelable zinc/air batteries have long been considered for motive as well as stationary power because of a combination of high specific energy, low initial cost, and the possibility of mechanical recharge by electrolyte exchange and additions of metallic zinc. In this context, advanced slurry batteries, stationary packed bed cells, and batteries offering replaceable cassettes have been reported recently. The authors are developing self-feeding, particulate-zinc/air batteries for electric vehicle applications. Emissionless vehicle legislation in California motivated efforts to consider a new approach to providing an electric vehicle with long range (400 km), rapid refueling (10 minutes) and highway safe acceleration - factors which define the essential functions of common automobiles. Such an electric vehicle would not compete with emerging secondary battery vehicles in specialized applications (commuting vehicles, delivery trucks). Rather, different markets would be sought where long range or rapid range extension are important. Examples are: taxis, continuous-duty fork-lift trucks and shuttle busses, and general purpose automobiles having modest acceleration capabilities. In the long range, a mature fleet would best use regional plants to efficiently recover zinc from battery reaction products. One option would be to use chemical/thermal reduction to recover the zinc. The work described focuses on development of battery configurations which efficiently and completely consume zinc particles, without clogging or changing discharge characteristics.

  19. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.

    PubMed

    Song, Shufeng; Duong, Hai M; Korsunsky, Alexander M; Hu, Ning; Lu, Li

    2016-08-30

    Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

  20. Frequency of consuming foods predicts changes in cravings for those foods during weight loss: The POUNDS Lost Study

    PubMed Central

    Apolzan, John W.; Myers, Candice A.; Champagne, Catherine M.; Beyl, Robbie A.; Raynor, Hollie A.; Anton, Stephen A.; Williamson, Donald A.; Sacks, Frank M.; Bray, George A.; Martin, Corby K.

    2017-01-01

    Objective Food cravings are thought to be the result of conditioning or pairing hunger with consumption of certain foods. Methods In a two-year weight loss trial, subjects were randomized to one of four diets that varied in macronutrient content. The Food Craving Inventory (FCI) was used to measure cravings at baseline, 6, and 24 months. Also, food intake was measured at those time points. To measure free-living consumption of food items measured in the FCI, items on the FCI were matched to the foods consumed from the food intake assessments. Secondarily, we analyzed the amount of food consumed on food intake assessments from foods on the FCI. Results 367 subjects who were overweight and obese were included. There was an association between change from baseline FCI item consumption and change in cravings at months 6 (p<0.001) and 24 (p<0.05). There was no association between change from baseline amount of energy consumed per FCI item and change in cravings. Conclusions Altering frequency of consuming craved foods is positively associated with cravings; however, changing the amount of foods consumed does not appear to alter cravings. These results support the conditioning model of food cravings and provide guidance on how to reduce food cravings. PMID:28618170

  1. Color-Coded Batteries - Electro-Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.

    PubMed

    O'Dwyer, Colm

    2016-07-01

    For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-film solar cells, and wearable, flexible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color-coded "chameleon" battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A flexible Li-ion battery with design towards electrodes electrical insulation

    NASA Astrophysics Data System (ADS)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  3. Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.

    PubMed

    Bilich, Andrew; Langham, Kevin; Geyer, Roland; Goyal, Love; Hansen, James; Krishnan, Anjana; Bergesen, Joseph; Sinha, Parikhit

    2017-01-17

    Access to a reliable source of electricity creates significant benefits for developing communities. Smaller versions of electricity grids, known as microgrids, have been developed as a solution to energy access problems. Using attributional life cycle assessment, this project evaluates the environmental and energy impacts of three photovoltiac (PV) microgrids compared to other energy options for a model village in Kenya. When normalized per kilowatt hour of electricity consumed, PV microgrids, particularly PV-battery systems, have lower impacts than other energy access solutions in climate change, particulate matter, photochemical oxidants, and terrestrial acidification. When compared to small-scale diesel generators, PV-battery systems save 94-99% in the above categories. When compared to the marginal electricity grid in Kenya, PV-battery systems save 80-88%. Contribution analysis suggests that electricity and primary metal use during component, particularly battery, manufacturing are the largest contributors to overall PV-battery microgrid impacts. Accordingly, additional savings could be seen from changing battery manufacturing location and ensuring end of life recycling. Overall, this project highlights the potential for PV microgrids to be feasible, adaptable, long-term energy access solutions, with health and environmental advantages compared to traditional electrification options.

  4. Validation of the human odor span task: effects of nicotine.

    PubMed

    MacQueen, David A; Drobes, David J

    2017-10-01

    Amongst non-smokers, nicotine generally enhances performance on tasks of attention, with limited effect on working memory. In contrast, nicotine has been shown to produce robust enhancements of working memory in non-humans. To address this gap, the present study investigated the effects of nicotine on the performance of non-smokers on a cognitive battery which included a working memory task reverse-translated from use with rodents (the odor span task, OST). Nicotine has been reported to enhance OST performance in rats and the present study assessed whether this effect generalizes to human performance. Thirty non-smokers were tested on three occasions after consuming either placebo, 2 mg, or 4 mg nicotine gum. On each occasion, participants completed a battery of clinical and experimental tasks of working memory and attention. Nicotine was associated with dose-dependent enhancements in sustained attention, as evidenced by increased hit accuracy on the rapid visual information processing (RVIP) task. However, nicotine failed to produce main effects on OST performance or on alternative measures of working memory (digit span, spatial span, letter-number sequencing, 2-back) or attention (digits forward, 0-back). Interestingly, enhancement of RVIP performance occurred concomitant to significant reductions in self-reported attention/concentration. Human OST performance was significantly related to N-back performance, and as in rodents, OST accuracy declined with increasing memory load. Given the similarity of human and rodent OST performance under baseline conditions and the strong association between OST and visual 0-back accuracy, the OST may be particular useful in the study of conditions characterized by inattention.

  5. Chocolate and health-related quality of life: a prospective study.

    PubMed

    Balboa-Castillo, Teresa; López-García, Esther; León-Muñoz, Luz M; Pérez-Tasigchana, Raúl F; Banegas, José Ramón; Rodríguez-Artalejo, Fernando; Guallar-Castillón, Pilar

    2015-01-01

    Chocolate consumption has been associated with a short-term reduction in blood pressure and cholesterol, and improvement of insulin sensitivity; however, participants could not be aware of presenting hypertension or hypercholesterolemia. Moreover, the effect of chocolate on mental health is uncertain. This study assessed the association of regular chocolate consumption with the physical (PCS) and mental (MCS) components of health-related quality of life (HRQL). We analyzed data from a cohort of 4599 individuals recruited in 2008-2010 and followed-up once prospectively to January 2013 (follow-up mean: 3.5 years). Regular chocolate consumption was assessed at baseline with a validated diet history. HRQL was assessed with the SF-12 v.2 at baseline and at follow-up. Analyses were performed with linear regression and adjusted for the main confounders, including HRQL at baseline. At baseline, 72% of the study participants did not consume chocolate, 11% consumed ≤10 g/day and 17% >10 g/day. Chocolate consumption at baseline did not show an association with PCS and MCS of the SF-12 measured three years later. Compared to those who did not consume chocolate, the PCS scores were similar in those who consumed ≤10 g/day (beta: -0.07; 95% confidence interval (95% CI): -0.94 to 0.80) and in those who consumed >10 g/day (beta: 0.02; 95% CI:-0.71 to 0.75); corresponding figures for the MCS were 0.29; 95% CI: -0.67 to 1.26, and -0.57; 95%CI: -1.37 to 0.23. Similar results were found for sex, regardless of obesity, hypertension, hypercholesterolemia, diabetes or depression. No evidence was found of an association between chocolate intake and the physical or mental components of HRQL.

  6. Chocolate and Health-Related Quality of Life: A Prospective Study

    PubMed Central

    Balboa-Castillo, Teresa; López-García, Esther; León-Muñoz, Luz M.; Pérez-Tasigchana, Raúl F.; Banegas, José Ramón; Rodríguez-Artalejo, Fernando; Guallar-Castillón, Pilar

    2015-01-01

    Background Chocolate consumption has been associated with a short-term reduction in blood pressure and cholesterol, and improvement of insulin sensitivity; however, participants could not be aware of presenting hypertension or hypercholesterolemia. Moreover, the effect of chocolate on mental health is uncertain. This study assessed the association of regular chocolate consumption with the physical (PCS) and mental (MCS) components of health-related quality of life (HRQL). Materials and methods We analyzed data from a cohort of 4599 individuals recruited in 2008–2010 and followed-up once prospectively to January 2013 (follow-up mean: 3.5 years). Regular chocolate consumption was assessed at baseline with a validated diet history. HRQL was assessed with the SF-12 v.2 at baseline and at follow-up. Analyses were performed with linear regression and adjusted for the main confounders, including HRQL at baseline. Results At baseline, 72% of the study participants did not consume chocolate, 11% consumed ≤10 g/day and 17% >10 g/day. Chocolate consumption at baseline did not show an association with PCS and MCS of the SF-12 measured three years later. Compared to those who did not consume chocolate, the PCS scores were similar in those who consumed ≤10g/day (beta: -0.07; 95% confidence interval (95% CI): -0.94 to 0.80) and in those who consumed >10g/day (beta: 0.02; 95% CI:-0.71 to 0.75); corresponding figures for the MCS were 0.29; 95% CI: -0.67 to 1.26, and -0.57; 95%CI: -1.37 to 0.23. Similar results were found for sex, regardless of obesity, hypertension, hypercholesterolemia, diabetes or depression. Conclusions No evidence was found of an association between chocolate intake and the physical or mental components of HRQL. PMID:25901348

  7. A reliable data collection/control system

    NASA Technical Reports Server (NTRS)

    Maughan, Thom

    1988-01-01

    The Cal Poly Space Project requires a data collection/control system which must be able to reliably record temperature, pressure and vibration data. It must also schedule the 16 electroplating and 2 immiscible alloy experiments so as to optimize use of the batteries, maintain a safe package temperature profile, and run the experiment during conditions of microgravity (and minimum vibration). This system must operate unattended in the harsh environment of space and consume very little power due to limited battery supply. The design of a system which meets these requirements is addressed.

  8. Enabling fast charging - Introduction and overview

    NASA Astrophysics Data System (ADS)

    Michelbacher, Christopher; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Barney; Dias, Fernando; Dufek, Eric J.; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Meintz, Andrew; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir; Vijayagopal, Ram; Zhang, Jiucai

    2017-11-01

    The pursuit of U.S. energy security and independence has taken many different forms throughout the many production and consumption sectors. For consumer transportation, a greater reliance on power train electrification has gained traction due to the inherent efficiencies of these platforms, particularly through the use of electric motors and batteries. Vehicle electrification can be generalized into three primary categories-hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs); the latter two, PHEVs and BEVs, are often referred to as plug-in electric vehicles (PEVs).

  9. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    NASA Astrophysics Data System (ADS)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  10. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S.

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-basedmore » lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 degrees C, this work advances lithium-ion battery technology into unprecedented regimes of operation.« less

  11. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    PubMed

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  12. Nickel-metal hydride battery development. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    Rechargeable batteries are used as the power source for a broad range of portable equipment. Key battery selection criteria typically are weight, volume, first cost, life cycle cost, and environmental impact. Rechargeable batteries are favored from a life cycle cost and environmental impact standpoint over primary batteries. The nickel-metal hydride (Ni-MH) battery system has emerged as the battery of choice for many applications based on its superior characteristics when judged on the above criteria against other battery types. In most cases commercial Ni-MH batteries are constructed with coiled electrodes in cylindrical metal containers. Electro Energy, Inc. (EEI) has been developingmore » a novel flat bipolar configuration of the Ni-MH system that offers weight, volume, and cost advantages when compared to cylindrical cells. The unique bipolar approach consists of fabricating individual flat wafer cells in conductive, carbon-filled, plastic face plates. The individual cells contain a nonconductive plastic border which is heat sealed around the perimeter to make a totally sealed unit cell. Multi-cell batteries are fabricated by stacking the individual wafer cells in such a way that the positive face of one cell contacts the negative face of the adjacent cell. The stack is then contained in an outer housing with end contacts. The purpose of this program was to develop, evaluate, and demonstrate the capabilities of the EEI Ni-MH battery system for consumer applications. The work was directed at the development and evaluation of the compact bipolar construction for its potential advantages of high power and energy density. Experimental investigations were performed on various nickel electrode types, hydride electrode formulations, and alternate separator materials. Studies were also directed at evaluating various oxygen recombination techniques for low pressure operation during charge and overcharge.« less

  13. Test-retest reliability and task order effects of emotional cognitive tests in healthy subjects.

    PubMed

    Adams, Thomas; Pounder, Zoe; Preston, Sally; Hanson, Andy; Gallagher, Peter; Harmer, Catherine J; McAllister-Williams, R Hamish

    2016-11-01

    Little is known of the retest reliability of emotional cognitive tasks or the impact of using different tasks employing similar emotional stimuli within a battery. We investigated this in healthy subjects. We found improved overall performance in an emotional attentional blink task (EABT) with repeat testing at one hour and one week compared to baseline, but the impact of an emotional stimulus on performance was unchanged. Similarly, performance on a facial expression recognition task (FERT) was better one week after a baseline test, though the relative effect of specific emotions was unaltered. There was no effect of repeat testing on an emotional word categorising, recall and recognition task. We found no difference in performance in the FERT and EABT irrespective of task order. We concluded that it is possible to use emotional cognitive tasks in longitudinal studies and combine tasks using emotional facial stimuli in a single battery.

  14. A Longitudinal Study of Mental Health Consumer/Survivor Initiatives: Part 2--A Quantitative Study of Impacts of Participation on New Members

    ERIC Educational Resources Information Center

    Nelson, Geoffrey; Ochocka, Joanna; Janzen, Rich; Trainor, John

    2006-01-01

    To evaluate the impacts of participation in mental health Consumer/Survivor Initiatives (CSIs), we used a nonequivalent control group design to compare new, active participants in CSIs ( n = 61) with nonactive participants ( n = 57) at baseline, 9-month, and 18-month follow-up intervals. The two groups were comparable at baseline on a wide range…

  15. Influence of nutrition labelling on food portion size consumption.

    PubMed

    McCann, Mary T; Wallace, Julie M W; Robson, Paula J; Rennie, Kirsten L; McCaffrey, Tracy A; Welch, Robert W; Livingstone, M Barbara E

    2013-06-01

    Nutrition labelling is an important strategic approach for encouraging consumers to make healthier food choices. The availability of highly palatable foods labelled as 'low fat or reduced calorie' may encourage the over-consumption of these products. This study aimed to determine whether the manipulation of nutrition labelling information can influence food portion size consumption. Normal and overweight men (n=24) and women (n=23) were served an identical lunch meal on three separate days, but the information they received prior to consuming the lunch meal was manipulated as follows: "baseline", "high fat/energy" and "low fat/energy". Food and energy intake was significantly increased in the low fat/energy condition compared with both baseline and the high fat/energy condition. An additional 3% (162 kJ) energy was consumed by subjects under the low fat/energy condition compared to baseline. No differences were observed between the baseline and high fat/energy condition. Subjects who consumed most in the low fat/energy condition were found to be mostly men, to have a higher BMI and to be overweight. Low fat/energy information can positively influence food and energy intake, suggesting that foods labelled as 'low fat' or 'low calorie' may be one factor promoting the consumption of large food portions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  17. Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring.

    PubMed

    Dieffenderfer, James P; Beppler, Eric; Novak, Tristan; Whitmire, Eric; Jayakumar, Rochana; Randall, Clive; Qu, Weiguo; Rajagopalan, Ramakrishnan; Bozkurt, Alper

    2014-01-01

    We present a solar-powered, wireless, wrist-worn platform for continuous monitoring of physiological and environmental parameters during the activities of daily life. In this study, we demonstrate the capability to produce photoplethysmogram (PPG) signals using this platform. To adhere to a low power budget for solar-powering, a 574 nm green light source is used where the PPG from the radial artery would be obtained with minimal signal conditioning. The system incorporates two monocrystalline solar cells to charge the onboard 20 mAh lithium polymer battery. Bluetooth Low Energy (BLE) is used to tether the device to a smartphone that makes the phone an access point to a dedicated server for long term continuous storage of data. Two power management schemes have been proposed depending on the availability of solar energy. In low light situations, if the battery is low, the device obtains a 5-second PPG waveform every minute to consume an average power of 0.57 mW. In scenarios where the battery is at a sustainable voltage, the device is set to enter its normal 30 Hz acquisition mode, consuming around 13.7 mW. We also present our efforts towards improving the charge storage capacity of our on-board super-capacitor.

  18. Consumer satisfaction with the Child and Adolescent Mental Health Service and its association with treatment outcome: a 3-4-year follow-up study.

    PubMed

    Solberg, Cathrine; Larsson, Bo; Jozefiak, Thomas

    2015-04-01

    Consumer satisfaction studies with the Child and Adolescent Mental Health Service (CAMHS) have mainly assessed evaluations in a short-term follow-up perspective. Adolescent reports with CAMHS have not been included nationally. The purposes of this study were to explore adolescent and parental satisfaction with the CAMHS in a 3-4-year follow-up perspective, and to examine the relationships between reported consumer satisfaction and clinical parameters such as reason for adolescent referral, emotional/behavioral symptoms and treatment outcome. Of 190 adolescent-parent pairs in a sample of CAMHS outpatients, 120 completed a Consumer Satisfaction Questionnaire. Parents assessed adolescent emotional/behavior problems both at baseline and at follow-up by completing the Child Behavior Checklist (CBCL). Correlations were examined between adolescent and parental evaluations. The relationships between service satisfaction and symptom load at baseline and follow-up and treatment outcome at follow-up were explored. Overall, adolescents and parents were satisfied with the services received from the CAMHS. The correlations between adolescent and parent consumer satisfaction ratings were low to moderate. Consumer satisfaction was significantly and negatively correlated with symptom load on the CBCL Total Problems scores at baseline, but not at follow-up. There was no difference in satisfaction levels between those who improved after treatment and those who did not. Given the differences in informant ratings of consumer satisfaction, it is important to include both adolescent and parental perceptions in evaluations of CAMHS services and treatment outcomes. Consumer satisfaction should serve as a supplement to established standardized outcome measures.

  19. PROSPECTIVE STUDY OF READY-TO-EAT BREAKFAST CEREAL CONSUMPTION AND COGNITIVE DECLINE AMONG ELDERLY MEN AND WOMEN IN CACHE COUNTY, UTAH, STUDY ON MEMORY, HEALTH, AND AGING

    PubMed Central

    WENGREEN, H.; NELSON, C.; MUNGER, R.G.; CORCORAN, C.

    2013-01-01

    Objective To examine associations between frequency of ready-to-eat-cereal (RTEC) consumption and cognitive function among elderly men and women of the Cache County Study on Memory and Aging in Utah. Design A population-based prospective cohort study established in Cache County, Utah in 1995. Setting and Participants 3831 men and women > 65 years of age who were living in Cache County, Utah in 1995. Measurement Diet was assessed using a 142-item food frequency questionnaire at baseline. Cognitive function was assessed using an adapted version of the Modified Mini-Mental State examination (3MS) at baseline and three subsequent interviews over 11 years. RTEC consumption was defined as daily, weekly, or infrequent use. Results In multivariable models, more frequent RTEC consumption was not associated with a cognitive benefit. Those consuming RTEC weekly but less than daily scored higher on their baseline 3MS than did those consuming RTEC more or less frequently (91.7, 90.6, 90.6, respectively; p-value <0.001). This association was maintained across 11 years of observation such that those consuming RTEC weekly but less than daily declined on average 3.96 points compared to an average 5.13 and 4.57 point decline for those consuming cereal more or less frequently (p-value = 0.0009). Conclusion Those consuming RTEC at least daily had poorer cognitive performance at baseline and over 11 years of follow-up compared to those who consumed cereal more or less frequently. RTEC is a nutrient dense food, but should not replace the consumption of other healthy foods in the diets’ of elderly people. Associations between RTEC consumption, dietary patterns, and cognitive function deserve further study. PMID:21369668

  20. Regulating the disposal of cigarette butts as toxic hazardous waste.

    PubMed

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  1. Regulating the disposal of cigarette butts as toxic hazardous waste

    PubMed Central

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment. PMID:21504925

  2. Batteries: Overview of Battery Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however,more » alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writing, a very active field.« less

  3. Accelerated test plan for nickel cadmium spacecraft batteries

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1973-01-01

    An accelerated test matrix is outlined that includes acceptance, baseline and post-cycling tests, chemical and physical analyses, and the data analysis procedures to be used in determining the feasibility of an accelerated test for sealed, nickel cadmium cells.

  4. Remotely-actuated biomedical switch

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1969-01-01

    Remotely-actuated biomedical switching circuit using transistors consumes no power in the off position and can be actuated by a single-frequency telemetry pulse to control implanted instrumentation. Silicon controlled rectifiers permit the circuit design which imposes zero drain on supply batteries when not in use.

  5. Vehicle test report: Battronic pickup truck

    NASA Technical Reports Server (NTRS)

    Price, T. W.; Shain, T. W.; Freeman, R. J.; Pompa, M. F.

    1982-01-01

    An electric pickup truck was tested to characterize certain parameters and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other vehicles.

  6. Current status of solid-state lithium batteries employing solid redox polymerization cathodes

    NASA Astrophysics Data System (ADS)

    Visco, S. J.; Doeff, M. M.; Dejonghe, L. C.

    1991-03-01

    The rapidly growing demand for secondary batteries having high specific energy and power has naturally led to increased efforts in lithium battery technology. Still, the increased safety risks associated with high energy density systems has tempered the enthusiasm of proponents of such systems for use in the consumer marketplace. The inherent advantages of all-solid-state batteries in regards to safety and reliability are strong factors in advocating their introduction to the marketplace. However, the low ionic conductivity of solid electrolytes relative to nonaqueous liquid electrolytes implies low power densities for solid state systems operating at ambient temperatures. Recent advances in polymer electrolytes have led to the introduction of solid electrolytes having conductivities in the range of 10(exp -4)/ohm cm at room temperature; this is still two orders of magnitude lower than liquid electrolytes. Although these improved ambient conductivities put solid state batteries in the realm of practical devices, it is clear that solid state batteries using such polymeric separators will be thin film devices. Fortunately, thin film fabrication techniques are well established in the plastics and paper industry, and present the possibility of continuous web-form manufacturing. This style of battery manufacture should make solid polymer batteries very cost-competitive with conventional secondary cells. In addition, the greater geometric flexibility of thin film solid state cells should provide benefits in terms of the end-use form factor in device design. This work discusses the status of solid redox polymerization cathodes.

  7. Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries.

    PubMed

    Li, Jiachen; Pu, Jun; Liu, Ziqiang; Wang, Jian; Wu, Wenlu; Zhang, Huigang; Ma, Haixia

    2017-08-02

    The energy and power densities of rechargeable batteries urgently need to be increased to meet the ever-increasing demands of consumer electronics and electric vehicles. Alloy anodes are among the most promising candidates for next-generation high-capacity battery materials. However, the high capacities of alloy anodes usually suffer from some serious difficulties related to the volume changes of active materials. Porous supports and nanostructured alloy materials have been explored to address these issues. However, these approaches seemingly increase the active material-based properties and actually decrease the electrode-based capacity because of the oversized pores and heavy mass of mechanical supports. In this study, we developed an ultralight porous nickel to scaffold with high-capacity SnSb alloy anodes. The porous-nickel-supported SnSb alloy demonstrates a high specific capacity and good cyclability for both Li-ion and Na-ion batteries. Its capacity retains 580 mA h g -1 at 2 A g -1 after 100 cycles in Li-ion batteries. For a Na-ion battery, the composite electrode can even deliver a capacity of 275 mA h g -1 at 1 A g -1 after 1000 cycles. This study demonstrates that combining the scaffolding function of ultralight porous nickel and the high capacity of the SnSb alloy can significantly enhance the electrochemical performances of Li/Na-ion batteries.

  8. Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators

    NASA Astrophysics Data System (ADS)

    Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing

    Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.

  9. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage

    PubMed Central

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-01-01

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices. PMID:25650133

  10. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage.

    PubMed

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-02-04

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.

  11. Study on Battery Capacity for Grid-connection Power Planning with Forecasts in Clustered Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke

    This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.

  12. The LIFE Cognition Study: design and baseline characteristics

    PubMed Central

    Sink, Kaycee M; Espeland, Mark A; Rushing, Julia; Castro, Cynthia M; Church, Timothy S; Cohen, Ronald; Gill, Thomas M; Henkin, Leora; Jennings, Janine M; Kerwin, Diana R; Manini, Todd M; Myers, Valerie; Pahor, Marco; Reid, Kieran F; Woolard, Nancy; Rapp, Stephen R; Williamson, Jeff D

    2014-01-01

    Observational studies have shown beneficial relationships between exercise and cognitive function. Some clinical trials have also demonstrated improvements in cognitive function in response to moderate–high intensity aerobic exercise; however, these have been limited by relatively small sample sizes and short durations. The Lifestyle Interventions and Independence for Elders (LIFE) Study is the largest and longest randomized controlled clinical trial of physical activity with cognitive outcomes, in older sedentary adults at increased risk for incident mobility disability. One LIFE Study objective is to evaluate the effects of a structured physical activity program on changes in cognitive function and incident all-cause mild cognitive impairment or dementia. Here, we present the design and baseline cognitive data. At baseline, participants completed the modified Mini Mental Status Examination, Hopkins Verbal Learning Test, Digit Symbol Coding, Modified Rey–Osterrieth Complex Figure, and a computerized battery, selected to be sensitive to changes in speed of processing and executive functioning. During follow up, participants completed the same battery, along with the Category Fluency for Animals, Boston Naming, and Trail Making tests. The description of the mild cognitive impairment/dementia adjudication process is presented here. Participants with worse baseline Short Physical Performance Battery scores (prespecified at ≤7) had significantly lower median cognitive test scores compared with those having scores of 8 or 9 with modified Mini Mental Status Examination score of 91 versus (vs) 93, Hopkins Verbal Learning Test delayed recall score of 7.4 vs 7.9, and Digit Symbol Coding score of 45 vs 48, respectively (all P<0.001). The LIFE Study will contribute important information on the effects of a structured physical activity program on cognitive outcomes in sedentary older adults at particular risk for mobility impairment. In addition to its importance in the area of prevention of cognitive decline, the LIFE Study will also likely serve as a model for exercise and other behavioral intervention trials in older adults. PMID:25210447

  13. Predictors of patient communication in psychiatric medication encounters among veterans with serious mental illnesses.

    PubMed

    Hack, Samantha M; Medoff, Deborah R; Brown, Clayton H; Fang, Lijuan; Dixon, Lisa B; Klingaman, Elizabeth A; Park, Stephanie G; Kreyenbuhl, Julie A

    2016-06-01

    Person-centered psychiatric services rely on consumers actively sharing personal information, opinions, and preferences with their providers. This research examined predictors of consumer communication during appointments for psychiatric medication prescriptions. The Roter Interaction Analysis System was used to code recorded Veterans Affairs psychiatric appointments with 175 consumers and 21 psychiatric medication prescribers and categorize communication by purpose: biomedical, psychosocial, facilitation, or rapport-building. Regression analyses found that greater provider communication, symptomology, orientation to psychiatric recovery, and functioning on the Repeatable Battery for the Assessment of Neuropsychological Status Attention and Language indices, as well as consumer diagnostic label, were positive predictors of consumer communication, though the types of communication impacted varied. Provider communication is the easiest variable to intervene on to create changes in consumer communication. Future research should also consider how cognitive and symptom factors may impact specific types of consumer communication in order to identify subgroups for targeted interventions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Adaptive prognosis of lithium-ion batteries based on the combination of particle filters and radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Sbarufatti, Claudio; Corbetta, Matteo; Giglio, Marco; Cadini, Francesco

    2017-03-01

    Lithium-Ion rechargeable batteries are widespread power sources with applications to consumer electronics, electrical vehicles, unmanned aerial and spatial vehicles, etc. The failure to supply the required power levels may lead to severe safety and economical consequences. Thus, in view of the implementation of adequate maintenance strategies, the development of diagnostic and prognostic tools for monitoring the state of health of the batteries and predicting their remaining useful life is becoming a crucial task. Here, we propose a method for predicting the end of discharge of Li-Ion batteries, which stems from the combination of particle filters with radial basis function neural networks. The major innovation lies in the fact that the radial basis function model is adaptively trained on-line, i.e., its parameters are identified in real time by the particle filter as new observations of the battery terminal voltage become available. By doing so, the prognostic algorithm achieves the flexibility needed to provide sound end-of-discharge time predictions as the charge-discharge cycles progress, even in presence of anomalous behaviors due to failures or unforeseen operating conditions. The method is demonstrated with reference to actual Li-Ion battery discharge data contained in the prognostics data repository of the NASA Ames Research Center database.

  15. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  16. An Independent, Prospective, Head to Head Study of the Reliability and Validity of Neurocognitive Test Batteries for the Assessment of Mild Traumatic Brain Injury

    DTIC Science & Technology

    2013-03-01

    hockey, field hockey, rugby, wrestling), football will provide the large quantity of both baseline testing participants and concussed athletes. 6...baselines (7.0% overall) • Injury protocol completed on 10 concussed athletes and 10 matched controls in fall sports season (excluding football 2012...Neurobehavioral Assessment (DANA), and Immediate Post- Concussion Assessment and Cognitive Testing (ImPACT). The study design involves both a Sports

  17. 16 CFR § 1500.88 - Exemptions from lead limits under section 101 of the Consumer Product Safety Improvement Act for...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (9) Lead oxide in the glass envelope of Black Light Blue (BLB) lamps. (e) Components of electronic devices that are removable or replaceable, such as battery packs and light bulbs that are inaccessible...

  18. 16 CFR 1500.88 - Exemptions from lead limits under section 101 of the Consumer Product Safety Improvement Act for...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (9) Lead oxide in the glass envelope of Black Light Blue (BLB) lamps. (e) Components of electronic devices that are removable or replaceable, such as battery packs and light bulbs that are inaccessible...

  19. 16 CFR 1500.88 - Exemptions from lead limits under section 101 of the Consumer Product Safety Improvement Act for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... (9) Lead oxide in the glass envelope of Black Light Blue (BLB) lamps. (e) Components of electronic devices that are removable or replaceable, such as battery packs and light bulbs that are inaccessible...

  20. 16 CFR 1500.88 - Exemptions from lead limits under section 101 of the Consumer Product Safety Improvement Act for...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (9) Lead oxide in the glass envelope of Black Light Blue (BLB) lamps. (e) Components of electronic devices that are removable or replaceable, such as battery packs and light bulbs that are inaccessible...

  1. 49 CFR 535.4 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION MEDIUM- AND HEAVY-DUTY VEHICLE FUEL EFFICIENCY PROGRAM § 535.4 Definitions. The... fuel cell. Fuel efficiency means the amount of work performed for each gallon of fuel consumed. Good... engine or powertrain that includes energy storage features other than a conventional battery system or...

  2. Symposium on Rechargeable Lithium Batteries, Hollywood, FL, Oct. 19-24, 1989, Proceedings

    NASA Technical Reports Server (NTRS)

    Subbarao, S. (Editor); Koch, V. R. (Editor); Owens, B. B. (Editor); Smyrl, W. H. (Editor)

    1990-01-01

    Recent advances in the technology and applications of rechargeable Li cells are discussed in reviews and reports. A general overview of the field is provided, and sections are devoted to organic electrolyte systems, polymeric electrolyte systems, inorganic electrolytes systems, and molten-salt electrolytes. Particular attention is given to electrolyte stabilization, the effects of organic additives on electrolyte performance, a cycle-life sensor, consumer-product applications, in situ measurements of gas evolution in Li secondary cells, ultrathin polymer cathodes, electrochemical growth of conducting polymers, and sealing Li/FeS(x) cells for a bipolar battery.

  3. Assessing Functional Performance using a Computer-Based Simulations of Everyday Activities

    PubMed Central

    Czaja, Sara J.; Loewenstein, David A.; Lee, Chin Chin; Fu, Shih Hua; Harvey, Philip D.

    2016-01-01

    Current functional capacity (FC) measures for patients with schizophrenia typically involve informant assessments or are in paper and pencil format, requiring in-person administration by a skilled assessor. This approach presents logistic problems and limits the possibilities for remote assessment, an important issue for these patients. This study evaluated the feasibility of using a computer-based assessment battery, including simulations of everyday activities. The battery was compared to in-person standard assessments of cognition and FC with respect to baseline convergence and sensitivity to group differences. The battery, administered on a touch screen computer, included measures of critical everyday activities, including: ATM Banking/Financial Management, Prescriptions Refill via Telephone/Voice Menu System, and Forms Completion (simulating a clinic and patient history form). The sample included 77 older adult patients with schizophrenia and 24 older adult healthy controls that were administered the battery at two time points. The results indicated that the battery was sensitive to group differences in FC. Performance on the battery was also moderately correlated with standard measures of cognitive abilities and showed convergence with standard measures of FC, while demonstrating good test-retest reliability. Our results show that it is feasible to use technology-based assessment protocols with older adults and patients with schizophrenia. The battery overcomes logistic constraints associated with current FC assessment protocols as the battery is computer-based, can be delivered remotely and does not require a healthcare professional for administration. PMID:27913159

  4. A new class of solid oxide metal-air redox batteries for advanced stationary energy storage

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan

    Cost-effective and large-scale energy storage technologies are a key enabler of grid modernization. Among energy storage technologies currently being researched, developed and deployed, rechargeable batteries are unique and important that can offer a myriad of advantages over the conventional large scale siting- and geography- constrained pumped-hydro and compressed-air energy storage systems. However, current rechargeable batteries still need many breakthroughs in material optimization and system design to become commercially viable for stationary energy storage. This PhD research project investigates the energy storage characteristics of a new class of rechargeable solid oxide metal-air redox batteries (SOMARBs) that combines a regenerative solid oxide fuel cell (RSOFC) and hydrogen chemical-looping component. The RSOFC serves as the "electrical functioning unit", alternating between the fuel cell and electrolysis mode to realize discharge and charge cycles, respectively, while the hydrogen chemical-looping component functions as an energy storage unit (ESU), performing electrical-chemical energy conversion in situ via a H2/H2O-mediated metal/metal oxide redox reaction. One of the distinctive features of the new battery from conventional storage batteries is the ESU that is physically separated from the electrodes of RSOFC, allowing it to freely expand and contract without impacting the mechanical integrity of the entire battery structure. This feature also allows an easy switch in the chemistry of this battery. The materials selection for ESU is critical to energy capacity, round-trip efficiency and cost effectiveness of the new battery. Me-MeOx redox couples with favorable thermodynamics and kinetics are highly preferable. The preliminary theoretical analysis suggests that Fe-based redox couples can be a promising candidate for operating at both high and low temperatures. Therefore, the Fe-based redox-couple systems have been selected as the baseline for this study, the constituted battery of which is termed solid oxide iron-air redox battery (or SOFeARB). The first objective of this PhD work is aimed at demonstrating the proof-of-concept. By combining a commercial anode-supported tubular RSOFC and Fe-based redox couple, the first generation SOFeARB operated at 800°C has been demonstrated to produce an energy capacity of 348Wh/kg-Fe and round-trip efficiency of 91.5% over twenty stable charge/discharge cycles. Further system optimization leads to an 800°C-SOFeARB comprised of a commercial electrolyte-supported planar RSOFC and Fe-based redox couple; this configuration has become a standard testing system for later studies. The 800°C planar SOFeARBs have been investigated under various current densities and cycle durations. The results show that metal utilization plays a determining role in balancing the energy capacity and round-trip efficiency. Increasing metal utilization increases the energy capacity, but at the expense of lowered round-trip efficiency. The second objective of this work is to lower the operating temperature of SOMARBs to intermediate temperature (IT) range (e.g. 550-650°C). Two changes were made in order to enable operation at IT range: introduction of optimized Sr- and Mg- doped LaGaO3 (LSGM) based RSOFC by tape-casting and infiltration techniques, and optimization of morphology of ESU through innovative synthesis methods. The optimized battery can reach a round-trip efficiency as high as 82.5% and specific energy 91% of the theoretical value in the IT range. The third objective of this work is to improve the cyclic durability and stability of IT-SOFeARBs. The results show that the performance, reversibility and stability of a 550°C-SOFeARB can be significantly improved by nanostructuring energy storage materials synthesized from a low-cost carbothermic reaction. The 100-cycle test explicitly shows an improvement of 12.5%, 27.8% and 214% in specific energy, round-trip efficiency and stability, respectively, over the baseline battery. The fourth objective of this work is to explore metal-air chemistries other than Fe-air. The two new metal-air chemistries of choice are W-air and Mo-air. The selection of W and Mo as the redox metals is based on their faster kinetic rate and higher specific densities per oxygen than the Fe-based counterparts. Each battery was electrochemically compared with the baseline SOFeARB at a specific temperature. The results show that these heavy metals based SOMARBs can indeed produce higher energy density (capacity per unit volume) than the baseline battery SOFeARB by allowing more mass loading and higher oxygen storage capacity. The better kinetic rates also lead to a higher cycle efficiency and cycle stability. In summary, this dissertation work demonstrates a new energy storage mechanism that has great potential for stationary applications. The new storage battery has been studied in the perspectives of theoretical assessment, materials development, parametric optimization, and test methodology. According to these systematic investigations, a set of standard testing and characterization protocols has been configured for future testing of larger systems. Thermodynamics and kinetics have constantly been employed to guide materials selection and electrochemical testing. The experimental results are often found consistent with the theoretical predictions.

  5. Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp

    2017-01-01

    All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.

  6. The relative contribution of neurocognition and social cognition to 6-month vocational outcomes following Individual Placement and Support in first-episode psychosis.

    PubMed

    Allott, Kelly A; Cotton, Susan M; Chinnery, Gina L; Baksheev, Gennady N; Massey, Jessica; Sun, Pamela; Collins, Zoe; Barlow, Emma; Broussard, Christina; Wahid, Tasha; Proffitt, Tina-Marie; Jackson, Henry J; Killackey, Eoin

    2013-10-01

    To examine whether baseline neurocognition and social cognition predict vocational outcomes over 6 months in patients with first-episode psychosis (FEP) enrolled in a randomised controlled trial of Individual Placement and Support (IPS) versus treatment as usual (TAU). 135 FEP participants (IPS n=69; TAU n=66) completed a comprehensive neurocognitive and social cognitive battery. Principal axis factor analysis using PROMAX rotation was used to determine the underlying cognitive structure of the battery. Setwise (hierarchical) logistic and multivariate linear regressions were used to examine predictors of: (a) enrolment in education and employment; and (b) hours of employment over 6 months. Neurocognition and social cognition factors were entered into the models after accounting for premorbid IQ, baseline functioning and treatment group. Six cognitive factors were extracted: (i) social cognition; (ii) information processing speed; (iii) verbal learning and memory; (iv) attention and working memory; (v) visual organisation and memory; and (vi) verbal comprehension. Enrolment in education over 6 months was predicted by enrolment in education at baseline (p=.002) and poorer visual organisation and memory (p=.024). Employment over 6 months was predicted by employment at baseline (p=.041) and receiving IPS (p=.020). Better visual organisation and memory predicted total hours of paid work over 6 months (p<.001). Visual organisation and memory predicted the enrolment in education and duration of employment, after accounting for premorbid IQ, baseline functioning and treatment. Social cognition did not contribute to the prediction of vocational outcomes. Neurocognitive interventions may enhance employment duration in FEP. © 2013 Elsevier B.V. All rights reserved.

  7. Transportation Secure Data Center Publications | Transportation Secure Data

    Science.gov Websites

    : Emerging Technologies, June 2015 Pavement Performance Evaluation Using Connected Vehicles Author: R Research Procedia, 2015 Quantification of Temperature Implications and Investigation of Battery Design Design, and Consumer Usage Authors: E. Wood, J. Neubauer, A. Brooker, J. Gonder, and K. Smith Conference

  8. Baseline tests of the battronic Minivan electric delivery van

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Soltis, R. F.; Bozek, J. M.; Maslowski, E. A.

    1977-01-01

    An electric passenger vehicle was tested to develop data characterizing the state of the art of electric and hybrid vehicles. The test measured vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability and limit, road energy consumption, road power, indicated energy consumption, braking capability and battery charge efficiency. The data obtained are to serve as a baseline to compare improvements in electric and hybrid vehicle technologies and to assist in establishing performance standards.

  9. Adolescent risk-taking under stressed and non-stressed conditions: Conservative, calculating and impulsive types

    PubMed Central

    Johnson, Sara B.; Dariotis, Jacinda K.; Wang, Constance

    2012-01-01

    Purpose Adolescent risk-taking may result from heightened susceptibility to environmental cues, particularly emotion and potential rewards. This study evaluated the impact of social stress on adolescent risk-taking, accounting for individual differences in risk-taking under non-stressed conditions. Methods Eighty-nine older adolescents completed a computerized risk-taking and decision-making battery at baseline. At follow-up, participants were randomized to a control condition, which repeated this battery, or an experimental condition, which included a social and cognitive stressor before the battery. Baseline risk-taking data were cluster-analyzed to create groups of adolescents with similar risk-taking tendencies. The degree to which these risk-taking tendencies predicted risk-taking by stress condition at follow-up was assessed. Results Participants in the stress condition took more risks those in the no-stress condition. However, differences in risk-taking under stress were related to baseline risk-taking tendencies. We observed three types of risk-takers: conservative, calculated, and impulsive. Impulsives were less accurate and planful under stress, calculated risk-takers took fewer risks, and conservatives engaged in low risk-taking regardless of stress. Conclusions As a group, adolescents are more likely to take risks in “hot cognitive” than in “cold cognitive” situations. However, there is significant variability in adolescents’ behavioral responses to stress related to trait-level risk-taking tendencies. Implications and contribution Many, but not all, adolescents take more risks under social stress. Parents and clinicians should be aware that behavior is a function of both personality and environmental cues. Interventions may help adolescents recognize their risk-taking propensity and environmental “triggers” that undermine their attempts to control their behavior. PMID:22794532

  10. Concussion-Management Practice Patterns of National Collegiate Athletic Association Division II and III Athletic Trainers: How the Other Half Lives.

    PubMed

    Buckley, Thomas A; Burdette, Glenn; Kelly, Kassandra

    2015-08-01

    The National Collegiate Athletic Association (NCAA) has published concussion-management practice guidelines consistent with recent position and consensus statements. Whereas NCAA Division I athletic trainers appear highly compliant, little is known about the concussion-management practice patterns of athletic trainers at smaller institutions where staffing and resources may be limited. To descriptively define the concussion-management practice patterns of NCAA Division II and III athletic trainers. Cross-sectional study. Web-based questionnaire. A total of 755 respondents (response rate = 40.2%) from NCAA Division II and Division III institutions. The primary outcome measures were the rate of multifaceted concussion-assessment techniques, defined as 3 or more assessments; the specific practice patterns of each assessment battery; and tests used during a clinical examination. Most respondents indicated using a multifaceted assessment during acute assessment (Division II = 76.9%, n = 473; Division III = 76.0%, n = 467) and determination of recovery (Division II = 65.0%, n = 194; Division III = 63.1%, n = 288) but not at baseline (Division II = 43.1%, n = 122; Division III = 41.0%, n = 176). Typically, when a postconcussion assessment was initiated, testing occurred daily until baseline values were achieved, and most respondents (80.6% [244/278]) reported using a graded exercise protocol before return to participation. We found limited use of the multifaceted assessment battery at baseline but higher rates at both acute assessment and return-to-participation time points. A primary reason cited for not using test-battery components was a lack of staffing or funding for the assessments. We observed limited use of neuropsychologists to interpret neuropsychological testing. Otherwise, most respondents reported concussion-management protocols consistent with recommendations, including a high level of use of objective measures and incorporation of a progressive return-to-participation protocol.

  11. The Medical Battery in The United States (1870-1920): Electrotherapy at Home and in the Clinic.

    PubMed

    Wexler, Anna

    2017-04-01

    This paper focuses on the history of a portable shock-producing electrotherapeutic device known as the medical battery (1870-1920), which provided both direct and alternating current and was thought to cure a wide variety of ailments. The product occupied a unique space at the nexus of medicine, consumerism and quackery: it was simultaneously considered a legitimate device by medical professionals who practiced electrotherapeutics, yet identical versions were sold directly to consumers, often via newspaper advertisements and with cure-all marketing language. Indeed, as I show in this paper, the line between what was considered a medical device and a consumer product was often blurred. Even though medical textbooks and journals never mentioned (much less promoted) the home use of electricity, every reputable electrotherapy instrument manufacturer sold a "family battery" for patients to use on themselves at home. While a handful of physicians spoke out against the use of electricity by the laity-as they felt it undermined the image of electrotherapy as a skilled medical procedure-existing evidence suggests that many physicians were likely recommending the home use of medical electricity to their patients. Taken together, this paper shows how the professional ideals of electrotherapeutics were not always aligned with physicians' actual practices. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Review: Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities.

