Sample records for contaminated florida lake

  1. POPS IN ALLIGATOR LIVERS FROM LAKE APOPKA, FLORIDA, USA

    EPA Science Inventory

    Reproductive disorders in American alligators (Alligator mississippiensis) inhabiting Lake Apopka, Florida, have been observed for several years. Such disorders are hypothesized to be caused by endocrine disrupting contaminants occurring in the Lake due to pesticide spills and ...

  2. CHARACTERIZATION OF ENDOCRINE-DISRUPTION AND CLINICAL MANIFESTATIONS IN LARGE-MOUTH BASS FROM FLORIDA LAKES

    EPA Science Inventory

    Previous efforts from this laboratory, have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefo...

  3. Persistent Organochlorine Pesticides and their Metabolites in Alligator Livers from Lakes Apopka and Woodruff, Florida, USA

    EPA Science Inventory

    Reproductive disorders in American alligators (Alligator mississippiensis) inhabiting Lake Apopka, Florida, have been observed for several years. Such disorders are hypothesized to be caused by endocrine disrupting contaminants occurring in the Lake due to pesticide spills and ...

  4. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida.

    PubMed Central

    Guillette, L J; Gross, T S; Masson, G R; Matter, J M; Percival, H F; Woodward, A R

    1994-01-01

    The reproductive development of alligators from a contaminated and a control lake in central Florida was examined. Lake Apopka is adjacent to an EPA Superfund site, listed due to an extensive spill of dicofol and DDT or its metabolites. These compounds can act as estrogens. Contaminants in the lake also have been derived from extensive agricultural activities around the lake that continue today and a sewage treatment facility associated with the city of Winter Garden, Florida. We examined the hypothesis that an estrogenic contaminant has caused the current failure in recruitment of alligators on Lake Apopka. Supporting data include the following: At 6 months of age, female alligators from Lake Apopka had plasma estradiol-17 beta concentrations almost two times greater than normal females from the control lake, Lake Woodruff. The Apopka females exhibited abnormal ovarian morphology with large numbers of polyovular follicles and polynuclear oocytes. Male juvenile alligators had significantly depressed plasma testosterone concentrations comparable to levels observed in normal Lake Woodruff females but more than three times lower than normal Lake Woodruff males. Additionally, males from Lake Apopka had poorly organized testes and abnormally small phalli. The differences between lakes and sexes in plasma hormone concentrations of juvenile alligators remain even after stimulation with luteinizing hormone. Our data suggest that the gonads of juveniles from Lake Apopka have been permanently modified in ovo, so that normal steroidogenesis is not possible, and thus normal sexual maturation is unlikely. Images p680-a Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 3. C Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. A Figure 5. B Figure 5. C PMID:7895709

  5. Characterization of endocrine-disruption and clinical manifestations in large-mouth bass from Florida lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, D.A.; Gross, T.S.; Johnson, B.

    1995-12-31

    Previous efforts from this laboratory have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefore, a survey of large mouth bass populations was conducted on several lakes in North Central Florida to examine reproductive and clinical health. Large-mouth bass were collected from lakes Apopka, Griffin, Jessup and Woodruff. Approximately 24 fish (12 males and 12 females) were collected from each lake during the spawning (March--April) and non-reproductive (July--August) seasons. Plasma samples were collected for analysis of estrogen,more » testosterone and 11-keto-testosterone concentrations. Gonadal and liver tissues were collected for histological analysis. General blood chemistry analyses and parasite surveys were also conducted to estimate general health. Additionally, fillet samples were collected and analyzed for pesticide levels. Fish from Lake Apopka had unusual concentrations of estrogen and 11-keto-testosterone in plasma when compared to bass from Lakes Woodruff, Jessup and Griffin. Parasites loads were significantly higher for bass from lake Apopka than from the other lakes. Male bass on Apopka had depressed concentrations of 11-keto-testosterone, skewing the E/T ratios upward while female bass had higher concentrations of estrogens than females from the other lakes, again resulting in skewed E/T ratios. These skewed E/T ratios are similar to those observed for alligators on the same lake and raise the possibility that they are caused by contaminants. However, contaminant levels in fillets did not differ significantly between lakes. These studies indicate potentially altered reproductive and immunological function for large-mouth bass living in a contaminated lake.« less

  6. THE CONTAMINANT-ASSOCIATED STRESS RESPONSE AND ITS RELATIONSHIP TO PLASMA STRESS AND SEX STERIOD CONCENTRATIONS IN THE FLORIDA GAR, LEPISOSTEUS PLATYRHINCUS

    EPA Science Inventory

    Contaminants can alter the stress response. This study examined the stress response, defined by plasma cortisol concentration, and its relationship to plasma estradiol-17b and testosterone concentrations in adult gar collected from Lake Apopka, Orange Lake and Lake Woodruff NWR, ...

  7. Contaminants in American alligator eggs from Lake Apopka, Lake Griffin, and Lake Okeechobee, Florida

    USGS Publications Warehouse

    Heinz, Gary H.; Percival, H. Franklin; Jennings, Michael L.

    1991-01-01

    Residues of organochlorine pesticides, polychlorinated biphenyls (PCBs), and 16 elements were measured in American alligator (Alligator mississippiensis) eggs collected in 1984 from Lakes Apopka, Griffin, and Okeechobee in central and south Florida. Organochlorine pesticides were highest in eggs from Lake Apopka. None of the elements appeared to be present at harmful concentrations in eggs from any of the lakes. A larger sample of eggs was collected in 1985, but only from Lakes Griffin, a lake where eggs were relatively clean, and Apopka, where eggs were most contaminated. In 1985, hatching success of artificially incubated eggs was lower for Lake Apopka, and several organochlorine pesticides were higher than in eggs from Lake Griffin. However, within Lake Apopka, higher levels of pesticides in chemically analyzed eggs were not associated with reduced hatching success of the remaining eggs in the clutch. Therefore, it did not appear that any of the pesticides we measured were responsible for the reduced hatching success of Lake Apopka eggs.

  8. DISTURBED SEXUAL CHARACTERISITCS IN MALE MOSQUITOFISH (GAMBUSIA HOLBROOKI) FROM A LAKE CONTAMINATED WITH ENDOCRINE DISRUPTORS.

    EPA Science Inventory

    Previous laboratory studies have demonstrated that estrogenic and antiandrogenic chemicals can alter several sexual characteristics in male poeciliid fishes. Whether similar disturbances occur under field conditions remains to be confirmed. Lake Apopka, Florida, is contaminated w...

  9. Altered Sex Hormone Concentrations and Gonadal mRNA Expression Levels of Activin Signaling Factors in Hatchling Alligators From a Contaminated Florida Lake

    PubMed Central

    MOORE, BRANDON C.; KOHNO, SATOMI; COOK, ROBERT W.; ALVERS, ASHLEY L.; HAMLIN, HEATHER J.; WOODRUFF, TERESA K.; GUILLETTE, LOUIS J.

    2014-01-01

    Activins and estrogens participate in regulating the breakdown of ovarian germ cell nests and follicle assembly in mammals. In 1994, our group reported elevated frequencies of abnormal, multioocytic ovarian follicles in 6 month old, environmental contaminant-exposed female alligators after gonadotropin challenge. Here, we investigated if maternal contribution of endocrine disrupting contaminants to the egg subsequently alters estrogen/inhibin/activin signaling in hatchling female offspring, putatively predisposing an increased frequency of multioocytic follicle formation. We quantified basal and exogenous gonadotropin-stimulated concentrations of circulating plasma steroid hormones and ovarian activin signaling factor mRNA abundance in hatchling alligators from the same contaminated (Lake Apopka) and reference (Lake Woodruff) Florida lakes, as examined in 1994. Basal circulating plasma estradiol and testosterone concentrations were greater in alligators from the contaminated environment, whereas activin/inhibin βA subunit and follistatin mRNA abundances were lower than values measured in ovaries from reference lake animals. Challenged, contaminant-exposed animals showed a more robust increase in plasma estradiol concentration following an acute follicle stimulating hormone (FSH) challenge compared with reference site alligators. Aromatase and follistatin mRNA levels increased in response to an extended FSH challenge in the reference site animals, but not in the contaminant-exposed animals. In hatchling alligators, ovarian follicles have not yet formed; therefore, these endocrine differences are likely to affect subsequent ovarian development, including ovarian follicle assembly. PMID:20166196

  10. Plasma steroid concentrations and male phallus size in juvenile alligators from seven Florida lakes

    USGS Publications Warehouse

    Guillette, L.J.; Woodward, A.R.; Crain, D.A.; Pickford, D.B.; Rooney, A.A.; Percival, H.F.

    1999-01-01

    Neonatal and juvenile alligators from contaminated Lake Apopka in central Florida exhibit abnormal plasma sex steroid concentrations as well as morphological abnormalities of the gonad and phallus. This study addresses whether similar abnormalities occur in juvenile alligators inhabiting six other lakes in Florida. For analysis, animals were partitioned into two subsets, animals 40-79 cm total length (1-3 years old) and juveniles 80-130 cm total length (3-7 years old). Plasma testosterone (T) concentrations were lower in small males from lakes Apopka, Griffin, and Jessup than from Lake Woodruff National Wildlife Refuge (NWR). Similar differences were observed in the larger juveniles, with males from lakes Jessup, Apopka, and Okeechobee having lower plasma T concentrations than Lake Woodruff males. Plasma estradiol-17?? (E2) concentrations were significantly elevated in larger juvenile males from Lake Apopka compared to Lake Woodruff NWR. When compared to small juvenile females from Lake Woodruff NWR, females from lakes Griffin, Apopka, Orange, and Okeechobee had elevated plasma E2 concentrations. Phallus size was significantly smaller in males from lakes Griffin and Apopka when compared to males from Lake Woodruff NWR. An association existed between body size and phallus size on all lakes except Lake Apopka and between phallus size and plasma T concentration on all lakes except lakes Apopka and Orange. Multiple regression analysis, with body size and plasma T concentration as independent covariables, explained the majority of the variation in phallus size on all lakes. These data suggest that the differences in sex steroids and phallus size observed in alligators from Lake Apopka are not limited to that lake, nor to one with a history of a major pesticide spill. Further work examining the relationship of sex steroids and phallus size with specific biotic and abiotic factors, such as antiandrogenic or estrogenic contaminants, is needed.

  11. Superfund Record of Decision (EPA Region 4): BMI-Textron Site, Lake Park, FL, August 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    This decision document presents the selected remedial action for the Basic Microelectronic, Incorporated (BMI)-Textron Site (BMI-Textron Site or the Site), in Lake Park, Florida. This remedy addresses the contaminated principal threat of ground water at the Site. This remedy addresses the principal threat remaining at the Site, by using existing institutional controls, and monitoring ground water contaminated with arsenic, cyanide, sodium and fluoride.

  12. Sex-steroid and thyroid hormone concentrations in juvenile alligators (Alligator mississippiensis) from contaminated and reference lakes in Florida, USA

    USGS Publications Warehouse

    Grain, D.A.; Guillette, L.J.; Pickford, D.B.; Percival, H.F.; Woodward, A.R.

    1998-01-01

    Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-171?? (E2), testosterone (T), triiodothyronine (T3), and thyroxine (T4) in juvenile alligators (60-140 cm total length) from two contaminated lakes and one reference lake in Florida. First, the data were analyzed by comparing hormone concentrations among males and females from the different lakes. Whereas there were no differences in plasma E2 concentrations among animals of the three lakes, male alligators from the contaminated lakes (Lake Apopka and Lake Okeechobee) had significantly lower plasma T concentrations compared 10 males from the reference take (Lake Woodruff). Concentrations of thyroid hormones also differed in animals of the three lakes, with T4 concentrations being elevated in Lake Okeechobee males compared to Lake Woodruff males. Second, the relationship between body size and hormone concentration was examined using regression analysis. Most notably for steroid hormones, no clear relationship was detected between E2 and total length in Apopka females (r2 0.09, p = 0.54) or between T and total length in Apopka males (r2 = 0.007, p = 0.75). Females from Apopka (r2 = 0.318, p = 0.09) and Okeechobee (r2 = 0.222, p = 0.09) exhibited weak correlations between T3 and total length. Males from Apopka (r2 = 0.015, p = 0.66) and Okeechobee (r2 = 0.128, p = 0.19) showed no correlation between T4 and total length. These results indicate: some of the previously reported abnormalities in steroid hormones of hatchling alligators persist, at least, through the juvenile years; steroid and thyroid hormones are related to body size in juvenile alligators from the reference lake, whereas alligators living in lakes Apopka and Okeechobee experience alterations in circulating thyroid and steroid hormones in relationship to body size; and a number of the hormone abnormalities reported previously for Lake Apopka alligators are observed in alligators from Lake Okeechobee - a lake associated with numerous contaminant sources but no major chemical spill. The endocrine alterations reported in this study are hypothesized to be a response to embryonic exposure to endocrine-disrupting contaminants.

  13. THYROID STATUS IN JUVENILE ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED AND REFERENCE SITES ON LAKE OKEECHOBEE, FLORIDA, USA

    EPA Science Inventory

    Exposure to environmental contaminants has been shown to alter normal thyroid function in various wildlife species, including the American alligator (Alligator mississippiensis). Abnormalities in circulating levels of the thyroid hormone thyroxine (T4) have been reported in juven...

  14. Gonadal steroidogenesis in vitro from juvenile alligators obtained from contaminated or control lakes.

    PubMed Central

    Guillette, L J; Gross, T S; Gross, D A; Rooney, A A; Percival, H F

    1995-01-01

    The ubiquitous distribution of many contaminants and the nonlethal, multigenerational effects of such contaminants on reproductive, endocrine, and immune systems have led to concerns that wildlife worldwide are affected. Although the causal agents and effects are known for some species, the underlying physiological mechanisms associated with contaminant-induced reproductive modifications are still poorly understood and require extensive research. We describe a study examining the steroidogenic activity of gonads removed from juvenile alligators (Alligator mississippiensis) obtained from contaminated or control lakes in central Florida. Synthesis of estradiol-17 beta (E2) was significantly different when ovaries from the contaminated and control lakes were compared in vitro. Additionally, testes from males obtained from the contaminated lake. Lake Apopka, synthesized significantly higher concentrations of E2 when compared to testes obtained from control males. In contrast, testosterone (T) synthesis from all testes examined in this study displayed a normal pattern and produced concentrations greater than that observed from ovaries obtained from either lake. Interestingly, the pattern of gonadal steroidogenesis differs from previously reported plasma concentrations of these hormones obtained from the same individuals. We suggest that the differences between the in vivo and in vitro patterns are due to modifications in the hepatic degradation of plasma sex steroid hormones. PMID:7556021

  15. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    USGS Publications Warehouse

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  16. Organochlorine pesticides and thiamine in eggs of largemouth bass and American alligators and their relationship with early life-stage mortality

    USGS Publications Warehouse

    Sepulveda, M.S.; Wiebe, J.J.; Honeyfield, D.C.; Rauschenberger, H.R.; Hinterkopf, J.P.; Johnson, W.E.; Gross, T.S.

    2004-01-01

    Thiamine deficiency has been linked to early mortality syndrome in salmonids in the Great Lakes. This study was conducted to compare thiamine concentrations in American alligators (Alligator mississippiensis) and Florida largemouth bass (Micropterus salmoides floridanus) eggs from sites with high embryo mortality and high exposure to organochlorine pesticides (OCPs) (Lakes Apopka and Griffin, and Emeralda Marsh, Florida, USA) to those from sites that have historically exhibited low embryo mortality and low OCPs (Lakes Woodruff and Orange, Florida). During June-July 2000, 20 alligator clutches were collected from these sites, artificially incubated, and monitored for embryo mortality. Thiamine and OCPs were measured in one egg/clutch. During February 2002, 10 adult female bass were collected from Emeralda Marsh and Lake Woodruff and mature ovaries analyzed for thiamine and OCP concentrations. Although ovaries from the Emeralda Marsh bass contained almost 1,000-fold more OCPs compared with the reference site, Lake Woodruff, there were no differences in thiamine concentrations between sites (11,710 vs. 11,857 pmol/g). In contrast, alligator eggs from the reference site had five times the amount of thiamine compared with the contaminated sites (3,123 vs. 617 pmol/g). Similarly, clutches with > 55% hatch rates had significantly higher concentrations of thiamine compared with clutches with <54% hatch rates (1,119 vs. 201 pmol/g). These results suggest that thiamine deficiency might be playing an important role in alligator embryo survival but not in reproductive failure and recruitment of largemouth bass. The cause(s) of this thiamine deficiency are unknown but might be related to differences in the nutritional value of prey items across the sites studied and/or to the presence of high concentration of contaminants in eggs. ?? Wildlife Disease Association 2004.

  17. Organochlorine pesticides and thiamine in eggs of largemouth bass and American alligators and their relationship with early life-stage mortality.

    PubMed

    Sepúlveda, Maria S; Wiebe, Jon J; Honeyfield, Dale C; Rauschenberger, Heath R; Hinterkopf, Joy P; Johnson, William E; Gross, Timothy S

    2004-10-01

    Thiamine deficiency has been linked to early mortality syndrome in salmonids in the Great Lakes. This study was conducted to compare thiamine concentrations in American alligators (Alligator mississippiensis) and Florida largemouth bass (Micropterus salmoides floridanus) eggs from sites with high embryo mortality and high exposure to organochlorine pesticides (OCPs) (Lakes Apopka and Griffin, and Emeralda Marsh, Florida, USA) to those from sites that have historically exhibited low embryo mortality and low OCPs (Lakes Woodruff and Orange, Florida). During June-July 2000, 20 alligator clutches were collected from these sites, artificially incubated, and monitored for embryo mortality. Thiamine and OCPs were measured in one egg/clutch. During February 2002, 10 adult female bass were collected from Emeralda Marsh and Lake Woodruff and mature ovaries analyzed for thiamine and OCP concentrations. Although ovaries from the Emeralda Marsh bass contained almost 1,000-fold more OCPs compared with the reference site, Lake Woodruff, there were no differences in thiamine concentrations between sites (11,710 vs. 11,857 pmol/g). In contrast, alligator eggs from the reference site had five times the amount of thiamine compared with the contaminated sites (3,123 vs. 617 pmol/g). Similarly, clutches with >55% hatch rates had significantly higher concentrations of thiamine compared with clutches with <54% hatch rates (1,119 vs. 201 pmol/g). These results suggest that thiamine deficiency might be playing an important role in alligator embryo survival but not in reproductive failure and recruitment of largemouth bass. The cause(s) of this thiamine deficiency are unknown but might be related to differences in the nutritional value of prey items across the sites studied and/or to the presence of high concentration of contaminants in eggs.

  18. Use of MODIS Terra Imagery to Estimate Surface Water Quality Standards, Using Lake Thonotosassa, Florida, as a Case Study

    NASA Technical Reports Server (NTRS)

    Moreno, Max J.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Rickman, Douglas L.

    2010-01-01

    Lake Thonotosassa is a highly eutrophied lake located in an area with rapidly growing population in the Tampa Bay watershed, Florida. The Florida Administrative Code has designated its use for "recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife." Although this lake has been the subject of efforts to improve water quality since 1970, overall water quality has remained below the acceptable state standards, and has a high concentration of nutrients. This condition is of great concern to public health since it has favored episodic blooms of Cyanobacteria. Some Cyanobacterial species release toxins that can reach humans through drinking water, fish consumption, and direct contact with contaminated water. The lake has been historically popular for fishing and water sports, and its overflow water drains into the Hillsborough River, the main supply of municipal water for the City of Tampa, this explains why it has being constantly monitored in situ for water quality by the Environmental Protection Commission of Hillsborough County (EPC). Advances in remote sensing technology, however, open the possibility of facilitating similar types of monitoring in this and similar lakes, further contributing to the implementation of surveillance systems that would benefit not just public health, but also tourism and ecosystems. Although traditional application of this technology to water quality has been focused on much larger coastal water bodies like bays and estuaries, this study evaluates the feasibility of its application on a 46.6 km2 freshwater lake. Using surface reflectance products from Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra, this study evaluates associations between remotely sensed data and in situ data from the EPC. The parameters analyzed are the surface water quality standards used by the State of Florida and general indicators of trophic status.

  19. SEX-STEROID AND THYROID HORMONE CONCENTRATIONS IN JUVENILE ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED AND REFERENCE LAKES IN FLORIDA, USA

    EPA Science Inventory

    Sex-steroid and thyroid hormones are critical regulators of growth and reproduction in all vertebrates, and several recent studies suggest that environmental chemicals can alter circulating concentrations of these hormones. This study examines plasma concentrations of estradiol-...

  20. Epigenetic programming alterations in alligators from environmentally contaminated lakes

    PubMed Central

    Guillette, Louis J.; Parrott, Benjamin B.; Nilsson, Eric; Haque, M.M.; Skinner, Michael K.

    2016-01-01

    Previous studies examining the reproductive health of alligators in Florida lakes indicate that a variety of developmental and health impacts can be attributed to a combination of environmental quality and exposures to environmental contaminants. The majority of these environmental contaminants have been shown to disrupt normal endocrine signaling. The potential that these environmental conditions and contaminants may influence epigenetic status and correlate to the health abnormalities was investigated in the current study. The red blood cell (RBC) (erythrocyte) in the alligator is nucleated so was used as an easily purified marker cell to investigate epigenetic programming. RBCs were collected from adult male alligators captured at three sites in Florida, each characterized by varying degrees of contamination. While Lake Woodruff (WO) has remained relatively pristine, Lake Apopka (AP) and Merritt Island (MI) convey exposures to different suites of contaminants. DNA was isolated and methylated DNA immuno-precipitation (MeDIP) was used to isolate methylated DNA that was then analyzed in a competitive hybridization using a genome-wide alligator tiling array for a MeDIP-Chip analysis. Pairwise comparisons of alligators from AP and MI to WO revealed alterations in the DNA methylome. The AP vs. WO comparison identified 85 differential DNA methylation regions (DMRs) with ⩾3 adjacent oligonucleotide tiling array probes and 15,451 DMRs with a single oligo probe analysis. The MI vs. WO comparison identified 75 DMRs with the ⩾3 oligo probe and 17,411 DMRs with the single oligo probe analysis. There was negligible overlap between the DMRs identified in AP vs. WO and MI vs. WO comparisons. In both comparisons DMRs were primarily associated with CpG deserts which are regions of low CpG density (1–2 CpG/100 bp). Although the alligator genome is not fully annotated, gene associations were identified and correlated to major gene class functional categories and pathways of endocrine relevance. Observations demonstrate that environmental quality may be associated with epigenetic programming and health status in the alligator. The epigenetic alterations may provide biomarkers to assess the environmental exposures and health impacts on these populations of alligators. PMID:27080547

  1. Pathology, physiologic parameters, tissue contaminants, and tissue thiamine in morbid and healthy central Florida adult American alligators (Alligator mississippiensis)

    USGS Publications Warehouse

    Honeyfield, D.C.; Ross, J.P.; Carbonneau, D.A.; Terrell, S.P.; Woodward, A.R.; Schoeb, T.R.; Perceval, H.F.; Hinterkopf, J.P.

    2008-01-01

    An investigation of adult alligator (Alligator mississippiensis) mortalities in Lake Griffin, central Florida, was conducted from 1998-2004. Alligator mortality was highest in the months of April and May and annual death count peaked in 2000. Bacterial pathogens, heavy metals, and pesticides were not linked with the mortalities. Blood chemistry did not point to any clinical diagnosis, although differences between impaired and normal animals were noted. Captured alligators with signs of neurologic impairment displayed unresponsive and uncoordinated behavior. Three of 21 impaired Lake Griffin alligators were found to have neural lesions characteristic of thiamine deficiency in the telencephalon, particularly the dorsal ventricular ridge. In some cases, lesions were found in the thalamus, and parts of the midbrain. Liver and muscle tissue concentrations of thiamine (vitamin B"1) were lowest in impaired Lake Griffin alligators when compared to unimpaired alligators or to alligators from Lake Woodruff. The consumption of thiaminase-positive gizzard shad (Dorosoma cepedianum) is thought to have been the cause of the low tissue thiamine and resulting mortalities. ?? Wildlife Disease Association 2008.

  2. TEMPORAL AND SPATIAL VARIATION IN PLASMA THYROXINE (T4) CONCENTRATIONS IN JUVENILE ALLIGATORS COLLECTED FROM LAKE OKEECHOBEE AND THE NORTHERN EVERGLADES, FLORIDA, USA

    EPA Science Inventory

    We examined variation in plasma thyroxine (T4) in juvenile American alligators (Alligator mississippiensis) collected from three sites within the Kissimmee River drainage basin (FL, USA). Based on historical sediment data, Moonshine Bay served as the low contaminant exposure site...

  3. Hydrology of Central Florida Lakes - A Primer

    USGS Publications Warehouse

    Schiffer, Donna M.

    1998-01-01

    INTRODUCTION Lakes are among the most valued natural resources of central Florida. The landscape of central Florida is riddled with lakeswhen viewed from the air, it almost seems there is more water than land. Florida has more naturally formed lakes than other southeastern States, where many lakes are created by building dams across streams. The abundance of lakes on the Florida peninsula is a result of the geology and geologic history of the State. An estimated 7,800 lakes in Florida are greater than 1 acre in surface area. Of these, 35 percent are located in just four counties (fig. 1): Lake, Orange, Osceola, and Polk (Hughes, 1974b). Lakes add to the aesthetic and commercial value of the area and are used by many residents and visitors for fishing, boating, swimming, and other types of outdoor recreation. Lakes also are used for other purposes such as irrigation, flood control, water supply, and navigation. Residents and visitors commonly ask questions such as Whyare there so many lakes here?, Why is my lake drying up (or flooding)?, or Is my lake spring-fed? These questions indicate that the basic hydrology of lakes and the interaction of lakes with ground water and surface water are not well understood by the general population. Because of the importance of lakes to residents of central Florida and the many questions and misconceptions about lakes, this primer was prepared by the U.S. Geological Survey (USGS) in cooperation with the St. Johns River Water Management District and the South Florida Water Management District. The USGS has been collecting hydrologic data in central Florida since the 1920s, obtaining valuable information that has been used to better understand the hydrology of the water resources of central Florida, including lakes. In addition to data collection, as of 1994, the USGS had published 66 reports and maps on central Florida lakes (Garcia and Hoy, 1995). The main purpose of this primer is to describe the hydrology of lakes in central Florida, the interactions between lakes and ground- and surface-waters, and to describe how these interactions affect lake water levels. Included are descriptions of the basic geology and geomorphology of central Florida, origins of central Florida lakes, factors that affect lake water levels, lake water quality, and common methods of improving water quality. The geographic area discussed in this primer is approximate (fig. 1) and includes west and east-central Florida, extending from the Gulf of Mexico to the Atlantic Ocean coastlines, northward into Marion, Putnam, and Flagler Counties, and southward to Lake Okeechobee. The information presented here was obtained from the many publications available on lakes in central Florida, as well as from publications on Florida geology, hydrology, and primers on ground water, surface water, and water quality. Many publications are available that provide more detailed information on lake water quality, and this primer is not intended as an extensive treatise on that subject. The reader is referred to the reference section of this primer for sources of more detailed information on lake water quality. Lakes discussed in this report are identified in figure 2. Technical terms used in the report are shown in bold italics and are defined in the glossary. The classification of some water bodies as lakes is highly subjective. What one individual considers a lake another might consider a pond. Generally, any water- filled depression or group of depressions in the land surface could be considered a lake. Lakes differ from swamps or wetlands in the type and amount of vegetation, water depth, and some water-quality characteristics. Lakes typically have emergent vegetation along the shoreline with a large expanse of open water in the center. Swamps or wetlands, on the other hand, are characterized by a water surface interrupted by the emergence of many varieties of plant life, from saw grasses to cypress trees. Lakes may be na

  4. Associations between degraded benthic communities and contaminated sediments: Sabine Lake, Lake Pontchartrain, and Choctawhatchee Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engle, V.D.; Summers, J.K.; Macauley, J.M.

    1994-12-31

    The Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) in the Gulf of Mexico supplements its base sampling effort each year with localized, intensive spatial sampling in selected large estuarine systems. By selecting random locations within 70 km{sup 2} hexagonal areas, individual estuaries were sampled using EMAP methods but at four times the density as base sampling. In 1992, 19 sites were sampled in Lake Pontchartrain, Louisiana. In 1 993, 18 sites were sampled in Sabine Lake, Texas and 12 sites were sampled in Choctawhatchee Bay, Florida. At all sites, sediment grabs were taken and analyzed for benthic species compositionmore » and abundance, for toxicity to Ampelisca, and for organic and inorganic sediment contaminants. An indicator of biotic integrity, the benthic index, was calculated to represent the status of benthic communities. A series of statistical techniques, such as stepwise regression analysis, were employed to determine whether the variation in the benthic index could be associated with variation in sediment contaminants, sediment toxicity, or levels of dissolved oxygen. Spatial distributions of these parameters were examined to determine the geographical co-occurrence of degraded benthic communities and environmental stressors. In Lake Pontchartrain, for example, 85% of the variation in the benthic index was associated with decreased levels of dissolved oxygen, and increased concentrations of PCBs, alkanes, copper, tin, and zinc in the sediments.« less

  5. The hydrology of Lake Rousseau, west-central Florida

    USGS Publications Warehouse

    German, E.R.

    1978-01-01

    Lake Rousseau, about 4 miles southwest of Inglis, Florida, was formed in 1909 by impoundment of the Withlacooche River by Inglis Dam, west of Dunnellon, Florida. The lake was to have been part of the Cross-Florida Barge Canal; a lock and channel associated with the presently inactive project were completed in 1969. Lake Rousseau is about 11 miles long, covers about 4,000 acres, and contains about 34,000 acre-feet of water at the normal pool elevation of 27.5 feet above mean sea level. Inflow to the lake is relatively constant and responds slowly to rainfall. The estimated 100-year peak inflow, 10,400 cubic feet per second, is only 19 percent higher than the 100-year high monthly inflow. Water in Lake Rousseau is a calcium-bicarbonate type and is hard. Mean total phosphorus and organic nitrogen concentrations are considerably lower in Lake Rousseau than in north-central Florida lakes which have been considered to be eutrophic by other investigators, however, the lake supports of prolific aquatic plant community. Dissolved-oxygen concentrations near the water surface are occasionally less than 3 mg/liter. (Woodard-USGS)

  6. Quantifying Cyanobacteria and High Biomass Bloms from Satellite to Support Environmental Management and Public Use of U.S. Lakes and Estuaries

    NASA Astrophysics Data System (ADS)

    Tomlinson, Michelle C.; Stumpf, Richard P.; Dupuy, Danielle; Wynne, Timothy T.; Briggs, Travis

    2015-12-01

    Algal blooms of high biomass and cyanobacteria are on the rise, occurring both nationally and internationally. These blooms can foul beaches, clog water intakes, produce toxins that contaminate drinking water, and pose a threat to human and domestic animal health. A quantitative tool can aid in the management needs to respond to these issues. These blooms can affect many lakes within a state management district, pointing to the need for a synoptic and timely assessment. The 300 m Medium Resolution Imaging Spectrometer (MERIS) satellite imagery provided by the European Space Agency from 2002 to 2012 has led to advances in our ability to monitor these systems. Algorithms specific to quantifying high biomass blooms have been developed for use by state managers through a comparison of field radiometry, water quality and cell enumeration measurements, and remotely-sensed satellite data. These algorithms are designed to detect blooms even with atmospheric interference and suspended sediments. Initial evaluations were conducted for Florida lakes and the St. Johns River, Florida, USA and showed that cyanobacteria blooms, especially of Microcystis, can be identified and their biomass can be estimated (as chlorophyll concentration and other metrics). Forecasts and monitoring have been demonstrated for Lake Erie and for Florida. A multi-agency (NASA, EPA, NOAA, and USGS) project, “Cyanobacteria Assessment Network (CyAN)” intends to apply these methods to Sentinel-3 data in near real-time on a U.S. national scale, in order to support state management agencies in protecting public health and the environment.

  7. Marine recreation and public health microbiology: Quest for the ideal indicator

    USGS Publications Warehouse

    Griffin, Dale W.; Lipp, Erin K.; McLaughlin, Molly R.; Rose, Joan B.

    2001-01-01

    Four-fifths of the population of the United States live in close proximity to the oceans or Great Lakes, and approximately 100 million Americans use the marine environment for recreation each year (Thurman 1994). Consequently, contamination of lakes, rivers, and coastal waters raises significant public health issues. Among the leading sources of chemical and biological contamination of these waters and associated beaches are sewer systems, septic tanks, stormwater runoff, industrial wastes, wastewater injection wells, cesspits, animal wastes, commercial and private boat wastes, and human recreation. In 1997, 649 beach closings or advisories were caused by sewage spills and overflows (NRDC 1998). In Florida alone, approximately 500 million gallons of sewage were released along the coast each year during the late 1980s (Neshyba 1987). Thus one of the primary concerns in public health is the risk that humans using the marine environment for recreational activities will encounter microbial pathogens.

  8. Marine recreation and public health microbiology: quest for the ideal indicator

    USGS Publications Warehouse

    Griffin, Dale W.; Lipp, Erin K.; McLaughlin, Molly R.; Rose, Joan B.

    2001-01-01

    Four-fifths of the population of the United States live in close proximity to the oceans or Great Lakes, and approximately 100 million Americans use the marine environment for recreation each year (Thurman 1994). Consequently, contamination of lakes, rivers, and coastal waters raises significant public health issues. Among the leading sources of chemical and biological contamination of these waters and associated beaches are sewer systems, septic tanks, stormwater runoff, industrial wastes, wastewater injection wells, cesspits, animal wastes, commercial and private boat wastes, and human recreation. In 1997, 649 beach closings or advisories were caused by sewage spills and overflows (NRDC 1998). In Florida alone, approximately 500 million gallons of sewage were released along the coast each year during the late 1980s (Neshyba 1987). Thus one of the primary concerns in public health is the risk that humans using the marine environment for recreational activities will encounter microbial pathogens.

  9. Necropsy findings in American alligator late-stage embryos and hatchlings from northcentral Florida lakes contaminated with organochlorine pesticides

    USGS Publications Warehouse

    Sepulveda, M.S.; Del, Piero F.; Wiebe, J.J.; Rauschenberger, H.R.; Gross, T.S.

