Base Oil-Extreme Pressure Additive Synergy in Lubricants
USDA-ARS?s Scientific Manuscript database
Extreme pressure (EP) additives are those containing reactive elements such as sulfur, phosphorus, and chlorine. In lubrication processes that occur under extremely severe conditions (e.g., high pressure and/or slow speed), these elements undergo chemical reactions generating new materials (tribofi...
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu, Dongbin
2017-03-03
The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
NASA Astrophysics Data System (ADS)
Platonov, Vladimir S.; Kislov, Alexander V.
2016-11-01
A statistical analysis of extreme weather events over coastal areas of the Russian Arctic based on observational data has revealed many interesting features of wind velocity distributions. It has been shown that the extremes contain data belonging to two different statistical populations. Each of them is reliably described by a Weibull distribution. According to the standard terminology, these sets of extremes are named ‘black swans’ and ‘dragons’. The ‘dragons’ are responsible for most extremes, surpassing the ‘black swans’ by 10 - 30 %. Since the data of the global climate model INM-CM4 do not contain ‘dragons’, the wind speed extremes are investigated on the mesoscale using the COSMO-CLM model. The modelling results reveal no differences between the ‘swans’ and ‘dragons’ situations. It could be associated with the poor sample data used. However, according to many case studies and modeling results we assume that it is caused by a rare superposition of large-scale synoptic factors and many local meso- and microscale factors (surface, coastline configuration, etc.). Further studies of extreme wind speeds in the Arctic, such as ‘black swans’ and ‘dragons’, are necessary to focus on non-hydrostatic high-resolution atmospheric modelling using downscaling techniques.
78 FR 64162 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... container assembly. We are issuing this AD to prevent a high temperature oxygen generator and mask from... oxygen generators installed on a certain batch of passenger emergency oxygen container assemblies might become detached by extreme pulling of the mask tube at the end of the oxygen supply causing a high...
The High Plains: Land of Extremes.
ERIC Educational Resources Information Center
Capron, Ranel Stephenson; And Others
1996-01-01
Provides rich background information about unique High Plains ecosystems. Focuses on water, plant, animal, and energy resources. Describes hands-on activities related to ground water movement and energy resources. Contains 18 references. (DDR)
Method For Synthesizing Extremely High-Temperature Melting Materials
Saboungi, Marie-Louise; Glorieux, Benoit
2005-11-22
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
Method for synthesizing extremely high-temperature melting materials
Saboungi, Marie-Louise; Glorieux, Benoit
2007-11-06
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
A Stable Polymer Burnable Poison Material With Special Attributes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulenko, James S.; Baney, Ronald H.; Pressley, Linda
2002-07-01
The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials which appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA) and also Spent Fuel Containers (SFC). This new material ('Carborane') has the special properties of containing a tailored amount of boron, an extremely high hydrogen content, and being extremely stable to high temperatures. 'Carborane' reduces the water displacement penalty by 59% by the hydrogen present in the 'Carborane'. In addition to increasing safety margins, a cost benefit of approximately $500,000 per two-yearmore » cycle is projected from reduced enrichments, resulting from the use of this burnable poison material, making it no longer necessary to offset the water displacement reactivity penalty. This research program is supported by a Department of Energy NEER grant. (authors)« less
78 FR 40074 - Airworthiness Directives; Airbus Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... certain batch of passenger emergency oxygen container assemblies might become detached by extreme pulling of the mask tube at the end of oxygen supply causing a high temperature oxygen generator and mask to fall down. This proposed AD would require modifying the passenger emergency oxygen container assembly...
NASA Technical Reports Server (NTRS)
Jones, R. H.; Leshin, L. A.; Guan, Y.
2002-01-01
Two chondrules from Mokoia contain olivine in which oxygen isotopes are extremely heterogeneous, with some grains highly enriched in O-16. These data provide an important link between CAIs and chondrules. Additional information is contained in the original extended abstract.
High-harmonic generation in amorphous solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Yong Sing; Yin, Yanchun; Wu, Yi
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
High-harmonic generation in amorphous solids
You, Yong Sing; Yin, Yanchun; Wu, Yi; ...
2017-09-28
High-harmonic generation in isolated atoms and molecules has been widely utilized in extreme ultraviolet photonics and attosecond pulse metrology. Recently, high-harmonic generation has been observed in solids, which could lead to important applications such as all-optical methods to image valance charge density and reconstruct electronic band structures, as well as compact extreme ultraviolet light sources. So far these studies are confined to crystalline solids; therefore, decoupling the respective roles of long-range periodicity and high density has been challenging. Here we report the observation of high-harmonic generation from amorphous fused silica. We also decouple the role of long-range periodicity by comparingmore » harmonics generated from fused silica and crystalline quartz, which contain the same atomic constituents but differ in long-range periodicity. These results advance current understanding of the strong-field processes leading to high-harmonic generation in solids with implications for the development of robust and compact extreme ultraviolet light sources.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... extremely flammable contents of self-pressurized containers. 1500.46 Section 1500.46 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND... extremely flammable contents of self-pressurized containers. Use the apparatus described in § 1500.43a. Use...
NASA Astrophysics Data System (ADS)
Li, Qian; Sha, Lei; Zhu, Chunye; Yao, Yansun
2017-05-01
We report a new member to the family of tungsten nitrides, WN6, predicted from the structure search. Ground-state convex hull calculation reveals that crystalline WN6 is thermodynamically stable at pressures above 16 GPa, but remains dynamically stable at ambient conditions. The predicted high-pressure WN6 structure contains chaired \\text{cyclo-N}6{6-} rings isoelectronic to cyclo-hexasulfur (S6), which is unprecedented in nitrogen. In the \\text{cyclo-N}6{6-} unit all nitrogen atoms are singly bonded and therefore contain a high energy density. By means of efficiently packing the covalent-bonded species, WN6 is estimated to have extremely high Vickers hardness greater than 40 GPa at ambient conditions, placing it as one of the hardest materials. The present results reveal that WN6 may be used as a superhard material but simultaneously maintaining other desirable properties, which represents an interesting example of multifunctional materials.
NASA Astrophysics Data System (ADS)
Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo
2014-10-01
We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.
40 CFR 63.3981 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Coating application with handheld, non-refillable aerosol containers, touch-up markers, or marking pens is... total equipment that may be required to meet the data acquisition and availability requirements of this... lubrication, high resistance to chemical attack, extremely wide operating temperature, high electrical...
ERIC Educational Resources Information Center
Dana, Judi; Kock, Meri; Lewis, Mike; Peterson, Bruce; Stowe, Steve
2010-01-01
The many activities contained in this teaching guide emphasize hands-on involvement, prediction, data collection and interpretation, teamwork, and problem solving. The guide also contains background information about aeronautical research that can help students learn how airplanes fly. Following the background sections are a series of activities…
Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish
NASA Astrophysics Data System (ADS)
Tobler, Michael; Schlupp, Ingo; García de León, Francisco J.; Glaubrecht, Matthias; Plath, Martin
2007-05-01
Living in extreme habitats typically requires costly adaptations of any organism tolerating these conditions, but very little is known about potential benefits that trade off these costs. We suggest that extreme habitats may function as refuge from parasite infections, since parasites can become locally extinct either directly, through selection by an extreme environmental parameter on free-living parasite stages, or indirectly, through selection on other host species involved in its life cycle. We tested this hypothesis in a small freshwater fish, the Atlantic molly ( Poecilia mexicana) that inhabits normal freshwaters as well as extreme habitats containing high concentrations of toxic hydrogen sulfide. Populations from such extreme habitats are significantly less parasitized by the trematode Uvulifer sp. than a population from a non-sulfidic habitat. We suggest that reduced parasite prevalence may be a benefit of living in sulfidic habitats.
Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.
2017-01-01
Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346
Lee, Sun Joo; Choo, Hye Jung; Park, Ji Sung; Park, Yeong-Mi; Eun, Choong Ki; Hong, Sung Hwan; Hwang, Ji Young; Lee, In Sook; Lee, Jongmin; Jung, Soo-Jin
2010-08-01
To describe magnetic resonance imaging (MRI) and ultrasound (US) findings of intravascular papillary endothelial hyperplasia (IPEH) arising in extremities. Six patients with IPEH confirmed by surgical resection were reviewed retrospectively. Before resection, 3 patients underwent both MRI and US and 3 patients underwent only MRI. Two radiologists retrospectively reviewed MR/US imaging results and correlated them with pathological features. The 6 IPEHs were diagnosed as 4 mixed forms and 2 pure forms. The pre-existing pathology of four mixed forms was intramuscular or intermuscular hemangioma. By MRI, the mixed form of IPEH (n = 4) revealed iso- to slightly high signal intensity containing nodule-like foci of high signal intensity on T1-weighted images (T1WI) and high signal intensity-containing nodule-like foci of low signal intensity on T2-weighted images (T2WI). The pure form of IPEH (n = 2) showed homogeneous iso- signal intensity on T1WI and high and low signal intensity containing nodule-like foci of low signal intensity on T2WI. On gadolinium-enhanced fat-suppressed T1WI, 50% of cases (n = 3: mixed forms) revealed peripheral, septal, and central enhancement. The other IPEHs (n = 3: 1 mixed and 2 pure forms) showed peripheral and septal enhancement or only peripheral enhancement. By US, two mixed forms of IPEH showed well-defined hypoechoic masses containing hyperechoic septa and central portion with vascularities. One pure form of IPEH was a homogeneous hypoechoic mass with septal and peripheral vascularities on color Doppler imaging. The foci of high signal intensity on T1WI, foci of low signal intensity on T2WI, and non-enhancing portions on MRI and the hypoechoic portion on US were histopathologically correlated with thrombi and the peripheral/septal or central enhancing areas on MRI, hyperechoic septa and the central portion on US, and septal/central or peripheral vascularities on color Doppler imaging corresponded to hypertrophic papillary epithelium and a fibrovascular core. Even though imaging findings of the pure form of IPEH are rather nonspecific, the mixed form of IPEH should be considered a possible diagnosis when a well-defined mass with T2 hyperintense signal containing nodule-like foci of low signal intensity, T1 iso- to slightly hyperintense signal containing nodule-like foci of high signal intensity, and peripheral/septal or central enhancement on MRI is seen in extremities, along with the US finding of a hypoechoic mass containing hyperechoic septa with vascularities.
Isakhanian, V; Trchunian, A
2005-01-01
It has been shown that separate irradiation of distilled water and tris-phosphate buffer containing some inorganic ions, with Escherichia coli K12 grown in anaerobic conditions upon fermentation of sugar (glucose) with "noise" electromagnetic radiation of extremely high frequencies (53.5-68 gHz) or millimeter waves (wavelength of 3 to 8 mm) with low flux capacity (0.01 mW) for 10, 30 and 60 min caused opposite effects, changing the growth of these bacteria. The irradiation of water has a bactericide effect, whereas the irradiation of the buffer stimulates bacterial growth although the buffer itself inhibits the growth. These results point out the role of water in the bactericide action of "noise" electromagnetic radiation of extremely high frequencies, and confirm the significance of membranotropic effects. The bactericide action disappeared after repeated irradiation for 10 and 30 min with 2-h intervals. This indicates the operation of some compensatory mechanisms in bacteria.
NASA Technical Reports Server (NTRS)
Hensler, J. R.
1973-01-01
Three approaches to the development of a high density scintillation glass were investigated: They include the increase of density of glass systems containing cerium - the only systems which were known to show scintillation, the testing of a novel silicate glass system containing significant concentrations of silver produced by ion exchange and never tested previously, and the hot pressing of a diphasic compact of low density scintillation glass with high density passive glass. In first two cases, while ultraviolet excited fluorescence was maintained in the glasses showing high density, scintillation response to high energy particles was not retained in the case of the cerium containing glasses or developed in the case of the silver containing glasses. In the case of the compacts, the extremely long path length caused by the multiple internal reflections which occur in such a body resulted in attenuation even with glasses of high specific transmission. It is not clear why the scintillation efficiency is not maintained in the higher density cerium containing glasses.
Broadband and High power Reactive Jamming Resilient Wireless Communication
2017-10-21
Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS
Mummichogs (Fundulus heteroclitus) indigenous to an urban estuarine Superfund site in New Bedford Harbor (NBH, MA, USA) contain extremely high concentrations of the local contaminants, polychlorinated biphenyls (PCBs). These fish populations apparently persist due to an inherited...
Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules
NASA Technical Reports Server (NTRS)
Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.
2009-01-01
In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.
Should biochar be used in container substrates?
USDA-ARS?s Scientific Manuscript database
Biochar is charred organic matter that remains after a process called pyrolysis. Pyrolysis is a thermochemical decomposition of organic matter. In this process, organic matter is subjected to extremely high temperatures (200 to 800 °C) in the absence of oxygen. The history of biochar use begins i...
New Approaches to Hepatitis A Vaccine Development
1991-04-22
and-mouth virus ( FMDV ) (Bittle et al., 1982). Peptide immunogens are highly stable reagents; they are potentially very inexpensive and extremely safe...of particular interest as it occurs within the "foot-and-mouth disease virus ( FMDV ) loop" of mengovirus. In FMDV , this loop contains a linear
Modified starch containing liquid fuel slurry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzger, G.W.
1978-04-04
A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.
Ionization monitor with improved ultra-high megohm resistor
Burgess, Edward T.
1988-11-05
An ionization monitor measures extremely small currents using a resistor containing a beta emitter to generate ion-pairs which are collected as current when the device is used as a feedback resistor in an electrometer circuit. By varying the amount of beta emitter, the resistance of the resistor may be varied.
Biobased extreme pressure additives: Structure-property considerations
USDA-ARS?s Scientific Manuscript database
Extreme pressure additives are widely used in lubricant formulations for engine oils, hydraulic fluids, gear oils, metalworking fluids, and many others. Extreme pressure additives contain selected elements such as sulfur, phosphorus, and halogens in their structures. These elements, under extreme tr...
Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth?
Schmidt, S K; Gendron, E M S; Vincent, K; Solon, A J; Sommers, P; Schubert, Z R; Vimercati, L; Porazinska, D L; Darcy, J L; Sowell, P
2018-03-20
Here we describe recent breakthroughs in our understanding of microbial life in dry volcanic tephra ("soil") that covers much of the surface area of the highest elevation volcanoes on Earth. Dry tephra above 6000 m.a.s.l. is perhaps the best Earth analog for the surface of Mars because these "soils" are acidic, extremely oligotrophic, exposed to a thin atmosphere, high UV fluxes, and extreme temperature fluctuations across the freezing point. The simple microbial communities found in these extreme sites have among the lowest alpha diversity of any known earthly ecosystem and contain bacteria and eukaryotes that are uniquely adapted to these extreme conditions. The most abundant eukaryotic organism across the highest elevation sites is a Naganishia species that is metabolically versatile, can withstand high levels of UV radiation and can grow at sub-zero temperatures, and during extreme diurnal freeze-thaw cycles (e.g. - 10 to + 30 °C). The most abundant bacterial phylotype at the highest dry sites sampled (6330 m.a.s.l. on Volcán Llullaillaco) belongs to the enigmatic B12-WMSP1 clade which is related to the Ktedonobacter/Thermosporothrix clade that includes versatile organisms with the largest known bacterial genomes. Close relatives of B12-WMSP1 are also found in fumarolic soils on Volcán Socompa and in oligotrophic, fumarolic caves on Mt. Erebus in Antarctica. In contrast to the extremely low diversity of dry tephra, fumaroles found at over 6000 m.a.s.l. on Volcán Socompa support very diverse microbial communities with alpha diversity levels rivalling those of low elevation temperate soils. Overall, the high-elevation biome of the Atacama region provides perhaps the best "natural experiment" in which to study microbial life in both its most extreme setting (dry tephra) and in one of its least extreme settings (fumarolic soils).
Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.
Oyola, Samuel O; Otto, Thomas D; Gu, Yong; Maslen, Gareth; Manske, Magnus; Campino, Susana; Turner, Daniel J; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Swerdlow, Harold P; Quail, Michael A
2012-01-03
Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.
Refractory materials from lunar resources
NASA Technical Reports Server (NTRS)
Fabes, B. D.; Poisl, W. H.
1991-01-01
Refractories - materials which are able to withstand extremely high temperatures - are sure to be an important part of any processing facility or human outpost which is built on Mars. Containers for processing lunar oxygen will need high temperature components. Fabrication of structural material from lunar resources need both containment vessels to hold high temperature melts and molds in which to form the final shapes. Certainly, it would be desirable to fabricate such vessels and molds on the Moon, rather than carrying them up from the Earth. At first glance, this might appear to be a trivial task, since the Moon's surface consists of a variety of refractory compositions. To turn the regolith into a useful fire brick or mold, however, will require water or other binders and additives which are likely to be in extremely short supply on the Moon. The steps needed to make fire bricks and molds for lunar-derived structural materials are examined, pointing out the critical steps and resources which will be needed. While these processes and applications may seem somewhat mundane, it is emphasized that it is precisely these rudimentary processes which must be mastered before discussing making aerobrakes, and other fancier refractories from lunar resources.
16 CFR 1500.133 - Extremely flammable contact adhesives; labeling.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Extremely flammable contact adhesives... REGULATIONS § 1500.133 Extremely flammable contact adhesives; labeling. (a) Extremely flammable contact adhesives, also known as contact bonding cements, when distributed in containers intended or suitable for...
Energy dissipation in Ni-containing concentrated solid solutions.
NASA Astrophysics Data System (ADS)
Samolyuk, German; Mu, Sai; Jin, Ke; Bei, Hongbin; Stocks, G. Malcolm
Due to high disorder the diffusion processes are noticeably suppressed concentrated solid solution, so called high entropy alloys. It makes these alloys promising candidate for energy application under extreme conditions. Understanding of the energy dissipation in these alloys during the irradiation or interaction with laser bean is extremely important. In the metals and alloys the main channel of energy dissipation is provided by the electronic subsystem. The first principles approach was used to investigate the electronic structure properties of the alloys. The obtained results were used to calculate the electronic part of thermal resistivity caused by scattering of electrons on atomic disorder, magnetic and phonon excitations The contribution of last two excitations to the temperature dependence of thermal resistivity is discussed. The importance of magnetism in 3d transition metals based alloy was demonstrated. In particular, it was shown that antiferromagnetic ordering of chromium or manganese leads to significant increase of electron scattering in alloy containing these elements. It results in significant reduction of conductivity in chromium or manganese containing alloys. The comparison with the existing experimental data is discussed. This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.
Microbial ecology of extreme environments: Antarctic yeasts and growth in substrate-limited habitats
NASA Technical Reports Server (NTRS)
Vishniac, H. S.
1984-01-01
An extreme environment is by definition one with a depauperate biota. While the Ross Desert is by no means homogeneous, the most exposed and arid habitats, soils in the unglaciated high valleys, do indeed contain a very sparse biota of low diversity. So sparse that the natives could easily be outnumbered by airborne exogenous microbes. Native biota must be capable of overwintering as well as growing in the high valley summer. Tourists may undergo a few divisions before contributing their enzymes and, ultimately, elements to the soil - or may die before landing. The simplest way to demonstrate the indigenicity of a particular microbe is therefore to establish unique distribution; occurrence only in the habitat in question precludes foreign origin.
Halobacterium denitrificans sp. nov. - An extremely halophilic denitrifying bacterium
NASA Technical Reports Server (NTRS)
Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.
1986-01-01
Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.
Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium
NASA Technical Reports Server (NTRS)
Tomlinson, G. A.; Jahnke, L. L.; Hochstein, L. I.
1986-01-01
Halobacterium denitrificans was one of several carbohydrate-utilizing, denitrifying, extremely halophilic bacteria isolated by anaerobic enrichment in the presence of nitrate. Anaerobic growth took place only when nitrate (or nitrite) was present and was accompanied by the production of dinitrogen. In the presence of high concentrations of nitrate (i.e., 0.5 percent), nitrous oxide and nitrite were also detected. When grown aerobically in a mineral-salts medium containing 0.005 percent yeast extract, H. denitrificans utilized a variety of carbohydrates as sources of carbon and energy. In every case, carbohydrate utilization was accompanied by acid production.
TRMM precipitation analysis of extreme storms in South America: Bias and climatological contribution
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Houze, R.; Zuluaga, M. D.; Choi, S. L.; Chaplin, M.
2013-12-01
The TRMM (Tropical Rainfall Measuring Mission) satellite was designed both to measure spatial and temporal variation of tropical rainfall around the globe and to understand the factors controlling the precipitation. TRMM observations have led to the realization that storms just east of the Andes in southeastern South America are among the most intense deep convection in the world. For a complete perspective of the impact of intense precipitation systems on the hydrologic cycle in South America, it is necessary to assess the contribution from various forms of extreme storms to the climatological rainfall. However, recent studies have suggested that the TRMM Precipitation Radar (PR) algorithm significantly underestimates surface rainfall in deep convection over land. Prior to investigating the climatological behavior, this research first investigates the range of the rain bias in storms containing four different types of extreme radar echoes: deep convective cores, deep and wide convective cores, wide convective cores, and broad stratiform regions over South America. The TRMM PR algorithm exhibits bias in all four extreme echo types considered here when the algorithm rates are compared to a range of conventional Z-R relations. Storms with deep convective cores, defined as high reflectivity echo volumes that extend above 10 km in altitude, show the greatest underestimation, and the bias is unrelated to their echo top height. The bias in wide convective cores, defined as high reflectivity echo volumes that extend horizontally over 1,000 km2, relates to the echo top, indicating that storms with significant mixed phase and ice hydrometeors are similarly affected by assumptions in the TRMM PR algorithm. The subtropical region tends to have more intense precipitating systems than the tropics, but the relationship between the TRMM PR rain bias and storm type is the same regardless of the climatological regime. The most extreme storms are typically not collocated with regions of high climatological precipitation. A quantitative approach that accounts for the previously described bias using TRMM PR data is employed to investigate the role of the most extreme precipitating systems on the hydrological cycle in South America. These data are first used to investigate the relative contribution of precipitation from the TRMM-identified echo cores to each separate storm in which the convective cores are embedded. The second part of the study assesses how much of the climatological rainfall in South America is accounted for by storms containing deep convective, wide convective, and broad stratiform echo components. Systems containing these echoes produce very different hydrologic responses. From a hydrologic and climatological viewpoint, this empirical knowledge is critical, as the type of runoff and flooding that may occur depends on the specific character of the convective storm and has broad implications for the hydrological cycle in this region.
Sea level oscillations over minute timescales: a global perspective
NASA Astrophysics Data System (ADS)
Vilibic, Ivica; Sepic, Jadranka
2016-04-01
Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.
Heating and Cooling System Design for a Modern Transportable Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Jason E.
Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial systemmore » options, and mechanical integration with the container’s structure.« less
Latin America and the Caribbean: Issues for the 109th Congress
2005-05-26
Dominican tax on drinks containing high fructose corn syrup , a major U.S. product, that had threatened the country’s chances of being included in the U.S...has complained about Mexico’s 20% tax on soft drinks made with high fructose corn syrup (HFCS), with devastating impact on HFCS sales. Under...unstable political environment. In Peru, President Alejandro Toledo remains extremely unpopular, but the economy has continued to grow at high levels
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Method for determining extremely flammable and flammable contents of self-pressurized containers. 1500.45 Section 1500.45 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND...
Extremely High-Frequency Holographic Radar Imaging of Personnel and Mail
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMakin, Douglas L.; Sheen, David M.; Griffin, Jeffrey W.
2006-08-01
The awareness of terrorists covertly transporting chemical warfare (CW) and biological warfare (BW) agents into government, military, and civilian facilities to harm the occupants has increased dramatically since the attacks of 9/11. Government and civilian security personnel have a need for innovative surveillance technology that can rapidly detect these lethal agents, even when they are hidden away in sealed containers and concealed either under clothing or in hand-carried items such as mailed packages or handbags. Sensor technology that detects BW and CW agents in mail or sealed containers carried under the clothing are under development. One promising sensor technology presentlymore » under development to defeat these threats is active millimeter-wave holographic radar imaging, which can readily image concealed items behind paper, cardboard, and clothing. Feasibility imaging studies at frequencies greater than 40 GHz have been conducted to determine whether simulated biological or chemical agents concealed in mail packages or under clothing could be detected using this extremely high-frequency imaging technique. The results of this imaging study will be presented in this paper.« less
(GaIn)(NAs) growth using di-tertiary-butyl-arsano-amine (DTBAA)
NASA Astrophysics Data System (ADS)
Sterzer, E.; Ringler, B.; Nattermann, L.; Beyer, A.; von Hänisch, C.; Stolz, W.; Volz, K.
2017-06-01
III/V semiconductors containing small amounts of Nitrogen (N) are very interesting for a variety of optoelectronic applications. Unfortunately, the conventionally used N precursor 1,1-dimethylhydrazine (UDMHy) has an extremely low N incorporation efficiency in GaAs when grown using metal organic vapor phase epitaxy. Alloying Ga(NAs) with Indium (In) even leads to an exponential reduction of N incorporation. The huge amount of UDMHy in turn changes drastically the growth conditions. Furthermore, the application of this material is still hampered by the large carbon incorporation, most probably originating from the metal organic precursors. Hence, novel precursors for dilute nitride growth are needed. This paper will show (GaIn)(NAs) growth studies with the novel precursor di-tertiary-butyl-arsano-amine in combination with tri-ethyl-gallium and tri-methyl-indium. We show an extremely high N incorporation efficiency in the In containing (GaIn)(NAs). The (GaIn)(NAs) samples investigated in this study have been examined using high resolution X-Ray diffraction, room temperature photoluminescence and atomic force microscope measurements as well as secondary ion mass spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane
2015-12-21
The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.
Separation of thorium ions from wolframite and scandium concentrates using graphene oxide.
Jankovský, Ondřej; Sedmidubský, David; Šimek, Petr; Klímová, Kateřina; Bouša, Daniel; Boothroyd, Chris; Macková, Anna; Sofer, Zdeněk
2015-10-14
The separation of rare metals from the ores and commercially available compounds is an important issue due to the need of their high purity in advanced materials and devices. Important examples of two highly important elements that co-exist in the ores are scandium and thorium. Scandium containing ores and consequently also commercially available scandium compounds often contain traces of thorium which is very difficult to separate. We used graphene oxide for the selective sorption of thorium ions from scandium and thorium mixtures originating from the mined ores as well as from commercially available scandium salts. Our results showed that graphene oxide has an extreme affinity towards thorium ions. After the sorption process the graphene oxide contained over 20 wt% of thorium while the amount of scandium sorbed on GO was very low. This phenomenon of high sorption selectivity of graphene oxide can be applied in industry for the purification of various chemicals containing scandium and for separation of thorium containing mixtures. Alternatively, this methodology can be used for preconcentration of thorium from low-grade ores and its further use in the new generation of nuclear reactors.
Production of extreme-purity aluminum and silicon by fractional crystallization processing
NASA Astrophysics Data System (ADS)
Dawless, R. K.; Troup, R. L.; Meier, D. L.; Rohatgi, A.
1988-06-01
Large scale fractional crystallization is used commercially at Alcoa to produce extreme purity aluminum (99.999+% Al). The primary market is sputtering targets used to make interconnects for integrated circuits. For some applications the impurities uranium and thorium are reduced to less than 1 ppbw to avoid "soft errors" associated with α particle emission. The crystallization process achieves segregation coefficients which are close to theoretical at normal yields, and this, coupled with the scale of the units, allows practical production of this material. The silicon purification process involves crystallization of Si from molten aluminum alloys containing about 30% silicon. The crystallites from this process are further treated to remove residual Al and an extreme purity ingot is obtained. This material is considered suitable for single crystal or ribbon type photovoltaic cells and for certain IC applications, including highly doped substrates used for epitaxial growth. In production of both extreme purity Al and Si, impurities are rejected to the remaining melt as the crystals form and some separation is achieved by draining this downgraded melt from the unit. Purification of this downgrade by crystallization has also been demonstrated for both systems and is important for achieving high recoveries.
The ribosomal gene spacer region in archaebacteria
NASA Technical Reports Server (NTRS)
Achenbach-Richter, L.; Woese, C. R.
1988-01-01
Sequences for the spacer regions that separate the 16S and 23S ribosomal RNA genes have been determined for four more (strategically placed) archaebacteria. These confirm the general rule that methanogens and extreme halophiles have spacers that contain a single tRNAala gene, while tRNA genes are not found in the spacer region of the true extreme thermophiles. The present study also shows that the spacer regions from the sulfate reducing Archaeglobus and the extreme thermophile Thermococcus (both of which cluster phylogenetically with the methanogens and extreme halophiles) contain each a tRNAala gene. Thus, not only all methanogens and extreme halophiles show this characteristic, but all organisms on the "methanogen branch" of the archaebacterial tree appear to do so. The finding of a tRNA gene in the spacer region of the extreme thermophile Thermococcus celer is the first known phenotypic property that links this organism with its phylogenetic counterparts, the methanogens, rather than with its phenotypic counterparts, the sulfur-dependent extreme thermophiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.
The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less
Daily fire occurrence in northern Eurasia from 2002 to 2009
W. M. Hao; H. M. Eissinger; A. Petkov; B. L. Nordgren; Shawn Urbanski
2010-01-01
Northern Eurasia, covering 20% of the global land mass and containing 70% of boreal forest, is extremely sensitive to climate changes. Warmer temperatures in this region have led to less snowfall, earlier spring, longer growing season, and reduced moisture for soil and vegetation in summer. Recently, severe drought and record high temperatures caused catastrophic fires...
Care and handling of container plants from storage to outplanting
Thomas D. Landis; R. Kasten Dumroese
2011-01-01
Nursery plants are in a period of high risk from the time they leave the protected environment of the nursery to when they are outplanted. During handling and shipping, nursery stock may be exposed to many damaging stresses, including extreme temperatures, desiccation, mechanical injuries, and storage molds. This is also the period of greatest financial risk, because...
NASA Technical Reports Server (NTRS)
Zeigler, R. A.; Jolliff, B. L.; Korotev, R. L.; Kremser, D. T.; Haskin, L. A.
2001-01-01
Apollo 16 particle 65903,16-7 is a magnesian, alkali-rich impact melt breccia. Low Fe/Mn and high phosphide/phosphate ratios are evidence of severe reduction during impact-melt cooling. Presence of carbonate and FeOOH is evidence for later oxidation. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Storhaug, Gaute
2014-12-01
Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.
Method for Synthesizing Extremeley High Temperature Melting Materials
Saboungi, Marie-Louise and Glorieux, Benoit
2005-11-22
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
NASA Astrophysics Data System (ADS)
Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios
2018-03-01
A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, J.; Beer, S.C.; Lutz, J.
Bryum argenteum frequently occurs in urban environments and therefore appears to have the ability to tolerate high levels of such atmospheric pollutants as lead. The presence of genetic variation for tolerance to lead was assessed within and among three populations of this species from Ithaca, New York state. Plants from these populations contained extremely different concentrations of lead and other metals, but there was little or no variation in metal tolerance among the populations. There were, however, significant differences in general vigor (growth rates across all experimental treatments) among populations. Moreover, the rural and suburban populations contained high levels ofmore » variation in vigor among haploid-sib families (families of gametophytes derived from different sporophytes). The urban population, in contrast, contained conspicuously less variation than the other two.« less
Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra
2015-05-27
Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(-) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells.
Strangeness Production in the ALICE Experiment at the LHC
NASA Astrophysics Data System (ADS)
Johnson, Harold; Fenner, Kiara; Harton, Austin; Garcia-Solis, Edmundo; Soltz, Ron
2015-04-01
The study of strange particle production is an important tool in understanding the properties of a hot and dense medium, the quark-gluon plasma, created in heavy-ion collisions at ultra-relativistic energies. This quark-gluon plasma (QGP) is believed to have been present just after the big bang. The standard model of physics contains six types of quarks. Strange quarks are not among the valence quarks found in protons and neutrons. Strange quark production is sensitive to the extremely high temperatures of the QGP. CERN's Large Hadron Collider accelerates particles to nearly the speed of light before colliding them to create this QGP state. In the results of high-energy particle collisions, hadrons are formed out of quarks and gluons when cooling from extremely high temperatures. Jets are a highly collimated cone of particles coming from the hadronization of a single quark or gluon. Understanding jet interactions may give us clues about the QGP. Using FastJet (a popular jet finder algorithm), we extracted strangeness, or strange particle characteristics of jets contained within proton-proton collisions during our research at CERN. We have identified jets with and without strange particles in proton-proton collisions and we will present a comparison of pT spectra in both cases. This material is based upon work supported by the National Science Foundation under grants PHY-1305280 and PHY-1407051.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masuda, Y.; Chiba, N.; Matsuo, Y.
This research proposes to investigate the impact behavior of the steel plate of BWR containment vessels against missiles, caused by the postulated catastrophic failure of components with a high kinetic energy. Although the probability of the occurrence of missiles inside and outside of containment vessels is extremely low, the following items are required to maintain the integrity of containment vessels: the probability of the occurrence of missiles, the weight and energy of missiles, and the impact behavior of containment vessel steel plate against postulated missiles. In connection with the third item, an actualscale missile test was conducted. In addition, amore » computation analysis was performed to confirm the impact behavior against the missiles, in order to search for wide applicability to the various kinds of postulated missiles. This research tries to derive a new empirical formula which carries out the assessment of the integrity of containment vessels.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
..., and accommodates side-by-side placement of LD-3 containers in the cargo compartment. The basic Airbus... availability of this excess maneuver capacity in case of extreme emergency such as upset recoveries or... factor must not be less than: (a) 2.5g for the EFCS normal state with the high lift devices retracted up...
Synthesis of Perfluorinated Polymers
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Psarras, T.
1982-01-01
Long-chain perfluoropolyethers containing functional pendent groups were investigated as possible candidates for new sealants and elastomers that function in extreme environments. Of specific interest was development of materials exhibiting high thermal and oxidative stability at temperatures around 400 degrees C, low-temperature flexibility with glass transition at about 50 degrees C, and hydrolytic stability as well as compatibility with metals and resistance to fuels.
Exploring the Extreme Universe! (2nd Edition)
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2002-01-01
A large array of web sites devoted to the science that the NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics (LHEA) studies have been frozen in time and included on this CD. Featured are five of our 'Understanding the Extreme Universe' sites, which offer explanations about cosmic ray, gamma ray, and X-ray science and satellites, as well as cosmic distances. They also include images and engaging activities that are great for helping both children and adults to learn more about science and basic physical principles. The 'Missions That Take Us There' section contains web sites on the satellite, balloon-borne, International Space Station, and rocket missions in our Laboratory that study X-rays, gamma rays, and cosmic rays. There are also two multi-mission sites and an experiment that measures Earth's UV light in preparation for a future cosmic ray mission. Most of the sites on this CD contain high-resolution images that are great for scientific presentations, study, or just your own enjoyment. This CD shows our web sites as they existed in April of 2001. We have made sure to include the WWW address for every site, so you will know where to go to access the most current versions of them.
NASA Astrophysics Data System (ADS)
Durfee, David; Johnson, Walter; McLeod, Scott
2007-04-01
Un-cooled microbolometer sensors used in modern infrared night vision systems such as driver vehicle enhancement (DVE) or thermal weapons sights (TWS) require a mechanical shutter. Although much consideration is given to the performance requirements of the sensor, supporting electronic components and imaging optics, the shutter technology required to survive in combat is typically the last consideration in the system design. Electro-mechanical shutters used in military IR applications must be reliable in temperature extremes from a low temperature of -40°C to a high temperature of +70°C. They must be extremely light weight while having the ability to withstand the high vibration and shock forces associated with systems mounted in military combat vehicles, weapon telescopic sights, or downed unmanned aerial vehicles (UAV). Electro-mechanical shutters must have minimal power consumption and contain circuitry integrated into the shutter to manage battery power while simultaneously adapting to changes in electrical component operating parameters caused by extreme temperature variations. The technology required to produce a miniature electro-mechanical shutter capable of fitting into a rifle scope with these capabilities requires innovations in mechanical design, material science, and electronics. This paper describes a new, miniature electro-mechanical shutter technology with integrated power management electronics designed for extreme service infra-red night vision systems.
Combining local search with co-evolution in a remarkably simple way
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boettcher, S.; Percus, A.
2000-05-01
The authors explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problem. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. In contrast to genetic algorithms, which operate on an entire gene-pool of possible solutions, extremal optimization successively replaces extremely undesirable elements of a single sub-optimal solution with new, random ones. Large fluctuations, or avalanches, ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements heuristics inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Phase transitions are found in many combinatorial optimization problems, and have been conjectured to occur in the region of parameter space containing the hardest instances. We demonstrate how extremal optimization can be implemented for a variety of hard optimization problems. We believe that this will be a useful tool in the investigation of phase transitions in combinatorial optimization, thereby helping to elucidate the origin of computational complexity.« less
Zhou, Shiqi; Lamperski, Stanisław; Zydorczak, Maria
2014-08-14
Monte Carlo (MC) simulation and classical density functional theory (DFT) results are reported for the structural and electrostatic properties of a planar electric double layer containing ions having highly asymmetric diameters or valencies under extreme concentration condition. In the applied DFT, for the excess free energy contribution due to the hard sphere repulsion, a recently elaborated extended form of the fundamental measure functional is used, and coupling of Coulombic and short range hard-sphere repulsion is described by a traditional second-order functional perturbation expansion approximation. Comparison between the MC and DFT results indicates that validity interval of the traditional DFT approximation expands to high ion valences running up to 3 and size asymmetry high up to diameter ratio of 4 whether the high valence ions or the large size ion are co- or counter-ions; and to a high bulk electrolyte concentration being close to the upper limit of the electrolyte mole concentration the MC simulation can deal with well. The DFT accuracy dependence on the ion parameters can be self-consistently explained using arguments of liquid state theory, and new EDL phenomena such as overscreening effect due to monovalent counter-ions, extreme layering effect of counter-ions, and appearance of a depletion layer with almost no counter- and co-ions are observed.
First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase.
Ohshida, Tatsuya; Hayashi, Junji; Satomura, Takenori; Kawakami, Ryushi; Ohshima, Toshihisa; Sakuraba, Haruhiko
2016-10-01
2-Deoxy-d-ribose-5-phosphate aldolase (DERA) catalyzes the aldol reaction between two aldehydes and is thought to be a potential biocatalyst for the production of a variety of stereo-specific materials. A gene encoding DERA from the extreme halophilic archaeon, Haloarcula japonica, was overexpressed in Escherichia coli. The gene product was successfully purified, using procedures based on the protein's halophilicity, and characterized. The expressed enzyme was stable in a buffer containing 2 M NaCl and exhibited high thermostability, retaining more than 90% of its activity after heating at 70 °C for 10 min. The enzyme was also tolerant to high concentrations of organic solvents, such as acetonitrile and dimethylsulfoxide. Moreover, H. japonica DERA was highly resistant to a high concentration of acetaldehyde and retained about 35% of its initial activity after 5-h' exposure to 300 mM acetaldehyde at 25 °C, the conditions under which E. coli DERA is completely inactivated. The enzyme exhibited much higher activity at 25 °C than the previously characterized hyperthermophilic DERAs (Sakuraba et al., 2007). Our results suggest that the extremely halophilic DERA has high potential to serve as a biocatalyst in organic syntheses. This is the first description of the biochemical characterization of a halophilic DERA. Copyright © 2016 Elsevier Inc. All rights reserved.
High performance channel injection sealant invention abstract
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Basiulis, D. I.; Salisbury, D. P. (Inventor)
1982-01-01
High performance channel sealant is based on NASA patented cyano and diamidoximine-terminated perfluoroalkylene ether prepolymers that are thermally condensed and cross linked. The sealant contains asbestos and, in its preferred embodiments, Lithofrax, to lower its thermal expansion coefficient and a phenolic metal deactivator. Extensive evaluation shows the sealant is extremely resistant to thermal degradation with an onset point of 280 C. The materials have a volatile content of 0.18%, excellent flexibility, and adherence properties, and fuel resistance. No corrosibility to aluminum or titanium was observed.
Fiber-Reinforced Superalloys For Rocket Engines
NASA Technical Reports Server (NTRS)
Lewis, Jack R.; Yuen, Jim L.; Petrasek, Donald W.; Stephens, Joseph R.
1990-01-01
Report discusses experimental studies of fiber-reinforced superalloy (FRS) composite materials for use in turbine blades in rocket engines. Intended to withstand extreme conditions of high temperature, thermal shock, atmospheres containing hydrogen, high cycle fatigue loading, and thermal fatigue, which tax capabilities of even most-advanced current blade material - directionally-solidified, hafnium-modified MAR M-246 {MAR M-246 (Hf) (DS)}. FRS composites attractive combination of properties for use in turbopump blades of advanced rocket engines at temperatures from 870 to 1,100 degrees C.
Transposable elements as a molecular evolutionary force
NASA Technical Reports Server (NTRS)
Fedoroff, N. V.
1999-01-01
This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.
Saiki, M.; Scoppettone, G.G.; Gadomski, D.; Becker, D.
2005-01-01
When thinking about plants and animals that inhabit hot arid lands of the southwestern U.S., fish are easily overlooked by most people. However, these desert lands often contain isolated springs or cienegas (a Spanish term referring to permanently saturated 'seep wetlands') and streams supporting native fishes that occur no where else in the world. These aquatic remnants from the last Ice Age have survived for thousands of years due to an amazing ability to tolerate harsh environmental conditions, especially extremely high water temperatures, high salinities, and unpredictable water flows.
NASA Astrophysics Data System (ADS)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-03-01
Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.
NASA Astrophysics Data System (ADS)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-05-01
Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.
Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal
Manos, Manolis J.; Ding, Nan; Kanatzidis, Mercouri G.
2008-01-01
In this article, we report the family of robust layered sulfides K2xMnxSn3-xS6 (x = 0.5–0.95) (KMS-1). These materials feature hexagonal [MnxSn3-xS6]2x− slabs of the CdI2 type and contain highly mobile K+ ions in their interlayer space that are easily exchangeable with other cations and particularly strontium. KMS-1 display outstanding preference for strontium ions in highly alkaline solutions containing extremely large excess of sodium cations as well as in acidic environment where most alternative adsorbents with oxygen ligands are nearly inactive. The implication of these results is that simple layered sulfides should be considered for the efficient remediation of certain nuclear wastes. PMID:18316731
Detecting overlapping instances in microscopy images using extremal region trees.
Arteta, Carlos; Lempitsky, Victor; Noble, J Alison; Zisserman, Andrew
2016-01-01
In many microscopy applications the images may contain both regions of low and high cell densities corresponding to different tissues or colonies at different stages of growth. This poses a challenge to most previously developed automated cell detection and counting methods, which are designed to handle either the low-density scenario (through cell detection) or the high-density scenario (through density estimation or texture analysis). The objective of this work is to detect all the instances of an object of interest in microscopy images. The instances may be partially overlapping and clustered. To this end we introduce a tree-structured discrete graphical model that is used to select and label a set of non-overlapping regions in the image by a global optimization of a classification score. Each region is labeled with the number of instances it contains - for example regions can be selected that contain two or three object instances, by defining separate classes for tuples of objects in the detection process. We show that this formulation can be learned within the structured output SVM framework and that the inference in such a model can be accomplished using dynamic programming on a tree structured region graph. Furthermore, the learning only requires weak annotations - a dot on each instance. The candidate regions for the selection are obtained as extremal region of a surface computed from the microscopy image, and we show that the performance of the model can be improved by considering a proxy problem for learning the surface that allows better selection of the extremal regions. Furthermore, we consider a number of variations for the loss function used in the structured output learning. The model is applied and evaluated over six quite disparate data sets of images covering: fluorescence microscopy, weak-fluorescence molecular images, phase contrast microscopy and histopathology images, and is shown to exceed the state of the art in performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Electronics for Extreme Environments
NASA Astrophysics Data System (ADS)
Patel, J. U.; Cressler, J.; Li, Y.; Niu, G.
2001-01-01
Most of the NASA missions involve extreme environments comprising radiation and low or high temperatures. Current practice of providing friendly ambient operating environment to electronics costs considerable power and mass (for shielding). Immediate missions such as the Europa orbiter and lander and Mars landers require the electronics to perform reliably in extreme conditions during the most critical part of the mission. Some other missions planned in the future also involve substantial surface activity in terms of measurements, sample collection, penetration through ice and crust and the analysis of samples. Thus it is extremely critical to develop electronics that could reliably operate under extreme space environments. Silicon On Insulator (SOI) technology is an extremely attractive candidate for NASA's future low power and high speed electronic systems because it offers increased transconductance, decreased sub-threshold slope, reduced short channel effects, elimination of kink effect, enhanced low field mobility, and immunity from radiation induced latch-up. A common belief that semiconductor devices function better at low temperatures is generally true for bulk devices but it does not hold true for deep sub-micron SOI CMOS devices with microscopic device features of 0.25 micrometers and smaller. Various temperature sensitive device parameters and device characteristics have recently been reported in the literature. Behavior of state of the art technology devices under such conditions needs to be evaluated in order to determine possible modifications in the device design for better performance and survivability under extreme environments. Here, we present a unique approach of developing electronics for extreme environments to benefit future NASA missions as described above. This will also benefit other long transit/life time missions such as the solar sail and planetary outposts in which electronics is out open in the unshielded space at the ambient space temperatures and always exposed to radiation. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.
Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø
2003-10-07
The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.
NASA Astrophysics Data System (ADS)
Holwell, David A.; Keays, Reid R.; McDonald, Iain; Williams, Megan R.
2015-12-01
The Platinova Reef, in the Skaergaard Intrusion, east Greenland, is an example of a magmatic Cu-PGE-Au sulfide deposit formed in the latter stages of magmatic differentiation. As is characteristic with such deposits, it contains a low volume of sulfide, displays peak metal offsets and is Cu rich but Ni poor. However, even for such deposits, the Platinova Reef contains extremely low volumes of sulfide and the highest Pd and Au tenor sulfides of any magmatic ore deposit. Here, we present the first LA-ICP-MS analyses of sulfide microdroplets from the Platinova Reef, which show that they have the highest Se concentrations (up to 1200 ppm) and lowest S/Se ratios (190-700) of any known magmatic sulfide deposit and have significant Te enrichment. In addition, where sulfide volume increases, there is a change from high Pd-tenor microdroplets trapped in situ to larger, low tenor sulfides. The transition between these two sulfide regimes is marked by sharp peaks in Au, and then Te concentration, followed by a wider peak in Se, which gradually decreases with height. Mineralogical evidence implies that there is no significant post-magmatic hydrothermal S loss and that the metal profiles are essentially a function of magmatic processes. We propose that to generate these extreme precious and semimetal contents, the sulfides must have formed from an anomalously metal-rich package of magma, possibly formed via the dissolution of a previously PGE-enriched sulfide. Other processes such as kinetic diffusion may have also occurred alongside this to produce the ultra-high tenors. The characteristic metal offset pattern observed is largely controlled by partitioning effects, producing offset peaks in the order Pt+Pd>Au>Te>Se>Cu that are entirely consistent with published D values. This study confirms that extreme enrichment in sulfide droplets can occur in closed-system layered intrusions in situ, but this will characteristically form ore deposits that are so low in sulfide that they do not conform to conventional deposit models for Cu-Ni-PGE sulfides which require very high R factors, and settling of sulfide liquids.
2016-01-01
Circulating tumor cells (CTCs) are extremely rare cells in blood containing billions of other cells. The selective capture and identification of rare cells with sufficient sensitivity is a real challenge. Driven by this need, this manuscript reports the development of a multifunctional biocompatible graphene oxide quantum dots (GOQDs) coated, high-luminescence magnetic nanoplatform for the selective separation and diagnosis of Glypican-3 (GPC3)-expressed Hep G2 liver cancer tumor CTCs from infected blood. Experimental data show that an anti-GPC3-antibody-attached multifunctional nanoplatform can be used for selective Hep G2 hepatocellular carcinoma tumor cell separation from infected blood containing 10 tumor cells/mL of blood in a 15 mL sample. Reported data indicate that, because of an extremely high two-photon absorption cross section (40530 GM), an anti-GPC3-antibody-attached GOQDs-coated magnetic nanoplatform can be used as a two-photon luminescence platform for selective and very bright imaging of a Hep G2 tumor cell in a biological transparency window using 960 nm light. Experimental results with nontargeted GPC3(−) and SK-BR-3 breast cancer cells show that multifunctional-nanoplatform-based cell separation, followed by two-photon imaging, is highly selective for Hep G2 hepatocellular carcinoma tumor cells. PMID:25939643
Paleoindian settlement of the high-altitude Peruvian Andes.
Rademaker, Kurt; Hodgins, Gregory; Moore, Katherine; Zarrillo, Sonia; Miller, Christopher; Bromley, Gordon R M; Leach, Peter; Reid, David A; Álvarez, Willy Yépez; Sandweiss, Daniel H
2014-10-24
Study of human adaptation to extreme environments is important for understanding our cultural and genetic capacity for survival. The Pucuncho Basin in the southern Peruvian Andes contains the highest-altitude Pleistocene archaeological sites yet identified in the world, about 900 meters above confidently dated contemporary sites. The Pucuncho workshop site [4355 meters above sea level (masl)] includes two fishtail projectile points, which date to about 12.8 to 11.5 thousand years ago (ka). Cuncaicha rock shelter (4480 masl) has a robust, well-preserved, and well-dated occupation sequence spanning the past 12.4 thousand years (ky), with 21 dates older than 11.5 ka. Our results demonstrate that despite cold temperatures and low-oxygen conditions, hunter-gatherers colonized extreme high-altitude Andean environments in the Terminal Pleistocene, within about 2 ky of the initial entry of humans to South America. Copyright © 2014, American Association for the Advancement of Science.
Membrane bioreactors for treating waste streams.
Howell, J A; Arnot, T C; Liu, W
2003-03-01
Membrane bioreactors (MBRs) have a number of advantages for treating wastewater containing large quantities of BOD. This paper reviews the inherent advantages of an MBR, which include high potential biomass loadings, lower sludge yields, and retention of specialized organisms that may not settle well in clarifiers. A major problem in effluent treatment occurs when mixed inorganic and organic wastes occur with high concentrations of pollutants. Inorganics that might cause extremes of pH and/or salinity will inhibit microbial growth and only specialized organisms can survive under these conditions. Refractory organics are only biodegraded with difficulty by specialized organisms, which usually do not resist the extreme inorganic environments. The use of membrane bioreactors to help separate the micro-organisms from the inorganic compounds, yet permit the organics to permeate, has been developed in two different designs that are outlined in this paper. The use of membrane contactors in a multimembrane stripping system to treat acidic chlorinated wastes is proposed and discussed.
Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena
2017-07-05
Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the putative function of different MHC genes in future studies of MHC in relation to disease resistance and fitness.