    PubMed

    Gottesfeld, Perry; Pokhrel, Amod K

    2011-09-01

    The battery industry is the largest consumer of lead, using an estimated 80% of the global lead production. The industry is also rapidly expanding in emerging market countries. A review of published literature on exposures from lead-acid battery manufacturing and recycling plants in developing countries was conducted. The review included studies from 37 countries published from 1993 to 2010 and excluded facilities in developed countries, such as the United States and those in Western Europe, except for providing comparisons to reported findings. The average worker blood lead level (BLL) in developing countries was 47 μg/dL in battery manufacturing plants and 64 μg/dL in recycling facilities. Airborne lead concentrations reported in battery plants in developing countries averaged 367 μg/m3, which is 7-fold greater than the U.S. Occupational Safety and Health Administration's 50 μg/m3 permissible exposure limit. The geometric mean BLL of children residing near battery plants in developing countries was 19 μg/dL, which is about 13-fold greater than the levels observed among children in the United States. The blood lead and airborne lead exposure concentrations for battery workers were substantially higher in developing countries than in the United States. This disparity may worsen due to rapid growth in lead-acid battery manufacturing and recycling operations worldwide. Given the lack of regulatory and enforcement capacity in most developing countries, third-party certification programs may be the only viable option to improve conditions.

  13. Total Thermal Management of Battery Electric Vehicles (BEVs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason A; Rugh, John P; Winkler, Jonathan M

    The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal subsystem loads can reduce the drive range by as much as 45% under ambient temperatures below -10 degrees C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this rangemore » loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs. Demonstrated on a 2015 Fiat 500e BEV, this system integrates a semi-hermetic refrigeration loop with a coolant network and serves three functions: (1) heating and/or cooling vehicle traction components (battery, power electronics, and motor) (2) heating and cooling of the cabin, and (3) waste energy harvesting and re-use. The modes of operation allow a heat pump and air conditioning system to function without reversing the refrigeration cycle to improve thermal efficiency. The refrigeration loop consists of an electric compressor, a thermal expansion valve, a coolant-cooled condenser, and a chiller, the latter two exchanging heat with hot and cold coolant streams that may be directed to various components of the thermal system. The coolant-based heat distribution is adaptable and saves significant amounts of refrigerant per vehicle. Also, a coolant-based system reduces refrigerant emissions by requiring fewer refrigerant pipe joints. The authors present bench-level test data and simulation analysis and describe a preliminary control scheme for this system.« less

  14. The challenge of testing chemicals for potential carcinogenicity using multiple short-term assays: an analysis of a proposed test battery for hair dyes.

    PubMed

    Rosenkranz, Herbert S; Cunningham, Suzanne L; Mermelstein, Robert; Cunningham, Albert R

    2007-09-01

    Recent reports of the association of hair dyes usage with increased bladder cancer risk in women with the slow NAT-2 acetylator phenotype have resulted both in attempts to identify the putative carcinogen as well as in devising batteries of tests that could be used to screen for such putative carcinogens in hair dye formulations, their intermediates and final products. Analytical studies have reported the presence of traces ( approximately 0.5 ppm) of the carcinogen 4-aminobiphenyl in some hair dye preparations. In parallel, SCCNFP (Scientific Committee on Cosmetic and Non-Food Products Intended for Consumers) has suggested the deployment of a battery of six in vitro assays followed by an in vivo assay. The practicality of deploying and interpreting such a battery is analyzed herein as it is expected to result in 64 and 128 possible test results and SCCNFP does not provide detailed guidance of how the test results are to be interpreted. In this study we have applied a previously described Bayesian approach which takes advantage of the known predictive performances of individual assays, to analyze the possible outcomes of the 6-7 test batteries. While the SCCNFP battery is clearly risk-averse, it is shown that performing all of the assays is not always necessary and moreover it does not necessarily improve predictive performance. Finally, based upon the reported mutagenicity of 4-aminobiphenyl, it is doubtful that this "impurity" would be detected by the test battery.

  15. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    PubMed

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  16. Vehicle test report: Jet Industries Electra Van 600

    NASA Technical Reports Server (NTRS)

    Price, T. W.; Wirth, V. A., Jr.

    1982-01-01

    The Electra Van 600, an electric vehicle, was tested. Tests were performed to characterize parameters of the Electra Van 600 and to provide baseline data to be used for comparison of improved batteries and to which will be incorporated into the vehicle. The vehicle tests concentrated on the electrical drive subsystem, the batteries, controller, and motor; coastdowns to characterize the road load and range evaluation for cyclic and constant speed conditions; and qualitative performance was evaluated. It is found that the Electra Van 600 range performance is approximately equal to the majority of the vehicles tested previously.

  17. EV Everywhere Grand Challenge Road to Success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-01-31

    Initial progress report for EV Everywhere. The report highlights the significant cost reduction in batteries in 2014, which will enable increased PEV affordability for consumers. Also, the efforts on increasing the convenience of PEVs through the Workplace Charging Challenge, which called on U.S. employers to help develop the nation's charging infrastructure.

  18. Aerospace Energy Systems Laboratory - Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames/Dryden Flight Research Facility operates a mixed fleet of research aircraft employing NiCd batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has evolved over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  19. Tea and flavonoids: where we are, where to go next12345

    PubMed Central

    Peterson, Julia

    2013-01-01

    There is a need to evaluate the evidence about the health effects of tea flavonoids and to provide valid, specific, and actionable tea consumption information to consumers. Emerging evidence suggests that the flavonoids in tea may be associated with beneficial health outcomes, whereas the benefits and risks of tea extracts and supplements are less well known. The next steps in developing tea science should include a focus on the most promising leads, such as reducing the risk of cardiovascular disease and stroke, rather than pursuing smaller, more diffuse studies of many different health outcomes. Future tea research should also include the use of common reference standards, better characterization of intervention products, and application of batteries of biomarkers of intakes and outcomes across studies, which will allow a common body of evidence to be developed. Mechanistic studies should determine which tea bioactive constituents have effects, whether they act alone or in combination, and how they influence health. Clinical studies should use well-characterized test products, better descriptions of baseline diets, and validated biomarkers of intake and disease risk reduction. There should be more attention to careful safety monitoring and adverse event reporting. Epidemiologic investigations should be of sufficient size and duration to detect small effects, involve populations most likely to benefit, use more complete tea exposure assessment, and include both intermediary markers of risk as well as morbidity and mortality outcomes. The construction of a strong foundation of scientific evidence on tea and health outcomes is essential for developing more specific and actionable messages on tea for consumers. PMID:24172298

  20. Pulsating electrolyte flow in a full vanadium redox battery

    NASA Astrophysics Data System (ADS)

    Ling, C. Y.; Cao, H.; Chng, M. L.; Han, M.; Birgersson, E.

    2015-10-01

    Proper management of electrolyte flow in a vanadium redox battery (VRB) is crucial to achieve high overall system efficiency. On one hand, constant flow reduces concentration polarization and by extension, energy efficiency; on the other hand, it results in higher auxiliary pumping costs, which can consume around 10% of the discharge power. This work seeks to reduce the pumping cost by adopting a novel pulsing electrolyte flow strategy while retaining high energy efficiency. The results indicate that adopting a short flow period, followed by a long flow termination period, results in high energy efficiencies of 80.5% with a pumping cost reduction of over 50%.

  1. Lead toxicity in battery workers.

    PubMed

    Qasim, Saeeda Fouzia; Baloch, Malka

    2014-11-01

    Lead poisoning is a medical condition caused by increased levels of lead in the body. Routes of exposure include contaminated air, water, soil, food and consumer products. Occupational exposure is the main cause of lead poisoning in the adults. Two cases of occupational lead poisoning in adult battery workers are hereby presented. Both male patients had initial non-specific symptoms of intermittent abdominal pain, fatigue and headache for 6 - 8 years. Later on, they developed psychosis, slurred speech, tremors of hands and initially underwent treatment for Parkinsonism and Wilson's disease because of clinical misdiagnosis. They were diagnosed with lead poisoning later and were treated successfully with lead chelator (CaNa2 EDTA).

  2. Subjective, but not Objective, Lingering Effects of Multiple Past Concussions in Adolescents

    PubMed Central

    McKay, Carly D.; Mrazik, Martin; Barlow, Karen M.; Meeuwisse, Willem H.; Emery, Carolyn A.

    2013-01-01

    Abstract The existing literature on lingering effects from concussions in children and adolescents is limited and mixed, and there are no clear answers for patients, clinicians, researchers, or policy makers. The purpose of this study was to examine whether there are lingering effects of past concussions in adolescent athletes. Participants in this study included 643 competitive Bantam and Midget hockey players (most elite 20% by division of play) between 13 and 17 years of age (mean age=15.5, SD=1.2). Concussion history at baseline assessment was retrospectively documented using a pre-season questionnaire (PSQ), which was completed at home by parents and players in advance of baseline testing. Players with English as a second language, self-reported attention or learning disorders, a concussion within 6 months of baseline, or suspected invalid test profiles were excluded from these analyses. Demographically adjusted standard scores for the five composites/domains and raw symptom ratings from the brief Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) computerized battery were analyzed. Adolescent athletes with one or two or more prior concussions did not have significantly worse neurocognitive functioning on ImPACT than did those with no previous concussions. There were significantly more symptoms reported in those with two or more prior concussions than in those with no or one prior concussion. Adolescents with multiple previous concussions had higher levels of baseline symptoms, but there were not group differences in neurocognitive functioning using this brief computerized battery. PMID:23560947

  3. Subjective, but not objective, lingering effects of multiple past concussions in adolescents.

    PubMed

    Brooks, Brian L; McKay, Carly D; Mrazik, Martin; Barlow, Karen M; Meeuwisse, Willem H; Emery, Carolyn A

    2013-09-01

    The existing literature on lingering effects from concussions in children and adolescents is limited and mixed, and there are no clear answers for patients, clinicians, researchers, or policy makers. The purpose of this study was to examine whether there are lingering effects of past concussions in adolescent athletes. Participants in this study included 643 competitive Bantam and Midget hockey players (most elite 20% by division of play) between 13 and 17 years of age (mean age=15.5, SD=1.2). Concussion history at baseline assessment was retrospectively documented using a pre-season questionnaire (PSQ), which was completed at home by parents and players in advance of baseline testing. Players with English as a second language, self-reported attention or learning disorders, a concussion within 6 months of baseline, or suspected invalid test profiles were excluded from these analyses. Demographically adjusted standard scores for the five composites/domains and raw symptom ratings from the brief Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) computerized battery were analyzed. Adolescent athletes with one or two or more prior concussions did not have significantly worse neurocognitive functioning on ImPACT than did those with no previous concussions. There were significantly more symptoms reported in those with two or more prior concussions than in those with no or one prior concussion. Adolescents with multiple previous concussions had higher levels of baseline symptoms, but there were not group differences in neurocognitive functioning using this brief computerized battery.

  4. Analysis of Water Surplus at the Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Bagdigian, Robert M.; George, Patrick J.; Plachta, David W.; Fincannon, Homer J.; Jefferies, Sharon A.; Keyes, Jennifer P.; Reeves, David M.; Shyface, Hilary R.

    2010-01-01

    This paper evaluates the benefits to the lunar architecture and outpost of having a surplus of water, or a surplus of energy in the form of hydrogen and oxygen, as it has been predicted by Constellation Program's Lunar Surface System analyses. Assumptions and a scenario are presented leading to the water surplus and the revolutionary surface element options for improving the lunar exploration architecture and mission objectives. For example, some of the elements that can benefit from a water surplus are: the power system energy storage can minimize the use of battery systems by replacing batteries with higher energy density fuel cell systems; battery packs on logistics pallets can also be minimized; mobility asset power system mass can be reduced enabling more consumables and extended roving duration and distance; small robotic vehicles (hoppers) can be used to increase the science exploration range by sending round-trip robotic missions to anywhere on the Moon using in-situ produced propellants.

  5. All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications.

    PubMed

    Tucker, Michael C; Phillips, Adam; Weber, Adam Z

    2015-12-07

    An all-iron redox flow battery is proposed and developed for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. The design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe2 (SO4 )3 active material and 1.2 m NaCl supporting electrolyte. With these materials, an average power density around 20 mW cm(-2) and a maximum energy density of 11.5 Wh L(-1) are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh(-1) , or only US$0.034 per mobile phone charge. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. All-Iron Redox Flow Battery Tailored for Off-Grid Portable Applications

    DOE PAGES

    Tucker, Michael C.; Phillips, Adam; Weber, Adam Z.

    2015-11-20

    We proposed and developed an all-iron redox flow battery for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. Our design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe 2 (SO 4 ) 3 activemore » material and 1.2 m NaCl supporting electrolyte. Furthermore, with these materials, an average power density around 20 mW cm -2 and a maximum energy density of 11.5 Wh L -1 are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh -1 , or only US$0.034 per mobile phone charge.« less

  7. A Long Cycle Life, Self-Healing Zinc-Iodine Flow Battery with High Power Density.

    PubMed

    Xie, Congxin; Zhang, Huamin; Xu, Wenbin; Wang, Wei; Li, Xianfeng

    2018-05-01

    A zinc-iodine flow battery (ZIFB) with long cycle life, high energy, high power density, and self-healing behavior is prepared. The long cycle life was achieved by employing a low-cost porous polyolefin membrane and stable electrolytes. The pores in the membrane can be filled with a solution containing I 3 - that can react with zinc dendrite. Therefore, by consuming zinc dendrite, the battery can self-recover from micro-short-circuiting resulting from overcharging. By using KI, ZnBr 2 , and KCl as electrolytes and a high ion-conductivity porous membrane, a very high power density can be achieved. As a result, a ZIFB exhibits an energy efficiency (EE) of 82 % at 80 mA cm -2 , which is 8 times higher than the currently reported ZIFBs. Furthermore, a stack with an output of 700 W was assembled and continuously run for more than 300 cycles. We believe this ZIFB can lead the way to development of new-generation, high-performance flow batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services

    NASA Astrophysics Data System (ADS)

    Wang, Dai; Coignard, Jonathan; Zeng, Teng; Zhang, Cong; Saxena, Samveg

    2016-11-01

    The risk of accelerated electric vehicle battery degradation is commonly cited as a concern inhibiting the implementation of vehicle-to-grid (V2G) technology. However, little quantitative evidence exists in prior literature to refute or substantiate these concerns for different grid services that vehicles may offer. In this paper, a methodology is proposed to quantify electric vehicle (EV) battery degradation from driving only vs. driving and several vehicle-grid services, based on a semi-empirical lithium-ion battery capacity fade model. A detailed EV battery pack thermal model and EV powertrain model are utilized to capture the time-varying battery temperature and working parameters including current, internal resistance and state-of-charge (SOC), while an EV is driving and offering various grid services. We use the proposed method to simulate the battery degradation impacts from multiple vehicle-grid services including peak load shaving, frequency regulation and net load shaping. The degradation impact of these grid services is compared against baseline cases for driving and uncontrolled charging only, for several different cases of vehicle itineraries, driving distances, and climate conditions. Over the lifetime of a vehicle, our results show that battery wear is indeed increased when vehicles offer V2G grid services. However, the increased wear from V2G is inconsequential compared with naturally occurring battery wear (i.e. from driving and calendar ageing) when V2G services are offered only on days of the greatest grid need (20 days/year in our study). In the case of frequency regulation and peak load shaving V2G grid services offered 2 hours each day, battery wear remains minimal even if this grid service is offered every day over the vehicle lifetime. Our results suggest that an attractive tradeoff exists where vehicles can offer grid services on the highest value days for the grid with minimal impact on vehicle battery life.

  9. Battery longevity in cardiac resynchronization therapy implantable cardioverter defibrillators.

    PubMed

    Alam, Mian Bilal; Munir, Muhammad Bilal; Rattan, Rohit; Flanigan, Susan; Adelstein, Evan; Jain, Sandeep; Saba, Samir

    2014-02-01

    Cardiac resynchronization therapy (CRT) implantable cardioverter defibrillators (ICDs) deliver high burden ventricular pacing to heart failure patients, which has a significant effect on battery longevity. The aim of this study was to investigate whether battery longevity is comparable for CRT-ICDs from different manufacturers in a contemporary cohort of patients. All the CRT-ICDs implanted at our institution from 1 January 2008 to 31 December 2010 were included in this analysis. Baseline demographic and clinical data were collected on all patients using the electronic medical record. Detailed device information was collected on all patients from scanned device printouts obtained during routine follow-up. The primary endpoint was device replacement for battery reaching the elective replacement indicator (ERI). A total of 646 patients (age 69 ± 13 years), implanted with CRT-ICDs (Boston Scientific 173, Medtronic 416, and St Jude Medical 57) were included in this analysis. During 2.7 ± 1.5 years follow-up, 113 (17%) devices had reached ERI (Boston scientific 4%, Medtronic 25%, and St Jude Medical 7%, P < 0.001). The 4-year survival rate of device battery was significantly worse for Medtronic devices compared with devices from other manufacturers (94% for Boston scientific, 67% for Medtronic, and 92% for St Jude Medical, P < 0.001). The difference in battery longevity by manufacturer was independent of pacing burden, lead parameters, and burden of ICD therapy. There are significant discrepancies in CRT-ICD battery longevity by manufacturer. These data have important implications on clinical practice and patient outcomes.

  10. Neurocognitive predictors of remission of symptoms and social and role functioning in the early course of first-episode schizophrenia.

    PubMed

    Torgalsbøen, Anne-Kari; Mohn, Christine; Rishovd Rund, Bjørn

    2014-04-30

    In a Norwegian ongoing longitudinal study, we investigate the neurocognitive development in first-episode schizophrenia patients, and the influence of neurocognition on remission and real life functioning. In the present study, results from the early course of illness are reported. The sample includes 28 schizophrenia spectrum patients and 28 pairwise matched healthy controls. The patients were recruited from mental health service institutions and data on psychosocial functioning, remission and neurocognition were obtained through a clinical interview, an inventory on social and role functioning, operational criteria of remission, and a standardized neurocognitive test battery, the MATRICS Consensus Cognitive Battery (MCCB). Large effect size differences between patients and controls were observed at baseline on every cognitive domain, as well as statistically significant improvements on overall cognitive function at follow-up for the patient group. A remission rate of 61% was found. The neurocognitive baseline measure of Attention significantly predicted remission status at follow-up, whereas Attention and Working Memory at baseline predicted levels of social and role functioning. In the early course of the illness, more than half of the group of first-episode patients were in remission, and neurocognitive functions are significantly associated with both remission of symptoms and social and role functioning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Logistic regression function for detection of suspicious performance during baseline evaluations using concussion vital signs.

    PubMed

    Hill, Benjamin David; Womble, Melissa N; Rohling, Martin L

    2015-01-01

    This study utilized logistic regression to determine whether performance patterns on Concussion Vital Signs (CVS) could differentiate known groups with either genuine or feigned performance. For the embedded measure development group (n = 174), clinical patients and undergraduate students categorized as feigning obtained significantly lower scores on the overall test battery mean for the CVS, Shipley-2 composite score, and California Verbal Learning Test-Second Edition subtests than did genuinely performing individuals. The final full model of 3 predictor variables (Verbal Memory immediate hits, Verbal Memory immediate correct passes, and Stroop Test complex reaction time correct) was significant and correctly classified individuals in their known group 83% of the time (sensitivity = .65; specificity = .97) in a mixed sample of young-adult clinical cases and simulators. The CVS logistic regression function was applied to a separate undergraduate college group (n = 378) that was asked to perform genuinely and identified 5% as having possibly feigned performance indicating a low false-positive rate. The failure rate was 11% and 16% at baseline cognitive testing in samples of high school and college athletes, respectively. These findings have particular relevance given the increasing use of computerized test batteries for baseline cognitive testing and return-to-play decisions after concussion.

  12. The ACTIVATE study: results from a group-randomized controlled trial comparing a traditional worksite health promotion program with an activated consumer program.

    PubMed

    Terry, Paul E; Fowles, Jinnet Briggs; Xi, Min; Harvey, Lisa

    2011-01-01

    PURPOSE. This study compares a traditional worksite-based health promotion program with an activated consumer program and a control program DESIGN. Group randomized controlled trial with 18-month intervention. SETTING. Two large Midwestern companies. SUBJECTS. Three hundred and twenty employees (51% response). INTERVENTION. The traditional health promotion intervention offered population-level campaigns on physical activity, nutrition, and stress management. The activated consumer intervention included population-level campaigns for evaluating health information, choosing a health benefits plan, and understanding the risks of not taking medications as prescribed. The personal development intervention (control group) offered information on hobbies. The interventions also offered individual-level coaching for high risk individuals in both active intervention groups. MEASURES. Health risk status, general health status, consumer activation, productivity, and the ability to evaluate health information. ANALYSIS. Multivariate analyses controlled for baseline differences among the study groups. RESULTS. At the population level, compared with baseline performance, the traditional health promotion intervention improved health risk status, consumer activation, and the ability to recognize reliable health websites. Compared with baseline performance, the activated consumer intervention improved consumer activation, productivity, and the ability to recognize reliable health websites. At the population level, however, only the activated consumer intervention improved any outcome more than the control group did; that outcome was consumer activation. At the individual level for high risk individuals, both traditional health coaching and activated consumer coaching positively affected health risk status and consumer activation. In addition, both coaching interventions improved participant ability to recognize a reliable health website. Consumer activation coaching also significantly improved self-reported productivity. CONCLUSION. An effective intervention can change employee health risk status and activation both at the population level and at the individual high risk level. However, program engagement at the population level was low, indicating that additional promotional strategies, such as greater use of incentives, need to be examined. Less intensive coaching can be as effective as more intensive, albeit both interventions produced modest behavior change and retention in the consumer activation arm was most difficult. Further research is needed concerning recruitment and retention methods that will enable populations to realize the full potential of activated consumerism.

  13. The lead and lead-acid battery industries during 2002 and 2007 in China

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Li, A. J.; Finlow, D. E.

    In the past 15 years, the center of the international lead market has shifted to China. China has become the largest producer of raw and refined lead, plus the largest consumer. This paper reviews the status of the lead and lead-acid battery industries in China, including lead mining, lead refining, secondary lead production, the lead-acid battery industry, new opportunities for lead-acid batteries, and the environmental problems associated with lead and lead-acid batteries. The output of raw and refined lead has increased annually in China, and now accounts for more than 30% of the world total. As a result of a change in the Chinese government's policy regarding the export of lead, plus an increase in the price of lead, the profits of Chinese lead manufacturers were significantly reduced, the trade deficit of the Chinese lead industry increased, the operating rates of lead smelter enterprises greatly reduced, and some small enterprises were forced to shut down. At the present time, an increasing number of enterprises have begun to produce secondary lead, and the scale of production has expanded from tens of tons to tens of thousands of tons. In 2006, the output of secondary lead in China reached 700,000 tons, but outdated technology and equipment limited development of the secondary lead industry. Because of serious pollution problems, raw material shortages, and fierce price competition in the battery market, changes in the development of the lead-acid battery industry have been dramatic; approximately one thousand medium-sized and small lead-acid battery producers have been closed in the past 3 years. The output of large lead-acid battery enterprises has not been reduced, however, as a result of their manufacturing technology and equipment being comparable to those in other advanced industrial countries. In China, the flourishing development of electric bicycles, electric tricycles, and photovoltaic energy systems should provide ongoing opportunities for the lead-acid battery industry.

  14. Lithium-ion battery structure that self-heats at low temperatures.

    PubMed

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-28

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the 'all-climate battery' cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  15. Clinical Benefits of Rivastigmine in the Real World Dementia Clinics of the Okayama Rivastigmine Study (ORS).

    PubMed

    Matsuzono, Kosuke; Sato, Kota; Kono, Syoichiro; Hishikawa, Nozomi; Ohta, Yasuyuki; Yamashita, Toru; Deguchi, Kentaro; Nakano, Yumiko; Abe, Koji

    2015-01-01

    Alzheimer's disease (AD) is one of the most important diseases in an aging society, but the clinical effects of rivastigmine have not been fully examined in real world domestic clinics. We performed the "Okayama Rivastigmine Study (ORS)" to retrospectively analyze the clinical effects of rivastigmine (n = 75) or donepezil (n = 71) on AD patients with seven dementia assessment batteries at the baseline, 3, 6, and 12 months. In addition, we divided the rivastigmine group into two subgroups at the baseline: the mild behavioral and psychological symptoms of dementia (BPSD) group (Abe's BPSD score (ABS) <6) and the severe BPSD group (6≤ABS). In these two subgroups, baseline scores and changes were also retrospectively analyzed until 12 months. Rivastigmine significantly improved the Mini-Mental State Examination score at 3 months (*p <  0.05 versus baseline) and at 6 months (*p <  0.05), the Frontal Assessment Battery (FAB) at 6 months (*p <  0.05), and ABS at 3 months (**p <  0.01) while donepezil only stabilized the three cognitive scores. On the other hand, the Geriatric Depression Scale and the Apathy Scale were stable until 12 months in both groups. Baseline BPSD severity-dependent analysis showed a small improvement of FAB at 6 months in the mild BPSD subgroup (*p <  0.05) and a great improvement of ABS at 3 months in the severe BPSD subgroup (**p <  0.01) in the rivastigmine group. Our present study showed that rivastigmine improved both cognitive and affective functions at 3 and 6 months, and suggested an advantage at 3 and 6 months compared to donepezil in real world dementia clinics.

  16. Mobility Is a Key Predictor of Change in Well-Being Among Older Adults Who Experience Falls: Evidence From the Vancouver Falls Prevention Clinic Cohort.

    PubMed

    Davis, Jennifer C; Best, John R; Bryan, Stirling; Li, Linda C; Hsu, Chun Liang; Gomez, Caitlin; Vertes, Kelly; Liu-Ambrose, Teresa

    2015-09-01

    To determine the factors that predict change in well-being over time in older men and women presenting to the falls prevention clinic. Prospective cohort study. Falls prevention clinic. Community-dwelling older adults who were referred to the clinic after sustaining a fall (between N=244 and N=255, depending on the analysis). Not applicable. The ICEpop CAPability measure for Older people, a measure of well-being or quality of life, was administered at baseline, 6 months, and 12 months. We constructed linear mixed models to determine whether baseline predictor variables were related to baseline well-being and/or changes in well-being over time. In addition, we included interactions with sex to investigate the difference between men and women. Baseline predictors included 2 measures of mobility--Short Performance Physical Battery and timed Up and Go test--and a measure of global cognitive function--Montreal Cognitive Assessment. All 3 predictors were associated with well-being at baseline (P<.05). Furthermore, both the Short Performance Physical Battery and the timed Up and Go test interacted with sex (P<.05) to predict changes in well-being over time. Follow-up analyses suggested that better mobility was protective against decline in well-being in men but was generally unrelated to changes in well-being in women. We found that 2 valid and reliable measures of mobility interacted with sex to predict changes in well-being over time. This is a critical research area to develop in order to appropriately tailor future intervention strategies targeting well-being in older fallers, a population at high risk of functional decline. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of the Efficacy, Safety, and Tolerability of BI 409306, a Novel Phosphodiesterase 9 Inhibitor, in Cognitive Impairment in Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled, Phase II Trial.

    PubMed

    Brown, David; Nakagome, Kazuyuki; Cordes, Joachim; Brenner, Ronald; Gründer, Gerhard; Keefe, Richard S E; Riesenberg, Robert; Walling, David P; Daniels, Kristen; Wang, Lara; McGinniss, Jennifer; Sand, Michael

    2018-05-01

    Patients with cognitive impairment associated with schizophrenia may benefit from treatments targeting dysfunctional glutamatergic neurotransmission. BI 409306, a potent and selective phosphodiesterase 9 inhibitor, was assessed in patients with schizophrenia using a learn-and-confirm adaptive trial design. This double-blind, parallel-group trial randomized patients 2:1:1:1:1 to once-daily placebo or BI 409306 (10, 25, 50, or 100 mg) for 12 weeks. Stage 1 (learn) assessed change from baseline in Cambridge Neuropsychological Test Automated Battery (CANTAB) scores (week 12) to identify ≥1 meaningful endpoints for stage 2 (confirm). If no domains showed efficacy, change from baseline in Measurements and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB) composite scores (week 12) was the primary endpoint. The key secondary endpoint was change from baseline in Schizophrenia Cognition Rating Scale (SCoRS) total score. Safety was monitored. Five hundred eighteen patients were randomized. In stage 1, CANTAB did not differentiate between BI 409306 and placebo (n = 120), so the primary endpoint of change from baseline in MCCB composite score was analyzed in 450 patients in stage 2. There was no significant difference between BI 409306 (1.2-2.8) and placebo (2.5) in MCCB composite score change. BI 409306 did not significantly improve change from baseline in SCoRS total score (-3.1 to -2.0) vs placebo (-2.5). Adverse events were dose-dependent, increasing from 33.3% (10 mg) to 53.5% (100 mg), vs 36.4% for placebo. The primary endpoint of cognitive function improvement was not met. BI 409306 was well-tolerated, with an acceptable safety profile.

  18. Fabrication, characterization, and modeling of a biodegradable battery for transient electronics

    NASA Astrophysics Data System (ADS)

    Edupuganti, Vineet; Solanki, Raj

    2016-12-01

    Traditionally, emphasis has been placed on durable, long-lasting electronics. However, electronics that are meant to intentionally degrade over time can actually have significant practical applications. Biodegradable, or transient, electronics would open up opportunities in the field of medical implants, where the need for surgical removal of devices could be eliminated. Environmental sensors and, eventually, consumer electronics would also greatly benefit from this technology. An essential component of transient electronics is the battery, which serves as a biodegradable power source. This work involves the fabrication, characterization, and modeling of a magnesium-based biodegradable battery. Galvanostatic discharge tests show that an anode material of magnesium alloy AZ31 extends battery lifetime by over six times, as compared to pure magnesium. With AZ31, the maximum power and capacity of the fabricated device are 67 μW and 5.2 mAh, respectively, though the anode area is just 0.8 cm2. The development of an equivalent circuit model provided insight into the battery's behavior by extracting fitting parameters from experimental data. The model can accurately simulate device behavior, taking into account its intentional degradation. The size of the device and the power it produces are in accordance with typical levels for low-power transient systems.

  19. Flow of Cadmium from Rechargeable Batteries in the United States, 1996-2007

    USGS Publications Warehouse

    Wilburn, David R.

    2007-01-01

    Cadmium metal has been found to be toxic to humans and the environment under certain conditions; therefore, a thorough understanding of the use and disposal of the metal is warranted. Most of the cadmium used in the United States comes from imported products. In 2007, more than 83 percent of the cadmium used in the United States was contained in batteries, mostly in rechargeable nickel-cadmium batteries used in popular consumer products such as cordless phones and power tools. The flow of cadmium contained in rechageable nickel-cadmium batteries used in the United States was tracked for the years 1996 to 2007. The amount of cadmium metal contained in imported products in 2007 was estimated to be about 1,900 metric tons, or about 160 percent higher than the reported cadmium production in the United States from all primary and secondary sources. Although more than 40,000 metric tons of cadmium was estimated to be contained in nickel-cadmium rechargeable batteries that became obsolete during the 12-year study period, not all of this material was sent to municipal solid waste landfills. About 27 percent of the material available for recovery in the United States was recycled domestically in 2007; the balance was discarded in municipal solid waste landfills, exported for recycling, retained in temporary storage, or thrown away.

  20. Psychostimulant and other effects of caffeine in 9- to 11-year-old children.

    PubMed

    Heatherley, Susan V; Hancock, Katie M F; Rogers, Peter J

    2006-02-01

    Recent research on adults suggests that "beneficial" psychostimulant effects of caffeine are found only in the context of caffeine deprivation; that is, caffeine improves psychomotor and cognitive performance in habitual caffeine consumers following caffeine withdrawal. Furthermore, no net benefit is gained because performance is merely restored to "baseline" levels. The effects of caffeine in children is an under-researched area, with only a handful of studies being carried out in the US where children's consumption of caffeine appears to be lower on average than in the UK. Twenty-six children aged between 9 and 11 years completed a double-blind, placebo-controlled study. Habitual caffeine consumers (mean daily caffeine intake = 109 mg) and non/low-consumers (12 mg) were tested on two separate days following overnight caffeine abstinence. On each day measures of cognitive performance (a number search task), and self-rated mood and physical symptoms, including alertness and headache, were taken before and after administration of 50 mg of caffeine, or placebo. At baseline (before treatment), the habitual consumers showed poorer performance on the cognitive test than did the non/low-consumers, although no significant differences in mood or physical symptoms were found between the two groups. There were significant habit by treatment (caffeine vs. placebo) interactions for accuracy of performance and headache, and a significant main effect of treatment for alertness. Post hoc comparisons showed that caffeine administration improved the consumers' accuracy on the cognitive test (to near the level displayed by the non/low-consumers at baseline), but that it had no significant effect on the non/low-consumers' performance. In the consumers, caffeine prevented an increase in headache that occurred after placebo, and it increased alertness relative to placebo. Again, however, caffeine did not significantly affect levels of headache or alertness in the non/low-consumers. These results suggest that, like adults, children probably derive little or no benefit from habitual caffeine intake, although negative symptoms associated with overnight caffeine withdrawal are avoided or rapidly reversed by subsequent caffeine consumption.

  1. 77 FR 52393 - Petition for Exemption From the Vehicle Theft Prevention Standard; BMW of North America, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... International Policy, Fuel Economy and Consumer Programs, National Highway Traffic Safety Administration, 1200... key, powered by a battery and consists of a transmitter/receiver which communicates with the EWS... and starter. The ignition and fuel supply are only released when a correct coded release signal has...

  2. 75 FR 27170 - Energy Conservation Program for Consumer Products: Determination Concerning the Potential for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... issue a final rule determining whether to issue efficiency standards for battery chargers (BCs) and EPSs... Standards for Non- Class A External Power Supplies AGENCY: Office of Energy Efficiency and Renewable Energy... Office of Energy Efficiency and Renewable Energy's Web site at http://www.eere.energy.gov/buildings...

  3. Critical Review of Commercial Secondary Lithium-Ion Battery Safety Standards

    NASA Astrophysics Data System (ADS)

    Jones, Harry P.; Chapin, Thomas, J.; Tabaddor, Mahmod

    2010-09-01

    The development of Li-ion cells with greater energy density has lead to safety concerns that must be carefully assessed as Li-ion cells power a wide range of products from consumer electronics to electric vehicles to space applications. Documented field failures and product recalls for Li-ion cells, mostly for consumer electronic products, highlight the risk of fire, smoke, and even explosion. These failures have been attributed to the occurrence of internal short circuits and the subsequent thermal runaway that can lead to fire and explosion. As packaging for some applications include a large number of cells, the risk of failure is likely to be magnified. To address concerns about the safety of battery powered products, safety standards have been developed. This paper provides a review of various international safety standards specific to lithium-ion cells. This paper shows that though the standards are harmonized on a host of abuse conditions, most lack a test simulating internal short circuits. This paper describes some efforts to introduce internal short circuit tests into safety standards.

  4. Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries

    DOE PAGES

    Ahmed, Shabbir; Nelson, Paul A.; Gallagher, Kevin G.; ...

    2017-01-05

    The price of the cathode active materials in lithium ion batteries is a key cost driver and thus significantly impacts consumer adoption of devices that utilize large energy storage contents (e.g. electric vehicles). A process model has been developed and used to study the production process of a common lithium-ion cathode material, lithiated nickel manganese cobalt oxide, using the co-precipitation method. The process was simulated for a plant producing 6500 kg day –1. The results indicate that the process will consume approximately 4 kWh kg NMC –1 of energy, 15 L kg NMC –1 of process water, and cost $23more » to produce a kg of Li-NMC333. The calculations were extended to compare the production cost using two co-precipitation reactions (with Na 2CO 3 and NaOH), and similar cathode active materials such as lithium manganese oxide and lithium nickel cobalt aluminum oxide. Finally, a combination of cost saving opportunities show the possibility to reduce the cost of the cathode material by 19%.« less

  5. Electrochemical energy storage subsystems study, volume 1

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.

    1981-01-01

    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values.

  6. Electrochemical Energy Storage Subsystems Study, Volume 2

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.

    1981-01-01

    The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values.

  7. Biochemical Effects on the Liver of 1 Month of Alcohol Abstinence in Moderate Alcohol Consumers.

    PubMed

    Munsterman, I D; Groefsema, M M; Weijers, G; Klein, W M; Swinkels, D W; Drenth, J P H; Schellekens, A F A; Tjwa, E T T L

    2018-05-03

    In this study in healthy moderate alcohol consumers, we observe that one month of alcohol abstinence results in decreased gamma-glutamyl transferase levels, which return to baseline levels after resumption of alcohol consumption.

  8. Aerospace energy systems laboratory: Requirements and design approach

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.

    1988-01-01

    The NASA Ames-Dryden Flight Research Facility at Edwards, California, operates a mixed fleet of research aircraft employing nickel-cadmium (NiCd) batteries in a variety of flight-critical applications. Dryden's Battery Systems Laboratory (BSL), a computerized facility for battery maintenance servicing, has developed over two decades into one of the most advanced facilities of its kind in the world. Recently a major BSL upgrade was initiated with the goal of modernization to provide flexibility in meeting the needs of future advanced projects. The new facility will be called the Aerospace Energy Systems Laboratory (AESL) and will employ distributed processing linked to a centralized data base. AESL will be both a multistation servicing facility and a research laboratory for the advancement of energy storage system maintenance techniques. This paper describes the baseline requirements for the AESL and the design approach being taken for its mechanization.

  9. Novel concept for driving the linear compressor of a micro-miniature split Stirling cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Maron, V.; Veprik, A.; Finkelstein, L.; Vilenchik, H.; Ziv, I.; Pundak, N.

    2009-05-01

    New methods of carrying out homeland security and antiterrorist operations call for the development of a new generation of mechanically cooled, portable, battery powered infrared imagers, relying on micro-miniature Stirling cryogenic coolers of rotary or linear types. Since split Stirling linearly driven micro-miniature cryogenic coolers have inherently longer life spans, low vibration export and better aural stealth as compared to their rotary driven rivals, they are more suitable for the above applications. The performance of such cryogenic coolers depends strongly on the efficacy of their electronic drivers. In a traditional approach, the PWM power electronics produce the fixed frequency tonal driving voltage/current, the magnitude of which is modulated via a PID control law so as to maintain the desired focal plane array temperature. The disadvantage of such drivers is that they draw high ripple current from the system's power bus. This results in the need for an oversized DC power supply (battery packs) and power electronic components, low efficiency due to excessive conductive losses and high residual electromagnetic interference which in turn degrades the performance of other systems connected to the same power bus. Without either an active line filter or large and heavy passive filtering, other electronics can not be powered from the same power bus, unless they incorporate heavy filtering at their inputs. The authors present the results of a feasibility study towards developing a novel "pumping" driver consuming essentially constant instant battery power/current without making use of an active or passive filter. In the tested setup, the driver relies on a bidirectional controllable bridge, invertible with the driving frequency, and a fast regulated DC/DC converter which maintains a constant level of current consumed from the DC power supply and thus operates in input current control mode. From the experimental results, the steady-state power consumed by the linear compressor remains the same as compared with the traditional sine wave driver, the voltage and current drawn from the battery pack is essentially free of low frequency ripple (this without use of any kind of filtering) and the overall coefficient of performance of the driver is in excess of 94% over the entire working range of supply voltages. Such a driver free of sine forming PWM stage and have reduced power peaks in all power conversion components.

  10. Predicting dropout in outpatient dialectical behavior therapy with patients with borderline personality disorder receiving psychiatric disability.

    PubMed

    Landes, Sara J; Chalker, Samantha A; Comtois, Katherine Anne

    2016-01-01

    Rates of treatment dropout in outpatient Dialectical Behavior Therapy (DBT) in the community can be as high as 24 % to 58 %, making dropout a great concern. The primary purpose of this article was to examine predictors of dropout from DBT in a community mental health setting. Participants were 56 consumers with borderline personality disorder (BPD) who were psychiatrically disabled participating in a larger feasibility trial of Dialectical Behavior Therapy- Accepting the Challenges of Exiting the System. The following variables were examined to see whether they predicted dropout in DBT: age, education level, baseline level of distress, baseline level of non-acceptance of emotional responses, and skills module in which a consumer started DBT skills group. These variables were chosen based on known predictors of dropout in consumers with BPD and in DBT, as well as an interest in what naturally occurring variables might impact dropout. The dropout rate in this sample was 51.8 %. Results of the logistic regression show that younger age, higher levels of baseline distress, and a higher level of baseline non-acceptance of emotional responses were significantly associated with dropout. The DBT skills module in which an individual started group did not predict dropout. The implications of these findings are that knowledge of consumer age and pretreatment levels of distress and non-acceptance of emotional responses can impact providers' choice of commitment and treatment strategies to reduce dropout. Future research should examine these strategies, as well as the impact of predictor variables on outcome and reasons for dropout.

  11. Behavior analysis in consumer affairs: encouraging dental professionals to provide consumers with shielding from unnecessary X-ray exposure.

    PubMed

    Greene, B F; Neistat, M D

    1983-01-01

    An unobtrusive observation system was developed to determine the extent to which dental professionals in two communities provided lead shielding to patients during X-ray exams. A lengthy baseline revealed low and irregular provision of shielding among half of these professionals. Subsequently, a program was undertaken by a consumer's group in which these professionals were requested to provide shielding and were given confidential feedback regarding its use during the baseline period. The provision of shielding dramatically increased at all offices and was maintained throughout a follow-up period extending to more than 9 months after the program's implementation. Little or no generalized effect was observed in the occurrence of three collateral behaviors that were also assessed throughout the study.

  12. Behavior analysis in consumer affairs: encouraging dental professionals to provide consumers with shielding from unnecessary X-ray exposure.

    PubMed Central

    Greene, B F; Neistat, M D

    1983-01-01

    An unobtrusive observation system was developed to determine the extent to which dental professionals in two communities provided lead shielding to patients during X-ray exams. A lengthy baseline revealed low and irregular provision of shielding among half of these professionals. Subsequently, a program was undertaken by a consumer's group in which these professionals were requested to provide shielding and were given confidential feedback regarding its use during the baseline period. The provision of shielding dramatically increased at all offices and was maintained throughout a follow-up period extending to more than 9 months after the program's implementation. Little or no generalized effect was observed in the occurrence of three collateral behaviors that were also assessed throughout the study. PMID:6833165

  13. Feds fail to obey own laws for electric vehicles says report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Federal and state agencies have failed miserably in adding electric vehicles (EVs) to their fleets. That`s according to a report on the state of battery-powered autos in the October issue of Design News. Of about 585,000 vehicles in the federal fleet, only about 200 are electric. The 1992 Energy Policy Act (EPACT) called for federal fleets to boost their percentage of alternate fuel vehicles (though not necessarily EVs). The Big Three automakers say they invested heavily in EV technology in the belief that such regulations would spur federal agencies to buy their early vehicles. The US government says it can`tmore » afford electric cars. According to Denise Lenar of Government Services Administration Fleet Management, the cost differential between an electric and a convention is $22,000. Despite more than four decades of development effort the EVs most critical component -- the battery -- is nowhere near ready. The basic battery problem is simply one of weight versus power. Today, automakers pay exorbitant sums for EV batteries. Experts think that near-term, the hybrid electric vehicle could serve as a bridge technology, enabling battery developers to continue research, while greatly improving the environment. Hybrids use an internal combustion engine to charge the batteries for an electronic drivetrain, and provide more of the conveniences to which consumers have grown accustomed. Yet, hybrids, which burn gasoline, don`t qualify as zero emission vehicles under government rules.« less

  14. Validation of Modified Wine-Rack Thermal Design for Nickel-Hydrogen Batteries in Landsat-7 Spacecraft Thermal Vacuum Test and in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    A heritage wine-rack thermal/mechanical design for the nickel-hydrogen batteries was the baseline at the Landsat-7 Preliminary Design Review. An integrated thermal and power analysis of the batteries performed by the author in 1994 revealed that the maximum cell-to-cell gradient was 6.6 C. The author proposed modifying the heritage wine-rack design by enhancing heat conduction from cells to cells, and from cells to battery frame. At the 1995 Intersociety Energy Conversion Engineering Conference (IECEC), the author presented a paper on methods of modifying the wine-rack design. It showed that the modified wine-rack option, which uses a metallic filler, could reduce the maximum cell-to-cell temperature gradient to 1.30 C, and could also reduce the maximum cell temperature by as much as 80 C. That design concept was adopted by the Landsat7 Project Office, and a design change was made at the Critical Design Review. Results of the spacecraft thermal vacuum and thermal balance tests, and temperature data in flight show that the temperatures of the battery cells are very uniform. The maximum cell-to-cell gradient is 1.50 C. They validate the modified wine-rack thermal design.