    2006-01-01

    Increased American alligator (Alligator mississippiensis) embryo and neonatal mortality has been reported from several northcentral Florida lakes contaminated with old-use organochlorine pesticides (OCPs). However, a clear relationship among these contaminants and egg viability has not been established, suggesting the involvement of additional factors in these mortalities. Thus, the main objective of this study was to determine the ultimate cause of mortality of American alligator late-stage embryos and hatchlings through the conduction of detailed pathological examinations, and to evaluate better the role of OCPs in these mortalities. Between 2000 and 2001, 236 dead alligators were necropsied at or near hatching (after ???65 days of artificial incubation and up to 1 mo of age posthatch). Dead animals were collected from 18 clutches ranging in viability from 0% to 95%. Total OCP concentrations in yolk ranged from ???100 to 52,000 ??g/kg, wet weight. The most common gross findings were generalized edema (34%) and organ hyperemia (29%), followed by severe emaciation (14%) and gross deformities (3%). Histopathologic examination revealed lesions in 35% of the animals, with over half of the cases being pneumonia, pulmonary edema, and atelectasis. Within and across clutches, dead embryos and hatchlings compared with their live cohorts were significantly smaller and lighter. Although alterations in growth and development were not related to yolk OCPs, there was an increase in prevalence of histologic lesions in clutches with high OCPs. Overall, these results indicate that general growth retardation and respiratory abnormalities were a major contributing factor in observed mortalities and that contaminants may increase the susceptibility of animals to developing certain pathologic conditions. ?? Wildlife Disease Association 2006.

  10. The role of multispectral scanners as data sources for EPA hydrologic models

    NASA Technical Reports Server (NTRS)

    Slack, R.; Hill, D.

    1982-01-01

    An estimated cost savings of 30% to 50% was realized from using LANDSAT-derived data as input into a program which simulates hydrologic and water quality processes in natural and man-made water systems. Data from the satellite were used in conjunction with EPA's 11-channel multispectral scanner to obtain maps for characterizing the distribution of turbidity plumes in Flathead Lake and to predict the effect of increasing urbanization in Montana's Flathead River Basin on the lake's trophic state. Multispectral data are also being studied as a possible source of the parameters needed to model the buffering capability of lakes in an effort to evaluate the effect of acid rain in the Adirondacks. Water quality in Lake Champlain, Vermont is being classified using data from the LANDSAT and the EPA MSS. Both contact-sensed and MSS data are being used with multivariate statistical analysis to classify the trophic status of 145 lakes in Illinois and to identify water sampling sites in Appalachicola Bay where contaminants threaten Florida's shellfish.

  11. MORPHOLOGICAL VARIATION IN HATCHLING AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM THREE FLORIDA LAKES

    EPA Science Inventory

    Morphological variation of 508 hatchling alligators from three lakes in north central Florida (Lakes Woodruff, Apopka, and Orange) was analyzed using multivariate statistics. Morphological variation was found among clutches as well as among lakes. Principal components analysis wa...

  12. 77 FR 29271 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    .... Entities discharging nitrogen or phosphorus to lakes and flowing waters of Florida could be indirectly.../phosphorus pollution in Florida's waters may be affected through implementation of Florida's water quality... phosphorus, nitrate+nitrite, and chlorophyll a for the different types of Florida's inland waters to assure...

  13. 78 FR 11094 - Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... 1625-AA00 Safety Zone; Lake Worth Dredge Operations, Lake Worth Inlet; West Palm Beach, FL AGENCY... safety zone on Lake Worth Inlet, West Palm Beach, Florida, to provide for the safety of life and vessels..., dredging operations will be conducted on Lake Worth Inlet in West Palm Beach, Florida. These operations...

  14. Decreased glutathione S-transferase expression and activity and altered sex steroids in Lake Apopka brown bullheads (Ameriurus nebulosus)

    USGS Publications Warehouse

    Gallagher, E.P.; Gross, T.S.; Sheehy, K.M.

    2001-01-01

    A number of freshwater lakes and reclaimed agricultural sites in Central Florida have been the receiving waters for agrochemical and municipal runoff. One of these sites, Lake Apopka, is also a eutrophic system that has been the focus of several case studies reporting altered reproductive activity linked to bioaccumulation of persistent organochlorine chemicals in aquatic species. The present study was initiated to determine if brown bullheads (Ameriurus nebulosus) from the north marsh of Lake Apopka (Lake Apopka Marsh) exhibit an altered capacity to detoxify environmental chemicals through hepatic glutathione S-transferase (GST)-mediated conjugation as compared with bullheads from a nearby reference site (Lake Woodruff). We also compared plasma sex hormone concentrations (testosterone, 17-?? estradiol, and 11 keto-testosterone) in bullheads from the two sites. Female bullheads from Lake Apopka had 40% lower initial rate GST conjugative activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 50% lower activity towards p-nitrobutyl chloride (NBC), 33% lower activity toward ethacrynic acid (ECA), and 43% lower activity toward ??5-androstene-3,17-dione (??5-ADI), as compared with female bullheads from Lake Woodruff. Enzyme kinetic analyses demonstrated that female bullheads from Lake Apopka had lower GST-catalyzed CDNB clearance than did female Lake Woodruff bullheads. Western blotting studies of bullhead liver cytosolic proteins demonstrated that the reduced GST catalytic activities in female Lake Apopka bullheads were accompanied by lower expression of hepatic GST protein. No site differences were observed with respect to GST activities or GST protein expression in male bullheads. Female Lake Apopka bullheads also had elevated concentrations of plasma androgens (testosterone and 11-ketotestosterone) as compared with females from Lake Woodruff. In contrast, male Lake Apopka bullheads had elevated levels of plasma estrogen but similar levels of androgens as compared with male bullheads from Lake Woodruff. Collectively, our studies indicate the presence of reduced GST protein expression, reduced GST conjugative capacity and altered sex steroid homeostasis in female bullheads from a contaminated field site in Central Florida. The implications of these physiological alterations in terms of pollutant biotransformation and reproduction are discussed. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. PLASMA STEROID CONCENTRATIONS IN RELATION TO SIZE AND AGE IN JUVENILE ALLIGATORS FROM TWO FLORIDA LAKES.

    EPA Science Inventory

    Previous studies have reported a number of physiological differences among juvenile alligators from two well-studied populations (Lake Apopka and Lake Woodruff) in north central Florida. These studies obtained alligators of similar size from each lake under the assumption that th...

  16. A synoptic survey of select wastewater-tracer compounds and the pesticide imidacloprid in Florida's ambient freshwaters.

    PubMed

    Silvanima, James; Woeber, Andy; Sunderman-Barnes, Stephanie; Copeland, Rick; Sedlacek, Christopher; Seal, Thomas

    2018-06-27

    Current wastewater treatment technologies do not remove many unregulated hydrophilic compounds, and there is growing interest that low levels of these compounds, referred to as emerging contaminants, may impact human health and the environment. A probabilistic-designed monitoring network was employed to infer the extent of Florida's ambient freshwaters containing the wastewater (Includes reuse water, septic systems leachate, and wastewater treatment effluent.) indicators sucralose, acetaminophen, carbamazepine, and primidone and those containing the widely used pesticide imidacloprid. Extent estimates with 95% confidence bounds are provided for canals, rivers, streams, small and large lakes, and unconfined aquifers containing ultra-trace concentrations of these compounds as based on analyses of 2015 sample surveys utilizing 528 sites. Sucralose is estimated to occur in greater than 50% of the canal, river, stream, and large lake resource extents. The pharmaceuticals acetaminophen, carbamazepine, and primidone are most prevalent in rivers, with approximately 30% of river kilometers estimated to contain at least one of these compounds. Imidacloprid is estimated to occur in 50% or greater of the canal and river resource extents, and it is the only compound found to exceed published toxicity or environmental effects standards. Geospatial analyses show sucralose detection frequencies within Florida's drainage basins to be significantly related to the percentage of urban land use (R 2  = 0.36, p < 0.001), and imidacloprid detection frequencies to be significantly related to the percentage of urban and agricultural land use (R 2  = 0.47, p < 0.001). The extent of the presence of these compounds highlights the need for additional emerging contaminant studies especially those examining effects on aquatic biota.

  17. Spatiotemporal Pattern Validation of Chlorophyll-a Concentrations in Lake Okeechobee, Florida using a Comparative MODIS Image Mining Approach

    EPA Science Inventory

    Lake Okeechobee, Florida, is the second largest freshwater lake in the U.S. The lake has been threatened in recent decades by excessive phosphorus loading, harmful high and low water levels, and rapid expansion of exotic plants (Folks, 2005). Environmental impacts of hurricanes o...

  18. Authorized and Operating Purposes of Corps of Engineers Reservoirs

    DTIC Science & Technology

    1992-07-01

    Puerto Rico CERRILLOS DAM AND RESERVOIR Jacksonville E-9O PORTUGUES DAM AND RESERVOIR Jacksonville E-92 South Carolina HARTWELL DAM AND LAKE Savannah E...LAKE Missouri Kansas City E-12 POMONA LAKE Kansas Kansas City E-12 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 PRADO DAM (SANTA ANA...PROJECT Florida Jacksonville E-92 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 RODMAN LOCK AND DAM (CROSS FLORIDA BARGE CANAL Florida

  19. Comparison of energy-budget evaporation losses from two morphometrically different Florida seepage lakes

    USGS Publications Warehouse

    Sacks, L.A.; Lee, T.M.; Radell, M.J.

    1994-01-01

    Evaporation was computed by the energy-budget method for two north Florida lakes with similar surface areas but different depths, for the period May 1989 to December 1990. Lake Barco, in north-central Florida, is shallow, with an average depth of 3 m; Lake Five-O, in the Florida panhandle, is considerably deeper, with an average depth of 9.5 m. As a result, the thermal regime and seasonal evaporation rates of the lakes are different. Evaporation from the shallower lake was higher than that from the deeper lake in the winter and spring. In the late summer and autumn, however, the situation is reversed. Evaporation from the shallow lake is directly related to the amount of incoming shortwave radiation because of its limited ability to store energy. The lag in evaporation at the deeper lake is a function of the greater amount of heat that it seasonally stores and releases. The difference in annual evaporation between Lake Barco (151 cm year-1) and Lake Five-O (128 cm year-1) is related to differences in regional climatic conditions between the two sites. Additionally, higher than normal evaporation rates at the two lakes are probably related to drought conditions experienced in north Florida during 1990, which resulted in higher temperatures and more incoming radiation. Monthly evaporation at Lake Barco could usually be estimated within 10% of the energy-budget evaporation using a constant pan coefficient. This lake may be representative of other shallow lakes that do not store considerable heat. Monthly evaporation at Lake Five-O, however, could not be estimated accurately by using an annual pan coefficient because of the large seasonal influence of change in stored heat. Monthly mass-transfer evaporation compared well with energy-budget evaporation at Lake Barco, but did not compare well at Lake Five-O. These errors may also be associated with changes in heat storage. Thus, the thermal regime of the lake must be considered to estimate accurately the seasonal evaporation rates from a deep lake. ?? 1994.

  20. Preliminary Analysis of the Hydrologic and Geochemical Controls on Acid-Neutralizing Capacity in Two Acidic Seepage Lakes in Florida

    NASA Astrophysics Data System (ADS)

    Pollman, Curtis D.; Lee, T. M.; Andrews, W. J.; Sacks, L. A.; Gherini, S. A.; Munson, R. K.

    1991-09-01

    In late 1988, parallel studies of Lake Five-O (pH 5.14) in the Florida panhandle and Lake Barco (pH 4.50) in north central Florida were initiated to develop hydrologic and major ion budgets of these lakes as part of an overall effort to improve understanding of the hydrologic, depositional, and biogeochemical factors that control acid-neutralizing capacity (ANC) in seepage lakes. Preliminary findings from these studies indicate that earlier perceptions of lake hydrology and mechanisms of ANC regulation in Florida seepage lakes may have to be revised. The traditional perspective of seepage lakes in the Florida panhandle views these systems as dominated by precipitation inputs and that ANC regulation is due largely to in-lake processes. Our results for Lake Five-O show modest to steep hydraulic gradients almost entirely around the lake. In addition, the horizontal hydraulic conductivity of the surficial aquifer is high (8-74 m day-1), indicating that large quantities of groundwater flow into Lake Five-O. Calculations of net groundwater flow from hydrologic budgets also indicate that groundwater may comprise at least 38 to 46% of the total inflow. For Lake Barco, net flow estimates of the minimum groundwater inflow range from 5 to 14% of total inflow. Enrichment factor and ion flux calculations for Lake Five-O and Lake Barco indicate that terrestrial as well as in-lake processes contribute significantly to ANC regulation. The extent that terrestrial processes contribute to ANC generation is directly related to the magnitude of groundwater inflow as well as the degree of ion enrichment or depletion that occurs in the surficial aquifer. Net ANC generation in both study lakes was dominated by anion retention (NO3- and SO42-). Where previous studies concluded that in-lake reduction was the primary sink for SO42-, our preliminary calculations show that adsorption of SO42- within the watershed is perhaps twice as important as in-lake reduction as a source of ANC. Net base cation enrichment in both lakes was negligible.

  1. Hydrology and water quality of East Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Schiffer, Donna M.

    1987-01-01

    East Lake Tohopekaliga, one of the major lakes in central Florida, is located in the upper Kissimmee River basin in north-east Osceola County. It is one of numerous lakes in the upper basin used for flood control, in addition to recreation and some irrigation of surrounding pasture. This report is the fourth in a series of lake reconnaissance studies in the Kissimmee River basin prepared in cooperation with the South Florida Water Management District. The purpose of the report is to provide government agencies and the public with a brief summary of the lake 's hydrology and water quality. Site information is given and includes map number, site name, location, and type of data available (specific conductivity, pH, alkalinity, turbidity, color, dissolved oxygen, hardness, dissolved chlorides, dissolved sodium, dissolved calcium, dissolved magnesium, dissolved potassium, nitrogen, ammonia, nitrates, carbon and phosphorus). The U.S. Geological Survey (USGS) maintained a lake stage gaging station on East Lake Tohopekaliga from 1942 to 1968. The South Florida Water Management District has recorded lake stage since 1963. Periodic water quality samples have been collected from the lake by the South Florida Water Management District and USGS. Water quality and discharge data have been collected for one major tributary to the lake, Boggy Creek. Although few groundwater data are available for the study area, results of previous studies of the groundwater resources of Osceola County are included in this report. To supplement the water quality data for East Lake Tohopekaliga, water samples were collected at selected sites in November 1982 (dry season) and in August 1983 (rainy season). Samples were taken at inflow points, and in the lake, and vertical profiles of dissolved oxygen and temperature were measured in the lake. A water budget from an EPA report on the lake is also included. (Lantz-PTT)

  2. 77 FR 39949 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... Florida may be interested in this rulemaking. Entities discharging nitrogen or phosphorus to lakes and..., such as nonpoint source contributors to nitrogen/phosphorus pollution in Florida's waters may be... numeric nutrient criteria in the form of total nitrogen, total phosphorus, nitrate+nitrite, and...

  3. Geology and evolution of lakes in north-central Florida

    USGS Publications Warehouse

    Kindinger, J.L.; Davis, J.B.; Flocks, J.G.

    1999-01-01

    Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phased: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.

  4. BIOGEOCHEMICAL CONTROLS ON REACTION OF SEDIMENTARY ORGANIC MATTER AND AQUEOUS SULFIDES IN HOLOCENE SEDIMENTS OF MUD LAKE FLORIDA

    EPA Science Inventory

    The distribution and quantity of organic sulfur and iron sulfur species were determined in the
    Holocene sediments from Mud Lake, Florida. The sediments of this shallow, sinkhole lake are characterized by high sulfur and organic carbon contents as well as active sulfate reducti...

  5. Algal Populations and Water Quality in Florida Lakes: Sedimentary Evidence of Anthropogenic Impact

    NASA Astrophysics Data System (ADS)

    Whitmore, M. R.; Whitmore, T. J.; Brenner, M.; Smoak, J.; Curtis, J.

    2004-05-01

    Cyanobacteria and other algae dominate many highly productive Florida (U.S.A.) lakes. Algal proliferation is often attributed to eutrophication during the last century, but it is poorly documented because Florida's water-quality monitoring programs became common only after 1980. We examined sediment cores from 14 hypereutrophic Florida lakes. Study lakes have been subjected to urbanization, agriculture, and to inputs of municipal sewage effluent and food-processing wastes. Major algal-pigment groups were analyzed in sediments using pigment-extraction and spectrophotometric techniques. We compared myxoxanthophyll, oscillaxanthin, total carotenoid, and total chlorophyll pigment profiles with WACALIB-derived limnetic total-P and chlorophyll a inferences based on fossil diatoms, sediment chemistry, and stable isotope (δ 13C & δ 15N) signatures of organic matter. Sedimentary evidence showed that cyanobacterial and algal proliferation appeared during recent decades in 10 study lakes in response to eutrophication. Cyanobacterial increase was very recent and abrupt in 7 lakes. Six lakes showed recovery following nutrient-mitigation programs that reduced sewage and other point-source effluent inputs. Four lakes showed long-term presence of cyanobacterial populations because edaphic nutrient supply causes these lakes to be naturally productive. Three of these naturally eutrophic lakes remained unchanged, but one demonstrated eutrophication followed by subsequent recovery. Correlations were particularly strong among sedimented pigment profiles and diatom-inferred limnetic water-quality profiles. Paleolimnological methods provide informative assessment of anthropogenic influence on lakes when long-term water-quality data are lacking. Historic studies also are useful for evaluating the feasibility of improving water quality through lake-management programs, and for defining appropriate lake restoration goals.

  6. Water Resources Data, Florida, Water Year 2003, Volume 3A: Southwest Florida Surface Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 103 streams, periodic discharge for 7 streams, continuous or daily stage for 67 streams, periodic stage for 13 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 62 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  7. Assessment of ground-water contamination near Lantana landfill, Southeast Florida

    USGS Publications Warehouse

    Russell, G.M.; Higer, A.L.

    1988-01-01

    The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.

  8. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass.

    PubMed

    Martyniuk, Christopher J; Doperalski, Nicholas J; Prucha, Melinda S; Zhang, Ji-Liang; Kroll, Kevin J; Conrow, Roxanne; Barber, David S; Denslow, Nancy D

    2016-09-01

    Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17β-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Water Resources Data, Florida, Water Year 2003, Volume 1A: Northeast Florida Surface Water

    USGS Publications Warehouse

    ,

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  10. Water Resources Data, Florida, Water Year 2003, Volume 1B: Northeast Florida Ground Water

    USGS Publications Warehouse

    George, H.G.; Nazarian, A.P.; Dickerson, S.M.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  11. Genetic impoverishment and cross-incompatibility in remnant genotypes of Ziziphus celata (Rhamnaceae), a rare shrub endemic to the Lake Wales Ridge, Florida

    Treesearch

    C.W. Weekley; Thomas L. Kubisiak; T.M. Race

    2002-01-01

    The loss of genetic diversity in fragmented populations of self-incompalible plant species may result in sexual reproductive failure and local extinctions. Florida ziziphus (Ziziphus celata)is a self-incompetiblc clonal shrub known only from five genetically depauperate populations on the Lake Wales Ridge. Florida, USA. Recovery of this species...

  12. Ground-water quality of the surficial aquifer system and the upper Floridan Aquifer, Ocala National Forest and Lake County, Florida, 1990-99

    USGS Publications Warehouse

    Adamski, J.C.; Knowles, Leel

    2001-01-01

    Data from 217 ground-water samples were statistically analyzed to assess the water quality of the surficial aquifer system and Upper Floridan aquifer in the Ocala National Forest and Lake County, Florida. Samples were collected from 49 wells tapping the surficial aquifer system, 141 wells tapping the Upper Floridan aquifer, and from 27 springs that discharge water from the Upper Floridan aquifer. A total of 136 samples was collected by the U.S. Geological Survey from 1995 through 1999. These data were supplemented with 81 samples collected by the St. Johns River Water Management District and Lake County Water Resources Management from 1990 through 1998. In general, the surficial aquifer system has low concentrations of total dissolved solids (median was 41 milligrams per liter) and major ions. Water quality of the surficial aquifer system, however, is not homogeneous throughout the study area. Concentrations of total dissolved solids, many major ions, and nutrients are greater in samples from Lake County outside the Ocala National Forest than in samples from within the Forest. These results indicate that the surficial aquifer system in Lake County outside the Ocala National Forest probably is being affected by agricultural and (or) urban land-use practices. High concentrations of dissolved oxygen (less than 0.1 to 8.2 milligrams per liter) in the surficial aquifer system underlying the Ocala National Forest indicate that the aquifer is readily recharged by precipitation and is susceptible to surface contamination. Concentrations of total dissolved solids were significantly greater in the Upper Floridan aquifer (median was 182 milligrams per liter) than in the surficial aquifer system. In general, water quality of the Upper Floridan aquifer was homogeneous, primarily being a calcium or calciummagnesium- bicarbonate water type. Near the St. Johns River, the water type of the Upper Floridan aquifer is sodium-chloride, corresponding to an increase in total dissolved solids. Dissolvedoxygen concentrations in the Upper Floridan aquifer ranged from less than 0.1 to 7.3 milligrams per liter, indicating that, in parts of the aquifer, ground water is rapidly recharged by rainfall and is susceptible to surface contamination. Median concentrations of nutrients in the Upper Floridan aquifer were not significantly different between the Ocala National Forest and the area of Lake County outside the Forest. The maximum nitrate concentration in the Upper Floridan aquifer in Ocala National Forest was only 0.20 milligram per liter, whereas, 9 of 39 samples from the Upper Floridan aquifer in Lake County had elevated nitrate concentrations (greater than 1.0 milligram per liter). Hence, nitrate concentrations of the Upper Floridan aquifer appear to be affected by land use in Lake County.

  13. Coastal Lake Record of Holocene Paleo-Storms from Northwest Florida

    NASA Astrophysics Data System (ADS)

    Donoghue, J. F.; Coor, J. L.; Wang, Y.; Das, O.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.

    2009-12-01

    The northwest Florida coast of the Gulf of Mexico has an unusually active storm history. Climate records for a study area in the mid-region of the Florida panhandle coast show that 29 hurricanes have made landfall within a 100-km radius during historic time. These events included 9 major storms (category 3 or higher). A longer-term geologic record of major storm impacts is essential for better understanding storm climatology and refining morphodynamic models. The Florida panhandle region contains a series of unique coastal lakes which are long-lived and whose bottom sediments hold a long-term record of coastal storm occurrence. The lakes are normally isolated from the open Gulf, protected behind a near-continuous dune barrier. Lake water is normally fresh to brackish. Lake bottom sediments consist of organic-rich muds. During major storms the dunes are breached and the lakes are temporarily open to marine water and the possibility of sandy overwash. Both a sedimentologic and geochemical signature is imparted to the lake sediments by storm events. Bottom sediment cores have been collected from the lakes. The cores have been subsampled and subjected to sedimentologic, stable isotopic and geochronologic analyses. The result is a sediment history of the lakes, and a record of storm occurrence during the past few millennia. The outcome is a better understanding of the long-term risk of major storms. The findings are being incorporated into a larger model designed to make reliable predictions of the effects of near-future climate change on natural coastal systems and on coastal infrastructure, and to enable cost-effective mitigation and adaptation strategies.

  14. Exploring the long-term balance between net precipitation and net groundwater exchange in Florida seepage lakes

    USGS Publications Warehouse

    Lee, Terrie M.; Sacks, Laura A.; Swancar, Amy

    2014-01-01

    The long-term balance between net precipitation and net groundwater exchange that maintains thousands of seepage lakes in Florida’s karst terrain is explored at a representative lake basin and then regionally for the State’s peninsular lake district. The 15-year water budget of Lake Starr includes El Niño Southern Oscillation (ENSO)-related extremes in rainfall, and provides the longest record of Bowen ratio energy-budget (BREB) lake evaporation and lake-groundwater exchanges in the southeastern United States. Negative net precipitation averaging -25 cm/yr at Lake Starr overturns the previously-held conclusion that lakes in this region receive surplus net precipitation. Net groundwater exchange with the lake was positive on average but too small to balance the net precipitation deficit. Groundwater pumping effects and surface-water withdrawals from the lake widened the imbalance. Satellite-based regional estimates of potential evapotranspiration at five large lakes in peninsular Florida compared well with basin-scale evaporation measurements from seven open-water sites that used BREB methods. The regional average lake evaporation estimated for Lake Starr during 1996-2011 was within 5 percent of its measured average, and regional net precipitation agreed within 10 percent. Regional net precipitation to lakes was negative throughout central peninsular Florida and the net precipitation deficit increased by about 20 cm from north to south. Results indicate that seepage lakes farther south on the peninsula receive greater net groundwater inflow than northern lakes and imply that northern lakes are in comparatively leakier hydrogeologic settings. Findings reveal the peninsular lake district to be more vulnerable than was previously realized to drier climate, surface-water withdrawals from lakes, and groundwater pumping effects.

  15. Geochemical history of Lake Miccosukee, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.Q.; Donoghue, J.F.; Hess, D.W.

    1994-03-01

    Lake Miccosukee is a 2,500 hectare karst lake in northwest Florida. The lake draws water from a 65,000 hectare watershed, although groundwater seepage appears to be the principal water source to the lake. Like many of the large lakes of north Florida it periodically drains via sinkholes, becoming nearly dry in the process. The result of the natural drawdowns is a large reduction of the organic matter content of the bottom sediments. The water level in the lake was stabilized after 1954 with the construction of a dike and weir. Drawdowns have been managed since then and have been fewermore » and less drastic. The lake bottom has been exposed for only about six months since 1954. The result has been an increase in aquatic vegetation and a diminishment in fish populations. A set of two dozen sediment cores was analyzed for sedimentation rate (using lead-210 and Cs-137), percent organics, C, N, P and trace metals. The effect of the lake level stabilization appears to be an increase in organic matter deposited in the bottom sediments. Anthropogenic metals, including Hg, Zn, Pb, Cu and V have been found to increase considerably near the tops of the cores, by a factor of two or more over long-term background levels.« less

  16. Isolation and identification of Pathogenic Naegleria from Florida lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellings, F.M.; Amuso, P.T.; Chang, S.L.

    1977-12-01

    Five cases of primary amoebic meningoencephalitis associated with swimming in freshwater lakes have been recorded in Florida over the past 14 years. The present study demonstrated that pathogenic naegleria, the causative agent, is relatively widespread. Twelve of 26 lakes sampled only once yielded the amoeba. Populations in three of five lakes sampled routinely reached levels of one amoeba per 25 ml of water tested during the hot summer months. Overwintering in freshwater lake bottom sediments was demonstrated, showing that thermal-discharge pollution of waters plays a miniscule, if any, role in the maintenance of pathogenic naegleria in nature in this semitropicalmore » area.« less

  17. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    USGS Publications Warehouse

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  18. Water Resources Data, Florida, Water Year 2003 Volume 2A: South Florida Surface Water

    USGS Publications Warehouse

    Price, C.; Woolverton, J.; Overton, K.

    2004-01-01

    Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  19. Water Resources Data, Florida, Water Year 2003 Volume 2B: South Florida Ground Water

    USGS Publications Warehouse

    Prinos, S.; Irvin, R.; Byrne, M.

    2004-01-01

    Water resources data for 2003 water year in Florida consists of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 stream, peak discharge for 36 streams, and peak stage for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1227 wells, quality of water data for 133 surface-water sites, and 308 wells. The data for South Florida included continuous or daily discharge for 72 streams, continuous or daily stage for 50 streams, no peak stage discharge for streams, 1 continuous elevation for lake, continuous ground-water levels for 237 wells, periodic ground-water levels for 248 wells, water quality for 25 surface-water sites, and 161 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperation with local, state, and federal agencies in Florida.

  20. 77 FR 74449 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Proposed Rule; Stay

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... in this rulemaking. Entities discharging nitrogen or phosphorus to lakes and flowing waters of... nitrogen and phosphorus pollution in Florida's waters may be indirectly affected through implementation of... criteria in the form of total nitrogen, total phosphorus, nitrate+nitrite, and chlorophyll a for the...

  1. Hydrology of the Lake Deaton and Lake Okahumpka area, Northeast Sumter County, Florida

    USGS Publications Warehouse

    Simonds, Edward P.; German, E.R.

    1980-01-01

    The Floridan aquifer in the Lake Deaton and Lake Okahumpka area is 50 to 130 feet below land surface. During the 16-year period 1963-78 lake evaporation exceeded rainfall by 0.4 inches. Drainage from Lake Deaton and its surrounding area goes into Chitty Chatty Creek and on the Hogeye Sink when the altitude of the potentiometric surface of the Floridan aquifer is low. During a higher altitude of the Floridan potentiometric surface, Hogeye Sink may discharge water; this water, along with the normal runoff, goes into Lake Okahumpka. Average lake fluctuation is 1.5 to 2.0 feet per year. Lake Deaton supports a large population of blue-green algae and Lake Okahumpka is choked with aquatic plants. The water quality of the two lakes differ, with Lake Deaton having a sodium chloride water and Lake Okahumpka having a calcium bicarbonate water. Analysis of water and bottom material samples showed that only cadmium and mercury exceeded the Florida Department of Environmental Regulation 's criteria for Class III waters; however, the amounts detected were at or slightly above the limits of the analytical method. (USGS)

  2. 75 FR 11079 - Extension of Public Comment Period for Water Quality Standards for the State of Florida's Lakes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Extension of Public Comment Period for Water Quality Standards for the State of Florida's Lakes and Flowing... comment period. SUMMARY: On January 14, 2010, EPA signed a proposed rule entitled ``Water Quality.... Mail to: Water Docket, U.S. Environmental Protection Agency, Mail code: 2822T, 1200 Pennsylvania Avenue...

  3. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  4. Possible generational effects of habitat degradation on alligator reproduction

    USGS Publications Warehouse

    Fujisaki, Ikuko; Rice, K.G.; Woodward, A.R.; Percival, H.F.

    2007-01-01

    Population decline of the American alligator (Alligator mississippiensis) was observed in Lake Apopka in central Florida, USA, in the early 1980s. This decline was thought to result from adult mortality and nest failure caused by anthropogenic increases in sediment loads, nutrients, and contaminants. Reproductive impairment also was reported. Extensive restoration of marshes associated with Lake Apopka has been conducted, as well as some limited restoration measures on the lake. Monitoring by the Florida Fish and Wildlife Conservation Commission (FFWCC) has indicated that the adult alligator population began increasing in the early 1990s. We expected that the previously reported high proportion of complete nest failure (??0) during the 1980s may have decreased. We collected clutches from alligator nests in Lake Apopka from 1983 to 2003 and from 5 reference areas from 1988 to 1991, and we artificially incubated them. We used a Bayesian framework with Gibbs sampler of Markov chain Monte Carlo simulation to analyze ??0. Estimated ??0was consistently higher in Lake Apopka compared with reference areas, and the difference in ??0 ranged from 0.19 to 0.56. We conducted change point analysis to identify and test the significance of the change point in ??0in Lake Apopka between 1983 and 2003, indicating the point of reproductive recovery. The estimated Bayes factor strongly supported the single change point hypothesis against the no change point hypothesis. The major downward shift in ??0 probably occurred in the mid-1990s, approximately a generation after the major population decline in the 1980s. Furthermore, estimated ??0 values after the change point (0.21) were comparable with those of reference areas (0.07-0.31). These results combined with the monitoring by FFWCC seem to suggest that anthropogenic habitat degradation caused reproductive impairment of adult females and decreases in ??0 occurred with the sexual maturity of a new generation of breeding females. Long-term monitoring is essential to understand population changes due to habitat restoration. Such information can be used as an input in planning and evaluating restoration activities.

  5. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  6. Mississippi River delta as seen from the Gemini 9-A spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Mississippi River delta, and Gulf coasts of Louisiana, Mississippi, Alabama and Florida as seen from the Gemini 9-A spacecraft during its first revolution of the earth. Florida peninsula is seen at upper right corner of picture. lake Pontchartrain is at lower left. new orleans is located between the lake and the U-shaped bend in the river. Large bay at top left center is Mobile Bay. Apalachicola, Florida, is the point of land at top center of picture. Note alluvial deposit at mouths of Mississippi.

  7. 77 FR 13496 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters AGENCY... Protection Agency (EPA) is finalizing an extension of the March 6, 2012 effective date of the ``Water Quality... INFORMATION: I. General Information Does this action apply to me? Citizens concerned with water quality in...

  8. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    PubMed

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget-derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  10. Chemical evolution of groundwater near a sinkhole lake, northern Florida: 1. Flow patterns, age of groundwater, and influence of lakewater leakage

    USGS Publications Warehouse

    Katz, Brian G.; Lee, Terrie M.; Plummer, Niel; Busenberg, Eurybiades

    1995-01-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11–67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  11. Water Resources Data, Florida, Water Year 2003, Volume 4. Northwest Florida

    USGS Publications Warehouse

    prepared by Blum, Darlene A.; Alvarez, A. Ernie

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, obtains a large amount of data on the water resources of the State of Florida each water year. These data, accumulated during many water years, constitute a valuable database that is used by water-resources managers, emergency-management officials, and many others to develop an improved understanding of water resources within the State. This report series for the 2003 water year for the state of Florida consists of records for continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water for 133 surface-water sites and 308 wells. This volume (Volume 4, Northwest Florida)contains records of continuous or daily discharge for 72 streams, periodic discharge for 3 stream, continuous or daily stage for 13 streams, periodic stage for 0 stream, peak stage and discharge for 28 streams, continuous or daily elevations for 1 lake, periodic elevations for 0 lakes, continuous ground-water levels for 3 wells, periodic ground-water levels for 0 wells, and quality-of-water for 3 surface-water sites and 0 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Florida.

  12. Hydrology of Lake Butler, Orange County, Florida

    USGS Publications Warehouse

    Smoot, James L.; Schiffer, Donna M.

    1984-01-01

    Lake Butler is one of the lakes that collectively make up the Butler chain of lakes in the headwaters of the Kissimmee River, Florida. The bottom configuration of the lake is typical of relict karst features formed during lower stages in sea level. The top of the Floridan aquifer is 50 to 100 feet below the land surface. The drainage area of Lake Butler is approximately 14.5 sq mi and is comprised of sub-basins of other lakes in the vicinity. Surface outflow from Lake Butler is generally southward to Cypress Creek, a tributary of the Kissimmee River. The extremes in lake stage for the period 1933-81 are 94.67 ft on June 23, 1981 and 101.78 ft on September 13, 1960. The median lake stage for this period was 99.28 ft above sea level. The quality of water in Lake Butler is excellent, based on studies of physical, chemical, and biological conditions by the Orange County Pollution Control Department. The lake water is slightly acidic and soft (48 mg/L hardness as calcium carbonate). Pesticides in water were below detection levels at two sites sampled in the lake, but were detected in the bottom sediments. (USGS)

  13. 76 FR 79604 - Effective Date for the Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... quality in Florida may be interested in this rulemaking. Entities discharging nitrogen or phosphorus to.../phosphorus pollution in Florida's waters may be affected through implementation of Florida's water quality... inland waters rule established numeric nutrient criteria in the form of total nitrogen, total phosphorus...