Golyshina, Olga V; Timmis, Kenneth N
2005-09-01
For several decades, the bacterium Acidithiobacillus (previously Thiobacillus) has been considered to be the principal acidophilic sulfur- and iron-oxidizing microbe inhabiting acidic environments rich in ores of iron and other heavy metals, responsible for the metal solubilization and leaching from such ores, and has become the paradigm of such microbes. However, during the last few years, new studies of a number of acidic environments, particularly mining waste waters, acidic pools, etc., in diverse geographical locations have revealed the presence of new cell wall-lacking archaea related to the recently described, acidophilic, ferrous-iron oxidizing Ferroplasma acidiphilum. These mesophilic and moderately thermophilic microbes, representing the family Ferroplasmaceae, were numerically significant members of the microbial consortia of the habitats studied, are able to mobilize metals from sulfide ores, e.g. pyrite, arsenopyrite and copper-containing sulfides, and are more acid-resistant than iron and sulfur oxidizing bacteria exhibiting similar eco-physiological properties. Ferroplasma cell membranes contain novel caldarchaetidylglycerol tetraether lipids, which have extremely low proton permeabilities, as a result of the bulky isoprenoid core, and which are probably a major contributor to the extreme acid tolerance of these cell wall-less microbes. Surprisingly, several intracellular enzymes, including an ATP-dependent DNA ligase have pH optima close to that of the external environment rather than of the cytoplasm. Ferroplasma spp. are probably the major players in the biogeochemical cycling of sulfur and sulfide metals in highly acidic environments, and may have considerable potential for biotechnological applications such as biomining and biocatalysis under extreme conditions.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Sasaki, Wataru; Kubodera, Shoichi
2006-05-01
We demonstrated a low-debris, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO2) nanoparticles. By using a low SnO2 concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.
Microbial Diversity-Based Novel Crop Protection Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser
Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine,more » in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.« less
Extremely Preterm Infant Skin Care: A Transformation of Practice Aimed to Prevent Harm.
Johnson, Deanna E
2016-10-01
The skin of extremely preterm infants is underdeveloped and has poor barrier function. Skin maintenance interventions initiated in the neonatal intensive care unit (NICU) have immediate and lifelong implications when the potential for infection, allergen sensitization, and altered aesthetic outcomes are considered. In addition, the high-level medical needs of extremely preterm infants demand skin-level medical interventions that too often result in unintended skin harm. We describe the use of a harm prevention, or consequence-centered, approach to skin care, which facilitates safer practice for extremely premature infants. Neonatal and pediatric Advanced Practice Registered Nurses (APRN) came together for monthly meetings to review the evidence around best skin care practices for extremely preterm infants, with an emphasis on reduction of skin harm. Findings were focused on the population of interest and clinical implementation strategies. Skin care for extremely preterm infants remains overlooked by current literature. However, clinical practice pearls were extracted and applied in a manner that promotes safer skin care practices in the NICU. Gentle adhesives, such as silicone tapes and hydrogel-backed electrodes, can help to reduce medical adhesive-related skin injuries. Diaper wipes are not appropriate for use among extremely preterm infants, as many ingredients may contain potential allergens. Skin cleansers should be pH neutral to the skin and the prophylactic use of petrolatum-based emollients should be avoided. Further exploration and understanding of skin care practices that examine issues of true risk versus hypothetical risk of harm.
Study of Reactive Materials for Development of new Protective Clothing Concepts
1977-10-01
G, and V agents and must not unduly change the fabric permeability. Microencapsulation , the technique of encasing extremely small droplets or...preparing and evaluating decontaminating microcapsules that contain strong-base alkali- metal hydroxides, s-Im-bis(N,chloro-2,4,6-trichlorophenyl) urea...and various amines as the core phase. We are now identifying and developing microcapsule wall materials that will be stable to the highly basic core
Organic Substitutes for Charcoal in ’Black Powder’ Type Pyrotechnic Formulations
1984-07-01
mixture, containing phenolphthalein, strand-burn rates were measured at various high pressures of nitrogen. Cinematography , at 1000 frames per second...the cinematography the burning phenolphthalein "sticks" showed a liquid surface that was in extreme turbulence and liquid drops were propelled by...This has led to a hypothetical mechanism explaining sulfur’s role in flame spreading which should be explored in future work. From cinematography
Method for producing high dielectric strength microvalves
Kirby, Brian J [San Francisco, CA; Reichmuth, David S [Oakland, CA; Shepodd, Timothy J [Livermore, CA
2006-04-04
A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.
Sh, Jiying; Jin, Dan; Lu, Wei; Zhang, Xiaoyu; Zhang, Chao; Li, Liang; Ma, Ruiqiang; Xiao, Lei; Wang, Yiding; Lin, Min
2008-06-01
To isolate and characterize a glyphosate-resistant strain from extremely polluted environment. A glyphosate-resistant strain was isolated from extremely polluted soil taking glyphosate as the selection pressure. Its glyphosate resistance, growth optimal pH and antibiotic sensitivity were detected. Its morphology, cultural characteristics, physiological and biochemical properties, chemotaxonomy and 16S rDNA sequences were studied. Based on these results, the strain was identified according to the ninth edition of Bergey's manual of determinative bacteriology. The isolate was named SL06500. It could grow in M9 minimal medium containing up to 500 mmol/L glyphosate. The cell growth optimal pH of SL06500 was 4.0. It was resistant to ampicillin, kanamycin, tetracycline and chloromycetin. The 16S rDNA of SL06500 was amplified by PCR and sequenced. Compared with the published nucleotide sequence of 16S rDNA in NCBI (National Center for Biotechnology Information), SL06500 showed high identity with Achromobacter and Alcaligenes. Based on morphological, physiological and biochemical characteristics, the strain was identified as Alcaligenes xylosoxidans subsp.xylosoxidans SL06500 according to the ninth edition of Bergey's manual of determinative bacteriology. Strain SL06500 is worthy to be studied because of its high glyphosate resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-03-16
The Hazardous Materials Response Unit (HMRU) and the Counterterrorism and Forensic Science Research Unit (CTFSRU), Laboratory Division, Federal Bureau of Investigation (FBI) have been mandated to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a portable, hand-held, hazardous materials acoustic inspection device (HAZAID) that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as wellmore » as container sizes and materials, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The HAZAID prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the HAZAID prototype. High bandwidth ultrasonic transducers combined with the advanced pulse compression technique allowed researchers to 1) impart large amounts of energy, 2) obtain high signal-to-noise ratios, and 3) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of this feasibility study demonstrated that the HAZAID experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.« less
Gutiérrez-Preciado, Ana; Vargas-Chávez, Carlos; Reyes-Prieto, Mariana; Ordoñez, Omar F; Santos-García, Diego; Rosas-Pérez, Tania; Valdivia-Anistro, Jorge; Rebollar, Eria A; Saralegui, Andrés; Moya, Andrés; Merino, Enrique; Farías, María Eugenia; Latorre, Amparo; Souza, Valeria
2017-01-01
We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. 'Chiri qhucha' in Quechua means 'cold lake', which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina.
Yamashiro, Takumi; Murata, Kousaku; Kawai, Shigeyuki
2017-03-01
Deinococcus radiodurans is highly resistant to ionizing radiation and UV radiation, and oxidative stress caused by such radiations. NADP(H) seems to be important for this resistance (Slade and Radman, Microbiol Mol Biol Rev 75:133-191; Slade, Radman, Microbiol Mol Biol Rev 75:133-191, 2011), but the mechanism underlying the generation of NADP(H) or NAD(H) in D. radiodurans has not fully been addressed. Intracellular concentrations of NAD + , NADH, NADP + , and NADPH in D. radiodurans are also not determined yet. We found that cell extracts of D. radiodurans catalyzed reduction of NAD(P) + in vitro, indicating that D. radiodurans cells contain both enzymes and a high concentration of substrates for this activity. The enzyme and the substrate were attributed to glucose-6-phosphate dehydrogenase and glucose-6-phosphate of which intracellular concentration was extremely high. Unexpectedly, the intracellular concentration of NAD(H) was also much greater than that of NADP(H), suggesting some significant roles of NADH. These unusual features of this bacterium would shed light on a new aspect of physiology of this bacterium.
Study of CT Scan Flooding System at High Temperature and Pressure
NASA Astrophysics Data System (ADS)
Chen, X. Y.
2017-12-01
CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.
Exploring "Extreme" Physics with an Inexpensive Plastic Toy Popper
ERIC Educational Resources Information Center
Lapp, David R.
2008-01-01
This article describes an activity that can be performed with an inexpensive plastic toy popper. The activity builds skill at analysing motion and results in the calculation of a surprisingly extreme acceleration. (Contains 1 figure.)
Ye, Qing; Pan, Hao; Liu, Changhua
2015-01-01
This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717
Brown, Jeremy M; Thomson, Robert C
2017-07-01
As the application of genomic data in phylogenetics has become routine, a number of cases have arisen where alternative data sets strongly support conflicting conclusions. This sensitivity to analytical decisions has prevented firm resolution of some of the most recalcitrant nodes in the tree of life. To better understand the causes and nature of this sensitivity, we analyzed several phylogenomic data sets using an alternative measure of topological support (the Bayes factor) that both demonstrates and averts several limitations of more frequently employed support measures (such as Markov chain Monte Carlo estimates of posterior probabilities). Bayes factors reveal important, previously hidden, differences across six "phylogenomic" data sets collected to resolve the phylogenetic placement of turtles within Amniota. These data sets vary substantially in their support for well-established amniote relationships, particularly in the proportion of genes that contain extreme amounts of information as well as the proportion that strongly reject these uncontroversial relationships. All six data sets contain little information to resolve the phylogenetic placement of turtles relative to other amniotes. Bayes factors also reveal that a very small number of extremely influential genes (less than 1% of genes in a data set) can fundamentally change significant phylogenetic conclusions. In one example, these genes are shown to contain previously unrecognized paralogs. This study demonstrates both that the resolution of difficult phylogenomic problems remains sensitive to seemingly minor analysis details and that Bayes factors are a valuable tool for identifying and solving these challenges. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhu, Yi; Han, Jianlin; Wang, Jiandong; Shibata, Norio; Sodeoka, Mikiko; Soloshonok, Vadim A; Coelho, Jaime A S; Toste, F Dean
2018-04-11
New methods for preparation of tailor-made fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry. The asymmetric construction of quaternary C-F stereogenic centers is the most synthetically challenging and, consequently, the least developed area of research. As a reflection of this apparent methodological deficit, pharmaceutical drugs featuring C-F stereogenic centers constitute less than 1% of all fluorine-containing medicines currently on the market or in clinical development. Here we provide a comprehensive review of current research activity in this area, including such general directions as asymmetric electrophilic fluorination via organocatalytic and transition-metal catalyzed reactions, asymmetric elaboration of fluorine-containing substrates via alkylations, Mannich, Michael, and aldol additions, cross-coupling reactions, and biocatalytic approaches.
A comparative assessment of statistical methods for extreme weather analysis
NASA Astrophysics Data System (ADS)
Schlögl, Matthias; Laaha, Gregor
2017-04-01
Extreme weather exposure assessment is of major importance for scientists and practitioners alike. We compare different extreme value approaches and fitting methods with respect to their value for assessing extreme precipitation and temperature impacts. Based on an Austrian data set from 25 meteorological stations representing diverse meteorological conditions, we assess the added value of partial duration series over the standardly used annual maxima series in order to give recommendations for performing extreme value statistics of meteorological hazards. Results show the merits of the robust L-moment estimation, which yielded better results than maximum likelihood estimation in 62 % of all cases. At the same time, results question the general assumption of the threshold excess approach (employing partial duration series, PDS) being superior to the block maxima approach (employing annual maxima series, AMS) due to information gain. For low return periods (non-extreme events) the PDS approach tends to overestimate return levels as compared to the AMS approach, whereas an opposite behavior was found for high return levels (extreme events). In extreme cases, an inappropriate threshold was shown to lead to considerable biases that may outperform the possible gain of information from including additional extreme events by far. This effect was neither visible from the square-root criterion, nor from standardly used graphical diagnosis (mean residual life plot), but from a direct comparison of AMS and PDS in synoptic quantile plots. We therefore recommend performing AMS and PDS approaches simultaneously in order to select the best suited approach. This will make the analyses more robust, in cases where threshold selection and dependency introduces biases to the PDS approach, but also in cases where the AMS contains non-extreme events that may introduce similar biases. For assessing the performance of extreme events we recommend conditional performance measures that focus on rare events only in addition to standardly used unconditional indicators. The findings of this study are of relevance for a broad range of environmental variables, including meteorological and hydrological quantities.
The Coherent X-ray Imaging instrument at the Linac Coherent Light Source
Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; ...
2015-04-15
The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-29
Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al-5Mg-Mn alloy with low Fe content (<0.1 wt %), intermetallic Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
This technical report contains the Higher-Order Logic (HOL) listings of the partial verification of the requirements and design for a commercially developed processor interface unit (PIU). The PIU is an interface chip performing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault tolerant computer system. This system, the Fault Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. This report contains the actual HOL listings of the PIU verification as it currently exists. Section two of this report contains general-purpose HOL theories and definitions that support the PIU verification. These include arithmetic theories dealing with inequalities and associativity, and a collection of tactics used in the PIU proofs. Section three contains the HOL listings for the completed PIU design verification. Section 4 contains the HOL listings for the partial requirements verification of the P-Port.
Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives
Tappan, Bryce C.; Bowden, Patrick R.; Manner, Virginia W.; ...
2017-12-04
During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoridemore » (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.« less
Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tappan, Bryce C.; Bowden, Patrick R.; Manner, Virginia W.
During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoridemore » (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.« less
Making Energy-Water Nexus Scenarios more Fit-for-Purpose through Better Characterization of Extremes
NASA Astrophysics Data System (ADS)
Yetman, G.; Levy, M. A.; Chen, R. S.; Schnarr, E.
2017-12-01
Often quantitative scenarios of future trends exhibit less variability than the historic data upon which the models that generate them are based. The problem of dampened variability, which typically also entails dampened extremes, manifests both temporally and spatially. As a result, risk assessments that rely on such scenarios are in danger of producing misleading results. This danger is pronounced in nexus issues, because of the multiple dimensions of change that are relevant. We illustrate the above problem by developing alternative joint distributions of the probability of drought and of human population totals, across U.S. counties over the period 2010-2030. For the dampened-extremes case we use drought frequencies derived from climate models used in the U.S. National Climate Assessment and the Environmental Protection Agency's population and land use projections contained in its Integrated Climate and Land Use Scenarios (ICLUS). For the elevated extremes case we use an alternative spatial drought frequency estimate based on tree-ring data, covering a 555-year period (Ho et al 2017); and we introduce greater temporal and spatial extremes in the ICLUS socioeconomic projections so that they conform to observed extremes in the historical U.S. spatial census data 1790-present (National Historical Geographic Information System). We use spatial and temporal coincidence of high population and extreme drought as a proxy for energy-water nexus risk. We compare the representation of risk in the dampened-extreme and elevated-extreme scenario analysis. We identify areas of the country where using more realistic portrayals of extremes makes the biggest difference in estimate risk and suggest implications for future risk assessments. References: Michelle Ho, Upmanu Lall, Xun Sun, Edward R. Cook. 2017. Multiscale temporal variability and regional patterns in 555 years of conterminous U.S. streamflow. Water Resources Research. . doi: 10.1002/2016WR019632
Demina, Tatiana A; Pietilä, Maija K; Svirskaitė, Julija; Ravantti, Janne J; Atanasova, Nina S; Bamford, Dennis H; Oksanen, Hanna M
2016-07-19
Despite their high genomic diversity, all known viruses are structurally constrained to a limited number of virion morphotypes. One morphotype of viruses infecting bacteria, archaea, and eukaryotes is the tailless icosahedral morphotype with an internal membrane. Although it is considered an abundant morphotype in extreme environments, only seven such archaeal viruses are known. Here, we introduce Haloarcula californiae icosahedral virus 1 (HCIV-1), a halophilic euryarchaeal virus originating from salt crystals. HCIV-1 also retains its infectivity under low-salinity conditions, showing that it is able to adapt to environmental changes. The release of progeny virions resulting from cell lysis was evidenced by reduced cellular oxygen consumption, leakage of intracellular ATP, and binding of an indicator ion to ruptured cell membranes. The virion contains at least 12 different protein species, lipids selectively acquired from the host cell membrane, and a 31,314-bp-long linear double-stranded DNA (dsDNA). The overall genome organization and sequence show high similarity to the genomes of archaeal viruses in the Sphaerolipoviridae family. Phylogenetic analysis based on the major conserved components needed for virion assembly-the major capsid proteins and the packaging ATPase-placed HCIV-1 along with the alphasphaerolipoviruses in a distinct, well-supported clade. On the basis of its virion morphology and sequence similarities, most notably, those of its core virion components, we propose that HCIV-1 is a member of the PRD1-adenovirus structure-based lineage together with other sphaerolipoviruses. This addition to the lineage reinforces the notion of the ancient evolutionary links observed between the viruses and further highlights the limits of the choices found in nature for formation of a virion. Under conditions of extreme salinity, the majority of the organisms present are archaea, which encounter substantial selective pressure, being constantly attacked by viruses. Regardless of the enormous viral sequence diversity, all known viruses can be clustered into a few structure-based viral lineages based on their core virion components. Our description of a new halophilic virus-host system adds significant insights into the largely unstudied field of archaeal viruses and, in general, of life under extreme conditions. Comprehensive molecular characterization of HCIV-1 shows that this icosahedral internal membrane-containing virus exhibits conserved elements responsible for virion organization. This places the virus neatly in the PRD1-adenovirus structure-based lineage. HCIV-1 further highlights the limited diversity of virus morphotypes despite the astronomical number of viruses in the biosphere. The observed high conservation in the core virion elements should be considered in addressing such fundamental issues as the origin and evolution of viruses and their interplay with their hosts. Copyright © 2016 Demina et al.
High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal
Aguilar, Andres; Roemer, Gary; Debenham, Sally; Binns, Matthew; Garcelon, David; Wayne, Robert K.
2004-01-01
The San Nicolas Island fox (Urocyon littoralis dickeyi) is genetically the most monomorphic sexually reproducing animal population yet reported and has no variation in hypervariable genetic markers. Such low levels of variation imply lower resistance to pathogens, reduced fitness, and problems in distinguishing kin from non-kin. In vertebrates, the MHC contains genes that influence disease resistance and kin recognition and may be under intense balancing selection in some populations. Hence, genetic variation at the MHC might persist despite the extreme monomorphism shown by neutral markers. We examine variation of five loci within the MHC of San Nicolas Island foxes and find remarkably high levels of variation. Further, we show by simulation that genetic monomorphism at neutral loci and high MHC variation could arise only through an extreme population bottleneck of <10 individuals, ≈10–20 generations ago, accompanied by unprecedented selection coefficients of >0.5 on MHC loci. These results support the importance of balancing selection as a mechanism to maintain variation in natural populations and expose the difficulty of using neutral markers as surrogates for variation in fitness-related loci. PMID:14990802
Extreme Ultraviolet Explorer Bright Source List
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick
1994-01-01
Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.
Lee, Sooheyong; Jo, Wonhyuk; Cho, Yong Chan; Lee, Hyun Hwi; Lee, Geun Woo
2017-05-01
We report on the first integrated apparatus for measuring surface and thermophysical properties and bulk structures of a highly supersaturated solution by combining electrostatic levitation with real-time laser/x-ray scattering. Even today, a proper characterization of supersaturated solutions far above their solubility limits is extremely challenging because heterogeneous nucleation sites such as container walls or impurities readily initiate crystallization before the measurements can be performed. In this work, we demonstrate simultaneous measurements of drying kinetics and surface tension of a potassium dihydrogen phosphate (KH 2 PO 4 ) aqueous solution droplet and its bulk structural evolution beyond the metastable zone width limit. Our experimental finding shows that the noticeable changes of the surface properties are accompanied by polymerizations of hydrated monomer clusters. The novel electrostatic levitation apparatus presented here provides an effective means for studying a wide range of highly concentrated solutions and liquids in deep metastable states.
Selection criteria for wear resistant powder coatings under extreme erosive wear conditions
NASA Astrophysics Data System (ADS)
Kulu, P.; Pihl, T.
2002-12-01
Wear-resistant thermal spray coatings for sliding wear are hard but brittle (such as carbide and oxide based coatings), which makes them useless under impact loading conditions and sensitive to fatigue. Under extreme conditions of erosive wear (impact loading, high hardness of abrasives, and high velocity of abradant particles), composite coatings ensure optimal properties of hardness and toughness. The article describes tungsten carbide-cobalt (WC-Co) systems and self-fluxing alloys, containing tungsten carbide based hardmetal particles [NiCrSiB-(WC-Co)] deposited by the detonation gun, continuous detonation spraying, and spray fusion processes. Different powder compositions and processes were studied, and the effect of the coating structure and wear parameters on the wear resistance of coatings are evaluated. The dependence of the wear resistance of sprayed and fused coatings on their hardness is discussed, and hardness criteria for coating selection are proposed. The so-called “double cemented” structure of WC-Co based hardmetal or metal matrix composite coatings, as compared with a simple cobalt matrix containing particles of WC, was found optimal. Structural criteria for coating selection are provided. To assist the end user in selecting an optimal deposition method and materials, coating selection diagrams of wear resistance versus hardness are given. This paper also discusses the cost-effectiveness of coatings in the application areas that are more sensitive to cost, and composite coatings based on recycled materials are offered.
Indirect Estimation of Radioactivity in Containerized Cargo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarman, Kenneth D.; Scherrer, Chad; Smith, Eric L.
Detecting illicit nuclear and radiological material in containerized cargo challenges the state of the art in detection systems. Current systems are being evaluated and new systems envisioned to address the need for the high probability of detection and extremely low false alarm rates necessary to thwart potential threats and extremely low nuisance and false alarm rates while maintaining necessary to maintain the flow of commerce impacted by the enormous volume of commodities imported in shipping containers. Maintaining flow of commerce also means that primary inspection must be rapid, requiring relatively indirect measurements of cargo from outside the containers. With increasingmore » information content in such indirect measurements, it is natural to ask how the information might be combined to improved detection. Toward this end, we present an approach to estimating isotopic activity of naturally occurring radioactive material in cargo grouped by commodity type, combining container manifest data with radiography and gamma spectroscopy aligned to location along the container. The heart of this approach is our statistical model of gamma counts within peak regions of interest, which captures the effects of background suppression, counting noise, convolution of neighboring cargo contributions, and down-scattered photons to provide physically constrained estimates of counts due to decay of specific radioisotopes in cargo alone. Coupled to that model, we use a mechanistic model of self-attenuated radiation flux to estimate the isotopic activity within cargo, segmented by location within each container, that produces those counts. We demonstrate our approach by applying it to a set of measurements taken at the Port of Seattle in 2006. This approach to synthesizing disparate available data streams and extraction of cargo characteristics holds the potential to improve primary inspection using current detection capabilities and to enable simulation-based evaluation of new candidate detection systems.« less
Ma, Sanyuan; Shi, Run; Wang, Xiaogang; Liu, Yuanyuan; Chang, Jiasong; Gao, Jie; Lu, Wei; Zhang, Jianduo; Zhao, Ping; Xia, Qingyou
2014-01-01
Evolution has produced some remarkable creatures, of which silk gland is a fascinating organ that exists in a variety of insects and almost half of the 34,000 spider species. The impressive ability to secrete huge amount of pure silk protein, and to store proteins at an extremely high concentration (up to 25%) make the silk gland of Bombyx mori hold great promise to be a cost-effective platform for production of recombinant proteins. However, the extremely low production yields of the numerous reported expression systems greatly hindered the exploration and application of silk gland bioreactors. Using customized zinc finger nucleases (ZFN), we successfully performed genome editing of Bmfib-H gene, which encodes the largest and most abundant silk protein, in B. mori with efficiency higher than any previously reported. The resulted Bmfib-H knocked-out B. mori showed a smaller and empty silk gland, abnormally developed posterior silk gland cells, an extremely thin cocoon that contain only sericin proteins, and a slightly heavier pupae. We also showed that removal of endogenous Bmfib-H protein could significantly increase the expression level of exogenous protein. Furthermore, we demonstrated that the bioreactor is suitable for large scale production of protein-based materials. PMID:25359576
Reyes-Prieto, Mariana; Ordoñez, Omar F.; Santos-García, Diego; Rosas-Pérez, Tania; Valdivia-Anistro, Jorge; Rebollar, Eria A.; Saralegui, Andrés; Moya, Andrés; Merino, Enrique; Farías, María Eugenia
2017-01-01
We report the genome sequence of Exiguobacterium chiriqhucha str. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of the Exiguobacterium genomes available suggest that our strain belongs to the same species as the previously reported E. pavilionensis str. RW-2 and Exiguobacterium str. GIC 31. We describe this species and propose the chiriqhucha name to group them. ‘Chiri qhucha’ in Quechua means ‘cold lake’, which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bp E. chiriqhucha str. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that confer E. chiriqhucha str. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina. PMID:28439458
Deterrence and Engagement: A Blended Strategic Approach to a Resurgent Russia
2016-04-15
increasing the alliances’ hard power projection to contain and deter further aggression. This strategic approach represents an extreme pendulum ...This strategic approach represents an extreme pendulum swing that is a polar opposite of the U.S. administration’s 2009 approach to ‘Reset’ relations
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
NASA Technical Reports Server (NTRS)
Rogers, Keith Eric
1994-01-01
The basic concepts of command preshaping were taken and adapted to the framework of systems with constant amplitude (on-off) actuators. In this context, pulse sequences were developed which help to attenuate vibration in flexible systems with high robustness to errors in frequency identification. Sequences containing impulses of different magnitudes were approximated by sequences containing pulses of different durations. The effects of variation in pulse width on this approximation were examined. Sequences capable of minimizing loads induced in flexible systems during execution of commands were also investigated. The usefulness of these techniques in real-world situations was verified by application to a high fidelity simulation of the space shuttle. Results showed that constant amplitude preshaping techniques offer a substantial improvement in vibration reduction over both the standard and upgraded shuttle control methods and may be mission enabling for use of the shuttle with extremely massive payloads.
Clausen, J L; Georgian, T; Gardner, K H; Douglas, T A
2018-01-01
This study compares conventional grab sampling to incremental sampling methodology (ISM) to characterize metal contamination at a military small-arms-range. Grab sample results had large variances, positively skewed non-normal distributions, extreme outliers, and poor agreement between duplicate samples even when samples were co-located within tens of centimeters of each other. The extreme outliers strongly influenced the grab sample means for the primary contaminants lead (Pb) and antinomy (Sb). In contrast, median and mean metal concentrations were similar for the ISM samples. ISM significantly reduced measurement uncertainty of estimates of the mean, increasing data quality (e.g., for environmental risk assessments) with fewer samples (e.g., decreasing total project costs). Based on Monte Carlo resampling simulations, grab sampling resulted in highly variable means and upper confidence limits of the mean relative to ISM.
Gusev, Oleg; Suetsugu, Yoshitaka; Cornette, Richard; Kawashima, Takeshi; Logacheva, Maria D.; Kondrashov, Alexey S.; Penin, Aleksey A.; Hatanaka, Rie; Kikuta, Shingo; Shimura, Sachiko; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Shagimardanova, Elena; Alexeev, Dmitry; Govorun, Vadim; Wisecaver, Jennifer; Mikheyev, Alexander; Koyanagi, Ryo; Fujie, Manabu; Nishiyama, Tomoaki; Shigenobu, Shuji; Shibata, Tomoko F.; Golygina, Veronika; Hasebe, Mitsuyasu; Okuda, Takashi; Satoh, Nori; Kikawada, Takahiro
2014-01-01
Anhydrobiosis represents an extreme example of tolerance adaptation to water loss, where an organism can survive in an ametabolic state until water returns. Here we report the first comparative analysis examining the genomic background of extreme desiccation tolerance, which is exclusively found in larvae of the only anhydrobiotic insect, Polypedilum vanderplanki. We compare the genomes of P. vanderplanki and a congeneric desiccation-sensitive midge P. nubifer. We determine that the genome of the anhydrobiotic species specifically contains clusters of multi-copy genes with products that act as molecular shields. In addition, the genome possesses several groups of genes with high similarity to known protective proteins. However, these genes are located in distinct paralogous clusters in the genome apart from the classical orthologues of the corresponding genes shared by both chironomids and other insects. The transcripts of these clustered paralogues contribute to a large majority of the mRNA pool in the desiccating larvae and most likely define successful anhydrobiosis. Comparison of expression patterns of orthologues between two chironomid species provides evidence for the existence of desiccation-specific gene expression systems in P. vanderplanki. PMID:25216354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Miao; Mohammadi, Reza; Turner, Christopher L.
In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Miao; Turner, Christopher L.; Mohammadi, Reza
In this work, we explore the hardening mechanisms in WB{sub 4}-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under non-hydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB{sub 4} solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.
Damage Avoidance and Repair Mechanisms of Extreme Halophiles to Ionizing Radiation
2013-07-01
acid , and mycosporin -‐ like amino acids . However, any biochemical analyses remain...and contained high levels of Mn, phosphates, and amino acids , supporting an essential role in ROS...and UF392 had 1.5-‐ fold more PO4 and 2.5-‐fold more amino acids
1983-02-01
Okazaki, 2 it appeared likely that well-aligned SbSI would have extremely useful piezoelectric properties. It was appreciated that a source of high purity...which often facilitate this, and may also lead to special physical effects (as with the ferroelectric behavior of SbSI). In hydroxyapatite , there are two...Fabrication of Piezoelectric Cerdmics," Ferroelectrics 41, 77-69 (1982). 3. P.E.O. Morgan, "Synthetic Studies of Antimony Sulfur Iodide," Proposal to ONR from
Quenching and disruption of lunar KREEP lava flows by impacts
NASA Technical Reports Server (NTRS)
Ryder, Graham
1988-01-01
The results of a reexamination of petrography of the Apollo 15 KREEP basalts are reported. Several of the basalts contain yellow residual glasses which cross-cut the crystallized phases; some show more extreme disruption. The features of the glasses appear to be compatible only with impact disruption, ejection, and quenching from actively crystallizing flows, indicating a high impact flux immediately after the impact that formed the Imbrium basin. No other example of impacts into active lava flows is known in the solar system.
Precision Robotic Assembly Machine
None
2017-12-09
The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.
NASA Astrophysics Data System (ADS)
Schlögl, Matthias; Laaha, Gregor
2017-04-01
The assessment of road infrastructure exposure to extreme weather events is of major importance for scientists and practitioners alike. In this study, we compare the different extreme value approaches and fitting methods with respect to their value for assessing the exposure of transport networks to extreme precipitation and temperature impacts. Based on an Austrian data set from 25 meteorological stations representing diverse meteorological conditions, we assess the added value of partial duration series (PDS) over the standardly used annual maxima series (AMS) in order to give recommendations for performing extreme value statistics of meteorological hazards. Results show the merits of the robust L-moment estimation, which yielded better results than maximum likelihood estimation in 62 % of all cases. At the same time, results question the general assumption of the threshold excess approach (employing PDS) being superior to the block maxima approach (employing AMS) due to information gain. For low return periods (non-extreme events) the PDS approach tends to overestimate return levels as compared to the AMS approach, whereas an opposite behavior was found for high return levels (extreme events). In extreme cases, an inappropriate threshold was shown to lead to considerable biases that may outperform the possible gain of information from including additional extreme events by far. This effect was visible from neither the square-root criterion nor standardly used graphical diagnosis (mean residual life plot) but rather from a direct comparison of AMS and PDS in combined quantile plots. We therefore recommend performing AMS and PDS approaches simultaneously in order to select the best-suited approach. This will make the analyses more robust, not only in cases where threshold selection and dependency introduces biases to the PDS approach but also in cases where the AMS contains non-extreme events that may introduce similar biases. For assessing the performance of extreme events we recommend the use of conditional performance measures that focus on rare events only in addition to standardly used unconditional indicators. The findings of the study directly address road and traffic management but can be transferred to a range of other environmental variables including meteorological and hydrological quantities.
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-01
Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %), intermetallic Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888
A content analysis of tweets about high-potency marijuana.
Cavazos-Rehg, Patricia A; Sowles, Shaina J; Krauss, Melissa J; Agbonavbare, Vivian; Grucza, Richard; Bierut, Laura
2016-09-01
"Dabbing" involves heating extremely concentrated forms of marijuana to high temperatures and inhaling the resulting vapor. We studied themes describing the consequences of using highly concentrated marijuana by examining the dabbing-related content on Twitter. Tweets containing dabbing-related keywords were collected from 1/1-1/31/2015 (n=206,854). A random sample of 5000 tweets was coded for content according to pre-determined categories about dabbing-related behaviors and effects experienced using a crowdsourcing service. An examination of tweets from the full sample about respiratory effects and passing out was then conducted by selecting tweets with relevant keywords. Among the 5000 randomly sampled tweets, 3540 (71%) were related to dabbing marijuana concentrates. The most common themes included mentioning current use of concentrates (n=849; 24%), the intense high and/or extreme effects from dabbing (n=763; 22%) and excessive/heavy dabbing (n=517; 15%). Extreme effects included both physiological (n=124/333; 37%) and psychological effects (n=55/333; 17%). The most common physiologic effects, passing out (n=46/333; 14%) and respiratory effects (n=30/333; 9%), were then further studied in the full sample of tweets. Coughing was the most common respiratory effect mentioned (n=807/1179; 68%), and tweeters commonly expressed dabbing with intentions to pass out (416/915; 45%). This study adds to the limited understanding of marijuana concentrates and highlights self-reported physical and psychological effects from this type of marijuana use. Future research should further examine these effects and the potential severity of health consequences associated with concentrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin
2015-01-01
A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313
Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin
2015-07-01
A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.
Investigating Holocene Glacial and Pluvials Events in the Sierra Nevada of California
NASA Astrophysics Data System (ADS)
Ashford, J.; Sickman, J. O.; Lucero, D. M.; Kirby, M.; Gray, A. B.
2016-12-01
Understanding interannual and decadal variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental record and uncertainty caused by extrapolating paleoclimate data from lower elevation systems to the alpine snow deposition zone. Longer paleo records from high elevation systems are necessary to provide a more accurate record of snow water content and extreme precipitation events over millennial timescales that can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake, an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning along with grain-size analysis at 1-2 cm increments. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K year record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating fine grained, light-dark bands (1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. The sand to gravel sized clasts are most likely associated with extreme precipitation events. Preliminary grain-size analysis results show evidence of isolated extreme hydrologic events and sections of increased event frequency which we hypothesize are the result of atmospheric rivers intersecting the southern Sierra Nevada outside of the snow covered period.
NASA Astrophysics Data System (ADS)
Lerner, R. M.
1984-06-01
It is proposed to design and construct energy storage flywheel rotors as statically limp tubes containing liquid mass, and to drive and support this rotating system (at least in part) directly, rather than through separately engineered subsystems. If the liquid is presumed thixotropic or viscous, nominally stiff structures subject to plastic flow are included. At one extreme of the design range, nearly all the mass is in the liquid and the only significant stresses are those in the wall of the containment; at the other extreme, the statically limp structure is nearly dry and is formed into an oblate surface by the centrifugal force of its own mass.
Tsublova, E G; Ivanova, T G; Ivanova, T N; Iasnetsov, V V
2013-07-01
In experiments on nonlinear male mice the ability of new derivatives of nitrogen-containing heterocyclic compounds to increase the physical working capacity in conditions of hyperthermia, hypothermia and acute normobaric hypoxia and hypercapnia has been investigated. It is established, that pyridine derivative IBHF-11 has more expressed positive action in the said conditions. It provided increase of the working capacity of animals at all kinds of extreme influence, and the value of positive action was comparable, and in conditions of acute normobaric hypoxia and hypercapnia exceeded those at the reference products bemitil and bromantan.
NASA Astrophysics Data System (ADS)
Dong, Qingchen; Qu, Wenshan; Liang, Wenqing; Guo, Kunpeng; Xue, Haibin; Guo, Yuanyuan; Meng, Zhengong; Ho, Cheuk-Lam; Leung, Chi-Wah; Wong, Wai-Yeung
2016-03-01
Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium.Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium. Electronic supplementary information (ESI) available: PXRD, EDX and SEM original data. See DOI: 10.1039/c6nr00034g
Quasi-normal modes of extremal BTZ black holes in TMG
NASA Astrophysics Data System (ADS)
Afshar, Hamid R.; Alishahiha, Mohsen; Mosaffa, Amir E.
2010-08-01
We study the spectrum of tensor perturbations on extremal BTZ black holes in topologically massive gravity for arbitrary values of the coefficient of the Chern-Simons term, μ. Imposing proper boundary conditions at the boundary of the space and at the horizon, we find that the spectrum contains quasi-normal modes.
The Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes
Sorokin, Dimitry Y.; Kuenen, J. Gijs; Muyzer, Gerard
2011-01-01
Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanations for that is high-energy efficiency of dissimilatory conversions of inorganic sulfur compounds, both oxidative and reductive, sufficient to cope with costly life at double extreme conditions. The oxidative part of the sulfur cycle is driven by chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria (SOB), which are unique for soda lakes. The haloalkaliphilic SOB are present in the surface sediment layer of various soda lakes at high numbers of up to 106 viable cells/cm3. The culturable forms are so far represented by four novel genera within the Gammaproteobacteria, including the genera Thioalkalivibrio, Thioalkalimicrobium, Thioalkalispira, and Thioalkalibacter. The latter two were only found occasionally and each includes a single species, while the former two are widely distributed in various soda lakes over the world. The genus Thioalkalivibrio is the most physiologically diverse and covers the whole spectrum of salt/pH conditions present in soda lakes. Most importantly, the dominant subgroup of this genus is able to grow in saturated soda brines containing 4 M total Na+ – a so far unique property for any known aerobic chemolithoautotroph. Furthermore, some species can use thiocyanate as a sole energy source and three out of nine species can grow anaerobically with nitrogen oxides as electron acceptor. The reductive part of the sulfur cycle is active in the anoxic layers of the sediments of soda lakes. The in situ measurements of sulfate reduction rates and laboratory experiments with sediment slurries using sulfate, thiosulfate, or elemental sulfur as electron acceptors demonstrated relatively high sulfate reduction rates only hampered by salt-saturated conditions. However, the highest rates of sulfidogenesis were observed not with sulfate, but with elemental sulfur followed by thiosulfate. Formate, but not hydrogen, was the most efficient electron donor with all three sulfur electron acceptors, while acetate was only utilized as an electron donor under sulfur-reducing conditions. The native sulfidogenic populations of soda lakes showed a typical obligately alkaliphilic pH response, which corresponded well to the in situ pH conditions. Microbiological analysis indicated a domination of three groups of haloalkaliphilic autotrophic sulfate-reducing bacteria belonging to the order Desulfovibrionales (genera Desulfonatronovibrio, Desulfonatronum, and Desulfonatronospira) with a clear tendency to grow by thiosulfate disproportionation in the absence of external electron donor even at salt-saturating conditions. Few novel representatives of the order Desulfobacterales capable of heterotrophic growth with volatile fatty acids and alcohols at high pH and moderate salinity have also been found, while acetate oxidation was a function of a specialized group of haloalkaliphilic sulfur-reducing bacteria, which belong to the phylum Chrysiogenetes. PMID:21747784
A lexicon based method to search for extreme opinions
Gamallo, Pablo
2018-01-01
Studies in sentiment analysis and opinion mining have been focused on many aspects related to opinions, namely polarity classification by making use of positive, negative or neutral values. However, most studies have overlooked the identification of extreme opinions (most negative and most positive opinions) in spite of their vast significance in many applications. We use an unsupervised approach to search for extreme opinions, which is based on the automatic construction of a new lexicon containing the most negative and most positive words. PMID:29799867
A lexicon based method to search for extreme opinions.
Almatarneh, Sattam; Gamallo, Pablo
2018-01-01
Studies in sentiment analysis and opinion mining have been focused on many aspects related to opinions, namely polarity classification by making use of positive, negative or neutral values. However, most studies have overlooked the identification of extreme opinions (most negative and most positive opinions) in spite of their vast significance in many applications. We use an unsupervised approach to search for extreme opinions, which is based on the automatic construction of a new lexicon containing the most negative and most positive words.
Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.
Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume
2017-09-20
A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.
High-Pressure Design of Advanced BN-Based Materials.
Kurakevych, Oleksandr O; Solozhenko, Vladimir L
2016-10-20
The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.
Naumann, S; Lange, S; Polak, G; Kalhoelfer, V; Motlagh, L; Goebel, A; Wohlrab, J; Neubert, R H H
2014-01-01
The effect of the lipophilicity of a carrier on human skin penetration of an extremely lipophilic active model substance was evaluated by using Franz type diffusion cells. Oil-in-water model emulsions containing different amounts of the oily phase were prepared, and Myritol® PC (M-PC) was selected as lipophilic marker component of the oily phase. The penetrated amounts of the lipophilic model substance salicyloyl phytosphingosine (SP) were determined by high-performance liquid chromatography with ultraviolet detection, while M-PC was detected using gas chromatography coupled with mass spectrometry. It has been ascertained that the amount of the lipid phase within the emulsion influenced the penetration profile of the active ingredient SP. The emulsion containing the lowest proportion of the lipid phase provides the best conditions for SP penetration. Surprisingly, the penetration behavior of M-PC was influenced by the oily phase in the same way. Regarding the M-PC and the SP penetration profiles from each emulsion, a solvent drag mechanism can be assumed whereby M-PC acts as penetration enhancer. In conclusion, the penetration rate of the active ingredient SP and the marker component M-PC are in reverse proportion to the oil content of the formulations. The lipophilicity of SP and M-PC, their solubility and their thermodynamic activity within the vehicle could have an effect on their penetration behavior. Additionally, M-PC has the property to enhance the penetration rates of extremely lipophilic substances even at low concentrations.
Jiao, Yin Shan; Liu, Yuan Hui; Yan, Hui; Wang, En Tao; Tian, Chang Fu; Chen, Wen Xin; Guo, Bao Lin; Chen, Wen Feng
2015-12-01
In present study, we report our extensive survey on the diversity and biogeography of rhizobia associated with Sophora flavescens, a sophocarpidine (matrine)-containing medicinal legume. We additionally investigated the cross nodulation, infection pattern, light and electron microscopies of root nodule sections of S. flavescens infected by various rhizobia. Seventeen genospecies of rhizobia belonging to five genera with seven types of symbiotic nodC genes were found to nodulate S. flavescens in natural soils. In the cross-nodulation tests, most representative rhizobia in class α-Proteobacteria, whose host plants belong to different cross-nodulation groups, form effective indeterminate nodules, while representative rhizobia in class β-Proteobacteria form ineffective nodules on S. flavescens. Highly host-specific biovars of Rhizobium leguminosarum (bv. trifolii and bv. viciae) and Rhizobium etli bv. phaseoli could establish symbioses with S. flavescens, providing further evidence that S. flavescens is an extremely promiscuous legume and it does not have strict selectivity on either the symbiotic genes or the species-determining housekeeping genes of rhizobia. Root-hair infection is found as the pattern that rhizobia have gained entry into the curled root hairs. Electron microscopies of ultra-thin sections of S. flavescens root nodules formed by different rhizobia show that the bacteroids are regular or irregular rod shape and nonswollen types. Some bacteroids contain poly-β-hydroxybutyrate (PHB), while others do not, indicating the synthesis of PHB in bacteroids is rhizobia-dependent. The extremely promiscuous symbiosis between S. flavescens and different rhizobia provide us a basis for future studies aimed at understanding the molecular interactions of rhizobia and legumes.
The occurrence of extreme events a tsunami and storm deposit in Chilcatay formation, Ica, Peru.
NASA Astrophysics Data System (ADS)
Poma Porras, O. A.; Cayo, R., Jr.; Casas, N.; Figueroa, F.
2016-12-01
The Chilcatay Formation (Oligocene to middle Miocene) south of Peru is in the Pisco Basin contains a thick sequence of Cenozoic sediments that record at least three marine transgressions characterized by successions of fine sandstones, siltstones, and diatomaceous mudstones. The sequence records certain facies that are typical of high-energy events, including extreme storms, tsunamis and earthquakes. The studied deposit is characterized by the presence of two layers of varying thickness. The lower layer, which is in markedly erosive contact with the underlying layer, is a very coarse-grained sandstone, highly sorted and with subrounded to subangular grains. The thickness varies laterally from one to 50 cm. The top layer, which is 40-60 cm thick and exposed for approximately 200 m, consists of a dense matrix of coarse-grained size fragments of molluscs (oysters), barnacles, and lithoclasts. The biogenic matrix contains many igneous (gabbro, granite) and metamorphic cobbles and boulders, and lithic tuffs, clusters of barnacles, and fragments consisting of vermetid gastropods reefs. The abundant igneous and metamorphic cobbles and boulders are rounded and subrounded, with a larger diameter between 3 and 140 cm, and occurring at a density of 3-8 clasts by square meter. The lithic tuffs are subrounded, have an ovoid morphology and a greater diameter between 1 and 44 cm. All these clasts occur scattered and 'floating' in the bioclastic matrix. The characteristics of the studied layer suggest that it was deposited by an extreme event that eroded the area between shoreface and backshore redepositing the materials and leaving a chaotic facies distribution with cobbles and boulders of different lithology. The large waves caused heavy erosion of the sediments in the shallow seafloor and the basement, mixing the biogenic and lithogenic clasts. The large size of these clasts suggests that such an event may have been a tsunami.
Granite Rock Outcrops: An Extreme Environment for Soil Nematodes?
Austin, Erin; Semmens, Katharine; Parsons, Charles
2009-01-01
We studied soil nematode communities from the surface of granite flatrock outcrops in the eastern Piedmont region of the United States. The thin soils that develop here experience high light intensity and extreme fluctuations in temperature and moisture and host unique plant communities. We collected soils from outcrop microsites in Virginia (VA) and North Carolina (NC) in various stages of succession (Primitive, Minimal, and Mature) and compared soil properties and nematode communities to those of adjacent forest soils. Nematodes were present in most outcrop soils, with densities comparable to forest soils (P > 0.05). Nematode communities in Mature and Minimal soils had lower species richness than forest soils (P < 0.05) and contained more bacterial-feeders and fewer fungal-feeders (P < 0.05). Primitive soils contained either no nematodes (NC) or only a single species (Mesodorylaimus sp., VA). Nematode communities were similar between Mature and Minimal soils, according to trophic group representation, MI, PPI, EI, SI, and CI (P > 0.05). Forest soils had a higher PPI value (P < 0.05), but otherwise community indices were similar to outcrop soils (P > 0.05). Outcrop nematode communities failed to group together in a Bray-Curtis cluster analysis, indicating higher variability in community structure than the Forest soils, which did cluster together. A high proportion of the nematodes were extracted from outcrop soils in coiled form (33-89%), indicating that they used anhydrobiosis to persist in this unique environment. PMID:22661780
Characterization of outer membranes isolated from Treponema pallidum, the syphilis spirochete.
Radolf, J D; Robinson, E J; Bourell, K W; Akins, D R; Porcella, S F; Weigel, L M; Jones, J D; Norgard, M V
1995-11-01
Previous freeze-fracture electron microscopy (EM) studies have shown that the outer membrane (OM) of Treponema pallidum contains sparse transmembrane proteins. One strategy for molecular characterization of these rare OM proteins involves isolation of T. pallidum OMs. Here we describe a simple and extremely gentle method for OM isolation based upon isopycnic sucrose density gradient ultracentrifugation of treponemes following plasmolysis in 20% sucrose. Evidence that T. pallidum OMs were isolated included (i) the extremely low protein/lipid ratio of the putative OM fraction, (ii) a paucity of antigenic and/or biochemical markers for periplasmic, cytoplasmic membrane, and cytosolic compartments, and (iii) freeze-fracture EM demonstrating that the putative OMs contained intramembranous particles highly similar in size and density to those in native T. pallidum OMs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the OMs contained a relatively small number of treponemal proteins, including several which did not appear to correspond to previously characterized T. pallidum antigens. Interestingly, these candidate rare OM proteins reacted poorly with syphilitic sera as determined by both conventional immunoblotting and enhanced chemiluminescence. Compared with whole cells, T. pallidum OMs were deficient in cardiolipin, the major lipoidal antigen reactive with antibodies in syphilitic sera. Also noteworthy was that other lipoidal constituents of OMs, including the recently discovered glycolipids, did not react with human syphilitic sera. These latter observations suggest that the poor antigenicity of virulent T. pallidum is a function of both the lipid composition and the low protein content of its OM.
NASA Astrophysics Data System (ADS)
Ostrenga, D.; Shen, S.; Vollmer, B.; Meyer, D. L.
2017-12-01
NASA climate reanalysis dataset from MERRA-2 contains numerous data for atmosphere, land, and ocean, that are grouped into 95 products of archived volume over 300 TB. The data files are saved as hourly-file, day-file (hourly time interval) and month-file containing up to 125 parameters. Due to the large number of data files and the sheer data volumes, it is a challenging for users, especially those in the application research community, to handle dealing with the original data files. Most of these researchers prefer to focus on a small region or single location using the hourly data for long time periods to analyze extreme weather events or say winds for renewable energy applications. At the GES DISC, we have been working closely with the science teams and the application user community to create several new value added data products and high quality services to facilitate the use of the model data for various types of research. We have tested converting hourly data from one-day per file into different data cubes, such as one-month, one-year, or whole-mission and then continued to analyze the efficiency of the accessibility of this newly structured data through various services. Initial results have shown that compared to the original file structure, the new data has significantly improved the performance for accessing long time series. It is noticed that the performance is associated to the cube size and structure, the compression method, and how the data are accessed. The optimized data cube structure will not only improve the data access, but also enable better online analytic services for doing statistical analysis and extreme events mining. Two case studies will be presented using the newly structured data and value added services, the California drought and the extreme drought of the Northeastern states of Brazil. Furthermore, data access and analysis through cloud storage capabilities will be investigated.
The Focal Surface of the JEM-EUSO Telescope
NASA Technical Reports Server (NTRS)
Kawasaki, Yoshiya
2007-01-01
Extreme Universe Space Observatory onboard JEM/EP (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region to observe time-resolved atmospheric fluorescence images of the extensive air showers from the International Space Station. The focal surface is a spherical curved surface, and its area amounts to about 4.5 square m. The focal surface detector is covered with about 6,000 multi-anode photomultipliers (MAPMTs). The focal surface detector consists of Photo-Detector-Modules, each of which consists of 9 Elementary Cells (ECs). The EC contains 4 units of the MAPMTs. Therefore, about 1,500 ECs or about 160 PDMS are arranged on the whole of the focal surface of JEM- EUSO. The EC is a basic unit of the front-end electronics. The PDM is a, basic unit of the data acquisition system
Oestreicher, Víctor; Jobbágy, Matías
2017-03-25
Highly crystalline HKUST-1 and COK-16-like phases were obtained based on a mild in situ alkalinization one-pot epoxide driven method. A slurry composed of finely ground trimesic acid, H 3 BTC, dispersed in a CuCl 2 aqueous solution quantitatively developed well crystallized HKUST-1 after the addition of propylene oxide. The use of solid H 3 BTC ensures a low concentration of free linker, favoring crystalline growth over the precipitation of amorphous or metastable impurities. An extreme space-time yield of 2.1 × 10 5 kg m -3 day -1 was reached, with no linker excess and minimum use of solvent. The method was equally efficient in the achievement of pure NENU/COK-16 phases, containing [PW 12 O 40 ] 3- , [PMo 12 O 40 ] 3- and [SiMo 12 O 40 ] 4- polyoxometalates.