  15. Operator strategies under varying conditions of workload

    NASA Technical Reports Server (NTRS)

    Arnegard, Ruth J.

    1991-01-01

    An attempt was made to operationally define and measure strategic behavior in a complex multiple task environment. The Multi-Attribute Task battery was developed to simulate various aspects of flight and consisted of an auditory communication task, monitoring tasks, a tracking tasks, a resource management task which allowed a wide range of responding patterns, and a scheduling window which allowed operators to predict changes in workload. This battery was validated for its sensitivity to strategic behavior, and baseline measures for each individual task were collected. Twenty-four undergraduate and graduate students then performed the battery for four 64 minute sessions which took place over a period of 2 days. Each subject performed the task battery under four levels of workload, which were presented for equal lengths of time during all four sessions. Results indicated that in general, performance improves as a function of experience with the battery, but that performance decreased as workload level increased. The data also showed that subjects developed strategies for responding to the resource management task which allowed them to manage the high workload levels more efficiently. This particular strategy developed over time but was also associated with errors of complacency. These results are presented along with implications for the aviation field and areas of future research.

  16. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight versus potential flight times. Combinations of the listed batteries, fuel cells, and storage tanks are plotted on the graph to evaluate various hybrid power system configurations.

  17. Spacecraft Status Report: 2001 Mars Odyssey

    NASA Technical Reports Server (NTRS)

    Boyles, Carole

    2012-01-01

    Fourth extension of Odyssey mission continues, with orbital science investigations and relay services for landed assets. Mitigation of aging IMU and UHF transceiver. ODY has responded to Program Office/board recommendations. All Stellar mode has been certified for flight operations and is now standard for nadir point operations on the A-side. Investigating options to mitigate aging Battery. Gradual transfer to a later LMST orbit node to shorten eclipse durations. Reduce spacecraft loads during the longer eclipses. Optimize battery performance. ODY is preparing for E5 Proposal and Planetary Science Division FY12 Senior Review activities. ODY is on track to support MSL EDL and surface operations. ODY is managing consumables in order to remain in operations until 2020.

  18. Lithium-ion battery structure that self-heats at low temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-01

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the ‘all-climate battery’ cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  19. Effect of Sport Related Concussion on Clinically Measured Simple Reaction Time

    PubMed Central

    Eckner, James T.; Kutcher, Jeffrey S.; Broglio, Steven P.; Richardson, James K.

    2013-01-01

    Background Reaction time (RT) is a valuable component of the sport concussion assessment battery. RT is typically measured using computers running specialized software, which limits its applicability in some athletic settings and populations. To address this, we developed a simple clinical test of RT (RTclin) that involves grasping a falling measuring stick. Purpose To determine the effect of concussion on RTclin and its sensitivity and specificity for concussion. Materials and methods Concussed athletes (n=28) and non-concussed control teammates (n=28) completed RTclin assessments at baseline and within 48 hours of injury. Repeated measures ANOVA compared mean baseline and follow-up RTclin values between groups. Sensitivity and specificity were calculated over a range of reliable change confidence levels. Results RTclin differed significantly between groups (p < .001): there was significant prolongation from baseline to post-injury in the concussed group (p= .003), with a trend toward improvement in the control group (p = .058). Sensitivity and specificity were maximized when a critical change value of 0 ms was applied (i.e., any increase in RTclin from baseline was interpreted as abnormal), which corresponded to a sensitivity of 75%, specificity of 68%, and a 65% reliable change confidence level. Conclusions RTclin appears sensitive to the effects of concussion and distinguished concussed and non-concussed athletes with similar sensitivity and specificity to other commonly used concussion assessment tools. Given its simplicity, low cost, and minimal time requirement, RTclin should be considered a viable component of the sports medicine provider’s multifaceted concussion assessment battery. PMID:23314889

  20. Detecting reliable cognitive change in individual patients with the MATRICS Consensus Cognitive Battery.

    PubMed

    Gray, Bradley E; McMahon, Robert P; Green, Michael F; Seidman, Larry J; Mesholam-Gately, Raquelle I; Kern, Robert S; Nuechterlein, Keith H; Keefe, Richard S; Gold, James M

    2014-10-01

    Clinicians often need to evaluate the treatment response of an individual person and to know that observed change is true improvement or worsening beyond usual week-to-week changes. This paper gives clinicians tools to evaluate individual changes on the MATRICS Consensus Cognitive Battery (MCCB). We compare three different approaches: a descriptive analysis of MCCB test-retest performance with no intervention, a reliable change index (RCI) approach controlling for average practice effects, and a regression approach. Data were gathered as part of the MATRICS PASS study (Nuechterlein et al., 2008). A total of 159 people with schizophrenia completed the MCCB at baseline and 4weeks later. Data were analyzed using an RCI and a regression formula establishing confidence intervals. The RCI and regression approaches agree within one point when baseline values are close to the sample mean. However, the regression approach offers more accurate limits for expected change at the tails of the distribution of baseline scores. Although both approaches have their merits, the regression approach provides the most accurate measure of significant change across the full range of scores. As the RCI does not account for regression to the mean and has confidence limits that remain constant across baseline scores, the RCI approach effectively gives narrower confidence limits around an inaccurately predicted average change value. Further, despite the high test-retest reliability of the MCCB, a change in an individual's score must be relatively large to be confident that it is beyond normal month-to-month variation. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Science.gov Websites

    most portable consumer electronics such as cell phones and laptops because of their high energy per unit mass relative to other electrical energy storage systems. They also have a high power-to-weight ratio, high energy efficiency, good high-temperature performance, and low self-discharge. Most

  2. The impact of sarcopenia on the response to a physical activity intervention in older adults

    USDA-ARS?s Scientific Manuscript database

    To determine if the changes observed in the Short Physical Performance Battery (SPPB) after a physical activity or health education intervention are influenced by sarcopenia status at baseline. Data were obtained from the Lifestyles for Interventions and Independence for Elders Pilot Study, a RCT th...

  3. Reduced Extinction of Hippocampal-Dependent Memories in CPEB Knockout Mice

    ERIC Educational Resources Information Center

    Zearfoss, N. Ruth; Richter, Joel D.; Berger-Sweeney, Joanne

    2006-01-01

    CPEB is a sequence-specific RNA binding protein that regulates translation at synapses. In neurons of CPEB knockout mice, synaptic efficacy is reduced. Here, we have performed a battery of behavioral tests and find that relative to wild-type animals, CPEB knockout mice, although similar on many baseline behaviors, have reduced extinction of…

  4. Neurodevelopmental Correlates of Theory of Mind in Preschool Children

    ERIC Educational Resources Information Center

    Sabbagh, Mark A.; Bowman, Lindsay C.; Evraire, Lyndsay E.; Ito, Jennie M. B.

    2009-01-01

    Baseline electroencephalogram (EEG) data were collected from twenty-nine 4-year-old children who also completed batteries of representational theory-of-mind (RTM) tasks and executive functioning (EF) tasks. Neural sources of children's EEG alpha (6-9 Hz) were estimated and analyzed to determine whether individual differences in regional EEG alpha…

  5. Definition study for photovoltaic residential prototype system

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Hulstrom, R. L.; Cookson, C.; Waldman, B. H.; Lane, R. A.

    1976-01-01

    A parametric sensitivity study and definition of the conceptual design is presented. A computer program containing the solar irradiance, solar array, and energy balance models was developed to determine the sensitivities of solar insolation and the corresponding solar array output at five sites selected for this study as well as the performance of several solar array/battery systems. A baseline electrical configuration was chosen, and three design options were recommended. The study indicates that the most sensitive parameters are the solar insolation and the inverter efficiency. The baseline PST selected is comprised of a 133 sg m solar array, 250 ampere hour battery, one to three inverters, and a full shunt regulator to limit the upper solar array voltage. A minicomputer controlled system is recommended to provide the overall control, display, and data acquisition requirements. Architectural renderings of two photovoltaic residential concepts, one above ground and the other underground, are presented. The institutional problems were defined in the areas of legal liabilities during and after installation of the PST, labor practices, building restrictions and architectural guides, and land use.

  6. The PULSAR Specialist Care protocol: a stepped-wedge cluster randomized control trial of a training intervention for community mental health teams in recovery-oriented practice.

    PubMed

    Shawyer, Frances; Enticott, Joanne C; Brophy, Lisa; Bruxner, Annie; Fossey, Ellie; Inder, Brett; Julian, John; Kakuma, Ritsuko; Weller, Penelope; Wilson-Evered, Elisabeth; Edan, Vrinda; Slade, Mike; Meadows, Graham N

    2017-05-08

    Recovery features strongly in Australian mental health policy; however, evidence is limited for the efficacy of recovery-oriented practice at the service level. This paper describes the Principles Unite Local Services Assisting Recovery (PULSAR) Specialist Care trial protocol for a recovery-oriented practice training intervention delivered to specialist mental health services staff. The primary aim is to evaluate whether adult consumers accessing services where staff have received the intervention report superior recovery outcomes compared to adult consumers accessing services where staff have not yet received the intervention. A qualitative sub-study aims to examine staff and consumer views on implementing recovery-oriented practice. A process evaluation sub-study aims to articulate important explanatory variables affecting the interventions rollout and outcomes. The mixed methods design incorporates a two-step stepped-wedge cluster randomized controlled trial (cRCT) examining cross-sectional data from three phases, and nested qualitative and process evaluation sub-studies. Participating specialist mental health care services in Melbourne, Victoria are divided into 14 clusters with half randomly allocated to receive the staff training in year one and half in year two. Research participants are consumers aged 18-75 years who attended the cluster within a previous three-month period either at baseline, 12 (step 1) or 24 months (step 2). In the two nested sub-studies, participation extends to cluster staff. The primary outcome is the Questionnaire about the Process of Recovery collected from 756 consumers (252 each at baseline, step 1, step 2). Secondary and other outcomes measuring well-being, service satisfaction and health economic impact are collected from a subset of 252 consumers (63 at baseline; 126 at step 1; 63 at step 2) via interviews. Interview-based longitudinal data are also collected 12 months apart from 88 consumers with a psychotic disorder diagnosis (44 at baseline, step 1; 44 at step 1, step 2). cRCT data will be analyzed using multilevel mixed-effects modelling to account for clustering and some repeated measures, supplemented by thematic analysis of qualitative interview data. The process evaluation will draw on qualitative, quantitative and documentary data. Findings will provide an evidence-base for the continued transformation of Australian mental health service frameworks toward recovery. Australian and New Zealand Clinical Trial Registry: ACTRN12614000957695 . Date registered: 8 September 2014.

  7. The effect of a portion size intervention on French fries consumption, plate waste, satiety and compensatory caloric intake: an on-campus restaurant experiment.

    PubMed

    Vermote, Marie; Versele, Vickà; Stok, Marijn; Mullie, Patrick; D'Hondt, Eva; Deforche, Benedicte; Clarys, Peter; Deliens, Tom

    2018-04-13

    One of the driving factors of dietary overconsumption throughout the last decennia is the increase of food portion sizes. Larger portions induce higher daily energy intake, so reducing portion size may reduce intake of excess calories. However, real-life studies about the effects of portion size reduction are lacking. Therefore, this study examined the effect of a French fries portion size reduction on French fries consumption, French fries plate waste, satiety and caloric intake during the subsequent afternoon among university students and employees in a Belgian on-campus restaurant setting. Moreover, this study evaluated consumers' perception about the portion size reduction. The study took place over a two-time (i.e. baseline and intervention week) 4-day period (Tuesday-Friday) in the on-campus restaurant where ±1200 meals are served every day. French fries' portions were reduced by 20% by replacing the usual porcelain bowl served during the baseline week (±200 g) with smaller volume paper bags during the intervention week (±159 g) in a pre-post real-life experiment. French fries consumption and plate waste were measured in 2056 consumers at baseline and 2175 consumers at intervention. Additionally, interviews were conducted directly after lunch and again between 4 and 6 p.m. on the same day to assess satiety and caloric intake at pre and post in a small subsample of both French fries consumers (n = 19) and non-French fries consumers (n = 14). Post-intervention, the same subsample was interviewed about their perception of the portion size reduction (n = 28). Total French fries intake decreased by 9.1%, and total plate waste decreased by 66.4%. No differences were found in satiety or caloric intake between baseline and intervention week among the French fries' consumers. The majority (n = 24, 86%) of French fries consumers noticed the reduction in portion size during the intervention. Although most participants (n = 19, 68%) perceived the reduced portion size as sufficient, only a minority of participants (n = 9, 32%) indicated post-intervention that they would agree with a permanent implementation. Reducing portion size may lead to reduced caloric intake, without changing perceived levels of satiety.

  8. Short-term hunger intensity changes following ingestion of a meal replacement bar for weight control.

    PubMed

    Rothacker, Dana Q; Watemberg, Salo

    2004-05-01

    Meal replacement products for weight loss are popular and safe for most unsupervised consumers desiring to lose weight. Previously we reported that the thickness of meal replacement diet shakes had a direct and significant effect on hunger intensity during the first 2 h and that hunger intensity scores for liquid meal replacements were significantly below baseline for 3 h following consumption (Mattes & Rothacker, 2001) This study uses the same protocol to investigate meal replacement bars designed for overweight consumers. Subjects were prescreened to include only those that normally ate breakfast and liked chocolate. The bar used in this study contained 250 calories (about 30 more than most liquid diet shakes), 4 g dietary fiber, 14 g protein and 8 g fat. Subjects were instructed to consume the entire bar with a glass of water following an overnight fast when they would normally consume their first meal of the day and to assess their hunger on a 1 (not hungry at all) to 9 (as hungry as I have ever felt) scale before consumption, immediately after and hourly for 6 h (only on typical weekdays). Similar assessments were made for the perception of stomach fullness (1=empty, 9=extremely full), strength of the desire to eat (1=no desire, 9=extremely strong) and thirst (1=not at all thirsty, 9=extremely thirsty). One-hundred and eight subjects (23 male and 85 female) completed the study. No gender satiety differences were found. Hunger ratings and desire to eat remained significantly below baseline for 5 h following consumption. Stomach fullness scores were significantly above baseline for 5 h. Thirst scores were significantly below baseline for 3 h. In conclusion, although the meal replacement diet bars contained only 30 additional calories than liquids, they provided an additional 2 h of hunger suppression from baseline that may have an impact on overall weightloss success. These results support superior short-term hunger control with solid meal replacements.

  9. A Lumped Computational Model for Sodium Sulfur Battery Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Fan

    Due to the cost of materials and time consuming testing procedures, development of new batteries is a slow and expensive practice. The purpose of this study is to develop a computational model and assess the capabilities of such a model designed to aid in the design process and control of sodium sulfur batteries. To this end, a transient lumped computational model derived from an integral analysis of the transport of species, energy and charge throughout the battery has been developed. The computation processes are coupled with the use of Faraday's law, and solutions for the species concentrations, electrical potential and current are produced in a time marching fashion. Properties required for solving the governing equations are calculated and updated as a function of time based on the composition of each control volume. The proposed model is validated against multi- dimensional simulations and experimental results from literatures, and simulation results using the proposed model is presented and analyzed. The computational model and electrochemical model used to solve the equations for the lumped model are compared with similar ones found in the literature. The results obtained from the current model compare favorably with those from experiments and other models.

  10. Tuning of Kalman filter parameters via genetic algorithm for state-of-charge estimation in battery management system.

    PubMed

    Ting, T O; Man, Ka Lok; Lim, Eng Gee; Leach, Mark

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.

  11. Instantaneous charging & discharging cycle analysis of a novel supercapacitor based energy harvesting circuit

    NASA Astrophysics Data System (ADS)

    Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur

    2017-12-01

    In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.

  12. Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in Battery Management System

    PubMed Central

    Ting, T. O.; Lim, Eng Gee

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area. PMID:25162041

  13. Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj

    2018-04-01

    Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.

  14. Ultrafast synthesis of Te nanorods as cathode materials for lithium-tellurium batteries

    NASA Astrophysics Data System (ADS)

    Huang, Dekang; Li, Shu; Xiao, Xin; Cao, Minglei; Gao, Lin; Xiang, Yong-Gang; Chen, Hao; Shen, Yan

    2017-12-01

    Recently, tellurium has been regarded as a promising cathode material for rechargeable lithium-ion batteries due to its high theoretical volumetric capacity. However, a plethora of research are focusing on impregnating the tellurium into porous carbon materials by the thermal-diffusion method, which would consume large amounts of energy and take prolonged time. Herein, a carbon and binder-free cathode with 100% Te is fabricated by a facile galvanic replacement method on a nickle foam. Driven by the large electrochemical potential difference between Ni and Te, desirable amounts of Te can be obtained in just 10 min with no need of energy input. Li-Te batteries constructed by the as-obtained cathode show relatively good performance in DMSO solvent. To further elevate the performance of this battery especially at low current density, commercial carbon cloth is added between the separator and Te electrode as an interlayer. The cell with interlayer delivers a gravimetric capacity of 116.2 mAh g-1 after 70 cycles at the current density of 100 mA g-1, which is 2.8 times as high as that of a cell without interlayer (40.4 mAh g-1).

  15. Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers.

    PubMed

    Smit, H J; Rogers, P J

    2000-10-01

    Caffeine is present in many widely consumed drinks and some foods. In the fairly extensive literature on the psychostimulant effects of caffeine, there are few dose-response studies and even fewer studies of the effects of doses of caffeine lower than 50 mg (the range of the amounts of caffeine contained in, for example, a typical serving of tea or cola). This study measured the effects of 0, 12.5, 25, 50 and 100 mg caffeine on cognitive performance, mood and thirst in adults with low and moderate to high habitual caffeine intakes. This was a double-blind, within-subjects study. Following overnight caffeine abstinence, participants (n=23) completed a test battery once before and three times after placebo or caffeine administration. The test battery consisted of two performance tests, a long duration simple reaction time task and a rapid visual information processing task, and a mood questionnaire (including also an item on thirst). Effects on performance and mood confirmed a psychostimulant action of caffeine. All doses of caffeine significantly affected cognitive performance, and the dose-response relationships for these effects were rather flat. The effects on performance were more marked in individuals with a higher level of habitual caffeine intake, whereas caffeine increased thirst only in low caffeine consumers. After overnight caffeine abstinence, caffeine can significantly affect cognitive performance, mood and thirst at doses within and even lower than the range of amounts of caffeine contained in a single serving of popular caffeine-containing drinks. Regular caffeine consumers appear to show substantial tolerance to the thirst-increasing but not to the performance and mood effects of caffeine.

  16. Vertically oriented arrays of ReS 2 nanosheets for electrochemical energy storage and electrocatalysis

    DOE PAGES

    Gao, Jian; Li, Lu; Tan, Jiawei; ...

    2016-05-17

    Here, transition-metal dichalcogenide (TMD) nanolayers show potential as high-performance catalysts in energy conversion and storage devices. Synthetic TMDs produced by chemical-vapor deposition (CVD) methods tend to grow parallel to the growth substrate. Here, we show that with the right precursors and appropriate tuning of the CVD growth conditions, ReS 2 nanosheets can be made to orient perpendicular to the growth substrate. This accomplishes two important objectives; first, it drastically increases the wetted or exposed surface area of the ReS 2 sheets, and second, it exposes the sharp edges and corners of the ReS 2 sheets. We show that these structuralmore » features of the vertically grown ReS 2 sheets can be exploited to significantly improve their performance as polysulfide immobilizers and electrochemical catalysts in lithium–sulfur (Li–S) batteries and in hydrogen evolution reactions (HER). After 300 cycles, the specific capacity of the Li–S battery with vertical ReS 2 catalyst is retained above 750 mA h g –1, with only ~0.063% capacity decay per cycle, much better than the baseline battery (without ReS 2), which shows ~0.184% capacity decay per cycle under the same test conditions. As a HER catalyst, the vertical ReS 2 provides very small onset overpotential (<100 mV) and an exceptional exchange-current density (~67.6 μA/cm 2), which is vastly superior to the baseline electrode without ReS 2.« less

  17. Hyperbaric oxygen for mild traumatic brain injury: Design and baseline summary.

    PubMed

    Weaver, Lindell K; Chhoeu, Austin; Lindblad, Anne S; Churchill, Susan; Wilson, Steffanie H

    2016-01-01

    The Brain Injury and Mechanisms of Action of Hyperbaric Oxygen for Persistent Post-Concussive Symptoms after Mild Traumatic Brain Injury (mTBI) (BIMA) study, sponsored by the Department of Defense, is a randomized double-blind, sham-controlled clinical trial that has a longer duration of follow-up and more comprehensive assessment battery compared to recent HBO₂ studies. BIMA randomized 71 participants from September 2012 to May 2014. Primary results are expected in 2017. Randomized military personnel received hyperbaric oxygen (HBO₂) at 1.5 atmospheres absolute (ATA) or sham chamber sessions at 1.2 ATA, air, for 60 minutes daily for 40 sessions. Outcomes include neuropsychological, neuroimaging, neurological, vestibular, autonomic function, electroencephalography, and visual systems evaluated at baseline, immediately following intervention at 13 weeks and six months with self-report symptom and quality of life questionnaires at 12 months, 24 months and 36 months. Characteristics include: median age 33 years (range 21-53); 99% male; 82% Caucasian; 49% diagnosed post-traumatic stress disorder; 28% with most recent injury three months to one year prior to enrollment; 32% blast injuries; and 73% multiple injuries. This manuscript describes the study design, outcome assessment battery, and baseline characteristics. Independent of a therapeutic role of HBO₂, results of BIMA will aid understanding of mTBI. ClinicalTrials.gov Identifier: NCT01611194; https://clinicaltrials.gov/show/NCT01611194. Copyright© Undersea and Hyperbaric Medical Society.

  18. Do nuisance alarms decrease functionality of smoke alarms near the kitchen? Findings from a randomised controlled trial.

    PubMed

    Yang, Jingzhen; Jones, Michael P; Cheng, Gang; Ramirez, Marizen; Taylor, Craig; Peek-Asa, Corinne

    2011-06-01

    Many home fires begin in the kitchen. Kitchen smoke alarms are more likely to produce nuisance alarms, but few previous studies have examined the role of alarm sensor and battery types on the functionality of smoke alarms located nearest to the kitchen. Data were analysed from a 2×2 factorial randomised controlled trial conducted in rural Iowa homes (n=628). Enrolled households were randomly assigned into one of four smoke alarm/battery combinations: ionisation/zinc, ionisation/lithium, photoelectric/zinc and photoelectric/lithium. Alarm functionality was determined using a smoke test. Alarm type and battery type were compared using an intent-to-treat analysis. Logistic regression was used to identify factors that might impact the functionality of smoke alarms located nearest to the kitchen 42 months after installation. Photoelectric alarms with lithium batteries had the highest rate of functionality (90.2%), whereas ionisation alarms with carbon/zinc batteries had the lowest (76.5%). Forty-two months following installation, 6.4% more of photoelectric alarms were functional than ionisation alarms, and 7.9% more of alarms with lithium batteries were functional than those with carbon/zinc batteries. Logistic regression revealed that when the indicator of nuisance alarms was included, the effect of alarm type became statistically insignificant and ionisation alarms were less likely to be functional at 42 months, partly due to increased nuisance alarms. Alarm type is an important consideration for certain locations. Photoelectric alarms may be more appropriate for installation nearest to the kitchen despite their increased cost. These findings can help guide consumer choices to increase protection against home fire-related injuries and deaths.

  19. Effects of caffeine on mood and performance: a study of realistic consumption.

    PubMed

    Brice, Carolyn F; Smith, Andrew P

    2002-11-01

    There is a vast literature on the behavioural effects of caffeine. Many of the studies have involved single administration of a large dose of caffeine that is not representative of the way in which caffeine is usually ingested. Further information is required, therefore, on the behavioural effects of realistic patterns of consumption. The present study aimed to determine whether a realistic drinking regime (multiple small doses - 4 x 65 mg over a 5-h period) produced the same effects as a single large dose (200 mg). The smaller doses were selected so that the amount of caffeine present in the body after 5 h would be equivalent to that found with the single dose. A double-blind, placebo-controlled, within-subjects experiment was, therefore, carried out. The participants ( n=24) attended for four sessions. Each session started with a baseline measurement of mood and performance at 0930 hours. On two of the sessions, coffee was then consumed at 1000, 1100, 1200 and 1300 hours. In one of these sessions 65 mg caffeine was added to the de-caffeinated coffee. In the other two sessions, the participants consumed coffee at 1300 hours and 200 mg caffeine was added in one of the sessions. The volunteers completed the battery of tests again at 1500 hours. The results showed that in both consumption regimes caffeine led to increased alertness and anxiety and improved performance on simple and choice reactive tasks, a cognitive vigilance task, a task requiring sustained response and a dual task involving tracking and target detection. These results suggest that previous findings from studies using a large single dose may be applicable to normal patterns of caffeine consumption.

  20. Caffeine and central noradrenaline: effects on mood, cognitive performance, eye movements and cardiovascular function.

    PubMed

    Smith, Andrew; Brice, Carolyn; Nash, Jon; Rich, Neil; Nutt, David J

    2003-09-01

    There have been numerous studies on the effects of caffeine on behaviour and cardiovascular function. It is now important to clarify the mechanisms that underlie such effects, and the main objective of the present study was to investigate whether changes in central noradrenaline underlie some of the behavioural and cardiovascular effects of caffeine. This was examined using a clonidine challenge paradigm. Twenty-four healthy volunteers were assigned to one of four conditions: (i) clonidine/caffeine; (ii) clonidine/placebo; (iii) placebo/caffeine: (iv) placebo/placebo. Baseline measurements of mood, cognitive performance, saccadic eye movements and cardiovascular function were recorded. Subsequently, volunteers were given either clonidine (200 microg) or placebo and consumed coffee containing caffeine (1.5 mg/kg) or placebo. The test battery was then repeated 30 min, 150 min and 270 min later. A second cup of coffee (with the same amount of caffeine as the first) was consumed 120 min after the first cup. The results showed that clonidine reduced alertness, impaired many aspects of performance and slowed saccadic eye movements; caffeine removed many of these impairments. Both clonidine and caffeine influenced blood pressure (clonidine reduced it, caffeine raised it) but the effects appeared to be independent, suggesting that separate mechanisms were involved. In addition, there were some behavioural effects of caffeine that were independent of the clonidine effect (e.g. effects on speed of encoding of new information) and these may reflect other neurotransmitter systems (e.g cholinergic effects). Overall, the results suggest that caffeine counteracts reductions in the turnover of central noradrenaline. This mechanism may underlie the beneficial effects of caffeine seen in low alertness states.

  1. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models

    PubMed Central

    Hempstead, Joshua; Jones, Dustin P.; Ziouche, Abdelali; Cramer, Gwendolyn M.; Rizvi, Imran; Arnason, Stephen; Hasan, Tayyaba; Celli, Jonathan P.

    2015-01-01

    A lack of access to effective cancer therapeutics in resource-limited settings is implicated in global cancer health disparities between developed and developing countries. Photodynamic therapy (PDT) is a light-based treatment modality that has exhibited safety and efficacy in the clinic using wavelengths and irradiances achievable with light-emitting diodes (LEDs) operated on battery power. Here we assess low-cost enabling technology to extend the clinical benefit of PDT to regions with little or no access to electricity or medical infrastructure. We demonstrate the efficacy of a device based on a 635 nm high-output LED powered by three AA disposable alkaline batteries, to achieve strong cytotoxic response in monolayer and 3D cultures of A431 squamous carcinoma cells following photosensitization by administering aminolevulinic acid (ALA) to induce the accumulation of protoporphyrin IX (PpIX). Here we characterize challenges of battery-operated device performance, including battery drain and voltage stability specifically over relevant PDT dose parameters. Further motivated by the well-established capacity of PDT photosensitizers to serve as tumour-selective fluorescence contrast agents, we demonstrate the capability of a consumer smartphone with low-cost add-ons to measure concentration-dependent PpIX fluorescence. This study lays the groundwork for the on-going development of image-guided ALA-PDT treatment technologies for global health applications. PMID:25965295

  2. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models.

    PubMed

    Hempstead, Joshua; Jones, Dustin P; Ziouche, Abdelali; Cramer, Gwendolyn M; Rizvi, Imran; Arnason, Stephen; Hasan, Tayyaba; Celli, Jonathan P

    2015-05-12

    A lack of access to effective cancer therapeutics in resource-limited settings is implicated in global cancer health disparities between developed and developing countries. Photodynamic therapy (PDT) is a light-based treatment modality that has exhibited safety and efficacy in the clinic using wavelengths and irradiances achievable with light-emitting diodes (LEDs) operated on battery power. Here we assess low-cost enabling technology to extend the clinical benefit of PDT to regions with little or no access to electricity or medical infrastructure. We demonstrate the efficacy of a device based on a 635 nm high-output LED powered by three AA disposable alkaline batteries, to achieve strong cytotoxic response in monolayer and 3D cultures of A431 squamous carcinoma cells following photosensitization by administering aminolevulinic acid (ALA) to induce the accumulation of protoporphyrin IX (PpIX). Here we characterize challenges of battery-operated device performance, including battery drain and voltage stability specifically over relevant PDT dose parameters. Further motivated by the well-established capacity of PDT photosensitizers to serve as tumour-selective fluorescence contrast agents, we demonstrate the capability of a consumer smartphone with low-cost add-ons to measure concentration-dependent PpIX fluorescence. This study lays the groundwork for the on-going development of image-guided ALA-PDT treatment technologies for global health applications.

  3. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Hempstead, Joshua; Jones, Dustin P.; Ziouche, Abdelali; Cramer, Gwendolyn M.; Rizvi, Imran; Arnason, Stephen; Hasan, Tayyaba; Celli, Jonathan P.

    2015-05-01

    A lack of access to effective cancer therapeutics in resource-limited settings is implicated in global cancer health disparities between developed and developing countries. Photodynamic therapy (PDT) is a light-based treatment modality that has exhibited safety and efficacy in the clinic using wavelengths and irradiances achievable with light-emitting diodes (LEDs) operated on battery power. Here we assess low-cost enabling technology to extend the clinical benefit of PDT to regions with little or no access to electricity or medical infrastructure. We demonstrate the efficacy of a device based on a 635 nm high-output LED powered by three AA disposable alkaline batteries, to achieve strong cytotoxic response in monolayer and 3D cultures of A431 squamous carcinoma cells following photosensitization by administering aminolevulinic acid (ALA) to induce the accumulation of protoporphyrin IX (PpIX). Here we characterize challenges of battery-operated device performance, including battery drain and voltage stability specifically over relevant PDT dose parameters. Further motivated by the well-established capacity of PDT photosensitizers to serve as tumour-selective fluorescence contrast agents, we demonstrate the capability of a consumer smartphone with low-cost add-ons to measure concentration-dependent PpIX fluorescence. This study lays the groundwork for the on-going development of image-guided ALA-PDT treatment technologies for global health applications.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Michael C.; Phillips, Adam; Weber, Adam Z.

    We proposed and developed an all-iron redox flow battery for end users without access to an electricity grid. The concept is a low-cost battery which the user assembles, discharges, and then disposes of the active materials. Our design goals are: (1) minimize upfront cost, (2) maximize discharge energy, and (3) utilize non-toxic and environmentally benign materials. These are different goals than typically considered for electrochemical battery technology, which provides the opportunity for a novel solution. The selected materials are: low-carbon-steel negative electrode, paper separator, porous-carbon-paper positive electrode, and electrolyte solution containing 0.5 m Fe 2 (SO 4 ) 3 activemore » material and 1.2 m NaCl supporting electrolyte. Furthermore, with these materials, an average power density around 20 mW cm -2 and a maximum energy density of 11.5 Wh L -1 are achieved. A simple cost model indicates the consumable materials cost US$6.45 per kWh -1 , or only US$0.034 per mobile phone charge.« less

  5. Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake

    Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model -- the multiscale multidomain (MSMD) model -- was previously introduced to aid the scale-up of Li-ion material and electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. Here, this paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains andmore » thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. We provide example simulations for several variants of GH electrode-domain models.« less

  6. Efficient and Extensible Quasi-Explicit Modular Nonlinear Multiscale Battery Model: GH-MSMD

    DOE PAGES

    Kim, Gi-Heon; Smith, Kandler; Lawrence-Simon, Jake; ...

    2017-03-24

    Complex physics and long computation time hinder the adoption of computer aided engineering models in the design of large-format battery cells and systems. A modular, efficient battery simulation model -- the multiscale multidomain (MSMD) model -- was previously introduced to aid the scale-up of Li-ion material and electrode designs to complete cell and pack designs, capturing electrochemical interplay with 3-D electronic current pathways and thermal response. Here, this paper enhances the computational efficiency of the MSMD model using a separation of time-scales principle to decompose model field variables. The decomposition provides a quasi-explicit linkage between the multiple length-scale domains andmore » thus reduces time-consuming nested iteration when solving model equations across multiple domains. In addition to particle-, electrode- and cell-length scales treated in the previous work, the present formulation extends to bus bar- and multi-cell module-length scales. We provide example simulations for several variants of GH electrode-domain models.« less

  7. Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    NASA Technical Reports Server (NTRS)

    Price, T. W.; Wirth, V. A., Jr.; Pompa, M. F.

    1981-01-01

    Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977.

  8. Spouses of older adults with late-life drinking problems: health, family, and social functioning.

    PubMed

    Moos, Rudolf H; Brennan, Penny L; Schutte, Kathleen K; Moos, Bernice S

    2010-07-01

    This study focuses on the health, family, and social functioning of spouses of late-life remitted and continuing problem drinkers, and on predictors of spouses' alcohol-related functioning and depressive symptoms. Three groups of spouses were compared at baseline and a 10-year follow-up: (a) spouses (n = 73) of older adults who had no drinking problems at baseline or follow-up, (b) spouses (n = 25) of older adults who had drinking problems at baseline but not follow-up, and (c) spouses (n = 69) of older adults who had drinking problems at both baseline and follow-up. At each contact point, spouses completed an inventory that assessed their alcohol-related, health, family, and social functioning. At baseline, compared with spouses of problem-free individuals, spouses of older adults whose drinking problems later remitted reported more alcohol consumption, poorer health, more depressive symptoms, and less involvement in domestic tasks and social and religious activities. At the 10-year follow-up, spouses of remitted problem drinkers were comparable to spouses of problem-free individuals, but spouses of continuing problem drinkers consumed more alcohol, incurred more alcohol-related consequences, and had friends who approved more of drinking. Overall, spouses whose friends approved more of drinking and whose partners consumed more alcohol and had drinking problems were likely to consume more alcohol and to have drinking problems themselves. Spouses of older adults whose late-life drinking problems remit can attain normal functioning; however, spouses of older adults with continuing late-life drinking problems experience some ongoing deficits.

  9. Spouses of Older Adults With Late-Life Drinking Problems: Health, Family, and Social Functioning*

    PubMed Central

    Moos, Rudolf H.; Brennan, Penny L.; Schutte, Kathleen K.; Moos, Bernice S.

    2010-01-01

    Objective: This study focuses on the health, family, and social functioning of spouses of late-life remitted and continuing problem drinkers, and on predictors of spouses' alcohol-related functioning and depressive symptoms. Method: Three groups of spouses were compared at baseline and a 10-year follow-up: (a) spouses (n = 73) of older adults who had no drinking problems at baseline or follow-up, (b) spouses (n = 25) of older adults who had drinking problems at baseline but not follow-up, and (c) spouses (n = 69) of older adults who had drinking problems at both baseline and follow-up. At each contact point, spouses completed an inventory that assessed their alcohol-related, health, family, and social functioning. Results: At baseline, compared with spouses of problem-free individuals, spouses of older adults whose drinking problems later remitted reported more alcohol consumption, poorer health, more depressive symptoms, and less involvement in domestic tasks and social and religious activities. At the 10-year follow-up, spouses of remitted problem drinkers were comparable to spouses of problem-free individuals, but spouses of continuing problem drinkers consumed more alcohol, incurred more alcohol-related consequences, and had friends who approved more of drinking. Overall, spouses whose friends approved more of drinking and whose partners consumed more alcohol and had drinking problems were likely to consume more alcohol and to have drinking problems themselves. Conclusions: Spouses of older adults whose late-life drinking problems remit can attain normal functioning; however, spouses of older adults with continuing late-life drinking problems experience some ongoing deficits. PMID:20553658

  10. The Use of Pristine and Intercalated Graphite Fiber Composites as Buss Bars in Lead-Acid Batteries

    NASA Technical Reports Server (NTRS)

    Opaluch, Amanda M.

    2004-01-01

    This study was conducted as a part of the Firefly Energy Space Act Agreement project to investigate the possible use of composite materials in lead acid batteries. Specifically, it examined the use of intercalated graphite composites as buss bars. Currently, buss bars of these batteries are made of lead, a material that is problematic for several reasons. Over time, the lead is subject to both corrosion at the positive plate and sulfation at the negative plate, resulting in decreased battery life. In addition, the weight and size of the lead buss bars make for a heavy and cumbersome battery that is undesirable. Functionality and practicality of lead buss bars is adequate at best; consequently, investigation of more efficient composite materials would be advantageous. Practically speaking, graphite composites have a low density that is nearly one fourth that of its lead counterpart. A battery made of less dense materials would be more attractive to the consumer and the producer because it would be light and convenient. More importantly, low weight would be especially beneficial because it would result in greater overall power density of the battery. In addition to power density, use of graphite composite materials can also increase the life of the battery. From a functional standpoint, corrosion and sulfation at the positive and negative plates are major obstacles when considering how to extend battery life. Neither of these reactions are a factor when graphite composites replace lead parts because graphite is chemically non-reactive with the electrolyte within the battery. Without the problem of corrosion or sulfation, battery life expectancy can be almost doubled. The replacement of lead battery parts with composite materials is also more environmentally favorable because of easy disposal of organic materials. For this study, both pristine and bromine intercalated single-ply graphite fiber composites were created. The composites were fabricated in such a way as to facilitate their use in a 3" x 1/2" buss bar test cell. The prime objective of this investigation was to examine the effectiveness of a variety of graphite composite materials to act as buss bars and carry the current to and from the positive and negative battery plates. This energy transfer can be maximized by use of materials with high conductivity to minimize the buss resistance. Electrical conductivity of composites was measured using both a contactless eddy current probe and a four point measurement. In addition, the stability of these materials at battery-use conditions was characterized.

  11. Techno-economic and life-cycle modeling and analysis of various energy storage technologies coupled with a solar photovoltaic array

    NASA Astrophysics Data System (ADS)

    Peterson, Brian Andrew

    Renewable energies, such as wind and solar, are a growing piece of global energy consumption. The chief motivation to develop renewable energy is two-fold: reducing carbon dioxide emissions and reducing dependence on diminishing fossil fuel supplies. Energy storage is critical to the growth of renewable energy because it allows for renewably-generated electricity to be consumed at times when renewable sources are unavailable, and it also enhances power quality (maintaining voltage and frequency) on an electric grid which becomes increasingly unstable as more renewable energy is added. There are numerous means of storing energy with different advantages, but none has emerged as the clear solution of choice for renewable energy storage. This thesis attempts to explore the current and developing state of energy storage and how it can be efficiently implemented with crystalline silicon solar photovotlaics, which has a minimum expected lifetime of 25 years assumed in this thesis. A method of uniformly comparing vastly different energy storage technologies using empirical data was proposed. Energy storage technologies were compared based on both economic valuation over the system life and cradle-to-gate pollution rates for systems with electrochemical batteries. For stationary, non-space-constrained settings, lead-acid batteries proved to be the most economical. Carbon-enhanced lead-acid batteries were competitive, showing promise as an energy storage technology. Lithium-ion batteries showed the lowest pollution rate of electrochemical batteries examined, but both lithium-ion and lead-acid batteries produce comparable carbon dioxide to coal-derived electricity.

  12. Exploratory technology research program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1992-06-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in FY 1991.

  13. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Jennifer; Jacobson, Arne; Mills, Evan

    Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hoursmore » from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, 38percent for run time, 11percent for light distribution and by as much as 200percent for color rendering. Results obtained are useful for creating a framework for quality assurance of off-grid LED products and will be valuable for informing consumers, distributors and product manufacturers about product performance.« less

  14. Influence of residual elements in lead on oxygen- and hydrogen-gassing rates of lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Ceylan, H.; Haigh, N. P.; Lwin, T.; Rand, D. A. J.

    Raw lead materials contain many residual elements. With respect to setting 'safe' levels for these elements, each country has its own standard, but the majority of the present specifications for the lead used to prepare battery oxide apply to flooded batteries that employ antimonial grids. In these batteries, the antimony in the positive and negative grids dominates gassing characteristics so that the influence of residual elements is of little importance. This is, however, not the case for valve-regulated lead-acid (VRLA) batteries, which use antimony-free grids and less sulfuric acid solution. Thus, it is necessary to specify 'acceptable' levels of residual elements for the production of VRLA batteries. In this study, 17 elements are examined, namely: antimony, arsenic, bismuth, cadmium, chromium, cobalt, copper, germanium, iron, manganese, nickel, selenium, silver, tellurium, thallium, tin, and zinc. The following strategy has been formulated to determine the acceptable levels: (i) selection of a control oxide; (ii) determination of critical float, hydrogen and oxygen currents; (iii) establishment of a screening plan for the elements; (iv) development of a statistical method for analysis of the experimental results. The critical values of the float, hydrogen and oxygen currents are calculated from a field survey of battery failure data. The values serve as a base-line for comparison with the corresponding measured currents from cells using positive and negative plates produced either from the control oxide or from oxide doped with different levels of the 17 elements in combination. The latter levels are determined by means of a screening plan which is based on the Plackett-Burman experimental design. Following this systematic and thorough exercise, two specifications are proposed for the purity of the lead to be used in oxide production for VRLA technology.

  15. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sally; Tyler Gray; Pattie Hovorka

    2012-08-01

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of amore » battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.« less

  16. CBT for Nightmares in OEF/OIF Veterans

    DTIC Science & Technology

    2013-07-01

    Freedom (OIF) have significant psychological symptoms related to traumatic war zone exposure, including recurrent nightmares and other sleep disturbances...nightmares. Participants complete a battery of computerized neuropsychological tests at baseline and are stratified in their randomization to either...procedures were developed. Study supervisors, Drs. Philip Gehrman and Andrea Phelps , review treatment tapes, and weekly supervision calls with study

  17. Energy Options for Wireless Sensor Nodes.

    PubMed

    Knight, Chris; Davidson, Joshua; Behrens, Sam

    2008-12-08

    Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.

  18. Energy Options for Wireless Sensor Nodes

    PubMed Central

    Knight, Chris; Davidson, Joshua; Behrens, Sam

    2008-01-01

    Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975

  19. Physical frailty predicts incident depressive symptoms in elderly people: prospective findings from the Obu Study of Health Promotion for the Elderly.

    PubMed

    Makizako, Hyuma; Shimada, Hiroyuki; Doi, Takehiko; Yoshida, Daisuke; Anan, Yuya; Tsutsumimoto, Kota; Uemura, Kazuki; Liu-Ambrose, Teresa; Park, Hyuntae; Lee, Sanyoon; Suzuki, Takao

    2015-03-01

    The purpose of this study was to determine whether frailty is an important and independent predictor of incident depressive symptoms in elderly people without depressive symptoms at baseline. Fifteen-month prospective study. General community in Japan. A total of 3025 community-dwelling elderly people aged 65 years or over without depressive symptoms at baseline. The self-rated 15-item Geriatric Depression Scale was used to assess symptoms of depression with a score of 6 or more at baseline and 15-month follow-up. Participants underwent a structural interview designed to obtain demographic factors and frailty status, and completed cognitive testing with the Mini-Mental State Examination and physical performance testing with the Short Physical Performance Battery as potential predictors. At a 15-month follow-up survey, 226 participants (7.5%) reported the development of depressive symptoms. We found that frailty and poor self-rated general health (adjusted odds ratio 1.86, 95% confidence interval 1.30-2.66, P < .01) were independent predictors of incident depressive symptoms. The odds ratio for depressive symptoms in participants with frailty compared with robust participants was 1.86 (95% confidence interval 1.05-3.28, P = .03) after adjusting for demographic factors, self-rated general health, behavior, living arrangements, Mini-Mental State Examination, Short Physical Performance Battery, and Geriatric Depression Scale scores at baseline. Our findings suggested that frailty and poor self-rated general health were independent predictors of depressive symptoms in community-dwelling elderly people. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  20. Use of the Short Physical Performance Battery Score to predict loss of ability to walk 400 meters: analysis from the InCHIANTI study.