  14. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise quantification. The lakes fit into three categories based on their range of ground-water inflow: low (less than 25 percent of total inflows), medium (25-50 percent of inflows), and high (greater than 50 percent of inflows). The majority of lakes in the coastal lowlands had low ground-water inflow, whereas the majority of lakes in the central highlands had medium to high ground-water inflow. Multiple linear regression models were used to predict ground-water inflow to lakes. These models help identify basin characteristics that are important in controlling ground-water inflow to Florida lakes. Significant explanatory variables include: ratio of basin area to lake surface area, depth to the Upper Floridan aquifer, maximum lake depth, and fraction of wetlands in the basin. Models were improved when lake water-quality data (nitrate, sodium, and iron concentrations) were included, illustrating the link between ground-water geochemistry and lake chemistry. Regression models that considered lakes within specific geographic areas were generally poorer than models for the entire study area. Regression results illustrate how more simplified models based on basin and lake characteristics can be used to estimate ground-water inflow. Although the uncertainty in the amount of ground-water inflow to individual lakes is high, the isotope mass-balance approach was useful in comparing the range of ground-water inflow for numerous Florida lakes. Results were also helpful in understanding differences in the geographic distribution of ground-water inflow between the coastal lowlands and central highlands. In order to use the isotope mass-balance approach to estimate inflow for multiple lakes, it is essential that all the lakes are sampled during the same time period and that detailed isotopic, hydrologic, and climatic data are collected over this same period of time. Isotopic data for Florida lakes can change over time, both seasonally and interannually, primarily because of differ

  15. Geochemistry of sulfur in the Florida Everglades; 1994 through 1999

    USGS Publications Warehouse

    Bates, Anne L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.

    2000-01-01

    In this report, we present data on the geochemistry of sulfur in sediments and in surface water, groundwater, and rainwater in the Everglades region in south Florida. The results presented here are part of a larger study intended to determine the roles played by the cycling of carbon, nitrogen, phosphorus, and sulfur in the ecology of the south Florida wetlands. The geochemistry of sulfur in the region is particularly important because of its link to the production of toxic methylmercury through processes mediated by sulfate reducing bacteria. Sediment cores were collected from the Everglades Agricultural Area (EAA), Water Conservation Areas (WCAs) 1A and 2A, from Lake Okeechobee, and from Taylor Slough in the southern Everglades. Water collection was more widespread and includes surface water from WCAs 1A, 2A, 3A, 2B, the EAA, Taylor Slough, Lake Okeechobee, and the Kissimmee River. Groundwater was collected from The Everglades Nutrient Removal Area (ENR) and from WCA 2A. Rainwater was collected at two month intervals over a period of one year from the ENR and from WCA 2A. Water was analyzed for sulfate concentration and sulfate sulfur stable isotopic ratio (34S/32S). Sediment cores were analyzed for total sulfur concentration and/or for concentrations of sulfur species (sulfate, organic sulfur, disulfides, and acid volatile sulfides (AVS)) and for their stable sulfur isotopic ratio. Results show a decrease in total sulfur content (1.57 to 0.61 percent dry weight) with depth in two sediment cores collected in WCA 2A, indicating that there has been an increase in total sulfur content in recent times. A sediment core from the center of Lake Okeechobee shows a decrease in total sulfur content with depth (0.28 to 0.08 percent dry weight). A core from the periphery of the lake (South Bay) likewise shows a decrease in total sulfur content with depth (1.00 to 0.69 percent dry weight), however, the overall sulfur content is greater than that near the center at all depths. This suggests input of sulfur in recent times, especially near the lake margins. Sediments show a general decrease in sulfur concentration with depth, probably because of increases in sulfur input to the marshes in recent times. Regional differences in the concentrations and stable isotopic ratios of sulfate sulfur in surface water show that sulfur contamination to the northern Everglades likely originates from canals draining the EAA.

  16. Sediment transport on Cape Sable, Everglades National Park, Florida

    USGS Publications Warehouse

    Zucker, Mark; Boudreau, Carrie

    2010-01-01

    The Cape Sable peninsula is located on the southwestern tip of the Florida peninsula within Everglades National Park (ENP). Lake Ingraham, the largest lake within Cape Sable, is now connected to the Gulf of Mexico and western Florida Bay by canals built in the early 1920's. Some of these canals breached a natural marl ridge located to the north of Lake Ingraham. These connections altered the landscape of this area allowing for the transport of sediments to and from Lake Ingraham. Saline intrusion into the formerly fresh interior marsh has impacted the local ecology. Earthen dams installed in the 1950's and 1960's in canals that breached the marl ridge have repeatedly failed. Sheet pile dams installed in the early 1990's subsequently failed resulting in the continued alteration of Lake Ingraham and the interior marsh. The Cape Sable Canals Dam Restoration Project, funded by ENP, proposes to restore the two failed dams in Lake Ingraham. The objective of this study was to collect discharge and water quality data over a series of tidal cycles and flow conditions to establish discharge and sediment surrogate relations prior to initiating the Cape Sable Canals Dam Restoration Project. A dry season synoptic sampling event was performed on April 27-30, 2009.

  17. Up-regulation of the alligator CYP3A77 gene by toxaphene and dexamethasone and its short term effect on plasma testosterone concentrations.

    PubMed

    Gunderson, M P; Kohno, S; Blumberg, B; Iguchi, T; Guillette, L J

    2006-06-30

    In this study we describe an alligator hepatic CYP3A gene, CYP3A77, which is inducible by dexamethasone and toxaphene. CYP3A plays a broad role in biotransforming both exogenous compounds and endogenous hormones such as testosterone and estradiol. Alligators collected from sites in Florida that are contaminated with organochlorine compounds exhibit differences in sex steroid concentrations. Many organochlorine compounds induce CYP3A expression in other vertebrates; hence, CYP3A induction by organochlorine contaminants could increase biotransformation and clearance of sex steroids by CYP3A and provide a plausible mechanism for the lowering of endogenous sex steroid concentrations in alligator plasma. We used real time PCR to examine whether known and suspected CYP3A inducers (dexamethasone, metyrapone, rifampicin, and toxaphene) up-regulate steady state levels of hepatic CYP3A77 transcript to determine if induction patterns in female juvenile alligators are similar to those reported in other vertebrates and whether toxaphene, an organochlorine compound found in high concentrations in Lake Apopka alligators, induces this gene. Estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), and steroid-xenobiotic receptor (SXR) transcripts were also measured to determine whether any of these nuclear receptors are also regulated by these compounds in alligators. Dexamethasone (4.2-fold) and toxaphene (3.5-fold) significantly induced CYP3A77 gene transcript, whereas rifampicin (2.8-fold) and metyrapone (2.1-fold) up-regulated ERbeta after 24h. None of the compounds significantly up-regulated AR, ERalpha, GR, PR, or SXR over this time period. Plasma testosterone (T) did not change significantly after 24h in alligators from any of the treatment groups. Dexamethasone treated animals exhibited a strong relationship between the 24h plasma T concentrations and CYP3A77 (R(2)=0.9, positive) and SXR (R(2)=0.77, negative) transcripts, which suggests that the expression of these genes is related to plasma T in alligators. In light of our findings, we hypothesized that higher steady state CYP3A77 (and possibly SXR) gene expression would be observed in alligators collected from Lake Apopka, a polluted lake containing organochlorine compounds known to induce CYP3A isoforms in other taxa. Therefore, we measured basal levels of CYP3A77 and SXR gene transcripts in wild juvenile alligators collected from Orange Lake (reference lake), Lake Woodruff (reference lake), and Lake Apopka (contaminated lake). We found that no differences existed in CYP3A77 or SXR gene expression among animals from the lakes sampled suggesting that exposure to organochlorine compounds at concentrations present in Lake Apopka does not lead to variation in the expression of these genes, although capture stress could be interfering with these results since the glucocorticoid dexamethasone induces CYP3A77 transcript in alligators.

  18. MODELING WAVE-INDUCED ENTRAINMENT OF MUD IN NEWNANS LAKE, FLORIDA

    EPA Science Inventory

    Many shallow lakes in the southeastern US are eutrophic, and as such, the water quality in these lakes is of concern to state and federal environmental regulatory agencies. Some of these lakes have been classified as impaired with one or more nutrients being the stressor. For the...

  19. Hydrologic relations between lakes and aquifer in a recharge area near Orlando, Florida

    USGS Publications Warehouse

    Lichtler, William F.; Hughes, G.H.; Pfischner, F.L.

    1976-01-01

    The three lakes investigated in Orange County, Florida, gain water from adjoining water-table aquifer and lose water to Floridan aquifer by downward leakage. Net seepage (net exchange of water between lake and aquifers) can be estimated by equation S = AX + BY, where S is net seepage, X represents hydraulic gradient between lake and water-table aquifer, A is lumped parameter representing effect of hydraulic conductivity and cross-sectional area of materials in flow section of water-table aquifer, Y is head difference between lake level and potentiometric surface of Floridan aquifer, and B is lumped parameter representing effect of hydraulic conductivity, area, and thickness of materials between lake bottom and Floridan aquifer. If values of S, X, and Y are available for two contrasting water-level conditions, coefficients A and B are determinable by solution of two simultaneous equations. If the relation between lake and ground-water level is the same on all sides of the lake--with regard to each aquifer--and if X and Y are truly representative of these relations, then X and Y terms of equation provide valid estimates of inflow to lake from water-table aquifer and outflow from lake to Floridan aquifer. (Woodard-USGS)

  20. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, using NDVI Derived from MODIS Data

    NASA Astrophysics Data System (ADS)

    Woods, K. A.; Brozen, M.; Pelkie, A.; Malik, S.

    2009-12-01

    Lake Okeechobee is the second largest freshwater lake located entirely within the continental United States. The lake encompasses approximately 1,700 km2 in South Florida and is a vital part of the Lake Okeechobee and Everglades ecosystems. Lake Okeechobee has been plagued by invasive aquatic floating vegetation and in-water blooms of blue-green algae (cyanobacteria). Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, invasive hydrilla, water hyacinth, and water lettuce frequently overgrow in the lake and threaten the ecosystem. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index calculated on Moderate Resolution Imaging Spectroradiometer (MODIS) MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of MODIS data to assist in water quality management.

  1. Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida. [The Everglades agricultural area, Lake Okeechobee, and the Suwanee River basin

    NASA Technical Reports Server (NTRS)

    Allen, L. H., Jr. (Principal Investigator); Chen, E.; Martsolf, J. D.; Jones, P. H.

    1981-01-01

    Transparencies, prints, and computer compatible tapes of temperature differential and thermal inertia for the winter of 1978 to 1979 were obtained. Thermal inertial differences in the South Florida depicted include: drained organic soils of the Everglades agricultural area, undrained organic soils of the managed water conservation areas of the South Florida water management district, the urbanized area around Miami, Lake Okeechobee, and the mineral soil west of the Everglades agricultural area. The range of wetlands and uplands conditions within the Suwanee River basin was also identified. It is shown that the combination of wetlands uplands surface features of Florida yield a wide range of surface temperatures related to wetness of the surface features.

  2. Patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes

    USGS Publications Warehouse

    Miller, Michael A.; Madenjian, Charles P.; Masnado, Robert G.

    1992-01-01

    To investigate spatial and temporal patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes, we examined laboratory contaminant analysis data of muscle tissue samples from Lake Michigan (n=317) and Lake Superior (n=53) fish. Concentrations of polychlorinated biphenyls (PCBs), chlordane, and dieldrin, reported as mg/kg wet weight in 620 mm to 640 mm mean length Lake Michigan lake trout, decreased over time. Mean total PCB concentration declined exponentially from 9.7 in 1975 to 1.9 in 1990. Total chlordane concentration declined 63 percent from 0.48 in 1983 to 0.18 in 1990, and dieldrin declined 52 percent during this same period, from 0.21 to 0.10. The bioaccumulation rate of PCBs is significantly lower for lake trout inhabiting Lake Michigan's midlake reef complex, compared to lake trout from the nearshore waters of western Lake Michigan. Organochlorine compound concentrations were greater in Lake Michigan lake trout than Lake Superior fish. Lake Superior lean lake trout and siscowet exhibited similar rates of PCB bioaccumulation despite major differneces in muscle tissue lipid content between the two subspecies. The lack of a significant difference in the PCB bioaccumulation rates of lean trout and siscowet suggests that lipid content may not be an important factor influencing PCB bioaccumulation in lake trout, within the range of lipid concentrations observed. Relative concentrations of the various organochlorine contaminants found in lake trout were highly correlated, suggesting similar mass balance processes for these compounds. Evidence presented revealing spatial and temporal patterns of organochlorine contamination may be of value in reestablishing self-sustaining populations of lake trout in Lake Michigan.

  3. Orlando, Florida, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Much of central Florida, including this detailed view of Orlando (28.5N, 81.0W) can be seen in this single photo. Disney World is at the top center of the scene and the crescent shaped Lake Tohopekaliga is near the bottom. The large round lakes are believed to be sinkholes formed during glacial times when ocean levels were several hundred feet lower than the present. Linear patterns east of Orlando are thought to be ancient shoreline ridges.

  4. 40 CFR 81.310 - Florida.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... County Indian River County Jackson County Jefferson County Lafayette County Lake County Lee County Leon... Lafayette County Lake County Lee County Leon County Levy County Liberty County Madison County Manatee County... Indian River County Jackson County Jefferson County Lafayette County Lake County Lee County Leon County...

  5. Geologic controls on the formation of lakes in north-central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.; Pitman, Janet K.; Carroll, Alan R.

    1998-01-01

    Fluid exchange between surficial waters and groundwater, as well as the processes that control this exchange, are of critical concern to water management districts and planners. Digital high-resolution seismic systems were used to collect geophysical data from 30 lakes of north-central Florida. Although using seismic profile data in the past has been less than successful, the use of digital technology has increased the potential for success. Seismic profiles collected from the lakes of north-central Florida have shown the potential application of these techniques in understanding the formation of individual lakes. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: 1) karstification or dissolution of the underlying limestone, and 2) me collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Lake size and shape are a factor of the thickness of overburden and size of the collapse or subsidence and/or clustering of depressions allowing for lake development. Lake development is through progressive sequence stages to maturity that can be delineated into geomorphic types. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young) - the open to partially filled collapse structures typically associated with sink holes; (2) transitional phase (middle age) - the sinkhole is plugged as the voids within the collapse are filled with sediment, periodic reactivation may occur; (3) baselevel phase (mature) - active sinkholes are progressively plugged by the continual erosion of material into the basin, and eventually sediment fills the basins; and (4) polje (drowned prairie) - broad flat-bottom basins located within the epiphreatic zone that are inundated at high stages of the water table and have one or all phases of sinkhole development and many types of karst and karren features. Most lakes in this study have a small diameter (

  6. A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication

    PubMed Central

    Kenney, William F.; Brenner, Mark; Curtis, Jason H.; Arnold, T. Elliott; Schelske, Claire L.

    2016-01-01

    We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used 210Pb and 14C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50–100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century. PMID:26789518

  7. Monitoring Invasive Aquatic Vegetation in Lake Okeechobee, Florida, Using NDVI Derived from Modis Data

    NASA Technical Reports Server (NTRS)

    Woods, Kate; Brozen, Madeline; Malik, Sadaf; Maki, Angela

    2009-01-01

    Lake Okeechobee, located in southern Florida, encompasses approximately 1,700 sq km and is a vital part of the Lake Okeechobee and Everglades ecosystem. Major cyanobacterial blooms have been documented in Lake Okeechobee since the 1970s and have continued to plague the ecosystem. Similarly, hydrilla, water hyacinth, and water lettuce have been documented in the lake and continue to threaten the ecosystem by their rapid growth. This study examines invasive aquatic vegetation occurrence through the use of the Normalized Difference Vegetation Index (NDVI) calculated on MOD09 surface reflectance imagery. Occurrence during 2008 was analyzed using the Time Series Product Tool (TSPT), a MATLAB-based program developed at John C. Stennis Space Center. This project tracked spatial and temporal variability of cyanobacterial blooms, and overgrowth of water lettuce, water hyacinth, and hydrilla. In addition, this study presents an application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to assist in water quality management.

  8. 78 FR 34570 - Special Local Regulations; Pro Hydro-X Tour, Lake Dora; Tavares, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...-AA08 Special Local Regulations; Pro Hydro-X Tour, Lake Dora; Tavares, FL AGENCY: Coast Guard, DHS... waters of Lake Dora in Tavares, Florida, during the Pro Hydro-X Tour, a series of high-speed personal... published a notice of proposed rulemaking (NPRM) entitled Special Local Regulations; Pro Hydro-X Tour, Lake...

  9. STIMULATION OF DEFENSE FACTORS FOR OYSTERS DEPLOYED TO CONTAMINATED SITES IN PENSACOLA BAY, FLORIDA

    EPA Science Inventory

    A positive association between chemical contaminants and defense factors has been established for eastern oysters (Crassostrea virginica) from Florida, but it is unknown whether such factors can be stimulated through short-term exposure to contaminants in the field. Hatchery oyst...

  10. Lead contamination of subarctic lakes and its response to reduced atmospheric fallout: can the recovery process be counteracted by the ongoing climate change?

    PubMed

    Klaminder, Jonatan; Hammarlund, Dan; Kokfelt, Ulla; Vonk, Jorien E; Bigler, Christian

    2010-04-01

    Can a climate-triggered export of old contaminants from the soil alter the lead (Pb) contaminant burden of subarctic lakes? To address this question, we reconstructed the pollution history of three high latitude lakes situated in a region where a recent climatic shift has occurred. Dated sediment records were used as archives of past Pb inputs to the lakes, where the difference in the (206)Pb/(207)Pb ratio between atmospheric contaminants ((206)Pb/(207)Pb ratio <1.16) and geogenic Pb in the catchment soil ((206)Pb/(207)Pb ratio >1.22) were used to trace fluxes of Pb contaminants. Lead contaminants were found in sediments deposited since Roman times. A significant export of Pb from the soil contaminant pool is indicated in two of the lakes surrounded by near-shore permafrost soils. Here, levels of Pb contaminants and (206)Pb/(207)Pb ratios of sediments deposited after the 1970s appear not to have been strongly affected by the >or=90% reduction in atmospheric deposition rates and increasing (206)Pb/(207)Pb ratios of atmospheric Pb since the 1990s. We concluded that soil processes stimulated by the ongoing climate change at high latitudes might work counteractive to efforts to reduce contaminant levels in subarctic lakes.

  11. Isolation of pathogenic Naegleria from artificially heated waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyndall, R L; Willaert, E; Stevens, A R

    1977-01-01

    Investigations were undertaken to determine whether heated waters facilitate the proliferation of free-living amoeba that cause primary amoebic meningoencephalitis. Water samples were taken close to the discharges of power plants situated on lakes or rivers in Florida and Texas and from cooling towers in Tennessee. The water temperatures ranged from 29 to 42/sup 0/C. Water samples were also taken from several lakes in Florida and Texas without associated power plants. The water temperatures of these ranged from 30/sup 0/ to 34/sup 0/C. Twenty-five-250-ml samples were filtered through membranes. Samples taken from the control lakes and cooling towers showed no growthmore » of pathogenic amoeba, whereas growth was obtained from 2 of the 8 lakes and rivers in Florida and from 1 of the 7 man-made lakes in Texas that were artificially heated. The amoebae were identified as belonging to the genus Naegleria from their trophozoite and cyst structure, ability to grow at 45/sup 0/C, to transform into flagellates, and to produce primary amebic meningoencephalitis (PAME) in mice after intranasal instillation. Their identification as N. fowleri was confirmed by indirect immunofluorescent analysis with antiserum produced against N. fowleri. These findings indicate that artificial heating of waters may facilitate the growth of pathogenic free living amoeba.« less

  12. Multi-contamination (heavy metals, polychlorinated biphenyls and polycyclic aromatic hydrocarbons) of littoral sediments and the associated ecological risk assessment in a large lake in France (Lake Bourget).

    PubMed

    Lécrivain, Nathalie; Aurenche, Vincent; Cottin, Nathalie; Frossard, Victor; Clément, Bernard

    2018-04-01

    The lake littoral sediment is exposed to a large array of contaminants that can exhibit significant spatial variability and challenge our ability to assess contamination at lake scale. In this study, littoral sediment contamination was characterized among ten different sites in a large peri-alpine lake (Lake Bourget) regarding three groups of contaminants: 6 heavy metals, 15 polycyclic aromatic hydrocarbons and 7 polychlorinated biphenyls. The contamination profiles significantly varied among sites and differed from those previously reported for the deepest zone of the lake. An integrative approach including chemical and biological analyses was conducted to relate site contamination to ecological risk. The chemical approach consisted in mean PEC quotient calculation (average of the ratios of the contaminants concentration to their corresponding Probable Effect Concentration values) and revealed a low and heterogeneous toxicity of the contaminant mixture along the littoral. Biological analysis including both laboratory (microcosm assays) and in situ (Acetylcholine Esterase (AChE) and Glutathione S-Transferase (GST) activity measurements) experiments highlighted significant differences among sites both in the field and in laboratory assays suggesting a spatial variation of the biota response to contamination. Linear regressions were performed between mean PEC quotients and biological results to assess whether littoral ecological risk was explained by the contamination profiles. The results highly depended on the study benthic or pelagic compartment. Regarding autochthonous Corbicula fluminea, no significant relationship between mean PEC quotients and biomarker activity was found while a significant increase in AChE was observed on autochthonous chironomids, suggesting different stress among benthic organisms. Both AChE and GST in caged pelagic Daphnia magna showed a significant positive relationship with mean PEC quotients. This study underlines the importance of accounting for spatial variations in lake littoral sediment contamination and the need for performing an integrative approach coupling chemical, field and laboratory analyses to assess the ecological risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 77 FR 74985 - Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... pollution in fresh water systems can significantly negatively impact aquatic life and long-term ecosystem... Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for Lakes... its numeric water quality standards for nutrients in Florida that were promulgated and published on...

  14. Tissue contaminants and associated transcriptional response in trout liver from high elevation lakes of Washington

    USGS Publications Warehouse

    Moran, P.W.; Aluru, N.; Black, R.W.; Vijayan, M.M.

    2007-01-01

    The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to enhance atmospheric deposition of contaminants. However, little is known about contaminant levels in organisms residing in these remote high elevation lakes. We measured total mercury and 28 organochlorine compounds in trout collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in trout from all lakes sampled (15 to 262 ??g/kg ww), while two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were also detected in these fish tissues (<25 ??g/kg ww). In sediments, organochlorine levels were below detection, while median total and methyl mercury were 30.4 and 0.34 ??g/ kg dry weight (ww), respectively. Using fish from two lakes, representing different contaminant loading levels (Wilcox lake: high; Skymo lake: low), we examined transcriptional response in the liver using a custom-made low-density targeted rainbow trout cDNA microarray. We detected significant differences in liver transcriptional response, including significant changes in metabolic, endocrine, and immune-related genes, in fish collected from Wilcox Lake compared to Skymo Lake. Overall, our results suggest that local urban areas contribute to the observed contaminant patterns in these high elevation lakes, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. ?? 2007 American Chemical Society.

  15. Movement of road salt to a small New Hampshire lake

    USGS Publications Warehouse

    Rosenberry, D.O.; Bukaveckas, P.A.; Buso, D.C.; Likens, G.E.; Shapiro, A.M.; Winter, T.C.

    1999-01-01

    Runoff of road salt from an interstate highway in New Hampshire has led to contamination of a lake and a stream that flows into the lake, in spite of the construction of a diversion berm to divert road salt runoff out of the lake drainage basin. Chloride concentration in the stream has increased by over an order of magnitude during the 23 yr since the highway was opened, and chloride concentration in the lake has tripled. Road salt moves to the lake primarily via the contaminated stream, which provides 53% of all the chloride to the lake and only 3% of the total streamflow to the lake. The stream receives discharge of salty water froth leakage through the diversion berm. Uncontaminated ground water dilutes the stream downstream of the berm. However, reversals of gradient during summer months, likely caused by transpiration from deciduous trees, result in flow of contaminated stream water into the adjacent ground water along the lowest 40-m reach of the stream. This contaminated ground water then discharges into the lake along a 70-m-wide segment of lake shore. Road salt is pervasive in the bedrock between the highway and the lake, but was not detected at all of the wells in the glacial overburden. Of the 500 m of shoreline that could receive discharge of saly ground water directly from the highway, only a 50-m-long segment appears to be contaminated.

  16. PRELIMINARY SURVEY OF CHEMICAL CONTAMINANTS IN WATER, SEDIMENT, AND AQUATIC BIOTA AT SELECTED SITES IN NORTHEASTERN FLORIDA BAY AND CANAL C-111

    EPA Science Inventory

    Several actions are under way to alter water management capabilities and practices in south Florida in order to restore a more natural hydroperiod for the Everglades. Because relatively little research has been conducted on contaminants entering Florida Bay, we undertook a prelim...

  17. Biogeochemistry of three small Eutrophic Lakes Differentially Influenced by Marine Waters from Bayou Chico Bay, Pensacola, Florida

    EPA Science Inventory

    Biogeochemical models predict microbial mediated pathways but generally do not account for microorganisms. This study was undertaken to better understand relationships among microbial communities and N, S, Fe and C cycling in three lakes. Jackson Lakes formed from abandoned sand...

  18. Bringing the Microcomputer into the Junior High: A Success Story from Florida.

    ERIC Educational Resources Information Center

    Miller, Benjamin S.

    1982-01-01

    Describes the introduction of an Apple II microcomputer into Miami Lakes (Florida) Junior High School and its success in generating enthusiasm among teachers, students, parents, and the community. (Author/RW)

  19. Seabird guano is an efficient conveyer of persistent organic pollutants (POPs) to Arctic lake ecosystems.

    PubMed

    Evenset, A; Carroll, J; Christensen, G N; Kallenborn, R; Gregor, D; Gabrielsen, G W

    2007-02-15

    Migratory seabirds have been linked to localized "hotspots" of contamination in remote Arctic lakes. One of these lakes is Lake Ellasjøen on Bjørnøya in the Barents Sea. Here we provide quantitative evidence demonstrating that even relatively small populations of certain seabird species can lead to major impacts for ecosystems. In the present example, seabird guano accounts for approximately 14% of the contaminant inventory of the Lake Ellasjøen catchment area, approximately 80% of the contaminant inventory of the lake itself, and is approximately thirty times more efficient as a contaminant transport pathway compared to atmospheric long-range transport. We have further shown that this biological transport mechanism is an important contaminant exposure route for ecosystems, responsible for POPs levels in freshwater fish that are an order of magnitude higher than those in Arctic top predators. Given the worldwide presence of seabird colonies in coastal marine areas where resources are also harvested by humans, this biological transport pathway may be a greater source of dietary contamination than is currently recognized with consequent risks for human health.

  20. Southern Florida River of Grass

    NASA Image and Video Library

    2002-04-17

    Florida Everglades is a region of broad, slow-moving sheets of water flowing southward over low-lying areas from Lake Okeechobeeto the Gulf of Mexico. These images fromNASA Terra satellite show the Everglades region on January 16, 2002.

  1. 76 FR 72444 - Notice of Lodging of Consent Decree Resolving Claims for Contamination of Mountain Lake in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Resolving Claims for Contamination of Mountain Lake in the Presidio of San Francisco Notice is hereby given that on November 10, 2011, a proposed... of Mountain Lake sediment contamination, to pay $4 million for repair or replacement of the overflow...

  2. Effects of Hurricanes Katrina and Rita on the chemistry of bottom sediments in Lake Pontchartrain, La.: Chapter 7F in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Van Metre, Peter C.; Horowitz, Arthur J.; Mahler, Barbara J.; Foreman, William T.; Fuller, Christopher C.; Burkhardt, Mark R.; Elrick, Kent A.; Furlong, Edward T.; Skrobialowski, Stanley C.; Smith, James J.; Wilson, Jennifer T.; Zaugg, Stephen D.

    2007-01-01

    Concerns about the effect of pumping contaminated flood waters into Lake Pontchartrain following the hurricanes of 2005 prompted the U.S. Geological Survey (USGS) to sample street mud, canal-suspended sediment, and bottom sediment in Lake Pontchartain. The samples were analyzed for a wide variety of potential inorganic and organic contaminants. Results indicate that contamination of lake sediment relative to other urban lakes and to accepted sedimentquality guidelines was limited to a relatively small area offshore from the Metairie Outfall Canal (popularly known as the 17th Street Canal) and that this contamination is probably transient.

  3. PROFILES OF GREAT LAKES CRITICAL POLLUTANTS: A SENTINEL ANALYSIS OF HUMAN BLOOD AND URINE

    EPA Science Inventory

    To determine the contaminants that should be studied further in the subsequent population-based study, a profile of Great Lakes (GL) sport fish contaminant residues were studied in human blood and urine specimens from 32 sport fish consumers from three Great Lakes: Lake Michigan ...

  4. Contaminated Sediment in the Great Lakes

    EPA Pesticide Factsheets

    Contaminated sediments are a significant problem in the Great Lakes basin. Persistent high concentrations of contaminants in the bottom sediments of rivers and harbors pose risks to aquatic organisms, wildlife, and humans.

  5. Hydrology and Alkalinity Regulation of Soft Florida Waters: An Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Canfield, Daniel E., Jr.

    1992-06-01

    Natural waters in ridge provinces of Florida and southeast Georgia were classified geographically, by degrees of cultural disturbance, and according to the dominant hydrologic and biogeochemical processes controlling chemistry. The ionic composition of lakes, upland streams, and surficial aquifer (water table) springs in relatively undeveloped catchments reflects the geographic variations in bulk deposition corrected for evapotranspiration (Na, Cl), plus a slight gain (net watershed mobilization) of Mg, and partial to nearly complete losses (net retention) of nitrate, sulfate, Ca, and K. Recharge to the Floridan aquifer in infertile, forested, sandy ridge provinces of northern Florida contains 360-580 μmol CO2. On the basis of indirect geochemical evidence, sulfate retention appears less important in lake sediments than in the region's highly weathered, ferruginous, kaolinitic, sand soils. Silica concentrations in upland streams and water table springs closely reflect the predicted equilibrium between kaolinite and gibbsite. Along with other evidence, the Si concentrations in ridge lakes indicate that seepage inflow is much more important than assumed in Baker et al.'s (1988) regional model. Lakes and streams are acidified either by humic acids or nonmarine sulfate but rarely by both, as reflected by the significant inverse correlation between these two components. Contrary to previous reports, there is no significant difference in alkalinity for culturally undisturbed lakes in the northern Trail versus southern Highlands Ridge areas.

  6. Contaminant trends in lake trout and walleye from the Laurentian Great Lakes

    USGS Publications Warehouse

    DeVault, David S.; Hesselberg, Robert J.; Rodgers, Paul W.; Feist, Timothy J.

    1996-01-01

    Trends in PCBs, DDT, and other contaminants have been monitored in Great Lakes lake trout and walleye since the 1970s using composite samples of whole fish. Dramatic declines have been observed in concentrations of PCB, ΣDDT, dieldrin, and oxychlordane, with declines initially following first order loss kinetics. Mean PCB concentrations in Lake Michigan lake trout increased from 13 μg/g in 1972 to 23 μg/g in 1974, then declined to 2.6 μg/g by 1986. Between 1986 and 1992 there was little change in concentration, with 3.5 μg/g observed in 1992. ΣDDT in Lake Michigan trout followed a similar trend, decreasing from 19.2 μg/g in 1970 to 1.1 μg/g in 1986, and 1.2 μg/g in 1992. Similar trends were observed for PCBs and ΣDDT in lake trout from Lakes Superior, Huron and Ontario. Concentrations of both PCB and ΣDDT in Lake Erie walleye declined between 1977 and 1982, after which concentrations were relatively constant through 1990. When originally implemented it was assumed that trends in the mean contaminant concentrations in open-lake fish would serve as cost effective surrogates to trends in the water column. While water column data are still extremely limited it appears that for PCBs in lakes Michigan and Superior, trends in lake trout do reasonably mimic those in the water column over the long term. Hypotheses to explain the trends in contaminant concentrations are briefly reviewed. The original first order loss kinetics used to describe the initial decline do not explain the more recent leveling off of contaminant concentrations. Recent theories have examined the possibilities of multiple contaminant pools. We suggest another hypothesis, that changes in the food web may have resulted in increased bioaccumulation. However, a preliminary exploration of this hypothesis using a change point analysis was inconclusive.

  7. Improved inland water levels from SAR altimetry using novel empirical and physical retrackers

    NASA Astrophysics Data System (ADS)

    Villadsen, Heidi; Deng, Xiaoli; Andersen, Ole B.; Stenseng, Lars; Nielsen, Karina; Knudsen, Per

    2016-06-01

    Satellite altimetry has proven a valuable resource of information on river and lake levels where in situ data are sparse or non-existent. In this study several new methods for obtaining stable inland water levels from CryoSat-2 Synthetic Aperture Radar (SAR) altimetry are presented and evaluated. In addition, the possible benefits from combining physical and empirical retrackers are investigated. The retracking methods evaluated in this paper include the physical SAR Altimetry MOde Studies and Applications (SAMOSA3) model, a traditional subwaveform threshold retracker, the proposed Multiple Waveform Persistent Peak (MWaPP) retracker, and a method combining the physical and empirical retrackers. Using a physical SAR waveform retracker over inland water has not been attempted before but shows great promise in this study. The evaluation is performed for two medium-sized lakes (Lake Vänern in Sweden and Lake Okeechobee in Florida), and in the Amazon River in Brazil. Comparing with in situ data shows that using the SAMOSA3 retracker generally provides the lowest root-mean-squared-errors (RMSE), closely followed by the MWaPP retracker. For the empirical retrackers, the RMSE values obtained when comparing with in situ data in Lake Vänern and Lake Okeechobee are in the order of 2-5 cm for well-behaved waveforms. Combining the physical and empirical retrackers did not offer significantly improved mean track standard deviations or RMSEs. Based on these studies, it is suggested that future SAR derived water levels are obtained using the SAMOSA3 retracker whenever information about other physical properties apart from range is desired. Otherwise we suggest using the empirical MWaPP retracker described in this paper, which is both easy to implement, computationally efficient, and gives a height estimate for even the most contaminated waveforms.