NASA Technical Reports Server (NTRS)
Fura, David A.; Windley, Phillip J.; Cohen, Gerald C.
1993-01-01
This technical report contains the HOL listings of the specification of the design and major portions of the requirements for a commercially developed processor interface unit (or PIU). The PIU is an interface chip performing memory interface, bus interface, and additional support services for a commercial microprocessor within a fault-tolerant computer system. This system, the Fault-Tolerant Embedded Processor (FTEP), is targeted towards applications in avionics and space requiring extremely high levels of mission reliability, extended maintenance-free operation, or both. This report contains the actual HOL listings of the PIU specification as it currently exists. Section two of this report contains general-purpose HOL theories that support the PIU specification. These theories include definitions for the hardware components used in the PIU, our implementation of bit words, and our implementation of temporal logic. Section three contains the HOL listings for the PIU design specification. Aside from the PIU internal bus (I-Bus), this specification is complete. Section four contains the HOL listings for a major portion of the PIU requirements specification. Specifically, it contains most of the definition for the PIU behavior associated with memory accesses initiated by the local processor.
Hu, Ying; Ren, Jie; Peng, Zhao; Umana, Arnoldo A; Le, Ha; Danilova, Tatiana; Fu, Junjie; Wang, Haiyan; Robertson, Alison; Hulbert, Scot H; White, Frank F; Liu, Sanzhen
2018-01-01
Goss's wilt (GW) of maize is caused by the Gram-positive bacterium Clavibacter michiganensis subsp. nebraskensis (Cmn) and has spread in recent years throughout the Great Plains, posing a threat to production. The genetic basis of plant resistance is unknown. Here, a simple method for quantifying disease symptoms was developed and used to select cohorts of highly resistant and highly susceptible lines known as extreme phenotypes (XP). Copy number variation (CNV) analyses using whole genome sequences of bulked XP revealed 141 genes containing CNV between the two XP groups. The CNV genes include the previously identified common rust resistant locus rp1 . Multiple Rp1 accessions with distinct rp1 haplotypes in an otherwise susceptible accession exhibited hypersensitive responses upon inoculation. GW provides an excellent system for the genetic dissection of diseases caused by closely related subspecies of C. michiganesis . Further work will facilitate breeding strategies to control GW and provide needed insight into the resistance mechanism of important related diseases such as bacterial canker of tomato and bacterial ring rot of potato.
The Universe Going Green: Extraordinarily Strong [OIII]5007 in Typical Dwarf Galaxies at z~3
NASA Astrophysics Data System (ADS)
Malkan, Matthew Arnold; Cohen, Daniel
2017-01-01
We constructed the average SEDs of U-dropout galaxies in the Subaru Deep Field. This sample contains more than 5000 Lyman-break galaxies at z~3. Their average near- and mid-IR colors were obtained by stacking JHK and IRAC imaging, in bins of stellar mass. At the lowest mass bins an increasingly strong excess flux is seen in the K filter. This excess can reach 1 magnitude in the broadband filter, and we attribute it to strong \\OIII $\\lambda{5007}$ line emission. The equivalent width is extraordinarily high, reaching almost 1000\\Ang\\ for the average z=3 galaxy at an i magnitude of 27. Such extreme [OIII] emission is very rare in the current epoch, only seen in a handful of metal-deficient dwarf starbursts sometimes referred to as ''Green Peas". In contrast, extreme [OIII]--strong enough to dominate the entire broad-band SED--was evidently the norm for faint galaxies at high redshift. We present evidence that these small but numerous galaxies were primarily responsible for the reionization of the Universe.
USDA-ARS?s Scientific Manuscript database
Provision of human milk has important implications for the health and outcomes of extremely preterm (EP) infants. This study evaluated the effects of an exclusive human milk diet on the health of EP infants during their stay in the neonatal intensive care unit. EP infants <1,250 g birth weight recei...
Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle.
Wilson, A H; Shirey, S B; Carlson, R W
2003-06-19
Komatiites are ultramafic volcanic rocks containing more than 18 per cent MgO (ref. 1) that erupted mainly in the Archaean era (more than 2.5 gigayears ago). Although such compositions occur in later periods of Earth history (for example, the Cretaceous komatiites of Gorgona Island), the more recent examples tend to have lower MgO content than their Archaean equivalents. Komatiites are also characterized by their low incompatible-element content, which is most consistent with their generation by high degrees of partial melting (30-50 per cent). Current models for komatiite genesis include the melting of rock at great depth in plumes of hot, diapirically rising mantle or the melting of relatively shallow mantle rocks at less extreme, but still high, temperatures caused by fluxing with water. Here we report a suite of ultramafic lava flows from the Commondale greenstone belt, in the southern part of the Kaapvaal Craton, which represents a previously unrecognized type of komatiite with exceptionally high forsterite content of its igneous olivines, low TiO(2)/Al(2)O(3) ratio, high silica content, extreme depletion in rare-earth elements and low Re/Os ratio. We suggest a model for their formation in which a garnet-enriched residue left by earlier cratonic volcanism was melted by hydration from a subducting slab.
Recent progress in 3-D imaging of sea freight containers
NASA Astrophysics Data System (ADS)
Fuchs, Theobald; Schön, Tobias; Dittmann, Jonas; Sukowski, Frank; Hanke, Randolf
2015-03-01
The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only a relatively low number of angular positions. Instead of today's 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.
Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients
2016-01-01
Objective To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. Methods The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. Results The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. Conclusion In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke. PMID:27606269
Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients.
Lim, Kil-Byung; Lee, Hong-Jae; Yoo, Jeehyun; Yun, Hyun-Ju; Hwang, Hye-Jung
2016-08-01
To investigate the effect of mirror therapy containing functional tasks on upper extremity function and activities of daily living in patients with subacute stroke. The subjects were randomly divided into two groups: the mirror therapy group (30 patients) and the sham therapy group (30 patients). The mirror therapy group underwent a mirror therapy program together with conventional therapy for 20 minutes per day on 5 days per week for 4 weeks. The control group received a sham conventional therapy program under the same schedule as the mirror therapy group. The Fugl-Meyer Motor Function Assessment (FMA), Brunnstrom motor recovery stage, and Modified Barthel Index (MBI) were evaluated 4 weeks after the treatment. The upper extremity function on the affected side and ability to perform daily life activities after the intervention were significantly improved in both groups. After 4 weeks of intervention, improvements in the FMA (p=0.027) and MBI (p=0.041) were significantly greater in the mirror therapy group than the sham therapy group. In this study, we found that the mirror therapy containing functional task was effective in terms of improving the upper extremity functions and activities of daily living in patients with subacute stroke.
Extreme Precipitation and High-Impact Landslides
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Functional Organization of hsp70 Cluster in Camel (Camelus dromedarius) and Other Mammals
Garbuz, David G.; Astakhova, Lubov N.; Zatsepina, Olga G.; Arkhipova, Irina R.; Nudler, Eugene; Evgen'ev, Michael B.
2011-01-01
Heat shock protein 70 (Hsp70) is a molecular chaperone providing tolerance to heat and other challenges at the cellular and organismal levels. We sequenced a genomic cluster containing three hsp70 family genes linked with major histocompatibility complex (MHC) class III region from an extremely heat tolerant animal, camel (Camelus dromedarius). Two hsp70 family genes comprising the cluster contain heat shock elements (HSEs), while the third gene lacks HSEs and should not be induced by heat shock. Comparison of the camel hsp70 cluster with the corresponding regions from several mammalian species revealed similar organization of genes forming the cluster. Specifically, the two heat inducible hsp70 genes are arranged in tandem, while the third constitutively expressed hsp70 family member is present in inverted orientation. Comparison of regulatory regions of hsp70 genes from camel and other mammals demonstrates that transcription factor matches with highest significance are located in the highly conserved 250-bp upstream region and correspond to HSEs followed by NF-Y and Sp1 binding sites. The high degree of sequence conservation leaves little room for putative camel-specific regulatory elements. Surprisingly, RT-PCR and 5′/3′-RACE analysis demonstrated that all three hsp70 genes are expressed in camel's muscle and blood cells not only after heat shock, but under normal physiological conditions as well, and may account for tolerance of camel cells to extreme environmental conditions. A high degree of evolutionary conservation observed for the hsp70 cluster always linked with MHC locus in mammals suggests an important role of such organization for coordinated functioning of these vital genes. PMID:22096537
NASA Technical Reports Server (NTRS)
2002-01-01
Extremely high sediment loads are delivered to the Arabian Sea along the coast of Pakistan (upper left) and western India. In the case of the Indus River (far upper left) this sedimentation, containing large quantities of desert sand, combines with wave action to create a large sand-bar like delta. In the arid environment, the delta lacks much vegetation, but contains numerous mangrove-lined channels. This true-color image from May 2001 shows the transition from India's arid northwest to the wetter regions farther south along the coast. The increase in vegetation along the coast is brought about by the moisture trapping effect of the Western Ghats Mountain Range that runs north-south along the coast. Heavy sediment is visible in the Gulf of Kachchh (north) and the Gulf of Khambhat(south), which surround the Gujarat Peninsula.
Hot wire needle probe for thermal conductivity detection
Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban
2015-11-10
An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.
Critical parts are stored and shipped in environmentally controlled reusable container
NASA Technical Reports Server (NTRS)
Kummerfeld, K. R.
1966-01-01
Environmentally controlled, hermetically sealed, reusable metal cabinet with storage drawers is used to ship and store sensitive electronic, pneumatic, or hydraulic parts or medical supplies under extreme weather or handling conditions. This container is compatible with on-site and transportation handling facilities.
Is the Universe Really That Simple?
NASA Astrophysics Data System (ADS)
Cirkovic, Milan M.
2002-07-01
The intriguing recent suggestion of Tegmark that the universe - contrary to all our experiences and expectations - contains only a small amount of information due to an extremely high degree of internal symmetry is critically examined. It is shown that there are several physical processes, notably Hawking evaporation of black holes and non-zero decoherence time effects described by Plaga, as well as thought experiments of Deutsch and Tegmark himself, which can be construed as arguments against the low-information universe hypothesis. Some ramifications for both quantum mechanics and cosmology are briefly discussed.
2009-05-06
CAPE CANAVERAL, Fla. – In Port Canaveral, Fla., a container is prepared for transfer to the U.S. Army landing craft utility ship Brandy Station. Inside is the control center for the X-band radar installed on the deck of the ship. The radar will provide critical support during launch of space shuttle Atlantis on the STS-125 mission. The radar will work with smaller X-band radars placed on the solid rocket booster retrieval ship Liberty Star to provide extremely high-resolution images of any debris that might be created during Atlantis' launch. Photo credit: NASA/Kim Shiflett
2009-05-06
CAPE CANAVERAL, Fla. – In Port Canaveral, Fla., workers prepare the container that holds the control center for the X-band radar, at right, installed on the U.S. Army landing craft utility ship Brandy Station. The radar will provide critical support during launch of space shuttle Atlantis on the STS-125 mission. The radar will work with smaller X-band radars placed on the solid rocket booster retrieval ship Liberty Star to provide extremely high-resolution images of any debris that might be created during Atlantis' launch. Photo credit: NASA/Kim Shiflett
2014-10-10
extremities, and are projected to rank third in disability-adjusted life years (DALYs) lost in 2020 (Vos et al. 2012). Although primarily from high...5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Garg K., Ward C., Rathbone C. R., Corona B. T., 5d. PROJECT NUMBER...TBST and 5 % milk containing peroxidase-conjugated goat anti- rabbit secondary antibody diluted 1:2000. Membranes were rinsed 6 times in TBST before
3. Credit JPL. Photographic copy of photograph, view south into ...
3. Credit JPL. Photographic copy of photograph, view south into oxidizer tank enclosure and controls on the north side of Test Stand 'C' shortly after the stand's construction in 1957 (oxidizer contents not determined). To the extreme left appear fittings for mounting an engine for tests. Note the robust stainless steel flanges and fittings necessary to contain highly pressurized corrosive chemicals. (JPL negative no. 384-1608-C, 29 August 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.
2012-01-01
This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave climate. Recommendations are given for research to increase understanding of the response of these factors to climate change. Implications of the results for adaptation research are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akinosho, Hannah; Dumitrache, Alexandru; Natzke, Jace
The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons’ stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared in this paper to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons’ staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low densitymore » P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (~25%), while GW-9914 had a low lignin content (~20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Finally, therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.« less
Akinosho, Hannah; Dumitrache, Alexandru; Natzke, Jace; ...
2017-04-26
The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons’ stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared in this paper to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons’ staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low densitymore » P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (~25%), while GW-9914 had a low lignin content (~20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Finally, therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.« less
XAFS imaging of Tsukuba gabbroic rocks: area analysis of chemical composition and local structure.
Mizusawa, Mari; Sakurai, Kenji
2004-03-01
Gabbroic rocks were collected at Mount Tsukuba in Japan, and their XAFS images were studied using a projection-type X-ray fluorescence (XRF) microscope, which is a powerful new tool recently developed for extremely rapid imaging. The instrument employs a grazing-incidence arrangement in order that primary X-rays illuminate the whole sample surface, as well as parallel-beam optics and an extremely close geometry in order to detect XRF by a high-performance X-ray CCD system with 1024 x 1024 pixels. The XRF image indicated that black amphibole and white feldspar, both of which are typical mineral textures of the rock, contain iron. The origin has been suggested to be several small yellowish-brown minerals contained there. The XAFS imaging has been carried out by repeating the exposure of XRF images during the energy scan of the primary X-rays. It has been found that the structure is qualitatively close to that of olivine, and the main differences found in both areas can be explained as a difference in iron and magnesium concentration, i.e. the mixed ratio of forsterite (Mg(2)SiO(4)) and fayalite (Fe(2)SiO(4)). The feasibility of the present XAFS imaging method has been demonstrated for realistic inhomogeneous minerals.
Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses
NASA Astrophysics Data System (ADS)
Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.
2018-06-01
In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.
Post-Newtonian N-body simulations
NASA Astrophysics Data System (ADS)
Aarseth, Sverre J.
2007-06-01
We report on the first fully consistent conventional cluster simulation which includes terms up to the third-order post-Newtonian approximation. Numerical problems for treating extremely energetic binaries orbiting a single massive object are circumvented by employing the special `wheel-spoke' regularization method of Zare which has not been used in large-N simulations before. Idealized models containing N = 1 × 105 particles of mass 1Msolar with a central black hole (BH) of 300Msolar have been studied on GRAPE-type computers. An initial half-mass radius of rh ~= 0.1 pc is sufficiently small to yield examples of relativistic coalescence. This is achieved by significant binary shrinkage within a density cusp environment, followed by the generation of extremely high eccentricities which are induced by Kozai cycles and/or resonant relaxation. More realistic models with white dwarfs and 10 times larger half-mass radii also show evidence of general relativity effects before disruption. An experimentation with the post-Newtonian terms suggests that reducing the time-scales for activating the different orders progressively may be justified for obtaining qualitatively correct solutions without aiming for precise predictions of the final gravitational radiation wave form. The results obtained suggest that the standard loss-cone arguments underestimate the swallowing rate in globular clusters containing a central BH.
NASA Astrophysics Data System (ADS)
Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.
2009-11-01
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the RÃo Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A
2009-11-01
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Adolescent exposure to extremely violent movies.
Sargent, James D; Heatherton, Todd F; Ahrens, M Bridget; Dalton, Madeline A; Tickle, Jennifer J; Beach, Michael L
2002-12-01
To determine exposure of young adolescents to extremely violent movies. Cross-sectional school-based survey of middle school students at 15 randomly selected New Hampshire and Vermont middle schools. Each survey contained a unique list of 50 movies, randomly selected from 603 top box office hits from 1988 to 1999, 51 of which were determined by content analysis to contain extremely violent material. Movie titles only were listed, and adolescents were asked to indicate which ones they had seen. Each movie appeared on approximately 470 surveys. We calculated the percentage of students who had seen each movie for a representative subsample of the student population. We also examined characteristics associated with seeing at least one extremely violent movie. Complete survey information was obtained from 5,456 students. The sample was primarily white and equally distributed by gender. On average, extremely violent movies were seen by 28% of the students in the sample (range 4% to 66%). The most popular movie, Scream, was seen by two-thirds of students overall and over 40% of fifth-graders. Other movies with sexualized violent content were seen by many of these adolescents. Examples include The General's Daughter (rated R for "graphic images related to sexual violence including a rape scene and perverse sexuality") and Natural Born Killers (rated R for "extreme violence and graphic carnage, shocking images, language, and sexuality"), seen by 27% and 20%, respectively. Older students, males, those of lower socioeconomic status, and those with poorer school performance were all significantly more likely to have seen at least one extremely violent movie. This study documents widespread exposure of young adolescents to movies with brutal, and often sexualized, violence. Given that many of these films were marketed to teens, better oversight of the marketing practices of the film industry may be warranted.
Charnnok, Boonya; Suksaroj, Thunwadee; Boonswang, Piyarat; Chaiprapat, Sumate
2013-03-01
This work aimed to investigate the interactive effects of empty bed retention time (EBRT), specific hydraulic loading rate (q) and initial pH (pHi) of the aerated recirculating liquid to remove H2S in extreme acidic biofiltration. Biogas containing H2S 6395±2309ppm and CH4 79.8±2.5% was fed to the biofilter as pH of the high dissolved oxygen recirculating liquid swung between pHi to 0.5. Response surface methodology was employed that gave the H2S removal relationship model with R(2) 0.882. The predicted highest H2S removal within the studied parameter ranges was 94.7% at EBRT 180.0s, q 4.0m(3)/m(2)/h and pHi 3.99. Results from separate runs at a random condition were not statistically different from the model prediction, signifying a validity of the model. Additionally, CH4 content in the exit biogas increased by 4.7±0.4%. Acidithiobacullus sp. predominance in the consortia of this extreme acidic condition was confirmed by DGGE. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molecular Eigensolution Symmetry Analysis and Fine Structure
Harter, William G.; Mitchell, Justin C.
2013-01-01
Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041
Creating the Primordial Quark-Gluon Plasma at the LHC
NASA Astrophysics Data System (ADS)
Harris, John W.
2013-04-01
Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.
Ensemble-based evaluation of extreme water levels for the eastern Baltic Sea
NASA Astrophysics Data System (ADS)
Eelsalu, Maris; Soomere, Tarmo
2016-04-01
The risks and damages associated with coastal flooding that are naturally associated with an increase in the magnitude of extreme storm surges are one of the largest concerns of countries with extensive low-lying nearshore areas. The relevant risks are even more contrast for semi-enclosed water bodies such as the Baltic Sea where subtidal (weekly-scale) variations in the water volume of the sea substantially contribute to the water level and lead to large spreading of projections of future extreme water levels. We explore the options for using large ensembles of projections to more reliably evaluate return periods of extreme water levels. Single projections of the ensemble are constructed by means of fitting several sets of block maxima with various extreme value distributions. The ensemble is based on two simulated data sets produced in the Swedish Meteorological and Hydrological Institute. A hindcast by the Rossby Centre Ocean model is sampled with a resolution of 6 h and a similar hindcast by the circulation model NEMO with a resolution of 1 h. As the annual maxima of water levels in the Baltic Sea are not always uncorrelated, we employ maxima for calendar years and for stormy seasons. As the shape parameter of the Generalised Extreme Value distribution changes its sign and substantially varies in magnitude along the eastern coast of the Baltic Sea, the use of a single distribution for the entire coast is inappropriate. The ensemble involves projections based on the Generalised Extreme Value, Gumbel and Weibull distributions. The parameters of these distributions are evaluated using three different ways: maximum likelihood method and method of moments based on both biased and unbiased estimates. The total number of projections in the ensemble is 40. As some of the resulting estimates contain limited additional information, the members of pairs of projections that are highly correlated are assigned weights 0.6. A comparison of the ensemble-based projection of extreme water levels and their return periods with similar estimates derived from local observations reveals an interesting pattern of match and mismatch. The match is almost perfect in measurement sites where local effects (e.g., wave-induced set-up or local surge in very shallow areas that are not resolved by circulation models) do not contribute to the observed values of water level. There is, however, substantial mismatch between projected and observed extreme values for most of the Estonian coast. The mismatch is largest for sections that are open to high waves and for several bays that are deeply cut into mainland but open for predominant strong wind directions. Detailed quantification of this mismatch eventually makes it possible to develop substantially improved estimates of extreme water levels in sections where local effects considerably contribute into the total water level.
NASA Astrophysics Data System (ADS)
Pavlov, Volodymyr S.; Bezsmernyi, Yurii O.; Zlepko, Sergey M.; Bezsmertna, Halyna V.
2017-08-01
The given paper analyzes principles of interaction and analysis of the reflected optical radiation from biotissue in the process of assessment of regional hemodynamics state in patients with local hypertensive- ischemic pain syndrome of amputation stumps of lower extremities, applying the method of photoplethysmography. The purpose is the evaluation of Laser photoplethysmography (LPPG) diagnostic value in examination of patients with chronic ischemia of lower extremities. Photonic device is developed to determine the level of the peripheral blood circulation, which determines the basic parameters of peripheral blood circulation and saturation level. Device consists of two sensors: infrared sensor, which contains the infrared laser radiation source and photodetector, and red sensor, which contains the red radiation source and photodetector. LPPG method allows to determined pulsatility of blood flow in different areas of the foot and lower leg, the degree of compensation and conservation perspectives limb. Surgical treatment of local hypertensive -ischemic pain syndrome of amputation stumps of lower extremities by means of semiclosed fasciotomy in combination with revasculating osteotrepanation enabled to improve considerably regional hemodynamics in the tissues of the stump and decrease pain and hypostatic disorders.
On the origin of (4)He and (40)Ar in natural gold
NASA Technical Reports Server (NTRS)
Eugster, O.; Hofmann, B.; Niedermann, S.; Thalmann, CH.
1993-01-01
In a first report on our investigations of noble gases in native gold we demonstrated that placer gold contains an excess of radiogenic (4)He and (40)Ar relative to the concentrations expected from in situ decay of U, Th, and K, respectively, during the geologic age of about 30 Ma of the samples. We also showed that the U/Th-(4)He age of 36 Ma of vein-type gold from the Southern Alps agrees with its K-Ar formation age derived from associated muscovite and biotite. We now studied the question of the origin of the (4)He and (40)Ar excesses of placer gold. We conclude that gold contains two components of noble gases, a low-temperature component from fluid inclusions or phases which release noble gases at less than 800 C and a high-temperature component released when gold melts (1064 C). In some samples extremely high U and K concentrations or an unreasonably high formation age would be required to explain the observed (4)He abundances. Thus, trapped (4)He and (40)Ar must be present in gold.
Patterns of amino acid conservation in human and animal immunodeficiency viruses.
Voitenko, Olga S; Dhroso, Andi; Feldmann, Anna; Korkin, Dmitry; Kalinina, Olga V
2016-09-01
Due to their high genomic variability, RNA viruses and retroviruses present a unique opportunity for detailed study of molecular evolution. Lentiviruses, with HIV being a notable example, are one of the best studied viral groups: hundreds of thousands of sequences are available together with experimentally resolved three-dimensional structures for most viral proteins. In this work, we use these data to study specific patterns of evolution of the viral proteins, and their relationship to protein interactions and immunogenicity. We propose a method for identification of two types of surface residues clusters with abnormal conservation: extremely conserved and extremely variable clusters. We identify them on the surface of proteins from HIV and other animal immunodeficiency viruses. Both types of clusters are overrepresented on the interaction interfaces of viral proteins with other proteins, nucleic acids or low molecular-weight ligands, both in the viral particle and between the virus and its host. In the immunodeficiency viruses, the interaction interfaces are not more conserved than the corresponding proteins on an average, and we show that extremely conserved clusters coincide with protein-protein interaction hotspots, predicted as the residues with the largest energetic contribution to the interaction. Extremely variable clusters have been identified here for the first time. In the HIV-1 envelope protein gp120, they overlap with known antigenic sites. These antigenic sites also contain many residues from extremely conserved clusters, hence representing a unique interacting interface enriched both in extremely conserved and in extremely variable clusters of residues. This observation may have important implication for antiretroviral vaccine development. A Python package is available at https://bioinf.mpi-inf.mpg.de/publications/viral-ppi-pred/ voitenko@mpi-inf.mpg.de or kalinina@mpi-inf.mpg.de Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Bywaters, K. F.; Mckay, C. P.; Quinn, R. C.
2017-01-01
Introduction: The identification of perchlorate (ClO4(-)) on Mars has led to the possibility that complete redox couples are available for microbial metabolism in contemporary surface environments. Perchlorate-reducing bacteria (PRB) utilize ClO4(-) and chlorate (ClO3(-)) as terminal electron acceptors due to the high reduction potential. Additionally, ClO4(-) salts have been suggested as a possible source of brines on Mars and spectral evidence indicates that the hydration of ClO4(-) salts in the regolith of Martian is linked to the surface recurring slope lineae (RSL). For these reasons PRB may serve as analog organisms for possible life on Mars. However, there is very little information on the viability of PRB in aqueous environments that contain high levels of perchlorate Microorganisms on or near the surface of Mars, such as in the RSL, would potentially be exposed to high-salinity and high ultraviolet radiation environments. Under these extreme conditions, microorganisms must possess mechanisms for maintaining continued high genome fidelity. To assess possible microbial viability in contemporary Mars analog environments we are investigating the tolerance of two PRB strains in aqueous conditions under high UV-C conditions and high ClO4(-) concentrations.
Separation of negatively charged carbohydrates by capillary electrophoresis.
Linhardt, R J; Pervin, A
1996-01-12
Capillary electrophoresis (CE) has recently emerged as a highly promising technique consuming an extremely small amount of sample and capable of the rapid, high-resolution separation, characterization, and quantitation of analytes. CE has been used for the separation of biopolymers, including acidic carbohydrates. Since CE is basically an analytical method for ions, acidic carbohydrates that give anions in weakly acid, neutral, or alkaline media are often the direct objects of this method. The scope of this review is limited to the use of CE for the analysis of carbohydrates containing carboxylate, sulfate, and phosphate groups as well as neutral carbohydrates that have been derivatized to incorporate strongly acidic functionality, such as sulfonate groups.
High power Raman-converter based on H2-filled inhibited coupling HC-PCF
NASA Astrophysics Data System (ADS)
Benoit, A.; Beaudou, B.; Debord, B.; Gerome, F.; Benabid, F.
2017-02-01
We report on high power Raman-converter frequency stage based on hydrogen-filled inhibited-coupling hollow-core photonic crystal fibers pumped by an Yb-fiber picosecond laser. This fiber Raman-convertor can operate in two SRS emission regimes by simply controlling the fiber length or the gas pressure. It can set to either generate favorably single laser line or to generate an extremely wide Raman comb. Based on this we demonstrate a pico-second pulse Raman source of 9.3 W average-power at 1.8 μm, and an ultra-wide Raman comb spanning over more than five octaves from UV to mid-infrared, containing around 70 laser lines.
Isotopic compositions of cometary matter returned by Stardust.
McKeegan, Kevin D; Aléon, Jerome; Bradley, John; Brownlee, Donald; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Fallon, Stewart; Floss, Christine; Gilmour, Jamie; Gounelle, Matthieu; Graham, Giles; Guan, Yunbin; Heck, Philipp R; Hoppe, Peter; Hutcheon, Ian D; Huth, Joachim; Ishii, Hope; Ito, Motoo; Jacobsen, Stein B; Kearsley, Anton; Leshin, Laurie A; Liu, Ming-Chang; Lyon, Ian; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; Meibom, Anders; Messenger, Scott; Mostefaoui, Smail; Mukhopadhyay, Sujoy; Nakamura-Messenger, Keiko; Nittler, Larry; Palma, Russ; Pepin, Robert O; Papanastassiou, Dimitri A; Robert, François; Schlutter, Dennis; Snead, Christopher J; Stadermann, Frank J; Stroud, Rhonda; Tsou, Peter; Westphal, Andrew; Young, Edward D; Ziegler, Karen; Zimmermann, Laurent; Zinner, Ernst
2006-12-15
Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.
[Pollutants produced in municipal refuse container during transfer process].
Wang, Xiao-Yuan; Liu, Yin-Hua; Wang, Fei; Huang, Chang-Ying; Lu, Feng; Xie, Bing
2014-05-01
The generation and variation of the secondary pollutants in containers during seasons of a year were investigated in a municipal refuse transfer station of Shanghai. The results showed that the primary odors, the concentration of H2S was in a range of 0.3-10.3 mg.m-3, CH4 was in a range of 0.02% -2.97% and NH3 was in a range of 0.7-4.5 mg m-3, and their concentrations all reached the peak in the summer. The pH of the leachate was in a range of 5.4-6. 3, COD was 41 633-84 060 mgL- 1, and BOD, was 18 116-34 130 mg.L , the concentration of pollutants were all higher in winter than that in summer. The ammonia concentration of leachate was in a range of 537-1222 mg.L'', while the TP fluctuated acutely in a range of 17.98-296 mg L-1, exhibiting the relationship with seasonal variation. Extreme temperatures especially the high temperature in summer significantly affected air pollution producing, which indicated that containers should be kept against high temperature exposure and long residence time in order to prevent flammable gases and other pollutants generated largely.
Schmid, P; Schlick, W; Irsigler, K
1976-01-09
A new method for determination of the specific weight of the gas-free human body is presented. Volume measurement is facilitated by extremely precise scales, by means of which a well-defined amount of water which was removed from a "patient container" is weighed. After the test subject has entered the container and is standing up to the neck in water, the container is closed. The combined gas volume consisting of the subject's lung volume, his intestinal gas and the air around his head is measured by lowering the pressure by an exactly-defined amount. This is done by opening a valve at the bottom of the container, which results in the outflow of a certain amount of water, the volume of which corresponds to the volume expansion inside the container. The gas volume prior to expansion can then be calculated by application of the gas laws. The advantages of this measuring device are its relatively small size, the high precision and the fact that the procedure is not unpleasant for the subject, as the head is not submerged under water.
Ju, Jianhua; Rajski, Scott R.; Lim, Si-Kyu; Seo, Jeong-Woo; Peters, Noël R.; Hoffmann, F. Michael; Shen, Ben
2009-01-01
Migrastatin (1), iso-migrastatin (5) and lactimidomycin (7) are all glutarimide-containing polyketides known for their unique structures and cytotoxic activities against human cancer cell lines. Migrastatin, a strong inhibitor of tumor cell migration, has been an important lead in the development of antimetastatic agents. Yet studies of the related 12-membered macrolides iso-migrastatin, lactimidomycin and related analogs have been hampered by their limited availability. We report here the production, isolation, structural characterization and biological activities of iso-migrastatin, lactimidomycin, and 23 related congeners. Our studies showed that, as a family, the glutarimide-containing 12-membered macrolides are extremely potent cell migration inhibitors with some members displaying activity on par or superior to that of migrastatin as exemplified by compounds 5, 7, and 9–12. On the basis of these findings, the structures and activity of this family of compounds as cell migration inhibitors are discussed. PMID:19132897
NASA Technical Reports Server (NTRS)
Munasinghe, L.; Jun, T.; Rind, D. H.
2012-01-01
Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.
Development and Validation of an Aquatic Fine Sediment Biotic Index
NASA Astrophysics Data System (ADS)
Relyea, Christina D.; Minshall, G. Wayne; Danehy, Robert J.
2012-01-01
The Fine Sediment Biotic Index (FSBI) is a regional, stressor-specific biomonitoring index to assess fine sediment (<2 mm) impacts on macroinvertebrate communities in northwestern US streams. We examined previously collected data of benthic macroinvertebrate assemblages and substrate particle sizes for 1,139 streams spanning 16 western US Level III Ecoregions to determine macroinvertebrate sensitivity (mostly at species level) to fine sediment. We developed FSBI for four ecoregion groupings that include nine of the ecoregions. The grouping were: the Coast (Coast Range ecoregion) (136 streams), Northern Mountains (Cascades, N. Rockies, ID Batholith ecoregions) (428 streams), Rockies (Middle Rockies, Southern Rockies ecoregions) (199 streams), and Basin and Plains (Columbia Plateau, Snake River Basin, Northern Basin and Range ecoregions) (262 streams). We excluded rare taxa and taxa identified at coarse taxonomic levels, including Chironomidae. This reduced the 685 taxa from all data sets to 206. Of these 93 exhibited some sensitivity to fine sediment which we classified into four categories: extremely, very, moderately, and slightly sensitive; containing 11, 22, 30, and 30 taxa, respectively. Categories were weighted and a FSBI score calculated by summing the sensitive taxa found in a stream. There were no orders or families that were solely sensitive or resistant to fine sediment. Although, among the three orders commonly regarded as indicators of high water quality, the Plecoptera (5), Trichoptera (3), and Ephemeroptera (2) contained all but one of the species or species groups classified as extremely sensitive. Index validation with an independent data set of 255 streams found FSBI scores to accurately predict both high and low levels of measured fine sediment.
Colorless polyimide/organoclay nanocomposite substrates for flexible organic light-emitting devices.
Kim, Jin-Hoe; Choi, Myeon-Chon; Kim, Hwajeong; Kim, Youngkyoo; Chang, Jin-Hae; Han, Mijeong; Kim, Il; Ha, Chang-Sik
2010-01-01
We report the preparation and application of indium tin oxide (ITO) coated fluorine-containing polyimide/organoclay nanocomposite substrate. Fluorine-containing polyimide/organoclay nanocomposite films were prepared through thermal imidization of poly(amic acid)/organoclay mixture films, whilst on which ITO thin films were coated on the films using a radio-frequency planar magnetron sputtering by varying the substrate temperature and the ITO thickness. Finally the ITO coated fluorine-containing polyimide/organoclay nanocomposite substrate was employed to make flexible organic light-emitting devices (OLED). Results showed that the lower sheet resistance was achieved when the substrate temperature was high and the ITO film was thick even though the optical transmittance was slightly lowered as the thickness increased. approximately 10 nm width ITO nanorods were found for all samples but the size of clusters with the nanorods was generally increased with the substrate temperature and the thickness. The flexible OLED made using the present substrate was quite stable even when the device was extremely bended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pravica, Michael; Sneed, Daniel; White, Melanie
2014-09-07
We have created a segregated mixture of molecular fluorine and oxygen at high pressure in a diamond anvil cell (DAC) via useful hard x-ray photochemistry. Here, a keyhole-like sample chamber was created in a stainless steel gasket to hold two segregated powders of potassium tetrafluoroborate (KBF 4) and potassium perchlorate (KClO 4) respectively in each hole at a pressure of ~3.0 GPa. Both holes were individually irradiated with synchrotron hard x-rays to release molecular fluorine and molecular oxygen, respectively. Upon irradiation of the hole containing KBF 4 molecular fluorine appeared (as evidenced via Raman spectroscopy) near the region of irradiation.more » The second hole containing KClO 4 was then irradiated and reddish-orange O 2 was observed to form. Oxygen was observed to diffuse throughout both holes whereas molecular fluorine did not. There is some evidence that oxygen difluoride (OF 2) was formed in the hole originally containing the KBF 4.« less
Solar-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components
NASA Technical Reports Server (NTRS)
Doschek, George A.
2002-01-01
This Monthly Progress Report covers the reporting period August 2002 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.
SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components
NASA Technical Reports Server (NTRS)
Doschek, George A.
2001-01-01
This Monthly Progress Report covers the reporting period through June 2001, Phase C/D, Detailed Design and Development Through Launch Plus Thirty Days, for selected components and subsystems of the Extreme ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.
SOLAR-B Mission Extreme Ultraviolet (EUV) Imaging Spectrometer (EIS) Instrument Components
NASA Technical Reports Server (NTRS)
Doschek, George A.
2001-01-01
This Monthly Progress Report covers the reporting period July 2001 of the Detailed Design and Development through Launch plus Thirty Days, Phase C/D, for selected components and subsystems of the Extreme Ultraviolet Imaging Spectrometer (EIS) instrument, hereafter referred to as EIS Instrument Components. This document contains the program status through the reporting period and forecasts the status for the upcoming reporting period.
Isolation of high quality RNA from cereal seeds containing high levels of starch.
Wang, Guifeng; Wang, Gang; Zhang, Xiaowei; Wang, Fang; Song, Rentao
2012-01-01
Cereals are an important source of food, feed and fuel with a rapidly increasing global demand. However, cereal seeds contain high levels of starch and polysaccharides, making the isolation of high quality RNA extremely difficult. To develop a novel method for extracting high quality total RNA from various starch- and polysaccharides-rich cereal seeds, such as maize, rice, sorghum and wheat. We developed a modified sodium dodecyl sulphate (SDS)/TRIzol method. The combined use of a Tris buffer (pH 9.0) and SDS before TRIzol extraction effectively resolved the problem of seed homogenate solidification in such a buffer. A high concentration of SDS was used separately, not only to promote cell lysis but also to effectively dissolve seed sample containing high levels of starch. Moreover, acid phenol saturated with 0.1 M citrate buffer (pH 4.3) was used to separate RNA from DNAs, proteins and high levels of starch. This rapid protocol was compared with other RNA isolation methods preferentially used for plants rich in polysaccharides and secondary metabolites. Gel electrophoresis analysis indicated that the extracted total RNA had good integrity without apparent DNA contamination. Furthermore, an A₂₆₀/₂₈₀ ratio of approximately 2.0, an A₂₆₀/₂₃₀ ratio of more than 2.0 and RIN values of more than 8.6 indicated that the isolated RNA was of high purity. The isolated RNA was suitable for subsequent molecular manipulations, such as reverse-transcription polymerase chain reaction (PCR), rapid amplification of cDNA ends (RACE) and real-time PCR. The study has described an easy, efficient and highly reproducible method for RNA isolation from various cereal seeds. Copyright © 2011 John Wiley & Sons, Ltd.
Brunanská, Magdaléna; Scholz, Tomás; Ibraheem, Mohammed Hassan
2004-06-01
The fine structure of the mature spermatozoon of the tapeworm Electrotaenia malopteruri (Fritsch, 1886), a member of a supposedly primitive group of proteocephalidean tapeworms (Proteocephalidae: Gangesiinae), was studied by transmission electron microscopy for the first time. The mature spermatozoon of E. malopteruri is filiform, tapers at both extremities, and contains two axonemes of 9+"1" trepaxonematan type. A helicoidal crested body (60-150 nm thick) is present at the anterior extremity of the gamete. The twisting cortical microtubules (CM) line the periphery of the spermatozoon continuously. The nucleus, a fine cord of moderately condensed chromatin, occupies the middle part (region III) of the spermatozoon. The slightly electron-dense cytoplasm contains electron-dense granules in regions II and III and becomes more electron-dense at the end of region IV. The anterior and posterior extremities of the spermatozoon contain a single axoneme. Two modes of disorganisation of the axoneme at the posterior end of the mature spermatozoa are described for the first time in cestodes. The present data also indicate that the sperm ultrastructure of E. malapteruri shows some characters typical for onchobothriid tetraphyllideans, but it resembles that of Cyclophyllidea in the arrangement of twisting of the CM.
Ko, Alexander E.; Bieman, Donald N.; Schal, Coby; Silverman, Jules
2015-01-01
BACKGROUND Bait formulations are considered the most effective method for reducing German cockroach infestations. An important property of some bait formulations is secondary kill, whereby active ingredient is translocated in insect-produced residues throughout the cockroach population, especially affecting relatively sedentary early instar nymphs. RESULTS Blattella germanica was collected from a location where baits containing hydramethylnon, fipronil, or indoxacarb became ineffective, and these AIs were topically applied to adult males. Results revealed the first evidence for hydramethylnon resistance, moderate resistance to fipronil and extremely high resistance to indoxacarb. Insecticide residues excreted by field-collected males that ingested commercial baits effectively killed nymphs of an insecticide-susceptible laboratory strain of B. germanica but failed to kill most nymphs of the field-collected strain. CONCLUSIONS We report three novel findings: 1) The first evidence for hydramethylnon resistance in any insect; 2) extremely high levels of indoxacarb resistance in a field population; and 3) reduced secondary mortality in an insecticide-resistant field-collected strain of B. germanica. We suggest that while secondary mortality is considered to be advantageous in cockroach interventions, the ingestion of sublethal doses of AI by nymphs may select for high insecticide resistance by increasing the frequency of AI resistance alleles within the population. PMID:26689433
Costello, Leslie C.; Franklin, Renty B.
2016-01-01
The human prostate gland contains extremely high zinc levels; which is due to the specialized zinc-accumulating acinar epithelial of the peripheral zone. These cells evolved for their unique capability to produce and secrete extremely levels of citrate, which is achieved by the high cellular zinc level effects on the cell metabolism. This review highlights the specific functional and metabolic alterations that result from the accumulation of the high zinc levels, especially its effects on mitochondrial citrate metabolism and terminal oxidation. The implications of zinc in the development and progression of prostate cancer are described, which is the most consistent hallmark characteristic of prostate cancer. The requirement for decreased zinc resulting from down regulation of ZIP1 to prevent zinc cytotoxicity in the malignant cells is described as an essential early event in prostate oncogenesis. This provides the basis for the concept that an agent (such as the zinc ionophore, clioquinol) that facilitates zinc uptake and accumulation in ZIP1-deficient prostate tumors cells will markedly inhibit tumor growth. In the current absence of an efficacious chemotherapy for advanced prostate cancer, and for prevention of early development of malignancy; a zinc treatment regimen is a plausible approach that should be pursued. PMID:27132038
Manipulation of Samples at Extreme Temperatures for Fast in-situ Synchrotron Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Richard
An aerodynamic sample levitation system with laser beam heating was integrated with the APS beamlines 6 ID-D, 11 ID-C and 20 BM-B. The new capability enables in-situ measurements of structure and XANES at extreme temperatures (300-3500 °C) and in conditions that completely avoid contact with container surfaces. In addition to maintaining a high degree of sample purity, the use of aerodynamic levitation enables deep supercooling and greatly enhanced glass formation from a wide variety of melts and liquids. Development and integration of controlled extreme sample environments and new measurement techniques is an important aspect of beamline operations and user support.more » Processing and solidifying liquids is a critical value-adding step in manufacturing semiconductors, optical materials, metals and in the operation of many energy conversion devices. Understanding structural evolution is of fundamental importance in condensed materials, geology, and biology. The new capability provides unique possibilities for materials research and helps to develop and maintain a competitive materials manufacturing and energy utilization industry. Test samples were used to demonstrate key features of the capability including experiments on hot crystalline materials, liquids at temperatures from about 500 to 3500 °C. The use of controlled atmospheres using redox gas mixtures enabled in-situ changes in the oxidation states of cations in melts. Significant innovations in this work were: (i) Use of redox gas mixtures to adjust the oxidation state of cations in-situ (ii) Operation with a fully enclosed system suitable for work with nuclear fuel materials (iii) Making high quality high energy in-situ x-ray diffraction measurements (iv) Making high quality in-situ XANES measurements (v) Publishing high impact results (vi) Developing independent funding for the research on nuclear materials This SBIR project work led to a commercial instrument product for the niche market of processing and studying materials in extreme conditions. MDI registered the trademark “Instruments for Innovation®” and sells products under this trademark. SBIR is the ideal vehicle for funding developments such as this since the total market size is relatively small meaning that venture investments to develop products cannot typically be obtained. The sale of niche market instruments for work in extreme conditions has been several million dollars over the last decade. The work to develop and build and sell this instrument has created stable high paying jobs in the technology manufacturing sector. Outreach enabled by this research helped with PhD thesis research, supported three undergraduate interns and one local high school student. In addition, several scientific articles were published, papers were presented at international conferences, and a workshop was held.« less
Super-Resolution Imaging of the Golgi in Live Cells with a Bio-orthogonal Ceramide Probe**
Erdmann, Roman S.; Takakura, Hideo; Thompson, Alexander D.; Rivera-Molina, Felix; Allgeyer, Edward S.; Bewersdorf, Joerg; Toomre, Derek K.; Schepartz, Alanna
2014-01-01
We report a lipid-based strategy to visualize Golgi structure and dynamics at super-resolution in live cells. The method is based on two novel reagents: a trans-cyclooctene-containing ceramide lipid (Cer-TCO) and a highly reactive, tetrazine-tagged near-IR dye (SiR-Tz). These reagents assemble via an extremely rapid ‘tetrazine-click’ reaction into Cer-SiR, a highly photostable ‘vital dye’ that enables prolonged live cell imaging of the Golgi apparatus by 3D confocal and STED microscopy. Cer-SiR is non-toxic at concentrations as high as 2 μM and does not perturb the mobility of Golgi-resident enzymes or the traffic of cargo from the endoplasmic reticulum through the Golgi and to the plasma membrane. PMID:25081303
Recent progress in 3-D imaging of sea freight containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, Theobald, E-mail: theobold.fuchs@iis.fraunhofer.de; Schön, Tobias, E-mail: theobold.fuchs@iis.fraunhofer.de; Sukowski, Frank
The inspection of very large objects like sea freight containers with X-ray Computed Tomography (CT) is an emerging technology. A complete 3-D CT scan of a see-freight container takes several hours. Of course, this is too slow to apply it to a large number of containers. However, the benefits of a 3-D CT for sealed freight are obvious: detection of potential threats or illicit cargo without being confronted with legal complications or high time consumption and risks for the security personnel during a manual inspection. Recently distinct progress was made in the field of reconstruction of projections with only amore » relatively low number of angular positions. Instead of today’s 500 to 1000 rotational steps, as needed for conventional CT reconstruction techniques, this new class of algorithms provides the potential to reduce the number of projection angles approximately by a factor of 10. The main drawback of these advanced iterative methods is the high consumption for numerical processing. But as computational power is getting steadily cheaper, there will be practical applications of these complex algorithms in a foreseeable future. In this paper, we discuss the properties of iterative image reconstruction algorithms and show results of their application to CT of extremely large objects scanning a sea-freight container. A specific test specimen is used to quantitatively evaluate the image quality in terms of spatial and contrast resolution and depending on different number of projections.« less
SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications
NASA Astrophysics Data System (ADS)
Ghosh, Ruby
2008-03-01
Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118
Siefring, Mark Louis; Lu, Doanh; States, J Christopher; Van Hoang, Minh
2018-03-30
We report a case of a 46-year-old Vietnamese man who developed widespread, numerous and concurrent cutaneous squamous cell carcinomas (SCCs) in non-sun exposed skin areas after taking a traditional medicine (TM) formulation for chronic plaque psoriasis. The SCC lesions began to develop within 12-15 months after beginning the arsenic-containing TM. The patient experienced both acute and chronic symptoms consistent with arsenic exposure. Laboratory investigation of a collected hair sample showed a significant arsenic level. The TM formulation used by the patient was tested and demonstrated an extremely high concentration of arsenic. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Improved high temperature resistant matrix resins
NASA Technical Reports Server (NTRS)
Chang, G. E.; Powell, S. H.; Jones, R. J.
1983-01-01
The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.
Abrams, Steven A; Schanler, Richard J; Lee, Martin L; Rechtman, David J
2014-01-01
Provision of human milk has important implications for the health and outcomes of extremely preterm (EP) infants. This study evaluated the effects of an exclusive human milk diet on the health of EP infants during their stay in the neonatal intensive care unit. EP infants <1,250 g birth weight received a diet consisting of either human milk fortified with a human milk protein-based fortifier (HM) (n=167) or a diet containing variable amounts of milk containing cow milk-based protein (CM) (n=93). Principal outcomes were mortality, necrotizing enterocolitis (NEC), growth, and duration of parenteral nutrition (PN). Mortality (2% versus 8%, p=0.004) and NEC (5% versus 17%, p=0.002) differed significantly between the HM and CM groups, respectively. For every 10% increase in the volume of milk containing CM, the risk of sepsis increased by 17.9% (p<0.001). Growth rates were similar between groups. The duration of PN was 8 days less in the subgroup of infants receiving a diet containing <10% CM versus ≥10% CM (p<0.02). An exclusive human milk diet, devoid of CM-containing products, was associated with lower mortality and morbidity in EP infants without compromising growth and should be considered as an approach to nutritional care of these infants.
Hirata, Aya; Sugiyama, Daisuke; Watanabe, Makoto; Tamakoshi, Akiko; Iso, Hiroyasu; Kotani, Kazuhiko; Kiyama, Masahiko; Yamada, Michiko; Ishikawa, Shizukiyo; Murakami, Yoshitaka; Miura, Katsuyuki; Ueshima, Hirotsugu; Okamura, Tomonori
2018-02-08
The effect of very high or extremely high levels of high-density lipoprotein cholesterol (HDL-C) on cardiovascular disease (CVD) is not well described. Although a few recent studies have reported the adverse effects of extremely high levels of HDL-C on CVD events, these did not show a statistically significant association between extremely high levels of HDL-C and cause-specific CVD mortality. In addition, Asian populations have not been studied. We examine the impact of extremely high levels of HDL-C on cause-specific CVD mortality using pooled data of Japanese cohort studies. We performed a large-scale pooled analysis of 9 Japanese cohorts including 43,407 participants aged 40-89 years, dividing the participants into 5 groups by HDL-C levels, including extremely high levels of HDL-C ≥2.33 mmol/L (≥90 mg/dL). We estimated the adjusted hazard ratio of each HDL-C category for all-cause death and cause-specific deaths compared with HDL-C 1.04-1.55 mmol/L (40-59 mg/dL) using a cohort-stratified Cox proportional hazards model. During a 12.1-year follow-up, 4995 all-cause deaths and 1280 deaths due to overall CVD were identified. Extremely high levels of HDL-C were significantly associated with increased risk of atherosclerotic CVD mortality (hazard ratio = 2.37, 95% confidence interval: 1.37-4.09 for total) and increased risk for coronary heart disease and ischemic stroke. In addition, the risk for extremely high HDL-C was more evident among current drinkers. We showed extremely high levels of HDL-C had an adverse effect on atherosclerotic CVD mortality in a pooled analysis of Japanese cohorts. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Favor, Jack; Bradley, Alan; Conte, Nathalie; Janik, Dirk; Pretsch, Walter; Reitmeir, Peter; Rosemann, Michael; Schmahl, Wolfgang; Wienberg, Johannes; Zaus, Irmgard
2009-08-01
In the mouse Pax6 function is critical in a dose-dependent manner for proper eye development. Pax6 contiguous gene deletions were shown to be homozygous lethal at an early embryonic stage. Heterozygotes express belly spotting and extreme microphthalmia. The eye phenotype is more severe than in heterozygous Pax6 intragenic null mutants, raising the possibility that deletions are functionally different from intragenic null mutations or that a region distinct from Pax6 included in the deletions affects eye phenotype. We recovered and identified the exact regions deleted in three new Pax6 deletions. All are homozygous lethal at an early embryonic stage. None express belly spotting. One expresses extreme microphthalmia and two express the milder eye phenotype similar to Pax6 intragenic null mutants. Analysis of Pax6 expression levels and the major isoforms excluded the hypothesis that the deletions expressing extreme microphthalmia are directly due to the action of Pax6 and functionally different from intragenic null mutations. A region distinct from Pax6 containing eight genes was identified for belly spotting. A second region containing one gene (Rcn1) was identified for the extreme microphthalmia phenotype. Rcn1 is a Ca(+2)-binding protein, resident in the endoplasmic reticulum, participates in the secretory pathway and expressed in the eye. Our results suggest that deletion of Rcn1 directly or indirectly contributes to the eye phenotype in Pax6 contiguous gene deletions.