    PubMed

    Vasunilashorn, Sarinnapha; Coppin, Antonia K; Patel, Kushang V; Lauretani, Fulvio; Ferrucci, Luigi; Bandinelli, Stefania; Guralnik, Jack M

    2009-02-01

    Early detection of mobility limitations remains an important goal for preventing mobility disability. The purpose of this study was to examine the association between the Short Physical Performance Battery (SPPB) and the loss of ability to walk 400 m, an objectively assessed mobility outcome increasingly used in clinical trials. The study sample consisted of 542 adults from the InCHIANTI study aged 65 and older, who completed the 400 m walk at baseline and had evaluations on the SPPB and 400 m walk at baseline and 3-year follow-up. Multiple logistic regression models were used to determine whether SPPB scores predict the loss of ability to walk 400 m at follow-up among persons able to walk 400 m at baseline. The 3-year incidence of failing the 400 m walk was 15.5%. After adjusting for age, sex, education, body mass index, Mini-Mental State Examination, number of medical conditions, and 400 m walk gait speed at baseline, SPPB score was significantly associated with loss of ability to walk 400 m after 3 years. Participants with SPPB scores of 10 or lower at baseline had significantly higher odds of mobility disability at follow-up (odds ratio [OR] = 3.38, 95% confidence interval [CI]: 1.32-8.65) compared with those who scored 12, with a graded response across the range of SPPB scores (OR = 26.93, 95% CI: 7.51-96.50; OR = 7.67, 95% CI: 2.26-26.04; OR = 8.28, 95% CI: 3.32-20.67 for SPPB < or = 7, SPPB 8, and SPPB 9, respectively). The SPPB strongly predicts loss of ability to walk 400 m. Thus, using the SPPB to identify older persons at high risk of lower body functional limitations seems a valid means of recognizing individuals who would benefit most from preventive interventions.

  1. Use of the Short Physical Performance Battery Score to Predict Loss of Ability to Walk 400 Meters: Analysis From the InCHIANTI Study

    PubMed Central

    Coppin, Antonia K.; Patel, Kushang V.; Lauretani, Fulvio; Ferrucci, Luigi; Bandinelli, Stefania; Guralnik, Jack M.

    2009-01-01

    Background Early detection of mobility limitations remains an important goal for preventing mobility disability. The purpose of this study was to examine the association between the Short Physical Performance Battery (SPPB) and the loss of ability to walk 400 m, an objectively assessed mobility outcome increasingly used in clinical trials. Methods The study sample consisted of 542 adults from the InCHIANTI study aged 65 and older, who completed the 400 m walk at baseline and had evaluations on the SPPB and 400 m walk at baseline and 3-year follow-up. Multiple logistic regression models were used to determine whether SPPB scores predict the loss of ability to walk 400 m at follow-up among persons able to walk 400 m at baseline. Results The 3-year incidence of failing the 400 m walk was 15.5%. After adjusting for age, sex, education, body mass index, Mini-Mental State Examination, number of medical conditions, and 400 m walk gait speed at baseline, SPPB score was significantly associated with loss of ability to walk 400 m after 3 years. Participants with SPPB scores of 10 or lower at baseline had significantly higher odds of mobility disability at follow-up (odds ratio [OR] = 3.38, 95% confidence interval [CI]: 1.32–8.65) compared with those who scored 12, with a graded response across the range of SPPB scores (OR = 26.93, 95% CI: 7.51–96.50; OR = 7.67, 95% CI: 2.26–26.04; OR = 8.28, 95% CI: 3.32–20.67 for SPPB ≤ 7, SPPB 8, and SPPB 9, respectively). Conclusions The SPPB strongly predicts loss of ability to walk 400 m. Thus, using the SPPB to identify older persons at high risk of lower body functional limitations seems a valid means of recognizing individuals who would benefit most from preventive interventions. PMID:19182232

  2. Cerebral glucose metabolism and cognition in newly diagnosed Parkinson's disease: ICICLE-PD study.

    PubMed

    Firbank, M J; Yarnall, A J; Lawson, R A; Duncan, G W; Khoo, T K; Petrides, G S; O'Brien, J T; Barker, R A; Maxwell, R J; Brooks, D J; Burn, D J

    2017-04-01

    To assess reductions of cerebral glucose metabolism in Parkinson's disease (PD) with 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET), and their associations with cognitive decline. FDG-PET was performed on a cohort of 79 patients with newly diagnosed PD (mean disease duration 8 months) and 20 unrelated controls. PD participants were scanned while on their usual dopaminergic medication. Cognitive testing was performed at baseline, and after 18 months using the Cognitive Drug Research (CDR) and Cambridge Neuropsychological Test Automated Battery (CANTAB) computerised batteries, the Mini-Mental State Examination (MMSE), and the Montreal Cognitive Assessment (MoCA). We used statistical parametric mapping (SPM V.12) software to compare groups and investigate voxelwise correlations between FDG metabolism and cognitive score at baseline. Linear regression was used to evaluate how levels of cortical FDG metabolism were predictive of subsequent cognitive decline rated with the MMSE and MoCA. PD participants showed reduced glucose metabolism in the occipital and inferior parietal lobes relative to controls. Low performance on memory-based tasks was associated with reduced FDG metabolism in posterior parietal and temporal regions, while attentional performance was associated with more frontal deficits. Baseline parietal to cerebellum FDG metabolism ratios predicted MMSE (β=0.38, p=0.001) and MoCA (β=0.3, p=0.002) at 18 months controlling for baseline score. Reductions in cortical FDG metabolism were present in newly diagnosed PD, and correlated with performance on neuropsychological tests. A reduced baseline parietal metabolism is associated with risk of cognitive decline and may represent a potential biomarker for this state and the development of PD dementia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Long-term Stability and Reliability of Baseline Cognitive Assessments in High School Athletes Using ImPACT at 1-, 2-, and 3-year Test-Retest Intervals.

    PubMed

    Brett, Benjamin L; Smyk, Nathan; Solomon, Gary; Baughman, Brandon C; Schatz, Philip

    2016-08-18

    The ImPACT (Immediate Post-Concussion Assessment and Cognitive Testing) neurocognitive testing battery is a widely used tool used for the assessment and management of sports-related concussion. Research on the stability of ImPACT in high school athletes at a 1- and 2-year intervals have been inconsistent, requiring further investigation. We documented 1-, 2-, and 3-year test-retest reliability of repeated ImPACT baseline assessments in a sample of high school athletes, using multiple statistical methods for examining stability. A total of 1,510 high school athletes completed baseline cognitive testing using online ImPACT test battery at three time periods of approximately 1- (N = 250), 2- (N = 1146), and 3-year (N = 114) intervals. No participant sustained a concussion between assessments. Intraclass correlation coefficients (ICCs) ranged in composite scores from 0.36 to 0.90 and showed little change as intervals between assessments increased. Reliable change indices and regression-based measures (RBMs) examining the test-retest stability demonstrated a lack of significant change in composite scores across the various time intervals, with very few cases (0%-6%) falling outside of 95% confidence intervals. The results suggest ImPACT composites scores remain considerably stability across 1-, 2-, and 3-year test-retest intervals in high school athletes, when considering both ICCs and RBM. Annually ascertaining baseline scores continues to be optimal for ensuring accurate and individualized management of injury for concussed athletes. For instances in which more recent baselines are not available (1-2 years), clinicians should seek to utilize more conservative range estimates in determining the presence of clinically meaningful change in cognitive performance. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Are We There Yet? An Examination of Online Tailored Health Communication

    ERIC Educational Resources Information Center

    Suggs, L. Suzanne; McIntyre, Chris

    2009-01-01

    Increasingly, the Internet is playing an important role in consumer health and patient-provider communication. Seventy-three percent of American adults are now online, and 79% have searched for health information on the Internet. This study provides a baseline understanding of the extent to which health consumers are able to find tailored…

  5. Human Health Baseline Risk Assessment for the Estuary, Operable Unit 1, Marsh Trespasser, Fish and Shellfish Consumer, Clapper Rail Consumer, LCP Chemicals Superfund Site

    EPA Pesticide Factsheets

    report on marsh trespasser and consumption of fish, shellfish, and clapper rail at LCP Superfund site in Brunswick, Georgia, prepared by EPS, Inc. in Aug. 2011. Region ID: 04 DocID: 10841008, DocDate: 08-01-2011

  6. The minimum test battery to screen for binocular vision anomalies: report 3 of the BAND study.

    PubMed

    Hussaindeen, Jameel Rizwana; Rakshit, Archayeeta; Singh, Neeraj Kumar; Swaminathan, Meenakshi; George, Ronnie; Kapur, Suman; Scheiman, Mitchell; Ramani, Krishna Kumar

    2018-03-01

    This study aims to report the minimum test battery needed to screen non-strabismic binocular vision anomalies (NSBVAs) in a community set-up. When large numbers are to be screened we aim to identify the most useful test battery when there is no opportunity for a more comprehensive and time-consuming clinical examination. The prevalence estimates and normative data for binocular vision parameters were estimated from the Binocular Vision Anomalies and Normative Data (BAND) study, following which cut-off estimates and receiver operating characteristic curves to identify the minimum test battery have been plotted. In the receiver operating characteristic phase of the study, children between nine and 17 years of age were screened in two schools in the rural arm using the minimum test battery, and the prevalence estimates with the minimum test battery were found. Receiver operating characteristic analyses revealed that near point of convergence with penlight and red filter (> 7.5 cm), monocular accommodative facility (< 10 cycles per minute), and the difference between near and distance phoria (> 1.25 prism dioptres) were significant factors with cut-off values for best sensitivity and specificity. This minimum test battery was applied to a cohort of 305 children. The mean (standard deviation) age of the subjects was 12.7 (two) years with 121 males and 184 females. Using the minimum battery of tests obtained through the receiver operating characteristic analyses, the prevalence of NSBVAs was found to be 26 per cent. Near point of convergence with penlight and red filter > 10 cm was found to have the highest sensitivity (80 per cent) and specificity (73 per cent) for the diagnosis of convergence insufficiency. For the diagnosis of accommodative infacility, monocular accommodative facility with a cut-off of less than seven cycles per minute was the best predictor for screening (92 per cent sensitivity and 90 per cent specificity). The minimum test battery of near point of convergence with penlight and red filter, difference between distance and near phoria, and monocular accommodative facility yield good sensitivity and specificity for diagnosis of NSBVAs in a community set-up. © 2017 Optometry Australia.

  7. Comparative study of outcome measures and analysis methods for traumatic brain injury trials.

    PubMed

    Alali, Aziz S; Vavrek, Darcy; Barber, Jason; Dikmen, Sureyya; Nathens, Avery B; Temkin, Nancy R

    2015-04-15

    Batteries of functional and cognitive measures have been proposed as alternatives to the Extended Glasgow Outcome Scale (GOSE) as the primary outcome for traumatic brain injury (TBI) trials. We evaluated several approaches to analyzing GOSE and a battery of four functional and cognitive measures. Using data from a randomized trial, we created a "super" dataset of 16,550 subjects from patients with complete data (n=331) and then simulated multiple treatment effects across multiple outcome measures. Patients were sampled with replacement (bootstrapping) to generate 10,000 samples for each treatment effect (n=400 patients/group). The percentage of samples where the null hypothesis was rejected estimates the power. All analytic techniques had appropriate rates of type I error (≤5%). Accounting for baseline prognosis either by using sliding dichotomy for GOSE or using regression-based methods substantially increased the power over the corresponding analysis without accounting for prognosis. Analyzing GOSE using multivariate proportional odds regression or analyzing the four-outcome battery with regression-based adjustments had the highest power, assuming equal treatment effect across all components. Analyzing GOSE using a fixed dichotomy provided the lowest power for both unadjusted and regression-adjusted analyses. We assumed an equal treatment effect for all measures. This may not be true in an actual clinical trial. Accounting for baseline prognosis is critical to attaining high power in Phase III TBI trials. The choice of primary outcome for future trials should be guided by power, the domain of brain function that an intervention is likely to impact, and the feasibility of collecting outcome data.

  8. Comparative Study of Outcome Measures and Analysis Methods for Traumatic Brain Injury Trials

    PubMed Central

    Alali, Aziz S.; Vavrek, Darcy; Barber, Jason; Dikmen, Sureyya; Nathens, Avery B.

    2015-01-01

    Abstract Batteries of functional and cognitive measures have been proposed as alternatives to the Extended Glasgow Outcome Scale (GOSE) as the primary outcome for traumatic brain injury (TBI) trials. We evaluated several approaches to analyzing GOSE and a battery of four functional and cognitive measures. Using data from a randomized trial, we created a “super” dataset of 16,550 subjects from patients with complete data (n=331) and then simulated multiple treatment effects across multiple outcome measures. Patients were sampled with replacement (bootstrapping) to generate 10,000 samples for each treatment effect (n=400 patients/group). The percentage of samples where the null hypothesis was rejected estimates the power. All analytic techniques had appropriate rates of type I error (≤5%). Accounting for baseline prognosis either by using sliding dichotomy for GOSE or using regression-based methods substantially increased the power over the corresponding analysis without accounting for prognosis. Analyzing GOSE using multivariate proportional odds regression or analyzing the four-outcome battery with regression-based adjustments had the highest power, assuming equal treatment effect across all components. Analyzing GOSE using a fixed dichotomy provided the lowest power for both unadjusted and regression-adjusted analyses. We assumed an equal treatment effect for all measures. This may not be true in an actual clinical trial. Accounting for baseline prognosis is critical to attaining high power in Phase III TBI trials. The choice of primary outcome for future trials should be guided by power, the domain of brain function that an intervention is likely to impact, and the feasibility of collecting outcome data. PMID:25317951

  9. Protein supplements: do they alter dietary intakes?

    PubMed

    Mallard, Alistair R; McLay-Cooke, Rebecca T; Rehrer, Nancy J

    2014-06-01

    Effects of protein versus mixed macronutrient supplementation on total energy intake (TEI) and protein intake during an ad libitum diet were examined. Trained males undertook two, 2-week dietary interventions which were randomized, double blinded, and separated by 2 weeks. These were high-protein supplementation (HP: 1034.5 kJ energy, 29.6 g protein, 8.7 g fat and 12.3 g CHO) and standard meal supplementation (SM: 1039 kJ energy, 9.9 g protein, 9.5 g fat, and 29.4 g CHO) consumed daily following a week of baseline measures. Eighteen participants finished both interventions and one only completed HP. TEI (mean ± SD) was not different between baseline (11148 ± 3347 kJ) and HP (10705 ± 3143 kJ) nor between baseline and SM (12381 ± 3877 kJ), however, TEI was greater with SM than HP (923 ± 4015 kJ p = .043). Protein intake (%TEI) was greater with HP (22.4 ± 6.2%) than baseline (19.4 ± 5.4%; p = .008) but not SM (20.0 ± 5.0%). No differences in absolute daily protein intake were found. Absolute CHO intake was greater with SM than HP (52.0 ± 89.5 g, p = .006). No differences in fat intake were found. Body mass did not change between baseline (82.7 ± 11.2 kg) and either HP (83.1 ± 11.7 kg) or SM (82.9 ± 11.0 kg). Protein supplementation increases the relative proportion of protein in the diet, but doesn't increase the absolute amount of total protein or energy consumed. Thus some compensation by a reduction in other foods occurs. This is in contrast to a mixed nutrient supplement, which does not alter the proportion of protein consumed but does increase TEI.

  10. Failure propagation in multi-cell lithium ion batteries

    DOE PAGES

    Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; ...

    2014-10-22

    Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less

  11. Significantly improved neurocognitive function in major depressive disorders 6 weeks after ECT.

    PubMed

    Mohn, Christine; Rund, Bjørn Rishovd

    2016-09-15

    Cognitive side effects may occur after electroconvulsive treatment (ECT) in depressive disorder patients. Previous studies have been limited by small numbers of cognitive functions assessed. The present study reports the first results from a prospective project monitoring cognitive effects of ECT using a comprehensive neuropsychological test battery and subjective report of everyday cognitive function. Thirty-one patients with major depressive disorder were assessed with the MATRICS Consensus Cognitive Battery (MCCB). Subjective cognitive complaints were described with the Everyday Memory Questionnaire (EMQ). Severity of depression symptoms were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS). These assessments were performed prior to and 6 weeks after non-standardized ECT. Compared to baseline, the mean depression severity level was nearly halved and there were significant improvements in mean levels of Speed of Processing, Attention/Vigilance, and Visual Learning 6 weeks after ECT. The other cognitive domains were not altered from baseline. There was no significant change in subjective cognitive complaints. At baseline, there were several significant correlations between the MADRS and MCCB scores. There was no strong association between the EMQ and MCCB scores at either assessment point, but the post-ECT EMQ score was significantly correlated with depression severity. Major limitations were low N and lack of uniform ECT procedure. There was significant improvement in Speed of Processing, Attention/Vigilance, and Visual Learning 6 weeks after ECT. Cognitive tests scores were related to severity of depression, but not to subjective memory complaints. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    NASA Technical Reports Server (NTRS)

    Price, T. W.; Wirth, V. A., Jr.; Pampa, M. F.

    1981-01-01

    The change of pace, an electric vehicle was tested. These tests were performed to characterize certain parameters of the electric vehicle pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem, the batteries, controller and motor. Coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions were performed. The vehicle's performance was evaluated by comparing its constant speed range performance with described vehicles. It is found that the pacer performance is approximately equal to the majority of the vehicles tested in the 1977 assessment.

  13. The Design of a Portable and Deployable Solar Energy System for Deployed Military Applications

    DTIC Science & Technology

    2011-04-01

    Abstract- Global Positioning Systems, thermal imaging scopes, satellite phones, and other electronic devices are critical to the warfighter in... imaging scopes, satellite phones, and other electronic devices are critical to the warfighter in Forward Operating Environments. Many are battery operated...Technology & Engineering 24. Kumar, Shrawan, Mital, Anil, Electromyography in ergonomics 25. Stanton, Neville Human factors in consumer products, CRC

  14. Technology Evaluation for an Advanced Individual Protection System (AIPS)

    DTIC Science & Technology

    1992-12-01

    this analysis are: time of operation, duration of thermal management, power consumed during operation, cooling/heating benefit , time between recharge...BRDEC) TOPICS: o individual power * batteries/engines/fuel cel!s POC: Wes Goodwin (NRDEC) TOPICS: * microclimate cooling e vapor compression cycles e...individual power 2.3 LITERATURE SEARCHES The literature searches began by reviewing Battelle in-house sources for useful reports. This included a

  15. CBT for Nightmares in OEF/OIF Veterans

    DTIC Science & Technology

    2012-07-01

    OEF) and Operation Iraqi Freedom ( OIF) have significant psychological symptoms related to traumatic war zone exposure, includi ng recurrent...and assessed for PTSD and war zone-related nightmares. Participants complete a battery of computerized neuropsychological tests at baseline and are...rating procedures were developed, and these are being used. Study supervisors, Drs. Philip Gehrm an and Andrea Phelps , review treatment tapes, and

  16. CBT for Nightmares in OEF/OIF Veterans

    DTIC Science & Technology

    2014-07-01

    and Operation Iraqi Freedom (OIF) have significant psychological symptoms related to traumatic war zone exposure, including recurrent nightmares...assessed for PTSD and war zone-related nightmares. Participants completed a battery of computerized neuropsychological tests at baseline and were...collaborator in Australia, Dr. Andrea Phelps . We continued to work with the Philadelphia VAMC Information Security and Privacy officers as well as the

  17. Design and Demonstration of Three-Electrode Pouch Cells for Lithium-Ion Batteries

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Daniel, Claus; ...

    2017-06-14

    Simple three-electrode pouch cells which can be used in distinguishing the voltage and resistance in individual electrodes of lithium ion batteries have been designed. Baseline (1 mm-staggered alignment, cathode away from a reference electrode) and aligned electrodes to a reference electrode located outside of the anode and cathode were studied to see alignment effects on resistance analysis. Cells composed of A12 graphite anodes, LiNi 0.5Mn 0.3Co 0.2O 2 (NMC 532 or NCM 523) cathodes, lithium foil references, microporous tri-layer membranes, and electrolytes, were cycled with cathode cutoff voltages between 3.0 V and 4.3 V for formation cycles or 4.6 Vmore » for C-rate performance testing. By applying a hybrid pulse power characterization (HPPC) technique to the cells, resistances of the baseline cells contributed by the anode and cathode were found to be different from those of the aligned cells, although overall resistances were close to ones from aligned cells. As a result, resistances obtained via electrochemical impedance spectroscopy (EIS) and 2D simulation were also compared with those obtained from HPPC.« less

  18. Bidirectional DC/DC Converter

    NASA Astrophysics Data System (ADS)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  19. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.

    PubMed

    Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan

    2015-12-09

    The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries.

  20. Exploratory Technology Research Program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  1. Exploratory Technology Research Program for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  2. Energy consumption model on WiMAX subscriber station

    NASA Astrophysics Data System (ADS)

    Mubarakah, N.; Suherman; Al-Hakim, M. Y.; Warman, E.

    2018-02-01

    Mobile communication technologies move toward miniaturization. Mobile device’s energy source relies on its battery endurance. The smaller the mobile device, it is expected the slower the battery drains. Energy consumption reduction in mobile devices has been of interest of researcher. In order to optimize energy consumption, its usage should be predictable. This paper proposes a model of predicted energy amount consumed by the WiMAX subscriber station by using regression analysis of active WiMAX states and their durations. The proposed model was assessed by using NS-2 simulation for more than a hundred thousand of recorded energy consumptions data in every WiMAX states. The assessment show a small average deviation between predicted and measured energy consumptions, about 0.18% for training data and 0.187% and 0.191% for test data.

  3. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines

    PubMed Central

    Doak, S.H.; Manshian, B.; Jenkins, G.J.S.; Singh, N.

    2012-01-01

    There is a pressing requirement to define a hazard identification and risk management strategy for nanomaterials due to the rapid growth in the nanotechnology industry and their promise of life-style revolutions through the development of wide-ranging nano-containing consumer products. Consequently, a battery of well defined and appropriate in vitro assays to assess a number of genotoxicity endpoints is required to minimise extensive and costly in vivo testing. However, the validity of the established protocols in current OECD recognised genotoxicity assays for nanomaterials is currently being questioned. In this report, we therefore consider the in vitro OECD genotoxicity test battery including the Ames, micronucleus and HPRT forward mutation assays, and their potential role in the safety assessment of nanomaterial induced DNA damage in vitro. PMID:21971291

  4. Material review of Li ion battery separators

    NASA Astrophysics Data System (ADS)

    Weber, Christoph J.; Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-01

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m2 mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  5. A fully battery-powered inexpensive spectrophotometric system for high-sensitivity point-of-care analysis on a microfluidic chip

    PubMed Central

    Dou, Maowei; Lopez, Juan; Rios, Misael; Garcia, Oscar; Xiao, Chuan; Eastman, Michael

    2016-01-01

    A cost-effective battery-powered spectrophotometric system (BASS) was developed for quantitative point-of-care (POC) analysis on a microfluidic chip. By using methylene blue as a model analyte, we first compared the performance of the BASS with a commercial spectrophotometric system, and further applied the BASS for loop-mediated isothermal amplification (LAMP) detection and subsequent quantitative nucleic acid analysis which exhibited a comparable limit of detection to that of Nanodrop. Compared to the commercial spectrophotometric system, our spectrophotometric system is lower-cost, consumes less reagents, and has a higher detection sensitivity. Most importantly, it does not rely on external power supplies. All these features make our spectrophotometric system highly suitable for a variety of POC analyses, such as field detection. PMID:27143408

  6. Serum Micronutrient Concentrations and Decline in Physical Function Among Older Persons

    PubMed Central

    Bartali, Benedetta; Frongillo, Edward A.; Guralnik, Jack M.; Stipanuk, Martha H.; Allore, Heather G.; Cherubini, Antonio; Bandinelli, Stefania; Ferrucci, Luigi; Gill, Thomas M.

    2009-01-01

    Context Maintaining independence of older persons is a public health priority, and identifying the factors that contribute to decline in physical function is needed to prevent or postpone the disablement process. The potential deleterious effect of poor nutrition on decline in physical function in older persons is unclear. Objective To determine whether a low serum concentration of micronutrients is associated with subsequent decline in physical function among older men and women living in the community. Design, Setting, and Participants Longitudinal study of 698 community-living persons 65 years or older who were randomly selected from a population registry in Tuscany, Italy. Participants completed the baseline examination from November 1, 1998, through May 28, 2000, and the 3-year follow-up assessments from November 1, 2001, through March 30, 2003. Main Outcome Measure Decline in physical function was defined as a loss of at least 1 point in the Short Physical Performance Battery during the 3-year follow-up. Odds ratios (ORs) were calculated for the lowest quartile of each nutrient using the other 3 quartiles combined as the reference group. Two additional and complementary analytical approaches were used to confirm the validity of the results. Results The mean decline in the Short Physical Performance Battery score was 1.1 point. In a logistic regression analysis that was adjusted for potential confounders, only a low concentration of vitamin E (<1.1 μg/mL [<24.9 μmol/L]) was significantly associated with subsequent decline in physical function (OR, 1.62; 95% confidence interval, 1.11-2.36; P=.01 for association of lowest α-tocopherol quartile with at least a 1-point decline in physical function). In a general linear model, the concentration of vitamin E at baseline, when analyzed as a continuous measure, was significantly associated with the Short Physical Performance Battery score at follow-up after adjustment for potential confounders and Short Physical Performance Battery score at baseline (β=.023; P=.01). In a classification and regression tree analysis, age older than 81 years and vitamin E (in participants aged 70-80 years) were identified as the strongest determinants of decline in physical function (physical decline in 84% and 60%, respectively; misclassification error rate, 0.33). Conclusions These results provide empirical evidence that a low serum concentration of vitamin E is associated with subsequent decline in physical function among community-living older adults. Clinical trials may be warranted to determine whether an optimal concentration of vitamin E reduces functional decline and the onset of disability in older persons. PMID:18212315

  7. A stable lithiated silicon-chalcogen battery via synergetic chemical coupling between silicon and selenium.

    PubMed

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F

    2017-01-05

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS 2 ) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS 2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS 2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene-SeS 2 full cell is 81% after 1,500 cycles at 268 mA g SeS2 -1 . The achieved cathode capacity is 403 mAh g SeS2 -1 (1,209 mAh cm SeS2 -3 ).

  8. Optimization of power utilization in multimobile robot foraging behavior inspired by honeybees system.

    PubMed

    Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari

    2014-01-01

    Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work.

  9. Optimization of Power Utilization in Multimobile Robot Foraging Behavior Inspired by Honeybees System

    PubMed Central

    Ahmad, Faisul Arif; Ramli, Abd Rahman; Samsudin, Khairulmizam; Hashim, Shaiful Jahari

    2014-01-01

    Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries. The sharing information among the mobile robots would be one of the potentials to overcome the limitation on previously recharging system. A new approach is proposed based on integrated intelligent system inspired by foraging of honeybees applied to multimobile robot scenario. This integrated approach caters for both working and foraging stages for known/unknown power station locations. Swarm mobile robot inspired by honeybee is simulated to explore and identify the power station for battery recharging. The mobile robots will share the location information of the power station with each other. The result showed that mobile robots consume less energy and less time when they are cooperating with each other for foraging process. The optimizing of foraging behavior would result in the mobile robots spending more time to do real work. PMID:24949491

  10. Acute lead intoxication in a female battery worker: Diagnosis and management.

    PubMed

    Dounias, George; Rachiotis, George; Hadjichristodoulou, Christos

    2010-07-07

    Lead is a significant occupational and environmental hazard. Battery industry is one of the settings related to lead intoxication. Published information on the use of oral chelating agents for the treatment of anaemia in the context of acute lead intoxication is limited. The patient was a 33 year immigrant female worker in a battery manufacture for 3 months. She complained for malaise that has been developed over the past two weeks. Pallor of skin and conjunctiva was the only sign found in physical examination. The blood test on admission revealed normochromic anaemia. Endoscopic investigation of the gastrointestinal system was negative for bleeding. The bone marrow biopsy was unrevealing.At baseline no attention has been paid to patient's occupational history. Afterwards the patient's occupational history has been re-evaluated and she has been screened for lead intoxication. The increased levels of the lead related biomarkers of exposure and effect confirmed the diagnosis. The patient received an oral chelating agent and an improvement in clinical picture, and levels of haematological and lead related biochemical parameters have been recorded. No side effect and no rebound effect were observed. This case report emphasizes the importance of the occupational history in the context of the differential diagnosis. Moreover, this report indicates that lead remains a significant occupational hazard especially in the small scale battery industry.

  11. Predicting clinical concussion measures at baseline based on motivation and academic profile.

    PubMed

    Trinidad, Katrina J; Schmidt, Julianne D; Register-Mihalik, Johna K; Groff, Diane; Goto, Shiho; Guskiewicz, Kevin M

    2013-11-01

    The purpose of this study was to predict baseline neurocognitive and postural control performance using a measure of motivation, high school grade point average (hsGPA), and Scholastic Aptitude Test (SAT) score. Cross-sectional. Clinical research center. Eighty-eight National Collegiate Athletic Association Division I incoming student-athletes (freshman and transfers). Participants completed baseline clinical concussion measures, including a neurocognitive test battery (CNS Vital Signs), a balance assessment [Sensory Organization Test (SOT)], and motivation testing (Rey Dot Counting). Participants granted permission to access hsGPA and SAT total score. Standard scores for each CNS Vital Signs domain and SOT composite score. Baseline motivation, hsGPA, and SAT explained a small percentage of the variance of complex attention (11%), processing speed (12%), and composite SOT score (20%). Motivation, hsGPA, and total SAT score do not explain a significant amount of the variance in neurocognitive and postural control measures but may still be valuable to consider when interpreting neurocognitive and postural control measures.

  12. Enabling Secure High-Performance Wireless Ad Hoc Networking

    DTIC Science & Technology

    2003-05-29

    destinations, consuming energy and available bandwidth. An attacker may similarly create a routing black hole, in which all packets are dropped: by sending...of the vertex cut, for example by forwarding only routing packets and not data packets, such that the nodes waste energy forwarding packets to the...with limited resources, including network bandwidth and the CPU processing capacity, memory, and battery power ( energy ) of each individual node in the

  13. The Army’s Operational Energy Challenge

    DTIC Science & Technology

    2011-05-01

    battery chargers . Solar Hybrid—a system capable of providing up to 10 kilowatts of power continuously while reducing gen- erator running time by 20...granted. Army vehicles consume unprecedented amounts of fuel for mobility and onboard power. Average fuel demand per soldier has increased from about 1... electric power. This depen- dence translates to a vulnerability as fuel and water com- pose the vast majority of resupply volume, which, in turn

  14. Baseline tests of the AM General DJ-5E electruck electric delivery van

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Tryon, H. B.; Sargent, N. B.

    1977-01-01

    An electric quarter ton truck designed for use as a postal delivery vehicle was tested to characterize the state of the art of electric vehicles. Vehicle performance test results are presented. It is powered by a single-module, 54 volt industrial battery through a silicon controlled rectifier continuously adjustable controller with regenerative braking applied to a direct current compound wound motor.

  15. Coupled diffusion and mechanics in battery electrodes

    NASA Astrophysics Data System (ADS)

    Eshghinejad, Ahmadreza

    We are living in a world with continuous production and consumption of energy. The energy production in the past decades has started to move away from petrochemical sources toward sustainable sources such as solar, wind and geothermal. Also, the energy consumption is further adapting to the sustainable sources. For instance, in recent years electric vehicles are growing fast that can consume sustainable electric energy stored in their batteries. In this direction, in order to further move toward sustainable energy, materials are becoming increasingly important for storing electric energy. Although, currently the technologies such as Li-ion batteries and solid-oxide fuel cells are commercially available for energy applications, improvements are crucial for the next generation of many other technologies producing or consuming sustainable energies. A critical aspect of the electrochemical activities involved in energy storage technologies such as Li-ion batteries and solid-oxide fuel cells is the diffusion of ions into the electrode materials. This process ultimately governs various functional properties of the batteries such as capacity and charging/discharging rates. The first goal of this dissertation is to develop mathematical tools to analyze the ionic diffusion and investigate its coupling with mechanics in electrodes. For this purpose, a thermodynamics-based modeling framework is developed and numerically solved using two numerical methods to analyze ionic diffusion in heterogeneous and structured electrodes. The next goal of this dissertation is to develop and analyze characterization techniques to probe the electrochemical processes at the nano-scale. To this end, the mathematical models are first employed to model a previously developed Atomic Force Microscopy based technique to probe local electrochemical activities called Electrochemical Strain Microscopy (ESM). This method probes the activities by inducing AC electric field to perturb ionic activities and measuring the surface vibrations. Different aspects of this technique are analyzed and the limitations are discussed. Such limitations moves the dissertation toward development of a new technique for probing the electrochemical activities, to overcome the previous limitations, called Scanning Thermo-ionic Microscopy (STIM). In this method, the local activities are probed by inducing AC temperature oscillations to perturb ionic activities and measuring the surface vibrations. The principle mathematical analysis of the coupled governing equations and the method of probing electrochemical activities are discussed in detail. Also, the method is implemented into the AFM hardware/software and the STIM response is confirmed using experiments on LiFePO4 and Sm-doped Ceria as well-known battery and fuel cell electrodes. The STIM method provides a clean method for analyzing energy storage materials and designing novel nano-structured materials for improved performance. Finally, conclusion of the presented work is discussed in the last chapter and the future works to continue the development of the modeling and experiments are listed.

  16. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss.

    PubMed

    Goss, Amy M; Goree, Laura Lee; Ellis, Amy C; Chandler-Laney, Paula C; Casazza, Krista; Lockhart, Mark E; Gower, Barbara A

    2013-06-01

    Qualitative aspects of diet may affect body composition and propensity for weight gain or loss. We tested the hypothesis that consumption of a relatively low glycemic load (GL) diet would reduce total and visceral adipose tissue under both eucaloric and hypocaloric conditions. Participants were 69 healthy overweight men and women. Body composition was assessed by DXA and fat distribution by CT scan at baseline, after 8 weeks of a eucaloric diet intervention, and after 8 weeks of a hypocaloric (1000 kcal/day deficit) diet intervention. Participants were provided all food for both phases, and randomized to either a low GL diet (<45 points per 1000 kcal; n = 40) or high GL diet (>75 points per 1000 kcal, n = 29). After the eucaloric phase, participants who consumed the low GL diet had 11% less intra-abdominal fat (IAAT) than those who consumed the high GL diet (P < 0.05, adjusted for total fat mass and baseline IAAT). Participants lost an average of 5.8 kg during the hypocaloric phase, with no differences in the amount of weight loss with diet assignment (P = 0.39). Following weight loss, participants who consumed the low GL diet had 4.4% less total fat mass than those who consumed the high GL diet (P < 0.05, adjusted for lean mass and baseline fat mass). Consumption of a relatively low GL diet may affect energy partitioning, both inducing reduction in IAAT independent of weight change, and enhancing loss of fat relative to lean mass during weight loss. Copyright © 2012 The Obesity Society.

  17. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss

    PubMed Central

    Goss, Amy M.; Goree, Laura Lee; Ellis, Amy C.; Chandler-Laney, Paula C.; Casazza, Krista; Lockhart, Mark E.; Gower, Barbara A.

    2012-01-01

    Qualitative aspects of diet may affect body composition and propensity for weight gain or loss. We tested the hypothesis that consumption of a relatively low glycemic load (GL) diet would reduce total and visceral adipose tissue under both eucaloric and hypocaloric conditions. Participants were 69 healthy overweight men and women. Body composition was assessed by DXA and fat distribution by CT scan at baseline, after 8 weeks of a eucaloric diet intervention, and after 8 weeks of a hypocaloric (1000 kcal/d deficit) diet intervention. Participants were provided all food for both phases, and randomized to either a low GL diet (≤45 points per 1000 kcal; n=40) or high GL diet (>75 points per 1000 kcal, n=29). After the eucaloric phase, participants who consumed the low GL diet had 11% less intra-abdominal fat (IAAT) than those who consumed the high GL diet (P<0.05, adjusted for total fat mass and baseline IAAT). Participants lost an average of 5.8 kg during the hypocaloric phase, with no differences in the amount of weight loss with diet assignment (P=0.39). Following weight loss, participants who consumed the low GL diet had 4.4% less total fat mass than those who consumed the high GL diet (P<0.05, adjusted for lean mass and baseline fat mass). Consumption of a relatively low GL diet may affect energy partitioning, both inducing reduction in IAAT independent of weight change, and enhancing loss of fat relative to lean mass during weight loss. PMID:23671029

  18. Health hazards of China's lead-acid battery industry: a review of its market drivers, production processes, and health impacts.

    PubMed

    van der Kuijp, Tsering Jan; Huang, Lei; Cherry, Christopher R

    2013-08-03

    Despite China's leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children's blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China's lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world's leading producer, refiner, and consumer of both lead and lead-acid batteries.This review assesses the role of China's rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure.This paper is the first to integrate the market factors, production processes, and health impacts of China's growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health impacts of the lead-acid battery industry. The continuous growth of this industry signals the urgent need for effective regulatory action to protect the health and lives of China's future generations.

  19. Health hazards of China’s lead-acid battery industry: a review of its market drivers, production processes, and health impacts

    PubMed Central

    2013-01-01

    Despite China’s leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children’s blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China’s lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world’s leading producer, refiner, and consumer of both lead and lead-acid batteries. This review assesses the role of China’s rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure. This paper is the first to integrate the market factors, production processes, and health impacts of China’s growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health impacts of the lead-acid battery industry. The continuous growth of this industry signals the urgent need for effective regulatory action to protect the health and lives of China’s future generations. PMID:23915167

  20. Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Smart; Stephen Schey

    2012-04-01

    As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on themore » electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.« less

  1. The near-term hybrid vehicle program, phase 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Performance specifications were determined for a hybrid vehicle designed to achieve the greatest reduction in fuel consumption. Based on the results of systems level studies, a baseline vehicle was constructed with the following basic paramaters: a heat engine power peak of 53 kW (VW gasoline engine); a traction motor power peak of 30 kW (Siemens 1GV1, separately excited); a heat engine fraction of 0.64; a vehicle curb weight of 2080 kg; a lead acid battery (35 kg weight); and a battery weight fraction of 0.17. The heat engine and the traction motor are coupled together with their combined output driving a 3 speed automatic transmission with lockup torque converter. The heat engine is equipped withe a clutch which allows it to be decoupled from the system.

  2. Cognitive and affective benefits of combination therapy with galantamine plus cognitive rehabilitation for Alzheimer's disease.

    PubMed

    Tokuchi, Ryo; Hishikawa, Nozomi; Matsuzono, Kosuke; Takao, Yoshiki; Wakutani, Yosuke; Sato, Kota; Kono, Syoichiro; Ohta, Yasuyuki; Deguchi, Kentaro; Yamashita, Toru; Abe, Koji

    2016-04-01

    The aim of the present study was to compare the effects of a galantamine only therapy and a combination therapy with galantamine plus ambulatory cognitive rehabilitation for Alzheimer's disease patients. For this retrospective cohort study, we enrolled 86 patients with Alzheimer's disease, dividing them into two groups - a galantamine only group (group G, n = 45) and a combination with galantamine plus ambulatory rehabilitation group (group G + R, n = 41). The present cognitive rehabilitation included a set of physical therapy, occupational therapy and speech therapy for 1-2 h once or twice a week. We compared the Mini-Mental State Examination and Frontal Assessment Battery for cognitive assessment, and Geriatric Depression Scale, Apathy Scale, and Abe's Behavioral and Psychological Symptoms of Dementia score for affective assessment in two groups over 6 months. The baseline Mini-Mental State Examination score was 20.2 and 18.7 in groups G and G + R, respectively. Other baseline data (Frontal Assessment Battery, Geriatric Depression Scale, Apathy Scale, and Abe's Behavioral and Psychological Symptoms of Dementia) were not different between the two groups. Although group G kept all the scores stable until 6 months of the treatment, the Apathy Scale score showed a significant improvement in group G + R as early as 3 months, followed by the Mini-Mental State Examination and Frontal Assessment Battery improvements at 6 months (*P = 0.04 and *P = 0.02, respectively). The Geriatric Depression Scale and Abe's Behavioral and Psychological Symptoms of Dementia did not show any changes. The combination therapy of galantamine plus ambulatory cognitive rehabilitation showed a superior benefit both on cognitive and affective functions than galantamine only therapy in Alzheimer's disease patients. © 2015 Japan Geriatrics Society.

  3. Tolcapone-Enhanced Neurocognition in Healthy Adults: Neural Basis and Predictors.

    PubMed

    Bhakta, Savita G; Light, Gregory A; Talledo, Jo A; Balvaneda, Bryan; Hughes, Erica; Alvarez, Alexis; Rana, Brinda K; Young, Jared W; Swerdlow, Neal R

    2017-12-01

    Failure of procognitive drug trials in schizophrenia may reflect the clinical heterogeneity of schizophrenia, underscoring the need to identify biomarkers of treatment sensitivity. We used an experimental medicine design to test the procognitive effects of a putative procognitive agent, tolcapone, using an electroencephalogram-based cognitive control task in healthy subjects. Healthy men and women (n=27; ages 18-35 years), homozygous for either the Met/Met or Val/Val rs4680 genotype, received placebo and tolcapone 200 mg orally across 2 test days separated by 1 week in a double-blind, randomized, counterbalanced, within-subject design. On each test day, neurocognitive performance was assessed using the MATRICS Consensus Cognitive Battery and an electroencephalogram-based 5 Choice-Continuous Performance Test. Tolcapone enhanced visual learning in low-baseline MATRICS Consensus Cognitive Battery performers (d=0.35) and had an opposite effect in high performers (d=0.5), and enhanced verbal fluency across all subjects (P=.03) but had no effect on overall MATRICS Consensus Cognitive Battery performance. Tolcapone reduced false alarm rate (d=0.8) and enhanced frontal P200 amplitude during correctly identified nontarget trials (d=0.6) in low-baseline 5 Choice-Continuous Performance Test performers and had opposite effects in high performers (d=0.5 and d=0.25, respectively). Tolcapone's effect on frontal P200 amplitude and false alarm rate was correlated (rs=-0.4, P=.05). All neurocognitive effects of tolcapone were independent of rs4680 genotype. Tolcapone enhanced neurocognition and engaged electroencephalogram measures relevant to cognitive processes in specific subgroups of healthy individuals. These findings support an experimental medicine model for identifying procognitive treatments and provide a strong basis for future biomarker-informed procognitive studies in schizophrenia patients. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  4. Rapid characterization of lithium ion battery electrolytes and thermal aging products by low-temperature plasma ambient ionization high-resolution mass spectrometry.

    PubMed

    Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten

    2013-03-19

    Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.

  5. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries

    PubMed Central

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-01-01

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency. PMID:27646853

  6. Charging system using solar panels and a highly resonant wireless power transfer model for small UAS applications

    NASA Astrophysics Data System (ADS)

    Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.

    2016-05-01

    The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.

  7. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition.

    PubMed

    Janko, Vito; Luštrek, Mitja

    2017-12-29

    The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  8. Change in neurocognition by housing type and substance abuse among formerly homeless seriously mentally ill persons.

    PubMed

    Caplan, Brina; Schutt, Russell K; Turner, Winston M; Goldfinger, Stephen M; Seidman, Larry J

    2006-03-01

    To test the effect of living in group housing rather than independent apartments on executive functioning, verbal memory and sustained attention among formerly homeless persons with serious mental illness and to determine whether substance abuse modifies this effect. In metropolitan Boston, 112 persons in Department of Mental Health shelters were randomly assigned to group homes ("Evolving Consumer Households", with project facilitator, group meetings, resident decision-making) or independent apartments. All were case managed. A neuropsychological test battery was administered at baseline, at 18 months (Time 2), with an 81% follow-up rate, and at 48 months (Time 3), with a 59% follow-up rate. Hierarchical Linear Modeling was applied to executive functioning--assessed with the Wisconsin Card Sorting Test (Perseverations)-Logical Memory story recall, and an auditory Continuous Performance Test (CPT) for sustained attention. Subject characteristics were controlled. When moved to group homes, subjects without a lifetime substance abuse history improved on Perseverations, while those who moved to independent apartments deteriorated on Perseverations. Across the two housing conditions, subjects showed no change in Perseverations, but improved on Logical Memory story recall and the CPT. Type of housing placement can influence cognitive functioning; notably, socially isolating housing is associated with weakened executive functioning. Substance abuse significantly diminishes environmental effects. These are important factors to consider in housing placement and subsequent treatment.