  8. U.S. Geological Survey ground-water studies in Florida

    USGS Publications Warehouse

    Vecchioli, John

    1988-01-01

    The first groundwater study by the U.S. Geological Survey (USGS) in Florida began in 1910. In 1930, a cooperative program of study was started with the Florida Geological Survey, and in 1938, the first groundwater office of the USGS was established in Miami. In fiscal year 1987, the USGS program in Florida included 35 active groundwater studies, all of which dealt with at least one of the principal groundwater issues. The 35 active studies were divided among the issues as follows: groundwater quality management, 9 studies; groundwater availability, 12 studies; seawater intrusion, 3 studies; contamination from wastewater disposal, 6 studies; contamination from landfills and hazardous waste sites, 3 studies; and contamination from agricultural practices, 2 studies. (Lantz-PTT)

  9. Hydrologic reconnaissance of Tsala Apopka Lake, Citrus County, Florida

    USGS Publications Warehouse

    Rutledge, A.T.

    1977-01-01

    The swamps, marshes, and open waters of Tsala Apopka Lake, Florida, were mapped and the hydrologic connection between the lake and the Floridan limestone aquifer was studied from October 1975 to September 1976. Tsala Apopka Lake is a series of shallow , interconnected lakes, ponds, and marshes whose water surface slopes northward at 0.5 foot per mile. According to aerial photographs of December 1972, only 6 percent of the 103 square miles of study area is covered by open water. Open water is abundant along the western side of the lake, dense and sparse marshes occupy most of the lake area, and swamps occupy a thick zone around the Withlacoochee River which borders the lake to the east. Only a small fraction of the total surface flow occurs through the lake. The average lake outflow through S-351 canal is 23.6 cfs; while the average river flow at Holder is 714 cfs. Tsala Apopka Lake is hydraulically connected to the Floridan aquifer. At low flow, the major source of water in the river is ground water from the Floridan aquifer. The specific conductance of water in the Floridan aquifer averages 250-350 umho/cm (micromhos per centimeter) at 25C in this area. The specific conductance of water in the Withlacoochee River near Holder averages 268 umho/cm at 25C, while water in Tsala Apopka Lake at Hernando averages 139 umho/cm at 25C. (Woodard-USGS)

  10. Hydrology of Lake Tohopekaliga, Osceola County, Florida

    USGS Publications Warehouse

    Phelps, G.G.

    1982-01-01

    Lake Tohopekaliga, one of the major lakes in central Florida, provides flood control in the upper Kissimmee River basin, recreation for fishermen and boaters, water for live-stock, esthetic surroundings for homesites, and serves as a receiving body for treated effluent from municipal sewage treatment plants. The purpose of this map report is to provide a general reconnaissance of the lake, based primarily on existing geologic , hydrologic and water-quality data. The lake has a surface area of about 30 square miles and a mean depth of about 5 feet. Maximum depth measured was about 13 feet. Inflow to the lake comes from Shingle Creek and St. Cloud canal and outflow is through the South-port canal. Regulation of lake levels for flood control began in the early 1960 's and has resulted in a decrease in the range of lake stage of about 3 feet. Concentrations of pesticide residues in lake bottom sediments do not appear to have increased from 1972 to 1980. The lake has abundant aquatic vegetation, the amount and extent of which varies with fluctuating water levels. Water-quality data collected between 1954-77 are summarized in the report and additional data collected in 1980 are also shown. The range of plant nutrient concentrations measured in May 1980 are: Total organic nitrogen 0.71-2.2 milligrams per liter. Most water-quality parameters vary from one area of the lake to another because of restricted areal circulation due to the shape of the lake. (USGS)

  11. Does diazinon pose a threat to a neighborhood stream in Tallahassee, Florida?

    USGS Publications Warehouse

    Berndt, Marian P.; Hatzell, Hilda H.

    2001-01-01

    The water quality of Lafayette Creek was studied from March 1993 to December 1995 as part of the National Water-Quality Assessment Program of the U.S.Geological Survey. Diazinon was specifically studied in the Lafayette Creek watershed, a residential area in northeastern Tallahassee, Fla. Diazinon and other pesticides applied directly to the soil or grass can be washed off into nearby storm drains, ditches, streams, and lakes. Heavy rainstorms can wash substantial amounts of chemicals into streams and lakes, including diazinon that was applied several weeks earlier. Sampling streams during rainstorms for water quality can sometimes provide clues about how pesticides and other contaminants are transported to surface water. Diazinon was detected in 92% of all samples collected from Lafayette Creek and it was detected throughout the year during the sampling period. However, concentrations were low (0.002 to 0.28 micrograms per liter) and do not pose a risk to human health. About 20% of the samples exceeded the aquatic-life criterion--a guideline that establishes the maximum acceptable level of concentrations of pesticides for protecting aquatic life.

  12. Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants; Report 1: Baseline Studies. Volume III. The Plankton and Benthos of Lake Conway, Florida.

    DTIC Science & Technology

    1979-05-01

    Monthly monitoring of the phytoplankton , periphyton , zooplankton, and benthic invertebrates of Lake Conway, Florida, indicates that no serious water...macrophytes. The phytoplankton community is dominated by green algae (Chlorophyta) during most of the year, with the exception of summer and early fall when...destratification and associated nutrient regeneration from the hypolimnion. Production of periphyton is highest in summer and fall and lowest in winter. Blue-greens

  13. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large amounts of ground-water inflow, and (2) the location of ground-water catchments that could be managed to safeguard lake water quality. Knowledge of how ground-water catchments are related to lakes could be used by water-resource managers to recommend setback distances for septic tank drain fields, agricultural land uses, and other land-use practices that contribute nutrients and major ions to lakes.

  14. Florida Everglades and Keys, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Though much of southern Florida is covered by clouds, the Florida Everglades and Keys (25.0N, 82.0W) remain relatively clear in this nearly vertical view. The view covers the Gulf of Mexico port city of Ft. Myers, and Lake Okeechobee, at the top of the scene, in the north, The Everglades, in the center and the entire Florida Key Chain at the bottom. Even with the many popcorn clouds, ground detail and the city of Miami is easily discerned.

  15. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    USGS Publications Warehouse

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  16. 76 FR 44912 - Callaway and Son Drum Service Superfund Site; Lake Alfred, Polk County, FL; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Service Superfund Site; Lake Alfred, Polk County, FL; Notice of Settlement AGENCY: Environmental... Callaway and son Drum Service Superfund Site located in Lake Alfred, Polk County, Florida for publication... by Site name Callaway and Son Drum Service Superfund Site by one of the following methods: http://www...

  17. History of metal contamination in Lake Illawarra, NSW, Australia.

    PubMed

    Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd

    2015-01-01

    Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evaluation of pollution levels due to the use of consumer fertilizers under Florida conditions : summary.

    DOT National Transportation Integrated Search

    2010-01-01

    Many surface waters in Florida are polluted with excessive nitrogen and phosphorus. Applied as fertilizer to turf and landscape plants, excess nutrients are deposited into rivers, lakes, and other surface waters through stormwater runoff. These nutri...

  19. District wide water resources investigation and management using LANDSAT data. Phase 1: Lake volume

    NASA Technical Reports Server (NTRS)

    Shih, S. F. (Principal Investigator)

    1982-01-01

    A technique for estimating available water storage volume using LANDSAT data was developed and applied to Lake Washington and Lake Harris in central Florida. The technique can be applied two ways. First, where the historical stage records are available, the historical LANDSAT data can be used to establish the relationship between lake volume and lake stage. In the second case, where the historical stage records are not available, the historical LANDSAT data can be used to estimate the historical lake stage after the lake volume and stage information become available in the future.

  20. Microplastic contamination in Lake Winnipeg, Canada.

    PubMed

    Anderson, Philip J; Warrack, Sarah; Langen, Victoria; Challis, Jonathan K; Hanson, Mark L; Rennie, Michael D

    2017-06-01

    Microplastics are an emerging contaminant of concern in aquatic ecosystems. To better understand microplastic contamination in North American surface waters, we report for the first time densities of microplastics in Lake Winnipeg, the 11th largest freshwater body in the world. Samples taken 2014 to 2016 revealed similar or significantly greater microplastic densities in Lake Winnipeg compared with those reported in the Laurentian Great Lakes. Plastics in the lake were largely of secondary origin, overwhelmingly identified as fibres. We detected significantly greater densities of microplastics in the north basin compared to the south basin of the lake in 2014, but not in 2015 or 2016. Mean lake-wide densities across all years were comparable and not statistically different. Scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that 23% of isolated particles on average were not plastic. While the ecological impact of microplastics on aquatic ecosystems is still largely unknown, our study contributes to the growing evidence that microplastic contamination is widespread even around sparsely-populated freshwater ecosystems, and provides a baseline for future study and risk assessments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparison of evaporation at two central Florida lakes, April 2005–November 2007

    USGS Publications Warehouse

    Swancar, Amy

    2015-09-25

    Both lakes are seepage lakes (no surface-water inflow or outflows) that are dependent on groundwater inflow from their basins to offset an atmospheric deficit, because long-term rainfall in this area is less than evaporation. The Lake Starr basin, where sandy, well-drained ridges surround the lake, has a greater capacity to store infiltrating rain than the Lake Calm basin, which is flat and has poorly drained soils. The storage capacities of the basins affect groundwater exchange with the lakes. Rainfall and net groundwater exchange, which is related to basin characteristics, varied more between these two lakes than did evaporation during this study.

  2. NATURAL RECOVERY OF PCB - CONTAMINATED SEDIMENTS IN A FRESH WATER LAKE

    EPA Science Inventory

    Abstract: An ongoing study of natural recovery of sediments contaminated with polychlorinated biphenyls (PCBs), sponsored by the U.S. Environmental Protection Agency (EPA), is being pursued at the Sangamo-Weston/Twelvemile Creek/Lake Hartwell Superfund Site (i.e., the Lake Hart...

  3. Relative cancer risks of chemical contaminants in the great lakes

    NASA Astrophysics Data System (ADS)

    Bro, Kenneth M.; Sonzogni, William C.; Hanson, Mark E.

    1987-08-01

    Anyone who drinks water or eats fish from the Great Lakes consumes potentially carcinogenic chemicals. In choosing how to respond to such pollution, it is important to put the risks these contaminants pose in perspective. Based on recent measurements of carcinogens in Great Lakes fish and water, calculations of lifetime risks of cancer indicate that consumers of sport fish face cancer risks from Great Lakes contaminants that are several orders of magnitude higher than the risks posed by drinking Great Lakes water. But drinking urban groundwater and breathing urban air may be as hazardous as frequent consumption of sport fish from the Great Lakes. Making such comparisons is difficult because of variation in types and quality of information available and in the methods for estimating risk. Much uncertainty pervades the risk assessment process in such areas as estimating carcinogenic potency and human exposure to contaminants. If risk assessment is to be made more useful, it is important to quantify this uncertainty.

  4. Hydrologic conditions in Florida during Water Year 2008

    USGS Publications Warehouse

    Verdi, Richard J.; Holt, Sandra L.; Irvin, Ronald B.; Fulcher, David L.

    2010-01-01

    Record-high and record-low hydrologic conditions occurred during water year 2008 (October 1, 2007-September 30, 2008). Record-low levels were caused by a continuation of the 2007 water year drought conditions into the 2008 water year and persisting until summer rainfall. The gage at the Santa Fe River near Fort White site recorded record-low monthly mean discharges in October and November 2007. The previous records for this site were set in 1956 and 2002, respectively. Record-high conditions in northeast and northwest Florida were caused by the rainfall and runoff associated with Tropical Storm Fay. For example, St. Mary's River near Macclenny recorded a new record-high monthly mean discharge in August 2008. The previous record for this site was set in 1945. Lake Okeechobee in south Florida reached new minimum monthly mean lake levels since monitoring began in 1912 from October to March during the 2008 water year. Some wells throughout northwest and south Florida registered period-of-record lowest daily maximum water levels.

  5. Corky root of lettuce caused by strains of a gram-negative bacterium from muck soils of Florida, new york, and wisconsin.

    PubMed

    van Bruggen, A H; Brown, P R; Jochimsen, K N

    1989-10-01

    Slow-growing bacteria similar to the bacterium causing lettuce corky root (CR) in California (strain CA1) were isolated from muck soils of Florida, New York, and Wisconsin, using lettuce seedlings as bait. All strains were tested for reaction with polyclonal antibodies produced against strain CA1 and for pathogenicity on CR-susceptible (Salinas) and CR-resistant (Green Lake) lettuce cultivars in a greenhouse. Five strains from Florida, three from New York, and three from Wisconsin induced severe CR symptoms on Salinas and mild symptoms on Green Lake. All strains were gram-negative, aerobic, oxidase positive, and catalase positive and reduced nitrate to ammonia. Whole-cell fatty acid compositions were similar for all strains and resembled that of Pseudomonas paucimobilis. Since this fatty acid pattern is unique, it is suggested that CR of lettuce is caused by strains of the same bacterium in Florida, New York, Wisconsin, and California.

  6. Corky Root of Lettuce Caused by Strains of a Gram-Negative Bacterium from Muck Soils of Florida, New York, and Wisconsin

    PubMed Central

    van Bruggen, Ariena H. C.; Brown, Philip R.; Jochimsen, Kenneth N.

    1989-01-01

    Slow-growing bacteria similar to the bacterium causing lettuce corky root (CR) in California (strain CA1) were isolated from muck soils of Florida, New York, and Wisconsin, using lettuce seedlings as bait. All strains were tested for reaction with polyclonal antibodies produced against strain CA1 and for pathogenicity on CR-susceptible (Salinas) and CR-resistant (Green Lake) lettuce cultivars in a greenhouse. Five strains from Florida, three from New York, and three from Wisconsin induced severe CR symptoms on Salinas and mild symptoms on Green Lake. All strains were gram-negative, aerobic, oxidase positive, and catalase positive and reduced nitrate to ammonia. Whole-cell fatty acid compositions were similar for all strains and resembled that of Pseudomonas paucimobilis. Since this fatty acid pattern is unique, it is suggested that CR of lettuce is caused by strains of the same bacterium in Florida, New York, Wisconsin, and California. Images PMID:16348032

  7. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Photos of earth observations taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows Lake Okeechobee (right) and Lake Istokopoga (left) in Central Florida. Lake Okeechobee is bounded on the east by rectangular agricultural fields and to the south and west by swamps and wetlands which appear as bright features.

  8. Sublake geologic structure from high-resolution seismic-reflection data from four sinkhole lakes in the Lake Wales Ridge, Central Florida

    USGS Publications Warehouse

    Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.

    1996-01-01

    Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where confining units appear to remain intact and unaffected by nearby subsidence activity. Each lake likely is underlain by several piping features rather than one large subsidence feature.

  9. 40 CFR 81.310 - Florida.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... County Indian River County Jackson County Jefferson County Lafayette County Lake County Lee County Leon... County Lee County Leon County Levy County Liberty County Madison County Manatee County Marion County... Indian River County Jackson County Jefferson County Lafayette County Lake County Lee County Leon County...

  10. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2010-01-01

    Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

  11. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2011-01-01

    Seawater and natural brines accounted for about 54 percent of U.S. magnesium compounds production in 2010. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash-Wendover and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its operation mentioned above.

  12. Regression Analysis of Stage Variability for West-Central Florida Lakes

    USGS Publications Warehouse

    Sacks, Laura A.; Ellison, Donald L.; Swancar, Amy

    2008-01-01

    The variability in a lake's stage depends upon many factors, including surface-water flows, meteorological conditions, and hydrogeologic characteristics near the lake. An understanding of the factors controlling lake-stage variability for a population of lakes may be helpful to water managers who set regulatory levels for lakes. The goal of this study is to determine whether lake-stage variability can be predicted using multiple linear regression and readily available lake and basin characteristics defined for each lake. Regressions were evaluated for a recent 10-year period (1996-2005) and for a historical 10-year period (1954-63). Ground-water pumping is considered to have affected stage at many of the 98 lakes included in the recent period analysis, and not to have affected stage at the 20 lakes included in the historical period analysis. For the recent period, regression models had coefficients of determination (R2) values ranging from 0.60 to 0.74, and up to five explanatory variables. Standard errors ranged from 21 to 37 percent of the average stage variability. Net leakage was the most important explanatory variable in regressions describing the full range and low range in stage variability for the recent period. The most important explanatory variable in the model predicting the high range in stage variability was the height over median lake stage at which surface-water outflow would occur. Other explanatory variables in final regression models for the recent period included the range in annual rainfall for the period and several variables related to local and regional hydrogeology: (1) ground-water pumping within 1 mile of each lake, (2) the amount of ground-water inflow (by category), (3) the head gradient between the lake and the Upper Floridan aquifer, and (4) the thickness of the intermediate confining unit. Many of the variables in final regression models are related to hydrogeologic characteristics, underscoring the importance of ground-water exchange in controlling the stage of karst lakes in Florida. Regression equations were used to predict lake-stage variability for the recent period for 12 additional lakes, and the median difference between predicted and observed values ranged from 11 to 23 percent. Coefficients of determination for the historical period were considerably lower (maximum R2 of 0.28) than for the recent period. Reasons for these low R2 values are probably related to the small number of lakes (20) with stage data for an equivalent time period that were unaffected by ground-water pumping, the similarity of many of the lake types (large surface-water drainage lakes), and the greater uncertainty in defining historical basin characteristics. The lack of lake-stage data unaffected by ground-water pumping and the poor regression results obtained for that group of lakes limit the ability to predict natural lake-stage variability using this method in west-central Florida.

  13. Survey design for lakes and reservoirs in the United States to assess contaminants in fish tissue

    EPA Science Inventory

    The National Lake Fish Tissue Study (NLFTS) was the first survey of fish contamination in lakes and reservoirs in the 48 conterminous states based on probability survey design. This study included the largest set (268) of persistent, bioaccumulative, and toxic (PBT) chemicals ev...

  14. Caged Fish Studies to Detect and Monitor Contaminants of Emerging Concern in the Great Lakes

    EPA Science Inventory

    Effects-based monitoring studies were conducted in the St. Louis Harbor, Lake Superior, in support of the Great Lakes Restoration Initiative (GLRI). The overall goal of the research was to develop and validate methods using caged fish exposures to detect and monitor contaminants...

  15. ARSENIC CYCLING WITHIN THE WATER COLUMN OF A SMALL LAKE RECEIVING CONTAMINATED GROUND WATER DISCHARGE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a small, shallow lake at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption occurring near the lake chemocline. Laboratory experiments were condu...

  16. Environmental magnetic methods for detecting and mapping contaminated sediments in lakes

    NASA Astrophysics Data System (ADS)

    Boyce, J. I.

    2009-05-01

    The remediation of contaminated sediments is an urgent environmental priority in the Great Lakes and requires detailed mapping of impacted sediment layer thickness, areal distribution and pollutant levels. Magnetic property measurements of sediment cores from two heavily polluted basins in Lake Ontario (Hamilton Harbour, Frenchman's Bay) show that concentrations of hydrocarbons (PAH) and a number of heavy metals (Pb, As, Ni, Cu, Cr, Zn, Cd, Fe) are strongly correlated with magnetic susceptibility. The magnetic susceptibility contrast between the contaminated sediment and underlying 'pre-colonial' sediments is sufficient to generate a total field anomaly (ca. 2-20 nT) that can be measured with a magnetometer towed above the lake bed. Systematic magnetic surveying (550 line km) of Hamilton Harbour using a towed marine magnetometer clearly identifies a number of well-defined magnetic anomalies that coincide with known accumulations of contaminated lake sediment. When calibrated against in-situ magnetic property measurements, the modeled apparent susceptibility from magnetic survey results can be used to classify the relative contaminant impact levels. The results demonstrate the potential of magnetic property measurements for rapid reconnaissance mapping of large areas of bottom contamination prior to detailed coring and sediment remediation.

  17. Pharmaceuticals and organochlorine pesticides in sediments of an urban river in Florida, United States

    USDA-ARS?s Scientific Manuscript database

    Purpose Sediments from a rural to urban gradient along the Alafia River in Florida, United States were investigated to determine the risk of environmental contamination with legacy (organochlorine pesticides, OCPs) and new contaminants (pharmaceuticals). Materials and methods Bed sediments (0-10 cm)...

  18. SURVEY OF OYSTERS CRASSOSTREA VIRGINICA FROM TAMPA BAY, FLORIDA: ASSOCIATIONS OF INTERNAL DEFENSE MEASUREMENTS WITH CONTAMINANT BURDENS

    EPA Science Inventory

    Oysters from 16 sites in Tampa Bay, Florida, were collected during a 6-week period in winter 1993 and analyzed for both biological characteristics and tissue chemical concentrations. Using previous sediment contamination and toxicity data, oyster tissues from the selected sites w...

  19. Effects of arsenic on nutrient accumulation and distribution in selected ornamental plants

    USDA-ARS?s Scientific Manuscript database

    In Miami, Florida 95% of residential and 33% commercial soils exceed the Florida Department of Environmental Protection goals for cleanup of arsenic contamination. Ornamental plants have not been fully investigated as a mechanism for phytoremediation of low level As contaminated soil. This study eva...

  20. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    USGS Publications Warehouse

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  1. 78 FR 22808 - Special Local Regulations; Pro Hydro-X Tour, Lake Dora; Tavares, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ...-AA08 Special Local Regulations; Pro Hydro-X Tour, Lake Dora; Tavares, FL AGENCY: Coast Guard, DHS... regulation on the waters on Lake Dora in Tavares, Florida during the Pro Hydro-X Tour, a series of high-speed... Hydro-X Tour, a series of high-speed personal watercraft races. The Pro Hydro-X Tour will be held on...

  2. 75 FR 45579 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Supplemental Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... nitrogen (TN) and total phosphorus (TP) criteria. Streams within each of these regions (Panhandle, Bone Valley, Peninsula and North Central) reflect similar geographical characteristics including phosphorus... phosphorus-rich geological formations in Florida. Based on comments and additional information, this revised...

  3. Time trends (1983-1999) for organochlorines and polybrominated diphenyl ethers in rainbow smelt (Osmerus mordax) from Lakes Michigan, Huron and Superior, USA

    USGS Publications Warehouse

    Chernyak, Sergei M.; Rice, Clifford P.; Quintal, Richard T.; Begnoche, Linda J.; Hickey, James P.; Vinyard, Bryan T.

    2005-01-01

    The U.S. Geological Service Great Lakes Science Center has archived rainbow smelt (Osmerus mordax) collected from the early 1980s to the present. These fish were collected to provide time- and site-dependent contaminant residue data needed by researchers and managers to fill critical data gaps regarding trends and behavior of persistent organic contaminants in the Great Lakes ecosystem. In the present study, data are presented for concentrations of several organochlorine (OC) contaminants in the archived smelt, including DDT, polychlorinated biphenyls (PCBs), toxaphene, and chlordanes in Lakes Michigan and Huron (MI, USA) and in Lake Superior (MN, USA). The trends for all the OCs were declining as a first-order decay over the sampled time series (1983/1985–1993/1999) with the exception of toxaphene in Lake Superior and PCBs at the Charlevoix/Little Traverse Bay site in Lake Michigan. Concentration of the emerging contaminant, polybrominated diphenyl ethers (PBDEs), also was traced from its apparent entry into this ecosystem in approximately 1980 until 1999. Time trends for the PBDEs were increasing exponentially at all sites, with concentration-doubling times varying from 1.58 to 2.94 years.

  4. Temporal variability in water quality parameters--a case study of drinking water reservoir in Florida, USA.

    PubMed

    Toor, Gurpal S; Han, Lu; Stanley, Craig D

    2013-05-01

    Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg l(-1) in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg l(-1)) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg l(-1)), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.

  5. Elemental Levels Analyzed by PIXE in Florida Alligators

    NASA Astrophysics Data System (ADS)

    Kuharik, J. C.; Kravchenko, I. I.; Dunnam, F. E.; Van Rinsvelt, H. A.; Ross, J. P.

    2003-08-01

    Unusual and alarming mortality of alligators (Alligator mississippiensis) has been reported from Lake Griffin, Florida, where almost 400 dead alligators have been observed since 1997. In addition, the hatch rate for alligator eggs around Lake Griffin fell below 10% and remains low (30-45%) while the normal hatch rate is typically 80%. Standard diagnostic methods have been ineffective in determining the cause of the phenomenon. Many possibilities have been considered including pollutants, nutrition, and toxic algae. Particle Induced X-ray Emission (PIXE) analysis is highly suitable for investigating concentrations of a wide range of elements in animal tissue. Liver, kidney and spinal cord tissues from healthy and sick alligators have been analyzed by PIXE for elemental content. Initial results showed positive correlation between certain elements and neural impairment and morbidity of alligators in Lake Griffin, but have failed to prove significant.

  6. Drilling of airborne radioactivity anomalies in Florida, Georgia, and South Carolina, 1954

    USGS Publications Warehouse

    Cathcart, J.B.

    1954-01-01

    From April 22 to May 19, 1953, airborne radioactivity surveys totalling 5,600 traverse miles were made in 10 areas in Florida (Moxham, 1954).  Abnormal radioactivity was recorded in Bradford, Clay, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties, Florida.  Additional airborne surveys were made in the Spring of 1954 in Hardee and Manatee Counties, Florida, on the drainage of the Altamaha River in Georgia, and in the area of the old phosphate workings in and around Charleston County, South Carolina.

  7. Characteristics of petroleum contaminants and their distribution in Lake Taihu, China.

    PubMed

    Guo, Jixiang; Fang, Jia; Cao, Jingjing

    2012-08-31

    Taihu Lake is a typical plain eutrophic shallow lake. With rapidly economic development of the lake area, the petroleum products and oil wastewater produced in various processes have been inevitably discharged into Taihu Lake. As the major fresh water resource in the economically developed region of Yangtze River Delta, the water quality and environmental condition of Taihu Lake have the direct bearing on the natural environment and sustainable development of economy in this region. For this reason we carried out the study to explore the composition, distribution characteristics and sources of petroleum contaminants in Taihu Lake. The aim of this study was to provide the basis for standard management and pollution control of the Taihu Lake environment. The result showed that water samples from near industrial locations were of relatively higher petroleum contaminants concentrations. The oil pollutants concentrations in different areas of Lake Taihu ranged from 0.106 mg/L to 1.168 mg/L, and the sequence of total contents distribution characteristics of petroleum pollutants from high to low in different regions of Taihu Lake was: "Dapu", "Xiaomeikou", "Zhushan Bay", "Lake center", "Qidu". The results showed that total concentrations of n-alkanes and PAHs ranged from 0.045 to 0.281 mg/L and from 0.011 to 0.034 mg/L respectively. In the same region, the concentrations of hydrocarbon pollutants in the surface and bottom of the lake were higher than that in the middle. This paper reached a conclusion that the petroleum contaminants in Taihu Lake mainly derived from petroleum pollution caused by human activities as indicated by OEP, bimodal distribution, CPI, Pr/Ph ratio, the LMW/HMW ratio and other evaluation indices for sources of n-alkanes and polycyclic aromatic hydrocarbons (PAHs).

  8. LOW-LEVEL EMERGING CONTAMINANTS IN LAKE HAVASU, ARIZONA AND CALIFORNIA AND THEIR ACCESS TO LAKE HAVASU CITY'S DRINKING WATER SUPPLY

    EPA Science Inventory

    In preparation of a wastewater effluent re-charge and recovery program, involving alluvial fan sediments, the City of Lake Havasu initiated a survey to evaluate possible waterborne sources of emerging contaminants in the water/wastewater distribution cycle. This distribution cyc...

  9. Accumulation and distribution of heavy metals in sediments and fish in the Kola Peninsula lakes under airborne contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauvalter, V.A.; Kashulin, N.A.; Lukin, A.A.

    1996-12-31

    The copper-nickel smelter complexes of Kola Peninsula are powerful sources of atmospheric contamination by heavy metals (Ni, Cu, Co, Cd, etc.) and acidic oxides (SO{sub 2}) deposited in precipitation and caused negative effects on local freshwater ecosystems. The rise of background levels occurs over large areas in the region. The aim of the investigations is to assess effects of the air contamination on lake ecosystems at different distances (from 15 to 120 km) from one of the main heavy metal pollution sources of the Kola Peninsula - smelters of the Pechenganickel Company. Negative effects of air pollution by the smeltersmore » on the freshwater ecosystems were recorded. Lake sediments accumulate very intensively heavy metals. Heavy metal contamination factors calculated as the quotient of concentration from the uppermost (0-1 cm) sediment to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region reach up 120 for Ni and 76 for Cu in the lakes within a distance of 40 km from the smelters. The lakes in this region have very high contamination degree according classification by Hakanson (1980). Concentrations of Ni in organs and tissues of all studied fishes (whitefish, pike, perch, arctic char, brown trout) were considerably higher in the investigated lakes than in remote unpolluted lakes. There is tight positive correlation between Ni concentrations in surficial sediment (0-1 cm) and fish kidney (r = +0.854), as well as between values of contamination degree and Ni content in fish (r = +0.871).« less

  10. Trends of chlorinated organic contaminants in Great Lakes trout and walleye from 1970-1998

    USGS Publications Warehouse

    Hickey, J.P.; Batterman, S.A.; Chernyak, S.M.

    2006-01-01

    Levels of chlorinated organic contaminants in predator fish have been monitored annually in each of the Great Lakes since the 1970s. This article updates earlier reports with data from 1991 to 1998 for lake trout (Salvelinus namaycush) and (Lake Erie only) walleye (Sander vitreus) to provide a record that now extends nearly 30 years. Whole fish were analyzed for a number of industrial contaminants and pesticides, including polychlorinated biphenyls (PCBs), dichloro-diphenyl-trichloroethane (DDT), dieldrin, toxaphene, and mirex, and contaminant trends were quantified using multicompartment models. As in the past, fish from Lakes Michigan, Ontario, and Huron have the highest levels of PCBs, DDT, and dieldrin; Superior has the highest levels of toxaphene; and Ontario has the highest levels of mirex. In the period after curtailment of chemical use, concentrations rapidly decreased, represented by relatively short half-lives from approximately 1 to 9 years. Although trends depend on both the contaminant and the lake, in many cases the rate of decline has been decreasing, and concentrations are gradually approaching an irreducible concentration. For dioxin-like PCBs, levels have not been decreasing during the most recent 5-year period (1994 to 1998). In some cases, the year-to-year variation in contaminant levels is large, mainly because of food-web dynamics. Although this variation sometimes obscures long-term trends, the general pattern of a rapid decrease followed by slowing or leveling-off of the downward trend seems consistent across the Great Lakes, and future improvements of the magnitude seen in the 1970s and early 1980s likely will take much longer.

  11. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  12. Abrupt Transitions for Youths Leaving School: Models of Interagency Cooperation.

    ERIC Educational Resources Information Center

    Karcz, Stanley A.; And Others

    1985-01-01

    Three programs that have been successful in facilitating the reenrollment of students from exiting juvenile detention facilities are described: the Lake County, IL, Youth Advocate Liaison Program; the Lake County, Florida, Multiagency/Special Education Program; and the Rock Island, Illinois, Coalition High School Model. (CL)

  13. Gulf of Mexico integrated science - Tampa Bay study, the impact of groundwater and contaminants on Tampa Bay

    USGS Publications Warehouse

    Swarzenski, Peter W.

    2005-01-01

    Despite the recreational and economic value of coastal bays and estuaries, these ecosystems are often among our most 'troubled' natural environments. Urbanization, agriculture, mining, and shipping are just a few activities that can have a profound and lasting impact on the coastal zone. In order to maintain a healthy coastal ecosystem, it is crucial to develop reasonable management practices around expert scientific information. We still have much to learn about the quantity and quality of groundwater being discharged into Tampa Bay, Florida. We also need to improve our knowledge of a wide range of contaminants entering the bay and must be able to determine where they accumulate in seafloor sediments. Such buried contaminants can potentially be harmful to biota if they are released to the water column. U.S. Geological Survey (USGS) scientists and research partners from the University of South Florida (USF), the University of Florida (UF), and the Florida Marine Research Institute (FMRI) are mapping sources of groundwater, measuring groundwater flow into Tampa Bay, and assessing the impact of contaminants and sediments on bay water quality and ecosystem health.

  14. Evaluation of available data on the geohydrology, soil chemistry, and ground-water chemistry of Gas Works Park and surrounding region, Seattle, Washington

    USGS Publications Warehouse

    Sabol, M.A.; Turney, G.L.; Ryals, G.N.

    1988-01-01

    Gas Works Park, in Seattle, Washington, is located at the site of an abandon gasification plant on Lake Union. Wastes deposited during 50 years of plant operations (1906-1956) have extended the shore line 100 ft and left the park soil contaminated with a number of hazardous material. Soil contaminants include polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls, pesticides, volatile organic compounds, cyanide, and metals. PAHs and metals have been detected in Lake Union sediments. Maximum total PAH concentrations exceeded 100 million micrograms/kilogram in some places in the soils of the park at 6-inch depths and in some lake sediments. Other contaminants present are much lower in concentrations. The park is on glacial drift overlain by gasification waste materials and clean fill. Waste materials include sand and gravels, mixed with lampblack, oil, bricks, and other industrial wastes. Groundwater flows through the soils and waste toward Lake Union. Vertical groundwater movement is uncertain, but is assumed to be upward near Lake Union. Concentrations of most soil contaminants are probably low in the groundwater and in Lake Union due to the low solubilities and high sorptive characteristics of these contaminants. However, no water quality data are available to confirm this premise. (USGS)

  15. Impact of wildfire on levels of mercury in forested watershed systems - Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Woodruff, Laurel G.; Sandheinrich, Mark B.; Brigham, Mark E.; Cannon, William F.