Pest Control For Container-Grown Longleaf Pine
Scott Enebak; Bill Carey
2002-01-01
Several insect, weed, and disease pests are discussed that have been observed affecting container-grown longleaf pine (Pinus palustris Mill.) seedlings. The available tools to minimize the effects of these pests are limited to a few select insecticides, herbicides, and fungicides. Extreme care should be taken to ensure that the chemical chosen is...
An Incremental Type-2 Meta-Cognitive Extreme Learning Machine.
Pratama, Mahardhika; Zhang, Guangquan; Er, Meng Joo; Anavatti, Sreenatha
2017-02-01
Existing extreme learning algorithm have not taken into account four issues: 1) complexity; 2) uncertainty; 3) concept drift; and 4) high dimensionality. A novel incremental type-2 meta-cognitive extreme learning machine (ELM) called evolving type-2 ELM (eT2ELM) is proposed to cope with the four issues in this paper. The eT2ELM presents three main pillars of human meta-cognition: 1) what-to-learn; 2) how-to-learn; and 3) when-to-learn. The what-to-learn component selects important training samples for model updates by virtue of the online certainty-based active learning method, which renders eT2ELM as a semi-supervised classifier. The how-to-learn element develops a synergy between extreme learning theory and the evolving concept, whereby the hidden nodes can be generated and pruned automatically from data streams with no tuning of hidden nodes. The when-to-learn constituent makes use of the standard sample reserved strategy. A generalized interval type-2 fuzzy neural network is also put forward as a cognitive component, in which a hidden node is built upon the interval type-2 multivariate Gaussian function while exploiting a subset of Chebyshev series in the output node. The efficacy of the proposed eT2ELM is numerically validated in 12 data streams containing various concept drifts. The numerical results are confirmed by thorough statistical tests, where the eT2ELM demonstrates the most encouraging numerical results in delivering reliable prediction, while sustaining low complexity.
Rasch Analysis of the Power as Knowing Participation in Change Tool--the Brazilian version.
Guedes, Erika de Souza; Orozco-Vargas, Luiz Carlos; Turrini, Ruth Natália Teresa; de Sousa, Regina Márcia Cardoso; dos Santos, Mariana Alvina; da Cruz, Diná de Almeida Lopes Monteiro
2013-01-01
the objective of this study was to evaluate the items contained in the Brazilian version of the Power as Knowing Participation in Change Tool (PKPCT). investigation of the psychometric properties of the mentioned questionnaire through Rasch analysis. the data from 952 nursing assistants and 627 baccalaureate nurses were analyzed (average age 44.1 (SD=9.5); 13.0% men). The subscales Choices, Awareness, Freedom and Involvement were tested separately and presented unidimensionality; the categories of the responses given to the items were compiled from 7 to 3 levels and the items fit the model well, except for the following/leading item, in which the infit and outfit values were above 1.4; this item has also presented Differential Item Functioning (DIF) according to the participant's role. The reliability of the items was of 0.99 and the reliability of the participants ranged from 0.80 to 0.84 in the subscales. Items with extremely high levels of difficulty were not identified. the PKPCT should not be viewed as unidimensional, items with extremely high levels of difficulty in the scale need to be created and the differential functioning of some items has to be further investigated.
An unusual etiology in cold injury: Liquefied petroleum gas.
Kapı, Emin; Bozkurt, Mehmet; Taylan Filinte, Gaye; Kuvat, Samet Vasfi; Alioğlu, Celal
2017-05-01
Cold injury is a condition that causes reversible and irreversible damage when tissues are exposed to cold. This injury occurs due to various etiologies, and the most commonly observed ones include contact with liquefied petroleum gas (LPG) used in households, vehicles, and industry. LPG is a type of gas stored in liquid state under high pressure within cylinders. LPG contains a mixture of propane and butane gases. Direct contact of these gases with the tissues has the potential to cause metabolic, toxic, and respiratory damage. In this study, we present the cases of four patients with cold injury in the face and upper extremity caused by a pressurized jet stream of liquid gas that escaped out of the valves of the LPG cylinders. The patients had bullous lesions in the upper extremities and the face and second- and third-degree cold injuries with fibrotic and necrotic areas. The superficial defects secondarily healed with minimal scarring, while the necrotic finger had to be amputated. Cold injury on the skin caused by high-pressure jet streams of liquid gas as in our study is a rare occurrence. Our patients are important cases due to the rare etiology of cold injury.
Tadevosian, A; Kalantarian, V; Trchunian, A
2007-01-01
It has been shown that coherent electromagnetic irradiation (EMI) of extremely high frequency (45-53 GHz) or millimeter waves (wavelength 5.6-6.7 mm) of low intensity (flux capacity 0.06 mW/cm2) of Escherichia coli K12, grown under anaerobic conditions during the fermentation of sugar (glucose) for 30 min or 1 h, caused a decrease in their growth rate, the maximum inhibitory effect being achieved at a frequency of 51.8 or 53 GHz. This effect depended on medium pH when the maximal action was determined at pH 7.5. In addition, separate 30-min of 1-h irradiation (frequency 51.8 or 53 GHz) of doubly distilled water or some inorganic ions contained in Tris-phosphate buffer where the cells were transferred induced oppositely directed changes in further growth of these bacteria under anaerobic conditions; irradiation of water caused a decrease in the growth rate of bacteria. A significant change in pH of water (0.5-1.5 unit) was induced by a 30-irradiation at a frequency of 49, 50.3, 51.8, or 53 GHz, when the initial pH value was 6.0 or 8.0, but not 7.5. These results indicate the changes in the properties of water and its role in the effects of EMI of extremely high frequency. The marked effect of EMI on bacteria disappeared upon repeated irradiation for 1 h at a frequency of 51.8 or 53 GHz with an interval of 2 hours. This result indicates some compensatory mechanisms in bacteria.
NASA Technical Reports Server (NTRS)
Goordial, J.; Davila, A.; Greer, C. W.; Cannam, R.; DiRuggiero, J.; McKay, C. P.; Whyte, L. G.
2016-01-01
This study represents the first metagenomic interrogation of Antarctic permafrost and polar cryptoendolithic microbial communities. The results underlie two different habitability conditions in the same location under extreme cold and dryness: the permafrost habitat where viable microbial life and activity is questionable, and the cryptoendolithic habitat which contains organisms capable of growth under the extreme conditions of the Antarctic Dry Valleys.
A Novel Denitrifying Extreme Halophile That Grows in a Simple Mineral Salts Medium
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Oremland, R. S.; Gherna, R.; Cote, R.; Chang, Sherwood (Technical Monitor)
1995-01-01
An extremely halophilic bacterium (strain CH-1) was isolated from a saltern adjacent to San Francisco Bay. It grew in a mineral salts medium with ammonium and glucose as sole sources of nitrogen and carbon as well as energy, respectively Cells lysed at less than 10% NaCl and growth was most rapid in medium containing 20% NaCl. Cells were pieomorphic ranging from disc to ovoid-shaved and used a variety of carbohydrates as sole carbon sources. the utilization of certain carbon sources was controlled by temperature with some used at 37 degrees but not 45 C. CH-1 grew between 30 degrees and 50 C with the optimum at 45 C in the presence of 20% NaCl. CH-1 contained 2,3-di-O-isoprenyl glcerol diethers and was sensitive to aphidicofin. The major polar lipid was glucosyl-mannosyl-alucosyl diether, which is diagnostic of the Haloarcula. Thus CH-1 is an extreme halophile and a member of this genus. Among the novel characteristics of this organism was its ability to grow anaerobically in synthetic medium when nitrate was present which was only reduced to nitrous oxide. This organism should prove useful for studying denitrification and carbohydrate metabolism in the extreme halophiles; and to be a valuable resource for generic studies.
Xie, Miao; Mohammadi, Reza; Turner, Christopher L.; ...
2015-07-29
In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.
2009-05-06
CAPE CANAVERAL, Fla. – In Port Canaveral, Fla., a crane moves a container toward the deck of the U.S. Army landing craft utility ship Brandy Station. Inside is the control center for the X-band radar installed on the deck of the ship. The radar will provide critical support during launch of space shuttle Atlantis on the STS-125 mission. The radar will work with smaller X-band radars placed on the solid rocket booster retrieval ship Liberty Star to provide extremely high-resolution images of any debris that might be created during Atlantis' launch. Photo credit: NASA/Kim Shiflett
2009-05-06
CAPE CANAVERAL, Fla. – In Port Canaveral, Fla., a crane lowers a container toward the deck of the U.S. Army landing craft utility ship Brandy Station. Inside is the control center for the X-band radar installed on the deck of the ship. The radar will provide critical support during launch of space shuttle Atlantis on the STS-125 mission. The radar will work with smaller X-band radars placed on the solid rocket booster retrieval ship Liberty Star to provide extremely high-resolution images of any debris that might be created during Atlantis' launch. Photo credit: NASA/Kim Shiflett
2009-05-06
CAPE CANAVERAL, Fla. – In Port Canaveral, Fla., a container is lifted from the transporter for transfer to the U.S. Army landing craft utility ship Brandy Station. Inside is the control center for the X-band radar installed on the deck of the ship. The radar will provide critical support during launch of space shuttle Atlantis on the STS-125 mission. The radar will work with smaller X-band radars placed on the solid rocket booster retrieval ship Liberty Star to provide extremely high-resolution images of any debris that might be created during Atlantis' launch. Photo credit: NASA/Kim Shiflett
Large Faraday effect of borate glasses with high Tb3+ content prepared by containerless processing
NASA Astrophysics Data System (ADS)
Suzuki, Futoshi; Sato, Fumio; Oshita, Hiroyuki; Yao, Situ; Nakatsuka, Yuko; Tanaka, Katsuhisa
2018-02-01
Borate glasses containing a large amount of Tb3+ ions have been prepared by containerless processing. The content of Tb2O3 reached 60 mol%. The glass bearing the highest content of Tb3+ ions showed a large Faraday effect; the Verdet constant was 234 rad/T m. Annealing of the glasses in H2/N2 atmosphere resulted in a low optical absorption coefficient, leading to an extremely large magneto-optical figure of merit that was ∼1.7 times higher than that of Tb3Ga5O12 single crystal.
A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium
NASA Technical Reports Server (NTRS)
Witzke, Walter R; Prok, George M; Walsh, Thomas J
1954-01-01
Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.
Sleeve reaction chamber system
Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA
2009-08-25
A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.
NASA Astrophysics Data System (ADS)
Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.
2015-09-01
The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.
Markova, Svetlana V; Larionova, Marina D; Burakova, Ludmila P; Vysotski, Eugene S
2015-01-30
Coelenterazine-dependent copepod luciferases containing natural signal peptide for secretion are a very convenient analytical tool as they enable monitoring of intracellular events with high sensitivity, without destroying cells or tissues. This property is well suited for application in biomedical research and development of cell-based assays for high throughput screening. We report the cloning of cDNA gene encoding a novel secreted non-allelic 16.5-kDa isoform (MLuc7) of Metridia longa luciferase, which, in fact, is the smallest natural luciferase of known for today. Despite the small size, isoform contains 10 conservative Cys residues suggesting the presence of up to 5 SS bonds. This hampers the efficient production of functionally active recombinant luciferase in bacterial expression systems. With the use of the baculovirus expression system, we produced substantial amounts of the proper folded MLuc7 luciferase with a yield of ∼3 mg/L of a high purity protein. We demonstrate that MLuc7 produced in insect cells is highly active and extremely thermostable, and is well suited as a secreted reporter when expressed in mammalian cells ensuring higher sensitivity of detection as compared to another Metridia luciferase isoform (MLuc164) which is widely employed in real-time imaging. Copyright © 2014 Elsevier Inc. All rights reserved.
Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression.
Beckham, Carla J; Olsen, Jayme; Yin, Peng-Nien; Wu, Chia-Hao; Ting, Huei-Ju; Hagen, Fred K; Scosyrev, Emelian; Messing, Edward M; Lee, Yi-Fen
2014-08-01
High grade bladder cancer is an extremely aggressive malignancy associated with high rates of morbidity and mortality. Understanding how exosomes may affect bladder cancer progression could reveal novel therapeutic targets. Exosomes derived from human bladder cancer cell lines and the urine of patients with high grade bladder cancer were assessed for the ability to promote cancer progression in standard assays. Exosomes purified from the high grade bladder cancer cell line TCC-SUP and the nonmalignant urothelial cell line SV-HUC were submitted for mass spectrometry analysis. EDIL-3 was identified and selected for further analysis. Western blot was done to determine EDIL-3 levels in urinary exosomes from patients with high grade bladder cancer. shRNA gene knockdown and recombinant EDIL-3 were applied to study EDIL-3 function. Exosomes isolated from high grade bladder cancer cells and the urine of patients with high grade bladder cancer promoted angiogenesis and migration of bladder cancer cells and endothelial cells. We silenced EDIL-3 expression and found that shEDIL-3 exosomes did not facilitate angiogenesis, and urothelial and endothelial cell migration. Moreover, exosomes purified from the urine of patients with high grade bladder cancer contained significantly higher EDIL-3 levels than exosomes from the urine of healthy controls. EDIL-3 activated epidermal growth factor receptor signaling while blockade of epidermal growth factor receptor signaling abrogated this EDIL-3 induced bladder cell migration. Exosomes derived from the urine of patients with bladder cancer contains bioactive molecules such as EDIL-3. Identifying these components and their associated oncogenic pathways could lead to novel therapeutic targets and treatment strategies. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Popovicheva, O.; Kistler, M.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kopeikin, V.; Kasper-Giebl, A.
2014-10-01
Enhancement of biomass burning-related research is essential for the assessment of large-scale wildfires impact on pollution at regional and global scale. Starting since 6 August 2010 Moscow was covered with thick smoke of unusually high PM10 and BC concentrations, considerably affected by huge forest and peat fires around megacity. This work presents the first comprehensive physico-chemical characterization of aerosols during extreme smoke event in Moscow in August 2010. Sampling was performed in the Moscow center and suburb as well as one year later, in August 2011 during a period when no biomass burning was observed. Small-scale experimental fires of regional biomass were conducted in the Moscow region. Carbon content, functionalities of organic/inorganic compounds, tracers of biomass burning (anhydrosaccharides), ionic composition, and structure of smoke were analyzed by thermal-optical analysis, FTIR spectroscopy, liquid and ion chromatography, and electron microscopy. Carbonaceous aerosol in August 2010 was dominated by organic species with elemental carbon (EC) as minor component. High average OC/EC near 27.4 is found, comparable to smoke of regional biomass smoldering fire, and exceeded 3 times the value observed in August 2011. Organic functionalities of Moscow smoke aerosols were hydroxyl, aliphatic, aromatic, acid and non-acid carbonyl, and nitro compound groups, almost all of them indicate wildfires around city as the source of smoke. The ratio of levoglucosan (LG) to mannosan near 5 confirms the origin of smoke from coniferous forest fires around megacity. Low ratio of LG/OC near 0.8% indicates the degradation of major molecular tracer of biomass burning in urban environment. Total concentration of inorganic ions dominated by sulfates SO4 2 - and ammonium NH4+ was found about 5 times higher during large-scale wildfires than in August 2011. Together with strong sulfate and ammonium absorbance in smoke aerosols, these observations prove the formation of secondary inorganic species associated with wildfire gaseous emissions and their transformation in aged smoke. Accumulation of carbonyl compounds during extreme smoke event in Moscow resulted from photochemical aging and secondary organic aerosol (SOA) formation in the urban atmosphere. The mixture of carbonaceous particles and dust revealed multicomponent structure of Moscow smoke aerosols, pointing the difference with non-smoke ambient aerosols. The abundance of group containing soot and tar balls approached at least a half of total aerosol concentration during extreme event, relating to elevated OC, EC and SOA. Fly ash groups contained calcium sulfates and carbonates from soil entrainment by hot air convection. Small-scale open fire experiments support the identification of specific chemical features of regional biomass burning and demonstrate the strong impact of large-scale wildfires on aerosol chemistry and air quality in highly polluted megacity.
Puerperal group A streptococcal infection: beyond Semmelweis.
Anderson, Brenna L
2014-04-01
Ignaz Semmelweiss made one of the most important contributions to modern medicine when he instituted handwashing in an obstetric clinic in Austria in 1847, decreasing mortality there from more than 10% to 2%. Unfortunately, puerperal sepsis remains a leading cause of maternal mortality throughout the world. Group A streptococcus (GAS), Streptococcus pyogenes, is an organism associated with high rates of morbidity and mortality from puerperal infections. When associated with sepsis, known as streptococcal toxic shock syndrome, mortality rates approach 30-50%. Group A streptococcus can cause invasive infections in the form of endometritis, necrotizing fasciitis, or streptococcal toxic shock syndrome. The clinical presentation of women with puerperal GAS infections is often atypical with extremes of temperature, unusual and vague pain, and pain in extremities. Toxin production by the organism may allow GAS to spread across tissue planes and cause necrosis while evading containment by the maternal immune system in the form of a discrete abscess. Endometrial aspiration in addition to blood cultures may be a useful rapid diagnostic tool. Imaging may appear normal and should not dissuade the clinician from aggressive management. When suspected, invasive GAS infections should be treated emergently with fluid resuscitation, antibiotic administration, and source control. The optimal antibiotic regimen contains penicillin and clindamycin. Source control may require extensive wound or vulvar debridement, hysterectomy, or a combination of these, which may be life-saving. The benefit of immunoglobulins in management of puerperal GAS infections is unclear.
NASA Technical Reports Server (NTRS)
1988-01-01
Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.
Weldability of high toughness Fe-12% Ni alloys containing Ti, Al or Nb
NASA Technical Reports Server (NTRS)
Devletian, J. H.; Stephens, J. R.; Witzke, W. R.
1977-01-01
Three exceptionally high-toughness Fe-12%Ni alloys designed for cryogenic service were welded using the GTA welding process. Evaluation of weldability included equivalent energy (KIed) fracture toughness tests, transverse-weld tensile tests at -196 and 25 C and weld crack sensitivity tests. The Fe-12%Ni-0.25%Ti alloy proved extremely weldable for cryogenic applications, having weld and HAZ properties comparable with those of the wrought base alloy. The Fe-12%Ni-0.5%Al had good weld properties only after the weld joint was heat treated. The Fe-12%Ni-0.25%Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.
Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins
Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.
2017-01-01
Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098
NASA Astrophysics Data System (ADS)
Möller, Karin; Müller, Katharina; Engelke, Hanna; Bräuchle, Christoph; Wagner, Ernst; Bein, Thomas
2016-02-01
A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of siRNA is mainly driven by electrostatic interactions, which allow for high loading capacities even in medium-sized mesopores with pore diameters down to 4 nm in a stellate pore morphology. The negatively charged MSN shell enabled the association with a block copolymer containing positively charged artificial amino acids and oleic acid blocks, which acts simultaneously as capping and endosomal release agent. The potential of this multifunctional delivery platform is demonstrated by highly effective cell transfection and siRNA delivery into KB-cells. A luciferase reporter gene knock-down of up to 80-90% was possible using extremely low cell exposures with only 2.5 μg MSN containing 0.5 μg siRNA per 100 μL well.A new general route for siRNA delivery is presented combining porous core-shell silica nanocarriers with a modularly designed multifunctional block copolymer. Specifically, the internal storage and release of siRNA from mesoporous silica nanoparticles (MSN) with orthogonal core-shell surface chemistry was investigated as a function of pore-size, pore morphology, surface properties and pH. Very high siRNA loading capacities of up to 380 μg per mg MSN were obtained with charge-matched amino-functionalized mesoporous cores, and release profiles show up to 80% siRNA elution after 24 h. We demonstrate that adsorption and desorption of siRNA is mainly driven by electrostatic interactions, which allow for high loading capacities even in medium-sized mesopores with pore diameters down to 4 nm in a stellate pore morphology. The negatively charged MSN shell enabled the association with a block copolymer containing positively charged artificial amino acids and oleic acid blocks, which acts simultaneously as capping and endosomal release agent. The potential of this multifunctional delivery platform is demonstrated by highly effective cell transfection and siRNA delivery into KB-cells. A luciferase reporter gene knock-down of up to 80-90% was possible using extremely low cell exposures with only 2.5 μg MSN containing 0.5 μg siRNA per 100 μL well. Electronic supplementary information (ESI) available: MSN synthesis and analysis, sample preparation for cell transfections as well as additional studies including experiments with a second cell line and a toxicity assay. See DOI: 10.1039/c5nr06246b
Probabilistic forecasting of extreme weather events based on extreme value theory
NASA Astrophysics Data System (ADS)
Van De Vyver, Hans; Van Schaeybroeck, Bert
2016-04-01
Extreme events in weather and climate such as high wind gusts, heavy precipitation or extreme temperatures are commonly associated with high impacts on both environment and society. Forecasting extreme weather events is difficult, and very high-resolution models are needed to describe explicitly extreme weather phenomena. A prediction system for such events should therefore preferably be probabilistic in nature. Probabilistic forecasts and state estimations are nowadays common in the numerical weather prediction community. In this work, we develop a new probabilistic framework based on extreme value theory that aims to provide early warnings up to several days in advance. We consider the combined events when an observation variable Y (for instance wind speed) exceeds a high threshold y and its corresponding deterministic forecasts X also exceeds a high forecast threshold y. More specifically two problems are addressed:} We consider pairs (X,Y) of extreme events where X represents a deterministic forecast, and Y the observation variable (for instance wind speed). More specifically two problems are addressed: Given a high forecast X=x_0, what is the probability that Y>y? In other words: provide inference on the conditional probability: [ Pr{Y>y|X=x_0}. ] Given a probabilistic model for Problem 1, what is the impact on the verification analysis of extreme events. These problems can be solved with bivariate extremes (Coles, 2001), and the verification analysis in (Ferro, 2007). We apply the Ramos and Ledford (2009) parametric model for bivariate tail estimation of the pair (X,Y). The model accommodates different types of extremal dependence and asymmetry within a parsimonious representation. Results are presented using the ensemble reforecast system of the European Centre of Weather Forecasts (Hagedorn, 2008). Coles, S. (2001) An Introduction to Statistical modelling of Extreme Values. Springer-Verlag.Ferro, C.A.T. (2007) A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting {22}, 1089-1100.Hagedorn, R. (2008) Using the ECMWF reforecast dataset to calibrate EPS forecasts. ECMWF Newsletter, {117}, 8-13.Ramos, A., Ledford, A. (2009) A new class of models for bivariate joint tails. J.R. Statist. Soc. B {71}, 219-241.
Data-assisted reduced-order modeling of extreme events in complex dynamical systems
Koumoutsakos, Petros
2018-01-01
The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in regions associated with extreme events, where data is sparse. PMID:29795631
Data-assisted reduced-order modeling of extreme events in complex dynamical systems.
Wan, Zhong Yi; Vlachas, Pantelis; Koumoutsakos, Petros; Sapsis, Themistoklis
2018-01-01
The prediction of extreme events, from avalanches and droughts to tsunamis and epidemics, depends on the formulation and analysis of relevant, complex dynamical systems. Such dynamical systems are characterized by high intrinsic dimensionality with extreme events having the form of rare transitions that are several standard deviations away from the mean. Such systems are not amenable to classical order-reduction methods through projection of the governing equations due to the large intrinsic dimensionality of the underlying attractor as well as the complexity of the transient events. Alternatively, data-driven techniques aim to quantify the dynamics of specific, critical modes by utilizing data-streams and by expanding the dimensionality of the reduced-order model using delayed coordinates. In turn, these methods have major limitations in regions of the phase space with sparse data, which is the case for extreme events. In this work, we develop a novel hybrid framework that complements an imperfect reduced order model, with data-streams that are integrated though a recurrent neural network (RNN) architecture. The reduced order model has the form of projected equations into a low-dimensional subspace that still contains important dynamical information about the system and it is expanded by a long short-term memory (LSTM) regularization. The LSTM-RNN is trained by analyzing the mismatch between the imperfect model and the data-streams, projected to the reduced-order space. The data-driven model assists the imperfect model in regions where data is available, while for locations where data is sparse the imperfect model still provides a baseline for the prediction of the system state. We assess the developed framework on two challenging prototype systems exhibiting extreme events. We show that the blended approach has improved performance compared with methods that use either data streams or the imperfect model alone. Notably the improvement is more significant in regions associated with extreme events, where data is sparse.
Classification of Near-Horizon Geometries of Extremal Black Holes.
Kunduri, Hari K; Lucietti, James
2013-01-01
Any spacetime containing a degenerate Killing horizon, such as an extremal black hole, possesses a well-defined notion of a near-horizon geometry. We review such near-horizon geometry solutions in a variety of dimensions and theories in a unified manner. We discuss various general results including horizon topology and near-horizon symmetry enhancement. We also discuss the status of the classification of near-horizon geometries in theories ranging from vacuum gravity to Einstein-Maxwell theory and supergravity theories. Finally, we discuss applications to the classification of extremal black holes and various related topics. Several new results are presented and open problems are highlighted throughout.
Specialized connective tissue: bone, the structural framework of the upper extremity
Weatherholt, Alyssa M.; Fuchs, Robyn K.; Warden, Stuart J.
2011-01-01
Bone is a connective tissue containing cells, fibers and ground substance. There are many functions in the body in which the bone participates, such as storing minerals, providing internal support, protecting vital organs, enabling movement, and providing attachment sites for muscles and tendons. Bone is unique because its collagen framework absorbs energy, while the mineral encased within the matrix allows bone to resist deformation. This article provides an overview of the structure and function of bone tissue from a macroscopic to microscopic level and discusses the physiological processes contributing to upper extremity bone health. It concludes by discussing common conditions influencing upper extremity bone health. PMID:22047807
DOE Office of Scientific and Technical Information (OSTI.GOV)
KURTZER, GREGORY; MURIKI, KRISHNA
Singularity is a container solution designed to facilitate mobility of compute across systems and HPC infrastructures. It does this by creating minimal containers that are defined by a specfile and files from the host system are used to build the container. The resulting container can then be launched by any Linux computer with Singularity installed regardless if the programs inside the container are present on the target system, or if they are a different version, or even incompatible versions. Singularity achieves extreme portability without sacrificing usability thus solving the need of mobility of compute. Singularity containers can be executed withinmore » a normal/standard command line process flow.« less
Electronic spin state of Fe,Al-containing MgSiO3 perovskite at lower mantle conditions
NASA Astrophysics Data System (ADS)
Kupenko, I.; McCammon, C.; Sinmyo, R.; Prescher, C.; Chumakov, A. I.; Kantor, A.; Rüffer, R.; Dubrovinsky, L.
2014-02-01
We have investigated silicate perovskite with composition Mg0.83Fe0.21Al0.06Si0.91O3 relevant for the lower mantle at pressures up to 81 GPa and temperatures up to 2000 K using conventional Mössbauer spectroscopy and synchrotron Nuclear Forward Scattering (NFS) combined with double-sided laser heating in a diamond anvil cell. Room temperature Mössbauer and NFS spectra at low pressure are dominated by high-spin Fe2 +, with minor amounts of Fe3 + and a component assigned to a metastable position of high-spin Fe2 + in the A-site predicted by computational studies. NFS data show a sharp transition (< 20 GPa) from high-spin Fe2 + to a new component with extremely high quadrupole splitting, similar to previous studies. Mössbauer data show the same transition, but over a broader pressure range likely due to the higher pressure gradient. The new Fe2 + component is assigned to intermediate-spin Fe2 +, consistent with previous X-ray emission studies. NFS data at high temperatures and high pressures comparable to those in the lower mantle are consistent with the presence of Fe2 + only in the intermediate-spin state and Fe3 + only in the high-spin state. Our results are therefore consistent with the occurrence of spin crossover only in Fe2 + in Fe-, Al-containing perovskite within the lower mantle.
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Dojyo, Naoto; Hamada, Masaya; Kawasaki, Keita; Sasaki, Wataru; Kubodera, Shoichi
2006-03-01
We demonstrated a debris-free, efficient laser-produced plasma extreme ultraviolet (EUV) source by use of a regenerative liquid microjet target containing tin-dioxide (SnO II) nano-particles. By using a low SnO II concentration (6%) solution and dual laser pulses for the plasma control, we observed the EUV conversion efficiency of 1.2% with undetectable debris.
Glenn Extreme Environments Rig (GEER) Independent Review
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Smiles, Michael D.; George, Mark A.; Ton, Mimi C.; Le, Son K.
2015-01-01
The Chief of the Space Science Project Office at Glenn Research Center (GRC) requested support from the NASA Engineering and Safety Center (NESC) to satisfy a request from the Science Mission Directorate (SMD) Associate Administrator and the Planetary Science Division Chief to obtain an independent review of the Glenn Extreme Environments Rig (GEER) and the operational controls in place for mitigating any hazard associated with its operation. This document contains the outcome of the NESC assessment.
NASA Astrophysics Data System (ADS)
Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu
2016-10-01
SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492
Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier
2014-01-01
Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.
Wang, Yinan; Chan, Wan
2014-06-25
Nephrotoxic and carcinogenic aristolochic acids (AAs) are naturally occurring nitrophenanthrene carboxylic acids in the herbal genus Aristolochia. The misuse of AA-containing herbs in preparing slimming drugs has caused hundred of cases of kidney disease in Belgium women in a slimming regime in the early 1990s. Accumulating evidence also suggested that prolong dietary intake of AA-contaminated food is one of the major causes to the Balkan endemic nephropathy that was first observed in the late 1950s. Therefore, analytical methods of high sensitivity are extremely important for safeguarding human exposure to AA-containing herbal medicines, herbal remedies, and food composites. In this paper, we describe the development of a new high-performance liquid chromatography coupled fluorescence detector (HPLC-FLD) method for the sensitive determination of AAs. The method makes use of a novel cysteine-induced denitration reaction that "turns on" the fluorescence of AAs for fluorometric detections. Our results showed that the combination of cysteine-induced denitration and HPLC-FLD analysis allows for sensitive quantification of AA-I and AA-II at detection limits of 27.1 and 25.4 ng/g, respectively. The method was validated and has been successfully applied in quantifying AAs in Chinese herbal medicines.
Methylisothiazolinone in selected consumer products in Belgium: Adding fuel to the fire?
Aerts, Olivier; Meert, Hans; Goossens, An; Janssens, Sighile; Lambert, Julien; Apers, Sandra
2015-09-01
Methylisothiazolinone (MI) contact allergy is severely affecting consumers with allergic contact dermatitis, owing to its presence in cosmetics, household detergents, and water-based paints, in particular. Data on the true isothiazolinone concentrations in these products are scarce, and labelling may be incorrect. To report on the MI concentrations in such products marketed in Belgium, in order to verify the accuracy of labelling (when applicable) and compliance with EU regulations. Thirty cosmetics (18 leave-on and 12 rinse-off), eight detergents and four paints were analysed for MI by the use of high-performance liquid chromatography with ultraviolet detection. The analysed leave-on, and to a lesser extent the rinse-off, cosmetics, contained MI at concentrations far exceeding the permitted 100 ppm use concentration. Household detergents contained high concentrations of MI, and mislabelling occurred for both cosmetics and detergents. The (limited) data on paints are in line with the existing literature. Cosmetics and detergents may facilitate contact sensitization because of a (too) high MI concentration, and mislabelling may make its avoidance extremely difficult. Safer use concentrations and correct labelling should be ensured by adequate quality control. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
National Aerospace Plane Engine Seals: High Temperature Seal Performance Evaluation
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1991-01-01
The key to the successful development of the single stage to orbit National Aerospace Plane (NASP) is the successful development of combined cycle ramjet/scramjet engines that can propel the vehicle to 17,000 mph to reach low Earth orbit. To achieve engine performance over this speed range, movable engine panels are used to tailor engine flow that require low leakage, high temperature seals around their perimeter. NASA-Lewis is developing a family of new high temperature seals to form effective barriers against leakage of extremely hot (greater than 2000 F), high pressure (up to 100 psi) flow path gases containing hydrogen and oxygen. Preventing backside leakage of these explosive gas mixtures is paramount in preventing the potential loss of the engine or the entire vehicle. Seal technology development accomplishments are described in the three main areas of concept development, test, and evaluation and analytical development.
Method and apparatus for cutting and abrading with sublimable particles
Bingham, D.N.
1995-10-10
A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquefied gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquefied first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquefied gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket. 6 figs.
Method and apparatus for cutting and abrading with sublimable particles
Bingham, Dennis N.
1995-01-01
A gas delivery system provides a first gas as a liquid under extreme pressure and as a gas under intermediate pressure. Another gas delivery system provides a second gas under moderate pressure. The second gas is selected to solidify at a temperature at or above the temperature of the liquified gas. A nozzle assembly connected to the gas delivery systems produces a stream containing a liquid component, a solid component, and a gas component. The liquid component of the stream consists of a high velocity jet of the liquified first gas. The high velocity jet is surrounded by a particle sheath that consists of solid particles of the second gas which solidifies in the nozzle upon contact with the liquified gas of the high velocity jet. The gas component of the stream is a high velocity flow of the first gas that encircles the particle sheath, forming an outer jacket.
Anatomy of the subcutaneous tissue of the trunk and lower extremity.
Markman, B; Barton, F E
1987-08-01
Dissections on 8 fresh and 10 embalmed cadavers were used to determine the anatomy of the subcutaneous adipose tissue in the trunk and extremities. These dissections, along with CT scans, confirmed Gray's original description of the subcutaneous tissue consisting of a superficial and deep adipose layer. The superficial adipose layer is contained within organized, compact fascial septa. The deep adipose layer demonstrated regional variations with respect to its fascial framework, but was contained within a relatively loose, less organized, and more widely spaced fascial septa. We observed that the adipose layers are partitioned by a discrete subcutaneous fascia which fuses with the underlying muscle fascia at particular anatomic locations. The deep layer is thus contained by the subcutaneous fascia above and the muscle fascia below to form what we termed the deep adipose compartments. The deep adipose compartments contributed significantly to overall adipose thickness, are bilateral, and are found in the abdomen and paralumbar and gluteal-thigh regions.
Fallback accretion on to a newborn magnetar: long GRBs with giant X-ray flares
NASA Astrophysics Data System (ADS)
Gibson, S. L.; Wynn, G. A.; Gompertz, B. P.; O'Brien, P. T.
2018-05-01
Flares in the X-ray afterglow of gamma-ray bursts (GRBs) share more characteristics with the prompt emission than the afterglow, such as pulse profile and contained fluence. As a result, they are believed to originate from late-time activity of the central engine and can be used to constrain the overall energy budget. In this paper, we collect a sample of 19 long GRBs observed by Swift-XRT that contain giant flares in their X-ray afterglows. We fit this sample with a version of the magnetar propeller model, modified to include fallback accretion. This model has already successfully reproduced extended emission in short GRBs. Our best fits provide a reasonable morphological match to the light curves. However, 16 out of 19 of the fits require efficiencies for the propeller mechanism that approach 100%. The high efficiency parameters are a direct result of the high energy contained in the flares and the extreme duration of the dipole component, which forces either slow spin periods or low magnetic fields. We find that even with the inclusion of significant fallback accretion, in all but a few cases it is energetically challenging to produce prompt emission, afterglow and giant flares within the constraints of the rotational energy budget of a magnetar.
Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress.
Lamitina, S Todd; Morrison, Rebecca; Moeckel, Gilbert W; Strange, Kevin
2004-04-01
The ability to control osmotic balance is essential for cellular life. Cellular osmotic homeostasis is maintained by accumulation and loss of inorganic ions and organic osmolytes. Although osmoregulation has been studied extensively in many cell types, major gaps exist in our molecular understanding of this essential process. Because of its numerous experimental advantages, the nematode Caenorhabditis elegans provides a powerful model system to characterize the genetic basis of animal cell osmoregulation. We therefore characterized the ability of worms to adapt to extreme osmotic stress. Exposure of worms to high-salt growth agar causes rapid shrinkage. Survival is normal on agar containing up to 200 mM NaCl. When grown on 200 mM NaCl for 2 wk, worms are able to survive well on agar containing up to 500 mM NaCl. HPLC analysis demonstrated that levels of the organic osmolyte glycerol increase 15- to 20-fold in nematodes grown on 200 mM NaCl agar. Accumulation of glycerol begins 3 h after exposure to hypertonic stress and peaks by 24 h. Glycerol accumulation is mediated primarily by synthesis from metabolic precursors. Consistent with this finding, hypertonicity increases transcriptional expression of glycerol 3-phosphate dehydrogenase, an enzyme that is rate limiting for hypertonicity-induced glycerol synthesis in yeast. Worms adapted to high salt swell and then return to their initial body volume when exposed to low-salt agar. During recovery from hypertonic stress, glycerol levels fall rapidly and glycerol excretion increases approximately fivefold. Our studies provide the first description of osmotic adaptation in C. elegans and provide the foundation for genetic and functional genomic analysis of animal cell osmoregulation.
The matrix exponential in transient structural analysis
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
1987-01-01
The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.
Transient nanobubbles in short-time electrolysis
NASA Astrophysics Data System (ADS)
Svetovoy, Vitaly B.; Sanders, Remco G. P.; Elwenspoek, Miko C.
2013-05-01
Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is accompanied by a high relative supersaturation, S > 1000, that results in homogeneous nucleation of bubbles. On the short-time scale only nanobubbles can be formed. These nanobubbles densely cover the electrodes and aggregate at a later time to microbubbles. The effect is significantly intensified with a small increase of temperature. Application of alternating polarity voltage pulses produces bubbles containing a mixture of hydrogen and oxygen. Spontaneous reaction between gases is observed for stoichiometric bubbles with sizes smaller than ∼150 nm. Such bubbles disintegrate violently affecting the surfaces of the electrodes.
Quantifying the relationship between extreme air pollution events and extreme weather events
NASA Astrophysics Data System (ADS)
Zhang, Henian; Wang, Yuhang; Park, Tae-Won; Deng, Yi
2017-05-01
Extreme weather events can strongly affect surface air quality, which has become a major environmental factor to affect human health. Here, we examined the relationship between extreme ozone and PM2.5 (particular matter with an aerodynamic diameter less than 2.5 μm) events and the representative meteorological parameters such as daily maximum temperature (Tmax), minimum relative humidity (RHmin), and minimum wind speed (Vmin), using the location-specific 95th or 5th percentile threshold derived from historical reanalysis data (30 years for ozone and 10 years for PM2.5). We found that ozone and PM2.5 extremes were decreasing over the years, reflecting EPA's tightened standards and effort on reducing the corresponding precursor's emissions. Annual ozone and PM2.5 extreme days were highly correlated with Tmax and RHmin, especially in the eastern U.S. They were positively (negatively) correlated with Vmin in urban (rural and suburban) stations. The overlapping ratios of ozone extreme days with Tmax were fairly constant, about 32%, and tended to be high in fall and low in winter. Ozone extreme days were most sensitive to Tmax, then RHmin, and least sensitive to Vmin. The majority of ozone extremes occurred when Tmax was between 300 K and 320 K, RHmin was less than 40%, and Vmin was less than 3 m/s. The number of annual extreme PM2.5 days was highly positively correlated with the extreme RHmin/Tmax days, with correlation coefficient between PM2.5/RHmin highest in urban and suburban regions and the correlation coefficient between PM2.5/Tmax highest in rural area. Tmax has more impact on PM2.5 extreme over the eastern U.S. Extreme PM2.5 days were more likely to occur at low RH conditions in the central and southeastern U.S., especially during spring time, and at high RH conditions in the northern U.S. and the Great Plains. Most extreme PM2.5 events occurred when Tmax was between 300 K and 320 K and RHmin was between 10% and 50%. Extreme PM2.5 days usually occurred when Vmin was under 2 m/s. However, during spring season in the Southeast and fall season in Northwest, high winds were found to accompany extreme PM2.5 days, likely reflecting the impact of fire emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfister, A.; Goossen, C.; Coogler, K.
2012-07-01
Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plantmore » is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is further surrounded by a substantial 'steel concrete' composite shield building. The containment vessel is not affected by external flooding, and the shield building design provides hazard protection beyond that provided by a comparable reinforced concrete structure. The intent of this paper is to demonstrate the robustness of the AP1000 design against extreme events. The paper will focus on the plants ability to withstand extreme external events such as beyond design basis flooding, seismic events, and malicious aircraft impact. The paper will highlight the robustness of the AP1000 nuclear island design including the protection provided by the unique AP1000 composite shield building. (authors)« less
Compressed air-assisted solvent extraction (CASX) for metal removal.
Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien
2008-03-01
A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.
Listen to your mother! The role of talker familiarity in infant streaming.
Barker, Brittan A; Newman, Rochelle S
2004-12-01
Little is known about the acoustic cues infants might use to selectively attend to one talker in the presence of background noise. This study examined the role of talker familiarity as a possible cue. Infants either heard their own mothers (maternal-voice condition) or a different infant's mother (novel-voice condition) repeating isolated words while a female distracter voice spoke fluently in the background. Subsequently, infants heard passages produced by the target voice containing either the familiarized, target words or novel words. Infants in the maternal-voice condition listened significantly longer to the passages containing familiar words; infants in the novel-voice condition showed no preference. These results suggest that infants are able to separate the simultaneous speech of two women when one of the voices is highly familiar to them. However, infants seem to find separating the simultaneous speech of two unfamiliar women extremely difficult.
Greven, Corina U; Merwood, Andrew; van der Meer, Jolanda M J; Haworth, Claire M A; Rommelse, Nanda; Buitelaar, Jan K
2016-04-01
Although attention deficit hyperactivity disorder (ADHD) is thought to reflect a continuously distributed quantitative trait, it is assessed through binary diagnosis or skewed measures biased towards its high, symptomatic extreme. A growing trend is to study the positive tail of normally distributed traits, a promising avenue, for example, to study high intelligence to increase power for gene-hunting for intelligence. However, the emergence of such a 'positive genetics' model has been tempered for ADHD due to poor phenotypic resolution at the low extreme. Overcoming this methodological limitation, we conduct the first study to assess the aetiologies of low extreme ADHD traits. In a population-representative sample of 2,143 twins, the Strength and Weaknesses of ADHD Symptoms and Normal behaviour (SWAN) questionnaire was used to assess ADHD traits on a continuum from low to high. Aetiological influences on extreme ADHD traits were estimated using DeFries-Fulker extremes analysis. ADHD traits were related to behavioural, cognitive and home environmental outcomes using regression. Low extreme ADHD traits were significantly influenced by shared environmental factors (23-35%) but were not significantly heritable. In contrast, high-extreme ADHD traits showed significant heritability (39-51%) but no shared environmental influences. Compared to individuals with high extreme or with average levels of ADHD traits, individuals with low extreme ADHD traits showed fewer internalizing and externalizing behaviour problems, better cognitive performance and more positive behaviours and positive home environmental outcomes. Shared environmental influences on low extreme ADHD traits may reflect passive gene-environment correlation, which arises because parents provide environments as well as passing on genes. Studying the low extreme opens new avenues to study mechanisms underlying previously neglected positive behaviours. This is different from the current deficit-based model of intervention, but congruent with a population-level approach to improving youth wellbeing. © 2015 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.
The significance of the source of zinc and its anti-VSC effect.
Rölla, G; Jonski, G; Young, A
2002-06-01
The anti-VSC (volatile sulphur compounds) effect of zinc is known to be associated with free zinc ions. To examine whether zinc salts with low stability constants were more suitable as sources of zinc in zinc lozenges than zinc salts with high stability constants. The former provide free zinc ions upon dissolution in water, whereas the latter provide few such ions. Identical lozenges were produced which contained either zinc acetate, zinc gluconate (low stability constants), zinc citrate or amino-acid chelated zinc (extremely high stability constants). All the lozenges contained 0.1 per cent of zinc. A test panel of 10 volunteers used the different lozenges randomly. VSC were measured by GC. The lozenge with the highest stability constant was as effective as those with very low stability constants. The anti-VSC effect was thus not related to this constant. These findings may be explained by the possibility that alternative ligands with stronger affinity for zinc than the original ligands in the lozenges may be present in the oral cavity. An in vitro experiment indicated that the sulphide ion (S2-) may be such a ligand.
NASA Astrophysics Data System (ADS)
Stroup, J. S.; Olson, K. J.; McGee, D.; Lowenstein, T. K.; Smoot, J. P.; Janick, J. J.; Lund, S.; Peaple, M.; Chen, C. Y.; Feakins, S. J.; Litwin, R.
2017-12-01
Over decadal to millennial scales, the southwestern U.S has experienced large shifts in hydroclimate ranging from pluvial conditions to extreme droughts. Direct observations, modeling and proxy data suggest precipitation amount and distribution are controlled by multiple factors including the position of the Hadley Cell, strength of the Aleutian Low and North Pacific High, ENSO and the path of winter storm tracks. Sediment records from closed basin lakes provide a means for assessing how hydrologic conditions have responded to past climate changes; however, long (>50 ka) paleoclimate records from lakes are rare and high-resolution age models are challenging to obtain. Searles Lake, in southeastern California, contains a sedimentary record that spans from the Holocene to the Pliocene at high resolution. Previous drill core studies from the basin used stratigraphy and sediment mineralogy to interpret paleoenvironmental changes and have demonstrated that the lake's sediments are able to be precisely dated. These results provide a strong foundation for new high-resolution investigations of the lake sediments. In January 2017, our group collected a new 80 m-long core with the aim of reconstructing hydrologic changes over the last 150 ka at millennial or better resolution. The core was split at the National Lacustrine Core Facility (LacCore) in June. The core contains alternating evaporite layers and finely laminated muds which likely indicate times of dryer and wetter conditions. Despite the challenge of alternating lithologies, core recovery and quality are extremely high. Here, we will present our initial chronological and stratigraphic findings. The core record will be dated using a combination of U/Th, 14C and magnetostratigraphy. We will compare our initial stratigraphic description to the existing Searles Lake literature as well as other records from the region, such as data from Devils Hole. These results provide the framework upon which we will develop detailed stratigraphic and crystallographic interpretations as well as a host of proxy records including leaf waxes, pollen and stable isotopes to advance our understanding of paleoenvironment and paleoclimate.
The Climatology of Extreme Surge-Producing Extratropical Cyclones in Observations and Models
NASA Astrophysics Data System (ADS)
Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.
2016-12-01
Extreme coastal storms devastate heavily populated areas around the world by producing powerful winds that can create a large storm surge. Both tropical and extratropical cyclones (ETCs) occur over the northwestern Atlantic Ocean, and the risks associated with ETCs can be just as severe as those associated with tropical storms (e.g. high winds, storm surge). At The Battery in New York City, 17 of the 20 largest storm surge events were a consequence of extratropical cyclones (ETCs), which are more prevalent than tropical cyclones in the northeast region of the United States. Therefore, we analyze the climatology of ETCs that are capable of producing a large storm surge along the northeastern coast of the United States. For a historical analysis, water level data was collected from National Oceanic and Atmospheric Administration (NOAA) tide gauges at three separate locations (Sewell's Pt., VA, The Battery, NY, and Boston, MA). We perform a k-means cluster analysis of sea level pressure from the ECMWF 20th Century Reanalysis dataset (ERA-20c) to explore the natural sets of observed storms with similar characteristics. We then composite cluster results with features of atmospheric circulation to observe the influence of interannual and multidecadal variability such as the North Atlantic Oscillation. Since observational records contain a small number of well-documented ETCs, the capability of a high-resolution coupled climate model to realistically simulate such extreme coastal storms will also be assessed. Global climate models provide a means of simulating a much larger sample of extreme events, allowing for better resolution of the tail of the distribution. We employ a tracking algorithm to identify ETCs in a multi-century simulation under present-day conditions. Quantitative comparisons of cyclolysis, cyclogenesis, and cyclone densities of simulated ETCs and storms from recent history (using reanalysis products) are conducted.
Structure and properties of corrosion and wear resistant Cr-Mn-N steels
NASA Astrophysics Data System (ADS)
Lenel, U. R.; Knott, B. R.
1987-06-01
Steels containing about 12 pct Cr, 10 pct Mn, and 0.2 pct N have been shown to have an unstable austenitic microstructure and have good ductility, extreme work hardening, high fracture strength, excellent toughness, good wear resistance, and moderate corrosion resistance. A series of alloys containing 9.5 to 12.8 pct Cr, 5.0 to 10.4 pct Mn, 0.16 to 0.32 pct N, 0.05 pct C, and residual elements typical of stainless steels was investigated by microstructural examination and mechanical, abrasion, and corrosion testing. Microstructures ranged from martensite to unstable austenite. The unstable austenitic steels transformed to α martensite on deformation and displayed very high work hardening, exceeding that of Hadfield’s manganese steels. Fracture strengths similar to high carbon martensitic stainless steels were obtained while ductility and toughness values were high, similar to austenitic stainless steels. Resistance to abrasive wear exceeded that of commercial abrasion resistant steels and other stainless steels. Corrosion resistance was similar to that of other 12 pct Cr steels. Properties were not much affected by minor compositional variations or rolled-in nitrogen porosity. In 12 pct Cr-10 pct Mn alloys, ingot porosity was avoided when nitrogen levels were below 0.19 pet, and austenitic microstructures were obtained when nitrogen levels exceeded 0.14 pct.
NASA Astrophysics Data System (ADS)
Horton, R. M.; Coffel, E.; Kushnir, Y.
2014-12-01
Recent years have seen an increasing focus on extreme high temperature events, as our understanding of societal vulnerability to such extremes has grown. Less climate research has been devoted to heat indices that consider the joint hazard posed by high temperatures and high humidity, even though heat indices are being prioritized by utility providers and public health officials. This paper evaluates how well CMIP5 models are able to reproduce the large-scale features and surface conditions associated with joint high heat and humidity events in the Northeast U.S. Projected changes in heat indices are also shown both for the full set of CMIP5 models and for a subset of models that best reproduce the statistics of historical high heat index events. The importance of considering the relationship between 1) temperature and humidity extremes and 2) projected changes in extreme temperature and humidity extremes, rather than investigating each variable independently, will be emphasized. Potential impacts of the findings on human mortality and energy consumption will be briefly discussed.
Hard beta and gamma emissions of 124I. Impact on occupational dose in PET/CT.