  9. Method of making a unitized electrode assembly

    DOEpatents

    Niksa, Marilyn J.; Pohto, Gerald R.; Lakatos, Leslie K.; Wheeler, Douglas J.; Solomon, Frank; Niksa, Andrew J.; Schue, Thomas J.; Genodman, Yury; Turk, Thomas R.; Hagel, Daniel P.

    1988-01-01

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

  10. Method of making a unitized electrode assembly

    DOEpatents

    Niksa, M.J.; Pohto, G.R.; Lakatos, L.K.; Wheeler, D.J.; Solomon, F.; Niksa, A.J.; Schue, T.J.; Genodman, Y.; Turk, T.R.; Hagel, D.P.

    1988-12-06

    A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom. 6 figs.

  11. An Update on the Lithium-Ion Cell Low-Earth-Orbit Verification Test Program

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Miller, Thomas B.; McKissock, Barbara I.; Bennett, William

    2007-01-01

    A Lithium-Ion Cell Low-Earth-Orbit Verification Test Program is being conducted by NASA Glenn Research Center to assess the performance of lithium-ion (Li-ion) cells over a wide range of low-Earth-orbit (LEO) conditions. The data generated will be used to build an empirical model for Li-ion batteries. The goal of the modeling will be to develop a tool to predict the performance and cycle life of Li-ion batteries operating at a specified set of mission conditions. Using this tool, mission planners will be able to design operation points of the battery system while factoring in mission requirements and the expected life and performance of the batteries. Test conditions for the program were selected via a statistical design of experiments to span a range of feasible operational conditions for LEO aerospace applications. The variables under evaluation are temperature, depth-of-discharge (DOD), and end-of-charge voltage (EOCV). The baseline matrix was formed by generating combinations from a set of three values for each variable. Temperature values are 10 C, 20 C and 30 C. Depth-of-discharge values are 20%, 30% and 40%. EOCV values are 3.85 V, 3.95 V, and 4.05 V. Test conditions for individual cells may vary slightly from the baseline test matrix depending upon the cell manufacturer s recommended operating conditions. Cells from each vendor are being evaluated at each of ten sets of test conditions. Cells from four cell manufacturers are undergoing life cycle tests. Life cycling on the first sets of cells began in September 2004. These cells consist of Saft 40 ampere-hour (Ah) cells and Lith ion 30 Ah cells. These cells have achieved over 10,000 cycles each, equivalent to about 20 months in LEO. In the past year, the test program has expanded to include the evaluation of Mine Safety Appliances (MSA) 50 Ah cells and ABSL battery modules. The MSA cells will begin life cycling in October 2006. The ABSL battery modules consist of commercial Sony hard carbon 18650 lithium-ion cells configured in series and parallel combinations to create nominal 14.4 volt, 3 Ah packs (4s-2p). These modules have accumulated approximately 3000 cycles. Results on the performance of the cells and modules will be presented in this paper. The life prediction and performance model for Li-ion cells in LEO will be built by analyzing the data statistically and performing regression analysis. Cells are being cycled to failure so that differences in performance trends that occur at different stages in the life of the cell can be observed and accurately modeled. Cell testing is being performed at the Naval Surface Warfare Center in Crane, IN.

  12. Market Survey: Biological Detectors. Guide for Selection of Detection Devices and Systems

    DTIC Science & Technology

    2006-02-01

    samples. There are no real concerns with logistical or operational concerns, as issues such as size, weight, signature, transportation , additional equipment...of the detection system or device on support and logistical systems. 2.1 Transportation Measure. Ability to transport the detection system or device...supplied, such as water, fuel, batteries, chemical, power, etc.) that have to be transported to the site for detection. 100 0-1 consumable or

  13. Evaluation of an Outpatient Rehabilitative Program to Address Mobility Limitations Among Older Adults

    PubMed Central

    Brown, Lorna G.; Ni, Meng; Schmidt, Catherine T.; Bean, Jonathan F.

    2017-01-01

    Abstract Live Long Walk Strong is a clinical demonstration program for community-dwelling older patients. It was designed to be consistent with current fall prevention guidelines and reimbursed under the Medicare model. Patients were screened within primary care and referred to a physiatrist followed by systematic assessment and treatment within an outpatient rehabilitative care setting. The treatment included behavioral modification, fall prevention education, community/home exercise integration, and exercise targeting strength, power, flexibility, balance, and endurance. Treatment duration and frequency varied with each patient based on baseline presentation, clinical judgment, and patient preference. Program feasibility and preliminary effectiveness were evaluated by assessing participation and changes in physical performance, respectively. There were 266 patients referred to the program, and 147 were willing to participate. Of these, 116 patients completed all scheduled visits (10.8 ± 3.9 visits). The noncompleters (n = 31) had a higher rate of falls in the previous 6 months and lower baseline Short Physical Performance Battery composite score. At the completion of care, the adjusted mean change in Short Physical Performance Battery was 1.66 units, surpassing a large clinically meaningful threshold (1 unit). The Live Long Walk Strong program appears to be feasible to implement and demonstrates preliminary effectiveness in enhancing mobility among older adults. PMID:28079616

  14. ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency.

    PubMed

    Memarzadeh Lotfabad, Elmira; Kalisvaart, Peter; Cui, Kai; Kohandehghan, Alireza; Kupsta, Martin; Olsen, Brian; Mitlin, David

    2013-08-28

    We demonstrate that silicon nanowire (SiNW) Li-ion battery anodes that are conformally coated with TiO2 using atomic layer deposition (ALD) show a remarkable performance improvement. The coulombic efficiency is increased to ∼99%, among the highest ever reported for SiNWs, as compared to 95% for the baseline uncoated samples. The capacity retention after 100 cycles for the nanocomposite is twice as high as that of the baseline at 0.1 C (60% vs. 30%), and more than three times higher at 5 C (34% vs. 10%). We also demonstrate that the microstructure of the coatings is critically important for achieving this effect. Titanium dioxide coatings with an as-deposited anatase structure are nowhere near as effective as amorphous ones, the latter proving much more resistant to delamination from the SiNW core. We use TEM to demonstrate that upon lithiation the amorphous coating develops a highly dispersed nanostructure comprised of crystalline LiTiO2 and a secondary amorphous phase. Electron energy loss spectroscopy (EELS) combined with bulk and surface analytical techniques are employed to highlight the passivating effect of TiO2, which results in significantly fewer cycling-induced electrolyte decomposition products as compared to the bare nanowires.

  15. Validity and Reliability of Baseline Testing in a Standardized Environment.

    PubMed

    Higgins, Kathryn L; Caze, Todd; Maerlender, Arthur

    2017-08-11

    The Immediate Postconcussion Assessment and Cognitive Testing (ImPACT) is a computerized neuropsychological test battery commonly used to determine cognitive recovery from concussion based on comparing post-injury scores to baseline scores. This model is based on the premise that ImPACT baseline test scores are a valid and reliable measure of optimal cognitive function at baseline. Growing evidence suggests that this premise may not be accurate and a large contributor to invalid and unreliable baseline test scores may be the protocol and environment in which baseline tests are administered. This study examined the effects of a standardized environment and administration protocol on the reliability and performance validity of athletes' baseline test scores on ImPACT by comparing scores obtained in two different group-testing settings. Three hundred-sixty one Division 1 cohort-matched collegiate athletes' baseline data were assessed using a variety of indicators of potential performance invalidity; internal reliability was also examined. Thirty-one to thirty-nine percent of the baseline cases had at least one indicator of low performance validity, but there were no significant differences in validity indicators based on environment in which the testing was conducted. Internal consistency reliability scores were in the acceptable to good range, with no significant differences between administration conditions. These results suggest that athletes may be reliably performing at levels lower than their best effort would produce. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Microcapsule-based techniques for improving the safety of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Baginska, Marta

    Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is developed to simulate an overheating condition while the cell is cycling. Experimental protocols are developed to assess the performance of the separator in terms of its ability to perform autonomic shutdown and examine tested battery materials using scanning electron microscopy. Another approach to improving battery functionality is via the microencapsulation of battery additives. Currently, additives are added directly into a battery electrolyte, and while they typically perform their function given a sufficient loading, these additives often do so at the expense of battery performance. Microencapsulation allows for a high loading of additives to be incorporated into the cell and their release triggered only when and where they are needed. In this work, microencapsulation techniques are developed to successfully encapsulate 3-hexylthiophene, a stabilizing agent for high-voltage cathodes in Li-ion batteries and conductive polymer precursor, as well as the flame retardant Tris(2-choloroethyl phosphate) (TCP). Microcapsules containing 3-hexylthiophene are coated onto model battery electrodes and immersed in electrolyte. The microcapsule shell wall insulates the 3-hexylthiophene until the microcapsules are mechanically crushed and electropolymerization of the released core to form poly(3-ht) occurs under cyclic voltammetry. In addition, TCP was encapsulated using in situ polymerization. TCP-containing microcapsules are stable in electrolyte at room temperature, but are thermally triggered to release their payload at elevated temperatures. Experimental protocols are developed to study the in situ triggering and release of microencapsulated additives.

  17. A Novel Study Paradigm for Long-term Prevention Trials in Alzheimer Disease: The Placebo Group Simulation Approach (PGSA): Application to MCI data from the NACC database.

    PubMed

    Berres, M; Kukull, W A; Miserez, A R; Monsch, A U; Monsell, S E; Spiegel, R

    2014-01-01

    The PGSA (Placebo Group Simulation Approach) aims at avoiding problems of sample representativeness and ethical issues typical of placebo-controlled secondary prevention trials with MCI patients. The PGSA uses mathematical modeling to forecast the distribution of quantified outcomes of MCI patient groups based on their own baseline data established at the outset of clinical trials. These forecasted distributions are then compared with the distribution of actual outcomes observed on candidate treatments, thus substituting for a concomitant placebo group. Here we investigate whether a PGSA algorithm that was developed from the MCI population of ADNI 1*, can reliably simulate the distribution of composite neuropsychological outcomes from a larger, independently selected MCI subject sample. Data available from the National Alzheimer's Coordinating Center (NACC) were used. We included 1523 patients with single or multiple domain amnestic mild cognitive impairment (aMCI) and at least two follow-ups after baseline. In order to strengthen the analysis and to verify whether there was a drift over time in the neuropsychological outcomes, the NACC subject sample was split into 3 subsamples of similar size. The previously described PGSA algorithm for the trajectory of a composite neuropsychological test battery (NTB) score was adapted to the test battery used in NACC. Nine demographic, clinical, biological and neuropsychological candidate predictors were included in a mixed model; this model and its error terms were used to simulate trajectories of the adapted NTB. The distributions of empirically observed and simulated data after 1, 2 and 3 years were very similar, with some over-estimation of decline in all 3 subgroups. The by far most important predictor of the NTB trajectories is the baseline NTB score. Other significant predictors are the MMSE baseline score and the interactions of time with ApoE4 and FAQ (functional abilities). These are essentially the same predictors as determined for the original NTB score. An algorithm comprising a small number of baseline variables, notably cognitive performance at baseline, forecasts the group trajectory of cognitive decline in subsequent years with high accuracy. The current analysis of 3 independent subgroups of aMCI patients from the NACC database supports the validity of the PGSA longitudinal algorithm for a NTB. Use of the PGSA in long-term secondary AD prevention trials deserves consideration.

  18. Withdrawal syndrome after the double-blind cessation of caffeine consumption.

    PubMed

    Silverman, K; Evans, S M; Strain, E C; Griffiths, R R

    1992-10-15

    People who stop consuming caffeine may have symptoms, but the incidence and severity of caffeine withdrawal are not known. This study was performed to determine the effects in the general population of ending one's dietary intake of caffeine. We studied 62 normal adults whose intake of caffeine was low to moderate (mean amount, 235 mg--the equivalent of 2.5 cups of coffee--per day). They completed questionnaires about symptoms and tests of their mood and performance when consuming their normal diets (base-line period) and at the end of each of two two-day periods during which they consumed caffeine-free diets and under double-blind conditions received capsules containing placebo (placebo period) or caffeine (caffeine period) in amounts equal to their daily caffeine consumption. More subjects had abnormally high Beck Depression Inventory scores (11 percent), high scores on the trait scale of the State-Trait Anxiety Inventory (8 percent), low vigor scores (11 percent) and high fatigue scores (8 percent) on the Profile of Mood States, and moderate or severe headache (52 percent) during the placebo period than during either the base-line period (2, 0, 0, 0, and 2 percent, respectively; P less than 0.05) or the caffeine period (3, 2, 2, 0, and 6 percent; P less than 0.05). More subjects reported unauthorized use of medications during the placebo period (13 percent) than during the caffeine period (2 percent, P = 0.017). Performance of a tapping task was slower during the placebo period than during the base-line and caffeine periods (P less than 0.01). Persons who consume low or moderate amounts of caffeine may have a withdrawal syndrome after their daily consumption of caffeine ceases.

  19. The impact of motivation on neuropsychological performance in sports-related mild traumatic brain injury.

    PubMed

    Bailey, Christopher M; Echemendia, Ruben J; Arnett, Peter A

    2006-07-01

    The current project examined the impact of differential motivation on baseline versus post-mild traumatic brain injury (MTBI) neuropsychological measures in athletes. Collegiate athletes were administered a neuropsychological battery prior to and post-MTBI. High Motivation at Baseline (HMB) and Suspect Motivation at Baseline (SMB) groups were established for each measure based on whether baseline performance fell +/- one or more standard deviations from the mean of the given measure. Greater improvement was expected in the SMB group than the HMB group given hypothesized differences in baseline motivation. In repeated measures analysis of covariance (ANCOVA) that removed achievement performance, the SMB groups demonstrated greater improvement than the HMB groups for the Trail Making Test A & B (TMT-A & B), Digit Span, and Stroop-Color Word (Stroop-CW) tests. Also, the percentage of participants who improved according to reliable change indices was greater for the SMB groups on the TMT-A & B, Stroop-CW, and the Vigil. These findings are likely due to lower motivation in the SMB group for each test. However, results also suggest that some tests may be relatively unaffected by motivation. These data may have clinical implications and point to the need for better methods of identifying athletes with suspect motivation at baseline.

  20. Neurocognitive predictors of financial capacity in traumatic brain injury.

    PubMed

    Martin, Roy C; Triebel, Kristen; Dreer, Laura E; Novack, Thomas A; Turner, Crystal; Marson, Daniel C

    2012-01-01

    To develop cognitive models of financial capacity (FC) in patients with traumatic brain injury (TBI). Longitudinal design. Inpatient brain injury rehabilitation unit. Twenty healthy controls, and 24 adults with moderate-to-severe TBI were assessed at baseline (30 days postinjury) and 6 months postinjury. The FC instrument (FCI) and a neuropsychological test battery. Univariate correlation and multiple regression procedures were employed to develop cognitive models of FCI performance in the TBI group, at baseline and 6-month time follow-up. Three cognitive predictor models of FC were developed. At baseline, measures of mental arithmetic/working memory and immediate verbal memory predicted baseline FCI performance (R = 0.72). At 6-month follow-up, measures of executive function and mental arithmetic/working memory predicted 6-month FCI performance (R = 0.79), and a third model found that these 2 measures at baseline predicted 6-month FCI performance (R = 0.71). Multiple cognitive functions are associated with initial impairment and partial recovery of FC in moderate-to-severe TBI patients. In particular, arithmetic, working memory, and executive function skills appear critical to recovery of FC in TBI. The study results represent an initial step toward developing a neurocognitive model of FC in patients with TBI.

  1. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    PubMed Central

    2009-01-01

    Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides), taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains. PMID:19930701

  2. Quantifying cognition and behavior in normal aging, mild cognitive impairment, and Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Giraldo, Diana L.; Sijbers, Jan; Romero, Eduardo

    2017-11-01

    The diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is based on neuropsychological evaluation of the patient. Different cognitive and memory functions are assessed by a battery of tests that are composed of items devised to specifically evaluate such upper functions. This work aims to identify and quantify the factors that determine the performance in neuropsychological evaluation by conducting an Exploratory Factor Analysis (EFA). For this purpose, using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), EFA was applied to 67 item scores taken from the baseline neuropsychological battery of the three phases of ADNI study. The found factors are directly related to specific brain functions such as memory, behavior, orientation, or verbal fluency. The identification of factors is followed by the calculation of factor scores given by weighted linear combinations of the items scores.

  3. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    PubMed

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (<10%). This was due to the highly acid-consuming nature of the battery waste. Multistage leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link

    NASA Technical Reports Server (NTRS)

    Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete

    2012-01-01

    Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.

  5. A novel quasi-solid state electrolyte with highly effective polysulfide diffusion inhibition for lithium-sulfur batteries

    PubMed Central

    Zhong, Hai; Wang, Chunhua; Xu, Zhibin; Ding, Fei; Liu, Xinjiang

    2016-01-01

    Polymer solid state electrolytes are actively sought for their potential application in energy storage devices, particularly lithium metal rechargeable batteries. Herein, we report a polymer with high concentration salts as a quasi-solid state electrolyte used for lithium-sulfur cells, which shows an ionic conductivity of 1.6 mS cm−1 at room temperature. The cycling performance of Li-S battery with this electrolyte shows a long cycle life (300 cycles) and high coulombic efficiency (>98%), without any consuming additives in the electrolyte. Moreover, it also shows a remarkably decreased self-discharge (only 0.2%) after storage for two weeks at room temperature. The reason can be attributed to that the electrolyte can suppress polysulfide anions diffusion, due to the high ratio oxygen atoms with negative charges which induce an electrical repulsion to the polysulfide anions, and their relatively long chains which can provide additional steric hindrance. Thus, the polysulfide anions can be located around carbon particles, which result in remarkably improved overall electrochemical performance, and also the electrolyte have a function of suppress the formation of lithium dendrites on the lithium anode surface. PMID:27146645

  6. Design and development of low pressure evaporator/condenser unit for water-based adsorption type climate control systems

    NASA Astrophysics Data System (ADS)

    Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.

    2016-11-01

    Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.

  7. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 2, chemical-mechanical degradation model

    NASA Astrophysics Data System (ADS)

    Purewal, Justin; Wang, John; Graetz, Jason; Soukiazian, Souren; Tataria, Harshad; Verbrugge, Mark W.

    2014-12-01

    Capacity fade is reported for 1.5 Ah Li-ion batteries containing a mixture of Li-Ni-Co-Mn oxide (NCM) + Li-Mn oxide spinel (LMO) as positive electrode material and a graphite negative electrode. The batteries were cycled at a wide range of temperatures (10 °C-46 °C) and discharge currents (0.5C-6.5C). The measured capacity losses were fit to a simple physics-based model which calculates lithium inventory loss from two related mechanisms: (1) mechanical degradation at the graphite anode particle surface caused by diffusion-induced stresses (DIS) and (2) chemical degradation caused by lithium loss to continued growth of the solid-electrolyte interphase (SEI). These two mechanisms are coupled because lithium is consumed through SEI formation on newly exposed crack surfaces. The growth of crack surface area is modeled as a fatigue phenomenon due to the cyclic stresses generated by repeated lithium insertion and de-insertion of graphite particles. This coupled chemical-mechanical degradation model is consistent with the observed capacity loss features for the NCM + LMO/graphite cells.

  8. A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium

    PubMed Central

    Eom, KwangSup; Lee, Jung Tae; Oschatz, Martin; Wu, Feixiang; Kaskel, Stefan; Yushin, Gleb; Fuller, Thomas F.

    2017-01-01

    Li-ion batteries dominate portable energy storage due to their exceptional power and energy characteristics. Yet, various consumer devices and electric vehicles demand higher specific energy and power with longer cycle life. Here we report a full-cell battery that contains a lithiated Si/graphene anode paired with a selenium disulfide (SeS2) cathode with high capacity and long-term stability. Selenium, which dissolves from the SeS2 cathode, was found to become a component of the anode solid electrolyte interphase (SEI), leading to a significant increase of the SEI conductivity and stability. Moreover, the replacement of lithium metal anode impedes unwanted side reactions between the dissolved intermediate products from the SeS2 cathode and lithium metal and eliminates lithium dendrite formation. As a result, the capacity retention of the lithiated silicon/graphene—SeS2 full cell is 81% after 1,500 cycles at 268 mA gSeS2−1. The achieved cathode capacity is 403 mAh gSeS2−1 (1,209 mAh cmSeS2−3). PMID:28054543

  9. FDA Consumer Nutrition Knowledge Survey. Report II, 1975. A Nationwide Study of Food Shopper's Knowledge, Beliefs, Attitudes and Reported Behavior Regarding Food and Nutrition. Factors Related to Nutrition Labeling.

    ERIC Educational Resources Information Center

    Abelson, Herbert; And Others

    During 1973, a nationwide study for the Food and Drug Administration (FDA) was conducted which provided information on nutrition knowledge, beliefs about nutrition, and first reactions to nutrition labeling among food shoppers. This initial research provided a baseline measurement of nutrition knowledge and attitudes among consumers, and in 1975…

  10. The Effects of Energy Drinks on Cognitive Ability

    NASA Astrophysics Data System (ADS)

    Lucas, Marlon R.

    Fatigue problems have been widespread in the air traffic control industry; in past years a common practice among air traffic controllers has been to consume highly caffeinated beverages to maintain awareness and thwart sleep deprivation. This study sought to examine what impact the consumption of an energy drink had on Air Traffic Control Collegiate Training Initiative students at Middle Tennessee State University to solve Air Traffic Selection and Training Battery Applied Math type test problems. Participants consumed a Red Bull energy drink or a placebo and then were asked to complete speed, time, distance, and rate of climb and descent rates questions in addition to answering questions regarding their perception of energy drinks. An appropriate statistical analysis was applied to compare scores of participants. The experimental group which received the energy drink averaged slightly lower (M=77.27, SD=19.79) than the control group, which consumed the placebo beverage (M=81.5, SD=19.01), but this difference was not statistically significant.

  11. An assessment of electric vehicles: technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives.

    PubMed

    Delucchi, M A; Yang, C; Burke, A F; Ogden, J M; Kurani, K; Kessler, J; Sperling, D

    2014-01-13

    Concerns about climate change, urban air pollution and dependence on unstable and expensive supplies of foreign oil have led policy-makers and researchers to investigate alternatives to conventional petroleum-fuelled internal-combustion-engine vehicles in transportation. Because vehicles that get some or all of their power from an electric drivetrain can have low or even zero emissions of greenhouse gases (GHGs) and urban air pollutants, and can consume little or no petroleum, there is considerable interest in developing and evaluating advanced electric vehicles (EVs), including pure battery-electric vehicles, plug-in hybrid electric vehicles and hydrogen fuel-cell electric vehicles. To help researchers and policy-makers assess the potential of EVs to mitigate climate change and reduce petroleum use, this paper discusses the technology of EVs, the infrastructure needed for their development, impacts on emissions of GHGs, petroleum use, materials use, lifetime costs, consumer acceptance and policy considerations.

  12. Neuropsychological and Cognitive Correlates of Recovery in Anorexia Nervosa.

    PubMed

    Harper, Jessica A; Brodrick, Brooks; Van Enkevort, Erin; McAdams, Carrie J

    2017-11-01

    To identify clinical or cognitive measures either predictive of illness trajectory or altered with sustained weight recovery in adult women with anorexia nervosa. Participants were recruited from prior studies of women with anorexia nervosa (AN-C) and in weight-recovery following anorexia nervosa (AN-WR). Participants completed a neuropsychological battery at baseline and clinical assessments at both baseline and follow-up. Groups based on clinical outcome (continued eating disorder, AN-CC; newly in recovery, AN-CR; sustained weight-recovery, AN-WR) were compared by using one-way ANOVAs with Bonferroni-corrected post hoc comparisons. Women with continued eating disorder had poorer neuropsychological function and self-competence at baseline than AN-CR. AN-CR showed changes in depression and externalizing bias, a measure of self-related attributions. AN-WR differed from both AN-CC and AN-CR at baseline in externalizing bias, but only from AN-CC at outcome. Neuropsychological function when recently ill may be a prognostic factor, while externalizing bias may provide a clinical target for recovery. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  13. Flexible Solar Cells

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar cell "modules" are plastic strips coated with thin films of photovoltaic silicon that collect solar energy for instant conversion into electricity. Lasers divide the thin film coating into smaller cells to build up voltage. Developed by Iowa Thin Film Technologies under NASA and DOE grants, the modules are used as electrical supply for advertising displays, battery rechargers for recreational vehicles, and to power model airplanes. The company is planning other applications both in consumer goods and as a power source in underdeveloped countries.

  14. Development of V2G and G2V Power Profiles and Their Implications on Grid Under Varying Equilibrium of Aggregated Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Jain, Prateek; Jain, Trapti

    2016-04-01

    The objective of this paper is to examine the vehicle-to-grid (V2G) power capability of aggregated electric vehicles (EV) in the manner that they are being adopted by the consumers with their growing infiltration in the vehicles market. The proposed modeling of V2G and grid-to-vehicle (G2V) energy profiles blends the heterogeneous attributes namely, driven mileages, arrival and departure times, travel and parking durations, and speed dependent energy consumption of mobility trends. Three penetration percentages of 25 %, 50 % and 100 % resulting in varied compositions of battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) in the system, as determined by the consumers' acceptance, have been considered to evaluate the grid capacity for V2G. Distinct charge-discharge powers have been selected as per charging standards to match contemporary vehicles and infrastructure requirements. Charging and discharging approaches have been devised to replicate non-linear characteristics of Li-ion battery. Effects of simultaneous conjunction of V2G and G2V power curves with daily conventional load profile are quantified drawn upon workplace-discharging home-charging scheme. Results demonstrated a marked drop in load and hence in market price during morning hours which is hurriedly overcompensated by the hike during evening hours with rising penetration level and charge-discharge power.

  15. Electricity demand and storage dispatch modeling for buildings and implications for the smartgrid

    NASA Astrophysics Data System (ADS)

    Zheng, Menglian; Meinrenken, Christoph

    2013-04-01

    As an enabler for demand response (DR), electricity storage in buildings has the potential to lower costs and carbon footprint of grid electricity while simultaneously mitigating grid strain and increasing its flexibility to integrate renewables (central or distributed). We present a stochastic model to simulate minute-by-minute electricity demand of buildings and analyze the resulting electricity costs under actual, currently available DR-enabling tariffs in New York State, namely a peak/offpeak tariff charging by consumed energy (monthly total kWh) and a time of use tariff charging by power demand (monthly peak kW). We then introduce a variety of electrical storage options (from flow batteries to flywheels) and determine how DR via temporary storage may increase the overall net present value (NPV) for consumers (comparing the reduced cost of electricity to capital and maintenance costs of the storage). We find that, under the total-energy tariff, only medium-term storage options such as batteries offer positive NPV, and only at the low end of storage costs (optimistic scenario). Under the peak-demand tariff, however, even short-term storage such as flywheels and superconducting magnetic energy offer positive NPV. Therefore, these offer significant economic incentive to enable DR without affecting the consumption habits of buildings' residents. We discuss implications for smartgrid communication and our future work on real-time price tariffs.

  16. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition †

    PubMed Central

    Janko, Vito

    2017-01-01

    The recognition of the user’s context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system’s energy expenditure and the system’s accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy. PMID:29286301

  17. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  18. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    PubMed

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Jing; Lin, Zhenhong

    2012-01-01

    This paper studies the role of public charging infrastructure in increasing PHEV s share of driving on electricity and the resulting petroleum use reduction. Using vehicle activity data obtained from the GPS-tracking household travel survey in Austin, Texas, gasoline and electricity consumptions of PHEVs in real world driving context are estimated. Driver s within-day recharging behavior, constrained by travel activities and public charger network, is modeled as a boundedly rational decision and incorporated in the energy use estimation. The key findings from the Austin dataset include: (1) public charging infrastructure makes PHEV a competitive vehicle choice for consumers without amore » home charger; (2) providing sufficient public charging service is expected to significantly reduce petroleum consumption of PHEVs; and (3) public charging opportunities offer greater benefits for PHEVs with a smaller battery pack, as within-day recharges compensate battery capacity.« less

  20. A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell.

    PubMed

    Pan, Junqing; Sun, Yanzhi; Li, Wei; Knight, James; Manthiram, Arumugam

    2013-01-01

    The automobile industry consumed 9 million metric tons of lead in 2012 for lead-acid batteries. Recycling lead from spent lead-acid batteries is not only related to the sustainable development of the lead industry, but also to the reduction of lead pollution in the environment. The existing lead pyrometallurgical processes have two main issues, toxic lead emission into the environment and high energy consumption; the developing hydrometallurgical processes have the disadvantages of high electricity consumption, use of toxic chemicals and severe corrosion of metallic components. Here we demonstrate a new green hydrometallurgical process to recover lead based on a hydrogen-lead oxide fuel cell. High-purity lead, along with electricity, is produced with only water as the by-product. It has a >99.5% lead yield, which is higher than that of the existing pyrometallurgical processes (95-97%). This greatly reduces lead pollution to the environment.

  1. Effect of Consuming Tea with Stevia on Salivary pH - An In Vivo Randomised Controlled Trial.

    PubMed

    Pallepati, Akhil; Yavagal, Puja; Veeresh, D J

    To assess the effect of consuming tea with stevia on salivary pH. This randomised controlled trial employed a Latin square design. Twenty-four male students aged 20-23 years were randomly allocated to 4 different groups, 3 experimental with tea sweetened by sucrose, jaggery or stevia, and one unsweetened control. Salivary pH assessments were performed at baseline and 1 min, 20 and 60 min after consumption of the respective tea. One-way ANOVA and repeated measures ANOVA followed by Tukey's post-hoc tests were employed to analyse the data. One minute after tea consumption, the salivary pH of the sucrose group significantly decreased compared to the stevia group (p = 0.01). There was a significant difference between baseline mean salivary pH and post-interventional mean salivary pH values at all time intervals in the tea + sucrose, tea + jaggery, and plain tea groups (p < 0.01). One hour after consumption of tea, the salivary pH values reached the baseline pH in stevia and plain tea groups, but it remained lower in the sucrose and jaggery groups. The results of the present study, in which the salivary pH values returned to baseline pH 1 h after drinking stevia-sweetened tea, suggest stevia's potential as a non-cariogenic sweetener.

  2. Space station systems analysis study. Part 3: Documentation. Volume 7: SCB alternate EPS evaluation, task 10

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Power levels up to 100 kWe average were baselined for the electrical power system of the space construction base, a long-duration manned facility capable of supporting manufacturing and large scale construction projects in space. Alternatives to the solar array battery systems discussed include: (1) solar concentrator/brayton; (2) solar concentrator/thermionic; (3) isotope/brayton; (4) nuclear/brayton; (5) nuclear thermoelectric; and (6) nuclear thermionic.

  3. Cariogenicity of soft drinks, milk and fruit juice in low-income african-american children: a longitudinal study.

    PubMed

    Lim, Sungwoo; Sohn, Woosung; Burt, Brian A; Sandretto, Anita M; Kolker, Justine L; Marshall, Teresa A; Ismail, Amid I

    2008-07-01

    The authors conducted a study to test the hypothesis that high consumption of soft drinks, relative to milk and 100 percent fruit juice, is a risk factor for dental caries in low-income African-American children in Detroit. Trained dentists and interviewers examined a representative sample of 369 children, aged 3 to 5 years, in 2002-2003 and again two years later. The authors used the 2000 Block Kids Food Frequency Questionnaire (NutritionQuest, Berkeley, Calif.) to collect dietary information. They assessed caries by using the International Caries Detection and Assessment System. Soft drinks, 100 percent fruit juice and milk represented the sugared beverages consumed by the cohort. A cluster analysis of the relative proportion of each drink at baseline and follow-up revealed four consumption patterns. Using zero-inflated negative binomial models, the authors found that children who changed from being low consumers of soft drinks at baseline to high consumers after two years had a 1.75 times higher mean number of new decayed, missing and filled tooth surfaces compared with low consumers of soft drinks at both time points. Children who consumed more soft drinks, relative to milk and 100 percent fruit juice, as they grew older were at a greater risk of developing dental caries. Health promotion programs and health care providers should emphasize to patients and caregivers the caries risk associated with consumption of soft drinks.

  4. Positive Impact of Nutritional Interventions on Serum Symmetric Dimethylarginine and Creatinine Concentrations in Client-Owned Geriatric Cats

    PubMed Central

    Hall, Jean A.; MacLeay, Jennifer; Yerramilli, Maha; Obare, Edward; Yerramilli, Murthy; Schiefelbein, Heidi; Paetau-Robinson, Inke; Jewell, Dennis E.

    2016-01-01

    A prospective study was conducted in client-owned geriatric cats to evaluate the short- term effects of a test food on serum symmetric dimethylarginine (SDMA) and creatinine (Cr) concentrations. Test food contained functional lipids (fish oil), antioxidants (vitamins C and E), L-carnitine, botanicals (vegetables), highly bioavailable protein, and amino acid supplements. Cats (n = 80) were fed either test food or owner’s-choice foods (non-nutritionally controlled cohort). Cats were included based on age (≥ 9 years), indoor only, neutered, and free of chronic disease. At baseline, all cats had serum Cr concentrations within the reference interval. Renal function biomarkers and urinalysis results at baseline and after consuming test food or owner’s-choice foods for 3 and 6 months were evaluated. Cats consuming test food showed significant decreases in serum Cr and BUN concentrations across time. Overall, cats consuming owner’s-choice foods showed significant increases in serum SDMA concentrations at 3 and 6 months compared with baseline (P ≤ 0.05), whereas in cats consuming test food serum SDMA concentrations did not change. At baseline or during the 6-month feeding trial, 23 (28.8%) cats had increased serum SDMA, but normal serum Cr consistent with IRIS Stage 1 chronic kidney disease. This included 6 cats fed test food and 17 cats fed owner’s-choice foods. In the 6 cats fed test food, serum SDMA decreased in 3 cats and remained stable in 1 cat, whereas in the 17 cats fed owner’s-choice foods, serum SDMA increased in 13 cats and decreased or remained stable in 4 cats. The increase in serum SDMA concentration was significant (P = 0.02) only for cats fed owner’s-choice foods. These results suggest that nonazotemic cats with elevated serum SDMA (early renal insufficiency) when fed a food designed to promote healthy aging are more likely to demonstrate stable renal function compared with cats fed owner’s-choice foods. Cats fed owner’s-choice foods were more likely to demonstrate progressive renal insufficiency. PMID:27078852

  5. Report on electrocutions, electric shock, and electric burn injuries involving consumer products. final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-09-01

    This report provides direction to a project to reduce the number of electrocution, electric shock and electric burn injuries. The first section uses CPSC data to rank the consumer products involved in these accidents on the basis of frequency, severity, and number of products in use. It also analyzes demographic and accident characteristics. The second section contains a technical review of accidents occurring in eight product groups: Portable Power Tools; Welders, Battery Chargers and Inverters; Personal Hygiene Products; Entertainment Products; Lawn and Garden Tools; Installed Stoves, Ranges and Cook Tops; Refrigerators and Freezers; and Fans. This section also includes amore » review of the relevant Underwriters Laboratories (UL) standards and suggestions for potential action to reduce the accidents involving these eight product groups.« less

  6. A Heads-Up Display for Diabetic Limb Salvage Surgery

    PubMed Central

    Rankin, Timothy M.; Giovinco, Nicholas A.; Mills, Joseph L.; Matsuoka, Yoky

    2014-01-01

    Although the use of augmented reality has been well described over the past several years, available devices suffer from high cost, an uncomfortable form factor, suboptimal battery life, and lack an app-based developer ecosystem. This article describes the potential use of a novel, consumer-based, wearable device to assist surgeons in real time during limb preservation surgery and clinical consultation. Using routine intraoperative, clinical, and educational case examples, we describe the use of a wearable augmented reality device (Google Glass; Google, Mountain View, CA). The device facilitated hands-free, rapid communication, documentation, and consultation. An eyeglass-mounted screen form factor has the potential to improve communication, safety, and efficiency of intraoperative and clinical care. We believe this represents a natural progression toward union of medical devices with consumer technology. PMID:24876445

  7. Lévy distribution and long correlation times in supermarket sales

    NASA Astrophysics Data System (ADS)

    Groot, Robert D.

    2005-08-01

    Sales data in a commodity market (supermarket sales to consumers) has been analysed by studying the fluctuation spectrum and noise correlations. Three related products (ketchup, mayonnaise and curry sauce) have been analysed. Most noise in sales is caused by promotions, but here we focus on the fluctuations in baseline sales. These characterise the dynamics of the market. Four hitherto unnoticed effects have been found that are difficult to explain from simple econometric models. These effects are: (1) the noise level in baseline sales is much higher than can be expected for uncorrelated sales events; (2) weekly baseline sales differences are distributed according to a broad non-Gaussian function with fat tails; (3) these fluctuations follow a Lévy distribution of exponent α=1.4, similar to financial exchange markets and in stock markets; and (4) this noise is correlated over a period of 10-11 weeks, or shows an apparent power law spectrum. The similarity to stock markets suggests that models developed to describe these markets may be applied to describe the collective behaviour of consumers.

  8. Right unilateral electroconvulsive therapy does not cause more cognitive impairment than pharmacologic treatment in treatment-resistant bipolar depression: A 6-month randomized controlled trial follow-up study.

    PubMed

    Bjoerke-Bertheussen, Jeanette; Schoeyen, Helle; Andreassen, Ole A; Malt, Ulrik F; Oedegaard, Ketil J; Morken, Gunnar; Sundet, Kjetil; Vaaler, Arne E; Auestad, Bjoern; Kessler, Ute

    2017-12-21

    Electroconvulsive therapy is an effective treatment for bipolar depression, but there are concerns about whether it causes long-term neurocognitive impairment. In this multicenter randomized controlled trial, in-patients with treatment-resistant bipolar depression were randomized to either algorithm-based pharmacologic treatment or right unilateral electroconvulsive therapy. After the 6-week treatment period, all of the patients received maintenance pharmacotherapy as recommended by their clinician guided by a relevant treatment algorithm. Patients were assessed at baseline and at 6 months. Neurocognitive functions were assessed using the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Consensus Cognitive Battery, and autobiographical memory consistency was assessed using the Autobiographical Memory Interview-Short Form. Seventy-three patients entered the trial, of whom 51 and 26 completed neurocognitive assessments at baseline and 6 months, respectively. The MATRICS Consensus Cognitive Battery composite score improved by 4.1 points in both groups (P = .042) from baseline to 6 months (from 40.8 to 44.9 and from 41.9 to 46.0 in the algorithm-based pharmacologic treatment and electroconvulsive therapy groups, respectively). The Autobiographical Memory Interview-Short Form consistency scores were reduced in both groups (72.3% vs 64.3% in the algorithm-based pharmacologic treatment and electroconvulsive therapy groups, respectively; P = .085). This study did not find that right unilateral electroconvulsive therapy caused long-term impairment in neurocognitive functions compared to algorithm-based pharmacologic treatment in bipolar depression as measured using standard neuropsychological tests, but due to the low number of patients in the study the results should be interpreted with caution. ClinicalTrials.gov: NCT00664976. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Association of Physical Activity History With Physical Function and Mortality in Old Age

    PubMed Central

    Koster, Annemarie; Valkeinen, Heli; Patel, Kushang V.; Bandinelli, Stefania; Guralnik, Jack M.; Ferrucci, Luigi

    2016-01-01

    Background. We examined whether physical activity in early adulthood, late midlife, and old age as well as cumulative physical activity history are associated with changes in physical functioning and mortality in old age. Methods. Data are from participants aged 65 years or older enrolled in the InCHIANTI study who were followed up from 1998–2000 to 2007–2008 (n = 1,149). At baseline, participants recalled their physical activity levels at ages 20–40, 40–60, and in the previous year, and they were categorized as physically inactive, moderately active, and physically active. Physical performance was assessed with the Short Physical Performance Battery and self-reported mobility disability was evaluated at the 3-, 6- and 9-year follow-up. Mortality follow-up was assessed until the end of 2010. Results. Physical inactivity at baseline was associated with greater decline in Short Physical Performance Battery score (mean 9-year change: −2.72, 95% CI: −3.08, −2.35 vs −0.98, 95% −1.57, −0.39) and greater rate of incident mobility disability (hazard ratio 4.66, 95% CI 1.14–19.07) and mortality (hazard ratio 2.18, 95% CI 1.01–4.70) compared to physically active participants at baseline. Being physically active throughout adulthood was associated with smaller decline in physical performance as well as with lower risk of incident mobility disability and premature death compared with those who had been less active during their adult life. Conclusions. Higher cumulative physical activity over the life course was associated with less decline in physical performance and reduced rate of incident mobility disability and mortality in older ages. PMID:26290538

  10. Pulsed infrared thermography for assessment of ultrasonic welds

    NASA Astrophysics Data System (ADS)

    McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.

    2018-03-01

    Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.

  11. Tracking Cognitive Decline in Amnestic Mild Cognitive Impairment and Early-Stage Alzheimer Dementia: Mini-Mental State Examination versus Neuropsychological Battery.

    PubMed

    Kim, Joonho; Na, Han Kyu; Byun, Justin; Shin, Jiwon; Kim, Sungsoo; Lee, Byung Hwa; Na, Duk L

    2017-01-01

    Although the Mini-Mental State Examination (MMSE), Clinical Dementia Rating-Sum of Boxes (CDR-SOB), and neuropsychological batteries are widely used for evaluating cognitive function, it remains elusive which instrument best reflects the longitudinal disease progression in amnestic mild cognitive impairment (aMCI) and probable Alzheimer disease (AD). We investigated whether changes in these three instruments over time correlate with loss of cortical gray matter volume (cGMV). We retrospectively investigated 204 patients (aMCI, n = 114; AD, n = 90) who had undergone MMSE, CDR-SOB, the dementia version of the Seoul Neuropsychological Screening Battery (SNSB-D), and 3-dimensional T1-weighted magnetic resonance images at least twice. We investigated the partial correlation between annual decline in test scores and percent change of cGMV. In aMCI patients, changes in the SNSB-D total score (r = 0.340, p < 0.001) and CDR-SOB (r = 0.222, p = 0.020), but not MMSE, showed a correlation with cGMV loss, with the SNSB-D total score showing the strongest correlation. In AD patients, decline in all three test scores correlated significantly with cGMV loss, with MMSE exhibiting the strongest correlation (r = 0.464, p < 0.001). In aMCI patients, neuropsychological battery, though time-consuming, was the most adequate tool in tracking disease progression. In AD patients, however, MMSE may be the most effective longitudinal monitoring tool when considering cost-effectiveness. © 2017 S. Karger AG, Basel.

  12. Development of a VRLA battery with improved separators, and a charge controller, for low cost photovoltaic and wind powered installations

    NASA Astrophysics Data System (ADS)

    Fernandez, M.; Ruddell, A. J.; Vast, N.; Esteban, J.; Estela, F.

    There are many applications and uses for which it is more advantageous to use solar installations than to extend the electrical network and connect to it. This kind of applications are numerous covering from isolated houses to telephone repeaters and the like. These kind of applications share some common characteristics like being located in remote not easy accessible areas, require relatively low power for operation, and being difficult to maintain. Up to now the use of photovoltaic systems, no matter the impressive growth they are experimenting, suffer from some drawbacks, mainly related with the life expectations and reliability of such systems, and as a consequence of the cost of these systems, when calculated on a lifetime basis. To try to contribute to solve these problems, a project partially founded by the European Commission, has been carried out, with the main objective of increasing the life of these systems, and consequently to make them more attractive from the point of view of cost on a lifetime basis for consumers. Presently, the life of PV systems is limited by its weakest component, the battery. Battery failure modes in PV applications, are related with well known phenomena like corrosion, but also due to the special nature of this installations, with other factors like corrosion and growth in the upper part of the group, induced by the development of acid stratification inside the battery, with the more prone standard flooded types now in major use, and to a lesser extent the new valve regulated lead acid (VRLA) types beginning to be used. The main objectives of this project, were: to develop a new glass microfibre separator material, capable of minimizing acid stratification inside the battery. To develop a new VRLA battery, with a life duration of 800 cycles on cycling at 60% DOD and partial state of charge (PSOC) conditions. To develop a new charge regulator, that takes into account the condition of the battery in the near term, to modify its setting charging point. The fourth objective was the design and implementation of a PV/wind demonstration system, to test all the PV components under real conditions. The project has been successful, having achieved a life increase of 50%, moving achievable life from previous 500-750 cycles for the new battery and system.