    2009-01-01

    Atmospheric deposition of mercury to remote lakes in mid-continental and eastern North America has increased approximately threefold since the mid-1800s (Swain and others, 1992; Fitzgerald and others, 1998; Engstrom and others, 2007). As a result, concerns for human and wildlife health related to mercury contamination have become widespread. Despite an apparent recent decline in atmospheric deposition of mercury in many areas of the Upper Midwest (Engstrom and Swain, 1997; Engstrom and others, 2007), lakes in which fish contain levels of mercury deemed unacceptable for human consumption and possibly unacceptable for fish-consuming wildlife are being detected with increasing frequency. In northern Minnesota, Voyageurs National Park (VNP) (fig. 1) protects a series of southern boreal lakes and wetlands situated on bedrock of the Precambrian Canadian Shield. Mercury contamination has become a significant resource issue within VNP as high concentrations of mercury in loons, bald eagle eaglets, grebes, northern pike, and other species of wildlife and fish have been found. The two most mercury-contaminated lakes in Minnesota, measured as methylmercury in northern pike (Esox lucius), are in VNP. Recent multidisciplinary U.S. Geological Survey (USGS) research demonstrated that the bulk of the mercury in lake waters, soils, and fish in VNP results from atmospheric deposition (Wiener and others, 2006). The study by Wiener and others (2006) showed that the spatial distribution of mercury in watershed soils, lake waters, and age-1 yellow perch (Perca flavescens) within the Park was highly variable. The majority of factors correlated for this earlier study suggested that mercury concentrations in lake waters and age-1 yellow perch reflected the influence of ecosystem processes that affected within-lake microbial production and abundance of methylmercury (Wiener and others, 2006), while the distribution of mercury in watershed soils seemed to be partially dependent on forest disturbance, especially the historic forest fire pattern (Woodruff and Cannon, 2002). Forest fire has an essential role in the forest ecosystems of VNP (Heinselman, 1996). Because resource and land managers need to integrate both natural wildfire and prescribed fire in management plans, the potential influence of fire on an element as sensitive to the environment as mercury becomes a critical part of their decisionmaking. A number of recent studies have shown that while fire does have a significant impact on mercury at the landscape level, the observed effects of fire on aquatic environments are highly variable and unpredictable (Caldwell and others, 2000; Garcia and Carrigan, 2000; Kelly and others, 2006; Nelson and others, 2007). Caldwell and others (2000) described an increase in methylmercury in reservoir sediments resulting from mobilization and transport of charred vegetative matter following a fire in New Mexico. Krabbenhoft and Fink (2000) attributed increases in total mercury concentrations in young-of-the-year fish in the Florida Everglades to release of mercury resulting from peat oxidation following fires. A fivefold increase in whole-body mercury accumulation by rainbow trout (Oncorhynchus mykiss) following a fire in Alberta, Canada, apparently resulted from increased nutrient concentrations that enhanced productivity and restructured the food web of a lake within the fire's burn footprint (Kelly and others, 2006). For this study, we determined the short-term effects of forest fire on mercury concentrations in terrestrial and aquatic environments in VNP by comparing and contrasting mercury concentrations in forest soils, lake waters, and age-1 yellow perch for a burned watershed and an adjacent lake, with similar samples from watersheds and lakes with no fire activity (control watersheds and lakes). The concentration of total mercury in whole, 1-year-old yellow perch serves as a good biological indicator for monitoring trends in methylmercury conce

  16. Swimming performance of young lake trout after chronic exposure to PCBs and DDE

    USGS Publications Warehouse

    Rottiers, Donald V.; Bergstedt, Roger A.

    1981-01-01

    Swimming performance was measured in fry of lake trout (Salvelinus namaycush) exposed to PCB's, DDE, and a combination of these two contaminants in both food and water at concentrations equal to, and 5 and 25 times higher than, levels found in Lake Michigan water and plankton. Fry were tested after about 50, 110, and 165 days of exposure. We measured swimming performance by forcing the fry to swim through a continuous series of incrementally increased velocities until the fish were exhausted. Although we observed significant differences in swimming performance between a few test groups, we detected no relation between swimming performance of the fry and exposure to PCB's or DDE, or both, at the concentrations tested. Inasmuch as swimming performance apparently was not affected by the levels of contamination by PCB's and DDE in Lake Michigan, impairment of swimming by these contaminants cannot account for the failure of lake trout reproduction in Lake Michigan.

  17. Localized enrichment of polycyclic aromatic hydrocarbons in soil, spruce needles, and lake sediments linked to in-situ bitumen extraction near Cold Lake, Alberta.

    PubMed

    Korosi, J B; Irvine, G; Skierszkan, E K; Doyle, J R; Kimpe, L E; Janvier, J; Blais, J M

    2013-11-01

    The extraction of bitumen from the Alberta oil sands using in-situ technologies is expanding at a rapid rate; however, investigations into the environmental impacts of oil sands development have focused on surface mining in the Athabasca region. We measured polycyclic aromatic hydrocarbons (PAH) in soils, spruce needles, and lake sediment cores in the Cold Lake oil sands region to provide a historical and spatial perspective on PAH contamination related to in-situ extraction activities. A pronounced increase in PAH concentrations was recorded in one of two study lakes (Hilda Lake) corresponding to the onset of commercial bitumen production in ~1985. Distance from extraction rigs was not an important predictor of PAH concentrations in soils, although two samples located near installations were elevated in alkyl PAHs. Evidence of localized PAH contamination in Hilda Lake and two soil samples suggests that continued environmental monitoring is justified to assess PAH contamination as development intensifies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Occurrence, trends, and sources in particle-associated contaminants in selected streams and lakes in Fort Worth, Texas

    USGS Publications Warehouse

    Van Metre, Peter C.; Wilson, Jennifer T.; Harwell, Glenn R.; Gary, Marcus O.; Heitmuller, Franklin T.; Mahler, Barbara J.

    2003-01-01

    Several lakes and stream segments in Fort Worth, Texas, have fish consumption bans because of elevated levels of chlordane, dieldrin, DDE, and polychlorinated biphenyls (PCBs). This study was undertaken to evaluate current loading, trends, and sources in these long-banned contaminants and other particle-associated contaminants commonly found in urban areas. Sampling included suspended sediments at 11 sites in streams and bottom-sediment cores in three lakes. Samples were analyzed for chlorinated hydrocarbons, major and trace elements, and polycyclic aromatic hydrocarbons (PAHs). All four legacy pollutants responsible for fish consumption bans were detected frequently. Concentrations of chlordane, lead, and PAHs most frequently exceeded sediment-quality guidelines. Trends in DDE and PCBs since the 1960s generally are decreasing; and trends in chlordane are mixed with a decreasing trend in Lake Como, no trend in Echo Lake, and an increasing trend in Fosdic Lake. All significant trends in trace elements are decreasing, and most significant trends in PAHs are increasing. Sedimentation surveys were conducted on each of the three lakes and used in combination with sediment core data to compute sediment mass balances for the lakes, to estimate long-term-average loads and yields of sediment, and to estimate recent loads and yields of selected contaminants.Concentrations of most trace elements in suspended sediments were similar to those at the tops of cores, but concentrations of many hydrophobic organic contaminants were two to three times larger. As a result, for these fluvial systems, sediment cores probably provide a historical record of trace element contamination but could underestimate historical concentrations of organic contaminants. However, down-core profiles suggest that relative concentration histories are preserved in these sediment cores for many organic contaminants (such as chlordane and total DDT) but not for all (such as dieldrin).Percent urban land use correlates strongly with selected contaminant concentrations in sediments. Organochlorine pesticides had significant correlations to residential land use, whereas PCBs, cadmium, lead, zinc, and PAHs more often correlate significantly with commercial and industrial land uses, which suggests different urban sources for different contaminants. The amount of enrichment in these contaminants associated with urban land use predicted from regression equations, expressed as the ratio of concentrations predicted for 100 percent urban to 30 percent urban, ranges from 3.6 to 6.9 for PCBs and heavy metals to about 15 for chlordane, total DDT, and PAHs. These data indicate that urbanization is having a substantial negative effect on sediment and water quality and that legacy pollutants are being actively transported to streams and lakes 13 to 30 years after their use was restricted or banned. They further suggest that fish in the lakes and these water bodies will continue to be exposed to legacy pollutants in sediment for many years to come.

  19. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  20. Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants. Report 2. First Year Poststocking Results. Volume II. The Fish, Mammals, and Waterfowl of Lake Conway, Florida.

    DTIC Science & Technology

    1982-02-01

    7AD-AI3 853 ’FLORIDA SAME AND FRESH WATER FISH COMMISSION ORLANDO F/ 616 LARGE-SCALE OPERATIONS MANAGEMENT TEST OF USE OF THE WHITE AMUR--ETC(U...of a series of reports documenting a large-scale operations management test of use of the white amur for control of problem aquatic plants in Lake...M. 1982. "Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants; Report 2, First Year Poststock- ing

  1. A Multi-Sensor Approach to Documenting a Large Collapse Sinkhole in West-Central Florida

    NASA Astrophysics Data System (ADS)

    Collins, L. D.; Kiflu, H. G.; Robinson, T.; Doering, T.; Eilers, D.; Rodgers, M.; Kruse, S.; Landry, S.; Braunmiller, J.; Speed, G.; Gonzalez, J.; McKenzie, R.

    2017-12-01

    The Saxon Lake sinkhole collapse of July 14, 2017 in Land O Lakes, Florida, caused the destruction of two homes and the evacuation of nine additional residences. The sinkhole is slightly oval with dimensions of approximately 51 meters east-west and 42 meters north-south, and it is reportedly 15 meters deep. This is presumably the largest sinkhole to form in Pasco County during the last 30 years. The surface collapse happened rapidly and continued over three days, with slumping and erosion increasing the size. The site is located near two natural lakes in a housing development from the late 1960s. This occurrence is within an area of well-developed karst, with a number of natural lakes. We present preliminary analysis of the sequence of deformation, sinkhole geometry, surrounding subsurface structures, and seismic activity. Data are assembled from terrestrial and aerial LiDAR, UAS survey and PhoDAR modeling, aerial imagery, ground penetrating radar, lake-bottom profiling, and seismic monitoring. Additionally, multi-sensor data were brought together in a Geographic Information Systems (GIS) and included an analysis of georeferenced historic imagery and maps. These spatial data indicate historic land use change and development alterations that included lake shore reconfiguration, canal construction, and connection of lake water systems in the area of impact. Three subsidence reports from the 1980s are also recorded within 500 meters of the collapse.

  2. Comparative Data Mining Analysis for Information Retrieval of MODIS Images: Monitoring Lake Turbidity Changes at Lake Okeechobee, Florida

    EPA Science Inventory

    In the remote sensing field, a frequently recurring question is: Which computational intelligence or data mining algorithms are most suitable for the retrieval of essential information given that most natural systems exhibit very high non-linearity. Among potential candidates mig...

  3. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida; from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties, and Rohm & Haas; and from magnesite in Nevada by Premier Chemicals. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

  4. 75 FR 10817 - Notice of Realty Action: Recreation and Public Purposes Act Classification and Conveyance; Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ...] Notice of Realty Action: Recreation and Public Purposes Act Classification and Conveyance; Lake County... may submit written comments regarding this proposed classification or lease/conveyance of public land..., Florida, has been examined and found suitable for classification for lease or conveyance under the...

  5. Assessment of groundwater pathways and contaminant transport in Florida and Georgia using multiple chemical and microbiological indicators

    USGS Publications Warehouse

    Mahon, Gary L.

    2011-01-01

    The hydrogeology of Florida, especially in the northern part of the state, and southwestern Georgia is characterized by a predominance of limestone aquifers overlain by varying amounts of sands, silts, and clays. This karstic system of aquifers and their associated springs is particularly vulnerable to contamination from various anthropogenic activities at the land surface. Numerous sinkholes, disappearing streams, and conduit systems or dissolution pathways, often associated with large spring systems, allow rapid movement of contaminants from the land surface to the groundwater system with little or no attenuation or degradation. The fate of contaminants in the groundwater system is not fully understood, but traveltimes from sources are greatly reduced when conduits are intercepted by pumping wells and springs. Contaminant introduction to groundwater systems in Florida and Georgia is not limited to seepage from land surface, but can be associated with passive (drainage wells) and forced subsurface injection (aquifer storage and recovery, waste-water disposal).

  6. Feeding rate of slimy sculpin and burbot on young lake charr in laboratory reefs

    USGS Publications Warehouse

    Savino, Jacqueline F.; Henry, Mary G.

    1991-01-01

    Predation and contaminants are two possible factors in the poor recruitment of young lake charr Salvelinus namaycush in the Great Lakes. We measured the feeding rate of slimy sculpins Cottus cognatus and burbot Lota lota on young lake charr (uncontaminated young from eggs of a hatchery brood stock and contaminated young from eggs of Lake Michigan lake charr) in laboratory test chambers with a cobble substrate. The median daily consumption rate of sculpins for all tests was 2 lake charr eggs (N = 22 tests; 95% confidence interval, O-13) and 2 lake charr free embryos (N = 31 tests; 95% confidence interval, O-10). Feeding rate did not differ between hatchery and contaminated prey. Slimy sculpins continued to feed on lake charr when another prey organism, the deepwater amphipod Pontoporeia hoyi, was present. Feeding by burbot on free embryos (4-36 d-l) increased as the mobility of young increased, but burbot consumed about 10% of their body weight weekly in free-swimming young (140-380 d-l). Predation on lake charr eggs by sculpins could beconsiderable over the 100 to 140 d incubation period, and burbot could eat large numbers of free-swimming lake charr as the young fish left the reef. Predation pressure on young lake charr may inhibit rehabilitation ofself-sustaining populations of lake charr on some reefs unless a critical egg density has been reached.

  7. Areal distribution and concentrations of contaminants of concern in surficial streambed and lakebed sediments, Lake Erie-Lake Saint Clair Drainages, 1990-97

    USGS Publications Warehouse

    Rheaume, S.J.; Button, D.T.; Myers, Donna N.; Hubbell, D.L.

    2001-01-01

    Concerns about elevated concentrations of contaminants such as polychlorinated biphenyls and mercury in aquatic bed sediments throughout the Great Lakes Basin have resulted in a need for better understanding of the scope and severity of the problem. Various organochlorine pesticides, polychlorinated biphenyls, trace metals, and polycyclic aromatic hydrocarbons are a concern because of their ability to persist and accumulate in aquatic sediments and their association with adverse aquatic biological effects. The areal distribution and concentrations in surficial bed sediments of 20 contaminants of concern with established bed-sediment-toxicity guidelines were examined in relation to their potential effects on freshwater aquatic biota. Contaminants at more than 800 sampling locations are characterized in this report. Surficial bed-sediment-quality data collected from 1990 to 1997 in the Lake Erie?Lake Saint Clair Drainages were evaluated to reflect recent conditions. In descending order, concentrations of total polycyclic aromatic hydrocarbons, phenanthrene, total polychlorinated biphenyls, chrysene, benz[a]anthracene, benzo[a]pyrene, cadmium, lead, zinc, arsenic, and mercury were the contaminants that most commonly exceeded levels associated with probable adverse effects on aquatic benthic organisms. The highest concentrations of most of these contaminants in aquatic bed sediments are confined to the 12 specific geographic Areas of Concern identified in the 1987 Revisions to the Great Lakes Water Quality Agreement of 1972. An exception is arsenic, which was detected at concentrations exceeding threshold effect levels at many locations outside Areas of Concern.

  8. Oral Language Needs: Making Math Meaningful

    ERIC Educational Resources Information Center

    Pace, Michelle H.; Ortiz, Enrique

    2015-01-01

    As a Title I kindergarten teacher, Michelle Pace, second grade teacher at Lake Mary Elementary School in Florida, has seen firsthand how oral language can create roadblocks for students in all areas of the curriculum, both academically and socially. At the time this article was written, the state of Florida had recently adopted the Common Core…

  9. 75 FR 75761 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... widespread, persistent, and growing problem. Nitrogen/phosphorus pollution in fresh water systems can... Florida's regulated drinking water systems and a 10 mg/L criteria for nitrate in Class I waters. FDEP..., kidney, and central nervous system problems. 44 45 \\44\\ USEPA. 2009. National Primary Drinking Water...

  10. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    USDA-ARS?s Scientific Manuscript database

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  11. Existing Whole-House Solutions Case Study: Habitat for Humanity of Palm Beach County, Lake Worth, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-03-01

    PNNL and Florida Solar Energy Center worked with Habitat for Humanity of Palm Beach County to upgrade an empty 1996 home with a 14.5 SEER AC, heat pump water heater, CFLs, more attic insulation, and air sealing to cut utility bills $872 annually.

  12. Substance Use Among Migrant and Seasonal Farmworkers in Central Florida.

    ERIC Educational Resources Information Center

    Arnow, Beth

    A study of alcohol and drug use among migrant and seasonal farmworkers in Orange and Lake counties (Central Florida) was conducted in 1978 to determine substance abuse among migrant and seasonal farmworkers, the subgroups with substance abuse problems, the farmworkers' knowledge of and attitudes toward alcohol and drug treatment programs, and the…

  13. Sunglint in Florida Bay taken by the Expedition Two crew

    NASA Image and Video Library

    2001-04-13

    ISS002-E-5466 (13 April 2001) --- From the International Space Station (ISS), an Expedition Two crew member photographed southern Florida, including Dade County with Miami and Miami Beach; Everglades National Park; Big Cypress National Reserve; and the Florida Keys and many other recognizable areas. The crew member, using a digital still camera on this same pass, also recorded imagery of the Lake Okeechobee area, just north of the area represented in this frame.

  14. Long-range transport of pollutants to the Falkland Islands and Antarctica: evidence from lake sediment fly ash particle records.

    PubMed

    Rose, Neil L; Jones, Vivienne J; Noon, Philippa E; Hodgson, Dominic A; Flower, Roger J; Appleby, Peter G

    2012-09-18

    (210)Pb-dated sediment cores taken from lakes on the Falkland Islands, the South Orkney Islands, and the Larsemann Hills in Antarctica were analyzed for fly ash particles to assess the temporal record of contamination from high temperature fossil-fuel combustion sources. Very low, but detectable, levels were observed in the Antarctic lakes. In the Falkland Island lakes, the record of fly ash extended back to the late-19th century and the scale of contamination was considerably higher. These data, in combination with meteorological, modeling, and fossil-fuel consumption data, indicate most likely sources are in South America, probably Chile and Brazil. Other southern hemisphere sources, notably from Australia, contribute to a background contamination and were more important historically. Comparing southern polar data with the equivalent from the northern hemisphere emphasizes the difference in contamination of the two circumpolar regions, with the Falkland Island sites only having a level of contamination similar to that of northern Svalbard.

  15. In vitro toxicity and interactions of environmental contaminants (Arochlor 1254 and mercury) and immunomodulatory agents (lipopolysaccharide and cortisol) on thymocytes from lake trout (Salvelinus namaycush)

    USGS Publications Warehouse

    Miller, Gregory G.; Sweet, Leonard I.; Adams, Jean V.; Omann, Geneva M.; Passino-Reader, Dora R.; Meier, Peter G.

    2002-01-01

    The immunotoxicity of chemical combinations commonly encountered by the lake trout (Salvelinus namaycush) immune system was the focus of this study. It was hypothesised that combinations of an environmental contaminant (mercuric chloride or Aroclor 1254) and an immunomodulatory agent (bacterial endotoxin or cortisol) might interact to produce a greater toxicity than that of the environmental contaminant alone at concentrations typically encountered in piscine blood and other tissues. Thus lake trout thymocytes were isolated and treated with mercuric chloride or Aroclor 1254 in the presence and absence of cortisol or lipopolysaccharide. Incubations were performed for 6 or 20 h at 4° C or 10° C. Lipopolysaccharide did not affect the toxicity of either contaminant. In contrast, cortisol enhanced the toxicity of both environmental contaminants. Hence, stressors that lead to increased cortisol production, but not lipopolysaccharide directly, may increase the toxicity of mercury and Aroclor 1254 to lake trout thymocytes.

  16. Effects of seasonal climatic variability on several toxic contaminants in urban lakes: Implications for the impacts of climate change.

    PubMed

    Wu, Qiong; Xia, Xinghui; Mou, Xinli; Zhu, Baotong; Zhao, Pujun; Dong, Haiyang

    2014-12-01

    Climate change is supposed to have influences on water quality and ecosystem. However, only few studies have assessed the effect of climate change on environmental toxic contaminants in urban lakes. In this research, response of several toxic contaminants in twelve urban lakes in Beijing, China, to the seasonal variations in climatic factors was studied. Fluorides, volatile phenols, arsenic, selenium, and other water quality parameters were analyzed monthly from 2009 to 2012. Multivariate statistical methods including principle component analysis, cluster analysis, and multiple regression analysis were performed to study the relationship between contaminants and climatic factors including temperature, precipitation, wind speed, and sunshine duration. Fluoride and arsenic concentrations in most urban lakes exhibited a significant positive correlation with temperature/precipitation, which is mainly caused by rainfall induced diffuse pollution. A negative correlation was observed between volatile phenols and temperature/precipitation, and this could be explained by their enhanced volatilization and biodegradation rates caused by higher temperature. Selenium did not show a significant response to climatic factor variations, which was attributed to low selenium contents in the lakes and soils. Moreover, the response degrees of contaminants to climatic variations differ among lakes with different contamination levels. On average, temperature/precipitation contributed to 8%, 15%, and 12% of the variations in volatile phenols, arsenic, and fluorides, respectively. Beijing is undergoing increased temperature and heavy rainfall frequency during the past five decades. This study suggests that water quality related to fluoride and arsenic concentrations of most urban lakes in Beijing is becoming worse under this climate change trend. Copyright © 2014. Published by Elsevier B.V.

  17. Drought of 1998-2002: impacts on Florida's hydrology and landscape

    USGS Publications Warehouse

    Verdi, Richard Jay; Tomlinson, Stewart A.; Marella, Richard L.

    2006-01-01

    Lower than normal precipitation caused a severe statewide drought in Florida from 1998 to 2002. Based on precipitation and streamflow records dating to the early 1900s, the drought was one of the worst ever to affect the State. In terms of severity, this drought was comparable to the drought of 1949-1957 in duration and had record-setting low flows in several basins. The drought was particularly severe over the 5-year period in the northwest, northeast, and southwest regions of Florida, where rainfall deficits ranged from 9-10 in. below normal (southwest Florida) to 38-40 in. below normal (northwest Florida). Within these regions, the drought caused record-low streamflows in several river basins, increased freshwater withdrawals, and created hazardous conditions ripe for wildfires, sinkhole development, and even the draining of lakes. South Florida was affected primarily in 2001, when the region experienced below-average streamflow conditions; however, cumulative rainfall in south Florida never fell below the 30-year normal. The four regions of Florida, as referred to throughout this report, are defined based upon U.S. Geological Survey (USGS) data collection regions in Florida. Record-low flows were reported at several streamflow-gaging stations throughout the State, including the Withlacoochee River at Trilby, which reached zero flow on June 10-11, 2000, for the first time during the period of record (1928-2004). Streamflow conditions varied across the State from 31 percent of average flow in 2000 in southwest Florida, to 100 percent of average in 1999 in south Florida. Low-flow recurrence intervals during the drought ranged from less than 2 years at three locations to greater than 50 years at many locations. During the 1998-2002 drought, ground-water levels at many wells across the State declined to elevations not seen in many years. At some wells, ground-water levels reached record lows for their period of record. Florida Water Management Districts responded by issuing water-shortage mandates to curb water use during the spring months of 2000. Generally, freshwater withdrawals increased 13 percent between 1995 and 2000 as a result of the dry conditions. Hundreds of new sinkholes developed across the State. Lake Jackson, in northwest Florida near Tallahassee, experienced its eighth and ninth drawdowns of the past 100 years, and became nearly dry. Numerous other lakes in northern and central Florida experienced similar events. Water restrictions were put into effect in urban areas of the northeast, southwest, and south Florida regions. Wildfires periodically raged over parts of Florida throughout the period, when tinder-dry undergrowth caught fire from lightning strikes or manmade causes. Smoke from these fires caused traffic delays as sections of major highways and interstate lanes forced traffic to slow to a crawl or were closed. Wildfire statistics (Florida Division of Forestry) show that 25,137 fires burned 1.5 million acres between 1998 and 2002. Finally, rainfall that occurred in late 2002, in 2003, and from a tropical storm and four hurricanes in 2004 ended this drought.

  18. Congener Patterns of Persistent Organic Pollutants Establish the Extent of Contaminant Biotransport by Pacific Salmon in the Great Lakes.

    PubMed

    Gerig, Brandon S; Chaloner, Dominic T; Janetski, David J; Rediske, Richard R; O'Keefe, James P; Moerke, Ashley H; Lamberti, Gary A

    2016-01-19

    In the Great Lakes, introduced Pacific salmon (Oncorhynchus spp.) can transport persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), to new environments during their spawning migrations. To explore the nature and extent of POP biotransport by salmon, we compared 58 PCB and 6 PBDE congeners found in spawning salmon directly to those in resident stream fish. We hypothesized that stream fish exposed to salmon spawners would have congener patterns similar to those of salmon, the presumed contaminant source. Using permutational multivariate analysis of variance (PERMANOVA) and nonmetric multidimensional scaling (NMDS), we found that POP congener patterns of Pacific salmon varied among regions in the Great Lakes basin (i.e., Lake Huron, Lake Michigan, or Lake Superior), tissue type (whole fish or eggs), and contaminant type (PCB or PBDE). For stream-resident fish, POP congener pattern was influenced by the presence of salmon, location (i.e., Great Lakes Basin), and species identity (i.e., brook trout [Salvelinus fontinalis] or mottled sculpin [Cottus bairdii]). Similarity in congener patterns indicated that salmon are a source of POPs to brook trout in stream reaches receiving salmon spawners from Lake Michigan and Lake Huron but not from Lake Superior. Congener patterns of mottled sculpin differed from those of brook trout and salmon, suggesting that brook trout and mottled sculpin either use salmon tissue to differing degrees, acquire POPs from different dietary sources, or bioaccumulate or metabolize POPs differently. Overall, our analyses identified the important role of salmon in contaminant biotransport but also demonstrated that the extent of salmon-mediated POP transfer and uptake in Great Lakes tributaries is location- and species-specific.

  19. Contaminant effects on Great Lakes' fish-eating birds: a population perspective

    USGS Publications Warehouse

    Heinz, G.H.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.

    1998-01-01

    Preventing environmental contaminants from reducing wildlife populations is the greatest concern in wildlife toxicology. In the Great Lakes, environmental contaminants have a history of reducing populations of many species of fish-eating birds. Endocrine effects may have contributed to declines in fish-eating bird populations, but the overriding harm was caused by DDE-induced eggshell thinning. Toxic effects may still be occurring today, but apparently they are not of a sufficient magnitude to depress populations of most fish-eating birds. Once DDE levels in the Great Lakes declined, eggshells of birds began to get thicker and reproductive success improved. Populations of double-crested cormorants (Phalacrocorax auritus) and ring-billed gulls (Larus delawarensis) have increased dramatically since the bans on DDT and other organochlorine pesticides. Bald eagles (Haliaeetus leucocephalus) are still not reproducing at a normal rate along the shores of the Great Lakes, but success is much improved compared to earlier records when eggshell thinning was worse. Other species, such as herring gulls (Larus argentatus) and black-crowned night-herons (Nycticorax nycticorax), seem to be having improved reproductive success, but data on Great Lakes'-wide population changes are incomplete. Reproductive success of common terns (Sterna hirundo), Caspian terns (Sterna caspia), and Forster's terns (Sterna forsteri) seems to have improved in recent years, but, again, data on population changes are not very complete, and these birds face many habitat related problems as well as contaminant problems. Although contaminants are still producing toxic effects, and these effects may include endocrine disfunction, fish-eating birds in the Great Lakes seem to be largely weathering these effects, at least as far as populations are concerned. A lack of obvious contaminant effects on populations of fish-eating birds in the Great Lakes, however, should not be equated with a lack of any harm to these birds or with a conclusion that certain contaminants do not need additional control.

  20. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    PubMed

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas. Published by Elsevier Ltd.

  1. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 2. Chemical Patterns, Mass Transfer Modeling, and Rates of Mass Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.

    1995-06-01

    Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.

  2. Bacteria and emerging chemical contaminants in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Fogarty, Lisa R.

    2007-01-01

    Introduction Since the enactment of the Clean Water Act in 1972, awareness of the quality of the Nation's water has continued to improve. Despite improvements to wastewater-treatment systems and increased regulation on waste discharge, bacterial and chemical contamination is still a problem for many rivers and lakes throughout the United States. Pathogenic microorganism and newly recognized chemical contaminants have been found in waters that are used for drinking water and recreation (Rose and Grimes, 2001; Kolpin and others, 2002). This summary of bacteria and emerging-chemical-contaminant monitoring in the St. Clair River/Lake St. Clair Basin (fig. 1) was initiated by the Lake St. Clair Regional Monitoring Project (LSCRMP) in 2003, in cooperation with the Michigan Department of Environmental Quality (MDEQ), the Counties of Macomb, Oakland, St. Clair, and Wayne, and the U.S. Geological Survey (USGS).

  3. Heavy metal contamination of sediments in the upper connecting channels of the Great Lakes

    USGS Publications Warehouse

    Nichols, S. Jerrine; Manny, Bruce A.; Schloesser, Donald W.; Edsall, Thomas A.

    1991-01-01

    In 1985, sampling at 250 stations throughout the St. Marys, St. Clair, and Detroit rivers and Lake St. Clair — the connecting channels of the upper Great Lakes — revealed widespread metal contamination of the sediments. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc each exceeded U.S. Environmental Protection Agency sediment pollution guidelines at one or more stations throughout the study area. Sediments were polluted more frequently by copper, nickel, zinc, and lead than by cadmium, chromium, or mercury. Sediments with the highest concentrations of metals were found (in descending order) in the Detroit River, the St. Marys River, the St. Clair River, and Lake St. Clair. Although metal contamination of sediments was most common and sediment concentrations of metals were generally highest near industrial areas, substantial contamination of sediments by metals was present in sediment deposition areas up to 60 km from any known source of pollution.

  4. Arsenic Speciation in Plankton Organisms from Contaminated Lakes: Transformations at the Base of the Freshwater Food Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caumette, Guilhem; Koch, Iris; Estrada, Esteban

    2012-02-06

    The two complementary techniques high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and X-ray absorption near edge structure (XANES) analysis were used to assess arsenic speciation in freshwater phytoplankton and zooplankton collected from arsenic-contaminated lakes in Yellowknife (Northwest Territories, Canada). Arsenic concentrations in lake water ranged from 7 {micro}g L{sup -1} in a noncontaminated lake to 250 {micro}g L{sup -1} in mine-contaminated lakes, which resulted in arsenic concentrations ranging from 7 to 340 mg kg{sup -1} d.w. in zooplankton organisms (Cyclops sp.) and from 154 to 894 mg kg{sup -1} d.w. in phytoplankton. The main arsenic compounds identified by HPLC-ICP-MSmore » in all plankton were inorganic arsenic (from 38% to 98% of total arsenic). No other arsenic compounds were found in phytoplankton, but zooplankton organisms showed the presence of organoarsenic compounds, the most common being the sulfate arsenosugar, up to 47% of total arsenic, with traces of phosphate sugar, glycerol sugar, methylarsonate (MMA), and dimethylarsinate (DMA). In the uncontaminated Grace Lake, zooplankton also contained arsenobetaine (AB). XANES characterization of arsenic in the whole plankton samples showed AsV-O as the only arsenic compound in phytoplankton, and AsIII-S and AsV-O compounds as the two major inorganic arsenic species in zooplankton. The proportion of organoarsenicals and inorganic arsenic in zooplankton depends upon the arsenic concentration in lakes and shows the impact of arsenic contamination: zooplankton from uncontaminated lake has higher proportions of organoarsenic compounds and contains arsenobetaine, while zooplankton from contaminated area contains mostly inorganic arsenic.« less

  5. Ecological responses of a large shallow lake (Okeechobee, Florida) to climate change and potential future hydrologic regimes.

    PubMed

    Havens, Karl E; Steinman, Alan D

    2015-04-01

    We considered how Lake Okeechobee, a large shallow lake in Florida, USA, might respond to altered hydrology associated with climate change scenarios in 2060. Water budgets and stage hydrographs were provided from the South Florida Water Management Model, a regional hydrologic model used to develop plans for Everglades restoration. Future scenarios include a 10% increase or decrease in rainfall (RF) and a calculated increase in evapotranspiration (ET), which is based on a 1.5 °C rise in temperature. Increasing RF and ET had counter-balancing effects on the water budget and when changing concurrently did not affect hydrology. In contrast, when RF decreased while ET increased, this resulted in a large change in hydrology. The surface elevation of the lake dropped by more than 2 m under this scenario compared to a future base condition, and extreme low elevation persisted for multiple years. In this declining RF/increasing ET scenario, the littoral and near-shore zones, areas that support emergent and submerged plants, were dry 55% of the time compared to less than 4% of the time in the future base run. There also were times when elevation increased as much as 3 m after intense RF events. Overall, these changes in hydrologic conditions would dramatically alter ecosystem services. Uncertainty about responses is highest at the pelagic-littoral interface, in regard to whether an extremely shallow lake could support submerged vascular plants, which are critical to the recreational fishery and for migratory birds. Along with improved regional climate modeling, research in that interface zone is needed to guide the adaptive process of Everglades restoration.

  6. Ecological Responses of a Large Shallow Lake (Okeechobee, Florida) to Climate Change and Potential Future Hydrologic Regimes

    NASA Astrophysics Data System (ADS)

    Havens, Karl E.; Steinman, Alan D.

    2015-04-01

    We considered how Lake Okeechobee, a large shallow lake in Florida, USA, might respond to altered hydrology associated with climate change scenarios in 2060. Water budgets and stage hydrographs were provided from the South Florida Water Management Model, a regional hydrologic model used to develop plans for Everglades restoration. Future scenarios include a 10 % increase or decrease in rainfall (RF) and a calculated increase in evapotranspiration (ET), which is based on a 1.5 °C rise in temperature. Increasing RF and ET had counter-balancing effects on the water budget and when changing concurrently did not affect hydrology. In contrast, when RF decreased while ET increased, this resulted in a large change in hydrology. The surface elevation of the lake dropped by more than 2 m under this scenario compared to a future base condition, and extreme low elevation persisted for multiple years. In this declining RF/increasing ET scenario, the littoral and near-shore zones, areas that support emergent and submerged plants, were dry 55 % of the time compared to less than 4 % of the time in the future base run. There also were times when elevation increased as much as 3 m after intense RF events. Overall, these changes in hydrologic conditions would dramatically alter ecosystem services. Uncertainty about responses is highest at the pelagic-littoral interface, in regard to whether an extremely shallow lake could support submerged vascular plants, which are critical to the recreational fishery and for migratory birds. Along with improved regional climate modeling, research in that interface zone is needed to guide the adaptive process of Everglades restoration.

  7. 75 FR 77938 - Notice of Intent To Release Certain Properties From Federal Obligations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... the property for other than aeronautical purposes. The property is located adjacent to Crystal Lake Drive in Orange County, Florida. The parcel is currently designated as non-aeronautical use. The....71 acre parcels to be acquired is also located adjacent to Crystal Lake Drive in Orange County...