Kemerink, G J; Franssen, R; Visser, M G W; Urbach, C J A; Halders, S G E A; Frantzen, M J; Brans, B; Teule, G J J; Mottaghy, F M
2011-01-01
The hard beta and gamma radiation of 124I can cause high doses to PET/CT workers. In this study we tried to quantify this occupational exposure and to optimize radioprotection. Thin MCP-Ns thermoluminescent dosimeters suitable for measuring beta and gamma radiation were used for extremity dosimetry, active personal dosimeters for whole-body dosimetry. Extremity doses were determined during dispensing of 124I and oral administration of the activity to the patient, the body dose during all phases of the PET/CT procedure. In addition, dose rates of vials and syringes as used in clinical practice were measured. The procedure for dispensing 124I was optimized using newly developed shielding. Skin dose rates up to 100 mSv/min were measured when in contact with the manufacturer's vial containing 370 MBq of 124I. For an unshielded 5 ml syringe the positron skin dose was about seven times the gamma dose. Before optimization of the preparation of 124I, using an already reasonably safe technique, the highest mean skin dose caused by handling 370 MBq was 1.9 mSv (max. 4.4 mSv). After optimization the skin dose was below 0.2 mSv. The highly energetic positrons emitted by 124I can cause high skin doses if radioprotection is poor. Under optimized conditions occupational doses are acceptable. Education of workers is of paramount importance.
4. View, fuel waste tanks and containment basin in foreground ...
4. View, fuel waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking southeast. At the extreme right is the Long-Term Oxidizer Silo (T-28B) and the Oxidizer Conditioning Structure (T-28D). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Okajima, Masahiro; Wada, Yuko; Hosoya, Takashi; Hino, Fumio; Kitahara, Yoshiyasu; Shimokawa, Ken-ichi; Ishii, Fumiyoshi
2013-04-01
Surfactant-free emulsions by adding jojoba oil, squalane, olive oil, or glyceryl trioctanoate (medium chain fatty acid triglycerides, MCT) to electrolytic-reduction ion water containing lithium magnesium sodium silicate (GE-100) were prepared, and their physiochemical properties (thixotropy, zeta potential, and mean particle diameter) were evaluated. At an oil concentration of 10%, the zeta potential was ‒22.3 ‒ ‒26.8 mV, showing no marked differences among the emulsions of various types of oil, but the mean particle diameters in the olive oil emulsion (327 nm) and MCT emulsion (295 nm) were smaller than those in the other oil emulsions (452-471 nm). In addition, measurement of the hysteresis loop area of each type of emulsion revealed extremely high thixotropy of the emulsion containing MCT at a low concentration and the olive emulsion. Based on these results, since surfactants and antiseptic agents markedly damage sensitive skin tissue such as that with atopic dermatitis, surfactant- and antiseptic-free emulsions are expected to be new bases for drugs for external use.
Marinozzi, Maura; Pertusati, Fabrizio; Serpi, Michaela
2016-11-23
The compounds characterized by the presence of a λ 5 -phosphorus functionality at the α-position with respect to the diazo moiety, here referred to as λ 5 -phosphorus-containing α-diazo compounds (PCDCs), represent a vast class of extremely versatile reagents in organic chemistry and are particularly useful in the preparation of phosphonate- and phosphinoxide-functionalized molecules. Indeed, thanks to the high reactivity of the diazo moiety, PCDCs can be induced to undergo a wide variety of chemical transformations. Among them are carbon-hydrogen, as well as heteroatom-hydrogen insertion reactions, cyclopropanation, ylide formation, Wolff rearrangement, and cycloaddition reactions. PCDCs can be easily prepared from readily accessible precursors by a variety of different methods, such as diazotization, Bamford-Stevens-type elimination, and diazo transfer reactions. This evidence along with their relative stability and manageability make them appealing tools in organic synthesis. This Review aims to demonstrate the ongoing utility of PCDCs in the modern preparation of different classes of phosphorus-containing compounds, phosphonates, in particular. Furthermore, to address the lack of precedent collective papers, this Review also summarizes the methods for PCDCs preparation.
Cohen, J
1989-02-01
Phenylethanolamine-N-methyltransferase (PNMT) activity is located in a subpopulation of amacrine cells in the inner nuclear layer of the rat retina. Kainic, quisqualic, and ibotenic acids, all of which are analogues of glutamic acid, were injected intravitreally to the right and saline to the contralateral left eyes of adult male rats in order to determine the effect of these agents upon retinal PNMT activity. Animals were sacrificed 1 week later for tissue removal. The effect of these agents was measured by radiometric assay for PNMT. The fall in PNMT activity was used to measure the sensitivity of the PNMT-containing cells to these agents. Kainic acid was the most potent, producing the greatest reduction in PNMT activity in the smallest doses. Quisqualic acid was intermediate in potency to that of kainic and ibotenic acids. Ibotenic acid reduced PNMT activity only in extremely high doses. The PNMT-containing cells are sensitive to the toxic actions of kainic and quisqualic acids, but relatively insensitive to the actions of ibotenic acid.
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-01-01
Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-12-21
Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.
Dudek, Dominika; Siwek, Marcin; Jaeschke, Rafał; Drozdowicz, Katarzyna; Styczeń, Krzysztof; Arciszewska, Aleksandra; Chrobak, Adrian A; Rybakowski, Janusz K
2016-06-01
We hypothesised that men and women who engage in extreme or high-risk sports would score higher on standardised measures of bipolarity and impulsivity compared to age and gender matched controls. Four-hundred and eighty extreme or high-risk athletes (255 males and 225 females) and 235 age-matched control persons (107 males and 128 females) were enrolled into the web-based case-control study. The Mood Disorder Questionnaire (MDQ) and Barratt Impulsiveness Scale (BIS-11) were administered to screen for bipolarity and impulsive behaviours, respectively. Results indicated that extreme or high-risk athletes had significantly higher scores of bipolarity and impulsivity, and lower scores on cognitive complexity of the BIS-11, compared to controls. Further, there were positive correlations between the MDQ and BIS-11 scores. These results showed greater rates of bipolarity and impulsivity, in the extreme or high-risk athletes, suggesting these measures are sensitive to high-risk behaviours.
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.
Ultra low friction carbon/carbon composites for extreme temperature applications
Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.
2001-01-01
A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints
Hydrologic enforcement of lidar DEMs
Poppenga, Sandra K.; Worstell, Bruce B.; Danielson, Jeffrey J.; Brock, John C.; Evans, Gayla A.; Heidemann, H. Karl
2014-01-01
Hydrologic-enforcement (hydro-enforcement) of light detection and ranging (lidar)-derived digital elevation models (DEMs) modifies the elevations of artificial impediments (such as road fills or railroad grades) to simulate how man-made drainage structures such as culverts or bridges allow continuous downslope flow. Lidar-derived DEMs contain an extremely high level of topographic detail; thus, hydro-enforced lidar-derived DEMs are essential to the U.S. Geological Survey (USGS) for complex modeling of riverine flow. The USGS Coastal and Marine Geology Program (CMGP) is integrating hydro-enforced lidar-derived DEMs (land elevation) and lidar-derived bathymetry (water depth) to enhance storm surge modeling in vulnerable coastal zones.
Niobium(V) saponite clay for the catalytic oxidative abatement of chemical warfare agents.
Carniato, Fabio; Bisio, Chiara; Psaro, Rinaldo; Marchese, Leonardo; Guidotti, Matteo
2014-09-15
A Nb(V)-containing saponite clay was designed to selectively transform toxic organosulfur chemical warfare agents (CWAs) under extremely mild conditions into nontoxic products with reduced environmental impact. Thanks to the insertion of Nb(V) sites within the saponite framework, a bifunctional catalyst with strong oxidizing and acid properties was obtained. Remarkable activity and high selectivity were observed for the oxidative abatement of (2-chloroethyl)ethyl sulfide (CEES), a simulant of sulfur mustard, at room temperature with aqueous hydrogen peroxide. This performance was significantly better compared to a conventional commercial decontamination powder. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High performance rotational vibration isolator
NASA Astrophysics Data System (ADS)
Sunderland, Andrew; Blair, David G.; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter
2013-10-01
We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.
High performance rotational vibration isolator.
Sunderland, Andrew; Blair, David G; Ju, Li; Golden, Howard; Torres, Francis; Chen, Xu; Lockwood, Ray; Wolfgram, Peter
2013-10-01
We present a new rotational vibration isolator with an extremely low resonant frequency of 0.055 ± 0.002 Hz. The isolator consists of two concentric spheres separated by a layer of water and joined by very soft silicone springs. The isolator reduces rotation noise at all frequencies above its resonance which is very important for airborne mineral detection. We show that more than 40 dB of isolation is achieved in a helicopter survey for rotations at frequencies between 2 Hz and 20 Hz. Issues affecting performance such as translation to rotation coupling and temperature are discussed. The isolator contains almost no metal, making it particularly suitable for electromagnetic sensors.
Intercalation Pseudocapacitance of Exfoliated Molybdenum Disulfide for Ultrafast Energy Storage
Yoo, Hyun Deog; Li, Yifei; Liang, Yanliang; ...
2016-05-23
In this study, we report intercalation pseudocapacitance of 250 F g -1 for exfoliated molybdenum disulfide (MoS 2) in non-aqueous electrolytes that contain lithium ions. The exfoliated MoS 2 shows surface-limited reaction kinetics with high rate capability up to 3 min of charge or discharge. The intercalation pseudocapacitance originates from the extremely fast kinetics due to the enhanced ionic and electronic transport enabled by the slightly expanded layer structure as well as the metallic 1T-phase. The exfoliated MoS 2 could be also used in a Li-Mg-ion hybrid capacitor, which shows full cell specific capacitance of 240 F g -1.
Multi-purpose CMOS sensor interface for low-power applications
NASA Astrophysics Data System (ADS)
Wouters, P.; de Cooman, M.; Puers, R.
1994-08-01
A dedicated low-power CMOS transponder microchip is presented as part of a novel telemetry implant for biomedical applications. This mixed analog-digital circuit contains an identification code and collects information on physiological parameters, i.e., body temperature and physical activity, and on the status of the battery. To minimize the amount of data to be transmitted, a dedicated signal processing algorithm is embedded within its circuitry. All telemetry functions (encoding, modulation, generation of the carrier) are implemented on the integrated circuit. Emphasis is on a high degree of flexibility towards sensor inputs and internal data management, extreme miniaturization, and low-power consumption to allow a long implantation lifetime.
NASA Astrophysics Data System (ADS)
Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun
2017-12-01
The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.
Pristine moon rocks - Apollo 17 anorthosites
NASA Technical Reports Server (NTRS)
Warren, P. H.; Jerde, E. A.; Kallemeyn, G. W.
1991-01-01
New chemical analyses and petrographic descriptions for 10 previously unanalyzed Apollo 17 rock samples are provided. Attention is focused on several that appear to be pristine. All samples were analyzed in INAA using a procedure based on that of Kallemeyn et al. (1989). One sample was found to be unambiguously pristine, and is the first pristine ferroan-anorthositic suite (FAS) sample from Apollo 17. It exhibits extremely low-mg(asterisk) mafic silicates, coupled with relatively sodic plagioclase. It has an unusually high augite/low-Ca pyroxene ratio and contains incompatible trace elements at levels unprecedentedly high compared to FAS anorthosites from the Apollo 14, 15, 16 sites. It is inferred that 74114.5, and Apollo 17 anorthosites in general, formed at a relatively late stage in the evolution of the primordial magmasphere.
A near-wearless and extremely long lifetime amorphous carbon film under high vacuum
Wang, Liping; Zhang, Renhui; Jansson, Ulf; Nedfors, Nils
2015-01-01
Prolonging wear life of amorphous carbon films under vacuum was an enormous challenge. In this work, we firstly reported that amorphous carbon film as a lubricant layer containing hydrogen, oxygen, fluorine and silicon (a-C:H:O:F:Si) exhibited low friction (~0.1), ultra-low wear rate (9.0 × 10–13 mm3 N–1 mm–1) and ultra-long wear life (>2 × 106 cycles) under high vacuum. We systematically examined microstructure and composition of transfer film for understanding of the underlying frictional mechanism, which suggested that the extraordinarily excellent tribological properties were attributed to the thermodynamically and structurally stable FeF2 nanocrystallites corroborated using first-principles calculations, which were induced by the tribochemical reaction. PMID:26059254
[Vancomycin-resistant enterococcus--chronicle of a foretold problem].
Bonten, Marc J M; Willems, Rob J
2012-01-01
There have recently been 12 outbreaks of infection caused by vancomycin-resistant enterococci (VRE) in Dutch hospitals. Although the first VRE outbreaks were reported almost 12 years ago, such outbreaks remained uncommon and the question is why they are occurring now. Based on molecular epidemiological studies we have learned that a subpopulation of Enterococcus faecium, resistant to amoxicillin but susceptible to vancomycin, has become highly endemic in Dutch hospitals in the past 12 years. Initial analyses suggest that several transposons containing vancomycin-resistance genes have been introduced into this population, followed by nosocomial spread. We recommend that hospitals without detected VRE outbreaks screen high-risk patients for the presence of VRE. If transmission has already occurred in many hospitals, it will be extremely difficult (and costly) to eradicate VRE.
Snow Depth from Lidar: Challenges and New Technology for Measurements in Extreme Terrain
NASA Astrophysics Data System (ADS)
Berisford, D. F.; Kadatskiy, V.; Boardman, J. W.; Bormann, K.; Deems, J. S.; Goodale, C. E.; Mattmann, C. A.; Ramirez, P.; Richardson, M.; Painter, T. H.
2014-12-01
The Airborne Snow Observatory (ASO) uses an airborne LiDAR system to measure basin-wide snow depth with cm-scale accuracy at ~1m spatial resolution. This is accomplished by creating a Digital Elevation Model (DEM) over snow-free terrain in the summer, then repeating the flights again when the terrain is snow-covered and subtracting the elevations. Snow Water Equivalent (SWE) is then calculated by incorporating modeled snow density estimates, and when combined with coincident spectrometer albedo measurements, informs distributed hydrologic modeling and runoff prediction. This method provides SWE estimates of unprecedented accuracy and extent compared to traditional snow surveys and towers, and 24hr latency data products through the ASO processing pipeline using Apache Tika and OODT software. The timely ASO outputs support operational decision making by water/dam operators for optimal water management. The water-resource snowpack in the western US lies in remote mountainous terrain, spanning large areas containing steep faces at all aspects, often amongst tree canopy. This extreme terrain presents unusual challenges for LiDAR, and requires high altitude flights to achieve wide area coverage, high point density to capture small terrain features, and the ability to capture all slope aspects without shadowing. These challenges were met by the new state-of-the-art Riegl LMS-Q1560 LiDAR system, which incorporates two independent laser channels and a single rotating mirror. Both lasers and mirror are designed to provide forward, backward, and nadir look capability, which minimizes shadowing and ensures data capture even on very steep slopes. The system is capable of logging more than 10 simultaneous pulses in the air, which allows data collection at extremely high resolution while maintaining very high altitude which reduces complete region acquisition time significantly, and allows data collection over terrain with extreme elevation variation. Our experience to-date includes acquisition of data over terrain relief of more than 3500m, and ranges of up to 6000m in a single swath. We present data acquired during spring of 2013 and 2014 in western Colorado and the central Sierra Nevada, which demonstrates the capability of the new LiDAR technology and shows basin-wide measured snow depth and SWE results.
Microbial diversity of extreme habitats in human homes.
Savage, Amy M; Hills, Justin; Driscoll, Katherine; Fergus, Daniel J; Grunden, Amy M; Dunn, Robert R
2016-01-01
High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.
NASA Astrophysics Data System (ADS)
Cadoni, Ezio
2018-03-01
The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.
Positive anomalous concentrations of Pb in some gabbroic rocks of Afikpo basin southeastern Nigeria.
Onwualu-John, J N
2016-08-01
Gabbroic rocks have intruded the sedimentary sequence at Ameta in Afikpo basin southeastern Nigeria. Petrographic and geochemical features of the rocks were studied in order to evaluate their genetic and geotectonic history. The petrographic results show that the rocks contain plagioclase, olivine, pyroxene, biotite, iron oxide, and traces of quartz in three samples. Major element characteristics show that the rocks are subalkaline. In addition, the rocks have geochemical characteristics similar to basaltic andesites. The trace elements results show inconsistent concentrations of high field strength elements (Zr, Nb, Th, Ta), moderate enrichment of large-ion lithophile elements (Rb, Sr, Ba) and low concentrations of Ni and Cr. Rare earth element results show that the rocks are characterized by enrichment of light rare earth elements, middle rare earth elements enrichment, and depletion of heavy rare earth elements with slight positive europium anomalies. Zinc concentrations are within the normal range in basaltic rocks. There are extremely high concentrations of Pb in three of the rock samples. The high Pb concentrations in some of these rocks could be as a result of last episodes of magmatic crystallization. The rocks intruded the Asu River Group; organic components in the sedimentary sequence probably contain Pb which has been assimilated into the magma at the evolutionary stage of the magma. Weathering of some rocks that contain galena could lead to an increase in the concentration of lead in the gabbroic rocks, especially when the migration and crystallization of magma take place in an aqueous environment. Nevertheless, high concentration of lead is hazardous to health and environment.
The Focal Surface of the JEM-EUSO Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Y.; EUSO Team, ASI, RIKEN; Casolino, M.
The Extreme Universe Space Observatory on JEM/EF (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in the near-ultraviolet wavelength region which will be mounted to the International Space Station. Its goal is to measure time-resolved fluorescence images of extensive air showers in the atmosphere. In this paper we describe in detail the main features and technological aspects of the focal surface of the instrument. The JEM-EUSO focal surface is a spherically curved surface, with an area of about 4.5m{sup 2}. The focal surface detector is made of more thanmore » 5,000 multi-anode photomultipliers (MAPMTs). Current baseline is Hamamatsu R11265-03-M64. The approach to the focal surface detector is highly modular. Photo-Detector-Modules (PDM) are the basic units that drive the mechanical structure and data acquisition. Each PDM consists of 9 Elementary Cells (ECs). The EC, which is the basic unit of the MAPMT support structure and of the front-end electronics, contains 4 units of MAPMTs. In total, about 1,200 ECs or about 150 PDMs are arranged on the whole of the focal surface of JEM-EUSO.« less
The ongoing saga surrounding the velocity fluctuations in sedimentation
NASA Astrophysics Data System (ADS)
Brenner, Michael P.
2002-11-01
Particles moving through a viscous fluid interact with each other, because each individual particle drags fluid along with it, which then pulls on other particles. In a low Reynolds number sediment, such hydrodynamic interactions are extremely strong, even when the particles are well separated. Despite more than a century of research, the character of the particle motions in a dilute suspension of heavy particles is highly controversial: In 1985, Caflisch and Luke presented an extremely simple argument indicating that the velocity fluctuations in such a sediment should diverge with the system size. Experiments have mainly contradicted this conclusion, leading to the hope that there is a (perhaps universal) ''screening mechanism'' controlling the size of the fluctuations. In this lecture I will review the history of this problem, and then present the results of our recent research which indicates that the velocity fluctuations are highly nonuniversal and system size dependent, depending subtley on both the shape of the container holding the sediment and any particle stratification that develops during an experiment. Experiments, numerical simulations and theory are presented that quantitatively support this point of view. This work is in collaboration with P. J. Mucha and the experimental group of D. A. Weitz: (S. Tee, S. Manley and L. Cippelletti).
Analysis of the unique geothermal microbial ecosystem of the Blue Lagoon.
Petursdottir, Solveig K; Bjornsdottir, Snaedis H; Hreggvidsson, Gudmundur O; Hjorleifsdottir, Sigridur; Kristjansson, Jakob K
2009-12-01
Cultivation and culture-independent techniques were used to describe the geothermal ecosystem of the Blue Lagoon in Iceland. The lagoon contains both seawater and freshwater of geothermal origin and is extremely high in silica content. Water samples were collected repeatedly in summer and autumn in 2003 and 2005 and in winter 2006 were analyzed for species composition. The study revealed the typical traits of an extreme ecosystem characterized by dominating species and other species represented in low numbers. A total of 35 taxa were identified. The calculated biodiversity index of the samples was 2.1-2.5. The majority (83%) of analyzed taxa were closely related to bacteria of marine and geothermal origin reflecting a marine character of the ecosystem and the origin of the Blue Lagoon hydrothermal fluid. A high ratio (63%) of analyzed taxa represented putative novel bacterial species. The majority (71%) of analyzed clones were Alphaproteobacteria, of which 80% belonged to the Roseobacter lineage within the family of Rhodobacteraceae. Of seven cultivated species, the two most abundant ones belonged to this lineage. Silicibacter lacuscaerulensis was confirmed as a dominating species in the Blue Lagoon. One group of isolates represented a recently identified species within the genus of Nitratireductor within Rhizobiales. This study implies an annually stable and seasonally dynamic ecosystem in the Blue Lagoon.
An extremely young massive clump forming by gravitational collapse in a primordial galaxy.
Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C
2015-05-07
When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.
Munson-McGee, Jacob H; Peng, Shengyun; Dewerff, Samantha; Stepanauskas, Ramunas; Whitaker, Rachel J; Weitz, Joshua S; Young, Mark J
2018-06-01
The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here, we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals a network of virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.
NASA Technical Reports Server (NTRS)
Zemcov, Michael; Cardona, Pedro; Parkus, James; Patru, Dorin; Yost, Valerie
2017-01-01
Power generation in extreme environments, such as the outer solar system, the night side of planets, or other low-illumination environments, currently presents a technology gap that challenges NASA's ambitious scientific goals. We are developing a radioisotope power cell (RPC) that utilizes commercially available tritium light sources and standard 1.85 eV InGaP2 photovoltaic cells to convert beta particle energy to electric energy. In the test program described here, we perform environmental tests on commercially available borosilicate glass vials internally coated with a ZnS luminescent phosphor that are designed to contain gaseous tritium in our proposed power source. Such testing is necessary to ensure that the glass containing the radioactive tritium is capable of withstanding the extreme environments of launch and space for extended periods of time.
Islam, Ahmad E; Rogers, John A; Alam, Muhammad A
2015-12-22
High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Donghuan; Zhou, Tianjun; Zou, Liwei; Zhang, Wenxia; Zhang, Lixia
2018-02-01
Extreme high-temperature events have large socioeconomic and human health impacts. East Asia (EA) is a populous region, and it is crucial to assess the changes in extreme high-temperature events in this region under different climate change scenarios. The Community Earth System Model low-warming experiment data were applied to investigate the changes in the mean and extreme high temperatures in EA under 1.5°C and 2°C warming conditions above preindustrial levels. The results show that the magnitude of warming in EA is approximately 0.2°C higher than the global mean. Most populous subregions, including eastern China, the Korean Peninsula, and Japan, will see more intense, more frequent, and longer-lasting extreme temperature events under 1.5°C and 2°C warming. The 0.5°C lower warming will help avoid 35%-46% of the increases in extreme high-temperature events in terms of intensity, frequency, and duration in EA with maximal avoidance values (37%-49%) occurring in Mongolia. Thus, it is beneficial for EA to limit the warming target to 1.5°C rather than 2°C.
Identifying the donor star of the most extreme ULX pulsar
NASA Astrophysics Data System (ADS)
Heida, Marianne
2017-08-01
Ultraluminous X-ray sources (ULXs) were once among the most promising candidates for long sought after intermediate-mass black holes, owing to their high X-ray luminosities (>10^39 erg/s) and off-nuclear positions. NGC 5907 ULX-1 was a prime example, and since it regularly reaches 10^41 erg/s it was thought to harbour a black hole with a mass of at least 500 solar masses. But in an astonishing discovery, the source was found to exhibit pulsations in the X-rays on second-timescales, revealing it to be a pulsar powered by accretion onto a neutron star with only 1.4 solar masses. This discovery challenges every known theory of accretion onto a compact object, which in this object exceeds the Eddington limit by a factor of 500. It requires us to imagine extreme departures from known accretion theory and/or binary evolution scenarios. The fuel source should be a massive companion star in order to sustain the required mass accretion rate, however X-ray timing favors a low-mass star. With the ability to detect a massive star, a short HST/WFC3 NIR observation would solve this mystery. A detection of a supergiant donor would open the path to future dynamical mass measurements with JWST, while a non-detection would prove that this extreme ULX pulsar contains a low-mass donor star, forcing us to consider new evolutionary formation channels.
Regions of extreme synonymous codon selection in mammalian genes
Schattner, Peter; Diekhans, Mark
2006-01-01
Recently there has been increasing evidence that purifying selection occurs among synonymous codons in mammalian genes. This selection appears to be a consequence of either cis-regulatory motifs, such as exonic splicing enhancers (ESEs), or mRNA secondary structures, being superimposed on the coding sequence of the gene. We have developed a program to identify regions likely to be enriched for such motifs by searching for extended regions of extreme codon conservation between homologous genes of related species. Here we present the results of applying this approach to five mammalian species (human, chimpanzee, mouse, rat and dog). Even with very conservative selection criteria, we find over 200 regions of extreme codon conservation, ranging in length from 60 to 178 codons. The regions are often found within genes involved in DNA-binding, RNA-binding or zinc-ion-binding. They are highly depleted for synonymous single nucleotide polymorphisms (SNPs) but not for non-synonymous SNPs, further indicating that the observed codon conservation is being driven by negative selection. Forty-three percent of the regions overlap conserved alternative transcript isoforms and are enriched for known ESEs. Other regions are enriched for TpA dinucleotides and may contain conserved motifs/structures relating to mRNA stability and/or degradation. We anticipate that this tool will be useful for detecting regions enriched in other classes of coding-sequence motifs and structures as well. PMID:16556911
NASA Astrophysics Data System (ADS)
Riveros-Iregui, D. A.; Moser, H. A.; Christenson, E. C.; Gray, J.; Hedgespeth, M. L.; Jass, T. L.; Lowry, D. S.; Martin, K.; Nichols, E. G.; Stewart, J. R.; Emanuel, R. E.
2017-12-01
In October 2016, Hurricane Matthew brought extreme flooding to eastern North Carolina, including record regional flooding along the Lumber River and its tributaries in the North Carolina Coastal Plain. Situated in a region dominated by large-scale crop-cultivation and containing some of the highest densities of concentrated animal feeding operations (CAFOs) and animal processing operations in the U.S., the Lumber River watershed is also home to the Lumbee Tribe of American Indians. Most of the tribe's 60,000+ members live within or immediately adjacent to the 3,000 km2 watershed where they maintain deep cultural and historical connections. The region, however, also suffers from high rates of poverty and large disparities in healthcare, education, and infrastructure, conditions exacerbated by Hurricane Matthew. We summarize ongoing efforts to characterize the short- and long-term impacts of extreme flooding on water quality in (1) low gradient streams and riverine wetlands of the watershed; (2) surficial aquifers, which provide water resources for the local communities, and (3) public drinking water supplies, which derive from deeper, confined aquifers but whose infrastructure suffered widespread damage following Hurricane Matthew. Our results provide mechanistic understanding of flood-related connectivity across multiple hydrologic compartments, and provide important implications for how hydrological natural hazards combine with land use to drive water quality impacts and affect vulnerable populations.
Lohrmann, David; YoussefAgha, Ahmed; Jayawardene, Wasantha
2014-04-01
We determined current trends and patterns in overweight, obesity, and extreme high obesity among Pennsylvania pre-kindergarten (pre-K) to 12th grade students and simulated future trends. We analyzed body mass index (BMI) of pre-K to 12th grade students from 43 of 67 Pennsylvania counties in 2007 to 2011 to determine trends and to discern transition patterns among BMI status categories for 2009 to 2011. Vinsem simulation, confirmed by Markov chain modeling, generated future prevalence trends. Combined rates of overweight, obesity, and extreme high obesity decreased among secondary school students across the 5 years, and among elementary students, first increased and then markedly decreased. BMI status remained constant for approximately 80% of normal and extreme high obese students, but both decreased and increased among students who initially were overweight and obese; the increase in BMI remained significant. Overall trends in child and adolescent BMI status seemed positive. BMI transition patterns indicated that although overweight and obesity prevalence leveled off, extreme high obesity, especially among elementary students, is projected to increase substantially over time. If current transition patterns continue, the prevalence of overweight, obesity, and extreme high obesity among Pennsylvania students in 2031 is projected to be 16.0%, 6.6%, and 23.2%, respectively.
Extreme Geohazards: Reducing Disaster Risk and Increasing Resilience
NASA Astrophysics Data System (ADS)
Plag, Hans-Peter; Stein, Seth; Brocklebank, Sean; Jules-Plag, Shelley; Campus, Paola
2014-05-01
Extreme natural hazards have the potential to cause global disasters and to lead to an escalation of the global sustainability crisis. Floods and droughts pose threats that could reach planetary extent, particularly through secondary economic and social impacts. Earthquakes and tsunamis cause disasters that could exceed the immediate coping capacity of the global economy, particularly in hazardous areas containing megacities, that can be particularly vulnerable to natural hazards if proper emergency protocols and infrastructures are not set in place. Recent events illustrate the destruction extreme hazards can inflict, both directly and indirectly, through domino effects resulting from the interaction with the built environment. Unfortunately, the more humanity learns to cope with relatively frequent (50 to 100 years) natural hazard events, the less concerns remain about the low-probability (one in a few hundred or more years) high-impact events. As a consequence, threats from low-probability extreme floods, droughts, and volcanic eruptions are not appropriately accounted for in Disaster Risk Reduction (DRR) discussions. With the support of the European Science Foundation (ESF), the Geohazards Community of Practice (GHCP) of the Group on Earth Observations (GEO) has developed a White Paper (WP) on the risk associated with low-probability, high-impact geohazards. These events are insufficiently addressed in risk management, although their potential impacts are comparable to those of a large asteroid impact, a global pandemic, or an extreme drought. The WP aims to increase awareness of the risk associated with these events as a basis for a comprehensive risk management. Extreme geohazards have occurred regularly throughout the past, but mostly did not cause major disasters because the exposure of human assets to such hazards and the global population density were much lower than today. The most extreme events during the last 2,000 years would cause today unparalleled damage on a global scale for a globally connected and stressed society. In particular, large volcanic eruptions could impact climate, damage anthropogenic infrastructure and interrupt resource supplies on a global scale. The occurrence of one or more of the largest volcanic eruptions that took place during the last 2,000 years under today's conditions would likely cause global disasters or catastrophes challenging civilization. Integration of these low-probability, high-impact events in DRR requires an approach focused on resilience and antifragility, as well as the ability to cope with, and recover from failure of infrastructures and social systems. Resilience results from social capital even more than from the robustness of infrastructure. While it is important to understand the hazards through the contribution of geosciences, it is equally important to understand through the contribution of social sciences and engineering the societal processes involved with coping with hazards or leading to failure. For comprehensive development of resilience to natural hazards and, in particular, extreme geohazards, synergy between geosciences, engineering and social sciences, jointed to an improved science-policy relationship is key to success. For example, a simple cost-benefit analysis shows that a comprehensive monitoring system that could identify the onset of an extreme volcanic eruption with sufficient lead time to allow for a globally coordinated preparation makes economic sense. The WP recommends implementation of such a monitoring system with global coverage, assesses the existing assets in current monitoring systems, and illustrates many benefits, besides providing early warning for extreme volcanic eruptions. However, such a monitoring system can provide resilience only via the capability of the global community to react to early warnings. The WP recommends achieving this through the establishment of a global coordination platform comparable to IPCC's role in addressing climate-change related issues to assess knowledge and related adaptive capabilities for disasters due to extreme geohazards.
Lower extremity muscle activation during baseball pitching.
Campbell, Brian M; Stodden, David F; Nixon, Megan K
2010-04-01
The purpose of this study was to investigate muscle activation levels of select lower extremity muscles during the pitching motion. Bilateral surface electromyography data on 5 lower extremity muscles (biceps femoris, rectus femoris, gluteus maximus, vastus medialis, and gastrocnemius) were collected on 11 highly skilled baseball pitchers and compared with individual maximal voluntary isometric contraction (MVIC) data. The pitching motion was divided into 4 distinct phases: phase 1, initiation of pitching motion to maximum stride leg knee height; phase 2, maximum stride leg knee height to stride foot contact (SFC); phase 3, SFC to ball release; and phase 4, ball release to 0.5 seconds after ball release (follow-through). Results indicated that trail leg musculature elicited moderate to high activity levels during phases 2 and 3 (38-172% of MVIC). Muscle activity levels of the stride leg were moderate to high during phases 2-4 (23-170% of MVIC). These data indicate a high demand for lower extremity strength and endurance. Specifically, coaches should incorporate unilateral and bilateral lower extremity exercises for strength improvement or maintenance and to facilitate dynamic stabilization of the lower extremities during the pitching motion.
Generalist genes and high cognitive abilities.
Haworth, Claire M A; Dale, Philip S; Plomin, Robert
2009-07-01
The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4,000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities.
Generalist genes and high cognitive abilities
Haworth, Claire M.A.; Dale, Philip S.; Plomin, Robert
2014-01-01
The concept of generalist genes operating across diverse domains of cognitive abilities is now widely accepted. Much less is known about the etiology of the high extreme of performance. Is there more specialization at the high extreme? Using a representative sample of 4000 12-year-old twin pairs from the UK Twins Early Development Study, we investigated the genetic and environmental overlap between web-based tests of general cognitive ability, reading, mathematics and language performance for the top 15% of the distribution using DF extremes analysis. Generalist genes are just as evident at the high extremes of performance as they are for the entire distribution of abilities and for cognitive disabilities. However, a smaller proportion of the phenotypic intercorrelations appears to be explained by genetic influences for high abilities. PMID:19377870
Design guidelines for wind-resistant structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, J.R.; Mehta, K.C.; Minor, J.E.
1975-06-01
The purpose of this document is to prescribe criteria and to provide guidance for professional personnel who are involved in the design and evaluation of buildings and structures to resist tornadoes and extreme winds at the Oak Ridge, Tennessee, Portsmouth, Ohio, and Paducah, Kentucky, Plant Sites. The scope of the document covers loads due to extreme winds and tornadoes. Other loading conditions such as dead, live, or earthquake loads shall be considered as prescribed by the Union Carbide Corporation. In Section II the method for determining the maximum design windspeed for any specified level of risk is described. The straightmore » wind and tornado parameters are then deduced from the value of maximum design windspeed. The three types of tornado and extreme wind loads (aerodynamic, atmospheric pressure change and missiles) are treated in Sections III, IV, and V, respectively. Appropriate load combinations are defined in Section VI. The final section contains several examples showing how the design guidelines are used to determine appropriate design wind pressures. A description of the computer program used to predict missile accelerations, velocities and trajectories is contained in Appendix A. Additional design examples are provided in Appendix B.« less
Abreu, Angela A; Alves, Joana I; Pereira, M Alcina; Karakashev, Dimitar; Alves, M Madalena; Angelidaki, Irini
2010-12-01
In the present study, two granular systems were compared in terms of hydrogen production rate, stability and bacterial diversity under extreme thermophilic conditions (70 degrees C). Two EGSB reactors were individually inoculated with heat treated methanogenic granules (HTG) and HTG amended with enrichment culture with high capacity of hydrogen production (engineered heat treated methanogenic granules - EHTG), respectively. The reactor inoculated with EHTG (R(EHTG)) attained a maximum production rate of 2.7l H(2)l(-1)day(-1) in steady state. In comparison, the R(HTG) containing the HTG granules was very unstable, with low hydrogen productions and only two peaks of hydrogen (0.8 and 1.5l H(2)l(-1)day(-1)). The presence of active hydrogen producers in the R(EHTG) system during the reactor start-up resulted in the development of an efficient H(2)-producing bacterial community. The results showed that "engineered inocula" where known hydrogen producers are co-inoculated with HTG is an efficient way to start up biohydrogen-producing reactors. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Jimsphere wind and turbulence exceedance statistic
NASA Technical Reports Server (NTRS)
Adelfang, S. I.; Court, A.
1972-01-01
Exceedance statistics of winds and gusts observed over Cape Kennedy with Jimsphere balloon sensors are described. Gust profiles containing positive and negative departures, from smoothed profiles, in the wavelength ranges 100-2500, 100-1900, 100-860, and 100-460 meters were computed from 1578 profiles with four 41 weight digital high pass filters. Extreme values of the square root of gust speed are normally distributed. Monthly and annual exceedance probability distributions of normalized rms gust speeds in three altitude bands (2-7, 6-11, and 9-14 km) are log-normal. The rms gust speeds are largest in the 100-2500 wavelength band between 9 and 14 km in late winter and early spring. A study of monthly and annual exceedance probabilities and the number of occurrences per kilometer of level crossings with positive slope indicates significant variability with season, altitude, and filter configuration. A decile sampling scheme is tested and an optimum approach is suggested for drawing a relatively small random sample that represents the characteristic extreme wind speeds and shears of a large parent population of Jimsphere wind profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Huaiguang; Zhang, Yingchen
This paper proposes an approach for distribution system state forecasting, which aims to provide an accurate and high speed state forecasting with an optimal synchrophasor sensor placement (OSSP) based state estimator and an extreme learning machine (ELM) based forecaster. Specifically, considering the sensor installation cost and measurement error, an OSSP algorithm is proposed to reduce the number of synchrophasor sensor and keep the whole distribution system numerically and topologically observable. Then, the weighted least square (WLS) based system state estimator is used to produce the training data for the proposed forecaster. Traditionally, the artificial neural network (ANN) and support vectormore » regression (SVR) are widely used in forecasting due to their nonlinear modeling capabilities. However, the ANN contains heavy computation load and the best parameters for SVR are difficult to obtain. In this paper, the ELM, which overcomes these drawbacks, is used to forecast the future system states with the historical system states. The proposed approach is effective and accurate based on the testing results.« less
Duan, Huabo; Yu, Danfeng; Zuo, Jian; Yang, Bo; Zhang, Yukui; Niu, Yongning
2016-12-01
The vast majority of construction material is inert and can be managed as nonhazardous. However, structures may have either been built with some environmentally unfriendly substances such as brominated flame retardants (BFRs), or have absorbed harmful elements such as heavy metals. This study focuses on end-of-life construction materials, i.e. construction and demolition (C&D) waste components. The aim was to characterize the concentration of extremely harmful substances, primarily BFRs, including hexabromocyclododecane (HBCD) and polybrominateddiphenyl ethers (PBDEs). Results revealed extremely high contents of HBCD and PBDEs in typical C&D waste components, particularly polyurethane foam materials. Policies should therefore be developed for the proper management of C&D waste, with priority for POP-containing debris. The first priority is to develop a classification system and procedures to separate out the harmful materials for more extensive processing. Additionally, identification and quantification of the environmental implications associated with dumping-dominated disposal of these wastes are required. Finally, more sustainable materials should be selected for use in the construction industry. Copyright © 2016 Elsevier B.V. All rights reserved.
The pH of chemistry assays plays an important role in monoclonal immunoglobulin interferences.
Alberti, Michael O; Drake, Thomas A; Song, Lu
2015-12-01
Immunoglobulin paraproteins can interfere with multiple chemistry assays. We want to investigate the mechanisms of immunoglobulin interference. Serum samples containing paraproteins from the index patient and eight additional patients were used to investigate the interference with the creatinine and total protein assays on the Beckman Coulter AU5400/2700 analyzer, and to determine the effects of pH and ionic strength on the precipitation of different immunoglobulins in these patient samples. The paraprotein interference with the creatinine and total protein assays was caused by the precipitation of IgM paraprotein in the index patient's samples under alkaline assay conditions. At extremely high pH (12-13) and extremely low pH (1-2) and low ionic strength, paraprotein formed large aggregates in samples from the index patient but not from other patients. The pH and ionic strength are the key factors that contribute to protein aggregation and precipitation which interfere with the creatinine and total protein measurements on AU5400/2700. The different amino acid sequence of each monoclonal paraprotein will determine the pH and ionic strength at which the paraprotein will precipitate.
A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil.
Hu, Xiao Ping; Heath, Caroline; Taylor, Mark Paul; Tuffin, Marla; Cowan, Don
2012-01-01
A novel, cold-active and highly alkaliphilic esterase was isolated from an Antarctic desert soil metagenomic library by functional screening. The 1,044 bp gene sequence contained several conserved regions common to lipases/esterases, but lacked clear classification based on sequence analysis alone. Moderate (<40%) amino acid sequence similarity to known esterases was apparent (the closest neighbour being a hypothetical protein from Chitinophaga pinensis), despite phylogenetic distance to many of the lipolytic "families". The enzyme functionally demonstrated activity towards shorter chain p-nitrophenyl esters with the optimal activity recorded towards p-nitrophenyl propionate (C3). The enzyme possessed an apparent T(opt) at 20°C and a pH optimum at pH 11. Esterases possessing such extreme alkaliphily are rare and so this enzyme represents an intriguing novel locus in protein sequence space. A metagenomic approach has been shown, in this case, to yield an enzyme with quite different sequential/structural properties to known lipases. It serves as an excellent candidate for analysis of the molecular mechanisms responsible for both cold and alkaline activity and novel structure-function relationships of esterase activity.
Extreme depth-of-field intraocular lenses
NASA Astrophysics Data System (ADS)
Baker, Kenneth M.
1996-05-01
A new technology brings the full aperture single vision pseudophakic eye's effective hyperfocal distance within the half-meter range. A modulated index IOL containing a subsurface zeroth order coherent microlenticular mosaic defined by an index gradient adds a normalizing function to the vergences or parallactic angles of incoming light rays subtended from field object points and redirects them, in the case of near-field images, to that of far-field images. Along with a scalar reduction of the IOL's linear focal range, this results in an extreme depth of field with a narrow depth of focus and avoids the focal split-up, halo, and inherent reduction in contrast of multifocal IOLs. A high microlenticular spatial frequency, which, while still retaining an anisotropic medium, results in a nearly total zeroth order propagation throughout the visible spectrum. The curved lens surfaces still provide most of the refractive power of the IOL, and the unique holographic fabrication technology is especially suitable not only for IOLs but also for contact lenses, artificial corneas, and miniature lens elements for cameras and other optical devices.
The Impact of the Geologic History and Paleoclimate on the Diversification of East African Cichlids
Danley, Patrick D.; Husemann, Martin; Ding, Baoqing; DiPietro, Lyndsay M.; Beverly, Emily J.; Peppe, Daniel J.
2012-01-01
The cichlid fishes of the East African Great Lakes are the largest extant vertebrate radiation identified to date. These lakes and their surrounding waters support over 2,000 species of cichlid fish, many of which are descended from a single common ancestor within the past 10 Ma. The extraordinary East African cichlid diversity is intricately linked to the highly variable geologic and paleoclimatic history of this region. Greater than 10 Ma, the western arm of the East African rift system began to separate, thereby creating a series of rift basins that would come to contain several water bodies, including the extremely deep Lakes Tanganyika and Malawi. Uplifting associated with this rifting backponded many rivers and created the extremely large, but shallow Lake Victoria. Since their creation, the size, shape, and existence of these lakes have changed dramatically which has, in turn, significantly influenced the evolutionary history of the lakes' cichlids. This paper reviews the geologic history and paleoclimate of the East African Great Lakes and the impact of these forces on the region's endemic cichlid flocks. PMID:22888465
Song, J.; Bi, W.; Haskel, D.; ...
2017-05-15
Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5–295 K under pressures to 210 GPa. The magnetic ordering temperature T o of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y(Nd) alloys display both a resistivity minimum and superconducting pair breaking ΔT c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30–40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. Furthermore, the rise and fall of T o and ΔT c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less
Arctic plant diversity in the Early Eocene greenhouse
Harrington, Guy J.; Eberle, Jaelyn; Le-Page, Ben A.; Dawson, Mary; Hutchison, J. Howard
2012-01-01
For the majority of the Early Caenozoic, a remarkable expanse of humid, mesothermal to temperate forests spread across Northern Polar regions that now contain specialized plant and animal communities adapted to life in extreme environments. Little is known on the taxonomic diversity of Arctic floras during greenhouse periods of the Caenozoic. We show for the first time that plant richness in the globally warm Early Eocene (approx. 55–52 Myr) in the Canadian High Arctic (76° N) is comparable with that approximately 3500 km further south at mid-latitudes in the US western interior (44–47° N). Arctic Eocene pollen floras are most comparable in richness with today's forests in the southeastern United States, some 5000 km further south of the Arctic. Nearly half of the Eocene, Arctic plant taxa are endemic and the richness of pollen floras implies significant patchiness to the vegetation type and clear regional richness of angiosperms. The reduced latitudinal diversity gradient in Early Eocene North American plant species demonstrates that extreme photoperiod in the Arctic did not limit taxonomic diversity of plants. PMID:22072610
The Lake Victoria Intense Storm Early Warning System (VIEWS)
NASA Astrophysics Data System (ADS)
Thiery, Wim; Gudmundsson, Lukas; Bedka, Kristopher; Semazzi, Fredrick; Lhermitte, Stef; Willems, Patrick; van Lipzig, Nicole; Seneviratne, Sonia I.
2017-04-01
Weather extremes have harmful impacts on communities around Lake Victoria in East Africa. Every year, intense nighttime thunderstorms cause numerous boating accidents on the lake, resulting in thousands of deaths among fishermen. Operational storm warning systems are therefore crucial. Here we complement ongoing early warning efforts based on NWP, by presenting a new satellite data-driven storm prediction system, the prototype Lake Victoria Intense storm Early Warning System (VIEWS). VIEWS derives predictability from the correlation between afternoon land storm activity and nighttime storm intensity on Lake Victoria, and relies on logistic regression techniques to forecast extreme thunderstorms from satellite observations. Evaluation of the statistical model reveals that predictive power is high and independent of the input dataset. We then optimise the configuration and show that also false alarms contain valuable information. Our results suggest that regression-based models that are motivated through process understanding have the potential to reduce the vulnerability of local fishing communities around Lake Victoria. The experimental prediction system is publicly available under the MIT licence at http://github.com/wthiery/VIEWS.
Early warnings of hazardous thunderstorms over Lake Victoria
NASA Astrophysics Data System (ADS)
Thiery, Wim; Gudmundsson, Lukas; Bedka, Kristopher; Semazzi, Fredrick H. M.; Lhermitte, Stef; Willems, Patrick; van Lipzig, Nicole P. M.; Seneviratne, Sonia I.
2017-07-01
Weather extremes have harmful impacts on communities around Lake Victoria in East Africa. Every year, intense nighttime thunderstorms cause numerous boating accidents on the lake, resulting in thousands of deaths among fishermen. Operational storm warning systems are therefore crucial. Here we complement ongoing early warning efforts based on numerical weather prediction, by presenting a new satellite data-driven storm prediction system, the prototype Lake Victoria Intense storm Early Warning System (VIEWS). VIEWS derives predictability from the correlation between afternoon land storm activity and nighttime storm intensity on Lake Victoria, and relies on logistic regression techniques to forecast extreme thunderstorms from satellite observations. Evaluation of the statistical model reveals that predictive power is high and independent of the type of input dataset. We then optimise the configuration and show that false alarms also contain valuable information. Our results suggest that regression-based models that are motivated through process understanding have the potential to reduce the vulnerability of local fishing communities around Lake Victoria. The experimental prediction system is publicly available under the MIT licence at http://github.com/wthiery/VIEWS.
NASA Astrophysics Data System (ADS)
Popovicheva, O. B.; Kistler, M.; Kireeva, E. D.; Persiantseva, N. M.; Timofeev, M. A.; Shoniya, N. K.; Kopeikin, V. M.
2017-01-01
This is a comprehensive study of the physicochemical characterization of multicomponent aerosols in the smoky atmosphere of Moscow during the extreme wildfires of August 2010 and against the background atmosphere of August 2011. Thermal-optical analysis, liquid and ion chromatography, IR spectroscopy, and electron microscopy were used to determine the organic content (OC) and elemental content (EC) of carbon, organic/inorganic and ionic compounds, and biomass burning markers (anhydrosaccharides and the potassium ion) and study the morphology and elemental composition of individual particles. It has been shown that the fires are characterized by an increased OC/EC ratio and high concentrations of ammonium, potassium, and sulfate ions in correlation with an increased content of levoglucosan as a marker of biomass burning. The organic compounds containing carbonyl groups point to the process of photochemical aging and the formation of secondary organic aerosols in the urban atmosphere when aerosols are emitted from forest fires. A cluster analysis of individual particles has indicated that when the smokiest atmosphere is characterized by prevailing soot/tar ball particles, which are smoke-emission micromarkers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, J.; Bi, W.; Haskel, D.
Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5–295 K under pressures to 210 GPa. The magnetic ordering temperature T o of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y(Nd) alloys display both a resistivity minimum and superconducting pair breaking ΔT c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30–40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. Furthermore, the rise and fall of T o and ΔT c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less
A Survey of Protein Structures from Archaeal Viruses
Dellas, Nikki; Lawrence, C. Martin; Young, Mark J.
2013-01-01
Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs) whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%). This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight. PMID:25371334
Intra-seasonal Characteristics of Wintertime Extreme Cold Events over South Korea
NASA Astrophysics Data System (ADS)
Park, Taewon; Jeong, Jeehoon; Choi, Jahyun
2017-04-01
The present study reveals the changes in the characteristics of extreme cold events over South Korea for boreal winter (November to March) in terms of the intra-seasonal variability of frequency, duration, and atmospheric circulation pattern. Influences of large-scale variabilities such as the Siberian High activity, the Arctic Oscillation (AO), and the Madden-Julian Oscillation (MJO) on extreme cold events are also investigated. In the early and the late of the winter during November and March, the upper-tropospheric wave-train for a life-cycle of the extreme cold events tends to pass quickly over East Asia. In addition, compared with the other months, the intensity of the Siberian High is weaker and the occurrences of strong negative AO are less frequent. It lead to events with weak amplitude and short duration. On the other hand, the amplified Siberian High and the strong negative AO occur more frequently in the mid of the winter from December to February. The extreme cold events are mainly characterized by a well-organized anticyclonic blocking around the Ural Mountain and the Subarctic. These large-scale circulation makes the extreme cold events for the midwinter last long with strong amplitude. The MJO phases 2-3 which provide a suitable condition for the amplification of extreme cold events occur frequently for November to January when the frequencies are more than twice those for February and March. While the extreme cold events during March have the least frequency, the weakest amplitude, and the shortest duration due to weak impacts of the abovementioned factors, the strong activities of the factors for January force the extreme cold events to be the most frequent, the strongest, and the longest among the boreal winter. Keywords extreme cold event, wave-train, blocking, Siberian High, AO, MJO
Extreme Pressure Synergistic Mechanism of Bismuth Naphthenate and Sulfurized Isobutene Additives
NASA Astrophysics Data System (ADS)
Xu, Xin; Hu, Jianqiang; Yang, Shizhao; Xie, Feng; Guo, Li
A four-ball tester was used to evaluate the tribological performances of bismuth naphthenate (BiNap), sulfurized isobutene (VSB), and their combinations. The results show that the antiwear properties of BiNap and VSB are not very visible, but they possess good extreme pressure (EP) properties, particularly sulfur containing bismuth additives. Synergistic EP properties of BiNap with various sulfur-containing additives were investigated. The results indicate that BiNap exhibits good EP synergism with sulfur-containing additives. The surface analytical tools, such as X-ray photoelectron spectrometer (XPS) scanning electron microscope (SEM) and energy dispersive X-ray (EDX), were used to investigate the topography, composition contents, and depth profile of some typical elements on the rubbing surface. Smooth topography of wear scar further confirms that the additive showed good EP capacities, and XPS and EDX analyzes indicate that tribochemical mixed protective films composed of bismuth, bismuth oxides, sulfides, and sulfates are formed on the rubbing surface, which improves the tribological properties of lubricants. In particular, a large number of bismuth atoms and bismuth sulfides play an important role in improving the EP properties of oils.