  13. The rate and extent of improvement with therapy from the different types of aphasia in the first year after stroke.

    PubMed

    Bakheit, A M O; Shaw, S; Carrington, S; Griffiths, S

    2007-10-01

    To examine the rate and extent of improvement from the different types of aphasia in the first year after stroke. A prospective longitudinal study. A specialist stroke unit. Seventy-five aphasic patients with first-ever stroke. The type of aphasia was classified according to the criteria of the Western Aphasia Battery. The Western Aphasia Battery aphasia quotient was used to measure the initial severity and the rate and extent of improvement from aphasia. Assessments were made at baseline and 4, 8, 12 and 24 weeks later. The median percentage increase in the Western Aphasia Battery aphasia quotient was statistically higher in patients with Broca's aphasia than in the other groups at all weeks. Patients with Wernicke's aphasia had a significantly greater median percentage increase in their aphasia quotient than those with conduction and anomic aphasia at weeks 12 and 24, but less than patients with global aphasia at week 24. Patients with Broca's aphasia appear to have the best prognosis for improvement of language function in the first year of stroke. The extent of improvement in patients with global aphasia is better than that of patients with Wernicke's aphasia.

  14. Effect profile of paracetamol, Δ9-THC and promethazine using an evoked pain test battery in healthy subjects.

    PubMed

    van Amerongen, G; Siebenga, P; de Kam, M L; Hay, J L; Groeneveld, G J

    2018-04-10

    A battery of evoked pain tasks (PainCart) was developed to investigate the pharmacodynamic properties of novel analgesics in early-phase clinical research. As part of its clinical validation, compounds with different pharmacological mechanisms of actions are investigated. The aim was to investigate the analgesic effects of classic and nonclassic analgesics compared to a sedating negative control in a randomized placebo-controlled crossover study in 24 healthy volunteers using the PainCart. The PainCart consisted of pain tasks eliciting electrical, pressure, heat, cold and inflammatory pain. Subjective scales for cognitive functioning and psychotomimetic effects were included. Subjects were administered each of the following oral treatments: paracetamol (1000 mg), Δ9-THC (10 mg), promethazine (50 mg) or matching placebo. Pharmacodynamic measurements were performed at baseline and repeated up to 10 h postdose. Paracetamol did not show a significant reduction in pain sensation or subjective cognitive functioning compared to placebo. Promethazine induced a statistically significant reduction in PTT for cold pressor and pressure stimulation. Furthermore, reduced subjective alertness was observed. Δ9-THC showed a statistically significant decrease in PTT for electrical and pressure stimulation. Δ9-THC also demonstrated subjective effects, including changes in alertness and calmness, as well as feeling high and psychotomimetic effects. This study found a decreased pain tolerance due to Δ9-THC and promethazine, or lack thereof, using an evoked pain task battery. Pain thresholds following paracetamol administration remained unchanged, which may be due to insufficient statistical power. We showed that pain thresholds determined using this pain test battery are not driven by sedation. The multimodal battery of evoked pain tasks utilized in this study may play an important role in early-phase clinical drug development. This battery of pain tasks is not sensitive to the effects of sedation alone, and thus suitable to investigate the analgesic potential of novel analgesic compounds. © 2018 European Pain Federation - EFIC®.

  15. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griego, G.

    2010-06-01

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save ownersmore » up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.« less

  16. Baseline Telomere Length and Effects of a Multidomain Lifestyle Intervention on Cognition: The FINGER Randomized Controlled Trial

    PubMed Central

    Sindi, Shireen; Ngandu, Tiia; Hovatta, Iiris; Kåreholt, Ingemar; Antikainen, Riitta; Hänninen, Tuomo; Levälahti, Esko; Laatikainen, Tiina; Lindström, Jaana; Paajanen, Teemu; Peltonen, Markku; Khalsa, Dharma Singh; Wolozin, Benjamin; Strandberg, Timo; Tuomilehto, Jaakko; Soininen, Hilkka; Kivipelto, Miia; Solomon, Alina

    2017-01-01

    Leukocyte telomere length (LTL) is a biomarker of aging, and it is associated with lifestyle. It is currently unknown whether LTL is associated with the response to lifestyle interventions. The goal is to assess whether baseline LTL modified the cognitive benefits of a 2-year multidomain lifestyle intervention (exploratory analyses). The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) was a 2-year randomized controlled trial including 1,260 people at risk of cognitive decline, aged 60–77 years identified from the general population. Participants were randomly assigned to the lifestyle intervention (diet, exercise, cognitive training, and vascular risk management) and control (general health advice) groups. Primary outcome was change in cognition (comprehensive neuropsychological test battery). Secondary outcomes were changes in cognitive domains: memory, executive functioning, and processing speed. 775 participants (392 control, 383 intervention) had baseline LTL (peripheral blood DNA). Mixed effects regression models with maximum likelihood estimation were used to analyze change in cognition as a function of randomization group, time, baseline LTL, and their interaction. Intervention and control groups did not significantly differ at baseline. Shorter LTL was related to less healthy baseline lifestyle. Intervention benefits on executive functioning were more pronounced among those with shorter baseline LTL (p-value for interaction was 0.010 adjusted for age and sex, and 0.007 additionally adjusted for baseline lifestyle factors). The FINGER intervention cognitive benefits were more pronounced with shorter baseline LTL, particularly for executive functioning, indicating that the multidomain lifestyle intervention was especially beneficial among higher-risk individuals. PMID:28777749

  17. Baseline Telomere Length and Effects of a Multidomain Lifestyle Intervention on Cognition: The FINGER Randomized Controlled Trial.

    PubMed

    Sindi, Shireen; Ngandu, Tiia; Hovatta, Iiris; Kåreholt, Ingemar; Antikainen, Riitta; Hänninen, Tuomo; Levälahti, Esko; Laatikainen, Tiina; Lindström, Jaana; Paajanen, Teemu; Peltonen, Markku; Khalsa, Dharma Singh; Wolozin, Benjamin; Strandberg, Timo; Tuomilehto, Jaakko; Soininen, Hilkka; Kivipelto, Miia; Solomon, Alina

    2017-01-01

    Leukocyte telomere length (LTL) is a biomarker of aging, and it is associated with lifestyle. It is currently unknown whether LTL is associated with the response to lifestyle interventions. The goal is to assess whether baseline LTL modified the cognitive benefits of a 2-year multidomain lifestyle intervention (exploratory analyses). The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) was a 2-year randomized controlled trial including 1,260 people at risk of cognitive decline, aged 60-77 years identified from the general population. Participants were randomly assigned to the lifestyle intervention (diet, exercise, cognitive training, and vascular risk management) and control (general health advice) groups. Primary outcome was change in cognition (comprehensive neuropsychological test battery). Secondary outcomes were changes in cognitive domains: memory, executive functioning, and processing speed. 775 participants (392 control, 383 intervention) had baseline LTL (peripheral blood DNA). Mixed effects regression models with maximum likelihood estimation were used to analyze change in cognition as a function of randomization group, time, baseline LTL, and their interaction. Intervention and control groups did not significantly differ at baseline. Shorter LTL was related to less healthy baseline lifestyle. Intervention benefits on executive functioning were more pronounced among those with shorter baseline LTL (p-value for interaction was 0.010 adjusted for age and sex, and 0.007 additionally adjusted for baseline lifestyle factors). The FINGER intervention cognitive benefits were more pronounced with shorter baseline LTL, particularly for executive functioning, indicating that the multidomain lifestyle intervention was especially beneficial among higher-risk individuals.

  18. Follow-up of the first patients with a totally subcutaneous ICD in Germany from implantation till battery depletion.

    PubMed

    Bettin, Markus; Rath, Benjamin; Ellermann, Christian; Leitz, Patrick; Reinke, Florian; Köbe, Julia; Eckardt, Lars; Frommeyer, Gerrit

    2018-06-12

    The subcutaneous ICD is a promising treatment option in patients at risk for sudden cardiac death. Approved in 2009, the first S-ICD ® in Germany was implanted in June 2010. Although large prospective registry studies have shown safety and efficacy of the system, there is a lack of long-term data with regard to battery longevity of the S-ICD ® . Therefore, we report follow-up of our first initial S-ICD ® cases from implantation till battery depletion. All S-ICD ® patients with device replacement for battery depletion in our large single-center S-ICD ® registry were included in this study. Baseline characteristics, appropriate and inappropriate shocks, and complications were documented in a median follow-up of 75.9 ± 6.8 months. Twenty-eight patients with S-ICD ® systems were included in this study. Of these patients, 21 were male and 7 were female, with an overall mean age of 41.9 ± 12.6 years. Primary prevention of sudden cardiac death was the indication in 19 patients (67.9%). Ventricular tachycardia was adequately terminated in two patients (7.1%). In 7 patients, non-sustained ventricular arrhythmias were not treated. A total of three inappropriate shocks occurred in three patients (10.7%). Mean time from implantation till battery depletion was 65.8 ± 8.1 months. Only one patient presented premature elective replacement criteria because of rapid battery depletion. No lead-related complication occurred during follow-up and no complications were seen regarding device replacement. In one patient (3.6%), the system was explanted without replacement due to patient's preference. The estimated battery longevity of S-ICD ® of about 5 years was reached in all but one patient. Compared to larger S-ICD ® registry studies, frequency of inappropriate shocks was relatively high in the initial S-ICD ® cases. Both technological improvement as well as programming and operators' experience have led to a reduction of complications. Replacement of the S-ICD ® seems to be a safe and effective procedure.

  19. High Capacity Cathode Materials for Next Generation Energy Storage

    NASA Astrophysics Data System (ADS)

    Papandrea, Benjamin John

    Energy storage devices are of increasing importance for applications in mobile electronics, hybrid electric vehicles, and can also play a critical role in renewable energy harvesting, conversion and storage. Since its commercial inception in the 1990's, the lithium-ion battery represents the dominant energy storage technology for mobile power supply today. However, the total capacity of lithium-ion batteries is largely limited by the theoretical capacities of the cathode materials such as LiCoO2 (272 mAh g-1), and LiFePO4 (170 mAh g-1), and cannot satisfy the increasing consumer demand, thus new cathode materials with higher capacities must be explored. Two of the most promising cathode materials with significantly larger theoretical capacities are sulfur (1675 mAh g-1) and air, specifically the oxygen (3840 mAh g-1). However, the usage of either of these cathodic materials is plagued with numerous issues that must be overcome before their commercialization. In the first part of my dissertation, we investigated the usage of a three-dimensional graphene membrane for a high energy density lithium-air (Li-Air) battery in ambient condition. One of the issues with Li-Air batteries is the many side reaction that can occur during discharge in ambient condition, especially with water vapor. Using a hydrophobic tortuous three-dimensional graphene membrane we are able to inhibit the diffusion of water vapor and create a lithium-air battery that cycles over 2000 times with a capacity limited at 140 mAh g-1, over 100 cycles with a capacity limited at 1425 mAh g-1, and over 20 cycles at the high capacity of 5700 mAh g-1. In the second part of my dissertation, we investigate the usage of a three-dimensional graphene aerogel to maximize the loading of sulfur to create a freestanding electrode with high capacity for a lithium-sulfur (Li-S) battery. We demonstrated that our three-dimensional graphene aerogel could sustain a loading of 95% by weight, and we achieved a capacity of 969 mAh g-1 normalized by the entire electrode with a 90% sulfur loading. In the third and final part of my dissertation, we investigate the usage of catalysts for both Li-Air, and Li-S batteries. We demonstrate how different noble metal configurations are optimal for Li-Air batteries, showcase how different metals effect the sulfur reduction reaction, and how both Pt and Mn increase the capacity of Li-S battery by interacting with the sulfur redox reactions intermediate species.

  20. Vehicle test report: South Coast technology electric conversion of a Volkswagen Rabbit

    NASA Technical Reports Server (NTRS)

    Price, T. W.; Shain, T. W.; Bryant, J. A.

    1981-01-01

    The South Coast Technology Volkswagen Rabbit, was tested at the Jet Propulsion Laboratory's (JPL) dynamometer facility and at JPL's Edwards Test Station (ETS). The tests were performed to characterize certain parameters of the South Coast Rabbit and to provide baseline data that will be used for the comparison of near term batteries that are to be incorporated into the vehicle. The vehicle tests were concentrated on the electrical drive system; i.e., the batteries, controller, and motor. The tests included coastdowns to characterize the road load, maximum effort acceleration, and range evaluation for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle was made by comparing its constant speed range performance with those vehicles described in the document 'state of the Art assessment of Electric and Hybrid Vehicles'. The Rabbit performance was near to the best of the 1977 vehicles.

  1. Foothill Transit Battery Electric Bus Demonstration Results: Second Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eudy, Leslie; Jeffers, Matthew

    This report summarizes results of a battery electric bus (BEB) evaluation at Foothill Transit, located in the San Gabriel and Pomona Valley region of Los Angeles County, California. Foothill Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory to evaluate its fleet of Proterra BEBs in revenue service. The focus of this evaluation is to compare performance of the BEBs to that of conventional technology and to track progress over time toward meeting performance targets. This project has also provided an opportunity for DOE to conduct a detailed evaluationmore » of the BEBs and charging infrastructure. This is the second report summarizing the results of the BEB demonstration at Foothill Transit and it provides data on the buses from August 2015 through December 2016. Data are provided on a selection of compressed natural gas buses as a baseline comparison.« less

  2. Packet Controller For Wireless Headset

    NASA Technical Reports Server (NTRS)

    Christensen, Kurt K.; Swanson, Richard J.

    1993-01-01

    Packet-message controller implements communications protocol of network of wireless headsets. Designed for headset application, readily adapted to other uses; slight modification enables controller to implement Integrated Services Digital Network (ISDN) X.25 protocol, giving far-reaching applications in telecommunications. Circuit converts continuous voice signals into digital packets of data and vice versa. Operates in master or slave mode. Controller reduced to single complementary metal oxide/semiconductor integrated-circuit chip. Occupies minimal space in headset and consumes little power, extending life of headset battery.

  3. Engaging consumers living in remote areas of Western Australia in the self-management of back pain: a prospective cohort study

    PubMed Central

    2012-01-01

    Background In Western Australia (WA), health policy recommends encouraging the use of active self-management strategies as part of the co-care of consumers with persistent low back pain (LBP). As many areas in WA are geographically isolated and health services are limited, implementing this policy into practice is critical if health outcomes for consumers living in geographically-isolated areas are to be improved. Methods In this prospective cohort study, 51 consumers (mean (SD) age 62.3 (±15.1) years) participated in an evidence-based interdisciplinary pain education program (modified Self Training Educative Pain Sessions: mSTEPS) delivered at three geographically isolated WA sites. Self report measures included LBP beliefs and attitudes (Back Pain Beliefs Questionnaire (BBQ); Fear Avoidance Beliefs Questionnaire (FABQ)), use of active and passive self-management strategies, and health literacy, and global perceived impression of usefulness (GPIU) recorded immediately pre-intervention (n = 51), same day post-intervention (BBQ; GPIU, n = 49) and 3 months post-intervention (n = 25). Results At baseline, consumers demonstrated adequate health literacy and elements of positive health behaviours, reflected by the use of more active than passive strategies in self-managing their persistent LBP. Immediately post-intervention, there was strong evidence for improvement in consumers’ general beliefs about LBP as demonstrated by an increase in BBQ scores (baseline [mean (SD): 25.8 (7.6)] to same day post-intervention [28.8 (7.2); P < 0.005], however this improvement was not sustained at 3 months post-intervention. The majority of consumers (86.4%) reported the intervention as very useful [rated on NRS as 7–10]. Conclusions To sustain improved consumer beliefs regarding LBP and encourage the adoption of more positive health behaviours, additional reinforcement strategies for consumers living in remote areas where service access and skilled workforce are limited are recommended. This study highlights the need for aligning health services and skilled workforce to improve the delivery of co-care for consumers living in geographically isolated areas. PMID:22578207

  4. A SIMPLE FRAILTY QUESTIONNAIRE (FRAIL) PREDICTS OUTCOMES IN MIDDLE AGED AFRICAN AMERICANS

    PubMed Central

    MORLEY, J.E.; MALMSTROM, T.K.; MILLER, D.K.

    2015-01-01

    Objective To validate the FRAIL scale. Design Longitudinal study. Setting Community. Participants Representative sample of African Americans age 49 to 65 years at onset of study. Measurements The 5-item FRAIL scale (Fatigue, Resistance, Ambulation, Illnesses, & Loss of Weight), at baseline and activities of daily living (ADLs), instrumental activities of daily living (IADLs), mortality, short physical performance battery (SPPB), gait speed, one-leg stand, grip strength and injurious falls at baseline and 9 years. Blood tests for CRP, SIL6R, STNFR1, STNFR2 and 25 (OH) vitamin D at baseline. Results Cross-sectionally the FRAIL scale correlated significantly with IADL difficulties, SPPB, grip strength and one-leg stand among participants with no baseline ADL difficulties (N=703) and those outcomes plus gait speed in those with no baseline ADL dependencies (N=883). TNFR1 was increased in pre-frail and frail subjects and CRP in some subgroups. Longitudinally (N=423 with no baseline ADL difficulties or N=528 with no baseline ADL dependencies), and adjusted for the baseline value for each outcome, being pre-frail at baseline significantly predicted future ADL difficulties, worse one-leg stand scores, and mortality in both groups, plus IADL difficulties in the dependence-excluded group. Being frail at baseline significantly predicted future ADL difficulties, IADL difficulties, and mortality in both groups, plus worse SPPB in the dependence-excluded group. Conclusion This study has validated the FRAIL scale in a late middle-aged African American population. This simple 5-question scale is an excellent screening test for clinicians to identify frail persons at risk of developing disability as well as decline in health functioning and mortality. PMID:22836700

  5. Inability to Perform the Repeated Chair Stand Task Predicts Fall-Related Injury in Older Primary Care Patients.

    PubMed

    Shea, Cristina A; Ward, Rachel E; Welch, Sarah A; Kiely, Dan K; Goldstein, Richard; Bean, Jonathan F

    2018-06-01

    The aim of the study was to examine whether the chair stand component of the Short Physical Performance Battery predicts fall-related injury among older adult primary care patients. A 2-yr longitudinal cohort study of 430 Boston-area primary care patients aged ≥65 yrs screened to be at risk for mobility decline was conducted. The three components of the Short Physical Performance Battery (balance time, gait speed, and chair stand time) were measured at baseline. Participants reported incidence of fall-related injuries quarterly for 2 yrs. Complementary log-log discrete time hazard models were constructed to examine the hazard of fall-related injury across Short Physical Performance Battery scores, adjusting for age, sex, race, Digit Symbol Substitution Test score, and fall history. Participants were 68% female and 83% white, with a mean (SD) age of 76.6 (7.0). A total of 137 (32%) reported a fall-related injury during the follow-up period. Overall, inability to perform the chair stand task was a significant predictor of fall-related injury (hazard ratio = 2.11, 95% confidence interval = 1.23-3.62, P = 0.01). Total Short Physical Performance Battery score, gait component score, and balance component score were not predictive of fall-related injury. Inability to perform the repeated chair stand task was associated with increased hazard of an injurious fall for 2 yrs among a cohort of older adult primary care patients.

  6. A dynamic data source selection system for smartwatch platform.

    PubMed

    Nemati, Ebrahim; Sideris, Konstantinos; Kalantarian, Haik; Sarrafzadeh, Majid

    2016-08-01

    A novel data source selection algorithm is proposed for ambulatory activity tracking of elderly people. The algorithm introduces the concept of dynamic switching between the data collection modules (a smartwatch and a smartphone) to improve accuracy and battery life using contextual information. We show that by making offloading decisions as a function of activity, the proposed algorithm improves power consumption and accuracy of the previous work by 7 hours and 5% respectively compared to the baseline.

  7. The Association of Sitting Time With Sarcopenia Status and Physical Performance at Baseline and 18-Month Follow-Up in the Residential Aged Care Setting.

    PubMed

    Reid, Natasha; Keogh, Justin W; Swinton, Paul; Gardiner, Paul A; Henwood, Timothy R

    2018-06-18

    This study investigated the association of sitting time with sarcopenia and physical performance in residential aged care residents at baseline and 18-month follow-up. Measures included the International Physical Activity Questionnaire (sitting time), European Working Group definition of sarcopenia, and the short physical performance battery (physical performance). Logistic regression and linear regression analyses were used to investigate associations. For each hour of sitting, the unadjusted odds ratio of sarcopenia was 1.16 (95% confidence interval [0.98, 1.37]). Linear regression showed that each hour of sitting was significantly associated with a 0.2-unit lower score for performance. Associations of baseline sitting with follow-up sarcopenia status and performance were nonsignificant. Cross-sectionally, increased sitting time in residential aged care may be detrimentally associated with sarcopenia and physical performance. Based on current reablement models of care, future studies should investigate if reducing sedentary time improves performance among adults in end of life care.

  8. Baseline Performance Predicts tDCS-Mediated Improvements in Language Symptoms in Primary Progressive Aphasia

    PubMed Central

    McConathey, Eric M.; White, Nicole C.; Gervits, Felix; Ash, Sherry; Coslett, H. Branch; Grossman, Murray; Hamilton, Roy H.

    2017-01-01

    Primary Progressive Aphasia (PPA) is a neurodegenerative condition characterized by insidious irreversible loss of language abilities. Prior studies suggest that transcranial direct current stimulation (tDCS) directed toward language areas of the brain may help to ameliorate symptoms of PPA. In the present sham-controlled study, we examined whether tDCS could be used to enhance language abilities (e.g., picture naming) in individuals with PPA variants primarily characterized by difficulties with speech production (non-fluent and logopenic). Participants were recruited from the Penn Frontotemporal Dementia Center to receive 10 days of both real and sham tDCS (counter-balanced, full-crossover design; participants were naïve to stimulation condition). A battery of language tests was administered at baseline, immediately post-tDCS (real and sham), and 6 weeks and 12 weeks following stimulation. When we accounted for individuals’ baseline performance, our analyses demonstrated a stratification of tDCS effects. Individuals who performed worse at baseline showed tDCS-related improvements in global language performance, grammatical comprehension and semantic processing. Individuals who performed better at baseline showed a slight tDCS-related benefit on our speech repetition metric. Real tDCS may improve language performance in some individuals with PPA. Severity of deficits at baseline may be an important factor in predicting which patients will respond positively to language-targeted tDCS therapies. Clinicaltrials.gov ID: NCT02928848 PMID:28713256

  9. Diet Soda Consumption and Risk of Incident End Stage Renal Disease.

    PubMed

    Rebholz, Casey M; Grams, Morgan E; Steffen, Lyn M; Crews, Deidra C; Anderson, Cheryl A M; Bazzano, Lydia A; Coresh, Josef; Appel, Lawrence J

    2017-01-06

    Diet soda consumption is common in the United States and is associated with impaired glucose metabolism, diabetes, and metabolic syndrome. We prospectively analyzed diet soda consumption, assessed by food frequency questionnaire at baseline (1987-1989) and a follow-up examination (1993-1995), and incident ESRD through December 31, 2012 in the Atherosclerosis Risk in Communities study (n=15,368). Baseline mean age of participants was 54 years, 55% were female, and 27% were black. The majority of participants (43.5%) consumed <1 glass/wk of diet soda; 17.8% consumed 1-4 glasses/wk; 25.3% consumed 5-7 glasses/wk; and 13.5% consumed >7 glasses/wk. Over a median follow-up of 23 years, 357 incident ESRD cases were observed. Relative to <1 glass/wk of diet soda, consuming 1-4 glasses/wk, 5-7 glasses/wk, and >7 glasses/wk, respectively, was associated with 1.08-times (95% confidence interval [95% CI], 0.75 to 1.55), 1.33-times (95% CI, 1.01 to 1.75), and 1.83-times (95% CI, 1.01 to 2.52) higher risk of ESRD after adjusting for age, sex, race-center, education level, smoking status, physical activity, total caloric intake, eGFR, body mass index category, diabetes, systolic BP, and serum uric acid (P value for trend <0.001). Results were similar after additional adjustment for dietary acid load, diet quality, dietary sodium, dietary fructose, sugar-sweetened beverages, and dietary phosphorus. Risk estimates were similar by body mass index category (P value for interaction = 0.82), but the association between diet soda and ESRD was only significant for those who were overweight or obese at baseline. Sugar-sweetened beverage consumption was not significantly associated with ESRD in the fully adjusted model. Diet soda consumption was associated with higher ESRD risk in this general population sample. Further research is necessary to validate these findings in other study populations and to examine potential mechanisms through which diet soda could impact kidney disease. Copyright © 2016 by the American Society of Nephrology.

  10. Diet Soda Consumption and Risk of Incident End Stage Renal Disease

    PubMed Central

    Grams, Morgan E.; Steffen, Lyn M.; Crews, Deidra C.; Anderson, Cheryl A. M.; Bazzano, Lydia A.; Coresh, Josef; Appel, Lawrence J.

    2017-01-01

    Background and objectives Diet soda consumption is common in the United States and is associated with impaired glucose metabolism, diabetes, and metabolic syndrome. Design, setting, participants, & measurements We prospectively analyzed diet soda consumption, assessed by food frequency questionnaire at baseline (1987–1989) and a follow-up examination (1993–1995), and incident ESRD through December 31, 2012 in the Atherosclerosis Risk in Communities study (n=15,368). Results Baseline mean age of participants was 54 years, 55% were female, and 27% were black. The majority of participants (43.5%) consumed <1 glass/wk of diet soda; 17.8% consumed 1–4 glasses/wk; 25.3% consumed 5–7 glasses/wk; and 13.5% consumed >7 glasses/wk. Over a median follow-up of 23 years, 357 incident ESRD cases were observed. Relative to <1 glass/wk of diet soda, consuming 1–4 glasses/wk, 5–7 glasses/wk, and >7 glasses/wk, respectively, was associated with 1.08-times (95% confidence interval [95% CI], 0.75 to 1.55), 1.33-times (95% CI, 1.01 to 1.75), and 1.83-times (95% CI, 1.01 to 2.52) higher risk of ESRD after adjusting for age, sex, race-center, education level, smoking status, physical activity, total caloric intake, eGFR, body mass index category, diabetes, systolic BP, and serum uric acid (P value for trend <0.001). Results were similar after additional adjustment for dietary acid load, diet quality, dietary sodium, dietary fructose, sugar-sweetened beverages, and dietary phosphorus. Risk estimates were similar by body mass index category (P value for interaction = 0.82), but the association between diet soda and ESRD was only significant for those who were overweight or obese at baseline. Sugar-sweetened beverage consumption was not significantly associated with ESRD in the fully adjusted model. Conclusions Diet soda consumption was associated with higher ESRD risk in this general population sample. Further research is necessary to validate these findings in other study populations and to examine potential mechanisms through which diet soda could impact kidney disease. PMID:27797893

  11. Development and psychometric validation of the general practice nurse satisfaction scale.

    PubMed

    Halcomb, Elizabeth J; Caldwell, Belinda; Salamonson, Yenna; Davidson, Patricia M

    2011-09-01

    To develop an instrument to assess consumer satisfaction with nursing in general practice to provide feedback to nurses about consumers' perceptions of their performance. Prospective psychometric instrument validation study. A literature review was conducted to generate items for an instrument to measure consumer satisfaction with nursing in general practice. Face and content validity were evaluated by an expert panel, which had extensive experience in general practice nursing and research. Included in the questionnaire battery was the 27-item General Practice Nurse Satisfaction (GPNS) scale, as well as demographic and health status items. This survey was distributed to 739 consumers following intervention administered by a practice nurse in 16 general practices across metropolitan, rural, and regional Australia. Participants had the option of completing the survey online or receiving a hard copy of the survey form at the time of their visit. These data were collected between June and August 2009. Satisfaction data from 739 consumers were collected following their consultation with a general practice nurse. From the initial 27-item GPNS scale, a 21-item instrument was developed. Two factors, "confidence and credibility" and "interpersonal and communication" were extracted using principal axis factoring and varimax rotation. These two factors explained 71.9% of the variance. Cronbach's α was 0.97. The GPNS scale has demonstrated acceptable psychometric properties and can be used both in research and clinical practice for evaluating consumer satisfaction with general practice nurses. Assessing consumer satisfaction is important for developing and evaluating nursing roles. The GPNS scale is a valid and reliable tool that can be utilized to assess consumer satisfaction with general practice nurses and can assist in performance management and improving the quality of nursing services. © 2011 Sigma Theta Tau International.

  12. Buying health: assessing the impact of a consumer-side vegetable subsidy on purchasing, consumption and waste.

    PubMed

    Smith-Drelich, Noah

    2016-02-01

    To measure the impact of a reimbursement-based consumer subsidy on vegetable expenditures, consumption and waste. Two-arm randomized controlled trial; two-week baseline observation period, three-week intervention period. Participants' vegetable expenditures, consumption and waste were monitored using receipts collection and through an FFQ. During the intervention period, the treatment group received reimbursement of up to 50 US dollars ($) for purchased vegetables. Participants were solicited from Palo Alto, CA, USA using materials advertising a 'consumer behavior study' and a small participation incentive. To prevent selection bias, solicitation materials did not describe the specific behaviour being evaluated. One hundred and fifty potential participants responded to the solicitations and 144 participants enrolled in the study; 138 participants completed all five weekly surveys. Accounting for the control group (n 69) and the two-week baseline period, the intervention significantly impacted the treatment group's (n 69) vegetable expenditures (+$8.16 (sd 2.67)/week, P<0.01), but not vegetable consumption (+1.3 (sd 1.2) servings/week, P=0.28) or waste (-0.23 (sd 1.2) servings/week, P=0.60). The consumer subsidy significantly increased participants' vegetable expenditures, but not consumption or waste, suggesting that this type of subsidy might not have the effects anticipated. Reimbursement-based consumer subsidies may therefore not be as useful a policy tool for impacting vegetable consumption as earlier studies have suggested. Moreover, moderation analysis revealed that the subsidy's effect on participants' vegetable expenditures was significant only in men. Additional research should seek to determine how far reaching gender-specific effects are in this context. Further research should also examine the effect of a similar consumer subsidy on high-risk populations and explore to what extent increases in participants' expenditures are due to the purchase of more expensive vegetables, purchasing of vegetables during the study period that were consumed outside the study period, or a shift from restaurant vegetable consumption to grocery vegetable consumption.

  13. Cognitive decline in patients with Alzheimer's disease, vascular dementia and senile dementia of Lewy body type.

    PubMed

    Ballard, C; Patel, A; Oyebode, F; Wilcock, G

    1996-05-01

    One hundred and twenty-four patients with DSM-III-R dementia were assessed with a standardized battery which included the Geriatric Mental State Schedule, the History and Aetiology Schedule, the Secondary Dementia Schedule and the CAMCOG. Patients with Alzheimer's disease, vascular dementia and senile dementia of Lewy body type (SDLT) all had a similar degree of cognitive impairment at the time of the baseline interview. Patients with Alzheimer's disease and vascular dementia each experienced a mean decline of 27 points in patients with SDLT. Patients with SDLT had a significantly greater decline of verbal fluency than both the other groups. Women were significantly more impaired than men at the time of the baseline assessment but experienced a similar decline during the year of follow-up.

  14. Outcomes of a brief program, REORDER, to promote consumer recovery and family involvement in care.

    PubMed

    Dixon, Lisa B; Glynn, Shirley M; Cohen, Amy N; Drapalski, Amy L; Medoff, Deborah; Fang, Li Juan; Potts, Wendy; Gioia, Deborah

    2014-01-01

    The Recovery-Oriented Decisions for Relatives' Support (REORDER) intervention is an innovative, manualized protocol utilizing shared decision-making principles with persons who have serious mental illnesses to promote recovery and encourage consideration of family involvement in care. This study compared REORDER to enhanced treatment as usual in a randomized design. Participants included 226 veterans with serious mental illness whose relatives had low rates of contact with treatment staff. REORDER involved up to three consumer sessions followed by up to three relative educational sessions if the consumer and relative consented. Individuals were assessed at baseline and six months later. Eighty-five percent of the 111 randomly assigned REORDER participants attended at least one REORDER consumer session; of those, 59% had at least one family session. REORDER participants had significantly reduced paranoid ideation and increased recovery at follow-up. Participation in REORDER led to marked increases in family participation and improved consumer outcomes.

  15. An Ensemble Method for Spelling Correction in Consumer Health Questions

    PubMed Central

    Kilicoglu, Halil; Fiszman, Marcelo; Roberts, Kirk; Demner-Fushman, Dina

    2015-01-01

    Orthographic and grammatical errors are a common feature of informal texts written by lay people. Health-related questions asked by consumers are a case in point. Automatic interpretation of consumer health questions is hampered by such errors. In this paper, we propose a method that combines techniques based on edit distance and frequency counts with a contextual similarity-based method for detecting and correcting orthographic errors, including misspellings, word breaks, and punctuation errors. We evaluate our method on a set of spell-corrected questions extracted from the NLM collection of consumer health questions. Our method achieves a F1 score of 0.61, compared to an informed baseline of 0.29, achieved using ESpell, a spelling correction system developed for biomedical queries. Our results show that orthographic similarity is most relevant in spelling error correction in consumer health questions and that frequency and contextual information are complementary to orthographic features. PMID:26958208

  16. Food consumption patterns in the Waterloo Region, Ontario, Canada: a cross-sectional telephone survey

    PubMed Central

    Nesbitt, Andrea; Majowicz, Shannon; Finley, Rita; Pollari, Frank; Pintar, Katarina; Marshall, Barbara; Cook, Angela; Sargeant, Jan; Wilson, Jeff; Ribble, Carl; Knowles, Lewinda

    2008-01-01

    Background The demographics and lifestyles of Canadians are changing, thereby influencing food choices and food preparation in the home. Although different dietary practices are associated with increased risk of foodborne illness, our ability to evaluate food consumption trends and assess risks associated with foodborne illness is limited by lack of data on current eating habits and consumer food safety practices. The objective of this study was to describe, for the first time, the food consumption patterns in a Canadian-based population from a food safety perspective, in order to establish baseline data on actual food intake of individuals. Method A cross-sectional telephone survey of 2,332 randomly selected residents of Waterloo Region, Ontario, Canada (C-EnterNet pilot site) was conducted between November 2005 and March 2006. Food intake was assessed using a 7-day dietary recall method. Results Certain food items were consumed more than others among the same food groups, and consumption of many food items varied by gender and age. Specific foods considered high-risk for the transmission of certain enteric pathogens were significantly more likely to be consumed by males (i.e. unpasteurized juice, bean sprouts, and undercooked meat) and elderly individuals (i.e. undercooked eggs). The majority of households prepared and consumed most meals at home, allocating an average of 44 minutes to prepare a meal. Conclusion Baseline data on actual food intake is useful to public health professionals and food safety risk assessors for developing communication messages to consumers and in foodborne outbreak investigations. PMID:18950509

  17. Urinary Isoflavonoid Excretion is Similar after Consuming Soy Milk and Miso Soup in Japanese-American Women

    PubMed Central

    Maskarinec, Gertraud; Watts, Kirsten; Kagihara, Jamie; Hebshi, Sandra M.; Franke, Adrian A.

    2009-01-01

    Based on the hypothesis that isoflavones are absorbed more efficiently from fermented than from non-fermented soy foods, we compared the urinary isoflavonoid excretion (UIE) after intake of miso soup or soy milk. We recruited 21 women with Japanese ancestry who consumed standardized soy portions containing 48 mg isoflavones. On day 1, half the women consumed soy milk, the other half started with miso soup. On day 3, the subjects ate the other soy food and on day 5, they repeated the first food. Each participant collected a spot urine sample before and an overnight urine sample after soy food intake. All urine samples were analyzed for the daidzein, genistein, and equol using liquid chromatography-mass spectrometry and were expressed as nmol per mg creatinine. We applied mixed models to evaluate the difference in UIE by food while including the baseline values and covariates. Relative to baseline, both groups experienced significantly higher UIE after consuming any of the soy foods. We observed no significant difference in UIE when soy milk was compared to miso soup (p = 0.87) among all women or in the seven equol producers (p = 0.88). Repeated intake of the same food on different days showed high reproducibility within subjects. These preliminary results indicate similar UIEs after consuming a fermented soy food (miso) as compared to a non-fermented soy food (soy milk). Therefore, recommendations favoring fermented soy foods are not justified as long as the intestinal microflora is capable of hydrolyzing the isoflavone glucosides from non-fermented soy foods. PMID:18275624

  18. An acute, double-blind, placebo-controlled crossover study of 320 mg and 640 mg doses of a special extract of Bacopa monnieri (CDRI 08) on sustained cognitive performance.

    PubMed

    Downey, Luke A; Kean, James; Nemeh, Fiona; Lau, Angela; Poll, Alex; Gregory, Rebecca; Murray, Margaret; Rourke, Johanna; Patak, Brigit; Pase, Matthew P; Zangara, Andrea; Lomas, Justine; Scholey, Andrew; Stough, Con

    2013-09-01

    Standardized extracts of the traditional Ayurvedic medicine Bacopa monnieri (BM) (Brahmi) have been recently shown to have cognitive enhancing effects in chronic administration studies. Pre-clinical work has also identified a number of acute anxiolytic, nootropic, and cardiovascular effects of BM. There has, however, been little research on the acute effects of BM on cognitive function. The current study aimed to assess the acute effects of a specific extract of BM (KeenMind®-CDRI 08) in a double-blind, placebo-controlled study in normal healthy participants who completed a cognitively demanding series of tests. Twenty-four healthy volunteers completed six repetitions of the Cognitive Demand Battery (CDB) after consuming a placebo, 320 mg BM or 640 mg of BM in a cross-over design and provided cardiovascular and mood assessments before and after treatment. Change from baseline scores indicated that the 320 mg dose of BM improved performance at the first, second, and fourth repetition post-dosing on the CDB, and the treatments had no effect upon cardiovascular activity or in attenuating task-induced ratings of stress and fatigue. It was concluded that assessment of an earlier pharmacological window and use of less memory-specific cognitive tests together with more temporally sensitive measures of brain activity may improve our understanding of the acute neurocognitive properties of BM. Copyright © 2012 John Wiley & Sons, Ltd.

  19. The Effect of the Oral Administration of Leucine on Endothelial Function, Glucose and Insulin Concentrations in Healthy Subjects.

    PubMed

    Argyrakopoulou, Georgia; Kontrafouri, Paraskevi; Eleftheriadou, Ioanna; Kokkinos, Alexander; Arapostathi, Christina; Kyriaki, Despoina; Perrea, Despoina; Revenas, Constantinos; Katsilambros, Nicholas; Tentolouris, Nicholas

    2018-06-11

    The aim of our study was to investigate the potential differential effect of hyperglycaemia and hyperinsulinaemia induced by glucose infusion alone and in combination with leucine consumption on endothelial function in healthy individuals. Ten male volunteers were examined in random order twice. In one visit, they consumed 250 ml water (baseline) and 30 min later glucose was infused iv. In the other visit, they consumed 250 ml water with 25 g of leucine and 30 min later the same amount of glucose was infused. Serum glucose and insulin were measured at baseline and every 10 min after glucose infusion for 1 h. Endothelial function was evaluated by measurement of flow mediated vasodilatation (FMD) at baseline, 10 and 60 min after glucose infusion. In both visits, glucose levels increased to the same degree, whereas insulin response was significantly higher after leucine administration. FMD values declined significantly compared to baseline 10 min after glucose infusion in the control visit (6.9±2.7 vs. 3.2±3.5%, respectively, p=0.006), while no significant change was observed when glucose infusion was followed by leucine consumption. Acute hyperglycaemia impairs endothelial function in healthy male individuals. Leucine administration prevents hyperglycaemia-mediated endothelial dysfunction probably due to enhanced insulin secretion. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Prawn Shell Derived Chitin Nanofiber Membranes as Advanced Sustainable Separators for Li/Na-Ion Batteries.

    PubMed

    Zhang, Tian-Wen; Shen, Bao; Yao, Hong-Bin; Ma, Tao; Lu, Lei-Lei; Zhou, Fei; Yu, Shu-Hong

    2017-08-09

    Separators, necessary components to isolate cathodes and anodes in Li/Na-ion batteries, are consumed in large amounts per year; thus, their sustainability is a concerning issue for renewable energy storage systems. However, the eco-efficient and environmentally friendly fabrication of separators with a high mechanical strength, excellent thermal stability, and good electrolyte wettability is still challenging. Herein, we reported the fabrication of a new type of separators for Li/Na-ion batteries through the self-assembly of eco-friendly chitin nanofibers derived from prawn shells. We demonstrated that the pore size in the chitin nanofiber membrane (CNM) separator can be tuned by adjusting the amount of pore generation agent (sodium dihydrogen citrate) in the self-assembly process of chitin nanofibers. By optimizing the pore size in CNM separators, the electrochemical performance of the LiFePO 4 /Li half-cell with a CNM separator is comparable to that with a commercialized polypropylene (PP) separator. More attractively, the CNM separator showed a much better performance in the LiFePO 4 /Li cell at 120 °C and Na 3 V 2 (PO 4 ) 3 /Na cell than the PP separator. The proposed fabrication of separators by using natural raw materials will play a significant contribution to the sustainable development of renewable energy storage systems.

  1. Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhenhong; Greene, David L

    Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefitsmore » by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.« less

  2. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction

    NASA Astrophysics Data System (ADS)

    Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng

    A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.

  3. A New Approach to Design of an optimized Grid Tied Smart Solar Photovoltaic (PV) System

    NASA Astrophysics Data System (ADS)

    Farhad, M. Mehedi; Ali, M. Mohammad; Iqbal, M. Asif; Islam, N. Nahar; Ashraf, N.

    2012-11-01

    Energy is the key element for the economical development of a country. With the increasing concern about the global demand for Renewable Energy (RE) energy, it is very much important to reduce the cost of the whole solar photovoltaic (PV) system. Still now most of the solar photovoltaic (PV) system is highly expensive. In this paper we have shown that grid tied solar system can be developed by omitting the energy storage device like large capacity battery bank. It will not only reduce the internallosses for charging and discharging of battery bank but also at the same time a large amount of cost of the battery will be reduced. So, the system maintenance cost will be reduced also. We have proposed a new approach to design a photovoltaic (PV) solar power system which can be operated by feeding the solar power to the national grid along with the residential load. Again if there is an extra power demand for residential load along with the solar power then this system can also provide an opportunity to consume the power from the national grid. The total system is controlled with the help of some the sensors and a microcontroller. As a whole a significant reduction in the system costs and efficient system performance can be realized.

  4. The stability of baseline-defined categories of alcohol consumption during the adult life-course: a 28-year prospective cohort study.

    PubMed

    Knott, Craig S; Bell, Steven; Britton, Annie

    2018-01-01

    Studies that report the relationship between alcohol consumption and disease risk have predominantly operationalized drinking according to a single baseline measure. The resulting assumption of longitudinal stability may be simplistic and complicate interpretation of risk estimates. This study aims to describe changes to the volume of consumption during the adult life-course according to baseline categories of drinking. A prospective observational study. United Kingdom. A cohort of British civil servants totalling 6838 men and 3372 women aged 34-55 years at baseline, followed for a mean 19.1 (standard deviation = 9.5) years. The volume of weekly alcohol consumption was estimated from data concerning the frequency and number of drinks consumed. Baseline categories were defined: non-current drinkers, infrequent drinkers, 0.1-50.0 g/week, 50.1-100.0 g/week, 100.1-150.0 g/week, 150.1-250.0 g/week and >250.0 g/week. For women, the highest category was defined as > 100.0 g/week. Baseline frequency was derived as 'daily or almost daily' and 'not daily or almost daily'. Trajectories were estimated within baseline categories using growth curve models. Trajectories differed between men and women, but were relatively stable within light-to-moderate categories of baseline consumption. Drinking was least stable within the highest categories of baseline consumption (men: > 250.0 g/week; women: > 100.0 g/week), declining by 47.0 [95% confidence interval (CI) = 40.7, 53.2] and 16.8 g/week (95% CI = 12.6, 21.0), respectively, per 10-year increase in age. These declines were not a consequence of sudden transitions to complete abstention. Rates of decline appear greatest in older age, with trajectories converging toward moderate volumes. Among UK civil servants, consumption within baseline drinking categories is generally stable during the life-course, except among heavier baseline drinkers, for whom intakes decline with increasing age. This shift does not appear to be driven by transitions to non-drinking. Cohorts of older people may be at particular risk of misclassifying former heavy drinkers as moderate consumers of alcohol. © 2017 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  5. Computer-based training (CBT) intervention reduces workplace violence and harassment for homecare workers.