  8. 76 FR 69252 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ..., Butler Ridge Wind Energy Center, LLC, Calhoun Power Company I, LLC, Crystal Lake Wind, LLC, Crystal Lake... Partnership, Elk City Wind, LLC, Elk City II Wind, LLC, ESI Vansycle Partners, L.P., Florida Power & Light Co... Cowboy Wind, LLC, FPL Energy Green Power Wind, LLC, FPL Energy Hancock County Wind, LLC, FPL Energy...

  9. Interaction between a wildfire and the sea-breeze front

    Treesearch

    Deborah E. Hanley; Philip Cunningham; Scott Goodrick

    2013-01-01

    Florida experiences sea breezes, lake breezes, and bay breezes almost every day during the year, and there are frequently complex interactions between many of these breezes. Given the often-rapid changes in temperature, humidity, and wind speed that accompany these breezes, most wildfires and prescribed fires in Florida are affected in some way by their interaction...

  10. Central portion of Florida, Gulf of Mexico seen from Gemini 11

    NASA Image and Video Library

    1966-09-14

    S66-54565 (14 Sept. 1966) --- Central portion of Florida, Gulf of Mexico to Atlantic Ocean, Cape Kennedy is at left center of photo, as seen from the Gemini-11 spacecraft during its 29th revolution of Earth. Photo lacks detail due to low sun angle. Sunglint on lakes is visible. Photo credit: NASA

  11. Earth Observations taken by the Expedition 10 crew

    NASA Image and Video Library

    2005-02-11

    ISS010-E-17590 (11 February 2005) --- Southern Florida and the Florida Keys are featured in this image photographed by an Expedition 10 crewmember on the International Space Station. Miami and Fort Lauderdale are visible on the Atlantic side. Everglades National Park and Fort Myers (Gulf of Mexico side) can also be seen, as can most of Lake Okeechobee.

  12. Embryotoxicity of an extract from Great Lakes lake trout to rainbow trout and lake trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, P.J.; Tillitt, D.E.

    1995-12-31

    Aquatic ecosystems such as the Great Lakes are known to be contaminated with chemicals that are toxic to fish. However, the role of these contaminants in reproductive failures of fishes, such as lake trout recruitment, has remained controvertible. It was the objective to evaluate dioxin-like embryotoxicity of a complex mixture of chemicals and predict their potential to cause the lack of recruitment in Great Lakes lake trout. Graded doses of a complex environmental extract were injected into eggs of both rainbow trout and lake trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988.more » The extract was embryotoxic in rainbow trout, with LD50 values for Arlee strain and Erwin strain of 33 eggEQ and 14 eggEQ respectively. The LOAEL for hemorrhaging, yolk-sac edema, and craniofacial deformities in rainbow trout were 2, 2, and 4 eggEQ, respectively. Subsequent injections of the extract into lake trout eggs were likewise embryotoxic, with an LD50 value of 7 eggEQ. The LOAEL values for the extract in lake trout for hemorrhaging, yolk-sac edema, and craniofacial deformities were 0.1, 1, and 2 eggEQ, respectively. The current levels of contaminants in lake trout eggs are above the threshold for hemorrhaging and yolk-sac edema. The results also support the use of an additive model of toxicity to quantify PCDDs, PCDFs, Non-o-PCBs, and Mono-o-PCBs in relation to early life stage mortality in Lake Michigan lake trout.« less

  13. Estimating ground-water exchange with lakes using water-budget and chemical mass-balance approaches for ten lakes in ridge areas of Polk and Highlands counties, Florida

    USGS Publications Warehouse

    Sacks, L.A.; Swancar, Amy; Lee, T.M.

    1998-01-01

    Water budget and chemical mass-balance approaches were used to estimate ground-water exchange with 10 lakes in ridge areas of Polk and Highlands Counties, Florida. At each lake, heads were monitored in the surficial aquifer system and deeper Upper Floridan aquifer, lake stage and rainfall were measured continuously, and lakes and wells were sampled three times between October 1995 and December 1996. The water-budget approach computes net ground-water flow (ground-water inflow minus outflow) as the residual of the monthly waterbudget equation. Net ground-water flow varied seasonally at each of the 10 lakes, and was notably different between lakes, illustrating short-term differences in ground-water fluxes. Monthly patterns in net ground-water flow were related to monthly patterns of other hydrologic variables such as rainfall, ground-water flow patterns, and head differences between the lake and the Upper Floridan aquifer. The chemical mass-balance approach combines the water budget and solute or isotope mass-balance equations, and assumes steady-state conditions. Naturally occurring tracers that were analyzed for include calcium, magnesium, sodium, potassium, chloride, and bromide, the isotopes deuterium and oxygen-18. Chloride and sodium were the most successful solute tracers; however, their concentrations in ground water typically varied spatially, and in places were similar to that in lake water, limiting their sensitivity as tracers. In contrast, the isotopes were more robust tracers because the isotopic composition of ground water was relatively uniform and was distinctly different from the lake water. Groundwater inflow computed using the chemical massbalance method varied significantly between lakes, and ranged from less than 10 to more than 150 inches per year. Both water-budget and chemical mass-balance approaches had limitations, but the multiple lines of evidence gained using both approaches improved the understanding of the role of ground water in the water budget of the lakes.

  14. Carbon and hydrogen isotope composition of plant biomarkers from lake sediments as proxies for precipitation changes across Heinrich Events in the subtropics

    NASA Astrophysics Data System (ADS)

    Arnold, T. E.; Diefendorf, A. F.; Brenner, M.; Freeman, K. H.; Curtis, J. H.

    2015-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven by changes in aridity.

  15. Hydrology of Lake Carroll, Hillsborough County, Florida

    USGS Publications Warehouse

    Henderson, S.E.; Hayes, R.D.; Stoker, Y.E.

    1985-01-01

    Lakeshore property around Lake Carroll has undergone extensive residential development since 1960. This development increased the lake shoreline, altered surface water flow to and from the lake, and may have affected lake-stage characteristics. Some areas of the lake were dredged to provide fill material for lakefront property. Water-balance analyses for 1952-60, a predevelopment period, and 1961-80, a period of residential development, indicate that both net surface water flow to the lake and downward leakage from the lake to the Floridan aquifer were greater after 1960. These changes were due more to changes in the regional climate and related changes in ground-water levels than to changes associated with residential development. Results of water quality analyses in 1980-81 are within State limits for surface waters used for recreation and wildlife propagation. (USGS)

  16. The Legacy of Arsenic Contamination from Giant Mine, Northern Canada: An Assessment of Impacts Based on Lake Water and Lake Sediment Core Analysis

    NASA Astrophysics Data System (ADS)

    Blais, J. M.; Korosi, J.

    2016-12-01

    The Giant Mine, which operated between 1948 and 2004 and located near the City of Yellowknife (Northwest Territories, Canada), has left a legacy of arsenic, antimony, and mercury contamination extending to the present day. Over 20,000 tonnes of arsenic trioxide dust was released from roaster stack emissions during its first 10 years of operations, leading to a significant contamination of the surrounding landscape. Here we present a summary of impacts by the recent contamination from Giant Mine on the surrounding region. A survey we conducted of 25 lakes of the region in 2010 revealed that most lake water within a 15 km radius of the roaster stack had arsenic concentrations in water > 10 mg/L, the standard for drinking water, with concentrations declining exponentially with increasing distance from the roaster stack. Sediment cores from lakes were collected near the Giant Mine roaster stack and radiometrically dated by 137Cs and excess 210Pb. Arsenic concentrations in these sediments increased by 1700% during the 1950s and 60s, consistent with the history of arsenic releases from roaster emissions. Correspondingly, pelagic diatoms and cladocerans were extirpated from one lake during this period, based on microfossil analysis of lake sediment deposits. Sediment core analysis further showed that this lake ecosystem has not recovered, even ten years after closure of the mine. Likely causes for the lack of recent recovery are explored with the use of sediment toxicity bioassays, using a novel paleo-ecotoxicological approach of using toxicity assessments of radiometrically dated lake sediment horizons.

  17. Biochemistry and metabolism of lake trout: laboratory and field studies on the effects of contaminants

    USGS Publications Warehouse

    Passino, Dora R. May

    1981-01-01

    To evaluate the effects of ambient and higher concentrations of PCB's (Aroclor 1254) and DDE in food and water on fry of lake trout (Salvelinus namaycush) from Lake Michigan, I measured several biochemical indicators of stress in exposed and unexposed (control) fry. No differences between treatments were observed in oxygen consumption rates or lactate concentrations of unexercised fry, but apparent differences in specific swimming speed and lactate response in fry that swam to exhaustion suggested that exposed fry had lower stamina. Observed differences between biochemical profiles of 1-day-old sac fry reared from eggs originating from lake trout collected off Saugatuck and those originating from eggs of brood stock at the Marquette (Michigan) hatchery may have been caused by organochlorine contamination or by genetic and dietary differences between the parental stocks. Activity of the enzyme allantoinase was measured in juvenile and adult lake trout as an indicator of sublethal effects of Great Lakes contaminants. The 50% inhibition of allantoinase in vitro occurred at 6.0 mg/L Cu++, 6.7 mg/L Cd++, 34 mg/L Hg++, and 52 mg/L Pb++. Allantoinase was not affected by in vitro exposure to PCB's up to 7 μg/g, or DDE or DDT up to 10 μg/g; however, in vivo exposure resulting in 2.6 μg/g PCB's in the whole fish activated allantoinase slightly (10% significance level). Allantoinase activity was negatively correlated with total length for fish from Lake Michigan but not for fish from Lake Superior or from laboratory stocks. Mercury, PCB's, and DDT, possibly acting in combination with each other and with additional contaminants, may be the cause of the negative correlation of allantoinase activity with size in Lake Michigan lake trout.

  18. Chlorinated hydrocarbon contamination in osprey eggs and nestlings from the Canadian Great Lakes basin, 1991-1995.

    PubMed

    Martin, Pamela A; De Solla, Shane R; Ewins, Peter

    2003-01-01

    Populations of osprey (Pandion haliaetus) in the Great Lakes basin declined dramatically during the 1950s-1970s due largely to adverse effects of persistent chlorinated hydrocarbons, ingested in their fish prey, on eggshell thickness and adult survival. Nevertheless, these contaminants were not measured in osprey tissues during the decades of decline on the Canadian Great Lakes. Between 1991 and 1995, we monitored recovering osprey populations on the Great Lakes, including Georgian Bay and the St. Marys River area on Lake Huron and the St. Lawrence Islands National Park, as well as at two inland sites within the basin. Current OC levels, even from the most contaminated lakes, were typically lower than those associated with reproductive effects. DDE levels in fresh eggs averaged 1.2-2.9 microg/g, well below the 4.2 microg/g level associated with significant eggshell thinning and shell breakage. Nevertheless, a proportion of eggs from all study areas did exceed this level. PCB levels in eggs seldom exceeded 5 microg/g except in one lake of high breeding density in the Kawartha Lakes inland study area, where the mean sum PCB level was 7.1 microg/g and the maximum concentration measured was 26.5 microg/g. On average, mean reproductive output (0.78-2.75 young per occupied nest) of breeding populations in Great Lakes basin study areas exceeded the threshold of 0.8 young thought necessary to maintain stable populations. We concluded that, although eggs and especially nestling plasma, are useful in reflecting local contaminant levels, ospreys are relatively insensitive, at least at the population level, to health effects of current levels of chlorinated hydrocarbons on the Canadian Great Lakes.

  19. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    USGS Publications Warehouse

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  20. Atmospherically Deposited PBDEs, Pesticides, PCBs, and PAHs in Western US National Park Fish: Concentrations and Consumption Guidelines

    PubMed Central

    Ackerman, Luke K.; Schwindt, Adam R.; Simonich, Staci L.; Koch, Dan C.; Blett, Tamara F.; Schreck, Carl B.; Kent, Michael L.; Landers, Dixon H.

    2014-01-01

    Concentrations of polybrominated diphenyl ethers (PBDEs), pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons were measured in 136 fish from 14 remote lakes in 8 western US National Parks/Preserves between 2003 and 2005 and compared to human and wildlife contaminant health thresholds. A sensitive (median detection limit −18 pg/g wet weight), efficient (61% recovery at 8 ng/g), reproducible (4.1 %RSD), and accurate (7 % deviation from SRM) analytical method was developed and validated for these analyses. Concentrations of PCBs, hexachlorobenzene, hexachlorocyclohexanes, DDTs and chlordanes in western US fish were comparable to or lower than mountain fish recently collected from Europe, Canada, and Asia. Dieldrin and PBDE concentrations were higher than recent measurements in mountain fish and Pacific Ocean salmon. Concentrations of most contaminants in western US fish were 1–6 orders of magnitude below calculated recreational fishing contaminant health thresholds. However, contaminant concentrations exceeded subsistence fishing cancer screening values in 8 of 14 lakes. Average contaminant concentrations in fish exceeded wildlife contaminant health thresholds for piscivorous mammals in 5 lakes, and piscivorous birds in all 14 lakes. These results indicate that atmospherically deposited organic contaminants can accumulate in high elevation fish, reaching concentrations relevant to human and wildlife health. PMID:18504962

  1. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic

    NASA Astrophysics Data System (ADS)

    Astel, Aleksander M.; Bigus, Katarzyna; Obolewski, Krystian; Glińska-Lewczuk, Katarzyna

    2016-12-01

    Ionic profile, pH, electrolytic conductivity, chemical oxygen demand and concentration of selected heavy metals (Ni, Cu, Zn, Fe and Mn) were determined in water of 11 intermittently closed and open lakes and lagoons (ICOLLs) located in Polish coastline. Multidimensional data set was explored by the use of the self-organizing map (SOM) technique to avoid supervised and predictable division for fully isolated, partially and fully connected lakes. Water quality assessment based on single parameter's mean value allowed classification of majority of lakes to first or second class of purity according to regulation presenting classification approach applicable to uniform parts of surface waters. The SOM-based grouping revealed seven clusters comprising water samples of similar physico-chemical profile. Fully connected lakes were characterized by the highest concentration of components characteristic for sea salts (NaCl, MgCl2, MgSO4, CaSO4, K2SO4 and MgBr2), however spring samples from Łebsko were shifted to another cluster suggesting that intensive surface run-off and fresh-water inflow through Łupawa river decreases an impact of sea water intrusions. Forecasted characteristic of water collected in Resko Przymorskie lake was disturbed by high contamination by nitrites indicating accidental and local contamination due to usage of sodium nitrite for the curing of meat. Some unexpected sources of contamination was discovered in intermittently open and closed lakes. Presumably Zn contamination is due to use of wood preservatives to protect small wooden playgrounds or camping places spread around one of the lake, while increased concentration of Ni could be connected with grass and vegetation burning. Waters of Jamno lake are under the strongest anthropogenic impact due to inefficient removal of phosphates by waste water treatment plant and contamination by Fe and Mn caused by backwashing of absorption filters. Generally, the quality of ICOLLs' water was diversified, while anthropogenic impact as well as sea water intrusions determine its quality in temporal and spatial scale.∖

  2. Identification of hot spot area of sediment contamination in a lake system using texture characteristics.

    PubMed

    Sheela, A M; Letha, J; Joseph, Sabu; Thomas, Jobin

    2013-04-01

    Texture plays an important role in the identification of polluted stretch in a lake system. The organic matter as well as toxic elements get accumulated in the finer sediments. The aim of the work is to show the spatio-temporal distribution of texture of the lake sediment (Akkulam-Veli lake, Kerala) and to identify the hot spot areas of contamination. Hot spot areas vary with seasons. During PRM, (premonsoon), the upstream portion of the Akkulam lake is the hot spot. During MON (monsoon), the downstream portion of the Akkulam lake and the upstream portion of the Veli lake are the hot spots. During POM (postmonsoon), hot spot area is the downstream portion of the Akkulam lake. This methodology can be used for the quick identification of hot spots in water bodies.

  3. Contaminated Sediments/Remedy Effectiveness 3.6.1.3

    EPA Science Inventory

    The main objective of this research effort is to provide stakeholders with biological, chemical, and physical tools, indicators and approaches to more effectively assess and manage contaminated sites, under the Great Lakes Legacy Act (GLLA), Great Lakes Restoration Initiative (GL...

  4. Natural remediation in the Great Lakes

    USGS Publications Warehouse

    Passino-Reader, Dora R.; Kamrin, Michael A.; Hickey, James P.; Swindoll, C. Michael; Stahl, Ralph G.; Ells, Stephen J.

    2000-01-01

    Overall, the existence of stricter environmental laws during the last 30 years and a reduction in the manufacturing base in the Great Lakes has resulted in improvement in conditions in harbors, rivers, and nearshore waters. Problems remain, such as the inability to dredge certain harbors and remove sediments because of lack of disposal facilities for contaminated sediments. Because of the wide extent of of contaminated sediments in the Great Lakes, much work remains to be done to document the condition of contaminated areas and the degree to which remediation of these areas is occurring from biotic and abiotic natural processes.

  5. Heavy metals in surface lake sediments on the Kola Penninsula as an index of air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauvalter, V.

    1996-12-31

    The investigations of heavy metal (Ni, Cu, Co, Zn, Pb, Cd, Hg) distribution in sediments of more than 100 lakes were carried out between 1989 and 1994. The study lakes are situated at different distances from two main heavy metal pollution sources of the Kola Peninsula-smelters of the Pechenganickel and Severonickel Companies. To assess the pollution extent of investigated lakes, values of factor and degree of contamination were calculated according to the method suggested by Hakanson (1980). Heavy metal contamination factor (C{sub f}) for each heavy metal was calculated as the quotient of concentration from the uppermost (0-1 cm) sedimentmore » to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region. Degree of contamination (C{sub d}) was defined as the sum of all contamination factors for studied heavy metals. To quantitatively express the potential ecological risk of given contaminants created for ecosystems, risk factor (Er) for each heavy metal has been calculated. Er takes into account the toxicity of a heavy metal and bioproduction index (BPI) of a lake. Risk index (RI) was determined as the sum of all ecological risk factor for studied heavy metals.« less

  6. A biomonitor for tracking changes in the availability of lakewater cadmium over space and time

    USGS Publications Warehouse

    Hare, L.; Tessier, A.; Croteau, M.-N.

    2008-01-01

    Determining the exposure of organisms to contaminants is a key component of Ecological Risk Assessments (ERAs). Effective estimates of exposure consider not only the total concentrations of contaminants in an organism's surroundings but also the availability of the contaminants to organisms. Contaminant availability can be inferred from mechanistic models and verified by measurements of contaminant concentrations in organisms. We evaluated the widespread lake-dwelling insect Chaoborus as a potential biomonitor for use in exposure assessments for three metals: cadmium (Cd), copper (Cu), and zinc (Zn). We show that larvae of this midge maintain constant their concentrations of the essential metals Cu and Zn and thus cannot be used to monitor them. In contrast, larval Cd concentrations varied widely both among lakes and in a given lake over time. We were able to relate these variations in biomonitor Cd to changes in lakewater Cd and pH using the Free Ion Activity Model (FIAM). Our results suggest that Chaoborus larvae could be used as an effective tool for estimating the Cd exposure of organisms in lakes for the purposes of ERAs.

  7. Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida

    USGS Publications Warehouse

    Choquette, Anne F.; Kroening, Sharon E.

    2009-01-01

    Water chemistry, including major inorganic constituents, nutrients, and pesticide compounds, was compared between seven lakes surrounded by citrus agriculture and an undeveloped lake on the Lake Wales Ridge (herein referred to as the Ridge) in central Florida. The region has been recognized for its vulnerability to the leaching of agricultural chemicals into the subsurface due to factors including soils, climate, and land use. About 40 percent of Florida's citrus cultivation occurs in 'ridge citrus' areas characterized by sandy well drained soils, with the remainder in 'flatwoods citrus' characterized by high water tables and poorly drained soils. The lakes on the Ridge are typically flow-through lakes that exchange water with adjacent and underlying aquifer systems. This study is the first to evaluate the occurrence of pesticides in lakes on the Ridge, and also represents one of the first monitoring efforts nationally to focus on regional-scale assessment of current-use pesticides in small- to moderate-sized lakes (5 to 393 acres). The samples were collected between December 2003 and September 2005. The lakes in citrus areas contained elevated concentrations of major inorganic constituents (including alkalinity, total dissolved solids, calcium, magnesium, sodium, potassium, chloride, and sulfate), total nitrogen, pH, and pesticides compared to the undeveloped lake. Nitrate (as N) and total nitrogen concentrations were typically elevated in the citrus lakes, with maximum values of 4.70 and 5.19 mg/L (milligrams per liter), respectively. Elevated concentrations of potassium, nitrate, and other inorganic constituents in the citrus lakes likely reflect inputs from the surficial ground-water system that originated predominantly from agricultural fertilizers, soil amendments, and inorganic pesticides. A total of 20 pesticide compounds were detected in the lakes, of which 12 compounds exceeded the standardized reporting level of 0.06 ug/L (microgram per liter). Those most frequently detected above the 0.06-ug/L level were aldicarb sulfoxide, diuron, simazine degradates hydroxysimazine and didealkylatrazine (DDA), bromacil, norflurazon, and demethyl norflurazon which occurred at detection rates ranging from 25 to 86 percent of samples, respectively. Typically, pesticide concentrations in the lake samples were less than 1 microgram per liter. The number of targeted pesticide compounds detected per lake in the citrus areas ranged from 9 to 14 compared to 3 compounds detected at trace levels in the undeveloped lake. Consistent detections of parents and degradates in quarterly samples indicated the presence of pesticide compounds in the lakes many months or years (for example, bromacil) after their application, signaling the persistence of some pesticide compounds in the lakes and/or ground-water systems. Pesticide degradate concentrations frequently exceeded parent concentrations in the lakes. This study was the first in the Ridge citrus region to analyze for glyphosate - widely used in citrus - and its degradate aminomethylphosphonic acid (AMPA), neither of which were detected, as well as a number of triazine degradates, including hydroxysimazine, which were detected. The lake pesticide concentrations did not exceed current Federal aquatic-life benchmarks, available for 10 of the 20 detected pesticide compounds. Limited occurrences of bromacil, diuron, or norflurazon concentrations were within about 10 to 90 percent of benchmark guidelines for acute effects on nonvascular aquatic plants in one or two of the lakes. The lake pesticide concentrations for several targeted pesticides were relatively high compared to corresponding national stream-water percentiles, which is consistent with this region's vulnerability for pesticide leaching into water resources. Several factors were evaluated to gain insight into the processes controlling pesticide transport and fate, and to assess their utility for estimating th

  8. Organic contaminants in Great Lakes tributaries: Identification of watersheds and chemicals of greatest concern

    EPA Science Inventory

    Trace organic contaminant concentrations in some Great Lakes tributaries indicate potential for adverse effects on aquatic organisms. Chemicals used in agriculture, industry, and households enter surface waters via variety of sources, including urban and agricultural runoff, sewa...

  9. Earth observations taken during STS-81 mission

    NASA Image and Video Library

    1997-01-21

    STS081-711-009 (12-22 Jan. 1997) --- As photographed with a 70mm handheld camera from the Earth-orbiting Space Shuttle Atlantis, this image provides a northeastward panorama of the Florida peninsula, the northern Bahamas and Cuba as well as a synoptic view of the northern Caribbean region. Lake Okeechobee and the urban region around Miami are the two key visual points in Florida. The turquoise shallow water platforms around the Florida Keys, the Bahamas, and south of Cuba contrast with the deep blue color of the deeper channels which separate Florida from Cuba and the Bahamas. Offshore breezes keep the coastal areas clear of clouds.

  10. South Florida wetlands ecosystem; biogeochemical processes in peat

    USGS Publications Warehouse

    Orem, William; ,

    1996-01-01

    The South Florida wetlands ecosystem is an environment of great size and ecological diversity (figs. 1 and 2). The landscape diversity and subtropical setting of this ecosystem provide a habitat for an abundance of plants and wildlife, some of which are unique to South Florida. South Florida wetlands are currently in crisis, however, due to the combined effects of agriculture, urbanization, and nearly 100 years of water management. Serious problems facing this ecosystem include (1) phosphorus contamination producing nutrient enrichment, which is causing changes in the native vegetation, (2) methylmercury contamination of fish and other wildlife, which poses a potential threat to human health, (3) changes in the natural flow of water in the region, resulting in more frequent drying of wetlands, loss of organic soils, and a reduction in freshwater flow to Florida Bay, (4) hypersalinity, massive algal blooms, and seagrass loss in parts of Florida Bay, and (5) a decrease in wildlife populations, especially those of wading birds. This U.S. Geological Survey (USGS) project focuses on the role of organic-rich sediments (peat) of South Florida wetlands in regulating the concentrations and impact of important chemical species in the environment. The cycling of carbon, nitrogen, phosphorus, and sulfur in peat is an important factor in the regulation of water quality in the South Florida wetlands ecosystem. These elements are central to many of the contamination issues facing South Florida wetlands, such as nutrient enrichment, mercury toxicity, and loss of peat. Many important chemical and biological reactions occur in peat and control the fate of chemical species in wetlands. Wetland scientists often refer to these reactions as biogeochemical processes, because they are chemical reactions usually mediated by microorganisms in a geological environment. An understanding of the biogeochemical processes in peat of South Florida wetlands will provide a basis for evaluating the effects on water quality of (1) constructing buffer wetlands to alleviate nutrient contamination and (2) replumbing the ecosystem to restore natural water flow. The results may also suggest new approaches for solving problems of contamination and water quality in these wetlands. A second focus of this project will be on the geochemical history of the South Florida ecosystem. Peat is a repository of the history of past environmental conditions in the wetland. Before effective action can be taken to correct many of the problems facing these wetlands, we must first study the biogeochemistry of the peat at depth in order to understand whether current problems are the result of recent human activity or are part of a long-term natural cycle. Coordination with other (USGS) projects for South Florida is ongoing. These projects are studying the biological history of the ecosystem by using pollen and shells buried in the peat, together with procedures for dating the peat at various depths, to develop an overall ecosystem history model, with emphasis on the last 100 years.

  11. Hydrodynamic modelling of the microbial water quality in a drinking water source as input for risk reduction management

    NASA Astrophysics Data System (ADS)

    Sokolova, Ekaterina; Pettersson, Thomas J. R.; Bergstedt, Olof; Hermansson, Malte

    2013-08-01

    To mitigate the faecal contamination of drinking water sources and, consequently, to prevent waterborne disease outbreaks, an estimation of the contribution from different sources to the total faecal contamination at the raw water intake of a drinking water treatment plant is needed. The aim of this article was to estimate how much different sources contributed to the faecal contamination at the water intake in a drinking water source, Lake Rådasjön in Sweden. For this purpose, the fate and transport of faecal indicator Escherichia coli within Lake Rådasjön were simulated by a three-dimensional hydrodynamic model. The calibrated hydrodynamic model described the measured data on vertical temperature distribution in the lake well (the Pearson correlation coefficient was 0.99). The data on the E. coli load from the identified contamination sources were gathered and the fate and transport of E. coli released from these sources within the lake were simulated using the developed hydrodynamic model, taking the decay of the E. coli into account. The obtained modelling results were compared to the observed E. coli concentrations at the water intake. The results illustrated that the sources that contributed the most to the faecal contamination at the water intake in Lake Rådasjön were the discharges from the on-site sewers and the main inflow to the lake - the river Mölndalsån. Based on the modelling results recommendations for water producers were formulated. The study demonstrated that this modelling approach is a useful tool for estimating the contribution from different sources to the faecal contamination at the water intake of a drinking water treatment plant and provided decision-support information for the reduction of risks posed to the drinking water source.

  12. Organochlorine contaminants in eggs of common terns from the Canadian Great Lakes 1981

    USGS Publications Warehouse

    Weseloh, D.V.; Custer, T.W.; Braune, B.M.

    1989-01-01

    To determine if contaminant levels in common terns had changed over the last decade, we collected and analyzed eggs from four nesting colonies on the three lower Great lakes during 1981. DDE and PCBs were detected in every egg from the four colonies. Dieldrin, mirex and trans-nonachlor were detected in more than 45% of the eggs. Seven other organochlorine contaminants (DDD, DDT, hexachlorobenzene, oxychlordane, cis-chlordane, cis-nonachlor and toxaphene) were detected in less than 25% of the eggs. Eggs from the Lake Ontario colony were generally the most heavily contaminated. Comparisons of DDE and PCB data with earlier studies of common terns indicated that contaminant levels in eggs from the four sampled colonies, or nearby sites, have decreased by up to 80-90% from 1969-73 to 1981. Interspecies comparisons showed that common tern eggs have lower organochlorine residue levels than eggs of caspian terns or herring gulls. Dietary variation and migratory status are possible explanations for the differences in residue levels among species. Eggshell thickness, log-PCBs, and log-DDE were not significantly intercorrelated. Elevated contaminant levels in the early 1970s might be at least partly responsible for the decline of the Great Lakes Common Tern population over the past decade. Stabilization of population numbers during the early 1980s suggests that organochlorine pollution levels have been reduced to a point where they are no longer an important factor in the population dynamics of this species on the Great Lakes.

  13. Use of dissolved chloride concentrations in tributary streams to support geospatial estimates of Cl contamination potential near Skiatook Lake, northeastern Oklahoma

    USGS Publications Warehouse

    Rice, C.A.; Abbott, M.M.; Zielinski, R.A.

    2007-01-01

    Releases of NaCl-rich (>100 000 mg/L) water that is co-produced from petroleum wells can adversely affect the quality of ground and surface waters. To evaluate produced water impacts on lakes, rivers and streams, an assessment of the contamination potential must be attainable using reliable and cost-effective methods. This study examines the feasibility of using geographic information system (GIS) analysis to assess the contamination potential of Cl to Skiatook Lake in the Hominy Creek drainage basin in northeastern Oklahoma. GIS-based predictions of affects of Cl within individual subdrainages are supported by measurements of Cl concentration and discharge in 19 tributaries to Skiatook Lake. Dissolved Cl concentrations measured in October, 2004 provide a snapshot of conditions assumed to be reasonably representative of typical inputs to the lake. Chloride concentrations ranged from 5.8 to 2300 mg/L and compare to a value of 34 mg/L in the lake. At the time of sampling, Hominy Creek provided 63% of the surface water entering the lake and 80% of the Cl load. The Cl load from the other tributaries is relatively small (150 mg/L) were generally in subdrainages with greater well density (>15 wells/km2), relatively large numbers of petroleum wells in close proximity (>2 proximity wells/stream km), and relatively small discharge (<0.005 m3/s). GIS calculations of subdrainage areas can be used to estimate the expected discharge of the tributary for each subdrainage. GIS-based assessment of Cl contamination potential at Skiatook Lake and at other lakes surrounded by oil fields can proceed even when direct measurements of Cl or discharge in tributary streams may be limited or absent.

  14. PARENTAL CONSUMPTION OF CONTAMINATED SPORT FISH FROM LAKE ONTARIO AND PREDICTED FECUNDABILITY

    EPA Science Inventory

    Wildlife studies suggest that consumption of contaminated fish from the Great Lakes may expose humans to polychlorinated biphenyls and persistent chlorinated pesticides. To assess whether time to pregnancy or fecundability is affected, we conducted a telephone survey in 1993 with...

  15. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments.

    PubMed

    Ballent, Anika; Corcoran, Patricia L; Madden, Odile; Helm, Paul A; Longstaffe, Fred J

    2016-09-15

    Microplastics contamination of Lake Ontario sediments is investigated with the aim of identifying distribution patterns and hotspots in nearshore, tributary and beach depositional environments. Microplastics are concentrated in nearshore sediments in the vicinity of urban and industrial regions. In Humber Bay and Toronto Harbour microplastic concentrations were consistently >500 particles per kg dry sediment. Maximum concentrations of ~28,000 particles per kg dry sediment were determined in Etobicoke Creek. The microplastic particles were primarily fibres and fragments <2mm in size. Both low- and high-density plastics were identified using Raman spectroscopy. We provide a baseline for future monitoring and discuss potential sources of microplastics in terms of how and where to implement preventative measures to reduce the contaminant influx. Although the impacts of microplastics contamination on ecosystem health and functioning is uncertain, understanding, monitoring and preventing further microplastics contamination in Lake Ontario and the other Great Lakes is crucial. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Perfluorinated and polyfluorinated compounds in lake food webs from the Canadian high Arctic.

    PubMed

    Lescord, Gretchen L; Kidd, Karen A; De Silva, Amila O; Williamson, Mary; Spencer, Christine; Wang, Xiaowa; Muir, Derek C G

    2015-03-03

    Per- and polyfluorinated alkyl substances (PFASs) enter Arctic lakes through long-range atmospheric transport and local contamination, but their behavior in aquatic food webs at high latitudes is poorly understood. This study compared the concentrations of perfluorocarboxylates, perfluorosulfonates, and fluorotelomer sulfonates (FTS) in biotic and abiotic samples from six high Arctic lakes near Resolute Bay, Nunavut, Canada. Two of these lakes are known to be locally contaminated by a small airport and Arctic char (Salvelinus alpinus) from these lakes had over 100 times higher total [PFAS] when compared to fish from neighboring lakes. Perfluorononanoate (PFOA) and perfluorooctanesulfonate (PFOS) dominated in char, benthic chironomids (their main prey), and sediments, while pelagic zooplankton and water were dominated by lower chain acids and perfluorodecanesulfonate (PFDS). This study also provides the first measures of perfluoroethylcyclohexanesulfonate (PFECHS) and FTS compounds in water, sediment, juvenile char, and benthic invertebrates from lakes in the high Arctic. Negative relationships between [PFAS] and δ(15)N values (indicative of trophic position) within these food webs indicated no biomagnification. Overall, these results suggest that habitat use and local sources of contamination, but not trophic level, are important determinants of [PFAS] in biota from freshwater food webs in the Canadian Arctic.

  17. Biological and ecological science for Florida—The Sunshine State

    USGS Publications Warehouse

    ,

    2017-08-30

    Florida is rich in sunshine and other natural resources essential to the State's economy. More than 100 million tourists visit Florida's beaches, wetlands, forests, oceans, lakes, and streams where they generate billions of dollars and sustain more than a million jobs. Florida also provides habitat for several thousand freshwater and marine fish, mammals, birds, and other wildlife that are viewed, hunted, or fished, or that provide valuable ecological services. Fertile soils and freshwater supplies support agriculture and forest industries and generate more than $8 billion of revenue annually and sustain thousands of jobs.