Process for casting hard-faced, lightweight camshafts and other cylindrical products
Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.; Wilson, Rick D.
1996-01-01
A process for casting a hard-faced cylindrical product such as an automobile camshaft includes the steps of: (a) preparing a composition formed from a molten base metal and an additive in particle form and having a hardness value greater than the hardness value of the base metal; (b) introducing the composition into a flask containing a meltable pattern of a cylindrical product such as an automobile camshaft to be manufactured and encased in sand to allow the composition to melt the pattern and assume the shape of the pattern within the sand; and (c) rotating the flask containing the pattern about the longitudinal axes of both the flask and the pattern as the molten base metal containing the additive in particle form is introduced into the flask to cause particles of the additive entrained in the molten base metal to migrate by centrifugal action to the radial extremities of the pattern and thereby provide a cylindrical product having a hardness value greater at it's radial extremities than at its center when the molten base metal solidifies.
The performance of spatially offset Raman spectroscopy for liquid explosive detection
NASA Astrophysics Data System (ADS)
Loeffen, Paul W.; Maskall, Guy; Bonthron, Stuart; Bloomfield, Matthew; Tombling, Craig; Matousek, Pavel
2016-10-01
Aviation security requirements adopted in 2014 require liquids to be screened at most airports throughout Europe, North America and Australia. Cobalt's unique Spatially Offset Raman Spectroscopy (SORS™) technology has proven extremely effective at screening liquids, aerosols and gels (LAGS) with extremely low false alarm rates. SORS is compatible with a wide range of containers, including coloured, opaque or clear plastics, glass and paper, as well as duty-free bottles in STEBs (secure tamper-evident bags). Our award-winning Insight range has been specially developed for table-top screening at security checkpoints. Insight systems use our patented SORS technology for rapid and accurate chemical analysis of substances in unopened non-metallic containers. Insight100M™ and the latest member of the range - Insight200M™ - also screen metallic containers. Our unique systems screen liquids, aerosols and gels with the highest detection capability and lowest false alarm rates of any ECAC-approved scanner, with several hundred units already in use at airports including eight of the top ten European hubs. This paper presents an analysis of real performance data for these systems.
NASA Astrophysics Data System (ADS)
Anarde, K.; Figlus, J.; Dellapenna, T. M.; Bedient, P. B.
2017-12-01
Prior to landfall of Hurricane Harvey on August 25, 2017, instrumentation was deployed on the seaward and landward sides of a barrier island on the central Texas Gulf Coast to collect in-situ hydrodynamic measurements during storm impact. High-resolution devices capable of withstanding extreme conditions included inexpensive pressure transducers and tilt current meters mounted within and atop (respectively) shallow monitoring wells. In order to link measurements of storm hydrodynamics with the morphological evolution of the barrier, pre- and post-storm digital elevation models were generated using a combination of unmanned aerial imagery, LiDAR, and real-time kinematic GPS. Push-cores were collected and analyzed for grain size and sedimentary structure to relate hydrodynamic observations with the local character of storm-generated deposits. Observations show that at Hog Island, located approximately 160 miles northeast of Harvey's landfall location, storm surge inundated an inactive storm channel. Infragravity waves (0.003 - 0.05 Hz) dominated the water motion onshore of the berm crest over a 24-hour period proximate to storm landfall. Over this time, approximately 50 cm of sediment accreted vertically atop the instrument located in the backshore. Storm deposits at this location contained sub-parallel alternating laminae of quartz and heavy mineral-enriched sand. While onshore progression of infragravity waves into the back-barrier was observed over several hours prior to storm landfall, storm deposits in the back-barrier lack the characteristic laminae preserved in the backshore. These field measurements will ultimately be used to constrain and validate numerical modeling schemes that explore morphodynamic conditions of barriers in response to extreme storms (e.g., XBeach, CSHORE). This study provides a unique data set linking extreme storm hydrodynamics with geomorphic changes during a relatively low surge, but highly dissipative wave event.
NASA Astrophysics Data System (ADS)
Ashford, J.; Sickman, J. O.; Lucero, D. M.
2014-12-01
Understanding the underlying causes of interannual variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental records and the difficulties in reconstructing climate using a traditional paleo-record such as tree-rings. New paleo proxies are needed to provide a record of snowpack water content and extreme precipitation events over millennial timescales which can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake (z = 27 m), an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K yr record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating light-dark bands (~1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. We hypothesize that the light-dark banding results from the breakdown of persistent hypolimnetic anoxia during spring snowmelt and autumn overturn. We speculate that the thicknesses of the dark bands are controlled by the duration of anoxia which in turn is controlled by the volume and duration of snowmelt. The sand to gravel sized clasts are most likely associated with extreme precipitation events resulting from atmospheric rivers intersecting the southern Sierra Nevada. We hypothesize that centimeter-sized clasts are deposited in large avalanches and that the sands are deposited in large rain events outside of the snow-cover period.
46 CFR 153.515 - Special requirements for extremely flammable cargoes.
Code of Federal Regulations, 2012 CFR
2012-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...
46 CFR 153.515 - Special requirements for extremely flammable cargoes.
Code of Federal Regulations, 2013 CFR
2013-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...
46 CFR 153.515 - Special requirements for extremely flammable cargoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...
46 CFR 153.515 - Special requirements for extremely flammable cargoes.
Code of Federal Regulations, 2011 CFR
2011-10-01
... DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design.... When Table 1 refers to this section: (a) An enclosed space containing a cargo tank must have an...
21 CFR 522.1335 - Medetomidine hydrochloride injection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... solution contains 1.0 milligram of medetomidine hydrochloride. (b) Sponsor. See 052483 in § 510.600(c) of... diseases, dogs in shock, dogs which are severly debilitated, or dogs which are stressed due to extreme heat...
21 CFR 522.1335 - Medetomidine hydrochloride injection.
Code of Federal Regulations, 2013 CFR
2013-04-01
... solution contains 1.0 milligram of medetomidine hydrochloride. (b) Sponsor. See 052483 in § 510.600(c) of... diseases, dogs in shock, dogs which are severly debilitated, or dogs which are stressed due to extreme heat...
21 CFR 522.1335 - Medetomidine hydrochloride injection.
Code of Federal Regulations, 2012 CFR
2012-04-01
... solution contains 1.0 milligram of medetomidine hydrochloride. (b) Sponsor. See 052483 in § 510.600(c) of... diseases, dogs in shock, dogs which are severly debilitated, or dogs which are stressed due to extreme heat...
21 CFR 522.1335 - Medetomidine hydrochloride injection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... solution contains 1.0 milligram of medetomidine hydrochloride. (b) Sponsor. See 052483 in § 510.600(c) of... diseases, dogs in shock, dogs which are severly debilitated, or dogs which are stressed due to extreme heat...
Risk Management Plan (RMP) Rule Overview
As required by Section 112(r) of the Clean Air Act Amendments, this rule contains regulations and guidance for chemical accident prevention at facilities that use extremely hazardous substances, and aids in emergency preparedness and response.
Method for plasma formation for extreme ultraviolet lithography-theta pinch
Hassanein, Ahmed [Naperville, IL; Konkashbaev, Isak [Bolingbrook, IL; Rice, Bryan [Hillsboro, OR
2007-02-20
A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.
[Principles of management of All-Russia Disaster Medicine Services].
Sakhno, I I
2000-11-01
Experience of liquidation of earthquake consequences in Armenia (1988) has shown that it is extremely necessary to create the system of management in regions of natural disaster, large accident or catastrophe before arrival of main forces in order to provide reconnaissance, to receive the arriving units. It will help to make well-grounded decisions, to set tasks in time, to organize and conduct emergency-and-rescue works. The article contains general material concerning the structure of All-Russia service of disaster medicine (ARSDM), organization of management at all levels and interaction between the components of ARSDM and other subsystems of Russian Service of Extreme Situations. It is recommended how to organize management of ARSDM during liquidation of medical-and-sanitary consequences of large-scale extreme situations.
Operations and maintenance in the glass container industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbieri, D.; Jacobson, D.
1999-07-01
Compressed air is a significant electrical end-use at most manufacturing facilities, and few industries utilize compressed air to the extent of the glass container industry. Unfortunately, compressed air is often a significant source of wasted energy because many customers view it as a low-maintenance system. In the case of the glass container industry, compressed air is a mission-critical system used for driving production machinery, blowing glass, cooling plungers and product, and packaging. Leakage totaling 10% of total compressed air capacity is not uncommon, and leakage rates upwards of 40% have been observed. Even though energy savings from repairing compressed airmore » leaks can be substantial, regular maintenance procedures are often not in place for compressed air systems. In order to achieve future savings in the compressed air end-use, O and M programs must make a special effort to educate customers on the significant energy impacts of regular compressed air system maintenance. This paper will focus on the glass industry, its reliability on compressed air, and the unique savings potential in the glass container industry. Through a technical review of the glass production process, this paper will identify compressed air as a highly significant electrical consumer in these facilities and present ideas on how to produce and deliver compressed air in a more efficient manner. It will also examine a glass container manufacturer with extremely high savings potential in compressed air systems, but little initiative to establish and perform compressed air maintenance due to an if it works, don't mess with it maintenance philosophy. Finally, this paper will address the economic benefit of compressed air maintenance in this and other manufacturing industries.« less
NASA Astrophysics Data System (ADS)
Pearl, J. K.; Anchukaitis, K. J.; Pederson, N.; Donnelly, J. P.
2017-12-01
Extreme hydrologic events pose a present and future threat to cities and infrastructure in the densely populated coastal corridor of the northeastern United States (NE). An understanding of the potential range and return interval of storms, floods, and droughts is important for improving coastal management and hazard planning, as well as the detection and attribution of trends in regional climate phenomena. Here, we examine a suite of evidence for Common Era paleohydroclimate extreme events in the NE. Our study analyzes a network of hydroclimate sensitive trees, subfossil 'drowned' forests and co-located sediment records, using both classical and isotope dendrochronology, radiocarbon analyses, and sediment stratigraphy. Atlantic White cedar (AWC) forests grow along the NE coast and are exposed to severe coastal weather, as they are typically most successful in near-shore, glacially formed depressions. Many coastal AWC sites are ombrotrophic and contain a precipitation or drought signal in their ring widths. Sub-fossil AWC forests are found where near-shore swamps were drowned and exposed to the ocean. Additionally, the rings of coastal AWC may contain the geochemical signature of landfalling tropical cyclones, which bring with them a large influx of precipitation with distinct oxygen isotopes, which can be used to identify these large storms. Dendrochronology, radiocarbon dating, and analysis of sediment cores are used here to identify and date the occurrence of large overwash events along the coastline of the northeastern United States associated with extreme storms.
Wineman, Eitan; Portugal-Cohen, Meital; Soroka, Yoram; Cohen, Dror; Schlippe, Gerrit; Voss, Werner; Brenner, Sarah; Milner, Yoram; Hai, Noam; Ma'or, Zeevi
2012-09-01
Skin appearance is badly affected when exposed to solar UV rays, which encourage physiological and structural cutaneous alterations that eventually lead to skin photo-damage. To test the capability of two facial preparations, extreme day cream (EXD) and extreme night treatment (EXN), containing a unique complex of Dead Sea water and three Himalayan extracts, to antagonize biological effects induced by photo-damage. Pieces of organ cultures of human skin were used as a model to assess the biological effects of UVB irradiation and the protective effect of topical application of two Extreme preparations. Skin pieces were analyzed for mitochondrial activity by MTT assay, for apoptosis by caspase 3 assay, and for cytokine secretion by solid phase ELISA. Human subjects were tested to evaluate the effect of Extreme preparations on skin wrinkle depth using PRIMOS and skin hydration by a corneometer. UVB irradiation induced cell apoptosis in the epidermis of skin organ cultures and increased their pro-inflammatory cytokine, tumor necrosis α (TNFα) secretion. Topical applications of both preparations significantly attenuated all these effects. Furthermore, in human subjects, a reduction in wrinkle depth and an elevation in the intense skin moisture were observed. The observations clearly show that EXD and EXN preparations have protective anti-apoptotic and anti-inflammatory properties that can attenuate biological effects of skin photo-damage. Topical application of the preparations improves skin appearance by reducing its wrinkles depth and increasing its moisturizing impact. © 2012 Wiley Periodicals, Inc.
Carrer, Marco; Brunetti, Michele; Castagneri, Daniele
2016-01-01
Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800–2011 at monthly resolution and for 1926–2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0–34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees, but further investigations are needed to improve our comprehension of the critical role of such elusive events in forest ecosystems. PMID:27242880
Garcia, Juliana; Costa, Vera M; Costa, Ana Elisa; Andrade, Sérgio; Carneiro, Ana Cristina; Conceição, Filipe; Paiva, José Artur; de Pinho, Paula Guedes; Baptista, Paula; de Lourdes Bastos, Maria; Carvalho, Félix
2015-09-01
Mushroom poisonings occur when ingestion of wild mushrooms containing toxins takes place, placing the consumers at life-threatening risk. In the present case report, an unusual multiple poisoning with isoxazoles- and amatoxins-containing mushrooms in a context of altered mental state and poorly controlled hypertension is presented. A 68-year-old female was presented to São João hospital (Portugal) with complaints of extreme dizziness, hallucinations, vertigo and imbalance, 3 h after consuming a stew of wild mushrooms. The first observations revealed altered mental state and elevated blood pressure. The examination of cooked mushroom fragments allowed a preliminary identification of Amanita pantherina. Gas chromatography-mass spectrometry (GC-MS) showed the presence of muscimol in urine. Moreover, through high-performance liquid chromatography-ultraviolet detection (HPLC-UV) analysis of the gastric juice, the presence of α-amanitin was found, showing that amatoxins-containing mushrooms were also included in the stew. After 4 days of supportive treatment, activated charcoal, silybin and N-acetylcysteine, the patient recovered being discharged 10 days post-ingestion with no organ complications. The prompt and appropriate therapy protocol for life-threatening amatoxins toxicity probably saved the patient's life as oral absorption was decreased and also supportive care was immediately started. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abrahams, Rachel
2017-06-01
Intermediate alloy steels are widely used in applications where both high strength and toughness are required for extreme/dynamic loading environments. Steels containing greater than 10% Ni-Co-Mo are amongst the highest strength martensitic steels, due to their high levels of solution strengthening, and preservation of toughness through nano-scaled secondary hardening, semi-coherent hcp-M2 C carbides. While these steels have high yield strengths (σy 0.2 % >1200 MPa) with high impact toughness values (CVN@-40 >30J), they are often cost-prohibitive due to the material and processing cost of nickel and cobalt. Early stage-I steels such as ES-1 (Eglin Steel) were developed in response to the high cost of nickel-cobalt steels and performed well in extreme shock environments due to the presence of analogous nano-scaled hcp-Fe2.4 C epsilon carbides. Unfortunately, the persistence of W-bearing carbides limited the use of ES-1 to relatively thin sections. In this study, we discuss the background and accelerated development cycle of AF96, an alternative Cr-Mo-Ni-Si stage-I temper steel using low-cost heuristic and Integrated Computational Materials Engineering (ICME)-assisted methods. The microstructure of AF96 was tailored to mimic that of ES-1, while reducing stability of detrimental phases and improving ease of processing in industrial environments. AF96 is amenable to casting and forging, deeply hardenable, and scalable to 100,000 kg melt quantities. When produced at the industrial scale, it was found that AF96 exhibits near-statistically identical mechanical properties to ES-1 at 50% of the cost.
NASA Astrophysics Data System (ADS)
Ioan, M.-R.
2018-01-01
Almost all optical diagnostic systems associated with classical particle accelerators or with new state-of-the-art particle accelerators, such as those developed within the European Collaboration ELI-NP (Extreme Light Infrastructure-Nuclear Physics) (involving extreme power laser beams), contain in their infrastructure high quality laser mirrors, used for their reflectivity and/or their partial transmittance. These high quality mirrors facilitate the extraction and handling of optical signals. When optical mirrors are exposed to high energy ionizing radiation fields, their optical and structural properties will change over time and their functionality will be affected, meaning that they will provide imprecise information. In some experiments, being exposed to mixed laser and accelerated particle beams, the deterioration of laser mirrors is even more acute, since the destruction mechanisms of both types of beams are cumulated. The main task of the work described in this paper was to find a novel specific method to analyse and highlight such degradation processes. By using complex fractal techniques integrated in a MATLAB code, the effects induced by alpha radiation to laser mirrors were studied. The fractal analysis technique represents an alternative approach to the classical Euclidean one. It can be applied for the characterization of the defects occurred in mirrors structure due to their exposure to high energy alpha particle beams. The proposed method may be further integrated into mirrors manufacturing process, as a testing instrument, to obtain better quality mirrors (enhanced resistance to high energy ionizing beams) by using different types of reflective coating materials and different deposition techniques. Moreover, the effect of high energy alpha ionizing particles on the optical properties of the exposed laser mirrors was studied by using spectrophotometric techniques.
Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.
Tan, Xuezhi; Gan, Thian Yew; Horton, Daniel E
2018-05-26
Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact-relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude-, frequency-, and severity-based extreme temperature (10) and precipitation (8) indices using both multimodel and single-model multirealization ensembles. Under a high-emission scenario, we find that the signal of frequency- and severity-based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude-based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity-based indices first emerging over midlatitudes, and magnitude- and frequency-based indices emerging earliest in low and high latitudes. Applied to impact-relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well-before 2030 for the 590 most populous urban centers. Elucidating extreme-metric and domain-type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty-first century radiative forcing. © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, Deidre A.; Herrmann, Kimberly A.; Johnson, Megan
We present LITTLE THINGS (Local Irregulars That Trace Luminosity Extremes, The H I Nearby Galaxy Survey), which is aimed at determining what drives star formation in dwarf galaxies. This is a multi-wavelength survey of 37 dwarf irregular and 4 blue compact dwarf galaxies that is centered around H I-line data obtained with the National Radio Astronomy Observatory (NRAO) Very Large Array (VLA). The H I-line data are characterized by high sensitivity ({<=}1.1 mJy beam{sup -1} per channel), high spectral resolution ({<=}2.6 km s{sup -1}), and high angular resolution ({approx}6''). The LITTLE THINGS sample contains dwarf galaxies that are relatively nearbymore » ({<=}10.3 Mpc; 6'' is {<=}300 pc), that were known to contain atomic hydrogen, the fuel for star formation, and that cover a large range in dwarf galactic properties. We describe our VLA data acquisition, calibration, and mapping procedures, as well as H I map characteristics, and show channel maps, moment maps, velocity-flux profiles, and surface gas density profiles. In addition to the H I data we have GALEX UV and ground-based UBV and H{alpha} images for most of the galaxies, and JHK images for some. Spitzer mid-IR images are available for many of the galaxies as well. These data sets are available online.« less
Water monitoring by optofluidic Raman spectroscopy for in situ applications.
Persichetti, Gianluca; Bernini, Romeo
2016-08-01
The feasibility of water monitoring by Raman spectroscopy with a portable optofluidic system for in-situ applications has been successfully demonstrated. In the proposed approach, the sample under analysis is injected into a capillary nozzle in order to produce a liquid jet that acts as an optical waveguide. This jet waveguide provides an effective strategy to excite and collect the Raman signals arising from water contaminants due to the high refractive index difference between air and water. The proposed approach avoids any necessity of liquid container or flow cell and removes any background signal coming from the sample container commonly affects Raman measurements. Furthermore, this absence is a significant advantage for in situ measurements where fouling problems can be relevant and cleaning procedures are troublesome. The extreme simplicity and efficiency of the optical scheme adopted in our approach result in highly sensitive and rapid measurements that have been performed on different representative water pollutants. The experimental results demonstrate the high potentiality of our device in water quality monitoring and analysis. In particular, nitrate and sulfate are detected below the maximum contamination level allowed for drinking water, whereas a limit of detection of 40mg/l has been found for benzene. Copyright © 2016 Elsevier B.V. All rights reserved.
Wong, Chin Lin; Lam, Ai-Leen; Smith, Maree T.; Ghassabian, Sussan
2016-01-01
The direct peptide reactivity assay (DPRA) is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate, and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium, and high concentrations) and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme, and non-sensitizers) with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF), cysteine- (Ac-RFAACAA), and lysine- (Ac-RFAAKAA) containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7%) and glass (47.3%) vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2, 4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further highlight the difficulty in adapting in vitro methods to high-throughput format for screening the skin sensitization potential of large numbers of chemicals whilst ensuring that the data produced are both accurate and reproducible. PMID:27014067
Recent status of resist outgas testing for metal containing resists at EIDEC
NASA Astrophysics Data System (ADS)
Shiobara, Eishi; Mikami, Shinji; Yamada, Kenji
2018-03-01
The metal containing resist is one of the strong candidates for high lithographic performance Extreme Ultraviolet (EUV) resists. EIDEC has prepared the infrastructure for outgas testing in hydrogen environment for metal containing resists at High Power EUV irradiation tool (HPEUV). We have experimentally obtained the preliminary results of the non-cleanable metal contamination on witness sample using model material by HPEUV [1]. The metal contamination was observed at only the condition of hydrogen environment. It suggested the generation of volatile metal hydrides by hydrogen radicals. Additionally, the metal contamination on a witness sample covered with Ru was not removed by hydrogen radical cleaning. The strong interaction between the metal hydride and Ru was confirmed by the absorption simulation [2]. Recently, ASML announced a resist outgassing barrier technology using Dynamic Gas Lock (DGL) membrane located between projection optics and wafer stage [3, 4]. DGL membrane blocks the diffusion of all kinds of resist outgassing to the projection optics and prevents the reflectivity loss of EUV mirrors. The investigation of DGL membrane for high volume manufacturing is just going on. It extends the limitation of material design for EUV resists. However, the DGL membrane has an impact for the productivity of EUV scanners due to the transmission loss of EUV light and the necessity of periodic maintenance. The well understanding and control of the outgassing characteristics of metal containing resists may help to improve the productivity of EUV scanner. We consider the outgas evaluation for the resists still useful. For the improvement of resist outgas testing in hydrogen, there are some issues such as the contamination limited regime, the optimization of exposure dose to obtain the measurable contamination film thickness and the detection of minimum amount of metal related outgas species generated. We are considering a new platform of outgas testing for metal containing resists based on the electron-beam irradiation system as one of the solutions for these issues. The concept is presented in this paper.
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Lindsey, Cameron; Kutzer, Thomas; Salazar, Eduardo
2018-03-01
The return of samples back to Earth in future missions would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. This protection would require "breaking the chain of contact (BTC)", where any returned material reaching Earth for further analysis would have to be sealed inside a container with extremely high confidence. Therefore, the acquired samples would need to be contained while destroying any potential biological materials that may contaminate the external surface of the container. A novel process that could be used to contain returning samples has been developed and demonstrated in a quarter scale size. The process consists of brazing using non-contact induction heating that synchronously separates, seams, seals and sterilizes (S4) the container. The use of brazing involves melting at temperatures higher than 500°C and this level of heating assures sterilization of the exposed areas since all carbon bonds (namely, organic materials) are broken at this temperature. The mechanism consists of a double wall container with inner and outer shells having Earth-clean interior surfaces. The process consists of two-steps, Step-1: the double wall container halves are fabricated and brazed (equivalent to production on Earth); and Step-2 is the S4 process and it is the equivalent to the execution on-orbit around Mars. In a potential future mission, the double wall container would be split into two halves and prepared on Earth. The potential on-orbit execution would consist of inserting the orbiting sample (OS) container into one of the halves and then mated to the other half and brazed. The latest results of this effort will be described and discussed in this manuscript.
NASA Technical Reports Server (NTRS)
Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.
2017-01-01
Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.
Molkara, Afshin M; Abou-Zamzam, Ahmed M; Teruya, Theodore H; Bianchi, Christian; Killeen, J David
2006-11-01
Chronic use of ergot alkaloids has been recognized as a rare cause of lower extremity ischemia. Most patients with ergot toxicity present with symptoms of lower extremity claudication. Herein we present a woman with bilateral lower extremity rest pain and a history of chronic ergot use for migraine headaches. Arteriography demonstrated extensive pruning of the distal arterial tree along with bilateral external iliac artery dissections - a finding that is not often associated with young, normotensive patients with chronic ergot toxicity. This patient was treated with endovascular stenting of the dissections along with cessation of ergot. Her symptoms improved markedly, and follow-up arteriography 6 weeks later demonstrated resolution of the iliac dissections along with restoration of nearly normal lower extremity runoff vessels. Discontinuation of ergot-containing products and cessation of tobacco and caffeine use is the cornerstone of therapy in chronic ergot toxicity. The association of ergot toxicity and iliac dissection has not been previously described. Endovascular or surgical interventions may be considered in patients with ergot toxicity for specific indications or those whose symptoms progress despite conservative management.
Yokoyama, Hiroshi; Moriya, Naoko; Ohmori, Hideyuki; Waki, Miyoko; Ogino, Akifumi; Tanaka, Yasuo
2007-11-01
The present study analyzed the community structures of anaerobic microflora producing hydrogen under extreme thermophilic conditions by two culture-independent methods: denaturing gradient gel electrophoresis (DGGE) and clone library analyses. Extreme thermophilic microflora (ETM) was enriched from cow manure by repeated batch cultures at 75 degrees C, using a substrate of xylose, glucose, lactose, cellobiose, or soluble starch, and produced hydrogen at yields of 0.56, 2.65, 2.17, 2.68, and 1.73 mol/mol-monosaccharide degraded, respectively. The results from the DGGE and clone library analyses were consistent and demonstrated that the community structures of ETM enriched with the four hexose-based substrates (glucose, lactose, cellobiose, and soluble starch) consisted of a single species, closely related to a hydrogen-producing extreme thermophile, Caldoanaerobacter subterraneus, with diversity at subspecies levels. The ETM enriched with xylose was more diverse than those enriched with the other substrates, and contained the bacterium related to C. subterraneus and an unclassified bacterium, distantly related to a xylan-degrading and hydrogen-producing extreme thermophile, Caloramator fervidus.
NASA Astrophysics Data System (ADS)
McCabe-Glynn, S. E.; Johnson, K. R.; Zou, Y.; Welker, J. M.; Strong, C.; Rutz, J. J.; Yu, J. Y.; Yoshimura, K.; Sellars, S. L.; Payne, A. E.
2014-12-01
Extreme precipitation events along the U.S. West Coast can result in major damage and are projected by most climate models to increase in frequency and severity. One of the most prevalent extreme precipitation events that occurs along the west coast of North America are known as 'Atmospheric Rivers' (ARs), whereby extensive fluxes of water vapor are transported from the tropics and/or subtropics, delivering substantial precipitation and contributing to flooding when they encounter mountains. This region is particularly vulnerable to ARs, with 30-50% of annual precipitation in this region occurring from just a few AR events. Because of the tropical and/or subtropical origin of ARs, they can carry unique isotopic properties. Here we present the results of analysis of weekly precipitation data and accompanying isotopic values from Giant Forest, in Sequoia National Park, in the southwestern Sierra Nevada Mountains (36.57° N; 118.78° W; 1921m) from 2001 to 2011. To better characterize these events, we focused on the 10 weeks with the highest precipitation totals (all greater than 150 mm) during the study period. We show that nine of the top ten weeks contain documented 'AR' events and that 90% occurred during the negative phase of the Arctic Oscillation. A comparison of extreme precipitation events across the Western U.S. with several key climate indices demonstrate these events occur most frequently when the negative phase of the Arctic Oscillation is in sync with the negative phase of the El Niño Southern Oscillation (ENSO) and the negative or neutral Pacific North American (PNA) pattern. We also demonstrate that central or eastern Pacific location of ENSO sea surface temperature anomalies can further enhance predictive capabilities of the landfall location of extreme precipitation. Stable isotope results show that extreme precipitation events are characterized by highly variable δ18O (-7.20‰ to -19.27‰), however, we find that more negative δ18O values typically occur during the negative PNA pattern. Finally, we will present the results of data comparison with NCAR-NCEP reanalysis, Hysplit back trajectories, and isotope enabled climate model (IsoGSM) results.
Haigh, Ivan D.; Wadey, Matthew P.; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J.; Brown, Jennifer M.; Horsburgh, Kevin; Gouldby, Ben
2016-01-01
In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915–2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (<4 days) typically impact different stretches of coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4–8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective. PMID:27922630
NASA Astrophysics Data System (ADS)
Li, Zhanling; Li, Zhanjie; Li, Chengcheng
2014-05-01
Probability modeling of hydrological extremes is one of the major research areas in hydrological science. Most basins in humid and semi-humid south and east of China are concerned for probability modeling analysis of high flow extremes. While, for the inland river basin which occupies about 35% of the country area, there is a limited presence of such studies partly due to the limited data availability and a relatively low mean annual flow. The objective of this study is to carry out probability modeling of high flow extremes in the upper reach of Heihe River basin, the second largest inland river basin in China, by using the peak over threshold (POT) method and Generalized Pareto Distribution (GPD), in which the selection of threshold and inherent assumptions for POT series are elaborated in details. For comparison, other widely used probability distributions including generalized extreme value (GEV), Lognormal, Log-logistic and Gamma are employed as well. Maximum likelihood estimate is used for parameter estimations. Daily flow data at Yingluoxia station from 1978 to 2008 are used. Results show that, synthesizing the approaches of mean excess plot, stability features of model parameters, return level plot and the inherent independence assumption of POT series, an optimum threshold of 340m3/s is finally determined for high flow extremes in Yingluoxia watershed. The resulting POT series is proved to be stationary and independent based on Mann-Kendall test, Pettitt test and autocorrelation test. In terms of Kolmogorov-Smirnov test, Anderson-Darling test and several graphical diagnostics such as quantile and cumulative density function plots, GPD provides the best fit to high flow extremes in the study area. The estimated high flows for long return periods demonstrate that, as the return period increasing, the return level estimates are probably more uncertain. The frequency of high flow extremes exhibits a very slight but not significant decreasing trend from 1978 to 2008, while the intensity of such flow extremes is comparatively increasing especially for the higher return levels.
Material development for fan blade containment casing
NASA Astrophysics Data System (ADS)
McMillan, A.
2008-03-01
This paper describes the physics reasoning and the engineering development process for the structured material system adopted for the containment system of the Trent 900 engine. This is the Rolls-Royce engine that powers the Airbus A380 double-decker aeroplane, which is on the point of entering service. The fan blade containment casing is the near cylindrical casing that surrounds the fan blades at the front of the engine. The fan blades provide the main part of the thrust of the engine; the power to the fan is provided through a shaft from the turbine. The fan is approximately three meters in diameter, with the tips of the blade travelling at a little over Mach speed. The purpose of the containment system is to catch and contain a blade in the extremely unlikely event of a part or whole blade becoming detached. This is known as a ''Fan Blade Off (FBO)'' event. The requirement is that no high-energy fragments should escape the containment system; this is essential to prevent damage to other engines or to the fuselage of the aircraft. Traditionally the containment system philosophy has been to provide a sufficiently thick solid metallic skin that the blade cannot penetrate. Obviously, this is heavy. A good choice of metal in this case is a highly ductile steel, which arrests the kinetic energy of the blade through plastic deformation, and possibly, a controlled amount of cracking. This is known as ''hard wall'' containment. More recently, to reduce weight, containment systems have incorporated a Kevlar fibre wrap. In this case, the thinner metallic wall provides some containment, which is backed up by the stretching of the Kevlar fibres. This is known as ''soft wall'' containment; but it suffers the disadvantage of requiring a large empty volume in the nacelle in to which to expand. For the Trent 900 engine, there was a requirement to make a substantial weight saving while still adopting a hard wall style of containment system. To achieve this, a hollow structured material system was developed, with much of the kinetic energy arrest provided by the mechanism of crushing. A number of structural elements were included within the containment system to maximise the area of material involved in the arrest and thereby minimise the overall weight.
NASA Astrophysics Data System (ADS)
Wen, Xian-Huan; Gómez-Hernández, J. Jaime
1998-03-01
The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.
Egnot, Natalie Suder; Barinas-Mitchell, Emma; Criqui, Michael H; Allison, Matthew A; Ix, Joachim H; Jenny, Nancy S; Wassel, Christina L
2018-04-01
Several biomarkers of inflammation and coagulation have been implicated in lower extremity atherosclerosis. We utilized an exploratory factor analysis (EFA) to identify distinct factors derived from circulating inflammatory and coagulation biomarkers then examined the associations of these factors with measures of lower extremity subclinical atherosclerosis, including the ankle-brachial index (ABI), common and superficial femoral intima-media thickness (IMT), and atherosclerotic plaque presence, burden, and characteristics. The San Diego Population Study (SDPS) is a prospective, community-living, multi-ethnic cohort of 1103 men and women averaged age 70. Regression analysis was used to assess cross-sectional associations between the identified groupings of biomarkers (factors) and the ABI and femoral artery atherosclerosis measurements. Two biomarker factors emerged from the factor analysis. Factor 1 consisting of C-reactive protein (CRP), interleukin (IL)-6, and fibrinogen was significantly associated with higher odds (OR = 1.99, p < 0.01) of a borderline ABI value (0.91-0.99), while Factor 2 containing D-dimer and pentraxin (PTX)-3 was significantly associated with higher common femoral artery (CFA) IMT (β = 0.23, p < 0.01) and lower ABI (β = -0.03, p < 0.01). Two groupings of biomarkers were identified via EFA of seven circulating biomarkers of inflammation and coagulation. These distinct groups are differentially associated with markers of lower extremity subclinical atherosclerosis. Our findings suggest that high inflammatory and coagulation burden were better markers of more severe lower-extremity disease as indicated by low ABI rather than early atherosclerotic lesion development in the femoral artery. Copyright © 2018 Elsevier Ltd. All rights reserved.
Metronidazole as a protector of cells from electromagnetic radiation of extremely high frequencies
NASA Astrophysics Data System (ADS)
Kuznetsov, Pavel E.; Malinina, Ulia A.; Popyhova, Era B.; Rogacheva, Svetlana M.; Somov, Alexander U.
2006-08-01
It is well known that weak electromagnetic fields of extremely high frequencies cause significant modification of the functional status of biological objects of different levels of organization. The aim of the work was to study the combinatory effect of metronidazole - the drug form of 1-(2'hydroxiethil)-2-methil-5-nitroimidazole - and electromagnetic radiation of extremely high frequencies (52...75 GHz) on the hemolytic stability of erythrocytes and hemotaxis activity of Infusoria Paramecium caudatum.
NASA Astrophysics Data System (ADS)
Cheng, L.; Du, J.
2015-12-01
The Xiang River, a main tributary of the Yangtze River, is subjected to high floods frequently in recent twenty years. Climate change, including abrupt shifts and fluctuations in precipitation is an important factor influencing hydrological extreme conditions. In addition, human activities are widely recognized as another reasons leading to high flood risk. With the effects of climate change and human interventions on hydrological cycle, there are several questions that need to be addressed. Are floods in the Xiang River basin getting worse? Whether the extreme streamflow shows an increasing tendency? If so, is it because the extreme rainfall events have predominant effect on floods? To answer these questions, the article detected existing trends in extreme precipitation and discharge using Mann-Kendall test. Continuous wavelet transform method was employed to identify the consistency of changes in extreme precipitation and discharge. The Pearson correlation analysis was applied to investigate how much degree of variations in extreme discharge can be explained by climate change. The results indicate that slightly upward trends can be detected in both extreme rainfalls and discharge in the upper region of Xiang River basin. For the most area of middle and lower river basin, the extreme rainfalls show significant positive trends, but the extreme discharge displays slightly upward trends with no significance at 90% confidence level. Wavelet transform analysis results illustrate that highly similar patterns of signal changes can be seen between extreme precipitation and discharge in upper section of the basin, while the changes in extreme precipitation for the middle and lower reaches do not always coincide with the extreme streamflow. The correlation coefficients of the wavelet transforms for the precipitation and discharge signals in most area of the basin pass the significance test. The conclusion may be drawn that floods in recent years are not getting worse in Xiang River basin. The similar signal patterns and positive correlation between extreme discharge and precipitation indicate that the variability of extreme precipitation has an important effect on extreme discharge of flood, although the intensity of human impacts in lower section of Xiang River basin has increased markedly.
Extreme-volatility dynamics in crude oil markets
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei
2017-02-01
Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.
Shuter, Jonathan; Sarlo, Julie A; Kanmaz, Tina J; Rode, Richard A; Zingman, Barry S
2007-05-01
The observation that extremely high levels of medication adherence are required to achieve complete virologic suppression is based largely on studies of treatment-experienced patients receiving HIV protease inhibitor (PI)-based therapy without ritonavir boosting. This study aims to define the level of adherence needed to achieve virologic suppression in patients receiving boosted PI-based highly active antiretroviral therapy (HAART) with lopinavir/ritonavir. HIV-infected adults receiving a regimen containing lopinavir/ritonavir were recruited into a prospective, observational study of the relation between adherence to lopinavir/ritonavir and virologic outcomes. Adherence was measured using the Medication Event Monitoring System (MEMS; Aardex, Union City, CA). HIV-1 viral load (VL) was measured at week 24. The final study population contained 64 subjects. Eighty percent had AIDS, 97% received lopinavir/ritonavir before enrollment, and most had more than 7 years of HAART experience. Mean adherence overall was 73%. Eighty percent and 59% achieved a VL <400 copies/mL and a VL <75 copies/mL, respectively. Mean adherence was 75% in those achieving a VL <75 copies/mL. High rates of virologic suppression were observed in all adherence quartiles, including the lowest quartile (range of adherence: 23.5%-53.3%). Moderate levels of adherence can lead to virologic suppression in most patients taking lopinavir/ritonavir-based HAART.
Brazil Nuts on Eros: Size-Sorting of Asteroid Regolith
NASA Technical Reports Server (NTRS)
Asphaug, E.; King, P. J.; Swift, M. R.; Merrifield, M. R.
2001-01-01
We consider the hypothesis that frequent cratering produces size- or compositionally-sorted asteroid regolith, affecting the structure, texture, and in extreme cases the shape of asteroids. Additional information is contained in the original extended abstract.
Dielectric Study of the Physical State of Electrolytes and Water Within Bacillus cereus Spores
Carstensen, Edwin L.; Marquis, Robert E.; Gerhardt, Philipp
1971-01-01
Dielectric measurements revealed that dormant spores of Bacillus cereus have extremely low conductivities at high frequencies (50 MHz) and so must contain remarkably low concentrations of mobile ions both within the core and in the surrounding integuments. Activation, germination, and outgrowth were all accompanied by increases in conductivity of the cells and their suspending medium, and this result indicated that intracellular electrolytes had become ionized and leaked from the spores. High-frequency dielectric constants of spores were consistent with normal states for cell water. These values increased during successive stages of development from dormant spore to vegetative bacillus, and they could be directly related to increases in cell water content. In all, the results refuted a model of the dormant spore involving freely mobile, ionized electrolytes and supported a model involving electrostatically bound electrolytes. PMID:4998245
Program for an improved hypersonic temperature-sensing probe
NASA Technical Reports Server (NTRS)
Reilly, Richard J.
1993-01-01
Under a NASA Dryden-sponsored contract in the mid 1960s, temperatures of up to 2200 C were successfully measured using a fluid oscillator. The current program, although limited in scope, explores the problem areas which must be solved if this technique is to be extended to 10,000 R. The potential for measuring extremely high temperatures, using fluid oscillator techniques, stems from the fact that the measuring element is the fluid itself. The containing structure of the oscillator need not be brought to equilibrium temperature with with the fluid for temperature measurement, provided that a suitable calibration can be arranged. This program concentrated on review of high-temperature material developments since the original program was completed. Other areas of limited study included related pressure instrumentation requirements, dissociation, rarefied gas effects, and analysis of sensor time response.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-05-03
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-04-26
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV
Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.
2015-01-01
Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922
NASA Astrophysics Data System (ADS)
Fix, Miranda J.; Cooley, Daniel; Hodzic, Alma; Gilleland, Eric; Russell, Brook T.; Porter, William C.; Pfister, Gabriele G.
2018-03-01
We conduct a case study of observed and simulated maximum daily 8-h average (MDA8) ozone (O3) in three US cities for summers during 1996-2005. The purpose of this study is to evaluate the ability of a high resolution atmospheric chemistry model to reproduce observed relationships between meteorology and high or extreme O3. We employ regional coupled chemistry-transport model simulations to make three types of comparisons between simulated and observational data, comparing (1) tails of the O3 response variable, (2) distributions of meteorological predictor variables, and (3) sensitivities of high and extreme O3 to meteorological predictors. This last comparison is made using two methods: quantile regression, for the 0.95 quantile of O3, and tail dependence optimization, which is used to investigate even higher O3 extremes. Across all three locations, we find substantial differences between simulations and observational data in both meteorology and meteorological sensitivities of high and extreme O3.
Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions
NASA Astrophysics Data System (ADS)
Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.
2015-12-01
Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.
Water-quality conditions in the New River, Imperial County, California
Setmire, James G.
1979-01-01
The New River, when entering the United States at Calexico, Calif., often contains materials which have the appearance of industrial and domestic wastes. Passage of some of these materials is recognized by a sudden increase in turbidity over background levels and the presence of white particulate matter. Water samples taken during these events are usually extremely high in organic content. During a 4-day reconnaissance of water quality in May 1977, white-to-brown extremely turbid water crossed the border on three occasions. On one of these occasions , the water was intensively sampled. The total organic-carbon concentration ranged from 80 to 161 milligrams per liter (mg/l); dissolved organic carbon ranged from 34 to 42 mg/l, and the chemical oxygen demand was as high as 510 mg/l. River profiles showed a dissolved-oxygen sag, with the length of the zone of depressed dissolved-oxygen concentrations varying seasonally. During the summer months, dissolved-oxygen concentrations in the river were lower and the zone of depressed dissolved-oxygen concentrations was longer. The largest increases in dissolved-oxygen concentration from reaeration occurred at the three drop structures and the rock weir near Seeley. The effects of oxygen demanding materials crossing the border extended as far as Highway 80, 19.5 miles downstream from the international boundary at Calexico. Fish kills and anaerobic conditions were also detected as far as Highway 80. Standard bacteria indicator tests for fecal contamination showed a very high health-hazard potential near the border. (Woodard-USGS)
The Essential Role of the Deinococcus radiodurans ssb Gene in Cell Survival and Radiation Tolerance
Lockhart, J. Scott; DeVeaux, Linda C.
2013-01-01
Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans. PMID:23951213
NASA Astrophysics Data System (ADS)
Smrekar, Suzanne E.; Soloman, Sean C.
1992-12-01
Gravitational spreading is expected to lead to rapid relaxation of high relief due to the high surface temperature and associated weak crust on Venus. In this study, we use new Magellan radar and altimetry data to determine the extent of gravitational relaxation in Ishtar Terra, which contains the highest relief on Venus as well as areas of extremely high topographic slope. Within Ishtar Terra the only mountain belts found on Venus, Akna, Danu, Freyja, and Maxwell Montes, nearly encircle the smooth, high (3-4 km) plateau of Lakshmi Planum. Finite-element models of this process give expected timescales for relaxation of relief and failure at the surface. From these modeling results we attempt to constrain the strength of the crust and timescales of deformation in Ishtar Terra. Below we discuss observational evidence for gravitational spreading in Ishtar Terra, results from the finite-element modeling, independent age constraints, and implications for the rheology and timing of deformation.
NASA Technical Reports Server (NTRS)
Smrekar, Suzanne E.; Soloman, Sean C.
1992-01-01
Gravitational spreading is expected to lead to rapid relaxation of high relief due to the high surface temperature and associated weak crust on Venus. In this study, we use new Magellan radar and altimetry data to determine the extent of gravitational relaxation in Ishtar Terra, which contains the highest relief on Venus as well as areas of extremely high topographic slope. Within Ishtar Terra the only mountain belts found on Venus, Akna, Danu, Freyja, and Maxwell Montes, nearly encircle the smooth, high (3-4 km) plateau of Lakshmi Planum. Finite-element models of this process give expected timescales for relaxation of relief and failure at the surface. From these modeling results we attempt to constrain the strength of the crust and timescales of deformation in Ishtar Terra. Below we discuss observational evidence for gravitational spreading in Ishtar Terra, results from the finite-element modeling, independent age constraints, and implications for the rheology and timing of deformation.
NASA Astrophysics Data System (ADS)
Dibike, Y. B.; Eum, H. I.; Prowse, T. D.
2017-12-01
Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.
Archaeal Viruses Multiply: Temporal Screening in a Solar Saltern
Atanasova, Nina S.; Demina, Tatiana A.; Buivydas, Andrius; Bamford, Dennis H.; Oksanen, Hanna M.
2015-01-01
Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment. PMID:25866903
Archaeal viruses multiply: temporal screening in a solar saltern.
Atanasova, Nina S; Demina, Tatiana A; Buivydas, Andrius; Bamford, Dennis H; Oksanen, Hanna M
2015-04-10
Hypersaline environments around the world are dominated by archaea and their viruses. To date, very little is known about these viruses and their interaction with the host strains when compared to bacterial and eukaryotic viruses. We performed the first culture-dependent temporal screening of haloarchaeal viruses and their hosts in the saltern of Samut Sakhon, Thailand, during two subsequent years (2009, 2010). Altogether we obtained 36 haloarchaeal virus isolates and 36 archaeal strains, significantly increasing the number of known archaeal virus isolates. Interestingly, the morphological distribution of our temporal isolates (head-tailed, pleomorphic, and icosahedral membrane-containing viruses) was similar to the outcome of our previous spatial survey supporting the observations of a global resemblance of halophilic microorganisms and their viruses. Myoviruses represented the most abundant virus morphotype with strikingly broad host ranges. The other viral morphotypes (siphoviruses, as well as pleomorphic and icosahedral internal membrane-containing viruses) were more host-specific. We also identified a group of Halorubrum strains highly susceptible to numerous different viruses (up to 26). This high virus sensitivity, the abundance of broad host range viruses, and the maintenance of infectivity over a period of one year suggest constant interplay of halophilic microorganisms and their viruses within an extreme environment.
Zhou, Yonghong; Peisker, Helga
2016-01-01
Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363
A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes
Khan, Md. Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-01-01
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R2 ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds. PMID:27171095
Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won
2016-05-10
In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC) sensing elements to detect different types of tastes, such as sweetness (glucose), saltiness (NaCl), sourness (HCl), bitterness (quinine-HCl), and umami (monosodium glutamate) is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity) IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R² ≈ 0.985 correlation coefficient) over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD) of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT)-, Electronic Tongue (SA402)-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA) to distinguish between various kinds of taste in mixed taste compounds.
Vogt-Koyanagi-Harada syndrome presenting with encephalopathy
Naeini, Alireza E.; Daneshmand, Dana; Khorvash, Farzin; Chitsaz, Ahmad
2014-01-01
Vogt-Koyanagi-Harada (VKH) is a rare syndrome affecting tissues containing melanocytes. The possibility of its autoimmune pathogenesis is supported by high frequent HLA-DR4 presentation, commonly associated with other autoimmune diseases. Eyes are the main affected organs, resulting in blindness. Brain disease is a late-onset event, and is extremely rare. Here, we are reporting a 57-year-old woman, a known case of VKH syndrome, presenting with brain encephalopathy several decades after the initial presentation. We think this long period between initial presentation and presentation of encephalopathy due to VKH syndrome has not been described before. She was treated with corticosteroids and discharged home with a good general condition. PMID:24753681
NASA Astrophysics Data System (ADS)
Doyle, Ellin
1997-04-01
Although it has been more than a year since the FDA approved the use of olestra in certain foods, this fat substitute, a mixture of sucrose polyesters, is still controversial. It would seem that a fat substitute that is heat stable and has an acceptable flavor and texture would be welcomed enthusiastically in a country where increasing numbers of people, young and old, exceed their ideal body weight. Obesity and diets containing high levels of fat have been linked to numerous health problems, including cardiovascular diseases, certain types of cancer, and adult-onset diabetes; they may also exacerbate some chronic problems such as arthritis in joints of the lower extremities. Nevertheless, some scientists and consumer groups question olestra's safety and usefulness.
NASA Technical Reports Server (NTRS)
Kepner, R. L. Jr; Wharton, R. A. Jr; Suttle, C. A.; Wharton RA, J. r. (Principal Investigator)
1998-01-01
Water samples collected from four perennially ice-covered Antarctic lakes during the austral summer of 1996-1997 contained high densities of extracellular viruses. Many of these viruses were found to be morphologically similar to double-stranded DNA viruses that are known to infect algae and protozoa. These constitute the first observations of viruses in perennially ice-covered polar lakes. The abundance of planktonic viruses and data suggesting substantial production potential (relative to bacteria] secondary and photosynthetic primary production) indicate that viral lysis may be a major factor in the regulation of microbial populations in these extreme environments. Furthermore, we suggest that Antarctic lakes may be a reservoir of previously undescribed viruses that possess novel biological and biochemical characteristics.
Production of the First Effective Hyperimmune Equine Serum Antivenom against Africanized Bees
Santos, Keity Souza; Stephano, Marco Antonio; Marcelino, José Roberto; Ferreira, Virginia Maria Resende; Rocha, Thalita; Caricati, Celso; Higashi, Hisako Gondo; Moro, Ana Maria; Kalil, Jorge Elias; Malaspina, Osmar; Castro, Fabio Fernandes Morato; Palma, Mário Sérgio
2013-01-01
Victims of massive bee attacks become extremely ill, presenting symptoms ranging from dizziness and headache to acute renal failure and multiple organ failure that can lead to death. Previous attempts to develop specific antivenom to treat these victims have been unsuccessful. We herein report a F(ab)´2-based antivenom raised in horse as a potential new treatment for victims of multiple bee stings. The final product contains high specific IgG titers and is effective in neutralizing toxic effects, such as hemolysis, cytotoxicity and myotoxicity. The assessment of neutralization was revised and hemolysis, the primary toxic effect of these stings, was fully neutralized in vivo for the first time. PMID:24236166
Vial OrganicTM-Organic Chemistry Labs for High School and Junior College
NASA Astrophysics Data System (ADS)
Russo, Thomas J.; Meszaros, Mark
1999-01-01
Vial Organic is the most economical, safe, and time-effective method of performing organic chemistry experiments. Activities are carried out in low-cost, sealed vials. Vial Organic is extremely safe because only micro quantities of reactants are used, reactants are contained in tightly sealed vials, and only water baths are used for temperature control. Vial Organic laboratory activities are easily performed within one 50-minute class period. When heat is required, a simple hot-water bath is prepared from a beaker of water and an inexpensive immersion heater. The low cost, ease of use, and relatively short time requirement will allow organic chemistry to be experienced by more students with less confusion and intimidation.