    PubMed

    Glass, Nancy; Hanson, Ginger C; Anger, W Kent; Laharnar, Naima; Campbell, Jacquelyn C; Weinstein, Marc; Perrin, Nancy

    2017-07-01

    The study examines the effectiveness of a workplace violence and harassment prevention and response program with female homecare workers in a consumer driven model of care. Homecare workers were randomized to either; computer based training (CBT only) or computer-based training with homecare worker peer facilitation (CBT + peer). Participants completed measures on confidence, incidents of violence, and harassment, health and work outcomes at baseline, 3, 6 months post-baseline. Homecare workers reported improved confidence to prevent and respond to workplace violence and harassment and a reduction in incidents of workplace violence and harassment in both groups at 6-month follow-up. A decrease in negative health and work outcomes associated with violence and harassment were not reported in the groups. CBT alone or with trained peer facilitation with homecare workers can increase confidence and reduce incidents of workplace violence and harassment in a consumer-driven model of care. © 2017 Wiley Periodicals, Inc.

  6. An Air Revitalization Model (ARM) for Regenerative Life Support Systems (RLSS)

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1990-01-01

    The primary objective of the air revitalization model (ARM) is to determine the minimum buffer capacities that would be necessary for long duration space missions. Several observations are supported by the current configuration sizes: the baseline values for each gas and the day to day or month to month fluctuations that are allowed. The baseline values depend on the minimum safety tolerances and the quantities of life support consumables necessary to survive the worst case scenarios within those tolerances. Most, it not all, of these quantities can easily be determined by ARM once these tolerances are set. The day to day fluctuations also require a command decision. It is already apparent from the current configuration of ARM that the tighter these fluctuations are controlled, the more energy used, the more nonregenerable hydrazine consumed, and the larger the required capacities for the various gas generators. All of these relationships could clearly be quantified by one operational ARM.

  7. Factors Contributing to Disparities in Baseline Neurocognitive Performance and Concussion Symptom Scores Between Black and White Collegiate Athletes.

    PubMed

    Wallace, Jessica; Covassin, Tracey; Moran, Ryan; Deitrick, Jamie McAllister

    2017-11-02

    National Collegiate Athletic Association (NCAA) concussion guidelines state that all NCAA athletes must have a concussion baseline test prior to commencing their competitive season. To date, little research has examined potential racial differences on baseline neurocognitive performance among NCAA athletes. The purpose of this study was to investigate differences between Black and White collegiate athletes on baseline neurocognitive performance and self-reported symptoms. A total of 597 collegiate athletes (400 White, 197 Black) participated in this study. Athletes self-reported their race on the demographic section of their pre-participation physical examination and were administered the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT) neurocognitive battery in a supervised, quiet room. Controlling for sex, data were analyzed using separate one-way analyses of covariance (ANCOVAs) on symptom score, verbal and visual memory, visual motor processing speed, and reaction time composite scores. Results revealed significant differences between White and Black athletes on baseline symptom score (F (1,542)  = 5.82, p = .01), visual motor processing speed (F (1,542)  = 14.89, p < .001), and reaction time (F (1,542)  = 11.50, p < .01). White athletes performed better than Black athletes on baseline visual motor processing speed and reaction time. Black athletes reported higher baseline symptom scores compared to Whites. There was no statistical difference between race on verbal memory (p = .08) and that on visual memory (p = .06). Black athletes demonstrated disparities on some neurocognitive measures at baseline. These results suggest capturing an individual baseline on each athlete, as normative data comparisons may be inappropriate for athletes of a racial minority.

  8. Long working hours and cognitive function: the Whitehall II Study.

    PubMed

    Virtanen, Marianna; Singh-Manoux, Archana; Ferrie, Jane E; Gimeno, David; Marmot, Michael G; Elovainio, Marko; Jokela, Markus; Vahtera, Jussi; Kivimäki, Mika

    2009-03-01

    This study examined the association between long working hours and cognitive function in middle age. Data were collected in 1997-1999 (baseline) and 2002-2004 (follow-up) from a prospective study of 2,214 British civil servants who were in full-time employment at baseline and had data on cognitive tests and covariates. A battery of cognitive tests (short-term memory, Alice Heim 4-I, Mill Hill vocabulary, phonemic fluency, and semantic fluency) were measured at baseline and at follow-up. Compared with working 40 hours per week at most, working more than 55 hours per week was associated with lower scores in the vocabulary test at both baseline and follow-up. Long working hours also predicted decline in performance on the reasoning test (Alice Heim 4-I). Similar results were obtained by using working hours as a continuous variable; the associations between working hours and cognitive function were robust to adjustments for several potential confounding factors including age, sex, marital status, education, occupation, income, physical diseases, psychosocial factors, sleep disturbances, and health risk behaviors. This study shows that long working hours may have a negative effect on cognitive performance in middle age.

  9. Long Working Hours and Cognitive Function

    PubMed Central

    Singh-Manoux, Archana; Ferrie, Jane E.; Gimeno, David; Marmot, Michael G.; Elovainio, Marko; Jokela, Markus; Vahtera, Jussi; Kivimäki, Mika

    2009-01-01

    This study examined the association between long working hours and cognitive function in middle age. Data were collected in 1997–1999 (baseline) and 2002–2004 (follow-up) from a prospective study of 2,214 British civil servants who were in full-time employment at baseline and had data on cognitive tests and covariates. A battery of cognitive tests (short-term memory, Alice Heim 4-I, Mill Hill vocabulary, phonemic fluency, and semantic fluency) were measured at baseline and at follow-up. Compared with working 40 hours per week at most, working more than 55 hours per week was associated with lower scores in the vocabulary test at both baseline and follow-up. Long working hours also predicted decline in performance on the reasoning test (Alice Heim 4-I). Similar results were obtained by using working hours as a continuous variable; the associations between working hours and cognitive function were robust to adjustments for several potential confounding factors including age, sex, marital status, education, occupation, income, physical diseases, psychosocial factors, sleep disturbances, and health risk behaviors. This study shows that long working hours may have a negative effect on cognitive performance in middle age. PMID:19126590

  10. Electrochemically exfoliated graphene as a novel microwave susceptor: the ultrafast microwave-assisted synthesis of carbon-coated silicon-graphene film as a lithium-ion battery anode.

    PubMed

    Kim, Jong Min; Ko, Dongjin; Oh, Jiseop; Lee, Jeongyeon; Hwang, Taejin; Jeon, Youngmoo; Hooch Antink, Wytse; Piao, Yuanzhe

    2017-10-19

    Graphene nanocomposites have attracted much attention in many applications due to their superior properties. However, preparing graphene nanocomposites requires a time-consuming thermal treatment to reduce the graphene or synthesize nanomaterials, in most cases. We present an ultrafast synthesis of a carbon-coated silicon-graphene nanocomposite using a commercial microwave system. Electrochemically exfoliated graphene is used as a novel microwave susceptor to deliver efficient microwave energy conversion. Unlike graphene oxide, it does not require a time-consuming pre-thermal reduction or toxic chemical reduction to absorb microwave radiation efficiently. A carbon-coated silicon nanoparticle-electrochemically exfoliated graphene nanocomposite film was prepared by a few seconds' microwave irradiation. The sp 2 domains of graphene absorb microwave radiation and generate heat to simultaneously reduce the graphene and carbonize the polydopamine carbon precursor. The as-prepared N-doped carbon-coated silicon-graphene film was used as a lithium-ion battery anode. The N-doped carbon coating decreases the contact resistance between silicon nanoparticles and graphene provides a wide range conductive network. Consequently, it exhibited a reversible capacity of 1744 mA h g -1 at a current density of 0.1 A g -1 and 662 mA h g -1 at 1.0 A g -1 after 200 cycles. This method can potentially be a general approach to prepare various graphene nanocomposites in an extremely short time.

  11. The BATENUS process for recycling mixed battery waste

    NASA Astrophysics Data System (ADS)

    Fröhlich, Siegmund; Sewing, Dirk

    The first large-scale battery recycling facility implementing the hydrometallurgical BATENUS technology is expected to go into operation by 1996. The plant will be situated in Schönebeck/Sachsen-Anhalt, and has a projected maximum capacity of 7500 tons of spent batteries per year. The engineering is being carried out by Keramchemie GmbH and the plant will be operated by Batterierecycling Schönebeck GmbH. The BATENUS process was developed by Pira GmbH, a research institute in Stühlingen, Germany, during a period of five years. This new process combines hydrometallurgical operations in a nearly closed reagent cycle that involves electrochemical and membrane techniques. Effluent emissions are minimized to the greatest possible extent. Process validity has been proven in a series of pilot plant testings. After mechanical separation of the casing materials like ferrous and nonferrous metals, paper and plastics, the subsequent hydrometallurgical recovery yields zinc, copper, nickel and cadmium. The other products are manganese carbonate and a mixture of manganese oxide with carbon black. Mercury is immobilized by absorption on a selective ion-exchange resin. The BATENUS process is a master process for the hydrometallurgical reclamation of metals from secondary raw materials. It has found its first application in the treatment of spent consumer batteries (i.e., mixtures of zinc-carbon, alkaline manganese, lithium, nickel-cadmium cells, etc.). As a result of its modular process design, the individual steps can be modified easily and adapted to accommodate variations in the contents of the secondary raw materials. Further applications of this highly flexible technology are planned for the future.

  12. Effective recycling of manganese oxide cathodes for lithium based batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo

    Rechargeable lithium ion batteries (LIBs) occupy a prominent consumer presence due to their high cell potential and gravimetric energy density, there are also limited opportunities for electrode recycling. Currently used or proposed cathode recycling processes are multistep procedures which involve sequences of mechanical, thermal, and chemical leaching, where only the base material is recovered and significant processing is required to generate a recycled electrode structure. Another significant issue facing lithium based batteries is capacity fade due to structural degradation of the electroactive material upon extending cycling. Herein, inspired by heterogeneous catalyst thermal regeneration strategies, we present a new facile cathodemore » recycling process, where previously used cathodes are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life. An environmentally sustainable manganese based material is employed, where binder-free self-supporting (BFSS) electrodes are prepared using a fibrous, high aspect ratio manganese oxide active material. After 200 discharge–charge cycles, the recycled BFSS electrodes display restored crystallinity and oxidation state of the manganese centers with the resulting electrochemistry (capacity and coulombic efficiency) reminiscent of freshly prepared BFSS cathodes. Of note, the BFSS electrode structure is robust with no degradation during the cell disassembly, electrode recovery, washing, and heat treatment steps; thus no post-processing is required for the recycled electrode. Furthermore, this work shows for the first time that a thermal regeneration method previously employed in catalyst systems can fully restore battery electrochemical performance, demonstrating a novel electrode recycling process which could open up new possibilities for energy storage devices with extended electrode lifecycles.« less

  13. Effective recycling of manganese oxide cathodes for lithium based batteries

    DOE PAGES

    Poyraz, Altug S.; Huang, Jianping; Cheng, Shaobo; ...

    2016-02-29

    Rechargeable lithium ion batteries (LIBs) occupy a prominent consumer presence due to their high cell potential and gravimetric energy density, there are also limited opportunities for electrode recycling. Currently used or proposed cathode recycling processes are multistep procedures which involve sequences of mechanical, thermal, and chemical leaching, where only the base material is recovered and significant processing is required to generate a recycled electrode structure. Another significant issue facing lithium based batteries is capacity fade due to structural degradation of the electroactive material upon extending cycling. Herein, inspired by heterogeneous catalyst thermal regeneration strategies, we present a new facile cathodemore » recycling process, where previously used cathodes are removed from a cell, heat treated, and then inserted into a new cell restoring the delivered capacity and cycle life. An environmentally sustainable manganese based material is employed, where binder-free self-supporting (BFSS) electrodes are prepared using a fibrous, high aspect ratio manganese oxide active material. After 200 discharge–charge cycles, the recycled BFSS electrodes display restored crystallinity and oxidation state of the manganese centers with the resulting electrochemistry (capacity and coulombic efficiency) reminiscent of freshly prepared BFSS cathodes. Of note, the BFSS electrode structure is robust with no degradation during the cell disassembly, electrode recovery, washing, and heat treatment steps; thus no post-processing is required for the recycled electrode. Furthermore, this work shows for the first time that a thermal regeneration method previously employed in catalyst systems can fully restore battery electrochemical performance, demonstrating a novel electrode recycling process which could open up new possibilities for energy storage devices with extended electrode lifecycles.« less

  14. Baseline tests of the EVA contractor electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Tryon, H. B.; Slavick, R. J.

    1977-01-01

    The EVA Contactor four door sedan, an electric passenger vehicle, was tested to characterize the state-of-the-art of electric vehicles. It is a four passenger sedan that was converted to an electric vehicle. It is powered by 16 series connected 6 volt electric vehicle batteries through a four step contactor controller actuated by a foot accelerator pedal. The controller changes the voltage applied to the separately excited DC motor. The braking system is a vacuum assisted hydraulic braking system. Regenerative braking was also provided.

  15. Alcohol consumption in early adulthood and schooling completed and labor market outcomes at midlife by race and gender.

    PubMed

    Sloan, Frank A; Grossman, Daniel S

    2011-11-01

    We assessed the relation of alcohol consumption in young adulthood to problem alcohol consumption 10 years later and to educational attainment and labor market outcomes at midlife. We considered whether these relations differ between Blacks and Whites. We classified individuals on the basis of their drinking frequency patterns with data from the 1982 to 1984 National Longitudinal Survey of Youth 1979 (respondents aged 19-27 years). We assessed alcohol consumption from the 1991 reinterview (respondents aged 26-34 years) and midlife outcomes from the 2006 reinterview (respondents aged 41-49 years). Black men who consumed 12 or more drinks per week at baseline had lower earnings at midlife, but no corresponding relation for Black women or Whites was found. Black men and Black women who consumed 12 or more drinks per week at baseline had lower occupational attainment than did White male non-drinkers and White female non-drinkers, respectively, but this result was not statistically significant. The relation between alcohol consumption in young adulthood and important outcomes at midlife differed between Blacks and Whites and between Black men and Black women, although Blacks' alcohol consumption at baseline was lower on average than was that of Whites.

  16. Work, Recovery, and Comorbidity in Schizophrenia: A Randomized Controlled Trial of Cognitive Remediation

    PubMed Central

    McGurk, Susan R.; Mueser, Kim T.; DeRosa, Thomas J.; Wolfe, Rosemarie

    2009-01-01

    Employment is central to the concept of recovery in severe mental illness. However, common comorbid conditions present significant obstacles to consumers seeking employment and benefiting from vocational rehabilitation. We review research on the effects of three common comorbid conditions on work and response to vocational rehabilitation, including cognitive impairment, substance abuse, and medical conditions, followed by research on vocational rehabilitation. We then present the results of a randomized controlled trial evaluating the effects of adding cognitive remediation to a vocational rehabilitation program compared with vocational rehabilitation alone in 34 consumers with severe mental illness. Consumers who received both cognitive remediation and vocational rehabilitation demonstrated significantly greater improvements on a cognitive battery over 3 months than those who received vocational rehabilitation alone and had better work outcomes over the 2-year follow-up period. Substance abuse was associated with worse employment outcomes, but did not interact with treatment group, whereas medical comorbidity was not related to work outcomes. More research is warranted to evaluate the interactions between substance abuse and medical comorbidity with vocational rehabilitation and cognitive remediation. PMID:19269925

  17. New Year's res-illusions: food shopping in the new year competes with healthy intentions.

    PubMed

    Pope, Lizzy; Hanks, Andrew S; Just, David R; Wansink, Brian

    2014-01-01

    How do the holidays--and the possible New Year's resolutions that follow--influence a household's purchase patterns of healthier foods versus less healthy foods? This has important implications for both holiday food shopping and post-holiday shopping. 207 households were recruited to participate in a randomized-controlled trial conducted at two regional-grocery chain locations in upstate New York. Item-level transaction records were tracked over a seven-month period (July 2010 to March 2011). The cooperating grocer's proprietary nutrient-rating system was used to designate "healthy," and "less healthy" items. Calorie data were extracted from online nutritional databases. Expenditures and calories purchased for the holiday period (Thanksgiving-New Year's), and the post-holiday period (New Year's-March), were compared to baseline (July-Thanksgiving) amounts. During the holiday season, household food expenditures increased 15% compared to baseline ($105.74 to $121.83; p<0.001), with 75% of additional expenditures accounted for by less-healthy items. Consistent with what one would expect from New Year's resolutions, sales of healthy foods increased 29.4% ($13.24/week) after the holiday season compared to baseline, and 18.9% ($9.26/week) compared to the holiday period. Unfortunately, sales of less-healthy foods remained at holiday levels ($72.85/week holiday period vs. $72.52/week post-holiday). Calories purchased each week increased 9.3% (450 calories per serving/week) after the New Year compared to the holiday period, and increased 20.2% (890 calories per serving/week) compared to baseline. Despite resolutions to eat more healthfully after New Year's, consumers may adjust to a new "status quo" of increased less-healthy food purchasing during the holidays, and dubiously fulfill their New Year's resolutions by spending more on healthy foods. Encouraging consumers to substitute healthy items for less-healthy items may be one way for practitioners and public health officials to help consumers fulfill New Year's resolutions, and reverse holiday weight gain.

  18. Evaluation of some heavy metals residues in batteries and deep litter rearing systems in Japanese quail meat and offal in Egypt

    PubMed Central

    Ahmed, Ali M.; Hamed, Dalia M.; Elsharawy, Nagwa T.

    2017-01-01

    Aim: The main objectives of this study were for comparing the effect of batteries and deep litter rearing systems of domesticated Japanese quail, Coturnix coturnix japonica, on the concentration levels of cadmium, copper, lead, and zinc from the quail meat and offal in Ismailia, Egypt. Materials and Methods: A total of 40 quail meat and their offal samples were randomly collected from two main quail rearing systems: Battery (Group I) and deep litter system (Group II) for determination of concentration levels of cadmium, copper, lead, and zinc. In addition, 80 water and feed samples were randomly collected from water and feeders of both systems in the Food Hygiene Laboratory, Faculty of Veterinary Medicine, Suez Canal University for heavy metals determination. Results: The mean concentration levels of cadmium, copper, lead, and zinc in Group I were 0.010, 0.027, 1.137, and 0.516 ppm and for Group II were 0.093, 0.832, 0.601, and 1.651 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail feed in Group I were 1.114, 1.606, 5.822, and 35.11 ppm and for Group II were 3.010, 2.576, 5.852, and 23.616 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail meat for Group I were 0.058, 5.902, 10.244, and 290 ppm and for Group II were 0.086, 6.092, 0.136, and 1.280 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc for liver samples in Group I were 0.15, 8.32, 1.05, and 3.41 ppm and for Group II were 0.13, 8.88, 0.95, and 4.21 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in kidney samples for the Group I were 0.24, 4.21, 1.96, and 4.03 ppm and for Group II were 0.20, 5.00, 1.56, and 3.78 ppm, respectively. Kidney had the highest concentration levels of heavy metals followed by liver then muscles. The highest concentration levels of copper were observed in liver samples. The order of the levels of these trace elements obtained from the four different quail organs is Ca > Pb > Zn > Cu. Lead and cadmium concentration levels in quail meat samples were exceeded the Egyptian standardization limits and suggesting a health threat from lead and cadmium to the quail consumers. Conclusion: Battery rearing system is more hygienic than deep litter system from the point of heavy metals pollution of water and feeds of quail. Feed samples from battery system had means concentration levels of lead not significantly higher (p>0.05) than those samples from deep litter system. Meanwhile, water samples from battery system had means concentration levels of cadmium, copper, and zinc significantly higher (p>0.05) than those samples from deep litter system. Quail may carry health risks to consumers. PMID:28344413

  19. Evaluation of some heavy metals residues in batteries and deep litter rearing systems in Japanese quail meat and offal in Egypt.

    PubMed

    Ahmed, Ali M; Hamed, Dalia M; Elsharawy, Nagwa T

    2017-02-01

    The main objectives of this study were for comparing the effect of batteries and deep litter rearing systems of domesticated Japanese quail, Coturnix coturnix japonica , on the concentration levels of cadmium, copper, lead, and zinc from the quail meat and offal in Ismailia, Egypt. A total of 40 quail meat and their offal samples were randomly collected from two main quail rearing systems: Battery (Group I) and deep litter system (Group II) for determination of concentration levels of cadmium, copper, lead, and zinc. In addition, 80 water and feed samples were randomly collected from water and feeders of both systems in the Food Hygiene Laboratory, Faculty of Veterinary Medicine, Suez Canal University for heavy metals determination. The mean concentration levels of cadmium, copper, lead, and zinc in Group I were 0.010, 0.027, 1.137, and 0.516 ppm and for Group II were 0.093, 0.832, 0.601, and 1.651 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail feed in Group I were 1.114, 1.606, 5.822, and 35.11 ppm and for Group II were 3.010, 2.576, 5.852, and 23.616 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in quail meat for Group I were 0.058, 5.902, 10.244, and 290 ppm and for Group II were 0.086, 6.092, 0.136, and 1.280 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc for liver samples in Group I were 0.15, 8.32, 1.05, and 3.41 ppm and for Group II were 0.13, 8.88, 0.95, and 4.21 ppm, respectively. The mean concentration levels of cadmium, copper, lead, and zinc in kidney samples for the Group I were 0.24, 4.21, 1.96, and 4.03 ppm and for Group II were 0.20, 5.00, 1.56, and 3.78 ppm, respectively. Kidney had the highest concentration levels of heavy metals followed by liver then muscles. The highest concentration levels of copper were observed in liver samples. The order of the levels of these trace elements obtained from the four different quail organs is Ca > Pb > Zn > Cu. Lead and cadmium concentration levels in quail meat samples were exceeded the Egyptian standardization limits and suggesting a health threat from lead and cadmium to the quail consumers. Battery rearing system is more hygienic than deep litter system from the point of heavy metals pollution of water and feeds of quail. Feed samples from battery system had means concentration levels of lead not significantly higher (p>0.05) than those samples from deep litter system. Meanwhile, water samples from battery system had means concentration levels of cadmium, copper, and zinc significantly higher (p>0.05) than those samples from deep litter system. Quail may carry health risks to consumers.

  20. Habitual yogurt consumption and health-related quality of life: a prospective cohort study.

    PubMed

    Lopez-Garcia, Esther; Leon-Muñoz, Luz; Guallar-Castillon, Pilar; Rodríguez-Artalejo, Fernando

    2015-01-01

    Health-related quality of life (HRQL) is a global indicator of perceived health status, which includes physical and mental domains. Several biological mechanisms might support an association between consumption of yogurt and better HRQL. Our aim was to assess the association between habitual yogurt consumption and HRQL in the general adult population. We conducted a prospective study with 4,445 individuals aged 18 years and older who were recruited in 2008 to 2010 and were followed up to 2012. Habitual yogurt consumption was assessed at baseline with a validated diet history. HRQL was measured with the Physical Composite Summary and the Mental Composite Summary of the Spanish version of the SF-12 Health Survey. The analysis of the association between baseline yogurt consumption and HRQL at 2012 was performed with linear regression and adjusted for the main confounders, including baseline HRQL. Mean follow-up was 3.5 years (standard deviation=0.6 years). Compared with nonconsumers of yogurt, the Physical Composite Summary scores were similar in habitual consumers of ≤6 servings/week (β=.40; P=0.20) and in consumers of ≥1 serving/day (β=.25; P=0.45). A suggestion of tendency toward a lower Mental Composite Summary score was found among daily yogurt consumers (β=-.65; P=0.09; P for trend across categories=0.07). Results were similar among individuals without morbidity, never smokers, and individuals with higher adherence to the Mediterranean diet. Habitual yogurt consumption did not show an association with improved HRQL. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  1. High Temperature Polymers for use in Fuel Cells

    NASA Technical Reports Server (NTRS)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require highly efficient power density for lowering emissions and meeting increasing consumer demands. Many of the solutions can be provided by proton exchange membrane fuel cells and lithium batteries. NASA Glenn Research Center has recognized this need, and is presently engaged in a solution. The goals for the summer include mastering synthesis techniques, understanding the reactions occurring during the synthesis, and characterizing the resulting polymer membranes using NMR, DSC, and TGA for the PEMFC and lithium batteries.

  2. Advanced Battery Manufacturing (VA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously availablemore » 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.« less

  3. Bipolar Ag-Zn battery

    NASA Astrophysics Data System (ADS)

    Giltner, L. John

    1994-02-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected system power = 100 kilowatts; discharge time = 30 seconds; discharge current density = 1.75 amps/sq in.; system weight = 86 lbs (9.7 WH/lb); and system volume = 1071 cu. in. (.78 WH/cu. in.). EPI is currently working on a development program to produce a bipolar silver-zinc battery design for NASA. The potential application would be to power electromechanical actuators for space launch vehicles.

  4. Routing to preserve energy in wireless networks

    NASA Astrophysics Data System (ADS)

    Block, Frederick J., IV

    Many applications for wireless radio networks require that some or all radios in the network rely on batteries as energy sources. In many cases, battery replacement is infeasible, expensive, or impossible. Communication protocols for such networks should be designed to preserve limited energy supplies. Because the choice of a route to a traffic sink influences how often radios must transmit and receive, poor route selection can quickly deplete the batteries of certain nodes. Previous work has shown that a network's lifetime can be extended by assigning higher routing costs to nodes with little remaining energy and nodes that must use high transmitter power to reach neighbor radios. Although using remaining energy levels in routing metrics can increase network lifetime, in practice, there may be significant error in a node's estimate of its battery level. The effect of battery level uncertainty on routing is examined. Routing metrics are presented that are designed to explicitly account for uncertainty in remaining energy. Simulation results using several statistical models for this uncertainty show that the proposed metrics perform well. In addition to knowledge of current battery levels, estimates of how quickly radios are consuming energy may be helpful in extending network lifetime. We present a family of routing metrics that incorporate a radio's rate of energy consumption. Simulation results show that the proposed family of metrics performs well under a variety of traffic models and network topologies. Route selection can also be complicated by time-varying link conditions. Radios may be subject to interference from other nearby communication systems, hostile jammers, and other, non-communication sources of noise. A route that first appears to have only a small cost may later require much greater energy expenditure when transmitting packets. Frequent route selection can help radios avoid using links with interference, but additional routing control messages increase energy consumption. We investigate the effects of time-varying interference on the lifetime of ad hoc networks. It is shown that there is a tradeoff between packet delay and node lifetime. We show that it is possible to design the system to perform well under a wide variety of channel conditions.

  5. Bipolar Ag-Zn battery

    NASA Technical Reports Server (NTRS)

    Giltner, L. John

    1994-01-01

    The silver-zinc (AgZn) battery system has been unique in its ability to safely satisfy high power demand applications with low mass and volume. However, a new generation of defense, aerospace, and commercial applications will impose even higher power demands. These new power demands can be satisfied by the development of a bipolar battery design. In this configuration the power consuming, interelectrode current conductors are eliminated while the current is then conducted via the large cross-section electrode substrate. Negative and positive active materials are applied to opposite sides of a solid silver foil substrate. In addition to reducing the weight and volume required for a specified power level, the output voltage performance is also improved as follows. Reduced weight through: elimination of the plastic cell container; elimination of plate leads and intercell connector; and elimination of internal plate current collector. Increased voltage through: elimination of resistance of current collector; elimination of resistance of plate lead; and elimination of resistance of intercell connector. EPI worked previously on development of a secondary bipolar silver zinc battery. This development demonstrated the electrical capability of the system and manufacturing techniques. One difficulty with this development was mechanical problems with the seals. However, recent improvements in plastics and adhesives should eliminate the major problem of maintaining a seal around the periphery of the bipolar module. The seal problem is not as significant for a primary battery application or for a requirement for only a few discharge cycles. A second difficulty encountered was with activation (introducing electrolyte into the cell) and with venting gas from the cell without loss of electrolyte. During previous work, the following projections for energy density were made from test data for a high power system which demonstrated in excess of 50 discharge/charge cycles. Projected system power = 100 kilowatts; discharge time = 30 seconds; discharge current density = 1.75 amps/sq in.; system weight = 86 lbs (9.7 WH/lb); and system volume = 1071 cu. in. (.78 WH/cu. in.). EPI is currently working on a development program to produce a bipolar silver-zinc battery design for NASA. The potential application would be to power electromechanical actuators for space launch vehicles.

  6. Symposium Report. Battery materials : amorphous carbons and polymer electrolytes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald, R. E., II; Chemical Engineering

    2000-01-01

    The motivation for research in battery materials lies in the expanding consumer demand for compact, high-energy density power sources for portable electronic devices, and environmental issues such as global warming and air pollution that have provided the impetus for mass transportation by electric vehicles. The Battery Materials Symposium, chaired by Jacqueline Johnson (ANL), focused on three topics: the structure and electrochemical properties of new and existing electrolytes, devices for fabricating and investigating thin films, and large-scale computer simulations. The symposium opened with a presentation by the author on a recently invented device for in situ investigations of batteries using nuclearmore » magnetic resonance. Joop Schoonman (Delft University) described several methods for preparing and analyzing thin films made of solid electrolytes. These methods included chemical vapor deposition, electrostatic spray deposition and the Solufill process. Aiichiro Nakano discussed large-scale (10 million to 2 billion atoms) computer simulations of polymer and ceramic systems. An overview was given of a DOE Cooperative Research 2000 program, in the initial stages, that was set up to pursue these atomistic simulations. Doug MacFarlane (Monash University) described conductive plastic crystals based on pyrrolidinium imides. Joseph Pluth (U of Chicago) presented his recent crystallographic studies of Pb compounds found in the ubiquitous lead-acid battery. He showed the structures of tribasic lead sulfate and tetrabasic lead sulfate. Austen Angell (Arizona State Univ.) discussed the general problem of electrolyte polarization in Li-ion battery systems with cation transference numbers less than unity. Steven Greenbaum (Hunter College) provided an introduction of NMR interactions that are useful for investigations of lithium-ion battery materials. Analysis by NMR is nuclear specific, probes local environments and dynamics, and is non-destructive. He discussed {sup 7}Li NMR results of a solid electrolyte system composed of LiI dissolved in PEO. Work on oriented polymer electrolyte samples is ongoing. Yuri Andreev (U. of St. Andrews) gave a historical overview of a number of crystal structures of polymer electrolytes solved using XRD in the group of Peter Bruce. The last speaker of the symposium was Peter Papanek (U. of Pennsylvania). He spoke about various disordered carbon materials used as anodes in Li-ion batteries. He also described his inelastic neutron scattering studies of carbon materials derived from pyrolyzed epoxy novolak resins. His data supports the graphene sheet model and is also consistent with calculations of interior and edge carbon atoms in pyrene that chemically reacted with lithium.« less

  7. Cranberry juice consumption lowers markers of cardiometabolic risk, including blood pressure and circulating C-reactive protein, triglyceride, and glucose concentrations in adults.

    PubMed

    Novotny, Janet A; Baer, David J; Khoo, Christina; Gebauer, Sarah K; Charron, Craig S

    2015-06-01

    Cardiometabolic risk is the risk of cardiovascular disease (CVD), diabetes, or stroke, which are leading causes of mortality and morbidity worldwide. The objective of this study was to determine the potential of low-calorie cranberry juice (LCCJ) to lower cardiometabolic risk. A double-blind, placebo-controlled, parallel-arm study was conducted with controlled diets. Thirty women and 26 men (mean baseline characteristics: 50 y; weight, 79 kg; body mass index, 28 kg/m(2)) completed an 8-wk intervention with LCCJ or a flavor/color/energy-matched placebo beverage. Twice daily volunteers consumed 240 mL of LCCJ or the placebo beverage, containing 173 or 62 mg of phenolic compounds and 6.5 or 7.5 g of total sugar per 240-mL serving, respectively. Fasting serum triglycerides (TGs) were lower after consuming LCCJ and demonstrated a treatment × baseline interaction such that the participants with higher baseline TG concentrations were more likely to experience a larger treatment effect (1.15 ± 0.04 mmol/L vs. 1.25 ± 0.04 mmol/L, respectively; P = 0.027). Serum C-reactive protein (CRP) was lower for individuals consuming LCCJ than for individuals consuming the placebo beverage [ln transformed values of 0.522 ± 0.115 ln(mg/L) vs. 0.997 ± 0.120 ln(mg/L), P = 0.0054, respectively, and equivalent to 1.69 mg/L vs. 2.71 mg/L back-transformed]. LCCJ lowered diastolic blood pressure (BP) compared with the placebo beverage (69.2 ± 0.8 mm Hg for LCCJ vs. 71.6 ± 0.8 mm Hg for placebo; P = 0.048). Fasting plasma glucose was lower (P = 0.03) in the LCCJ group (5.32 ± 0.03 mmol/L) than in the placebo group (5.42 ± 0.03 mmol/L), and LCCJ had a beneficial effect on homeostasis model assessment of insulin resistance for participants with high baseline values (P = 0.035). LCCJ can improve several risk factors of CVD in adults, including circulating TGs, CRP, and glucose, insulin resistance, and diastolic BP. This trial was registered at clinicaltrials.gov as NCT01295684. © 2015 American Society for Nutrition.

  8. Integrating Solar into Florida's Power System: Potential Roles for Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine T; Stoll, Brady; Novacheck, Joshua E

    Although Florida has very little photovoltaic (PV) generation to date, it is reasonable to expect significant deployment in the 2020s under a variety of future policy and cost scenarios. To understand these potential futures, we model Florida Reliability Coordinating Council operations in 2026 over a wide range of PV penetrations with various combinations of battery storage capacity, demand response, and increased operational flexibility. By calculating the value of PV under a wide range of conditions, we find that at least 5%, and more likely 10-24%, PV penetration is cost competitive in Florida within the next decade with baseline flexibility andmore » all but the most pessimistic of assumptions. For high PV penetrations, we demonstrate Florida's electrical net-load variability (duck curve) challenges, the associated reduction of PV's value to the system, and the ability of flexibility options-in particular energy-shifting resources-to preserve value and increase the economic carrying capacity of PV. A high level of demand response boosts the economic carrying capacity of PV by up to 0.5-2 percentage points, which is comparable to the impact of deploying 1 GW of battery storage. Adding 4 GW of battery storage expands the economic carrying capacity of PV by up to 6 percentage points.« less

  9. Talent in Female Gymnastics: a Survival Analysis Based upon Performance Characteristics.

    PubMed

    Pion, J; Lenoir, M; Vandorpe, B; Segers, V

    2015-11-01

    This study investigated the link between the anthropometric, physical and motor characteristics assessed during talent identification and dropout in young female gymnasts. 3 cohorts of female gymnasts (n=243; 6-9 years) completed a test battery for talent identification. Performance-levels were monitored over 5 years of competition. Kaplan-Meier and Cox Proportional Hazards analyses were conducted to determine the survival rate and the characteristics that influence dropout respectively. Kaplan-Meier analysis indicated that only 18% of the female gymnasts that passed the baseline talent identification test survived at the highest competition level 5 years later. The Cox Proportional Hazards Model indicated that gymnasts with a score in the best quartile for a specific characteristic significantly increased chances of survival by 45-129%. These characteristics being: basic motor skills (129%), shoulder strength (96%), leg strength (53%) and 3 gross motor coordination items (45-73%). These results suggest that tests batteries commonly used for talent identification in young female gymnasts may also provide valuable insights into future dropout. Therefore, multidimensional test batteries deserve a prominent place in the selection process. The individual test results should encourage trainers to invest in an early development of basic physical and motor characteristics to prevent attrition. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Fast charging of lithium-ion batteries at all temperatures.

    PubMed

    Yang, Xiao-Guang; Zhang, Guangsheng; Ge, Shanhai; Wang, Chao-Yang

    2018-06-25

    Fast charging is a key enabler of mainstream adoption of electric vehicles (EVs). None of today's EVs can withstand fast charging in cold or even cool temperatures due to the risk of lithium plating. Efforts to enable fast charging are hampered by the trade-off nature of a lithium-ion battery: Improving low-temperature fast charging capability usually comes with sacrificing cell durability. Here, we present a controllable cell structure to break this trade-off and enable lithium plating-free (LPF) fast charging. Further, the LPF cell gives rise to a unified charging practice independent of ambient temperature, offering a platform for the development of battery materials without temperature restrictions. We demonstrate a 9.5 Ah 170 Wh/kg LPF cell that can be charged to 80% state of charge in 15 min even at -50 °C (beyond cell operation limit). Further, the LPF cell sustains 4,500 cycles of 3.5-C charging in 0 °C with <20% capacity loss, which is a 90× boost of life compared with a baseline conventional cell, and equivalent to >12 y and >280,000 miles of EV lifetime under this extreme usage condition, i.e., 3.5-C or 15-min fast charging at freezing temperatures.

  11. Microbial battery for efficient energy recovery.

    PubMed

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power.

  12. Screen printed passive components for flexible power electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-10-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  13. Screen printed passive components for flexible power electronics

    PubMed Central

    Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.

    2015-01-01

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331

  14. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Science Platform

    NASA Technical Reports Server (NTRS)

    Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.

    2010-01-01

    Issue: extended duration lunar science platforms, using solar/battery or radioisotope power, require thermal switching systems that: a) Provide efficient cooling during the 15-earth-day 390 K lunar day; b) Consume minimal power during the 15-earth-day 100 K lunar night. Objective: carry out an analytical study of thermal switching systems that can meet the thermal requirements of: a) International Lunar Network (ILN) anchor node mission - primary focus; b) Other missions such as polar crater landers. ILN Anchor Nodes: network of geophysical science platforms to better understand the interior structure/composition of the moon: a) Rationale: no data since Apollo seismic stations ceased operation in 1977; b) Anchor Nodes: small, low-power, long-life (6-yr) landers with seismographic and a few other science instruments (see next chart); c) WEB: warm electronics box houses ILN anchor node electronics/batteries. Technology Need: thermal switching system that will keep the WEB cool during the lunar day and warm during the lunar night.

  15. Beads-Milling of Waste Si Sawdust into High-Performance Nanoflakes for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kasukabe, Takatoshi; Nishihara, Hirotomo; Kimura, Katsuya; Matsumoto, Taketoshi; Kobayashi, Hikaru; Okai, Makoto; Kyotani, Takashi

    2017-02-01

    Nowadays, ca. 176,640 tons/year of silicon (Si) (>4N) is manufactured for Si wafers used for semiconductor industry. The production of the highly pure Si wafers inevitably includes very high-temperature steps at 1400-2000 °C, which is energy-consuming and environmentally unfriendly. Inefficiently, ca. 45-55% of such costly Si is lost simply as sawdust in the cutting process. In this work, we develop a cost-effective way to recycle Si sawdust as a high-performance anode material for lithium-ion batteries. By a beads-milling process, nanoflakes with extremely small thickness (15-17 nm) and large diameter (0.2-1 μm) are obtained. The nanoflake framework is transformed into a high-performance porous structure, named wrinkled structure, through a self-organization induced by lithiation/delithiation cycling. Under capacity restriction up to 1200 mAh g-1, the best sample can retain the constant capacity over 800 cycles with a reasonably high coulombic efficiency (98-99.8%).

  16. Screen printed passive components for flexible power electronics.

    PubMed

    Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C

    2015-10-30

    Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.

  17. A direct methanol fuel cell system to power a humanoid robot

    NASA Astrophysics Data System (ADS)

    Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong

    In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.

  18. Rational material design for ultrafast rechargeable lithium-ion batteries.

    PubMed

    Tang, Yuxin; Zhang, Yanyan; Li, Wenlong; Ma, Bing; Chen, Xiaodong

    2015-10-07

    Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future.

  19. Microbial battery for efficient energy recovery

    PubMed Central

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S.; Cui, Yi

    2013-01-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs—a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800

  20. Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity.

    PubMed

    Reay, Jonathon L; Kennedy, David O; Scholey, Andrew B

    2005-07-01

    Single doses of the traditional herbal treatment Panax ginseng have recently been shown to elicit cognitive improvements in healthy young volunteers. The mechanisms by which ginseng improves cognitive performance are not known. However, they may be related to the glycaemic properties of some Panax species. Using a double-blind, placebo-controlled, balanced crossover design, 30 healthy young adults completed a 10 min test battery at baseline, and then six times in immediate succession commencing 60 min after the day's treatment (placebo, 200mg G115 or 400mg G115). The 10 min battery comprised a Serial Threes subtraction task (2 min); a Serial Sevens task (2 min); a Rapid Visual Information Processing task (5 min); then a 'mental fatigue' visual analogue scale. Blood glucose was measured prior to each day's treatment, and before, during and after the post-dose completions of the battery. Both the 200mg and 400mg treatments led to significant reductions in blood glucose levels at all three post-treatment measurements (p 0.005 in all cases). The most notable behavioural effects were associated with 200mg of ginseng and included significantly improved Serial Sevens subtraction task performance and significantly reduced subjective mental fatigue throughout all (with the exception of one time point in each case) of the post-dose completions of the 10 min battery (p 0.05). Overall these data suggest that Panax ginseng can improve performance and subjective feelings of mental fatigue during sustained mental activity. This effect may be related to the acute gluco-regulatory properties of the extract.

  1. Analysis, operation and maintenance of a fuel cell/battery series-hybrid bus for urban transit applications

    NASA Astrophysics Data System (ADS)

    Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.

    The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.

  2. Hopelessness as a Predictor of Suicide Ideation in Depressed Male and Female Adolescent Youth.

    PubMed

    Wolfe, Kristin L; Nakonezny, Paul A; Owen, Victoria J; Rial, Katherine V; Moorehead, Alexandra P; Kennard, Beth D; Emslie, Graham J

    2017-12-21

    We examined hopelessness as a predictor of suicide ideation in depressed youth after acute medication treatment. A total of 158 depressed adolescents were administered the Children's Depression Rating Scale-Revised (CDRS-R) and Columbia Suicide Severity Rating Scale (C-SSRS) as part of a larger battery at baseline and at weekly visits across 6 weeks of acute fluoxetine treatment. The Beck Hopelessness Scale (BHS) was administered at baseline and week 6. A negative binomial regression model via a generalized estimating equation analysis of repeated measures was used to estimate suicide ideation over the 6 weeks of acute treatment from baseline measure of hopelessness. Depression severity and gender were included as covariates in the model. The negative binomial analysis was also conducted separately for the sample of males and females (in a gender-stratified analysis). Mean CDRS-R total scores were 60.30 ± 8.93 at baseline and 34.65 ± 10.41 at week 6. Mean baseline and week 6 BHS scores were 9.57 ± 5.51 and 5.59 ± 5.38, respectively. Per the C-SSRS, 43.04% and 83.54% reported having no suicide ideation at baseline and at week 6, respectively. The analyses revealed that baseline hopelessness was positively related to suicide ideation over treatment (p = .0027), independent of changes in depression severity. This significant finding persisted only for females (p = .0024). These results indicate the importance of early identification of hopelessness. © 2017 The American Association of Suicidology.

  3. Foldable, High Energy Density Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of CNMs (0.7 mg/cm2) as compared to metallic foils (5-10 mg/cm2). We show that the energy density of the fully foldable battery with CMF current collectors can be up to 2-fold higher than conventional LIBs at realistic mass loading (5mg/cm2) of the electrode materials. Therefore, not only does the CMF impart shape conformability, it also significantly boosts the energy density of the device by removing the dead weight of the batteries. Silicon (Si) shows enormous potential as the next generation anode material in Lithium-ion batteries due to its high energy denisty. However, Si is highly brittle, and in an effort to prevent Si from fracturing, the research community has migrated from the use of Si films to Si nanoparticle based electrodes. Such a strategy significantly reduces volumetric energy density due to the porosity of Si nanoparticle electrodes. In Chapters 4 and 5, we propose two solutions to incorporate Si films in foldable batteries. We show that contrary to conventional wisdom, Si films can be stabilized by two strategies: (a) anchoring the Si films to a carbon nanotube macrofilm (CNM) current-collector and (b) draping the films with a graphene monolayer. After electrochemical cycling, the graphene-coated Si films on CNM resembled a tough mud-cracked surface in which the graphene capping layer suppresses delamination and stabilizes the solid electrolyte interface by creating a slippery interface and reducing the stress transfer across the interface. The graphene-draped Si films on CNM exhibit long cycle life (> 1000 charge/discharge steps) with an average specific capacity of 806 mAh/g. The volumetric capacity averaged over 1000 cycles of charge/discharge is 2821 mAh/cm3 which is 2 to 5 times higher than what is reported in the literature for Si nanoparticle based electrodes. The graphene-draped Si anode could also be successfully cycled against commercial cathodes in a full-cell configuration. In Chapter 5, an alternate strategy has been explored to stabilize Si films by utilizing the role of a slippery interface in stabilizing Si. In this study, graphene films were used as a buffer layer on which Si films were deposited. Here, instead of a highly elastic matrix (as seen in Chapter 4), a slippery interface was used to stabilize Si. It was observed that due to the slippery interface, the Si films were stable and could retain a capacity of 900 mAh/g. These Si films also possessed a volumetric capacity of 5462 mAh/cm3. On the other hand, Si films with a rigid interface were completely eviscerated with a capacity retention of only 180 mAh/g. Thus, this thesis presents new ideas to achieve foldable high energy density Lithium Ion Battery. We also hope that this thesis serves as a platform for researchers to further explore this field.