  18. Hg-contaminated terrestrial spiders pose a potential risk to songbirds at Caddo Lake (Texas/Louisiana, USA).

    PubMed

    Gann, Gretchen L; Powell, Cleveland H; Chumchal, Matthew M; Drenner, Ray W

    2015-02-01

    Methylmercury (MeHg) is an environmental contaminant that can have adverse effects on wildlife. Because MeHg is produced by bacteria in aquatic ecosystems, studies of MeHg contamination of food webs historically have focused on aquatic organisms. However, recent studies have shown that terrestrial organisms such as songbirds can be contaminated with MeHg by feeding on MeHg-contaminated spiders. In the present study, the authors examined the risk that MeHg-contaminated terrestrial long-jawed orb weaver spiders (Tetragnatha sp.) pose to songbirds at Caddo Lake (Texas/Louisiana, USA). Methylmercury concentrations in spiders were significantly different in river, wetland, and open-water habitats. The authors calculated spider-based wildlife values (the minimum spider MeHg concentrations causing physiologically significant doses in consumers) to assess exposure risks for arachnivorous birds. Methylmercury concentrations in spiders exceeded wildlife values for Carolina chickadee (Poecile carolinensis) nestlings, with the highest risk in the river habitat. The present study indicates that MeHg concentrations in terrestrial spiders vary with habitat and can pose a threat to small-bodied nestling birds that consume large amounts of spiders at Caddo Lake. This MeHg threat to songbirds may not be unique to Caddo Lake and may extend throughout the southeastern United States. © 2014 SETAC.

  19. Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE.

    PubMed

    Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke

    2014-06-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.

  20. Atmospherically deposited PBDEs, pesticides, PCBs, and PAHs in western U.S. National Park fish: Concentrations and consumption guidelines

    USGS Publications Warehouse

    Ackerman, L.K.; Schwindt, A.R.; Simonich, S.L.M.; Koch, D.C.; Blett, T.F.; Schreck, C.B.; Kent, M.L.; Landers, D.H.

    2008-01-01

    Concentrations of polybrominated diphenyl ethers (PBDEs), pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons were measured in 136 fish from 14 remote lakes in 8 western U.S. National Parks/Preserves between 2003 and 2005 and compared to human and wildlife contaminant health thresholds. A sensitive (median detection limit, -18 pg/g wet weight), efficient (61% recovery at 8 ng/g), reproducible (4.1% relative standard deviation (RSD)), and accurate (7% deviation from standard reference material (SRM)) analytical method was developed and validated for these analyses. Concentrations of PCBs, hexachlorobenzene, hexachlorocyclohexanes, DDTs, and chlordanes in western U.S. fish were comparable to or lower than mountain fish recently collected from Europe, Canada, and Asia. Dieldrin and PBDE concentrations were higher than recent measurements in mountain fish and Pacific Ocean salmon. Concentrations of most contaminants in western U.S. fish were 1-6 orders of magnitude below calculated recreational fishing contaminant health thresholds. However, lake average contaminant concentrations in fish exceeded subsistence fishing cancer thresholds in 8 of 14 lakes and wildlife contaminant health thresholds for piscivorous birds in 1of 14 lakes. These results indicate that atmospherically deposited organic contaminants can accumulate in high elevation fish, reaching concentrations relevant to human and wildlife health. ?? 2008 American Chemical Society.

  1. Sediment storage and severity of contamination in a shallow reservoir affected by historical lead and zinc mining

    USGS Publications Warehouse

    Juracek, K.E.

    2008-01-01

    A combination of sediment-thickness measurement and bottom-sediment coring was used to investigate sediment storage and severity of contamination in Empire Lake (Kansas), a shallow reservoir affected by historical Pb and Zn mining. Cd, Pb, and Zn concentrations in the contaminated bottom sediment typically exceeded baseline concentrations by at least an order of magnitude. Moreover, the concentrations of Cd, Pb, and Zn typically far exceeded probable-effects guidelines, which represent the concentrations above which toxic biological effects usually or frequently occur. Despite a pre-1954 decrease in sediment concentrations likely related to the end of major mining activity upstream by about 1920, concentrations have remained relatively stable and persistently greater than the probable-effects guidelines for at least the last 50 years. Cesium-137 evidence from sediment cores indicated that most of the bottom sediment in the reservoir was deposited prior to 1954. Thus, the ability of the reservoir to store the contaminated sediment has declined over time. Because of the limited storage capacity, Empire Lake likely is a net source of contaminated sediment during high-inflow periods. The contaminated sediment that passes through, or originates from, Empire Lake will be deposited in downstream environments likely as far as Grand Lake O' the Cherokees (Oklahoma). ?? 2007 Springer-Verlag.

  2. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    PubMed

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p < 0.0001). Both the field campaigns and the laboratory contamination experiment revealed that CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    This paper describes a sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA for the purpose of characterizing and forecasting sediment and arsenic distributions before and after proposed dredging activitie...

  4. ALTERATIONS IN SEXUALLY DIMORPHIC BIOTRANSFORMATION OF TESTOSTERONE IN JUVENILE AMERICAN ALLIGATORS (ALLIGATOR MISSISSIPPIENSIS) FROM CONTAMINATED LAKES

    EPA Science Inventory

    The goal of this study was to determine whether hepatic biotransformation of testosterone is normally sexually dimorphic in juvenile alligators and whether living in a contaminated environment affects hepatic dimorphism. Lake Woodruff served as our reference site. Moonshine Bay, ...

  5. ANALYSES OF ORGANIC AND INORGANIC CONTAMINANTS IN SALTON SEA FISH. (R826552)

    EPA Science Inventory

    Chemical contamination of fish from the Salton Sea, a quasi-marine lake in Southern California, could adversely impact millions of birds using the Pacific Flyway and thousands of humans using the lake for recreation. Bairdiella icistia (bairdiella), Cynoscion xanthul...

  6. Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the sediment quality triad approach

    USGS Publications Warehouse

    Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.

    1996-01-01

    Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.

  7. Effects of egg and hatchling harvest on American alligators in Florida

    USGS Publications Warehouse

    Rice, K.G.; Percival, H.F.; Woodward, A.R.; Jennings, Michael L.

    1999-01-01

    Harvest of crocodilian eggs and young for captive rearing (ranching) has been used worldwide as an option for producing crocodilian skins and meat from wild stock. The long-term effects of harvesting a certain proportion of early age class, wild American alligators (Alligator mississippiensis) without repatriation is unknown. We removed an estimated 50% of annual production of alligators on Lakes Griffin and Jesup in central Florida over an 11-year period and monitored population levels via night-light counts. Densities of the total alligator population increased (P 0.117), and subadult (122-182 cm TL) alligators increased (P < 0.011) on harvest areas. The density of juveniles on the control area increased (P = 0.006), and the density of subadults showed some evidence of increasing (P = 0.088). No changes were detected in size distributions on the treatment areas. Nest production, as observed from aerial helicopter surveys, increased (P < 0.039) on Lake Woodruff NWR and Lake Jesup and showed some evidence of an increase on Lake Griffin (P = 0.098) during 1983-91. A 50% harvest rate of eggs or hatchlings did not adversely affect recruitment into the subadult or adult size classes.

  8. Quality of water and bottom sediments, and nutrient and dissolved-solids loads in the Apopka-Beauclair Canal, Lake County, Florida, 1986-90

    USGS Publications Warehouse

    Schiffer, D.M.

    1994-01-01

    Nutrient-rich water enters Lake Beauclair and other lakes downstream from Lake Apopka in the Ocklawaha River chain of lakes in central Florida. Two sources of the nutrient-rich water are Lake Apopka outflow and drainage from farming operations adjacent to the Apopka-Beauclair Canal. Two flow and water- quality monitoring sites were established to measure nutrient and dissolved-solids loads at the outflow from lake Apopka and at a control structure on the Apopka-Beauclair Canal downstream from farming activities. Samples were collected biweekly for analysis of nutrients and monthly for analysis of major ions for 4 years. Most of the nutrient load transported through the lock and dam on the Apopka-Beauclair Canal was transported during periods of high discharge. In April 1987, when discharges were as high as 589 cubic feet per second, loads transported through the lock and dam accounted for 59 percent of the ammonia-plus- organic nitrogen load, 61 percent of the total nitrogen load, and 59 percent of the phosphorus load transported during the 1987 water year. Constituent concentrations in annual bottom sediment samples from the canal indicated that most of the constituent load is not being transported down- stream. An alternative approach was derived for determining the relative constituent load from farm input along the canal: Load computations using this approach indicated that, with the exception of phosphorus, nutrient and dissolved-solids loads due to farm activity along the canal account for 10 percent or less of the total load at the Apopka-Beauclair canal lock and dam. (USGS)

  9. Are Fish Consumption Advisories for the Great Lakes Adequately Protective against Chemical Mixtures?

    PubMed

    Gandhi, Nilima; Drouillard, Ken G; Arhonditsis, George B; Gewurtz, Sarah B; Bhavsar, Satyendra P

    2017-04-01

    The North American Great Lakes are home to > 140 types of fish and are famous for recreational and commercial fishing. However, the presence of toxic substances has resulted in the issuance of fish consumption advisories that are typically based on the most restrictive contaminant. We investigated whether these advisories, which typically neglect the existence of a mixture of chemicals and their possible additive adverse effects, are adequately protective of the health of humans consuming fish from the Canadian waters of the Great Lakes. Using recent fish contaminant monitoring data collected by the government of Ontario, Canada, we simulated advisories using most-restrictive-contaminant (one-chem) and multi-contaminant additive effect (multi-chem) approaches. The advisories from the two simulations were compared to determine if there is any deficiency in the currently issued advisories. Approximately half of the advisories currently issued are potentially not adequately protective. Of the four Great Lakes studied, the highest percentage of advisories affected are in Lake Ontario if an additive effect is considered. Many fish that are popular for consumption, such as walleye, salmon, bass and trout, would have noticeably more stringent advisories. Improvements in the advisories may be needed to ensure that the health of humans consuming fish from the Great Lakes is protected. In this region, total polychlorinated biphenyls (PCBs) and mercury are the major contaminants causing restrictions on consuming fish, whereas dioxins/furans, toxaphene, and mirex/photomirex are of minor concern. Regular monitoring of most organochlorine pesticides and metals in fish can be discontinued.

  10. Southeast Florida Sediment Assessment and Needs Determination (SAND) Study

    DTIC Science & Technology

    2014-09-01

    of previous studies, geophysical, geotechnical, and geomorphic data sets in their analysis, primarily deviating from one another in controlling... geomorphic features of the continental shelf north of latitude N26º 40’ (geographically around the upland location of Lake Worth Inlet, Florida) by cross...2012 NOAA bathymetry, recent borings, and historical seismic data to delineate shoal, flat, rock exposure, and other geomorphic boundaries. The

  11. The chemical response of particle-associated contaminants in aquatic sediments to urbanization in New England, U.S.A.

    NASA Astrophysics Data System (ADS)

    Chalmers, A. T.; Van Metre, P. C.; Callender, E.

    2007-04-01

    Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place.

  12. The chemical response of particle-associated contaminants in aquatic sediments to urbanization in New England, U.S.A.

    USGS Publications Warehouse

    Chalmers, A.T.; Van Metre, P.C.; Callender, E.

    2007-01-01

    Relations between urbanization and particle-associated contaminants in New England were evaluated using a combination of samples from sediment cores, streambed sediments, and suspended stream sediments. Concentrations of PAHs, PCBs, DDT, and seven trace metals (Cd, Cr, Cu, Hg, Ni, Pb, Zn) were correlated strongly with urbanization, with the strongest relations to percentage commercial, industrial, and transportation (CIT) land use. Average PAH and metal concentrations in the most urbanized watersheds were approximately 30 and 6 times the reference concentrations, respectively, in remote, undeveloped watersheds. One-quarter to one-half of sampling sites had concentrations of PAHs, Cu, Pb, or Zn above the probable effects concentration, a set of sediment quality guidelines for adverse effects to aquatic biota, and sediments were predicted to be toxic, on average, when CIT land use exceeded about 10%. Trends in metals in cores from urban watersheds were dominantly downward, whereas trends in PAHs in a suburban watershed were upward. A regional atmospheric-fallout gradient was indicated by as much as order-of-magnitude-greater concentrations and accumulation rates of contaminants in cores from an undeveloped reference lake in Boston compared to those from remote reference watersheds. Contaminant accumulation rates in the lakes with urbanization in their watersheds, however, were 1-3 orders of magnitude greater than those of reference lakes, which indicate the dominance of local sources and fluvial transport of contaminants to urban lakes. These analyses demonstrate the magnitude of urban contamination of aquatic systems and air sheds, and suggest that, despite reductions in contaminant emissions in urban settings, streams and lakes will decline in quality as urbanization of their watersheds takes place. ?? 2006 Elsevier B.V. All rights reserved.

  13. Microcontaminants and reproductive impairment of the Forster's tern on Green Bay, Lake Michigan,1983

    USGS Publications Warehouse

    Kubiak, T.J.; Harris, H.J.; Smith, L.M.; Schwartz, T.R.; Stalling, D.L.; Trick, J.A.; Sileo, L.; Docherty, D.E.; Erdman, T.C.

    1989-01-01

    For the 1983 nesting season, Forster's tern (Sterna forsteri) reproductive success was significantly impaired on organochlorine contaminated Green Bay, Lake Michigan compared to a relatively uncontaminated inland location at Lake Poygan, Wisconsin. Compared with tern eggs from Lake Poygan, eggs from Green Bay had significantly higher median concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), other polychlorinated dibenzo-p-dioxins (PCDDs), total polychlorinated biphenyls (PCBs), total (three congeners) non-ortho, ortho' PCBs, five individual PCB congeners known to induce aryl hydrocarbon hydroxylase (AHH) and several other organochlorine contaminants. Conversions of analytical concentrations of TCDD and PCB congeners based on relative AHH induction potencies allowed for estimation of total 2,3,7,8-TCDD equivalents. Two PCB congeners, 2,3,3′,4,4′- and 3,3′,4,4′,5-pentachlorobiphenyl (PeCB) accounted for more than 90% of the median estimated TCDD equivalents at both Green Bay and Lake Poygan. The median estimated TCDD equivalents were almost 11-fold higher in tern eggs from Green Bay than in eggs from Lake Poygan (2175 and 201 pg/g). The hatching success of Green Bay sibling eggs from nests where eggs were collected for contaminant analyses was 75% lower at Green Bay than at Lake Poygan. Hatchability of eggs taken from other nests and artificially incubated was about 50% lower for Green Bay than for Lake Poygan. Among hatchlings from laboratory incubation, those from Green Bay weighed approximately 20% less and had a mean liver weight to body weight ratio 26% greater than those from Lake Poygan. In both field and laboratory, mean minimum incubation periods were significantly longer for eggs from Green Bay compared to Lake Poygan (8.25 and 4.58 days, respectively). Mean minimum incubation time for Green Bay eggs in the field was 4.37 days longer than in the laboratory. Hatchability was greatly improved when Green Bay eggs were incubated by Lake Poygan adults in an egg-exchange experiment, but was sharply decreased in Lake Poygan eggs incubated in Green Bay nests. Nest abandonment and egg disappearance were substantial at Green Bay but nil at Lake Poygan. Thus, not only factors intrinsic to the egg, but also extrinsic factors (parental attentiveness), impaired reproductive outcome at Green Bay. The epidemiological evidence from this study strongly suggested that contaminants were a causal factor. AHH-active PCB congeners (intrinsic effects) and PCBs in general (extrinsic effects) appeared to be the only contaminants at the concentrations measured in eggs, capable of producing the effects that were observed at Green Bay.

  14. TOXICOLOGICAL STUDIES IN TROPICAL ECOSYSTEMS: AN ECOTOXICOLOGICAL RISK ASSESSMENT OF PESTICIDE RUNOFF IN SOUTH FLORIDA ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    A multi-year study in the C-111 canal and associated sites in Florida Bay was undertaken in order to determine the potential contaminant risk that exists in South Florida. After examining extensive surface water data, as well as sediment, tissue, and semi-permeable membrane devic...

  15. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  16. Assessing the effects of legacy contaminants on egg and nestling survival of Tree Swallows in Great Lakes Areas of Concern (presentation)

    EPA Science Inventory

    Great Lakes Areas of Concern (AOCs) are affected by many stressors, some of which are environmental contaminants including PCBs, PBDEs, persistent organochlorine pesticides, dioxins, benzenes, and other chemicals. These toxicants can accumulate in aquatic biota and ultimately tra...

  17. Assessing the effects of legacy contaminants on egg and nestling survival of tree swallows in Great Lakes Areas of Concern

    EPA Science Inventory

    Great Lakes Areas of Concern (AOCs) are affected by many stressors, some of which are environmental contaminants including PCBs, PBDEs, persistent organochlorine pesticides, dioxins, benzenes, and other chemicals. These toxicants can accumulate in aquatic biota and ultimately tra...

  18. Linking field-based metabolomics and chemical analyses to identify contaminants of emerging concern in the Great Lakes ecosystem

    EPA Science Inventory

    Although research has focused on remediating ecological impacts of environmental contaminants on the Great Lakes and other aquatic ecosystems, there exists a continuing need for additional biologically-based tools for monitoring success. Profiling of endogenous metabolites (i.e....

  19. PREDICTION OF CONTAMINATED SEDIMENT TRANSPORT IN THE MAURICE RIVER-UNION LAKE, NEW JERSEY, USA

    EPA Science Inventory

    A sediment and contaminant transport model and its application to the Maurice River-Union Lake system in southern New Jersey, USA is described. The application is meant to characterize and forecast sediment and arsenic (As) distributions before and after proposed dredging activit...

  20. Distribution of Gull Specific Molecular Marker in Coastal Areas of Lake Ontario

    EPA Science Inventory

    Gulls have been implicated as primary sources of fecal contamination in the Great Lakes, a fact that may have health implications due to the potential spread of microbial pathogens by waterfowl. To better understand the spatial variability of gull fecal contamination, a gull-spe...

  1. Water budgets, water quality, and analysis of nutrient loading of the Winter Park chain of lakes, central Florida, 1989-92

    USGS Publications Warehouse

    Phelps, G.G.; German, E.R.

    1995-01-01

    The Winter Park chain of lakes (Lakes Maitland, Virginia, Osceola, and Mizell) has a combined area of about 900 acres, an immediate drainage area of about 3,100 acres, and mean depths ranging from 11 to 15 feet. The lakes are an important recreational resource for the surrounding communities, but there is concern about the possible effects of stormwater runoff and seepage of nutrient-enriched ground water on the quality of water in the lakes. The lakes receive water from several sources: rainfall on lake surfaces, inflow from other surface-water bodies, stormflow that enters the lakes through storm drains or by direct runoff from land adjacent to the lakes and ground-water seepage. Water leaves the lakes by evaporation, surface outflow, and ground-water outflow. Of the three, only surface outflow can be measured directly. Rainfall, surface inflow and outflow, and lake-stage data were collected from October 1, 1989, to September 30, 1992. Stormflow, evaporation and ground-water inflow and outflow were estimated for the 3 years of the study. Ground-water outflow was calculated by evaluating the rate of lake-stage decline during dry periods. Estimated ground-water outflow was compared to downward leakage rates estimated by ground-water flow models. Lateral ground-water inflow from surficial sediments was calculated as the residual of the flow budget. Flow budgets were calculated for the 3 years of the study. In water year 1992 (a year with about average rainfall), inflow consisted of rainfall, 48 inches; stormflow, 15 inches; surface inflow, 67 inches; and ground water, 40 inches. The calculated outflows were evaporation, 47 inches; surface outflow, 90 inches; and ground water, 33 inches. Water-quality data also were used to calculate nutrient budgets for the lakes. Bimonthly water samples were collected from the lakes and at surface inflow and outflow sites, and were analyzed for physical characteristics, dissolved oxygen, pH, specific conductance, major ions, the nutrients nitrogen and phosphorus, and chlorophyll (collected at lake sites only). Specific conductance ranged from about 190 to 230 microsiemens per centimeter at 25 degrees Celsius in Lakes Maitland, Virginia and Osceola and from about 226 to 260 microsiemens per centimeter at 25 degrees Celsius in Lake Mizell. The median concentrations of total ammonia-plus-organic nitrogen in all the lakes ranged from 0.79 to 0.99 milligrams per liter. Median total phosphorus concentrations ranged from less than 0.02 to 0.20 milligrams per liter. Stormwater samples were collected for 17 storms at one storm-drain site and 16 storms at another storm-drain site on Lake Osceola. Median total nitrogen concentrations at the sites were 2.23 and 3.06 milligrams per liter and median total phosphorus concentrations were 0.34 and 0.40 milligrams per liter. The water quality in the Winter Park lakes generally is fair to good, based on a trophic-state index used by the Florida Department of Environmental Protection for assessing the tropic state of Florida lakes. This index was determined from median total nitrogen, total phosphorus, and chlorophyll-a concentrations, and median Secchi-disk transparency for all lakes for the period September 1989 to June 1992. Based on a one-time sampling of 20 sites around the lakes, surficial ground-water quality is highly variable. Nutrient concentrations were highly variable and could not be correlated to the proximity of septic tanks. Fertilizer probably is the primary source of nutrients in the surficial ground water. Nutrient budgets were calculated for the lakes for the 3 years of the study. The most variable source of nutrient loading to the lakes is stormwater. Nutrient-loading modeling indicates that reduction of nutrients in stormflow probably would improve lake-water quality. However, even with complete removal of nitrogen and phosphorus from stormwater, the lakes might still be mesotrophic with respect to both nutrients during periods of below ave

  2. Monitoring Multitemporal Soil Moisture, Rainfall, and ET in Lake Manatee Watershed, South Florida under Global Changes

    NASA Astrophysics Data System (ADS)

    Chang, N.

    2009-12-01

    Ni-Bin Chang1, Ammarin Daranpob 1, and Y. Jeffrey Yang2 1Civil, Environmental, and Construction Engineering Department, University of Central Florida, Orlando FL, USA 2Water Supply and Water Resources Division, National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio, USA ASBTRACT: Global climate change and its related impacts on water supply are universally recognized. The Atlantic Multidecadal Oscillation (AMO), which is based on long term changes in the temperature of the surface of the North Atlantic Ocean, is a source of changes in river flow patterns in Florida. The AMO has a multi-decadal frequency. Under its impact, several distinct types of river patterns were identified within Florida, including a Southern River Pattern (SRP), a Northern River Pattern (NRP), a Bimodal River Pattern (BRP), etc. (Kelley and Gore, 2008). Some SRPs are present in the South Florida Water Management District (SFWMD). Changes in river flows occur because significant sea surface temperature (SST) changes affect continental rainfall patterns. It had been observed that, between AMO warm (i.e., from 1939 to 1968) and cold phases (i.e., from 1969 to 1993), the average daily inflow to Lake Okeechobee varies by 40% in the transition from the warm to cold phases in South Florida. The Manatee County is located in the Southern Water Use Caution Area (SWUCA) due to the depletion of the Upper Floridian Aquifer and its entire western portion of the County is designated as part of the Most Impacted Area (MIA) within the Eastern Tampa Bay Water Use Caution Area relative to the SWUCA. Major source of Manatee County’s water is an 332 Km2 (82,000-acre) watershed (i.e., Lake Manatee Watershed) that drains into the man-made Lake Manatee Reservoir. The lake has a total volume of 0.21 billion m3 (7.5 billion gallons) and will cover 7.3 Km2 (1,800 acres) when full. The proper use of remote sensing images and sensor network technologies can provide information on both spatial and temporal distributions of key variables in the hydrological cycle, such as soil moisture, evapotranspiration (ET) and precipitation. The multi-sensor platform may include not only in-situ sensor network, ground-based radar, air-borne aircraft, but also even space-borne satellites. The use of a decadal-scale historical record from 1998 to 2008 to support such a trend analysis via NEXRAD (Rainfall), GOES (ET), and MODIS (soil moisture) satellite images may uniquely support middle-term and long-term water resources management in the near future. This study confirms that the potential of using remotely sensed time-series biophysical and ecohydrological states of landscape to characterize soil moisture condition, ET, and other states should be further investigated based on the pros and cons of each type of satellite imageries so as to maximize the beneficial use of remote sensing.

  3. Lake Mixing Regime Influences Arsenic Transfer from Sediments into the Water Column and Uptake in Plankton

    NASA Astrophysics Data System (ADS)

    Gawel, J.; Barrett, P. M.; Hull, E.; Burkart, K.; McLean, J.; Hargrave, O.; Neumann, R.

    2017-12-01

    The former ASARCO copper smelter in Ruston, WA, now a Superfund site, contaminated a large area of the south-central Puget Sound region with arsenic over its almost 100-year history. Arsenic, a priority Superfund contaminant and carcinogen, is a legacy pollutant impacting aquatic ecosystems in urban lakes downwind of the ASARCO emissions stack. We investigated the impact of lake mixing regime on arsenic transfer from sediments into lake water and aquatic biota. We regularly collected water column and plankton samples from four study lakes for two years, and deployed sediment porewater peepers and sediment traps to estimate arsenic flux rates to and from the sediments. In lakes with strong seasonal stratification, high aqueous arsenic concentrations were limited to anoxic hypolimnetic waters while low arsenic concentrations were observed in oxic surface waters. However, in polymictic, shallow lakes, we observed elevated arsenic concentrations throughout the entire oxic water column. Sediment flux estimates support higher rates of arsenic release from sediments and vertical transport. Because high arsenic in oxic waters results in spatial overlap between arsenate, a phosphate analog, and lake biota, we observed enhanced trophic transfer of arsenic in polymictic, shallow study lakes, with higher arsenic accumulation (up to an order of magnitude) in both phytoplankton and zooplankton compared to stratified lakes. Chemical and physical mechanisms for higher steady-state arsenic concentrations will be explored. Our work demonstrates that physical mixing processes coupled with sediment/water redox status exert significant control over bioaccumulation, making shallow, periodically-mixed urban lakes uniquely vulnerable to environmental and human health risks from legacy arsenic contamination.

  4. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total ground-water inflow to lakes, saturated-flow models of lake basins need to account for the potential effects of rapid and efficient recharge in the surficial aquifer system closest to the lake. In this part of the basin, the ability to accurately estimate recharge is crucial because the water table is shallowest and the response time between rainfall and recharge is shortest. Use of the one-dimensional LEACHM model to simulate the effects of the unsaturated zone on the timing and magnitude of recharge in the nearshore improved the simulation of peak values of ground-water inflow to Lake Starr. Results of weekly simulations suggest that weekly recharge can approach the majority of weekly rainfall on the nearshore part of the lake basin. However, even though a weekly simulation with higher recharge in the nearshore was able to reproduce the extremes of ground-water exchange with the lake more accurately, it was not consistently better at predicting net ground-water flow within the water budget error than a simulation with lower recharge. The more subtle effects of rainfall and recharge on ground-water inflow to the lake were more difficult to simulate. The use of variably saturated flow modeling, with time scales that are shorter than weekly and finer spatial discretization, is probably necessary to understand these processes. The basin-wide model of Lake Starr had difficulty simulating the full spectrum of ground-water inflows observed in the water budget because of insufficient information about recharge to ground water, and because of practical limits on spatial and temporal discretization in a model at this scale. In contrast, the saturated flow model appeared to successfully simulate the effects of heads in the Upper Floridan aquifer on water levels and ground-water exchange with the lake at both weekly and monthly stress periods. Most of the variability in lake leakage can be explained by the average vertical head difference between the lake and a re

  5. Observations of the convective plume of a lake under cold-air advective conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.; Chen, E.

    1978-01-01

    Moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold-air advective conditions. Point temperature measurements north and south of the lake and data obtained from a thermal scanner flown at 1.6 km indicate that surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C under conditions of moderate winds (about 4 m/s). No substantial temperature effects were observed with surface wind speed less than 1 m/s. Fluxes of sensible and latent heat from Lake Apopka were calculated from measurements of lake temperature, net radiation, relative humidity, and air temperature above the lake. Bulk transfer coefficients and the Bowen ratio were calculated and found to be in agreement with reported data for nonadvective conditions.

  6. Volume balance and toxicity analysis of highway storm water discharge from Cross Lake Bridge.

    DOT National Transportation Integrated Search

    2009-06-01

    The Cross Lake Bridge in Shreveport, Louisiana, spans Cross Lake that serves as the citys water supply. Concern : about accidents on the bridge contaminating the lake prompted the Louisiana Department of Transportation and : Development (LADOTD) t...

  7. Volume balance and toxicity analysis of highway stormwater discharge from the cross lake bridge.

    DOT National Transportation Integrated Search

    2009-06-01

    The Cross Lake Bridge in Shreveport, Louisiana, spans Cross Lake that serves as the citys water supply. Concern about accidents on the bridge contaminating the lake prompted the Louisiana Department of Transportation and Development (LADOTD) to co...

  8. Observations of the microclimate of a lake under cold air advective conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. G., Jr.; Sutherland, R. A.; Bartholic, J. F.

    1977-01-01

    The moderating effects of Lake Apopka, Florida, on downwind surface temperatures were evaluated under cold air advective conditions. Point temperature measurements north and south of the lake and data obtained from the NOAA satellite and a thermal scanner flown at 1.6 km, indicate that, under conditions of moderate winds (approximately 4m/sec), surface temperatures directly downwind may be higher than surrounding surface temperatures by as much as 5 C. With surface wind speed less than 1m/sec, no substantial temperature effects were observed. Results of this study are being used in land use planning, lake level control and in agriculture for selecting planting sites.

  9. First ecotoxicological assessment assay in a hydroelectric reservoir: the Lake Taabo (Côte d'Ivoire).

    PubMed

    Roche, Hélène; Tidou, Abiba

    2009-03-01

    Organochlorine pesticides (OCPs) contamination was assessed in marketable species, two fishes (tilapia and catfish) and a prawn from the Lake Taabo (Côte d'Ivoire). Lindane and endosulfan were the main contaminants, suggesting their current use. DDT, endrin, heptachlor plus traces of chlordane, aldrin and fipronil were also detected. In fishes and in prawns, enzymatic biomarkers exhibited significant correlations with OCPs levels, showing the feasibility of a biomonitoring. The transfer of OCPs along the aquatic food web and their immunosuppressive effects in human are discussed. This preliminary study highlights that the pesticide contamination was concomitant with the increase in infectious diseases in the bordering population of this African lake.

  10. Carbon and hydrogen isotope composition of plant biomarkers as proxies for precipitation changes across Heinrich Events in the subtropics

    NASA Astrophysics Data System (ADS)

    Arnold, T. E.; Freeman, K.; Brenner, M.; Diefendorf, A. F.

    2014-12-01

    Lake Tulane is a relatively deep (~23 m) solution lake in south-central Florida. Its depth and location on a structural high, the Lake Wales Ridge, enabled continuous lacustrine sediment accumulation over the past >60,000 years. Pollen in the lake sediments indicate repeated major shifts in the vegetation community, with six peaks in Pinus (pine) abundance that coincide with the most intense cold phases of Dansgaard-Oeschger cycles and the Heinrich events that terminate them. Alternating with Pinus peaks are zones with high relative percentages of Quercus (oak), Ambrosia (ragweed), Lyonia (staggerbush) and Ceratiola (rosemary) pollen, genera that today occupy the most xeric sites on the Florida landscape. This suggests the pollen record indicates the Pinus phases, and therefore Heinrich Events, were wetter than the intervening Quercus phases. To test the connection between Heinrich Events and precipitation in Florida, we analyzed the carbon (δ13C) and hydrogen (δD) isotope signatures of plant biomarkers extracted from the Lake Tulane sediment core as proxies of paleohydrology. The δ13C of plant biomarkers, such as n-alkanes and terpenoids, are determined, in part, by changes in water-use efficiency (WUE = Assimilation/Transpiration) in plant communities, which changes in response to shifts in mean annual precipitation. Plant δ13C values can, therefore, provide a rough indication of precipitation changes when other factors, such as plant community, are relatively stable throughout time. Paleohydrology is also recorded in the δD of plant leaf waxes, which are strongly controlled by precipitation δD. In this region, precipitation δD is negatively correlated with rainfall amount (i.e. the "amount" effect) and positively correlated with aridity. Thus, the δ13C and δD signatures of molecular plant biomarkers provide relative indicators of precipitation change, and when combined, provide a test of our hypothesis that vegetation changes in this region are driven by changes in aridity.

  11. Evaluation of human health risks posed by carcinogenic and non-carcinogenic multiple contaminants associated with consumption of fish from Taihu Lake, China.

    PubMed

    Yu, Yingxin; Wang, Xinxin; Yang, Dan; Lei, Bingli; Zhang, Xiaolan; Zhang, Xinyu

    2014-07-01

    The present study estimated the human daily intake and uptake of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), and toxic trace elements [mercury (Hg), chromium (Cr), cadmium (Cd), and arsenic (As)] due to consumption of fish from Taihu Lake, China, and the associated potential health risks posed by these contaminants. The health risks posed by the contaminants were assessed using a risk quotient of the fish consumption rate to the maximum allowable fish consumption rate considering the contaminants for carcinogenic and non-carcinogenic effect endpoints. The results showed that fish consumption would not pose non-cancer risks. However, some species would cause a cancer risk. Relative risks of the contaminants were calculated to investigate the contaminant which posed the highest risk to humans. As a result, in view of the contaminants for carcinogenic effects, As was the contaminant which posed the highest risk to humans. However, when non-carcinogenic effects of the contaminants were considered, Hg posed the highest risk. The risk caused by PBDEs was negligible. The results demonstrated that traditional contaminants, such as As, Hg, DDTs (dichlorodiphenyltrichloroethane and its metabolites), and PCBs, require more attention in Taihu Lake than the other target contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Rainbow trout embryotoxicity of a complex contaminant mixture extracted from Lake Michigan lake trout

    USGS Publications Warehouse

    Wilson, P.J.; Tillitt, D.E.

    1996-01-01

    Persistent Hydrophobic contaminants such as poly chlorinated dibenzo-p-dioxins, dibenzofurans and biphenyl congeners are present in aquatic systems, and are known to produce adverse effects in fish. Reproductive failure in fish populations has been observed in aquatic systems contaminated with persistent hydrophobic compounds. In order to mimic maternal transfer of environmental contaminants to newly fertilized fish eggs, a complex environmental extract was tested for embryotoxicity in a nanoinjection bioassay with embryos of rainbow trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988. The tissue extraction involved blending and dehydration with sodium sulfate, column extraction, dialysis separation, reactive cleanup and, finally, high-performance gel permeation chromatography. Egg gram-equivalent doses (g tissue/g egg normalized for egg % lipid) of the final extract (0.02, 0.10, 0.20, 1.0, 2.0, 4.0, 10.0, 20.0 eggEQ) were injected into newly fertilized rainbow trout eggs using triolein as the vehicle. The extract of the lake trout was embryotoxic to rainbow trout, with an LD50 of 35 eggEQ, based on total cumulative mortality. Gross physical abnormalities characteristic of dioxin exposure, such as hemorrhaging, yolk-sac edema and craniofacial deformities, were observed and showed significant dose-related increases. Sublethal effects in the rainbow trout, such as delayed time to hatch, mild hemorrhaging and moderate yolk-sac edema, resulted from estimated total PCB exposure as low as 8.8 ng/g, and this may have significant implications on Great Lakes lake trout fry and juvenile mortality.