No-carrier-added [.sup.18 F]-N-fluoroalkylspiroperidols
Shiue, Chyng-Yann; Wolf, Alfred P.; Bai, Lan-Qin; Teng, Ren-Tui
1989-01-01
There is disclosed radioligands labeled with the position emitting radionuclide [.sup.18 F] suitable for dynamic study in living humans with position emission transaxial tomography. These new [.sup.18 F]-N-fluoroalkylspiroperidols, wherein the alkyl group contains from 2-6 carbon atoms, exhibit extremely high affinity for the dopamine receptors and provide enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to make these new radioligands useful for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for these radioligands as well as a new procedure for preparing the radiolabeled alkyl halide alkylating reagents are also disclosed.
NASA Astrophysics Data System (ADS)
Zhou, Ting; Jia, Xiaorong; Liao, Huixuan; Peng, Shijia; Peng, Shaolin
2016-12-01
Conventional models for predicting species distribution under global warming scenarios often treat one species as a homogeneous whole. In the present study, we selected Cunninghamia lanceolata (C. lanceolata), a widely distributed species in China, to investigate the physio-ecological responses of five populations under different temperature regimes. The results demonstrate that increased mean temperatures induce increased growth performance among northern populations, which exhibited the greatest germination capacity and largest increase in the overlap between the growth curve and the monthly average temperature. However,tolerance of the southern population to extremely high temperatures was stronger than among the population from the northern region,shown by the best growth and the most stable photosynthetic system of the southern population under extremely high temperature. This result indicates that the growth advantage among northern populations due to increased mean temperatures may be weakened by lower tolerance to extremely high temperatures. This finding is antithetical to the predicted results. The theoretical coupling model constructed here illustrates that the difference in growth between populations at high and low latitudes and altitudes under global warming will decrease because of the frequent occurrence of extremely high temperatures.
NASA Astrophysics Data System (ADS)
Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.
2017-02-01
This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.
Studying Weather and Climate Extremes in a Non-stationary Framework
NASA Astrophysics Data System (ADS)
Wu, Z.
2010-12-01
The study of weather and climate extremes often uses the theory of extreme values. Such a detection method has a major problem: to obtain the probability distribution of extremes, one has to implicitly assume the Earth’s climate is stationary over a long period within which the climatology is defined. While such detection makes some sense in a purely statistical view of stationary processes, it can lead to misleading statistical properties of weather and climate extremes caused by long term climate variability and change, and may also cause enormous difficulty in attributing and predicting these extremes. To alleviate this problem, here we report a novel non-stationary framework for studying weather and climate extremes in a non-stationary framework. In this new framework, the weather and climate extremes will be defined as timescale-dependent quantities derived from the anomalies with respect to non-stationary climatologies of different timescales. With this non-stationary framework, the non-stationary and nonlinear nature of climate system will be taken into account; and the attribution and the prediction of weather and climate extremes can then be separated into 1) the change of the statistical properties of the weather and climate extremes themselves and 2) the background climate variability and change. The new non-stationary framework will use the ensemble empirical mode decomposition (EEMD) method, which is a recent major improvement of the Hilbert-Huang Transform for time-frequency analysis. Using this tool, we will adaptively decompose various weather and climate data from observation and climate models in terms of the components of the various natural timescales contained in the data. With such decompositions, the non-stationary statistical properties (both spatial and temporal) of weather and climate anomalies and of their corresponding climatologies will be analyzed and documented.
Okada, Yuka; Nakagawa, Shinsaku; Mizuguchi, Hiroyuki; Takahashi, Koichi; Mizuno, Nobuyasu; Fujita, Takuya; Yamamoto, Akira; Hayakawa, Takao; Mayumi, Tadanori
2002-01-01
Although adenovirus vectors (Ad) provide high‐level transduction efficacy to many cell types, extremely high doses of Ad are required for sufficient gene transduction into several tumors, including melanoma. Here, we demonstrated that the expression of coxsackie‐adenovirus receptor, a primitive Ad‐receptor, was very low in murine and human melanoma cells. We also found that fiber‐mutant Ad containing the Arg‐Gly‐Asp (RGD) sequence in the fiber knob remarkably augmented gene transduction efficacy in melanoma cells by targeting αv‐integrins. In addition, intratumoral injection of RGD fiber‐mutant Ad containing the tumor necrosis factor α gene (AdRGD‐TNFα) revealed dramatic anti‐tumor efficacy through hemolytic necrosis in an established murine B16 BL6 melanoma model. Ad‐RGD‐TNFα required one‐tenth the dosage of Ad‐TNFα to induce an equal therapeutic effect. These results suggest that αv‐integrin‐targeted Ad will be a very powerful tool for the advancement of melanoma gene therapy. PMID:11985794
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, J.; Peters, M.; Lottspeich, F.
1987-11-01
The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%)more » of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.« less
1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meekins, David A.; Zhang, Xin; Battaile, Kevin P.
Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector,Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses.A. gambiaeserpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure ofA. gambiaeSRPN18 was determined to a resolution of 1.45 Å, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short andmore » constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold.« less
1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae
Meekins, David A.; Zhang, Xin; Battaile, Kevin P.; Lovell, Scott; Michel, Kristin
2016-01-01
Serine protease inhibitors (serpins) in insects function within development, wound healing and immunity. The genome of the African malaria vector, Anopheles gambiae, encodes 23 distinct serpin proteins, several of which are implicated in disease-relevant physiological responses. A. gambiae serpin 18 (SRPN18) was previously categorized as non-inhibitory based on the sequence of its reactive-center loop (RCL), a region responsible for targeting and initiating protease inhibition. The crystal structure of A. gambiae SRPN18 was determined to a resolution of 1.45 Å, including nearly the entire RCL in one of the two molecules in the asymmetric unit. The structure reveals that the SRPN18 RCL is extremely short and constricted, a feature associated with noncanonical inhibitors or non-inhibitory serpin superfamily members. Furthermore, the SRPN18 RCL does not contain a suitable protease target site and contains a large number of prolines. The SRPN18 structure therefore reveals a unique RCL architecture among the highly conserved serpin fold. PMID:27917832
An interface for the direct coupling of small liquid samples to AMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ognibene, T. J.; Thomas, A. T.; Daley, P. F.
We describe the moving wire interface attached to the 1-MV AMS system at LLNL’s Center for Accelerator Mass Spectrometry for the analysis of nonvolatile liquid samples as either discrete drops or from the direct output of biochemical separatory instrumentation, such as high-performance liquid chromatography (HPLC). Discrete samples containing at least a few 10 s of nanograms of carbon and as little as 50 zmol 14C can be measured with a 3–5% precision in a few minutes. The dynamic range of our system spans approximately 3 orders in magnitude. Sample to sample memory is minimized by the use of fresh targetsmore » for each discrete sample or by minimizing the amount of carbon present in a peak generated by an HPLC containing a significant amount of 14C. As a result, liquid sample AMS provides a new technology to expand our biomedical AMS program by enabling the capability to measure low-level biochemicals in extremely small samples that would otherwise be inaccessible.« less
An interface for the direct coupling of small liquid samples to AMS
Ognibene, T. J.; Thomas, A. T.; Daley, P. F.; ...
2015-05-28
We describe the moving wire interface attached to the 1-MV AMS system at LLNL’s Center for Accelerator Mass Spectrometry for the analysis of nonvolatile liquid samples as either discrete drops or from the direct output of biochemical separatory instrumentation, such as high-performance liquid chromatography (HPLC). Discrete samples containing at least a few 10 s of nanograms of carbon and as little as 50 zmol 14C can be measured with a 3–5% precision in a few minutes. The dynamic range of our system spans approximately 3 orders in magnitude. Sample to sample memory is minimized by the use of fresh targetsmore » for each discrete sample or by minimizing the amount of carbon present in a peak generated by an HPLC containing a significant amount of 14C. As a result, liquid sample AMS provides a new technology to expand our biomedical AMS program by enabling the capability to measure low-level biochemicals in extremely small samples that would otherwise be inaccessible.« less
Petrographic and petrological studies of lunar rocks. [Apollo 15 breccias and Russian tektites
NASA Technical Reports Server (NTRS)
Winzer, S. R.
1978-01-01
Clasts, rind glass, matrix glass, and matrix minerals from five Apollo 15 glass-coated breccias (15255, 15286, 15465, 15466, and 15505) were studied optically and with the SEM/microprobe. Rind glass compositions differ from sample to sample, but are identical, or nearly so, to the local soil, suggesting their origin by fusion of that soil. Most breccia samples contain green or colorless glass spheres identical to the Apollo 15 green glasses. These glasses, along with other glass shards and fragments, indicate a large soil component is present in the breccias. Clast populations include basalts and gabbros containing phases highly enriched in iron, indicative of extreme differentiation or fractional crystallization. Impact melts, anorthosites, and minor amounts of ANT suite material are also present among the clasts. Tektite glasses, impact melts, and breccias from the Zhamanshin structure, USSR, were also studied. Basic tektite glasses were found to be identical in composition to impact melts from the structure, but no satisfactory parent material has been identified in the limited suite of samples available.
Technical approaches to reducing the threat of nuclear terrorism
NASA Astrophysics Data System (ADS)
Priedhorsky, William C.
2005-04-01
The threat of a nuclear attack on the United States by terrorists using a smuggled weapon is now considered more likely than an attack by a nuclear-armed ballistic missle. Consequently it is important to understand what can be done to detect and intercept a nuclear weapon being smuggled into the United States. A significant quantity of smuggled nuclear material has been intercepted already, but science and technology have so far contributed little to its interception. The critical special nuclear materials, plutonium and highly enriched uranium, are only weakly radioactive and detection of their radioactivity is limited both by atmospheric attenuation and by competition with natural backgrounds. Although many schemes for long-range detection of radioactivity have been proposed, none so far appears feasible. Detection of nuclear radiation can be improved using new technologies and sensing systems, but it will still be possible only at relatively small distances. Consequently the best approach to containing dangerous nuclear materials is at their sources; containment within lengthy borders and large areas is extremely difficult.
NASA Astrophysics Data System (ADS)
Pántano, V. C.; Penalba, O. C.
2013-05-01
Extreme events of temperature and rainfall have a socio-economic impact in the rainfed agriculture production region in Argentina. The magnitude of the impact can be analyzed through the water balance which integrates the characteristics of the soil and climate conditions. Changes observed in climate variables during the last decades affected the components of the water balance. As a result, a displacement of the agriculture border towards the west was produced, improving the agricultural production of the region. The objective of this work is to analyze how the variability of rainfall and temperature leads the hydric condition of the soil, with special focus on extreme events. The hydric conditions of the soil (HC= Excess- Deficit) were estimated from the monthly water balance (Thornthwaite and Mather method, 1957), using monthly potential evapotranspiration (PET) and monthly accumulated rainfall (R) for 33 stations (period 1970-2006). Information of temperature and rainfall was provided by National Weather Service and the effective capacity of soil water was considered from Forte Lay and Spescha (2001). An agricultural extreme condition occurs when soil moisture and rainfall are inadequate or excessive for the development of the crops. In this study, we define an extreme event when the variable is less (greater) than its 20% and 10% (80% and 90%) percentile. In order to evaluate how sensitive is the HC to water and heat stress in the region, different conditional probabilities were evaluated. There is a weaker response of HC to extreme low PET while extreme low R leads high values of HC. However, this behavior is not always observed, especially in the western region where extreme high and low PET show a stronger influence over the HC. Finally, to analyze the temporal variability of extreme PET and R, leading hydric condition of the soil, the number of stations presenting extreme conditions was computed for each month. As an example, interesting results were observed for April. During this month, the water recharge of the soil is crucial to let the winter crops manage with the scarce rainfalls occurring in the following months. In 1970, 1974, 1977, 1978 and 1997 more than 50% of the stations were under extreme high PET; while 1970, 1974, 1978 and 1988 presented more than 40% under extreme low R. Thus, the 70s was the more threatened decade of the period. Since the 80s (except for 1997), extreme dry events due to one variable or the other are mostly presented separately, over smaller areas. The response of the spatial distribution of HC is stronger when both variables present extreme conditions. In particular, during 1997 the region presents extreme low values of HC as a consequence of extreme low R and high PET. Communities dependent on agriculture are highly sensitive to climate variability and its extremes. In the studied region, it was shown that scarce water and heat stress contribute to the resulting hydric condition, producing strong impact over different productive activities. Extreme temperature seems to have a stronger influence over extreme unfavorable hydric conditions.
NASA Astrophysics Data System (ADS)
Schoof, J. T.
2017-12-01
Extreme temperatures affect society in multiple ways, but the impacts are often different depending on the concurrent humidity. For example, the greatest impacts on human morbidity and mortality result when the temperature and humidity are both elevated. Conversely, high temperatures coupled with low humidity often lead to agricultural impacts resulting in lower yields. Despite the importance of humidity in determining heat wave impacts, relatively few students of future temperature extremes have also considered possible changes in humidity. In a recent study, we investigated recent historical changes in the frequency and intensity and low humidity and high humidity extreme temperature events using a framework based on isobaric equivalent temperature. Here, we extend this approach to climate projections from CMIP5 models to explore possible regional changes in extreme heat characteristics. After using quantile mapping to bias correct and downscale the CMIP5 model outputs, we analyze results from two future periods (2031-2055 and 2061-2085) and two representative concentration pathways, RCP 4.5 and RCP 8.5, corresponding to moderate and high levels of radiative forcing from greenhouse gases. For each of seven US regions, we consider changes in extreme temperature frequency, changes in the proportion of extreme temperature days characterized by high humidity, and changes in the magnitude of temperature and humidity on extreme temperature days.
Unique Thermal Stability of Unnatural Hydrophobic Ds Bases in Double-Stranded DNAs.
Kimoto, Michiko; Hirao, Ichiro
2017-10-20
Genetic alphabet expansion technology, the introduction of unnatural bases or base pairs into replicable DNA, has rapidly advanced as a new synthetic biology area. A hydrophobic unnatural base pair between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) exhibited high fidelity as a third base pair in PCR. SELEX methods using the Ds-Px pair enabled high-affinity DNA aptamer generation, and introducing a few Ds bases into DNA aptamers extremely augmented their affinities and selectivities to target proteins. Here, to further scrutinize the functions of this highly hydrophobic Ds base, the thermal stabilities of double-stranded DNAs (dsDNA) containing a noncognate Ds-Ds or G-Ds pair were examined. The thermal stability of the Ds-Ds self-pair was as high as that of the natural G-C pair, and apart from the generally higher stability of the G-C pair than that of the A-T pair, most of the 5'-pyrimidine-Ds-purine-3' sequences, such as CDsA and TDsA, exhibited higher stability than the 5'-purine-Ds-pyrimidine-3' sequences, such as GDsC and ADsC, in dsDNAs. This trait enabled the GC-content-independent control of the thermal stability of the designed dsDNA fragments. The melting temperatures of dsDNA fragments containing the Ds-Ds pair can be predicted from the nearest-neighbor parameters including the Ds base. In addition, the noncognate G-Ds pair can efficiently distinguish its neighboring cognate natural base pairs from noncognate pairs. We demonstrated that real-time PCR using primers containing Ds accurately detected a single-nucleotide mismatch in target DNAs. These unique properties of the Ds base that affect the stabilities of the neighboring base pairs could impart new functions to DNA molecules and technologies.
The critical role of uncertainty in projections of hydrological extremes
NASA Astrophysics Data System (ADS)
Meresa, Hadush K.; Romanowicz, Renata J.
2017-08-01
This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.
NASA Technical Reports Server (NTRS)
Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo
2015-01-01
Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.
Growth of Leptospirillum ferriphilum in sulfur medium in co-culture with Acidithiobacillus caldus.
Smith, Sarah L; Johnson, D Barrie
2018-03-01
Leptospirillum ferriphilum and Acidithiobacillus caldus are both thermotolerant acidophilic bacteria that frequently co-exist in natural and man-made environments, such as biomining sites. Both are aerobic chemolithotrophs; L. ferriphilum is known only to use ferrous iron as electron donor, while A. caldus can use zero-valent and reduced sulfur, and also hydrogen, as electron donors. It has recently been demonstrated that A. caldus reduces ferric iron to ferrous when grown aerobically on sulfur. Experiments were carried out which demonstrated that this allowed L. ferriphilum to be sustained for protracted periods in media containing very little soluble iron, implying that dynamic cycling of iron occurred in aerobic mixed cultures of these two bacteria. In contrast, numbers of viable L. ferriphilum rapidly declined in mixed cultures that did not contain sulfur. Data also indicated that growth of A. caldus was partially inhibited in the presence of L. ferriphilum. This was shown to be due to greater sensitivity of the sulfur-oxidizer to ferric than to ferrous iron, and to highly positive redox potentials, which are characteristic of cultures containing Leptospirillum spp. The implications of these results in the microbial ecology of extremely acidic environments and in commercial bioprocessing applications are discussed.
A massive protocluster of galaxies at a redshift of z ≈ 5.3.
Capak, Peter L; Riechers, Dominik; Scoville, Nick Z; Carilli, Chris; Cox, Pierre; Neri, Roberto; Robertson, Brant; Salvato, Mara; Schinnerer, Eva; Yan, Lin; Wilson, Grant W; Yun, Min; Civano, Francesca; Elvis, Martin; Karim, Alexander; Mobasher, Bahram; Staguhn, Johannes G
2011-02-10
Massive clusters of galaxies have been found that date from as early as 3.9 billion years (3.9 Gyr; z = 1.62) after the Big Bang, containing stars that formed at even earlier epochs. Cosmological simulations using the current cold dark matter model predict that these systems should descend from 'protoclusters'-early overdensities of massive galaxies that merge hierarchically to form a cluster. These protocluster regions themselves are built up hierarchically and so are expected to contain extremely massive galaxies that can be observed as luminous quasars and starbursts. Observational evidence for this picture, however, is sparse because high-redshift protoclusters are rare and difficult to observe. Here we report a protocluster region that dates from 1 Gyr (z = 5.3) after the Big Bang. This cluster of massive galaxies extends over more than 13 megaparsecs and contains a luminous quasar as well as a system rich in molecular gas. These massive galaxies place a lower limit of more than 4 × 10(11) solar masses of dark and luminous matter in this region, consistent with that expected from cosmological simulations for the earliest galaxy clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less
LEAD AND COPPER CONTROL WITH NON-ZINC ORTHOPHOSPHATE
Successful application of orthophosphate formulations not containing zinc for achieving control of copper and lead corrosion requires careful consideration of the background water chemistry, particularly pH and DIC. Inhibitor performance is extremely dependent upon dosage and pH,...
Water resources of the Myakka River basin area, southwest Florida
Joyner, Boyd F.; Sutcliffe, Horace
1976-01-01
Ground water in the Myakka River basin area of southwest Floria is obtained from a water-table aquifer and from five zones in an artesian aquifer. Wells in the water-table aquifer yield generally less than 50 gpm and dissolved solids concentration is less than 500 mg/liter except in coastal areas and the peninsula southwest of the Myakka River estuary. Wells in the Venice area that tap zone 1 usually yield less than 30 gmp. The quality of water is good except in the peninsula area. Zone 2 is the most highly developed aquifer in the heavily populated coastal areas. Wells yield as much as 200 gpm. In most areas, water is of acceptable quality. Wells that tap zone 3 yield as much as 500 gmp. Fluoride concentration ranges from 1 to 3.5 mg/liter. Zone 4 yields as much as 1,500 gpm to large diameter wells. Except in the extreme northeastern part of the area water from zone 4 usually contains high concentrations of fluoride and sulfate. Zone 5 is the most productive aquifer in the area, but dissolved solids concentrations usually are too high for public supply except in the extreme northeast. Surface water derived from natural drainage is of good quality except for occasional high color in summer. Most of the streams in the Myakka River basin area have small drainage basins, are of short channel length, and do not yield high volumes of flow. During the dry season, streamflow is maintained by groundwater discharge, and, as a result, chloride, sulfate, and dissolved solids concentrations and the hardness of the water are above drinking water standards for some streams. (Woodard-USGS)
Schmidt, S K; Reed, Sasha C; Nemergut, Diana R; Grandy, A Stuart; Cleveland, Cory C; Weintraub, Michael N; Hill, Andrew W; Costello, Elizabeth K; Meyer, A F; Neff, J C; Martin, A M
2008-12-22
Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.
NASA Astrophysics Data System (ADS)
Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer
2018-02-01
Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and useful for hydrological applications such as in design hydrology. Nevertheless, the availability of downscaled climatic output provide the potential of exploring climate model uncertainties in different hydro climatic regions at local scales where forcing data is often less accessible but more accurate at finer spatial scales and with adequate spatial detail.
Highly Survivable Avionics Systems for Long-Term Deep Space Exploration
NASA Technical Reports Server (NTRS)
Alkalai, L.; Chau, S.; Tai, A. T.
2001-01-01
The design of highly survivable avionics systems for long-term (> 10 years) exploration of space is an essential technology for all current and future missions in the Outer Planets roadmap. Long-term exposure to extreme environmental conditions such as high radiation and low-temperatures make survivability in space a major challenge. Moreover, current and future missions are increasingly using commercial technology such as deep sub-micron (0.25 microns) fabrication processes with specialized circuit designs, commercial interfaces, processors, memory, and other commercial off the shelf components that were not designed for long-term survivability in space. Therefore, the design of highly reliable, and available systems for the exploration of Europa, Pluto and other destinations in deep-space require a comprehensive and fresh approach to this problem. This paper summarizes work in progress in three different areas: a framework for the design of highly reliable and highly available space avionics systems, distributed reliable computing architecture, and Guarded Software Upgrading (GSU) techniques for software upgrading during long-term missions. Additional information is contained in the original extended abstract.
Park, Sang-oh; Park, Byung-sung; Hwangbo, Jong
2015-07-01
The present study was carried out to investigate the effect of provision of extreme heat stress diet (EHD), inverse lighting, cold water on growth performance of broiler chickens exposed to extreme heat stress. The chickens were divided into four treatment groups, (T1, T2, T3, T4) as given below: Ti (EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T2 (EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cool water 9 degrees C); T3 (EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cool water 141C); T4 (EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cool water 14 degrees C. EHD 1 contained soybean oil, molasses, methionine and lysine; EHD 2 contained the same ingredients as EHD 1 with addition of vitamin C. Groups T1 and T2 were given cooler water than the othertwo groups, and displayed higher body weight increase and diet intake as compared to T3 and T4 (p<0.05). The weights of their liver and gizzard were similar but the weights of the thymus and bursa of fabricius (F) were higher in groups T1 and T2 (p<0.05). It was observed that groups T1 and T2 displayed higher concentrations of blood triglyceride, total cholesterol, HDL-cholesterol and blood sugar as compared to T3 and T4; however LDL-cholesterol level was higher in groups T3 and T4 (p<0.05). T1 and T2 displayed higher levels of immunity substances such as IgG, IgAand IgM as compared to T3 and T4, but the blood level of corticosterone was lower in groups T1 and T2 (p<0.05). Ti and T2 contained higher amount of fecal Lactobacill as compared to T3 and T4; howeverT3 and T4 contained higher amount of fecal E. coli, total aerobic bacteria and coliform bacteria (p<0.05). Groups T1 and T2 displayed higher concentrations of cecal total short chain fatty acids, acetic acid and propionic acid but groups T3 and T4 displayed higher concentrations of butyric acid, isobutyric acid, valeric acid and isovaleric acid (p<0.05). The present study reports novel results such that the supply of extreme heat stress diet, inverse lighting (10:00-19:00 dark, 19:00-10:00 light) with cold water at 9 degrees C under extreme heat stress could enhance growth performance of broiler chickens.
Effects of diurnal temperature range on mortality in Hefei city, China
NASA Astrophysics Data System (ADS)
Tang, Jing; Xiao, Chang-chun; Li, Yu-rong; Zhang, Jun-qing; Zhai, Hao-yuan; Geng, Xi-ya; Ding, Rui; Zhai, Jin-xia
2017-12-01
Although several studies indicated an association between diurnal temperature range (DTR) and mortality, the results about modifiers are inconsistent, and few studies were conducted in developing inland country. This study aims to evaluate the effects of DTR on cause-specific mortality and whether season, gender, or age might modify any association in Hefei city, China, during 2007-2016. Quasi-Poisson generalized linear regression models combined with a distributed lag non-linear model (DLNM) were applied to evaluate the relationships between DTR and non-accidental, cardiovascular, and respiratory mortality. We observed a J-shaped relationship between DTR and cause-specific mortality. With a DTR of 8.3 °C as the reference, the cumulative effects of extremely high DTR were significantly higher for all types of mortality than effects of lower or moderate DTR in full year. When stratified by season, extremely high DTR in spring had a greater impact on all cause-specific mortality than other three seasons. Male and the elderly (≥ 65 years) were consistently more susceptible to extremely high DTR effect than female and the youth (< 65 years) for non-accidental and cardiovascular mortality. To the contrary, female and the youth were more susceptible to extremely high DTR effect than male and the elderly for respiratory morality. The study suggests that extremely high DTR is a potential trigger for non-accidental mortality in Hefei city, China. Our findings also highlight the importance of protecting susceptible groups from extremely high DTR especially in the spring.
Effects of diurnal temperature range on mortality in Hefei city, China
NASA Astrophysics Data System (ADS)
Tang, Jing; Xiao, Chang-chun; Li, Yu-rong; Zhang, Jun-qing; Zhai, Hao-yuan; Geng, Xi-ya; Ding, Rui; Zhai, Jin-xia
2018-05-01
Although several studies indicated an association between diurnal temperature range (DTR) and mortality, the results about modifiers are inconsistent, and few studies were conducted in developing inland country. This study aims to evaluate the effects of DTR on cause-specific mortality and whether season, gender, or age might modify any association in Hefei city, China, during 2007-2016. Quasi-Poisson generalized linear regression models combined with a distributed lag non-linear model (DLNM) were applied to evaluate the relationships between DTR and non-accidental, cardiovascular, and respiratory mortality. We observed a J-shaped relationship between DTR and cause-specific mortality. With a DTR of 8.3 °C as the reference, the cumulative effects of extremely high DTR were significantly higher for all types of mortality than effects of lower or moderate DTR in full year. When stratified by season, extremely high DTR in spring had a greater impact on all cause-specific mortality than other three seasons. Male and the elderly (≥ 65 years) were consistently more susceptible to extremely high DTR effect than female and the youth (< 65 years) for non-accidental and cardiovascular mortality. To the contrary, female and the youth were more susceptible to extremely high DTR effect than male and the elderly for respiratory morality. The study suggests that extremely high DTR is a potential trigger for non-accidental mortality in Hefei city, China. Our findings also highlight the importance of protecting susceptible groups from extremely high DTR especially in the spring.
Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.
Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina
2016-06-01
Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. Copyright © 2016 Elsevier B.V. All rights reserved.
Valley polarization in bismuth
NASA Astrophysics Data System (ADS)
Fauque, Benoit
2013-03-01
The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.
Synoptic Conditions and Moisture Sources Actuating Extreme Precipitation in Nepal
NASA Astrophysics Data System (ADS)
Bohlinger, Patrik; Sorteberg, Asgeir; Sodemann, Harald
2017-12-01
Despite the vast literature on heavy-precipitation events in South Asia, synoptic conditions and moisture sources related to extreme precipitation in Nepal have not been addressed systematically. We investigate two types of synoptic conditions—low-pressure systems and midlevel troughs—and moisture sources related to extreme precipitation events. To account for the high spatial variability in rainfall, we cluster station-based daily precipitation measurements resulting in three well-separated geographic regions: west, central, and east Nepal. For each region, composite analysis of extreme events shows that atmospheric circulation is directed against the Himalayas during an extreme event. The direction of the flow is regulated by midtropospheric troughs and low-pressure systems traveling toward the respective region. Extreme precipitation events feature anomalous high abundance of total column moisture. Quantitative Lagrangian moisture source diagnostic reveals that the largest direct contribution stems from land (approximately 75%), where, in particular, over the Indo-Gangetic Plain moisture uptake was increased. Precipitation events occurring in this region before the extreme event likely provided additional moisture.
Passmore, Brandon; Cole, Zach; Whitaker, Bret; Barkley, Adam; McNutt, Ty; Lostetter, Alexander
2016-08-02
A multichip power module directly connecting the busboard to a printed-circuit board that is attached to the power substrate enabling extremely low loop inductance for extreme environments such as high temperature operation. Wire bond interconnections are taught from the power die directly to the busboard further enabling enable low parasitic interconnections. Integration of on-board high frequency bus capacitors provide extremely low loop inductance. An extreme environment gate driver board allows close physical proximity of gate driver and power stage to reduce overall volume and reduce impedance in the control circuit. Parallel spring-loaded pin gate driver PCB connections allows a reliable and reworkable power module to gate driver interconnections.
NASA Astrophysics Data System (ADS)
DeLong, Kristine L.; Flannery, Jennifer A.; Poore, Richard Z.; Quinn, Terrence M.; Maupin, Christopher R.; Lin, Ke; Shen, Chuan-Chou
2014-05-01
This study uses skeletal variations in coral Sr/Ca from three Siderastrea siderea coral colonies within the Dry Tortugas National Park in the southeastern Gulf of Mexico (24°42'N, 82°48'W) to reconstruct monthly sea surface temperature (SST) variations from 1734 to 2008 Common Era (C.E.). Calibration and verification of the replicated coral Sr/Ca-SST reconstruction with local, regional, and historical temperature records reveals that this proxy-temperature relationship is stable back to 1879 C.E. The coral SST reconstruction contains robust interannual ( 2.0°C) and multidecadal variability ( 1.5°C) for the past 274 years, the latter of which does not covary with the Atlantic Multidecadal Oscillation. Winter SST extremes are more variable than summer SST extremes (±2.2°C versus ±1.6°C, 2σ) suggesting that Loop Current transport in the winter dominates variability on interannual and longer time scales. Summer SST maxima are increasing (+1.0°C for 274 years, σMC = ±0.5°C, 2σ), whereas winter SST minima contain no significant trend. Colder decades ( 1.5°C) during the Little Ice Age (LIA) do not coincide with decades of sunspot minima. The coral SST reconstruction contains similar variability to temperature reconstructions from the northern Gulf of Mexico (planktic foraminifer Mg/Ca) and the Caribbean Sea (coral Sr/Ca) suggesting areal reductions in the Western Hemisphere Warm Pool during the LIA. Mean summer coral SST extremes post-1985 C.E. (29.9°C) exceeds the long-term summer average (29.2°C for 1734-2008 C.E.), yet the warming trend after 1985 C.E. (0.04°C for 24 years, σMC = ±0.5, 2σ) is not significant, whereas Caribbean coral Sr/Ca studies contain a warming trend for this interval.
Ishiwata, Kiichi; Hayashi, Kunpei; Sakai, Masanari; Kawauchi, Sugio; Hasegawa, Hideaki; Toyohara, Jun
2017-01-01
To elucidate the radionuclides and radiochemical impurities included in radiosynthesis processes of positron emission tomography (PET) tracers. Target materials and PET tracers were produced using a cyclotron/synthesis system from Sumitomo Heavy Industry. Positron and γ-ray emitting radionuclides were quantified by measuring radioactivity decay and using the high-purity Ge detector, respectively. Radiochemical species in gaseous and aqueous target materials were analyzed by gas and ion chromatography, respectively. Target materials had considerable levels of several positron emitters in addition to the positron of interest, and in the case of aqueous target materials extremely low levels of many γ-emitters. Five 11 C-, 15 O-, or 18 F-labeled tracers produced from gaseous materials via chemical reactions had no radionuclidic impurities, whereas 18 F-FDG, 18 F-NaF, and 13 N-NH 3 produced from aqueous materials had several γ-emitters as well as impure positron emitters. 15 O-Labeled CO 2 , O 2 , and CO had a radionuclidic impurity 13 N-N 2 (0.5-0.7 %). Target materials had several positron emitters other than the positron of interest, and extremely low level γ-emitters in the case of aqueous materials. PET tracers produced from gaseous materials except for 15 O-labeled gases had no impure radionuclides, whereas those derived from aqueous materials contained acceptable levels of impure positron emitters and extremely low levels of several γ-emitters.
The Incidence of Buried Dual AGN in Advanced Mergers: New results from Chandra
NASA Astrophysics Data System (ADS)
Pfeifle, Ryan William; Satyapal, Shobita; Secrest, Nathan; Gliozzi, Mario; Ricci, Claudio; Ellison, Sara L.; Blecha, Laura; Rothberg, Barry; Constantin, Anca
2018-01-01
Since the vast majority of galaxies contain supermassive black holes (SMBHs) and galaxy interactions trigger nuclear gas accretion, a direct consequence of the hierarchical model of galaxy formation would be the existence of dual active galactic nuclei (AGN). The existence, frequency, and characteristics of such dual AGN have important astrophysical implications on the SMBH mass function, the interplay between SMBHs and the host galaxy, and the M-sigma relation. Despite decades of searching, and strong theoretical reasons for their existence, observationally confirmed cases of dual AGN are extremely rare, and most have been discovered serendipitously. Using the all-sky WISE survey, we identified a population of over one hundred strongly interacting galaxies that display extreme red mid-infrared colors thus far exclusively associated with extragalactic sources possessing powerful AGN. In a recent Chandra, XMM-Newton, and NuSTAR investigation of advanced mergers selected by WISE, we find dual AGN candidates in 8 out of 15 mergers, all of which show no evidence for AGN based on optical spectroscopy. Our results demonstrate that 1) optical studies miss a significant fraction of single and dual AGN in advanced mergers, and 2) mid-infrared pre-selection is extremely effective in identifying dual AGN candidates in late-stage mergers. Our multi-wavelength observations suggest that the buried AGN in these mergers are highly absorbed, with intrinsic column densities in excess of NH > 1024 cm-2, consistent with hydrodynamic simulations.
NASA Astrophysics Data System (ADS)
Zonneveld, Karin; Clotten, Caroline; Chen, Liang
2015-04-01
Sediments of a tephra-dated marine sediment core located at the distal part of the Po-river discharge plume (southern Italy) have been studied with a three annual resolution. Based on the variability in the dinoflagellate cyst content detailed reconstructions have been established of variability in precipitation related river discharge rates and local air temperature. Furthermore about the variability in distort water quality has been reconstructed. We show that both precipitation and temperature signals vary in tune with cyclic changes in solar insolation. On top of these cyclic changes, short term extremes in temperature and precipitation can be observed that can be interpreted to reflect periods of local weather extremes. Comparison of our reconstructions with historical information suggest that times of high temperatures and maximal precipitation corresponds to the period of maximal expansion of the Roman Empire. We have strong indications that at this time discharge waters might have contained higher nutrient concentrations compared to previous and later time intervals suggesting anthropogenic influence of the water quality. First pilot-results suggest that the decrease in temperature reconstructed just after the "Roman Optimum" corresponds to an increase in numbers of armored conflicts between the Roman and German cultures. Furthermore we observe a resemblance in timing of short-term intervals with cold weather spells during the early so called "Dark-Age-Period" to correspond to epidemic/pandemic events in Europe.
Sorokin, Dimitry Y.; Makarova, Kira S.; Abbas, Ben; Ferrer, Manuel; Golyshin, Peter N.; Galinski, Erwin A.; Ciordia, Sergio; Mena, María Carmen; Merkel, Alexander Y.; Wolf, Yuri I.; van Loosdrecht, Mark C.M.; Koonin, Eugene V.
2017-01-01
Methanogenic archaea are major players in the global carbon cycle and in the biotechnology of anaerobic digestion. The phylum Euryarchaeota includes diverse groups of methanogens that are interspersed with non-methanogenic lineages. So far methanogens inhabiting hypersaline environments have been identified only within the order Methanosarcinales. We report the discovery of a deep phylogenetic lineage of extremophilic methanogens in hypersaline lakes, and present analysis of two nearly complete genomes from this group. Within the phylum Euryarchaeota, these isolates form a separate, class-level lineage “Methanonatronarchaeia” that is most closely related to the class Halobacteria. Similar to the Halobacteria, “Methanonatronarchaeia” are extremely halophilic and do not accumulate organic osmoprotectants. The high intracellular concentration of potassium implies that “Methanonatronarchaeia” employ the “salt-in” osmoprotection strategy. These methanogens are heterotrophic methyl-reducers that utilize C1-methylated compounds as electron acceptors and formate or hydrogen as electron donors. The genomes contain an incomplete and apparently inactivated set of genes encoding the upper branch of methyl group oxidation to CO2 as well as membrane-bound heterosulfide reductase and cytochromes. These features differentiates “Methanonatronarchaeia” from all known methyl-reducing methanogens. The discovery of extremely halophilic, methyl-reducing methanogens related to haloarchaea provides insights into the origin of methanogenesis and shows that the strategies employed by methanogens to thrive in salt-saturating conditions are not limited to the classical methylotrophic pathway. PMID:28555626
Improved forecasts of winter weather extremes over midlatitudes with extra Arctic observations
NASA Astrophysics Data System (ADS)
Sato, Kazutoshi; Inoue, Jun; Yamazaki, Akira; Kim, Joo-Hong; Maturilli, Marion; Dethloff, Klaus; Hudson, Stephen R.; Granskog, Mats A.
2017-02-01
Recent cold winter extremes over Eurasia and North America have been considered to be a consequence of a warming Arctic. More accurate weather forecasts are required to reduce human and socioeconomic damages associated with severe winters. However, the sparse observing network over the Arctic brings errors in initializing a weather prediction model, which might impact accuracy of prediction results at midlatitudes. Here we show that additional Arctic radiosonde observations from the Norwegian young sea ICE expedition (N-ICE2015) drifting ice camps and existing land stations during winter improved forecast skill and reduced uncertainties of weather extremes at midlatitudes of the Northern Hemisphere. For two winter storms over East Asia and North America in February 2015, ensemble forecast experiments were performed with initial conditions taken from an ensemble atmospheric reanalysis in which the observation data were assimilated. The observations reduced errors in initial conditions in the upper troposphere over the Arctic region, yielding more precise prediction of the locations and strengths of upper troughs and surface synoptic disturbances. Errors and uncertainties of predicted upper troughs at midlatitudes would be brought with upper level high potential vorticity (PV) intruding southward from the observed Arctic region. This is because the PV contained a "signal" of the additional Arctic observations as it moved along an isentropic surface. This suggests that a coordinated sustainable Arctic observing network would be effective not only for regional weather services but also for reducing weather risks in locations distant from the Arctic.
Communities that thrive in extreme conditions captured from a freshwater lake.
Low-Décarie, Etienne; Fussmann, Gregor F; Dumbrell, Alex J; Bell, Graham
2016-09-01
Organisms that can grow in extreme conditions would be expected to be confined to extreme environments. However, we were able to capture highly productive communities of algae and bacteria capable of growing in acidic (pH 2), basic (pH 12) and saline (40 ppt) conditions from an ordinary freshwater lake. Microbial communities may thus include taxa that are highly productive in conditions that are far outside the range of conditions experienced in their host ecosystem. The organisms we captured were not obligate extremophiles, but were capable of growing in both extreme and benign conditions. The ability to grow in extreme conditions may thus be a common functional attribute in microbial communities. © 2016 The Author(s).
Imaging of upper extremity stress fractures in the athlete.
Anderson, Mark W
2006-07-01
Although it is much less common than injuries in the lower extremities, an upper extremity stress injury can have a significant impact on an athlete. If an accurate and timely diagnosis is to be made, the clinician must have a high index of suspicion of a stress fracture in any athlete who is involved in a throwing, weightlifting, or upper extremity weight-bearing sport and presents with chronic pain in the upper extremity. Imaging should play an integral role in the work-up of these patients; if initial radiographs are unrevealing, further cross-sectional imaging should be strongly considered. Although a three-phase bone scan is highly sensitive in this regard, MRI has become the study of choice at most centers.
Eddy Current Assessment of Engineered Components Containing Nanofibers
NASA Astrophysics Data System (ADS)
Ko, Ray T.; Hoppe, Wally; Pierce, Jenny
2009-03-01
The eddy current approach has been used to assess engineered components containing nanofibers. Five specimens with different programmed defects were fabricated. A 4-point collinear probe was used to verify the electrical resistivity of each specimen. The liftoff component of the eddy current signal was used to test two extreme cases with different nano contents. Additional eddy current measurements were also used in detecting a missing nano layer simulating a manufacturing process error. The results of this assessment suggest that eddy current liftoff measurement can be a useful tool in evaluating the electrical properties of materials containing nanofibers.
Yin, Hua; Wang, Yibin; He, Yingying; Xing, Lei; Zhang, Xiufang; Wang, Shuai; Qi, Xiaoqing; Zheng, Zhou; Lu, Jian; Miao, Jinlai
2017-10-01
Trehalose is a non-reducing disaccharide sugar that widely exists in a variety of organisms, such as bacteria and eukaryotes except the vertebrates. It plays an important role in a number of critical metabolic functions especially in response to stressful environmental conditions. However, the biosynthetic pathways of trehalose in cold-adapted yeast and its responses to temperature and salinity changes remain little understood. In this study, the genome of Antarctic-isolated Pseudozyma sp. NJ7 was generated from which we identified the gene coding for trehalose phosphate synthase (TPS1) and trehalose phosphate phosphatase (TPS2), the two enzymes most critical for trehalose production. The whole draft genome length of Pseudozyma sp. NJ7 was 18,021,233 bp, and encoded at least 34 rRNA operons and 72 tRNAs. The open reading frame of tps1 contained 1827 nucleotide encoding 608 amino acids with a molecular weight of 67.64 kDa, and an isoelectric point of 5.54, while tps2 contained 3948 nucleotide encoding 1315 amino acids with a molecular weight of 144.47 kDa and an isoelectric point of 6.36. The TPS1 and TPS2 protein sequences were highly homologous to Moesziomyces antarcticus T-34, but TPS2 had obvious specificity and differently with others which suggest species specificity and different evolutionary history. Expression level of tps1 gene was strongly influenced by temperature and high salinity. In addition, addition of 0.5% trehalose preserved yeast cells in the short term but was not effective for cryopreservation for more than 5 days, but still suggesting that exogenous trehalose could indeed significantly improve the survival of yeast cells under freezing conditions. Our results provided new insights on the molecular basis of cold adaptations of Antarctic Pseudozyma sp., and also generated new information on the roles trehalose play in yeast tolerance to extreme conditions in the extreme Antarctic environments.
Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota
Maderak, Marion L.
1966-01-01
The Heart River drainage basin of southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.
Kelly, Rebecca E; Mansell, Warren; Wood, Alex M; Alatiq, Yousra; Dodd, Alyson; Searson, Ruth
2011-11-01
This research aimed to test whether positive, negative, or conflicting appraisals about activated mood states (e.g., energetic and high states) predicted bipolar disorder. A sample of individuals from clinical and control groups (171 with bipolar disorder, 42 with unipolar depression, and 64 controls) completed a measure of appraisals of internal states. High negative appraisals related to a higher likelihood of bipolar disorder irrespective of positive appraisals. High positive appraisals related to a higher likelihood of bipolar disorder only when negative appraisals were also high. Individuals were most likely to have bipolar disorder, as opposed to unipolar depression or no diagnosis, when they endorsed both extremely positive and extremely negative appraisals of the same, activated states. Appraisals of internal states were based on self-report. The results indicate that individuals with bipolar disorder tend to appraise activated, energetic internal states in opposing or conflicting ways, interpreting these states as both extremely positive and extremely negative. This may lead to contradictory attempts to regulate these states, which may in turn contribute to mood swing symptoms. Psychological therapy for mood swings and bipolar disorder should address extreme and conflicting appraisals of mood states. Copyright © 2011 Elsevier B.V. All rights reserved.
Resilience and Suicidality among Homeless Youth
ERIC Educational Resources Information Center
Cleverley, Kristin; Kidd, Sean A.
2011-01-01
Homeless and street-involved youth are considered an extremely high risk group, with many studies highlighting trajectories characterized by abusive, neglectful, and unstable family histories, victimization and criminal involvement while on the streets, high rates of physical and mental illness, and extremely high rates of mortality. While there…
Fan, Zheng; Kocis, Keith; Valley, Robert; Howard, James F; Chopra, Manisha; Chen, Yasheng; An, Hongyu; Lin, Weili; Muenzer, Joseph; Powers, William
2015-09-01
We evaluated safety and feasibility of high-pressure transvenous limb perfusion in an upper extremity of adult patients with muscular dystrophy, after completing a similar study in a lower extremity. A dose escalation study of single-limb perfusion with 0.9% saline was carried out in nine adults with muscular dystrophies under intravenous analgesia. Our study demonstrates that it is feasible and definitely safe to perform high-pressure transvenous perfusion with 0.9% saline up to 35% of limb volume in the upper extremities of young adults with muscular dystrophy. Perfusion at 40% limb volume is associated with short-lived physiological changes in peripheral nerves without clinical correlates in one subject. This study provides the basis for a phase 1/2 clinical trial using pressurized transvenous delivery into upper limbs of nonambulatory patients with Duchenne muscular dystrophy. Furthermore, our results are applicable to other conditions such as limb girdle muscular dystrophy as a method for delivering regional macromolecular therapeutics in high dose to skeletal muscles of the upper extremity.
Boros, Emil; Katalin, V-Balogh; Vörös, Lajos; Horváth, Zsófia
2017-01-01
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n=84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009-2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L -1 , max: 16 g L -1 ), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L -1 ), and total phosphorus concentration was also extremely high (median: 2 mg L -1 , max: 32 mg L -1 ). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.
Polygenic determinants in extremes of high-density lipoprotein cholesterol[S
Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude
2017-01-01
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971
Polygenic determinants in extremes of high-density lipoprotein cholesterol.
Dron, Jacqueline S; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A; Robinson, John F; McIntyre, Adam D; Ban, Matthew R; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A
2017-11-01
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Prevention of Lower Extremity Injuries in Basketball
Taylor, Jeffrey B.; Ford, Kevin R.; Nguyen, Anh-Dung; Terry, Lauren N.; Hegedus, Eric J.
2015-01-01
Context: Lower extremity injuries are common in basketball, yet it is unclear how prophylactic interventions affect lower extremity injury incidence rates. Objective: To analyze the effectiveness of current lower extremity injury prevention programs in basketball athletes, focusing on injury rates of (1) general lower extremity injuries, (2) ankle sprains, and (3) anterior cruciate ligament (ACL) tears. Data Sources: PubMed, MEDLINE, CINAHL, SPORTDiscus, and the Cochrane Register of Controlled Trials were searched in January 2015. Study Selection: Studies were included if they were randomized controlled or prospective cohort trials, contained a population of competitive basketball athletes, and reported lower extremity injury incidence rates specific to basketball players. In total, 426 individual studies were identified. Of these, 9 met the inclusion criteria. One other study was found during a hand search of the literature, resulting in 10 total studies included in this meta-analysis. Study Design: Systematic review and meta-analysis. Level of Evidence: Level 2. Data Extraction: Details of the intervention (eg, neuromuscular vs external support), size of control and intervention groups, and number of injuries in each group were extracted from each study. Injury data were classified into 3 groups based on the anatomic diagnosis reported (general lower extremity injury, ankle sprain, ACL rupture). Results: Meta-analyses were performed independently for each injury classification. Results indicate that prophylactic programs significantly reduced the incidence of general lower extremity injuries (odds ratio [OR], 0.69; 95% CI, 0.57-0.85; P < 0.001) and ankle sprains (OR, 0.45; 95% CI, 0.29-0.69; P < 0.001), yet not ACL ruptures (OR, 1.09; 95% CI, 0.36-3.29; P = 0.87) in basketball athletes. Conclusion: In basketball players, prophylactic programs may be effective in reducing the risk of general lower extremity injuries and ankle sprains, yet not ACL injuries. PMID:26502412
Two-Center/Three-Electron Sigma Half-Bonds in Main Group and Transition Metal Chemistry.
Berry, John F
2016-01-19
First proposed in a classic Linus Pauling paper, the two-center/three-electron (2c/3e) σ half-bond challenges the extremes of what may or may not be considered a chemical bond. Two electrons occupying a σ bonding orbital and one electron occupying the antibonding σ* orbital results in bond orders of ∼0.5 that are characteristic of metastable and exotic species, epitomized in the fleetingly stable He2(+) ion. In this Account, I describe the use of coordination chemistry to stabilize such fugacious three-electron bonded species at disparate ends of the periodic table. A recent emphasis in the chemistry of metal-metal bonds has been to prepare compounds with extremely short metal-metal distances and high metal-metal bond orders. But similar chemistry can be used to explore metal-metal bond orders less than one, including 2c/3e half-bonds. Bimetallic compounds in the Ni2(II,III) and Pd2(II,III) oxidation states were originally examined in the 1980s, but the evidence collected at that time suggested that they did not contain 2c/3e σ bonds. Both classes of compounds have been re-examined using EPR spectroscopy and modern computational methods that show the unpaired electron of each compound to occupy a M-M σ* orbital, consistent with 2c/3e Ni-Ni and Pd-Pd σ half-bonds. Elsewhere on the periodic table, a seemingly unrelated compound containing a trigonal bipyramidal Cu3S2 core caused a stir, leaving prominent theorists at odds with one another as to whether the compound contains a S-S bond. Due to my previous experience with 2c/3e metal-metal bonds, I suggested that the Cu3S2 compound could contain a 2c/3e S-S σ half-bond in the previously unknown oxidation state of S2(3-). By use of the Cambridge Database, a number of other known compounds were identified as potentially containing S2(3-) ligands, including a noteworthy set of cyclopentadienyl-supported compounds possessing diamond-shaped Ni2E2 units with E = S, Se, and Te. These compounds were subjected to extensive studies using X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, density functional theory, and wave function-based computational methods, as well as chemical oxidation and reduction. The compounds contain E-E 2c/3e σ half-bonds and unprecedented E2(3-) "subchalcogenide" ligands, ushering in a new oxidation state paradigm for transition metal-chalcogen chemistry.
NASA Astrophysics Data System (ADS)
Seo, Seung Beom; Kim, Young-Oh; Kim, Youngil; Eum, Hyung-Il
2018-04-01
When selecting a subset of climate change scenarios (GCM models), the priority is to ensure that the subset reflects the comprehensive range of possible model results for all variables concerned. Though many studies have attempted to improve the scenario selection, there is a lack of studies that discuss methods to ensure that the results from a subset of climate models contain the same range of uncertainty in hydrologic variables as when all models are considered. We applied the Katsavounidis-Kuo-Zhang (KKZ) algorithm to select a subset of climate change scenarios and demonstrated its ability to reduce the number of GCM models in an ensemble, while the ranges of multiple climate extremes indices were preserved. First, we analyzed the role of 27 ETCCDI climate extremes indices for scenario selection and selected the representative climate extreme indices. Before the selection of a subset, we excluded a few deficient GCM models that could not represent the observed climate regime. Subsequently, we discovered that a subset of GCM models selected by the KKZ algorithm with the representative climate extreme indices could not capture the full potential range of changes in hydrologic extremes (e.g., 3-day peak flow and 7-day low flow) in some regional case studies. However, the application of the KKZ algorithm with a different set of climate indices, which are correlated to the hydrologic extremes, enabled the overcoming of this limitation. Key climate indices, dependent on the hydrologic extremes to be projected, must therefore be determined prior to the selection of a subset of GCM models.