  4. Effects of caffeine in overnight-withdrawn consumers and non-consumers.

    PubMed

    Smith, Andrew P; Christopher, Gary; Sutherland, David

    2006-01-01

    A number of recent studies have suggested that caffeine only improves mood and cognitive performance in regular caffeine consumers who are caffeine withdrawn at test (the "withdrawal hypothesis"). This can be tested by investigating the effects of caffeine in non-consumers of caffeine. To compare the effects of 2 mg/kg caffeine on mood and cognitive performance in overnight-withdrawn consumers and non-consumers of caffeine. Twenty-five overnight-withdrawn consumers and twenty-five non-consumers of caffeine were tested in a within-subjects design where they were given a drink containing 2 mg/kg caffeine on one test day and placebo on another test day. The order of conditions (caffeine/placebo) was counterbalanced. Mood and performance measures were taken before and after each drink, and pre-drink measures were used as covariates in the analysis of post-drink measures. Analysis of baseline scores revealed no significant effects of caffeine withdrawal. Caffeine generally improved mood and cognitive performance, relative to placebo, in both subjects groups. These effects did not differ significantly between groups apart from three measures (fewer lapses of attention and ratings of alertness and anxiety) where the effects of caffeine were larger in the non-consumers. The present study revealed no negative effects of caffeine withdrawal. Beneficial effects of caffeine were observed in both withdrawn consumers and in non-consumers. Therefore, the withdrawal hypothesis is not an adequate explanation for the effects of caffeine.

  5. Is Anyone Paying Attention to Physician Report Cards? The Impact of Increased Availability on Consumers' Awareness and Use of Physician Quality Information.

    PubMed

    Shi, Yunfeng; Scanlon, Dennis P; Bhandari, Neeraj; Christianson, Jon B

    2017-08-01

    To determine if the release of health care report cards focused on physician practice quality measures leads to changes in consumers' awareness and use of this information. Data from two rounds of a survey of the chronically ill adult population conducted in 14 regions across the United States, combined with longitudinal information from a public reporting tracking database. Both data were collected as part of the evaluation for Aligning Forces for Quality, a nationwide quality improvement initiative funded by the Robert Wood Johnson Foundation. Using a longitudinal design and an individual-level fixed effects modeling approach, we estimated the impact of community public reporting efforts, measured by the availability and applicability of physician quality reports, on consumers' awareness and use of physician quality information (PQI). The baseline level of awareness was 12.6 percent in our study sample, drawn from the general population of chronically ill adults. Among those who were not aware of PQI at the baseline, when PQI became available in their communities for the first time, along with quality measures that are applicable to their specific chronic conditions, the likelihood of PQI awareness increased by 3.8 percentage points. For the same group, we also find similar increases in the uses of PQI linked to newly available physician report cards, although the magnitudes are smaller, between 2 and 3 percentage points. Specific contents of physician report cards can be an important factor in consumers' awareness and use of PQI. Policies to improve awareness and use of PQI may consider how to customize quality report cards and target specific groups of consumers in dissemination. © Health Research and Educational Trust.

  6. Comparison of subjective wellbeing in substance users and the parents or partners of substance users.

    PubMed

    Tait, Robert J

    2018-04-01

    There is growing interest in the impact of substance use on both the individual consumer's subjective wellbeing (SWB) and the reduced SWB of those closely connected to him or her. The study aimed to compare SWB among substance users ('consumers') and the parents or partners affected by another's substance use, and to evaluate the effect of counselling on changed SWB to 6 months. The study used longitudinal data from a not-for-profit treatment service based in Perth, Australia. Subjective wellbeing was assessed with the Personal Wellbeing Index (PWI) at baseline and 6 months. Data were compared to national norms (mean 75.97) with one sample t tests. Change in PWI scores was assessed with generalised linear mixed models, controlling for age, gender, group (consumers versus parents or partners), psychological distress (Kessler-10) and social connectedness (Lubben). Of 220 participants, 136 (62%) were consumers and 84 (38%) were parents or partners. At 6 months 123 (56%) were re-interviewed. At baseline, both consumers (mean 53.7) and parents or partners (mean 66.1) had significantly lower PWI scores than national norms. At 6 months, only the substance users' PWI scores remained significantly lower (mean 67.8). Subjective wellbeing significantly increased with time (β = 5.52; 95% confidence interval 3.15, 7.90), with no significant time by group interaction. Both groups showed significant decrements in SWB compared with the general population but with improvements over the study period. However, the lack of a control group prevents definitive assertions on causality for improved SWB. © 2017 Australasian Professional Society on Alcohol and other Drugs.

  7. Realizing the electric-vehicle revolution

    NASA Astrophysics Data System (ADS)

    Tran, Martino; Banister, David; Bishop, Justin D. K.; McCulloch, Malcolm D.

    2012-05-01

    Full battery electric vehicles (BEVs) have become an important policy option to mitigate climate change, but there are major uncertainties in the scale and timing of market diffusion. Although there has been substantial work showing the potential energy and climate benefits of BEVs, demand-side factors, such as consumer behaviour, are less recognized in the debate. We show the importance of assessing BEV diffusion from an integrated perspective, focusing on key interactions between technology and behaviour across different scales, including power-system demand, charging infrastructure, vehicle performance, driving patterns and individual adoption behaviour.

  8. Clinical and neurocognitive course in early-onset psychosis: a longitudinal study of adolescents with schizophrenia-spectrum disorders*

    PubMed Central

    Wozniak, Jeffrey R.; Block, Erin E.; White, Tonya; Jensen, Jonathan B.; Schulz, S. Charles

    2017-01-01

    Aim Adolescents with psychotic disorders show deficits in IQ, attention, learning and memory, executive functioning, and processing speed that are related to important clinical variables including negative symptoms, adaptive functioning and academics. Previous studies have reported relatively consistent deficits with varying relationships to illness status and symptoms. The goals of this study were to examine these relationships in a larger sample at baseline, and also to examine the longitudinal course of these deficits in a smaller subset of adolescents. Method Thirty-six subjects, aged 10 to 17 years, were included at baseline. All had Diagnostic and Statistical Manual-Fourth Edition diagnoses of schizophrenia, schizoaffective disorder, schizophreniform disorder and psychosis – not otherwise specified, as determined by Kiddie-Schedule for Affective Disorders and Schizophrenia for School-Age Children structured interviews. Patients were administered a neuropsychological battery, and Positive and Negative Syndrome Scale ratings were completed at baseline and again at 1 year (n = 14). Most participants were inpatients at baseline, and 13 of 14were on atypical antipsychotic medication during both sessions. Results At baseline, the patients demonstrated impairments in working memory, processing speed, executive function and verbal learning. No significant cognitive change was detected at 1-year follow-up. In contrast, clinical symptoms were variable across 1 year, with an improvement in positive symptoms at 1 year. No relationships between clinical and cognitive symptoms were observed, with the exception of baseline IQ predicting negative symptoms at 1 year. Conclusions Young patients with schizophrenia-spectrum disorders displayed neurocognitive impairments at baseline. Despite measurable fluctuations in clinical symptoms over the year, no significant changes were measured in cognition. Lower IQ at baseline was predictive of more negative symptoms at 1 year. PMID:21352150

  9. Electricity market design for the prosumer era

    NASA Astrophysics Data System (ADS)

    Parag, Yael; Sovacool, Benjamin K.

    2016-04-01

    Prosumers are agents that both consume and produce energy. With the growth in small and medium-sized agents using solar photovoltaic panels, smart meters, vehicle-to-grid electric automobiles, home batteries and other ‘smart’ devices, prosuming offers the potential for consumers and vehicle owners to re-evaluate their energy practices. As the number of prosumers increases, the electric utility sector of today is likely to undergo significant changes over the coming decades, offering possibilities for greening of the system, but also bringing many unknowns and risks that need to be identified and managed. To develop strategies for the future, policymakers and planners need knowledge of how prosumers could be integrated effectively and efficiently into competitive electricity markets. Here we identify and discuss three promising potential prosumer markets related to prosumer grid integration, peer-to-peer models and prosumer community groups. We also caution against optimism by laying out a series of caveats and complexities.

  10. Wearable ear EEG for brain interfacing

    NASA Astrophysics Data System (ADS)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

  11. Higher-protein diets improve indexes of sleep in energy-restricted overweight and obese adults: results from 2 randomized controlled trials.

    PubMed

    Zhou, Jing; Kim, Jung Eun; Armstrong, Cheryl Lh; Chen, Ningning; Campbell, Wayne W

    2016-03-01

    Limited and inconsistent research findings exist about the effect of dietary protein intake on indexes of sleep. We assessed the effect of protein intake during dietary energy restriction on indexes of sleep in overweight and obese adults in 2 randomized, controlled feeding studies. For study 1, 14 participants [3 men and 11 women; mean ± SE age: 56 ± 3 y; body mass index (BMI; in kg/m(2)): 30.9 ± 0.6] consumed energy-restricted diets (a 750-kcal/d deficit) with either beef and pork (BP; n = 5) or soy and legume (SL; n = 9) as the main protein sources for 3 consecutive 4-wk periods with 10% (control), 20%, or 30% of total energy from protein (random order). At baseline and the end of each period, the global sleep score (GSS) was assessed with the use of the Pittsburgh Sleep Quality Index (PSQI) questionnaire. For study 2, 44 participants (12 men and 32 women; age: 52 ± 1 y; BMI: 31.4 ± 0.5) consumed a 3-wk baseline energy-balance diet with 0.8 g protein · kg baseline body mass(-1) · d(-1). Then, study 2 subjects consumed either a normal-protein [NP (control); n = 23] or a high-protein (HP; n = 21) (0.8 compared with 1.5 g · kg(-1) · d(-1), respectively) energy-restricted diet (a 750-kcal/d deficit) for 16 wk. The PSQI was administered during baseline week 3 and intervention weeks 4, 8, 12, and 16. GSSs ranged from 0 to 21 arbitrary units (au), with a higher value representing a worse GSS during the preceding month. In study 1, we showed that a higher protein quantity improved GSSs independent of the protein source. The GSS was higher (P < 0.05) when 10% (6.0 ± 0.4 au) compared with 20% (5.0 ± 0.4 au) protein was consumed, with 30% protein (5.4 ± 0.6 au) intermediate. In study 2, at baseline, the GSS was not different between NP (5.2 ± 0.5 au) and HP (5.4 ± 0.5 au) groups. Over time, the GSS was unchanged for the NP group and improved for the HP group (P-group-by-time interaction < 0.05). After intervention (week 16), GSSs for NP and HP groups were 5.9 ± 0.5 and 4.0 ± 0.6 au, respectively (P < 0.01). The consumption of a greater proportion of energy from protein while dieting may improve sleep in overweight and obese adults. This trial was registered at clinicaltrials.gov as NCT01005563 (study 1) and NCT01692860 (study 2). © 2016 American Society for Nutrition.

  12. Painful Medical Conditions and Alcohol Use: A Prospective Study Among Older Adults

    PubMed Central

    Brennan, Penny L.; Schutte, Kathleen K.; SooHoo, Sonya; Moos, Rudolf H.

    2011-01-01

    Objective To determine associations between older adults’ baseline painful medical conditions and their 10-year drinking behavior, and whether personal and life context characteristics moderate these associations. Method At baseline, then 1, 4, and 10 years later, late-middle-aged community residents (M=61 years; n=1,291) were surveyed regarding their painful medical conditions, use of alcohol, and personal and life context characteristics. Latent growth modeling was used to determine concurrent and prospective relationships between painful medical conditions and 10-year drinking behavior, and moderating effects of personal and life context characteristics on these relationships. Results At baseline, individuals reporting more numerous painful medical conditions consumed alcohol less frequently, but had more frequent drinking problems, than did individuals with fewer such conditions. Being female and having more interpersonal social resources strengthened the association between painful medical conditions and less ethanol consumed. For men more so than women, more numerous painful medical conditions were associated with more frequent drinking problems. Baseline painful medical conditions alone had no prospective effect on 10-year change in drinking behavior, but being older and having more interpersonal social resources made it more likely that baseline painful medical conditions would predict decline over time in frequency of alcohol consumption and drinking problems. Conclusions Late-middle-aged individuals who have more numerous painful medical conditions reduce alcohol consumption but nonetheless remain at risk for more frequent drinking problems. Gender, age, and interpersonal social resources moderate the influence of painful medical conditions on late-life alcohol use. These results imply that older individuals with pain are at little immediate or long-term risk for increased alcohol consumption, but clinicians should remain alert to drinking problems among their older pain patients, especially men. PMID:21668742

  13. Effect of fructose and sucralose on flow-mediated vasodilatation in healthy, white European males.

    PubMed

    Memon, Muhammad Qasim; Simpson, Elizabeth Jane; Macdonald, Ian Andrew

    2014-07-01

    To assess how acute consumption of fructose affects flow-mediated dilatation in brachial artery. The randomised cross-over study was conducted at the University of Nottingham's Medical School, Nottingham, United Kingdom in July 2009. Ten healthy, white European males visited the laboratory twice, on separate mornings. On each visit, the volunteers consumed water (3 ml/kg bodyweight) and rested semi-supine on the bed. After 30 minutes, baseline diastolic brachial artery diameter and blood velocity was measured. At 60 minutes, blood velocity and five scans of brachial artery diameter were recorded before a blood pressure cuff was inflated on the forearm for 5 minutes and at 50-60-70-80 and 90 sec after cuff deflation. Fifteen minutes later, the volunteers consumed 500 ml of test-drink containing either fructose (0.75 g/kg bodyweight) or sucralose (sweetness-matched with fructose drink); 45 minutes later, baseline and flow-mediated dilatation was re-measured. Pre-drink and post-drink baseline values were similar on two occasions (p > 0.05). Brachial artery diameter increased (p < 0.05) by 7 +/- 3% pre-fructose and by 6.9 +/- 3% above baseline values post-fructose with no significant difference in these responses (p < 0.15). It increased (p < 0.05) by 5.9 +/- 3% above baseline before and by 6.7 +/- 2% (p < 0.01) after sucralose; a significant difference was noted in these flow-mediated dilatation responses (p < 0.02). Responses before and after sucralose were not different from those before and after fructose (p < 0.294). Acute ingestion of fructose or sucralose had no effect on flow-mediated dilatation measured at brachial artery.

  14. Behavior analysis in consumer affairs: Retail and consumer response to publicizing food price information

    PubMed Central

    Greene, Brandon F.; Rouse, Mark; Green, Richard B.; Clay, Connie

    1984-01-01

    A popular program among consumer action groups involves publicizing comparative food price information (CFPI) gathered from retail stores. Its significance is based on the assumption that publishing CFPI maximizes retail competition (i.e., moderates price levels or price increases) and occasions more frugal store selections among consumers. We tested these assumptions during a 2-year analysis. Specifically, we monitored the prices of two distinct market baskets in the supermarkets of two midwestern cities (target and contrast cities). Following a lengthy baseline, we published the prices of only one of the market baskets at stores in the target city in the local newspaper on five different occasions. The results suggested that reductions in price inflation occurred for both market baskets at the independently operated target stores. The corporate chain stores were not similarly affected. In addition, surveys indicated that many consumers used the CFPI as a basis for store selection. Finally, the analysis included a discussion of the politics, economics, and future of CFPI programs. PMID:16795672

  15. Study of Technological Improvements to Optimize Truck Configurations for Fuel Economy

    DOT National Transportation Integrated Search

    1975-09-01

    The truck types that accounted for most of the fuel consumed were identified and modeled by computer analysis. Baseline fuel consumption was calculated for the major truck types over specific duty cycles. Design improvements in the truck were then mo...

  16. Range Extension Opportunities While Heating a Battery Electric Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lustbader, Jason A; Rugh, John P; Titov, Eugene V

    The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination (1). The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermalmore » storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 degrees C to -18 degrees C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.« less

  17. King County Metro Battery Electric Bus Demonstration: Preliminary Project Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Federal Transit Administration (FTA) funds a variety of research projects that support the commercialization of zero-emission bus technology. To evaluate projects funded through these programs, FTA has enlisted the help of the National Renewable Energy Laboratory (NREL) to conduct third-party evaluations of the technologies deployed under the FTA programs. NREL works with the selected agencies to evaluate the performance of the zero-emission buses compared to baseline conventional buses in similar service. The evaluation effort will advance the knowledge base of zero-emission technologies in transit bus applications and provide 'lessons learned' to aid other fleets in incrementally introducing nextmore » generation zero-emission buses into their operations. This report provides preliminary performance evaluation results from a demonstration of three zero-emission battery electric buses at King County Metro in King County, Washington. NREL developed this preliminary results report to quickly disseminate evaluation results to stakeholders. Detailed evaluation results will be published in future reports.« less

  18. Fast formation cycling for lithium ion batteries

    DOE PAGES

    An, Seong Jin; Li, Jianlin; Du, Zhijia; ...

    2017-01-09

    The formation process for lithium ion batteries typically takes several days or more, and it is necessary for providing a stable solid electrolyte interphase on the anode (at low potentials vs. Li/Li +) for preventing irreversible consumption of electrolyte and lithium ions. An analogous layer known as the cathode electrolyte interphase layer forms at the cathode at high potentials vs. Li/Li +. However, several days, or even up to a week, of these processes result in either lower LIB production rates or a prohibitively large size of charging-discharging equipment and space (i.e. excessive capital cost). In this study, a fastmore » and effective electrolyte interphase formation protocol is proposed and compared with an Oak Ridge National Laboratory baseline protocol. Graphite, NMC 532, and 1.2 M LiPF 6 in ethylene carbonate: diethyl carbonate were used as anodes, cathodes, and electrolytes, respectively. Finally, results from electrochemical impedance spectroscopy show the new protocol reduced surface film (electrolyte interphase) resistances, and 1300 aging cycles show an improvement in capacity retention.« less

  19. Practice Effects on Story Memory and List Learning Tests in the Neuropsychological Assessment of Older Adults

    PubMed Central

    Gurnani, Ashita S.; Saurman, Jessica L.; Chapman, Kimberly R.; Steinberg, Eric G.; Martin, Brett; Chaisson, Christine E.; Mez, Jesse; Tripodis, Yorghos; Stern, Robert A.

    2016-01-01

    Two of the most commonly used methods to assess memory functioning in studies of cognitive aging and dementia are story memory and list learning tests. We hypothesized that the most commonly used story memory test, Wechsler's Logical Memory, would generate more pronounced practice effects than a well validated but less common list learning test, the Neuropsychological Assessment Battery (NAB) List Learning test. Two hundred eighty-seven older adults, ages 51 to 100 at baseline, completed both tests as part of a larger neuropsychological test battery on an annual basis. Up to five years of recall scores from participants who were diagnosed as cognitively normal (n = 96) or with mild cognitive impairment (MCI; n = 72) or Alzheimer's disease (AD; n = 121) at their most recent visit were analyzed with linear mixed effects regression to examine the interaction between the type of test and the number of times exposed to the test. Other variables, including age at baseline, sex, education, race, time (years) since baseline, and clinical diagnosis were also entered as fixed effects predictor variables. The results indicated that both tests produced significant practice effects in controls and MCI participants; in contrast, participants with AD declined or remained stable. However, for the delayed—but not the immediate—recall condition, Logical Memory generated more pronounced practice effects than NAB List Learning (b = 0.16, p < .01 for controls). These differential practice effects were moderated by clinical diagnosis, such that controls and MCI participants—but not participants with AD—improved more on Logical Memory delayed recall than on delayed NAB List Learning delayed recall over five annual assessments. Because the Logical Memory test is ubiquitous in cognitive aging and neurodegenerative disease research, its tendency to produce marked practice effects—especially on the delayed recall condition—suggests a threat to its validity as a measure of new learning, an essential construct for dementia diagnosis. PMID:27711147

  20. A quick aphasia battery for efficient, reliable, and multidimensional assessment of language function.

    PubMed

    Wilson, Stephen M; Eriksson, Dana K; Schneck, Sarah M; Lucanie, Jillian M

    2018-01-01

    This paper describes a quick aphasia battery (QAB) that aims to provide a reliable and multidimensional assessment of language function in about a quarter of an hour, bridging the gap between comprehensive batteries that are time-consuming to administer, and rapid screening instruments that provide limited detail regarding individual profiles of deficits. The QAB is made up of eight subtests, each comprising sets of items that probe different language domains, vary in difficulty, and are scored with a graded system to maximize the informativeness of each item. From the eight subtests, eight summary measures are derived, which constitute a multidimensional profile of language function, quantifying strengths and weaknesses across core language domains. The QAB was administered to 28 individuals with acute stroke and aphasia, 25 individuals with acute stroke but no aphasia, 16 individuals with chronic post-stroke aphasia, and 14 healthy controls. The patients with chronic post-stroke aphasia were tested 3 times each and scored independently by 2 raters to establish test-retest and inter-rater reliability. The Western Aphasia Battery (WAB) was also administered to these patients to assess concurrent validity. We found that all QAB summary measures were sensitive to aphasic deficits in the two groups with aphasia. All measures showed good or excellent test-retest reliability (overall summary measure: intraclass correlation coefficient (ICC) = 0.98), and excellent inter-rater reliability (overall summary measure: ICC = 0.99). Sensitivity and specificity for diagnosis of aphasia (relative to clinical impression) were 0.91 and 0.95 respectively. All QAB measures were highly correlated with corresponding WAB measures where available. Individual patients showed distinct profiles of spared and impaired function across different language domains. In sum, the QAB efficiently and reliably characterized individual profiles of language deficits.

  1. A quick aphasia battery for efficient, reliable, and multidimensional assessment of language function

    PubMed Central

    Eriksson, Dana K.; Schneck, Sarah M.; Lucanie, Jillian M.

    2018-01-01

    This paper describes a quick aphasia battery (QAB) that aims to provide a reliable and multidimensional assessment of language function in about a quarter of an hour, bridging the gap between comprehensive batteries that are time-consuming to administer, and rapid screening instruments that provide limited detail regarding individual profiles of deficits. The QAB is made up of eight subtests, each comprising sets of items that probe different language domains, vary in difficulty, and are scored with a graded system to maximize the informativeness of each item. From the eight subtests, eight summary measures are derived, which constitute a multidimensional profile of language function, quantifying strengths and weaknesses across core language domains. The QAB was administered to 28 individuals with acute stroke and aphasia, 25 individuals with acute stroke but no aphasia, 16 individuals with chronic post-stroke aphasia, and 14 healthy controls. The patients with chronic post-stroke aphasia were tested 3 times each and scored independently by 2 raters to establish test-retest and inter-rater reliability. The Western Aphasia Battery (WAB) was also administered to these patients to assess concurrent validity. We found that all QAB summary measures were sensitive to aphasic deficits in the two groups with aphasia. All measures showed good or excellent test-retest reliability (overall summary measure: intraclass correlation coefficient (ICC) = 0.98), and excellent inter-rater reliability (overall summary measure: ICC = 0.99). Sensitivity and specificity for diagnosis of aphasia (relative to clinical impression) were 0.91 and 0.95 respectively. All QAB measures were highly correlated with corresponding WAB measures where available. Individual patients showed distinct profiles of spared and impaired function across different language domains. In sum, the QAB efficiently and reliably characterized individual profiles of language deficits. PMID:29425241

  2. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density.

    PubMed

    Wang, Longlong; Chen, Bingbing; Ma, Jun; Cui, Guanglei; Chen, Liquan

    2018-06-29

    By breaking through the energy density limits step-by-step, the use of lithium cobalt oxide-based Li-ion batteries (LCO-based LIBs) has led to the unprecedented success of consumer electronics over the past 27 years. Recently, strong demands for the quick renewal of the properties of electronic products every so often have resulted in smarter, larger screened, more lightweight devices with longer standby times that have pushed the energy density of LCO-based LIBs nearly to their limit. As a result, with the aim of achieving a higher energy density and lifting the upper cut-off voltage of LCO above 4.45 V (vs. Li/Li+), the development of LCO-based all-solid-state lithium batteries (ASSLBs) with a Li metal anode and LCO-based full cells with high-performance anodes have become urgent scientific and technological requirements. This review summarizes the key challenges of synthesizing LCO-based LBs with a higher energy density from the perspectives of structure and interface stability, and gives an account of effective modification strategies in view of the electrodes, liquid electrolytes, binders, separators, solid electrolytes and LCO-based full cells. The improvement mechanisms of these modification strategies and the controversy over them are also analyzed critically. Moreover, some perspectives regarding the remaining challenges for LCO-based LBs towards a higher energy density and possible future research focuses are also presented.

  3. Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings - Simple design competes with complex cathode architecture

    NASA Astrophysics Data System (ADS)

    Jozwiuk, Anna; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2015-11-01

    The lithium-sulfur system is one of the most promising next generation battery systems, as elemental sulfur is cheap, abundant and has a high theoretical specific capacity. Although much research is conducted on complex sulfur/carbon composites and architectures, it is difficult to compare the performance of the cathodes to one another. Factors, such as different electrolyte composition and cell components strongly affect the cyclability of the battery. Here, we show the importance of optimizing ;standard; conditions to allow for fair performance comparison of different carbon blacks. Our optimal electrolyte-to-sulfur ratio is 11 μL mgsulfur-1 and high concentrations of LiNO3 (>0.6 M) are needed because nitrate is consumed continuously during cycling. Utilizing these standard conditions, we tested the cycling behavior of four types of cathodes with individual carbon blacks having different specific surface areas, namely Printex-A, Super C65, Printex XE-2 and Ketjenblack EC-600JD. Both the specific capacity and polysulfide adsorption capability clearly correlate with the surface area of the carbon being used. High specific capacities (>1000 mAh gsulfur-1 at C/5) are achieved with high surface area carbons. We also demonstrate that a simple cathode using Ketjenblack EC-600JD as the conductive matrix material can well compete with those having complex architectures or additives.

  4. Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.

    PubMed

    Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Berder, Olivier; Benini, Luca

    2018-05-15

    Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes.

  5. Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks

    PubMed Central

    Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Benini, Luca

    2018-01-01

    Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes. PMID:29762535

  6. Mobile GPU-based implementation of automatic analysis method for long-term ECG.

    PubMed

    Fan, Xiaomao; Yao, Qihang; Li, Ye; Chen, Runge; Cai, Yunpeng

    2018-05-03

    Long-term electrocardiogram (ECG) is one of the important diagnostic assistant approaches in capturing intermittent cardiac arrhythmias. Combination of miniaturized wearable holters and healthcare platforms enable people to have their cardiac condition monitored at home. The high computational burden created by concurrent processing of numerous holter data poses a serious challenge to the healthcare platform. An alternative solution is to shift the analysis tasks from healthcare platforms to the mobile computing devices. However, long-term ECG data processing is quite time consuming due to the limited computation power of the mobile central unit processor (CPU). This paper aimed to propose a novel parallel automatic ECG analysis algorithm which exploited the mobile graphics processing unit (GPU) to reduce the response time for processing long-term ECG data. By studying the architecture of the sequential automatic ECG analysis algorithm, we parallelized the time-consuming parts and reorganized the entire pipeline in the parallel algorithm to fully utilize the heterogeneous computing resources of CPU and GPU. The experimental results showed that the average executing time of the proposed algorithm on a clinical long-term ECG dataset (duration 23.0 ± 1.0 h per signal) is 1.215 ± 0.140 s, which achieved an average speedup of 5.81 ± 0.39× without compromising analysis accuracy, comparing with the sequential algorithm. Meanwhile, the battery energy consumption of the automatic ECG analysis algorithm was reduced by 64.16%. Excluding energy consumption from data loading, 79.44% of the energy consumption could be saved, which alleviated the problem of limited battery working hours for mobile devices. The reduction of response time and battery energy consumption in ECG analysis not only bring better quality of experience to holter users, but also make it possible to use mobile devices as ECG terminals for healthcare professions such as physicians and health advisers, enabling them to inspect patient ECG recordings onsite efficiently without the need of a high-quality wide-area network environment.

  7. Compared with the intake of commercial vegetable juice, the intake of fresh fruit and komatsuna (Brassica rapa L. var. perviridis) juice mixture reduces serum cholesterol in middle-aged men: a randomized controlled pilot study.

    PubMed

    Aiso, Izumi; Inoue, Hiroko; Seiyama, Yukiko; Kuwano, Toshiko

    2014-06-24

    Vegetables and fruits are rich in vitamins, minerals and, dietary fiber and contribute to the prevention and improvement of obesity and metabolic syndrome. However, inadequate intake of vegetable and fruit is a concern in Japan.We therefore produced a juice mixture of fresh fruit and komatsuna (Brassica rapa L. var. perviridis: B. rapa) with the aim to investigate the effects of this juice mixture on anthropometric data, blood parameters, and dietary intake differences. This study was performed as a single blind and randomized controlled trial. Subjects were 16 men (mean age, 46.4 ± 7.1 years), and they were divided into two groups (control group and intervention group). The intervention group consumed the juice mixture of fresh fruit and B. rapa. The control group consumed commercial vegetable juice. Subjects consumed juice twice a day throughout the weekday, for 4 weeks. We prepared both juices with an equivalent energy balance. Weight and body mass index (BMI) of the control group after 4 weeks were significantly increased compared with baseline values. Serum total cholesterol (T-Chol) and low-density lipoprotein cholesterol (LDL-Chol) of the intervention group after 4 weeks were significantly reduced compared with baseline values. Furthermore, intake of total vegetables and fruits were significantly increased compared with baseline values in both groups. Both vegetable juices contributed to improved intake of total vegetables and fruit. Compared with the intake of commercial vegetable juice, the intake of fresh fruit and B. rapa juice is highly effective in reducing serum cholesterol. Short-term intake of fresh fruit and B. rapa juice was shown to enhance cholesterol metabolism.

  8. Effect of Probiotic Fermented Milk (Kefir) on Glycemic Control and Lipid Profile In Type 2 Diabetic Patients: A Randomized Double-Blind Placebo-Controlled Clinical Trial

    PubMed Central

    OSTADRAHIMI, Alireza; TAGHIZADEH, Akbar; MOBASSERI, Majid; FARRIN, Nazila; PAYAHOO, Laleh; BEYRAMALIPOOR GHESHLAGHI, Zahra; VAHEDJABBARI, Morteza

    2015-01-01

    Background: Diabetes is a global health problem in the world. Probiotic food has anti-diabetic property. The aim of this trial was to determine the effect of probiotic fermented milk (kefir) on glucose and lipid profile control in patients with type 2 diabetes mellitus. Methods: This randomized double-blind placebo-controlled clinical trial was conducted on 60 diabetic patients aged 35 to 65 years.Patients were randomly and equally (n=30) assigned to consume either probiotic fermented milk (kefir) or conventional fermented milk (dough) for 8 weeks. Probiotic group consumed 600 ml/day probiotic fermented milk containing Lactobacillus casei, Lactobacillus acidophilus and Bifidobacteria and control group consumed 600 ml/day conventional fermented milk.Blood samples tested for fasting blood glucose, HbA1C, triglyceride (TG), total cholesterol, HDL-C and LDL-C at the baseline and end of the study. Results: The comparison of fasting blood glucose between two groups after intervention was statistically significant (P=0.01). After intervention, reduced HbA1C compared with the baseline value in probiotic fermented milk group was statistically significant (P=0.001), also the HbA1C level significantly decreased in probiotic group in comparison with control group (P=0.02) adjusting for serum levels of glucose, baseline values of HbA1c and energy intake according to ANCOVA model. Serum triglyceride, total cholesterol, LDL-cholesterol and HDL- cholesterol levels were not shown significant differences between and within the groups after intervention. Conclusion: Probiotic fermented milk can be useful as a complementary or adjuvant therapy in the treatment of diabetes. PMID:25905057

  9. Sweetened beverages, snacks and overweight: findings from the Young Lives cohort study in Peru.

    PubMed

    Alviso-Orellana, Claudia; Estrada-Tejada, Dayna; Carrillo-Larco, Rodrigo M; Bernabé-Ortiz, Antonio

    2018-06-01

    To determine the association between consumption of snacks and sweetened beverages and risk of overweight among children. Secondary analysis of the Young Lives cohort study in Peru. Twenty sentinel sites from a total of 1818 districts available in Peru. Children in the younger cohort of the Young Lives study in Peru, specifically those included in the third (2009) and the fourth (2013) rounds. A total of 1813 children were evaluated at baseline; 49·2 % girls and mean age 8·0 (sd 0·3) years. At baseline, 3·3 (95 % CI 2·5, 4·2) % reported daily sweetened beverage consumption, while this proportion was 3·9 (95 % CI 3·1, 4·9) % for snacks. Baseline prevalence of overweight was 22·0 (95 % CI 20·1, 23·9) %. Only 1414 children were followed for 4·0 (sd 0·1) years, with an overweight incidence of 3·6 (95 % CI 3·1, 4·1) per 100 person-years. In multivariable analysis, children who consumed sweetened beverages and snacks daily had an average weight increase of 2·29 (95 % CI 0·62, 3·96) and 2·04 (95 % CI 0·48, 3·60) kg more, respectively, than those who never consumed these products, in approximately 4 years of follow-up. Moreover, there was evidence of an association between daily consumption of sweetened beverages and risk of overweight (relative risk=2·12; 95 % CI 1·05, 4·28). Daily consumption of sweetened beverages and snacks was associated with increased weight gain v. never consuming these products; and in the case of sweetened beverages, with higher risk of developing overweight.

  10. Blackout Drinking Predicts Sexual Revictimization in a College Sample of Binge-Drinking Women

    PubMed Central

    Valenstein-Mah, Helen; Larimer, Mary; Zoellner, Lori; Kaysen, Debra

    2016-01-01

    Sexual victimization is prevalent on U.S. college campuses. Some women experience multiple sexual victimizations with heightened risk among those with prior victimization histories. One risk factor for sexual revictimization is alcohol use. Most research has focused on associations between alcohol consumption and revictimization. The current study’s objective was to understand potential mechanisms by which drinking confers risk for revictimization. We hypothesized that specific drinking consequences would predict risk for revictimization above and beyond the quantity of alcohol consumed. There were 162 binge-drinking female students (mean age = 20.21 years, 71.3% White, 36.9% juniors) from the University of Washington who were assessed for baseline victimization (categorized as childhood vs. adolescent victimization), quantity of alcohol consumed, and drinking consequences experienced, then assessed 30 days later for revictimization. There were 40 (24.6%) women who were revictimized in the following 30 days. Results showed that blackout drinking at baseline predicted incapacitated sexual revictimization among women previously victimized as adolescents, after accounting for quantity of alcohol consumed (OR = 1.79, 95% CI [1.07, 3.01]). Other drinking consequences were not strongly predictive of revictimization. Adolescent sexual victimization was an important predictor of sexual revictimization in college women; blackout drinking may confer unique risk for revictimization. PMID:26401899

  11. The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota

    PubMed Central

    Cooper, Danielle N.; Kable, Mary E.; Marco, Maria L.; De Leon, Angela; Rust, Bret; Baker, Julita E.; Horn, William; Burnett, Dustin; Keim, Nancy L.

    2017-01-01

    This study was designed to determine if providing wheat, corn, and rice as whole (WG) or refined grains (RG) under free-living conditions will change parameters of health over a six-week intervention in healthy, habitual non-WG consumers. Measurements of body composition, fecal microbiota, fasting blood glucose, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and triglycerides were made at baseline and post intervention. Subjects were given adequate servings of either WG or RG products based on their caloric need and asked to keep records of grain consumption, bowel movements, and GI symptoms weekly. After six weeks, subjects repeated baseline testing. Significant decreases in total, LDL, and non-HDL cholesterol were seen after the WG treatments but were not observed in the RG treatment. During Week 6, bowel movement frequency increased with increased WG consumption. No significant differences in microbiota were seen between baseline and post intervention, although, abundance of order Erysipelotrichales increased in RG subjects who ate more than 50% of the RG market basket products. Increasing consumption of WGs can alter parameters of health, but more research is needed to better elucidate the relationship between the amount consumed and the health-related outcome. PMID:28230784

  12. Perceived hunger is lower and weight loss is greater in overweight premenopausal women consuming a low-carbohydrate/high-protein vs high-carbohydrate/low-fat diet.

    PubMed

    Nickols-Richardson, Sharon M; Coleman, Mary Dean; Volpe, Joanne J; Hosig, Kathy W

    2005-09-01

    The impact of a low-carbohydrate/high-protein diet compared with a high-carbohydrate/low-fat diet on ratings of hunger and cognitive eating restraint were examined. Overweight premenopausal women consumed a low-carbohydrate/high-protein (n=13) or high-carbohydrate/low-fat diet (n=15) for 6 weeks. Fasting body weight (BW) was measured and the Eating Inventory was completed at baseline, weeks 1 to 4, and week 6. All women experienced a reduction in BW (P<.01), although relative BW loss was greater in the low-carbohydrate/high-protein vs high-carbohydrate/low-fat group at week 6 (P<.05). Based on Eating Inventory scores, self-rated hunger decreased (P<.03) in women in the low-carbohydrate/high-protein but not in the high-carbohydrate/low-fat group from baseline to week 6. In both groups, self-rated cognitive eating restraint increased (P<.01) from baseline to week 1 and remained constant to week 6. Both diet groups reported increased cognitive eating restraint, facilitating short-term weight loss; however, the decrease in hunger perception in the low-carbohydrate/high-protein group may have contributed to a greater percentage of BW loss.

  13. The Effects of Alcohol and Dosage-Set on Risk-Seeking Behavior in Groups and Individuals

    PubMed Central

    Sayette, Michael A.; Dimoff, John D.; Levine, John M.; Moreland, Richard L.; Votruba-Drzal, Elizabeth

    2011-01-01

    A great deal of risky activity occurs in social contexts, yet only recently have studies begun to examine the impact of drinking on risk-seeking behavior in groups. The present study sought to extend this work by examining both pharmacological and expectancy (dosage-set) effects of drinking. In addition, by using a much larger sample than in prior studies we aimed to increase the power to examine how drinking affects the decision making process (i.e., Does the initial proposed decision stand, or does it shift during discussion to a safer or riskier final decision?). Seven hundred twenty unacquainted social drinkers (half female) were randomly assigned to 3-person groups that consumed alcohol (0.82 g/kg males; 0.74 g/kg females), a placebo, or a noalcohol control beverage. After drinking, participants decided whether to complete a 30-min questionnaire battery (the less risky choice) or toss a coin and, pending the outcome of that toss, complete either no questionnaires or a 60-min battery (the riskier choice). Neither drinking nor believing one had been drinking affected the decision to toss the coin when participants deliberated in isolation. In contrast, when the decision occurred in a group context, groups led to believe they were drinking alcohol (i.e. groups administered alcohol or placebo beverages) were significantly more likely than groups knowing they had consumed a nonalcoholic beverage (i.e., groups administered a no-alcohol control beverage) to choose the coin toss. Results extend prior findings highlighting the effects of alcohol dosage-set in social contexts. PMID:21639596

  14. Interruption of physical activity because of illness in the Lifestyle Interventions and Independence for Elders Pilot trial.

    PubMed

    Phillips, Edward M; Katula, Jeffrey; Miller, Michael E; Walkup, Michael P; Brach, Jennifer S; King, Abby C; Rejeski, W Jack; Church, Tim; Fielding, Roger A

    2010-01-01

    To examine baseline characteristics and change in gait speed and Short Physical Performance Battery (SPPB) scores in participants medically suspended (MS) from a physical activity intervention (PA). Randomized controlled trial. University and community centers. Sedentary older adults (N = 213) randomized to PA in the Lifestyle Interventions and Independence for Elders Pilot (LIFE-P). MS was defined as missing 3 consecutive PA sessions in adoption and transition phases or 2 wk in maintenance phase because of a health event. In all, 122 participants completed PA without MS (NMS subgroup), 48 participants underwent MS and resumed PA (SR subgroup), and 43 participants underwent MS and did not complete PA (SNR subgroup). At baseline, SNR walked slower (p = .03), took more prescribed medications (p = .02), and had lower SPPB scores than NMS and SR (p = .02). Changes from baseline to Month 12 SPPB scores were affected by suspension status, adjusted mean (SE) SPPB change: SNR 0.0957 (0.3184), SR 0.9413 (0.3063), NMS 1.0720 (0.1871); p = .03. MS participants unable to return to complete the PA in a trial of mobility-limited sedentary older adults had slower walking speeds, lower SPPB scores, and a higher number of prescribed medications at baseline. Change in SPPB scores at 12 months was related to suspension status.

  15. Social Ties and Cognitive Recovery after Stroke: Does Social Integration Promote Cognitive Resilience?

    PubMed Central

    Glymour, M. Maria; Weuve, Jennifer; Fay, Martha E.; Glass, Thomas; Berkman, Lisa F.

    2008-01-01

    Background/Aims Little is known about the possible effects of social resources on stroke survivors’ level and change in cognitive outcomes. Understanding this association may help us identify strategies to improve stroke recovery and help elucidate the etiology of dementia. Methods We examined the relationship of social ties and social support to cognitive function and cognitive change 6 months after stroke. Participants in the Families in Recovery from Stroke Trial (FIRST) (n = 272) were interviewed approximately 17 days (baseline) and 6 months (follow-up) after stroke. Cognition was assessed with the Mini Mental State Examination (MMSE) and a summary battery of 7 neuropsychological tests. Median-based regression was used to model cognitive outcomes by level of baseline intimate, personal and organizational social ties and received emotional and instrumental support. Results Baseline social ties and emotional sup- port independently predicted 6-month Cognitive Summary Scores. Emotional support also predicted greater improvements in Cognitive Summary Scores from baseline to the 6-month follow-up. No other social exposures predicted improvements in the MMSE or the Cognitive Summary. Conclusions Our results suggest that emotional support may promote cognitive resilience while social ties provide cognitive reserve that protects against impaired cognition after stroke. Social ties did not predict cognitive recovery however, so reverse causation cannot be ruled out. PMID:18535395

  16. Baseline tests of the C. H. Waterman Renault 5 electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.; Mcbrien, E. F.; Slavick, R. J.

    1977-01-01

    The Waterman vehicle, a four passenger Renault 5 GTL, performance test results are presented and characterized the state-of-the-art of electric vehicles. It was powered by sixteen 6-volt traction batteries through a two-step contactor controller actuated by a foot throttle to change the voltage applied to the 6.7 -kilowatt motor. The motor output shaft was connected to a front-wheel-drive transaxle that contains a four-speed manual transmission and clutch. The braking system was a conventional hydraulic braking system.

  17. Baseline tests of the C. H. Waterman DAF electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.; Maslowski, E. A.; Soltis, R. F.; Schuh, R. M.

    1977-01-01

    An electric vehicle was tested as part of an Energy Research Development Administration (ERDA) project to characterize the state-of-the-art of electric vehicles. The Waterman vehicle performance test results are presented in this report. The vehicle is a converted four-passenger DAF 46 sedan. It is powered by sixteen 6-volt traction batteries through a three-step contactor controller actuated by a foot throttle to change the voltage applied to the 6.7 kW motor. The braking system is a conventional hydraulic braking system.

  18. Baseline tests of the EVA change-of-pace coupe electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Maslowski, E. A.; Dustin, M. O.

    1977-01-01

    The EVA Change-of-Pace Coupe, is an electric passenger vehicle, to characterize the state-of-the-art of electric vehicles. The EVA Change-of-Pace Coupe is a four passenger sedan that has been coverted to an electric vehicle. It is powered by twenty 6 volt traction batteries through a silicon controlled rectifier chopper controller actuated by a foot throttle to change the voltage applied to the series wound, direct current motor. Braking is accomplished with a vacuum assist hydraulic braking system. Regenerative braking is also provided.

  19. Cognitive Assessment in Long-Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Kane, Robert; Seaton, Kimberly; Sipes, Walter

    2011-01-01

    This slide presentation reviews the development and use of a tool for assessing spaceflight cognitive ability in astronauts. This tool. the Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) has been used to provide ISS flight surgeons with an objective clinical tool to monitor the astronauts cognitive status during long-duration space flight and allow immediate feedback to the astronaut. Its use is medically required for all long-duration missions and it contains a battery of five cognitive assessment subtests that are scheduled monthly and compared against the individual preflight baseline.

  20. Crew emergency return vehicle - Electrical power system design study

    NASA Technical Reports Server (NTRS)

    Darcy, E. C.; Barrera, T. P.

    1989-01-01

    A crew emergency return vehicle (CERV) is proposed to perform the lifeboat function for the manned Space Station Freedom. This escape module will be permanently docked to Freedom and, on demand, will be capable of safely returning the crew to earth. The unique requirements that the CERV imposes on its power source are presented, power source options are examined, and a baseline system is selected. It consists of an active Li-BCX DD-cell modular battery system and was chosen for the maturity of its man-rated design and its low development costs.

Top