Extreme pressure differences at 0900 NZST and winds across New Zealand
NASA Astrophysics Data System (ADS)
Salinger, M. James; Griffiths, Georgina M.; Gosai, Ashmita
2005-07-01
Trends in extremes in station daily sea-level pressure differences at 0900 NZST are examined, and extreme daily wind gusts, across New Zealand, since the 1960s. Annual time series were examined (with indices of magnitude and frequency over threshold percentiles) from the daily indices selected. These follow from earlier indices of normalized monthly mean sea-level pressure differences between station pairs, except the daily indices are not normalized. The frequency statistics quantify the number of extreme zonal (westerly and easterly), or extreme meridional (southerly or northerly), pressure gradient events. The frequency and magnitude of extreme westerly episodes has increased slightly over New Zealand, with a significant increase in the westerly extremes to the south of New Zealand. In contrast, the magnitude and frequency of easterly extremes has decreased over New Zealand, but increased to the south, with some trends weakly significant. The frequency and magnitude of daily southerly extremes has decreased significantly in the region.Extreme daily wind gust events at key climate stations in New Zealand and at Hobart, Australia, are highly likely to be associated with an extreme daily pressure difference. The converse was less likely to hold: extreme wind gusts were not always observed on days with extreme daily pressure difference, probably due to the strong influence that topography has on localized station winds. Significant correlations exist between the frequency indices and both annual-average mean sea-level pressures around the Australasian region and annual-average sea surface temperature (SST) anomalies in the Southern Hemisphere. These correlations are generally stronger for indices of extreme westerly or extreme southerly airflows. Annual-average pressures in the Tasman Sea or Southern Ocean are highly correlated to zonal indices (frequency of extreme westerlies). SST anomalies in the NINO3 region or on either side of the South Island are significantly correlated with the frequency of extreme westerly airflows.
Extreme Consumption Drinking Gaming and Prepartying among High School Students
ERIC Educational Resources Information Center
Tomaso, Cara C.; Zamboanga, Byron L.; Haas, Amie L.; Kenney, Shannon R.; Ham, Lindsay S.; Borsari, Brian
2016-01-01
Drinking games and prepartying (i.e., drinking before going to a social gathering/event) have emerged as high-risk drinking behaviors in high school students. The present study examines the current prepartying behaviors of high school students who report current participation in extreme-consumption games (e.g., chugging) with those who do not.…
Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A
2018-05-01
Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sovová, Helena; Nobre, Beatriz P.; Palavra, António
2016-01-01
Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters. PMID:28773546
Tejero, Ismael; Gonzalez-García, Núria; Gonzalez-Lafont, Angels; Lluch, José M
2007-05-09
The catechol functionality present in the catechins is responsible for the protective effects exerted by green tea against a wide range of human diseases. High-level electronic structure calculations and canonical variational transition-state theory including multidimensional tunneling corrections have allowed us to understand the key factors of the antioxidant effectiveness of the catechol group. This catechol group forms two hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very compact reactant complex. This fact produces an extremely narrow adiabatic potential-energy profile corresponding to the hydrogen abstraction by the peroxyl radical, which makes it possible for a huge tunneling contribution to take place. So, quantum-mechanical tunneling highly increases the corresponding rate constant value, in such a way that catechins become able to trap the lipid peroxyl radicals in a dominant competition with the very damaging free-radical chain-lipid peroxidation reaction.
Dedifferentiated retroperitoneal liposarcoma spontaneously occurring in an aged SD rat
Naito, Tomoharu; Saito, Tsuyoshi; Higuchi, Tamami; Inomata, Akira; Hayashi, Takuo; Shimada, Yasuhiro; Yamauchi-Ohguchi, Atsuko; Kenmochi, Sayaka; Kakinuma, Chihaya; Yao, Takashi
2018-01-01
Liposarcoma is a rare neoplasm in rats and is characterized by the presence of lipoblasts containing multiple cytoplasmic vacuoles. We encountered a rare type of liposarcoma in a male SD (Crj:CD(SD)IGS) rat during a long-term study to gather background data. At necropsy at 105 weeks of age, there was a large amount of fatty tissue covering the mesentery, pancreas, and retroperitoneum; a white nodule in the right kidney; and paleness of the liver. Microscopically, the tumor had a well-differentiated component and dedifferentiated high-grade component. Immunohistochemical and electron microscopic examinations revealed that the pleomorphic tumor cells retained the characteristics of lipoblasts. Distant or disseminated metastasis was also confirmed in various organs. A liposarcoma with these histological features is extremely rare in rats, and this is the first report of a highly metastatic dedifferentiated type of liposarcoma originating from the abdominal fat tissue in a rat. PMID:29750003
Methanogenic biodegradation of charcoal production wastes in groundwater at Kingsford, Michigan, USA
Michael, Godsy E.; Warren, E.; Westjohn, D.B.
2001-01-01
A house exploded in the City of Kingsford, Michigan USA. The explosion was caused by CH4 that leaked into the basement from the surrounding soil. Evidence suggests that biodegradation of products from the distillation and spillage at or near a former wood carbonization plant site was the major source of CH4 and CO2 in the groundwater system. The plant area is directly upgradient from deep groundwater, samples of which are green-yellow in colour, have a very strong odour of burnt wood, contain high concentrations of mononuclear aromatic and phenolic compounds, and extremely high concentrations of volatile fatty acids. The majority of the dissolved compounds in these groundwater samples have been shown, using laboratory microcosms, to be anaerobically biodegradable to CH4 and CO2. The biodegradable compounds, and the amounts of CH4 and CO2 produced in the microcosms, are consistent with observations from field samples.
Glass-fiber-based neutron detectors for high- and low-flux environments
NASA Astrophysics Data System (ADS)
Bliss, Mary; Brodzinski, Ronald L.; Craig, Richard A.; Geelhood, Bruce D.; Knopf, Michael A.; Miley, Harry S.; Perkins, Richard W.; Reeder, Paul L.; Sunberg, Debra S.; Warner, Ray A.; Wogman, Ned A.
1995-09-01
Pacific Northwest Laboratory (PNL) has fabricated cerium-activated lithium silicate scintillating fibers via a hot-downdraw process. These fibers typically have a operational transmission length (e(superscript -1) length) of greater than 2 meters. This permits the fabrication of devices which were not possible to consider. Scintillating fibers permit conformable devices, large-area devices, and extremely small devices; in addition, as the thermal-neutron sensitive elements in a fast neutron detection system, scintillating fibers can be dispersed within moderator, improving neutron economy, over that possible with commercially available (superscript 3)He or BF(subscript 3) proportional counters. These fibers can be used for national-security applications, in medical applications, in the nuclear-power industry, and for personnel protection at experimental facilities. Data are presented for devices based on single fibers and devices made up of ribbons containing many fibers under high-and low-flux conditions.
Dedifferentiated retroperitoneal liposarcoma spontaneously occurring in an aged SD rat.
Naito, Tomoharu; Saito, Tsuyoshi; Higuchi, Tamami; Inomata, Akira; Hayashi, Takuo; Shimada, Yasuhiro; Yamauchi-Ohguchi, Atsuko; Kenmochi, Sayaka; Kakinuma, Chihaya; Yao, Takashi
2018-04-01
Liposarcoma is a rare neoplasm in rats and is characterized by the presence of lipoblasts containing multiple cytoplasmic vacuoles. We encountered a rare type of liposarcoma in a male SD (Crj:CD(SD)IGS) rat during a long-term study to gather background data. At necropsy at 105 weeks of age, there was a large amount of fatty tissue covering the mesentery, pancreas, and retroperitoneum; a white nodule in the right kidney; and paleness of the liver. Microscopically, the tumor had a well-differentiated component and dedifferentiated high-grade component. Immunohistochemical and electron microscopic examinations revealed that the pleomorphic tumor cells retained the characteristics of lipoblasts. Distant or disseminated metastasis was also confirmed in various organs. A liposarcoma with these histological features is extremely rare in rats, and this is the first report of a highly metastatic dedifferentiated type of liposarcoma originating from the abdominal fat tissue in a rat.
Hinterholzinger, Florian M.; Rühle, Bastian; Wuttke, Stefan; Karaghiosoff, Konstantin; Bein, Thomas
2013-01-01
The detection, differentiation and visualization of compounds such as gases, liquids or ions are key challenges for the design of selective optical chemosensors. Optical chemical sensors employ a transduction mechanism that converts a specific analyte recognition event into an optical signal. Here we report a novel concept for fluoride ion sensing where a porous crystalline framework serves as a host for a fluorescent reporter molecule. The detection is based on the decomposition of the host scaffold which induces the release of the fluorescent dye molecule. Specifically, the hybrid composite of the metal-organic framework NH2-MIL-101(Al) and fluorescein acting as reporter shows an exceptional turn-on fluorescence in aqueous fluoride-containing solutions. Using this novel strategy, the optical detection of fluoride is extremely sensitive and highly selective in the presence of many other anions. PMID:24008779
Comparing an FPGA to a Cell for an Image Processing Application
NASA Astrophysics Data System (ADS)
Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.
2010-12-01
Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.
NASA Technical Reports Server (NTRS)
Niederer, P. G.; Mihora, D. J.
1972-01-01
The current design and hardware components of the patented 14 sqm Stokes flow parachute are described. The Stokes-flow parachute is a canopy of open mesh material, which is kept deployed by braces. Because of the light weight of its mesh material, and the high drag on its mesh elements when they operate in the Stokes-flow flight regime, this parachute has an extremely low ballistic coefficient. It provides a stable aerodynamic platform superior to conventional nonporous billowed parachutes, is exceptionally packable, and is easily contained within the canister of the Sidewinder Arcas or the RDT and E rockets. Thus, it offers the potential for gathering more meteorological data, especially at high altitudes, than conventional billowed parachutes. Methods for packaging the parachute are also recommended. These methods include schemes for folding the canopy and for automatically releasing the pressurizing fluid as the packaged parachute unfolds.
[Lab-on-a-chip systems in the point-of-care diagnostics].
Szabó, Barnabás; Borbíró, András; Fürjes, Péter
2015-12-27
The need in modern medicine for near-patient diagnostics being able to accelerate therapeutic decisions and possibly replacing laboratory measurements is significantly growing. Reliable and cost-effective bioanalytical measurement systems are required which - acting as a micro-laboratory - contain integrated biomolecular recognition, sensing, signal processing and complex microfluidic sample preparation modules. These micro- and nanofabricated Lab-on-a-chip systems open new perspectives in the diagnostic supply chain, since they are able even for quantitative, high-precision and immediate analysis of special disease specific molecular markers or their combinations from a single drop of sample. Accordingly, crucial requirements regarding the instruments and the analytical methods are the high selectivity, extremely low detection limit, short response time and integrability into the healthcare information networks. All these features can make the hierarchical examination chain shorten, and revolutionize laboratory diagnostics, evolving a brand new situation in therapeutic intervention.
Extreme Confinement of Xenon by Cryptophane-111 in the Solid State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Akil I.; Lapidus, Saul H.; Kane, Christopher M.
2014-12-11
Solids that sorb, capture and/or store the heavier noble gases are of interest because of their potential for transformative rare gas separation/production, storage, or recovery technologies. Herein, we report the isolation, crystal structures, and thermal stabilities of a series of xenon and krypton clathrates of (±)-cryptophane-111 (111). One trigonal crystal form, Xe@111•y(solvent), is exceptionally stable, retaining xenon at temperatures of up to about 300 °C. The high kinetic stability is attributable not only to the high xenon affinity and cage-like nature of the host, but also to the crystal packing of the clathrate, wherein each window of the molecular containermore » is blocked by the bridges of adjacent containers, effectively imprisoning the noble gas in the solid state. The results highlight the potential of discrete molecule materials exhibiting intrinsic microcavities or zero-dimensional pores.« less
Bean, Jonathan J.; Saito, Mitsuhiro; Fukami, Shunsuke; Sato, Hideo; Ikeda, Shoji; Ohno, Hideo; Ikuhara, Yuichi; McKenna, Keith P.
2017-01-01
Polycrystalline metal oxides find diverse applications in areas such as nanoelectronics, photovoltaics and catalysis. Although grain boundary defects are ubiquitous their structure and electronic properties are very poorly understood since it is extremely challenging to probe the structure of buried interfaces directly. In this paper we combine novel plan-view high-resolution transmission electron microscopy and first principles calculations to provide atomic level understanding of the structure and properties of grain boundaries in the barrier layer of a magnetic tunnel junction. We show that the highly [001] textured MgO films contain numerous tilt grain boundaries. First principles calculations reveal how these grain boundaries are associated with locally reduced band gaps (by up to 3 eV). Using a simple model we show how shunting a proportion of the tunnelling current through grain boundaries imposes limits on the maximum magnetoresistance that can be achieved in devices. PMID:28374755
Potenza, R; Guermani, A; Peluso, M; Casciola, A; Ginosa, I; Sperlinga, R; Donadio, P P
2015-09-01
Health workers' awareness and knowledge of transplant medicine can improve people's sensitivity and reduce their degree of opposition to donations. The medical literature contains numerous examples of education programs aimed at university students. This work describes the experience of an education program for students of the second and third year of a nursing degree course. From April to September 2013, an education program was set up for 80 university students. It was divided into 3 stages: group self-learning based on prearranged topics, sharing of the results, and participation in the final seminar. The effectiveness was assessed according to a pretest/posttest design. The first questionnaire contained 19 questions, and the second contained 27. The questions were subdivided into specific areas: subjective knowledge, objective knowledge, attitude, awareness, participation in the event, evaluation of the information material handed out, and appreciation of the tools used. There was a significant increase for items relating to knowledge, whereas awareness and attitude (already high at the start of the program) showed no changes. After the program, many students discussed the question of donation with their relatives and friends, and about 70% filled in a donor card. The students expressed a highly positive opinion of the initiative and the tools used. The initiative proved its validity, improving subjective and objective knowledge to a statistically significant extent and also increasing awareness and attitude. The students' evaluation was extremely positive. Copyright © 2015 Elsevier Inc. All rights reserved.
Iron aluminide alloy container for solid oxide fuel cells
Judkins, Roddie Reagan; Singh, Prabhakar; Sikka, Vinod Kumar
2000-01-01
A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.
The balance and harmony of control power for a combat aircraft in tactical maneuvering
NASA Technical Reports Server (NTRS)
Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.
1992-01-01
An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.
Gamma-glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria
NASA Technical Reports Server (NTRS)
Newton, Gerald L.; Javor, Barbara
1985-01-01
Six representative species of extremely halophilic bacteria were found to contain approximately millimolar concentrations of gamma-glutamylcysteine in the absence of significant glutathione. Thiosulfate also accumulated in the halobacteria, apparently as a major product of cysteine oxidation.
49 CFR 173.50 - Class 1-Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... insensitive that there is very little probability of initiation or of transition from burning to detonation under normal conditions of transport. 1 The probability of transition from burning to detonation is... contain only extremely insensitive detonating substances and which demonstrate a negligible probability of...
Hydro-physical Characteristics of Selected Media Used for Containerized Agriculture Systems
USDA-ARS?s Scientific Manuscript database
Containerized plant production represents an extremely intensive agricultural practice with large amounts of water and fertilizer application. Hydro-physical characteristics such as water infiltration, texture and structure, particle size distribution affect the quality of the media used in containe...
Astrobiology Science and Technology: A Path to Future Discovery
NASA Technical Reports Server (NTRS)
Meyer, M. A.; Lavaery, D. B.
2001-01-01
The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.
Dental equipment test during zero-gravity flight
NASA Technical Reports Server (NTRS)
Young, John; Gosbee, John; Billica, Roger
1991-01-01
The overall objectives of this program were to establish performance criteria and develop prototype equipment for use in the Health Maintenance Facility (HMF) in meeting the needs of dental emergencies during space missions. The primary efforts during this flight test were to test patient-operator relationships, patent (manikin) restraint and positioning, task lighting systems, use and operation of dental rotary instruments, suction and particle containment system, dental hand instrument delivery and control procedures, and the use of dental treatment materials. The initial efforts during the flight focused on verification of the efficiency of the particle containment system. An absorptive barrier was also tested in lieu of the suction collector. To test the instrument delivery system, teeth in the manikin were prepared with the dental drill to receive restorations, some with temporary filling materials and another with definitive filling material (composite resin). The best particle containment came from the combination use of the laminar-air/suction collector in concert with immediate area suction from a surgical high-volume suction tip. Lighting in the treatment area was provided by a flexible fiberoptic probe. This system is quite effective for small areas, but for general tasks ambient illumination is required. The instrument containment system (elastic cord network) was extremely effective and easy to use. The most serious problem with instrument delivey and actual treatment was lack of time during the microgravity sequences. The restorative materials handled and finished well.
Fabrication of diamond based sensors for use in extreme environments
Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.
2015-04-23
Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less
Fabrication of diamond based sensors for use in extreme environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Moore, Samuel L.; Vohra, Yogesh K.
Electrical and magnetic sensors can be lithographically fabricated on top of diamond substrates and encapsulated in a protective layer of chemical vapor deposited single crystalline diamond. This process when carried out on single crystal diamond anvils employed in high pressure research is termed as designer diamond anvil fabrication. These designer diamond anvils allow researchers to study electrical and magnetic properties of materials under extreme conditions without any possibility of damaging the sensing elements. We describe a novel method for the fabrication of designer diamond anvils with the use of maskless lithography and chemical vapor deposition in this paper. This methodmore » can be utilized to produce diamond based sensors which can function in extreme environments of high pressures, high and low temperatures, corrosive and high radiation conditions. Here, we demonstrate applicability of these diamonds under extreme environments by performing electrical resistance measurements during superconducting transition in rare earth doped iron-based compounds under high pressures to 12 GPa and low temperatures to 10 K.« less
Spatiotemporal variation in heat-related out-of-hospital cardiac arrest during the summer in Japan.
Onozuka, Daisuke; Hagihara, Akihito
2017-04-01
Although several studies have reported the impacts of extremely high temperature on cardiovascular diseases, few studies have investigated the spatiotemporal variation in the incidence of out-of-hospital cardiac arrest (OHCA) due to extremely high temperature in Japan. Daily OHCA data from 2005 to 2014 were acquired from all 47 prefectures of Japan. We used time-series Poisson regression analysis combined with a distributed lag non-linear model to assess the temporal variability in the effects of extremely high temperature on OHCA incidence in each prefecture, adjusted for time trends. Spatial variability in the relationships between extremely high temperature and OHCA between prefectures was estimated using a multivariate random-effects meta-analysis. We analyzed 166,496 OHCA cases of presumed cardiac origin occurring during the summer (June to September) that met the inclusion criteria. The minimum morbidity percentile (MMP) was the 51st percentile of temperature during the summer in Japan. The overall cumulative relative risk at the 99th percentile vs. the MMP over lags 0-10days was 1.21 (95% CI: 1.12-1.31). There was also a strong low temperature effect during the summer periods. No substantial difference in spatial or temporal variability was observed over the study period. Our study demonstrated spatiotemporal homogeneity in the risk of OHCA during periods of extremely high temperature between 2005 and 2014 in Japan. Our findings suggest that public health strategies for OHCA due to extremely high temperatures should be finely adjusted and should particularly account for the unchanging risk during the summer. Copyright © 2017 Elsevier B.V. All rights reserved.
Author Correction: Ultra-thin high-efficiency mid-infraredtransmissive Huygens meta-optics.
Zhang, Li; Ding, Jun; Zheng, Hanyu; An, Sensong; Lin, Hongtao; Zheng, Bowen; Du, Qingyang; Yin, Gufan; Michon, Jerome; Zhang, Yifei; Fang, Zhuoran; Shalaginov, Mikhail Y; Deng, Longjiang; Gu, Tian; Zhang, Hualiang; Hu, Juejun
2018-06-14
The original version of this Article omitted the following from the Acknowledgements:'J.D. and H. Zhang acknowledge initial funding for design of the meta-atoms provided by the National Science Foundation under award CMMI-1266251. Z.L. and H. Zheng contributed to the Device Fabrication section and were independently funded as visiting scholars by the National Natural Science Foundation of China under award 51772042 and the "111" project (No. B13042) led by Professor Huaiwu Zhang. Later work contained within the Device Modeling and Device Characterization sections and some revisions to the manuscript were funded under Defense Advanced Research Projects Agency Defense Sciences Office (DSO) Program: EXTREME Optics and Imaging (EXTREME) under Agreement No. HR00111720029. The authors also acknowledge fabrication facility support by the Harvard University Center for Nanoscale Systems funded by the National Science Foundation under award 0335765. The views, opinions and/or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.' This has been corrected in both the PDF and HTML versions of the Article.
Ribosomal Biosynthesis of the Cyclic Peptide Toxins of Amanita Mushrooms
Walton, Jonathan D.; Hallen-Adams, Heather E.; Luo, Hong
2014-01-01
Some species of mushrooms in the genus Amanita are extremely poisonous and frequently fatal to mammals including humans and dogs. Their extreme toxicity is due to amatoxins such as α- and β-amanitin. Amanita mushrooms also biosynthesize a chemically related group of toxins, the phallotoxins, such as phalloidin. The amatoxins and phallotoxins (collectively known as the Amanita toxins) are bicyclic octa- and heptapeptides, respectively. Both contain an unusual Trp-Cys cross-bridge known as tryptathionine. We have shown that, in Amanita bisporigera, the amatoxins and phallotoxins are synthesized as proproteins on ribosomes and not by nonribosomal peptide synthetases. The proproteins are 34–35 amino acids in length and have no predicted signal peptides. The genes for α-amanitin (AMA1) and phallacidin (PHA1) are members of a large family of related genes, characterized by highly conserved amino acid sequences flanking a hypervariable “toxin” region. The toxin regions are flanked by invariant proline (Pro) residues. An enzyme that could cleave the proprotein of phalloidin was purified from the phalloidin-producing lawn mushroom Conocybe apala. The enzyme is a serine protease in the prolyl oligopeptidase (POP) subfamily. The same enzyme cuts at both Pro residues to release the linear hepta- or octapeptide. PMID:20564017
Sakai, Yoshihito
2012-04-01
Lumbar canal stenosis most commonly affects the elderly population by entrapment of the cauda equine roots surrounding the spinal canal often associated with pain in the back and lower extremities, difficulty ambulating. The locomotive syndrome refers to high-risk conditions under requiring care services, and lumbar canal stenosis is an important underlying disease. As one of the key capacities of frailty identified muscluloskeletal function, the locomotive syndrome is considered to musculoskeletal frail syndrome. Surgical treatment should be recommended to take the pressure off the nerves in the lumbar spine when the conservative treatments failed, and several studies revealed that the surgery generally resulted in a preferable outcome in the lumbar canal stenosis patients. Among lumbar canal stenosis patients treated with surgery, locomotive syndrome was contained 44% and many of which were seen in thin females. The patients with locomotive syndrome had lower muscle volume both in the extremities and the trunk than those without locomotive syndrome, and surgical results were poorer in the activity of daily life whereas the pain relief was adequately obtained. Treatment of the lumbar canal stenosis should be attended to locomotive frailty, and muscle strengthening training should be incorporated into pre and postoperative therapy.
Fierstein, J.; Houghton, Bruce F.; Wilson, C.J.N.; Hildreth, W.
1997-01-01
An extremely proximal ejecta ring, with exposures to within 100 m of vent, was deposited during later-stage plinian fall activity during the 1912 Novarupta eruption in Alaska. One bed in the ejecta ring (bed S) contains predominantly andesitic clasts which serve to delineate the striking contrast in thinning rates along dispersal axis of the ejecta ring [Pyle bt values of 70 m (bed S alone) or 190 m (whole ejecta ring)] and the coeval dacitic plinian fall deposits [Pyle bt, values of 4 km (proximal) and 37 km (medial-distal)]. The locally deposited andesitic and dacitic clasts of the ejecta ring are interpreted as products of an irregular 'collar' of low-fountaining ejecta partially sheathing the core of higher-velocity dacitic ejecta that fed the stable, convecting 23-km-high column. The presence of such an extremely proximal accumulation of ejecta appears to be a feature common to several other historic eruptions that generated widespread fall deposits. This feature in part accounts for conflicts between measured and calculated values for thickness maxima in plinian fall deposits and suggests that modifications may be required of existing models for plinian eruption columns.
Density Gradient Separation of Detonation Soot for Nanocarbon Characterization
NASA Astrophysics Data System (ADS)
Ringstrand, Bryan; Jungjohann, Katie; Seifert, Sonke; Firestone, Millicent; Podlesak, David
2017-06-01
Detonation of high explosives (HE) can expand our understanding of chemical bonding at extreme conditions as well as the opportunity to prepare carbon nanomaterials. In order to understand detonation mechanisms, nanocarbon characterization contained within the soot is paramount. Thus, benign purification methods for detonation soot are important for its characterization. Progress towards a non-traditional approach to detonation soot processing is presented. Purification of soot using heavy liquid media such as sodium polytungstate to separate soot components based on their density was tested based on the premise that different nanocarbons possess different densities [ ρ = 1.79 g/cm3 (graphene) and ρ = 3.05 g/cm3 (nanodiamond)]. Analysis using XRD, SAXS, WAXS, Raman, XPS, TEM, and NMR provided information about particle morphology and carbon hybridization. Detonation synthesis offers an avenue for the discovery of new carbon frameworks. In addition, understanding reactions at extreme conditions provides for more accurate predictions of HE performance, explosion intent, and simulation refinement. These results are of interest to both the nanoscience and shock physics communities. We acknowledge the support of the U.S. Department of Energy LANL/LDRD Program (LANL #20150050DR). LA-UR-17-21502.
NASA Astrophysics Data System (ADS)
Brown, J. C.; Mallik, P. C. V.; Badnell, N. R.
2010-06-01
Brown and Mallik (BM) recently claimed that non-thermal recombination (NTR) can be a dominant source of flare hard X-rays (HXRs) from hot coronal and chromospheric sources. However, major discrepancies between the thermal continua predicted by BM and by the Chianti database as well as RHESSI flare data, led us to discover substantial errors in the heuristic expression used by BM to extend the Kramers expressions beyond the hydrogenic case. Here we present the relevant corrected expressions and show the key modified results. We conclude that, in most cases, NTR emission was overestimated by a factor of 1-8 by BM but is typically still large enough (as much as 20-30% of the total emission) to be very important for electron spectral inference and detection of electron spectral features such as low energy cut-offs since the recombination spectra contain sharp edges. For extreme temperature regimes and/or if the Fe abundance were as high as some values claimed, NTR could even be the dominant source of flare HXRs, reducing the electron number and energy budget, problems such as in the extreme coronal HXR source cases reported by e.g. Krucker et al.
NASA Astrophysics Data System (ADS)
Jehlička, J.; Edwards, H. G. M.; Oren, A.
2013-04-01
Laboratory cultures of a number of red extremely halophilic Archaea (Halobacterium salinarum strains NRC-1 and R1, Halorubrum sodomense, Haloarcula valismortis) and of Salinibacter ruber, a red extremely halophilic member of the Bacteria, have been investigated by Raman spectroscopy using 514.5 nm excitation to characterize their carotenoids. The 50-carbon carotenoid α-bacterioruberin was detected as the major carotenoid in all archaeal strains. Raman spectroscopy also detected bacterioruberin as the main pigment in a red pellet of cells collected from a saltern crystallizer pond. Salinibacter contains the C40-carotenoid acyl glycoside salinixanthin (all-E, 2'S)-2'-hydroxy-1'-[6-O-(methyltetradecanoyl)-β-D-glycopyranosyloxy]-3',4'-didehydro-1',2'-dihydro-β,ψ-carotene-4-one), for which the Raman bands assignments of are given here for the first time.
Extreme fog events in Poland with respect to circulation conditions
NASA Astrophysics Data System (ADS)
Ustrnul, Z.; Czekierda, D.; Wypych, A.
2010-09-01
Fog is a phenomenon which belongs to a group of so-called hydrometeorites and, according to the different dictionaries, it is a suspension of water droplets or ice crystals in the ground layer of the air that impairs visibility in the horizontal direction below 1 km. The phenomenon of fog, although much less dynamic or violent than other extreme phenomena, such as thunderstorms or hail, is equally dangerous and brings about huge social and economic complications. Land and air transportation suffer and fog may sometimes leads to a complete crippling of the whole economy in an area where fog occurs. The main objective of the study is determination of the circulation types bringing extreme fog events in Poland. The duration of fog at each meteorological station was considered as the main input data originated from 54 synoptic stations located across the country. The mentioned data series cover the period of 56 years (1951-2006). The occurrence of fog depends on meteorological conditions caused to a large extent by a given synoptic situation and local terrain conditions. In this study, according to its objectives, only circulation conditions are taken into consideration. These have been described by 5 different circulation classifications (Grosswetterlagen, Litynski, Osuchowska-Klein, Niedzwiedz and Ustrnul). Situations when this phenomenon occurred across a large part of the country were taken into detailed consideration. Special attention was paid to fog coverage during 24-hour periods. In this work, in light of certain doubts about the homogeneity of the observation material available, the intensity of fog was not included, as it requires additional and very tedious analysis. In the first step all cases of fog during the 1966-2006 study period which lasted 24 hours at more than 10 of the considered weather stations, i.e: at least 5 stations have been considered. As expected, in most cases, either a centre of a classical high pressure system or a high pressure wedge prevailed over Poland. In many cases, the dominance of baric patterns with advection from the eastern or southern sectors can be observed. Only in a few cases does a type with advection from the western sector come into play. In summary, it can be stated that intensive extreme fog of long duration occurred first of all in high pressure non-advective situations or along with weak advection, mainly from the southern or eastern direction. This statement, however, is not revolutionary. It simply confirms that the most troublesome of fog types is the radiation type, and can cover all of Poland at the same time and last up to several days. The study contains detailed meteorological-synoptic analyses of the most extreme events during the whole investigated period.
West, Michael E.; Larsen, Christopher F.; Truffer, Martin; O'Neel, Shad; LeBlanc, Laura
2010-01-01
We present a framework for interpreting small glacier seismic events based on data collected near the center of Bering Glacier, Alaska, in spring 2007. We find extremely high microseismicity rates (as many as tens of events per minute) occurring largely within a few kilometers of the receivers. A high-frequency class of seismicity is distinguished by dominant frequencies of 20–35 Hz and impulsive arrivals. A low-frequency class has dominant frequencies of 6–15 Hz, emergent onsets, and longer, more monotonic codas. A bimodal distribution of 160,000 seismic events over two months demonstrates that the classes represent two distinct populations. This is further supported by the presence of hybrid waveforms that contain elements of both event types. The high-low-hybrid paradigm is well established in volcano seismology and is demonstrated by a comparison to earthquakes from Augustine Volcano. We build on these parallels to suggest that fluid-induced resonance is likely responsible for the low-frequency glacier events and that the hybrid glacier events may be caused by the rush of water into newly opening pathways.
Li, Gang; Chen, Qiang; Li, Junjun; Hu, Xiaojian; Zhao, Jianlong
2010-06-01
A centrifuge-based microfluidic system has been developed that enables automated high-throughput and low-volume protein crystallizations. In this system, protein solution was automatically and accurately metered and dispensed into nanoliter-sized multiple reaction chambers, and it was mixed with various types of precipitants using a combination of capillary effect and centrifugal force. It has the advantages of simple fabrication, easy operation, and extremely low waste. To demonstrate the feasibility of this system, we constructed a chip containing 24 units and used it to perform lysozyme and cyan fluorescent protein (CyPet) crystallization trials. The results demonstrate that high-quality crystals can be grown and harvested from such a nanoliter-volume microfluidic system. Compared to other microfluidic technologies for protein crystallization, this microfluidic system allows zero waste, simple structure and convenient operation, which suggests that our microfluidic disk can be applied not only to protein crystallization, but also to the miniaturization of various biochemical reactions requiring precise nanoscale control.
Chen, Zi-Yu; Pukhov, Alexander
2016-01-01
Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047
A further study on the dietary-regulated biosynthesis of high-sulphur wool proteins
Gillespie, J. M.; Broad, Andrea; Reis, P. J.
1969-01-01
When the diet of sheep is supplemented by the infusion of sulphur-containing amino acids or casein into the abomasum, the newly synthesized wool shows characteristic changes in its amino acid composition, with significant increases in cystine, proline and serine and decreases in aspartic acid and phenylalanine. This modification seems to be due entirely to an alteration in the overall composition of the high-sulphur proteins and to an increase in their proportion in the fibre. These variations are not the result of a change in the composition of individual proteins, but are due to alterations in their relative proportions and to the initiation of the synthesis of `new' proteins, many of which are extremely rich in cystine. It is suggested that the heterogeneity of the high-sulphur proteins may be due, in part, to similar changes in composition caused by natural variations in the nutrition of sheep. ImagesFig. 3.Fig. 4. PMID:5774505
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2016-04-01
Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.
Bae, Young-Hyeon; Ko, Mansoo; Lee, Suk Min
2016-04-29
Revised high-heeled shoes (HHSs) were designed to improve the shortcomings of standard HHSs. This study was conducted to compare revised and standard HHSs with regard to joint angles and electromyographic (EMG) activity of the lower extremities during standing. The participants were five healthy young women. Data regarding joint angles and EMG activity of the lower extremities were obtained under three conditions: barefoot, when wearing revised HHSs, and when wearing standard HHSs. Lower extremity joint angles in the three dimensional plane were confirmed using a VICON motion capture system. EMG activity of the lower extremities was measured using active bipolar surface EMG. Kruskal-Wallis one-way analysis of variance by rank applied to analyze differences during three standing conditions. Compared with the barefoot condition, the standard HHSs condition was more different than the revised HHSs condition with regard to lower extremity joint angles during standing. EMG activity of the lower extremities was different for the revised HHSs condition, but the differences among the three conditions were not significant. Wearing revised HHSs may positively impact joint angles and EMG activity of the lower extremities by improving body alignment while standing.
Sensitivity of The High-resolution Wam Model With Respect To Time Step
NASA Astrophysics Data System (ADS)
Kasemets, K.; Soomere, T.
The northern part of the Baltic Proper and its subbasins (Bothnian Sea, the Gulf of Finland, Moonsund) serve as a challenge for wave modellers. In difference from the southern and the eastern parts of the Baltic Sea, their coasts are highly irregular and contain many peculiarities with the characteristic horizontal scale of the order of a few kilometres. For example, the northern coast of the Gulf of Finland is extremely ragged and contains a huge number of small islands. Its southern coast is more or less regular but has up to 50m high cliff that is frequently covered by high forests. The area also contains numerous banks that have water depth a couple of meters and that may essentially modify wave properties near the banks owing to topographical effects. This feature suggests that a high-resolution wave model should be applied for the region in question, with a horizontal resolution of an order of 1 km or even less. According to the Courant-Friedrich-Lewy criterion, the integration time step for such models must be of the order of a few tens of seconds. A high-resolution WAM model turns out to be fairly sensitive with respect to the particular choice of the time step. In our experiments, a medium-resolution model for the whole Baltic Sea was used, with the horizontal resolution 3 miles (3' along latitudes and 6' along longitudes) and the angular resolution 12 directions. The model was run with steady wind blowing 20 m/s from different directions and with two time steps (1 and 3 minutes). For most of the wind directions, the rms. difference of significant wave heights calculated with differ- ent time steps did not exceed 10 cm and typically was of the order of a few per cents. The difference arose within a few tens of minutes and generally did not increase in further computations. However, in the case of the north wind, the difference increased nearly monotonously and reached 25-35 cm (10-15%) within three hours of integra- tion whereas mean of significant wave heights over the whole Baltic Sea was 2.4 m (1 minute) and 2.04 m (3 minutes), respectively. The most probable reason of such difference is that the WAM model with a relatively large time step poorly describes wave field evolution in the Aland area with extremely ragged bottom topography and coastal line. In earlier studies, it has been reported that the WAM model frequently underestimates wave heights in the northern Baltic Proper by 20-30% in the case of strong north storms (Tuomi et al, Report series of the Finnish Institute of Marine Re- search, 1999). The described results suggest that a part of this underestimation may be removed through a proper choice of the time step.
High resolution spectroscopy of six new extreme helium stars
NASA Technical Reports Server (NTRS)
Heber, U.; Jones, G.; Drilling, J. S.
1986-01-01
High resolution spectra of six newly discovered extreme helium stars are presented. LSS 5121 is shown to be a spectroscopical twin of the hot extreme helium star HD 160641. A preliminary LTE analysis of LSS 3184 yielded an effective temperature of 22,000 K and a surface gravity of log g = 3.2. Four stars form a new subgroup, classified by sharp-lined He I spectra and pronounced O II spectra, and it is conjectured that these lie close to the Eddington limit. The whole group of extreme helium stars apparently is inhomogeneous with respect to luminosity to mass ratio and chemical composition.
NASA Astrophysics Data System (ADS)
Rokita, Pawel
Classical portfolio diversification methods do not take account of any dependence between extreme returns (losses). Many researchers provide, however, some empirical evidence for various assets that extreme-losses co-occur. If the co-occurrence is frequent enough to be statistically significant, it may seriously influence portfolio risk. Such effects may result from a few different properties of financial time series, like for instance: (1) extreme dependence in a (long-term) unconditional distribution, (2) extreme dependence in subsequent conditional distributions, (3) time-varying conditional covariance, (4) time-varying (long-term) unconditional covariance, (5) market contagion. Moreover, a mix of these properties may be present in return time series. Modeling each of them requires different approaches. It seams reasonable to investigate whether distinguishing between the properties is highly significant for portfolio risk measurement. If it is, identifying the effect responsible for high loss co-occurrence would be of a great importance. If it is not, the best solution would be selecting the easiest-to-apply model. This article concentrates on two of the aforementioned properties: extreme dependence (in a long-term unconditional distribution) and time-varying conditional covariance.
Impacts of Extreme Events on Human Health. Chapter 4
NASA Technical Reports Server (NTRS)
Bell, Jesse E.; Herring, Stephanie C.; Jantarasami, Lesley; Adrianopoli, Carl; Benedict, Kaitlin; Conlon, Kathryn; Escobar, Vanessa; Hess, Jeremy; Luvall, Jeffrey; Garcia-Pando, Carlos Perez;
2016-01-01
Increased Exposure to Extreme Events Key Finding 1: Health impacts associated with climate-related changes in exposure to extreme events include death, injury, or illness; exacerbation of underlying medical conditions; and adverse effects on mental health[High Confidence]. Climate change will increase exposure risk in some regions of the United States due to projected increases in the frequency and/or intensity of drought, wildfires, and flooding related to extreme precipitation and hurricanes [Medium Confidence].Disruption of Essential Infrastructure Key Finding 2: Many types of extreme events related to climate change cause disruption of infrastructure, including power, water, transportation, and communication systems, that are essential to maintaining access to health care and emergency response services and safeguarding human health [High Confidence].Vulnerability to Coastal Flooding Key Finding 3: Coastal populations with greater vulnerability to health impacts from coastal flooding include persons with disabilities or other access and functional needs, certain populations of color, older adults, pregnant women and children, low-income populations, and some occupational groups [High Confidence].Climate change will increase exposure risk to coastal flooding due to increases in extreme precipitation and in hurricane intensity and rainfall rates, as well as sea level rise and the resulting increases in storm surge.
The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed
Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling
2013-01-01
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898
SCEGRAM: An image database for semantic and syntactic inconsistencies in scenes.
Öhlschläger, Sabine; Võ, Melissa Le-Hoa
2017-10-01
Our visual environment is not random, but follows compositional rules according to what objects are usually found where. Despite the growing interest in how such semantic and syntactic rules - a scene grammar - enable effective attentional guidance and object perception, no common image database containing highly-controlled object-scene modifications has been publically available. Such a database is essential in minimizing the risk that low-level features drive high-level effects of interest, which is being discussed as possible source of controversial study results. To generate the first database of this kind - SCEGRAM - we took photographs of 62 real-world indoor scenes in six consistency conditions that contain semantic and syntactic (both mild and extreme) violations as well as their combinations. Importantly, always two scenes were paired, so that an object was semantically consistent in one scene (e.g., ketchup in kitchen) and inconsistent in the other (e.g., ketchup in bathroom). Low-level salience did not differ between object-scene conditions and was generally moderate. Additionally, SCEGRAM contains consistency ratings for every object-scene condition, as well as object-absent scenes and object-only images. Finally, a cross-validation using eye-movements replicated previous results of longer dwell times for both semantic and syntactic inconsistencies compared to consistent controls. In sum, the SCEGRAM image database is the first to contain well-controlled semantic and syntactic object-scene inconsistencies that can be used in a broad range of cognitive paradigms (e.g., verbal and pictorial priming, change detection, object identification, etc.) including paradigms addressing developmental aspects of scene grammar. SCEGRAM can be retrieved for research purposes from http://www.scenegrammarlab.com/research/scegram-database/ .
Boron content and sources in Tertiary aquifers in the Sultanate of Oman
NASA Astrophysics Data System (ADS)
Moraetis, Daniel; Lamki, Mohamed Al; Muhammad, Dawood; Yaroubi, Saif; Batashi, Hamad Al; Pracejus, Bernhard
2017-04-01
The boron (B) content of relatively shallow groundwaters in arid areas is high due to extreme evaporation which precipitates several salts with subsequent boron accumulation originating from rocks dissolution and/or rainwater. In deeper aquifers, where there is no groundwater-surface connection, other sources of boron may affect the water quality. The present study investigates the boron origin observed in 197 wells completed within the units of Umm Er Radhuma (UeR), Rus, Dammam and Fars (from older to younger geological units) which all belong to the Tertiary units of the interior of Oman. The acquired chemical data include major ions (cations and anions), Rare Earth Elements (REE) along with B isotopes (10 and 11) and Sr isotopes (86 and 87). In addition, leaching tests were performed in selected samples to validate the release of B in distilled water. The water samples were grouped based on B concentration of less than 5 mg/l, 5 to 15 mg/l and extreme values of higher than 15 mg/l. The Fars and UeR groundwater samples showed the most extreme boron content (higher than 15 mg/l) yet the former is the shallower and younger unit and the latter is the deeper and older unit. The Fars water of high boron content (higher than 15 mg/l) shows very high content of magnesium and calcium as well as low concentration of Sr. Furthermore, the magnesium and calcium are also high in UeR, while Sr concentration is much higher in UeR compared to Fars. The UeR water with extreme boron content appears in the field of diagenetic water in a diagram of δ11BNIST951 [‰] versus 1/B, along with Sr isotopes ratio and europium (Eu) positive anomaly, while Fars waters appear in a mixing zone of marine water with infiltrated rainwater. The regression analysis of sodium and chloride showed that concentrations of boron up to 10 mg/l can be correlated to halite dissolution in infiltrated rainwater in all units. The laboratory leaching tests verified the rocks capability to release boron up to 7 mg/l with a low water/solid ratio (low porosity rocks). Thus, the lowest boron content (up to 5 mg/l) is correlated to the dissolution of minerals within the Tertiary units. Whilst the samples containing 5 to 15 mg/l of B could correspond to lower water to solid ratio aquifer and/or mixing of low and high boron waters (rainwater and diagenetic or marine water). Finally, B isotopes along the REE analysis are considered as better indices of groundwater origin compared to Sr isotopes ratio especially in the case of diagenetic water identification.
System Would Regulate Low Gas Pressure
NASA Technical Reports Server (NTRS)
Frazer, Robert E.
1994-01-01
System intended to maintain gases in containers at pressures near atmospheric. Includes ballast volume in form of underinflated balloon that communicates with working volume. Balloon housed in rigid chamber not subjected to extremes of temperature of working volume. Pressure in chamber surrounding balloon regulated at ambient atmospheric pressure or at constant small differential pressure above or below ambient. Expansion and contraction of balloon accommodates expansion or contraction of gas during operational heating or cooling in working volume, maintaining pressure in working volume at ambient or constant differential above or below ambient. Gas lost from system due to leakage or diffusion, low-pressure sensor responds, signaling valve actuators to supply more gas to working volume. If pressure rises too high, overpressure relief valve opens before excessive pressure damages system.
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Pepper, Stephen V.
2001-01-01
The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ching-Fong
A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to formmore » a dense compact with a higher density and more uniform pore size distribution.« less
Exploring Antarctic Land Surface Temperature Extremes Using Condensed Anomaly Databases
NASA Astrophysics Data System (ADS)
Grant, Glenn Edwin
Satellite observations have revolutionized the Earth Sciences and climate studies. However, data and imagery continue to accumulate at an accelerating rate, and efficient tools for data discovery, analysis, and quality checking lag behind. In particular, studies of long-term, continental-scale processes at high spatiotemporal resolutions are especially problematic. The traditional technique of downloading an entire dataset and using customized analysis code is often impractical or consumes too many resources. The Condensate Database Project was envisioned as an alternative method for data exploration and quality checking. The project's premise was that much of the data in any satellite dataset is unneeded and can be eliminated, compacting massive datasets into more manageable sizes. Dataset sizes are further reduced by retaining only anomalous data of high interest. Hosting the resulting "condensed" datasets in high-speed databases enables immediate availability for queries and exploration. Proof of the project's success relied on demonstrating that the anomaly database methods can enhance and accelerate scientific investigations. The hypothesis of this dissertation is that the condensed datasets are effective tools for exploring many scientific questions, spurring further investigations and revealing important information that might otherwise remain undetected. This dissertation uses condensed databases containing 17 years of Antarctic land surface temperature anomalies as its primary data. The study demonstrates the utility of the condensate database methods by discovering new information. In particular, the process revealed critical quality problems in the source satellite data. The results are used as the starting point for four case studies, investigating Antarctic temperature extremes, cloud detection errors, and the teleconnections between Antarctic temperature anomalies and climate indices. The results confirm the hypothesis that the condensate databases are a highly useful tool for Earth Science analyses. Moreover, the quality checking capabilities provide an important method for independent evaluation of dataset veracity.
Investigating Extreme Lifestyles through Mangrove Transcriptomics
ERIC Educational Resources Information Center
Dassanayake, Maheshi
2009-01-01
Mangroves represent phylogenetically diverse taxa in tropical coastal terrestrial habitats. They are extremophiles, evolutionarily adapted to tolerate flooding, anoxia, high temperatures, wind, and high and extremely variable salt conditions in typically resource-poor environments. The genetic basis for these adaptations is, however, virtually…
[Extreme (complicated, ultra-high) refractive errors: terminological misconceptions!?
Avetisov, S E
2018-01-01
The article reviews development mechanisms of different refractive errors accompanied by marked defocus of light rays reaching the retina. Terminology used for such ametropias includes terms extreme, ultra-high and complicated. Justification of their usage for primary ametropias, whose symptom complex is based on changes in axial eye length, is an ongoing discussion. To comply with thesaurus definitions of 'diagnosis' and 'pathogenesis', to characterize refractive and anatomical-functional disorders in patients with primary ametropias it is proposed to use the terms 'hyperaxial and hypoaxial syndromes' with elaboration of specific symptoms instead of such expressions as extreme (ultra-high) myopia and hypermetropia.
Stoop, JMH.; Pharr, D. M.
1993-01-01
Little information exists concerning the biochemical route of mannitol catabolism in higher plant cells. In this study, the role of a recently discovered mannitol 1-oxidoreductase (MDH) in mannitol catabolism was investigated. Suspension cultures of celery (Apium graveolens L. var dulce [Mill.] Pers.) were successfully grown on nutrient media with either mannitol, mannose, or sucrose as the sole carbon source. Cell cultures grown on any of the three carbon sources did not differ in relative growth rate, as measured by packed cell volume, but differed drastically in internal carbohydrate concentration. Mannitol-grown cells contained high concentrations of mannitol and extremely low concentrations of sucrose, fructose, glucose, and mannose. Sucrose-grown cells had high concentrations of sucrose early in the growth cycle and contained a substantial hexose pool. Mannose-grown cells had a high mannose concentration early in the cycle, which decreased during the growth cycle, whereas their internal sucrose concentrations remained relatively constant during the entire growth cycle. Celery suspension cultures on all three carbon substrates contained an NAD-dependent MDH. Throughout the growth cycle, MDH activity was 2- to 4-fold higher in mannitol-grown cells compared with sucrose- or mannose-grown cells, which did not contain detectable levels of mannitol, indicating that MDH functions pre-dominantly in an oxidative capacity in situ. The MDH activity observed in celery cells was 3-fold higher than the minimum amount required to account for the observed rate of mannitol utilization from the media. Cultures transferred from mannitol to mannose underwent a decrease in MDH activity over a period of days, and transfer from mannose to mannitol resulted in an increase in MDH activity. These data provide strong evidence that MDH plays an important role in mannitol utilization in celery suspension cultures. PMID:12231996
An experimental design for total container impact response modeling at extreme temperatures
NASA Technical Reports Server (NTRS)
Kobler, V. P.; Wyskida, R. M.; Johannes, J. D.
1979-01-01
An experimental design (a drop test) was developed to test the effects of confinement upon cushions. The drop test produced consistent corner void cushion data from which mathematical models were developed. A mathematical relationship between temperature and drop height was found.
Drug Education: Reasons and Failures
ERIC Educational Resources Information Center
Smith, Cameron V.
1971-01-01
This paper contains 50 reasons" used to explain increasing drug abuse by youth, grouped into 10 categories: criminal elements, minorities, youth, adults, homes, schools, churches, corporate system, political system, and society. The interplay of reasons is extremely complicated; hence educational or remedial programs built upon simplistic cause…
Wide Area UXO Screening with the Multi-Sensor Fixed-Wing Airborne System MARS
2008-02-01
snakes, lizards, and spiders may contain sufficient poison to warrant medical attention. In addition, ticks can spread Rocky Mountain spotted fever ...is extremely serious • Systemic hypothermia manifests itself in five stages of symptoms, including: (1) shivering ; (2) apathy, listlessness
Correction to: Extreme Precipitation, Public Health Emergencies, and Safe Drinking Water in the USA.
Exum, Natalie G; Betanzo, Elin; Schwab, Kellogg J; Chen, Thomas Y J; Guikema, Seth; Harvey, David E
2018-06-01
Unfortunately, the original publication of this article contained mistakes. The publisher introduced an error after proofreading where the name of the co-author was mistakenly captured as "David P. E. Harvey". The correct name should be "David E. Harvey".
Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang
2014-05-19
This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio
Pan, Yong; Yang, Liu; Mu, Ning; Shao, Shengyu; Wang, Wen; Xie, Xiao; He, Shitang
2014-01-01
This paper presents a new effective approach for the sensitive film deposition of surface acoustic wave (SAW) chemical sensors for detecting organophosphorus compounds such as O-ethyl-S-2-diisopropylaminoethyl methylphosphonothiolate (VX) containing sulfur at extremely low concentrations. To improve the adsorptive efficiency, a two-step technology is proposed for the sensitive film preparation on the SAW delay line utilizing gold electrodes. First, mono[6-deoxy-6-[(mercaptodecamethylene)thio
Recovery of Mo/Si multilayer coated optical substrates
Baker, Sherry L.; Vernon, Stephen P.; Stearns, Daniel G.
1997-12-16
Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.