  13. Spatial patterns in PCB concentrations of Lake Michigan lake trout

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; Stedman, Ralph M.; Brown, Edward H.; Eck, Gary W.; Schmidt, Larry J.; Hesselberg, Robert J.; Chernyak, Sergei M.; Passino-Reader, Dora R.

    1999-01-01

    Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.

  14. LINKING GREAT WATERSHEDS WITH LAKE MICHIGAN: THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    An overview of the Lake Michigan Mass Balance Study -- which is focusing on atrazine, PCBs, nutrients, suspended solids, trans-nonachlor, and mercury. The relative contribution of contaminants to Lake Michigan will be examined for all major watersheds in the basin. - - - Further ...

  15. Contaminants in fish tissue from US lakes and reservoirs: A national probabilistic study

    EPA Science Inventory

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) ...

  16. Dual-core mass-balance approach for evaluating mercury and210Pb atmospheric fallout and focusing to lakes

    USGS Publications Warehouse

    Van Metre, P.C.; Fuller, C.C.

    2009-01-01

    Determining atmospheric deposition rates of mercury and other contaminants using lake sediment cores requires a quantitative understanding of sediment focusing. Here we present a novel approach that solves mass-balance equations for two cores algebraically to estimate contaminant contributions to sediment from direct atmospheric fallout and from watershed and in-lake focusing. The model is applied to excess 210Pb and Hg in cores from Hobbs Lake, a high-altitude lake in Wyoming. Model results for excess 210Pb are consistent with estimates of fallout and focusing factors computed using excess 210Pb burdens in lake cores and soil cores from the watershed and model results for Hg fallout are consistent with fallout estimated using the soil-core-based 210Pb focusing factors. The lake cores indicate small increases in mercury deposition beginning in the late 1800s and large increases after 1940, with the maximum at the tops of the cores of 16-20 ??g/m 2year. These results suggest that global Hg emissions and possibly regional emissions in the western United States are affecting the north-central Rocky Mountains. Hg fallout estimates are generally consistent with fallout reported from an ice core from the nearby Upper Fremont Glacier, but with several notable differences. The model might not work for lakes with complex geometries and multiple sediment inputs, but for lakes with simple geometries, like Hobbs, it can provide a quantitative approach for evaluating sediment focusing and estimating contaminant fallout.

  17. HYDROBIOLOGICAL CHARACTERISTICS OF THE COASTAL LAGOONS AT HUGH TAYLOR BIRCH STATE RECREATION AREA, FORT LAUDERDALE, FLORIDA: A HISTORICAL PERSPECTIVE.

    USGS Publications Warehouse

    Brock, Robert J.

    1987-01-01

    The author presents initial results of an ongoing study of Southeast Florida coastal lagoon lakes. Objectives include presenting environmental conditions within and adjacent to the lagoons under a variety of hydrologic conditions and to determine water-quality changes in ground water and surface water and how these changes in water quality affect lagoonal biological communities within the lagoons.

  18. Comparison of Radiocarbon Ages of Sediments, Plants, and Shells From Coastal Lakes in North Florida

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Das, O.; Liu, J.; Xu, X.; Roy, R.; Donoghue, J. F.; Means, G. H.

    2017-12-01

    Coastal lakes sediments are valuable archives of paleo-hurricanes and environmental changes during the late Quaternary provided that they can be accurately dated. Here, we report new radiocarbon (14C) dates derived from various organic and inorganic substrates, including bulk sediment organic matter, plants, shells, particulate organic matter (POM) and dissolved organic matter (DOM), from three coastal lakes in Florida, and compare these ages to evaluate the "reservoir effect" on 14C dating of both organic and inorganic carbon in these lakes. Bulk sediment organic matter yielded consistently older 14C ages than contemporaneous plants and shell fragments, indicating significant radiocarbon deficiencies in sedimentary organic matter in these coastal lakes, caused by influx of old organic carbon from terrestrial sources (such as soils and ancient peat deposits) in the watershed. Several reversals are observed in the 14C ages of bulk sediment organic matter in sediment cores from these lakes, indicating that input of aged organic matter from terrestrial sources into these lakes can vary considerably over time. DOM and POM samples collected at different times also yielded variable 14C signatures, further confirming the temporal variability in the contribution of old organic carbon from terrestrial sources to the lakes. The 14C age discrepancy between bulk sediment organic matter and co-occurring plant fragments or shells varies from less than one hundred years to nearly three thousand years in sediment cores examined in this study. The results show that 14C ages obtained from bulk sediment organic matter in these coastal lakes are unreliable. Analyses of both modern and fossil shells from one of the lakes suggest that the 14C reservoir effect on inorganic carbon in the lake is small and thus freshwater shells (if preserved in the sediment cores) may serve as a good substrate for 14C dating in the absence of plant fragments. However, unidentifiable shell fragments, especially those associated with sand pockets (or sand layers), in coastal lake sediment cores are not suitable for 14C dating as they are likely of marine origin and affected by significant marine 14C reservoir effect.

  19. The Great Lakes

    EPA Pesticide Factsheets

    The Great Lakes form the largest surface freshwater system on Earth. The U.S. and Canada work together to restore and protect the environment in the Great Lakes Basin. Top issues include contaminated sediments, water quality and invasive species.

  20. Polychlorinated Biphenyl (PCB) Bioaccumulation in Fish: A Look at Michigan's Upper Peninsula

    NASA Astrophysics Data System (ADS)

    Sokol, E. C.; Urban, N. R.; Perlinger, J. A.; Khan, T.; Friedman, C. L.

    2014-12-01

    Fish consumption is an important economic, social and cultural component of Michigan's UpperPeninsula, where safe fish consumption is threatened due to polychlorinated biphenyl (PCB)contamination. Despite its predominantly rural nature, the Upper Peninsula has a history of industrialPCB use. PCB congener concentrations in fish vary 50-fold in Upper Peninsula lakes. Several factors maycontribute to this high variability including local point sources, unique watershed and lakecharacteristics, and food web structure. It was hypothesized that the variability in congener distributionscould be used to identify factors controlling concentrations in fish, and then to use those factors topredict PCB contamination in fish from lakes that had not been monitored. Watershed and lakecharacteristics were acquired from several databases for 16 lakes sampled in the State's fishcontaminant survey. Species congener distributions were compared using Principal Component Analysis(PCA) to distinguish between lakes with local vs. regional, atmospheric sources; six lakes were predictedto have local sources and half of those have confirmed local PCB use. For lakes without local PCBsources, PCA indicated that lake size was the primary factor influencing PCB concentrations. The EPA'sbioaccumulation model, BASS, was used to predict PCB contamination in lakes without local sources as afunction of food web characteristics. The model was used to evaluate the hypothesis that deep,oligotrophic lakes have longer food webs and higher PCB concentrations in top predator fish. Based onthese findings, we will develop a mechanistic watershed-lake model to predict PCB concentrations infish as a function of atmospheric PCB concentrations, lake size, and trophic state. Future atmosphericconcentrations, predicted by modeling potential primary and secondary emission scenarios, will be usedto predict the time horizon for safe fish consumption.

  1. Impacts of aquatic nonindigenous invasive species on the Lake Erie ecosystem

    USGS Publications Warehouse

    Austen, Madeline J.W.; Ciborowski, Jan J.H.; Corkum, Lynda D.; Johnson, Tim B.; MacIsaac, Hugh J.; Metcalfe-Smith, Janice L.; Schloesser, Donald W.; George, Sandra E.

    2002-01-01

    Lake Erie is particularly vulnerable to the introduction and establishment of aquatic nonindigenous invasive species (NIS) populations. A minimum of 144 aquatic NIS have been recorded in the Lake Erie basin including several species [e.g., Eurasian watermilfoil (Myriophyllum spicatum); zebra mussel (Dreissena polymorpha); quagga mussel (Dreissena bugensis); an amphipod (Echinogammarus ischnus); round goby (Neogobius melanostomus); and sea lamprey (Petromyzon marinus)] that have had discernible impacts on the lake's ecology. NIS pose threats to the Lake Erie ecosystem for a variety of reasons including their ability to proliferate quickly, compete with native species, and transfer contaminants (e.g., PCBs) and disease through the food web. Six of the 14 beneficial use impairments listed in Annex 2 of the Great Lakes Water Quality Agreement are impaired in Lake Erie, in part as a result of the introduction of NIS. The Lake Erie Lakewide Management Plan (LaMP) has adopted an ecosystem approach to restore beneficial use impairments in the lake. Furthermore, a research consortium, known as the Lake Erie Millennium Network, is working alongside the LaMP, to address research problems regarding NIS, the loss of habitat, and the role of contaminants in the Lake Erie ecosystem.

  2. Estimation of capture zones and drawdown at the Northwest and West Well Fields, Miami-Dade County, Florida, using an unconstrained Monte Carlo analysis: recent (2004) and proposed conditions

    USGS Publications Warehouse

    Brakefield, Linzy K.; Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin

    2013-01-01

    Travel-time capture zones and drawdown for two production well fields, used for drinking-water supply in Miami-Dade County, southeastern Florida, were delineated by the U.S Geological Survey using an unconstrained Monte Carlo analysis. The well fields, designed to supply a combined total of approximately 250 million gallons of water per day, pump from the highly transmissive Biscayne aquifer in the urban corridor between the Everglades and Biscayne Bay. A transient groundwater flow model was developed and calibrated to field data to ensure an acceptable match between simulated and observed values for aquifer heads and net exchange of water between the aquifer and canals. Steady-state conditions were imposed on the transient model and a post-processing backward particle-tracking approach was implemented. Multiple stochastic realizations of horizontal hydraulic conductivity, conductance of canals, and effective porosity were simulated for steady-state conditions representative of dry, average and wet hydrologic conditions to calculate travel-time capture zones of potential source areas of the well fields. Quarry lakes, formed as a product of rock-mining activities, whose effects have previously not been considered in estimation of capture zones, were represented using high hydraulic-conductivity, high-porosity cells, with the bulk hydraulic conductivity of each cell calculated based on estimates of aquifer hydraulic conductivity, lake depths and aquifer thicknesses. A post-processing adjustment, based on calculated residence times using lake outflows and known lake volumes, was utilized to adjust particle endpoints to account for an estimate of residence-time-based mixing of lakes. Drawdown contours of 0.1 and 0.25 foot were delineated for the dry, average, and wet hydrologic conditions as well. In addition, 95-percent confidence intervals (CIs) were calculated for the capture zones and drawdown contours to delineate a zone of uncertainty about the median estimates. Results of the Monte Carlo simulations indicate particle travel distances at the Northwest Well Field (NWWF) and West Well Field (WWF) are greatest to the west, towards the Everglades. The man-made quarry lakes substantially affect particle travel distances. In general near the NWWF, the capture zones in areas with lakes were smaller in areal extent than capture zones in areas without lakes. It is possible that contamination could reach the well fields quickly, within 10 days in some cases, if it were introduced into lakes nearest to supply wells, with one of the lakes being only approximately 650 feet from the nearest supply well. In addition to estimating drawdown and travel-time capture zones of 10, 30, 100, and 210 days for the NWWF and the WWF under more recent conditions, two proposed scenarios were evaluated with Monte Carlo simulations: the potential hydrologic effects of proposed Everglades groundwater seepage mitigation and quarry-lake expansion. The seepage mitigation scenario included the addition of two proposed anthropogenic features to the model: (1) an impermeable horizontal flow barrier east of the L-31N canal along the western model boundary between the Everglades and the urban areas of Miami-Dade County, and (2) a recharge canal along the Dade-Broward Levee near the NWWF. Capture zones and drawdown for the WWF were substantially affected by the addition of the barrier, which eliminates flow from the western boundary into the active model domain, shifting the predominant capture zone source area from the west more to the north and south. The 95-percent CI for the 210-day capture zone moved slightly in the NWWF as a result of the recharge canal. The lake-expansion scenario incorporated a proposed increase in the number and surface area of lakes by an additional 25 square miles. This scenario represents a 150-percent increase from the 2004 lake surface area near both well fields, but with the majority of increase proposed near the NWWF. The lake-expansion scenario substantially decreased the extent of the 210-day capture zone of the NWWF, which is limited to the lakes nearest the well field under proposed conditions.

  3. Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie M.

    2000-01-01

    The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow‐through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budget‐derived value.

  4. Water quality of lakes Faith, Hope, Charity, and Lucien, 1971-79, in an area of residential development and highway construction at Maitland, Florida

    USGS Publications Warehouse

    German, Edward R.

    1983-01-01

    Lakes Faith, Hope, and Charity were sampled from April 1971 to June 1979 to monitor water quality before, during, and after construction of Maitland Boulevard and the Interstate Highway 4 interchange. Lake Lucien was added to the study in April 1975. Chemical quality of the lakes varies little in comparison with surface runoff, bulk precipitation, and the water in the surficial aquifer. Surface runoff supplied about 19 percent of the direct inflow to the lakes and contributed a total of about 2,000 pounds, per acre of lake surface, of dissolved solids from April 1971 to June 1979, while bulk precipitation contributed about 1,170 pounds per acre. Water quality in the lakes changed during the study, generally for the better. However, an infestation of elodea (Hydrilla verticillata), whose growth is not associated with water quality, developed in Lake Hope near the end of the study and has interfered with recreational use of the lake. (USGS)

  5. Investigating aquatic ecosystems of small lakes in Khorezm, Uzbekistan

    USGS Publications Warehouse

    Saito, L.; Scott, J.; Rosen, M.; Nishonov, Bakhriddin; Chandra, S.; Lamers, John P.A.; Fayzieva, Dilorom; Shanafield, M.

    2009-01-01

    The Khorezm province of Uzbekistan, located in the Aral Sea Basin, suffers from severe environmental and human health problems due to decades of unsustainable land and water management. Agriculture is the dominant land use in Khorezm, and agricultural runoff water has impacted many small lakes. In this water-scarce region, these lakes may provide a water source for irrigation or fish production. Samples have been collected from 13 of these lakes since 2006 to assess water quality, the aquatic food web, and possible limits to aquatic production. Lake salinity varied from 1 to >10 g/L both between and within lakes. Although hydrophobic contaminants concentrations were low (82-241 pg toxic equivalents/mL in June 2006, October 2006, and June 2007), aquatic species diversity and relative density were low in most lakes. Ongoing work is focused on 4 lakes with pelagic food webs to estimate fish production and assess anthropogenic impacts on the food web. Lake sediment cores are also being examined for organic contaminants, and hydrology is being assessed with stable isotopes. ?? 2009 ASCE.

  6. The case for a cause-effect linkage between environmental contamination and development in eggs of the common snapping turtle (Chelydra S. serpentina) from Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, C.A.; Brooks, R.J.; Carey, J.H.

    1991-08-01

    Concentrations of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins, and dibenzofurans, organochlorine pesticides, and their metabolites were measured in eggs of the common snapping turtle (Chelydra s.serpentina) collected from four wetlands on the shorelines of Lakes Ontario, and Erie, and one control location in central Ontario, Canada. Snapping turtle eggs from these sites were also artificially incubated to determine hatching success, and incidence of deformities in embryo and hatchling turtles. The hypothesis that elevated incidences of egg death and/or deformities of hatchling turtles would occur in populations with high concentrations of organochlorine contaminants in eggs was tested. The results were elevated using epidemiologicalmore » criteria. Unhatched eggs and deformities occurred at significantly higher rates in eggs from Lake Ontario wetlands. Two of three sites from Lake Ontario had substantially higher levels of PCBs, dioxins, and furans compared to eggs from Lake Erie and the control site. It could not be shown that contamination of eggs preceded the occurrence of poor development of eggs, although excellent hatching success and low numbers of deformities in eggs from the control site were considered representative of development in healthy eggs. The statistical association between contaminant levels in eggs and poor development of these eggs supported the hypothesis that eggs from sites with the greatest contamination had the highest rates of abnormalities. PCBs were the most strongly associated chemicals, although possible effects due to the presence of other chemicals in eggs was a confounding factor. The deformities and rates of unhatched eggs were similar to those occurring in other vertebrates collected from highly contaminated areas of the Great Lakes. 54 references.« less

  7. Comparison of Two Freshwater Turtle Species as Monitors of Environmental Contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers-Schone, L.

    1990-01-01

    Two species of turtles that occupy different ecological niches were compared for their usefulness as monitors of contamination in freshwater ecosystems. Trachemvs scrinta (Agassiz) (yellow-bellied slider) and Chelvdra sernentina (Linnaeus) (common snapping turtle) were selected for comparison based on species abundance and differences in food habits and sediment contact. A review of the literature on contaminants in turtles and results of preliminary surveys conducted at the field sites, which are included in this study, were used to direct and focus this research project. White Oak Lake, a settling basin for low-level radioactive and nonradioactive contaminants, and Bearden Creek Embayment, anmore » uncontaminated reference site upriver, were used as study sites in the investigation of turtles as indicators of chemical contamination. Turtles were analyzed for concentrations of strontium-go, cesium-137, cobalt 60, and mercury in specific target tissues, and for single-stranded DNA breaks, a non-specific indicator of possible exposure to genotoxic agents in the environment. Significantly higher concentrations of {sup 90}Sr, {sup 137}Cs, {sup 60}Co, and mercury were detected in turtles from White Oak Lake than in turtles from the reference site. In addition, turtles from White Oak Lake contained a significantly greater amount of DNA damage than those from the reference site. Although this suggests greater exposure of White Oak Lake turtles to genotoxic agents, further studies are needed to establish the cause of the enhanced amount of single-stranded breaks. Interspecific comparisons of the turtles from White Oak Lake indicated that diet may play a significant role in the exposure of turtles to certain contaminants. No difference was detected between the concentrations of {sup 90}Sr, {sup 137}Cs, {sup 60}Co between the two species.« less

  8. Geophysical investigation of sentinel lakes in Lake, Seminole, Orange, and Volusia Counties, Florida

    USGS Publications Warehouse

    Reich, Christopher; Flocks, James; Davis, Jeffrey

    2012-01-01

    This study was initiated in cooperation with the St. Johns River Water Management District (SJRWMD) to investigate groundwater and surface-water interaction in designated sentinel lakes in central Florida. Sentinel lakes are a SJRWMD established set of priority water bodies (lakes) for which minimum flows and levels (MFLs) are determined. Understanding both the structure and lithology beneath these lakes can ultimately lead to a better understanding of the MFLs and why water levels fluctuate in certain lakes more so than in other lakes. These sentinel lakes have become important water bodies to use as water-fluctuation indicators in the SJRWMD Minimum Flows and Levels program and will be used to define long-term hydrologic and ecologic performance measures. Geologic control on lake hydrology remains poorly understood in this study area. Therefore, the U.S. Geological Survey investigated 16 of the 21 water bodies on the SJRWMD priority list. Geologic information was obtained by the tandem use of high-resolution seismic profiling (HRSP) and direct-current (DC) resistivity profiling to isolate both the geologic framework (structure) and composition (lithology). Previous HRSP surveys from various lakes in the study area have been successful in identifying karst features, such as subsidence sinkholes. However, by using this method only, it is difficult to image highly irregular or chaotic surfaces, such as collapse sinkholes. Resistivity profiling was used to complement HRSP by detecting porosity change within fractured or collapsed structures and increase the ability to fully characterize the subsurface. Lake Saunders (Lake County) is an example of a lake composed of a series of north-south-trending sinkholes that have joined to form one lake body. HRSP shows surface depressions and deformation in the substrate. Resistivity data likewise show areas in the southern part of the lake where resistivity shifts abruptly from approximately 400 ohm meters (ohm-m) along the edges to approximately 12 ohm-m in the center. These well-defined areas may indicate a "ravel" zone of increased porosity or clay content. Within Lake Helen (Volusia County), a parallel set of seismic reflectors within a host of chaotic reflectors may represent fill within a large sinkhole. The feature extends to more than 50 meters (m) deep and contains very steep pinnacles within the center. Seismic data in Lake Helen are supported by high resistivity values from adjacent continuous resistivity profiles that show possible center collapse within the lake and infilling of sandy material. When used together, HRSP and DC resistivity techniques provide a composite image of structure and lithology to detect potential conduits for fluid flow.

  9. Estimating the magnitude and frequency of floods for streams in west-central Florida, 2001

    USGS Publications Warehouse

    Hammett, Kathleen M.; DelCharco, Michael J.

    2005-01-01

    Flood discharges were estimated for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for 94 streamflow stations in west-central Florida. Most of the stations are located within the 10,000 square-mile, 16-county area that forms the Southwest Florida Water Management District. All stations had at least 10 years of homogeneous record, and none have flood discharges that are significantly affected by regulation or urbanization. Guidelines established by the U.S. Water Resources Council in Bulletin 17B were used to estimate flood discharges from gaging station records. Multiple linear regression analysis was then used to mathematically relate estimates of flood discharge for selected recurrence intervals to explanatory basin characteristics. Contributing drainage area, channel slope, and the percent of total drainage area covered by lakes (percent lake area) were the basin characteristics that provided the best regression estimates. The study area was subdivided into four geographic regions to further refine the regression equations. Region 1 at the northern end of the study area includes large rivers that are characteristic of the rolling karst terrain of northern Florida. Only a small part of Region 1 lies within the boundaries of the Southwest Florida Water Management District. Contributing drainage area and percent lake area were the most statistically significant basin characteristics in Region 1; the prediction error of the regression equations varied with the recurrence interval and ranged from 57 to 69 percent. In the three other regions of the study area, contributing drainage area, channel slope, and percent lake area were the most statistically significant basin characteristics, and are the three characteristics that can be used to best estimate the magnitude and frequency of floods on most streams within the Southwest Florida Water Management District. The Withlacoochee River Basin dominates Region 2; the prediction error of the regression models in the region ranged from 65 to 68 percent. The basins that drain into the northern part of Tampa Bay and the upper reaches of the Peace River Basin are in Region 3, which had prediction errors ranging from 54 to 74 percent. Region 4, at the southern end of the study area, had prediction errors that ranged from 40 to 56 percent. Estimates of flood discharge become more accurate as longer periods of record are used for analyses; results of this study should be used in lieu of results from earlier U.S. Geological Survey studies of flood magnitude and frequency in west-central Florida. A comparison of current results with earlier studies indicates that use of a longer period of record with additional high-water events produces substantially higher flood-discharge estimates for many gaging stations. Another comparison indicates that the use of a computed, generalized skew in a previous study in 1979 tended to overestimate flood discharges.

  10. Arsenic and lead distribution and mobility in lake sediments in the south-central Puget Sound watershed: the long-term impact of a metal smelter in Ruston, Washington, USA.

    PubMed

    Gawel, James E; Asplund, Jessica A; Burdick, Sarah; Miller, Michelle; Peterson, Shawna M; Tollefson, Amanda; Ziegler, Kara

    2014-02-15

    The American Smelting and Refining Company (ASARCO) smelter in Ruston, Washington, contaminated the south-central Puget Sound region with heavy metals, including arsenic and lead. Arsenic and lead distribution in surface sediments of 26 lakes is significantly correlated with atmospheric model predictions of contaminant deposition spatially, with concentrations reaching 208 mg/kg As and 1,375 mg/kg Pb. The temporal distribution of these metals in sediment cores is consistent with the years of operation of the ASARCO smelter. In several lakes arsenic and lead levels are highest at the surface, suggesting ongoing inputs or redistribution of contaminants. Moreover, this study finds that arsenic is highly mobile in these urban lakes, with maximum dissolved arsenic concentrations proportional to surface sediment levels and reaching almost 90 μg/L As. With 83% of the lakes in the deposition zone having surface sediments exceeding published "probable effects concentrations" for arsenic and lead, this study provides evidence for possible ongoing environmental health concerns. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Earth observations of the Bahamas and Florida taken during STS-99

    NASA Image and Video Library

    2000-03-09

    STS099-729-086 (11-22 February 2000) ---In this 70mm frame photographed by one of the STS-99 crew members, the city of Miami encroaches the eastern edge of the Everglades in Florida. The Everglades is an International Biosphere Reserve World Heritage Site. This subtropical wilderness encompasses a relatively flat (does not exceed 2.4 meters above sea level) saw-grass marsh region of 10,000 square kilometers (4,000 square miles). The only source of water in the Everglades is from rainfall. The flow of water is detectable in this image, slowly moving from Lake Okeechobee to Florida Bay; the light blue, shallow area (less than 3 meters) between the mainland and the Keys; and the southwestern Florida coast.

  12. Impacts of Changing Precipitation on Natural Organic Matter and Microorganisms in Lakes and Reservoirs

    EPA Science Inventory

    Changes in watershed hydrology affect runoff of natural organic matter and contaminants that can in turn have important effects on water quality in lakes. We analyzed data obtain at lakes, reservoirs, and nearby riverine tributaries in Wisconsin (Lake Michigan), the Poconos, and ...

  13. Turbidity in extreme western Lake Superior. [contamination of Duluth, Minnesota water intake

    NASA Technical Reports Server (NTRS)

    Sydor, M.

    1975-01-01

    Data were obtained from ERTS images for western Lake Superior for 1972-74. Data examination showed that for easterly winds the turbidity originating along the Wisconsin shore and the resuspension areas are transported northward then out along a N.E. path where it disperses, and often, for large storms, contaminates the Duluth water intake. Contaminants such as dredging fines anywhere along these paths would likewise find their way to the intake areas in concentrations comparable to the relative red clay concentration.

  14. A Multi-Agency Effort for Assessing the Occurrence and Biological Impacts of CECs in Support of the Great Lakes Restoration Initiative

    EPA Science Inventory

    In recent years, there has been a substantial increase in the detection of a variety of contaminants for which little is known regarding their potential impact(s) on Great Lakes ecosystems. These contaminants of emerging concern, or CECs, include an assortment of industrial (e.g....

  15. Simulation of the interaction of karstic lakes Magnolia and Brooklyn with the upper Floridan Aquifer, southwestern Clay County, Florida

    USGS Publications Warehouse

    Merritt, M.L.

    2001-01-01

    The stage of Lake Brooklyn, in southwestern Clay County, Florida, has varied over a range of 27 feet since measurements by the U.S. Geological Survey began in July 1957. The large stage changes have been attributed to the relation between highly transient surface-water inflow to the lake and subsurface conduits of karstic origin that permit a high rate of leakage from the lake to the Upper Floridan aquifer. After the most recent and severe stage decline (1990-1994), the U.S. Geological Survey began a study that entailed the use of numerical ground-water flow models to simulate the interaction of the lake with the Upper Floridan aquifer and the large fluctuations of stage that were a part of that process. A package (set of computer programs) designed to represent lake/aquifer interaction in the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model (MODFLOW-96) and the Three-Dimensional Method-of-Characteristics Solute-Transport Model (MOC3D) simulators was prepared as part of this study, and a demonstration of its capability was a primary objective of the study. (Although the official names are Brooklyn Lake and Magnolia Lake (Florida Geographic Names), in this report the local names, Lake Brooklyn and Lake Magnolia, are used.) In the simulator of lake/aquifer interaction used in this investigation, the stage of each lake in a simulation is updated in successive time steps by a budget process that takes into account ground-water seepage, precipitation upon and evaporation from the lake surface, stream inflows and outflows, overland runoff inflows, and augmentation or depletion by artificial means. The simulator was given the capability to simulate both the division of a lake into separate pools as lake stage falls and the coalescence of several pools into a single lake as the stage rises. This representational capability was required to simulate Lake Brooklyn, which can divide into as many as 10 separate pools at sufficiently low stage. In the first of two calibrated models, recharge to the water table, specified as a monthly rate, was set equal to 40 percent of the monthly rainfall rate. The specified rate of inflow to the uppermost stream segment was set equal to outflows from Lake Lowry estimated from lake stage and the 1994-97 rating table. Leakage to the intermediate and Upper Floridan aquifers was assumed to occur from the surficial aquifer system through the confining layers directly beneath deeper parts of the lake bottom. A leakance coefficient value of 0.001 feet per day per foot of thickness was used beneath Lake Magnolia, and a value of 0.005 feet per day per foot of thickness was used beneath most of Lake Brooklyn. With these values, the conductance through the confining layers beneath Lake Brooklyn was about 19 times that beneath Lake Magnolia. The simulated stages of Lake Brooklyn matched the measured stages reasonably well in the early (1957-72) and later (1990-98) parts of the simulation time period, but the match was unsatisfactory in an intermediate time period (1973-89). To resolve this discrepancy, the hypothesis was proposed that undocumented losses of water from Alligator Creek upstream from Lake Brooklyn or from the lake itself occurred between 1973 and 1989 when there was sufficient streamflow. The resulting simulation of lake stages matched the measured lake stages accurately during the entire simulation time period. The model was then revised to incorporate the assumption that only 20 percent of precipitation recharged the water table (the second calibrated model). Recalibration of the model required that leakance values for the confining units under deeper parts of the lakes also be reduced by nearly 50 percent. The stages simulated with the new parameter assumptions, but retaining the assumption of surface-water losses, were an excellent match of the measured values. The stage of Lake Magnolia was also simulated accurately. The results of sensitivity analyses show that simulated s

  16. A 300 year history of lead contamination in northern French Alps reconstructed from distant lake sediment records.

    PubMed

    Arnaud, F; Revel-Rolland, M; Bosch, D; Winiarski, T; Desmet, M; Tribovillard, N; Givelet, N

    2004-05-01

    Lead concentrations and isotopic ratios were measured along two well-dated sediment cores from two distant lakes: Anterne (2100 m a.s.l.) and Le Bourget (270 m a.s.l.), submitted to low and high direct human impact and covering the last 250 and 600 years, respectively. The measurement of lead in old sediment samples (>3000 BP) permits, in using mixing-models, the determination of lead concentration, flux and isotopic composition of purely anthropogenic origin. We thus show that since ca. 1800 AD the regional increase in lead contamination was mostly driven by coal consumption ((206)Pb/(207)Pb approximately 1.17-1.19; (206)Pb/(204)Pb approximately 18.3-18.6), which peaks around 1915 AD. The increasing usage of leaded gasoline, introduced in the 1920s, was recorded in both lakes by increasing Pb concentrations and decreasing Pb isotope ratios. A peak around 1970 ((206)Pb/(207)Pb approximately 1.13-1.16; (206)Pb/(204)Pb approximately 17.6-18.0) corresponds to the worldwide recorded leaded gasoline maximum of consumption. The 1973 oil crisis is characterised by a drastic drop of lead fluxes in both lakes (from approximately 35 to <20 mg cm(-2) yr(-1)). In the late 1980s, environmental policies made the Lake Anterne flux drop to pre-1900 values (<10 mg cm(-2) yr(-1)) while Lake Le Bourget is always submitted to an important flux (approximately 25 mg cm(-2) yr(-1)). The good match of our distant records, together and with a previously established series in an ice core from Mont Blanc, provides confidence in the use of sediments as archives of lead contamination. The integration of the Mont Blanc ice core results from Rosman et al. with our data highlights, from 1990 onward, a decoupling in lead sources between the high elevation sites (Lake Anterne and Mont Blanc ice core), submitted to a mixture of long-distance and regional contamination and the low elevation site (Lake Le Bourget), where regional contamination is predominant.

  17. Analysis of Nonpoint-Source Ground-Water Contamination in Relation to Land Use: Assessment of Nonpoint-Source Contamination in Central Florida

    USGS Publications Warehouse

    German, Edward R.

    1996-01-01

    In central Florida, activities that might affect the quality of ground water include disposal of stormwater through drainage wells, citrus cultivation, and mining and processing of phosphate ore. Possible effects of these and other land-use activities include high concentrations of nitrogen compounds and the pesticide bromacil in the citrus area, and high concentrations of most of the major-dissolved constituents and some organic compounds in the mining area.

  18. Natural Setting and Vegetation of the Florida Panhandle. An Account of the Environments and Plant Communities of Northern Florida, West of the Suwannee River.

    DTIC Science & Technology

    1986-01-01

    interpreting vegetational processes, then the predictions of environmental impacts with regard to proposed land uses or resource management may be in error...34 Cotton Era........................................ 37 4. LAND USE AND LAN~D MANAGEMENT ............................ 40 Grazing...Setting; Vegetatio1Tt~lants; Eco logy;. 7 ommunities; *History; Land ’ Use ; Enviro mental Setting; Geology; rIhysiography; Rivers; Lakes; Aquifers;.Soils

  19. Summary of hydrologic conditions in the Reedy Creek Improvement District, central Florida

    USGS Publications Warehouse

    German, Edward R.

    1986-01-01

    The Reedy Creek Improvement is an area of about 43 square miles in southwestern Orange and northwestern Osceola Counties, Florida. A systematic program of hydrologic data collection in the Reedy Creek Improvement District and vicinity provided data for assessing the impact of development, mostly the Walt Disney World Theme Park and related development on the hydrology. Data collected include stream discharge, water quality, groundwater levels, lakes levels, and climatological. Rainfall has been less than the long-term average in the Reedy Creek Improvement District since development began in 1968. The deficient rainfall has reduced stream discharge, lowered groundwater and lake levels, and possibly affected water quality in the area. Groundwater levels and lake levels have declined since 1970. However, the coincidence of below-average rainfall with the period of development makes it impossible to assess the effect of pumping on declines. Occurrence of toxic metals does not relate to development, but distribution of insecticides and herbicides does appear to relate to development. Specific conductance, phosphorous, and nitrate concentrations have increased in Reedy Creek since 1970, probably due to disposal of treated wastes. (USGS)

  20. Hydrology of the Floral City Pool of Tsala Apopka Lake, west-central Florida

    USGS Publications Warehouse

    Bradner, L.A.

    1988-01-01

    Tsala Apopka Lake, in west-central Florida, has an area of about 19,000 acres and is divided into three water-management pools, with the Floral City Pool, the most upgradient. The Floral City Pool, which has a surface area of approximately 4,750 acres, contains an extensive combination of lakes, wetlands, and connecting canals. The Pool receives inflow from the Withlacoochee River through two canals. Outflow is through one manmade canal and one natural slough. Canal flow is partially controlled by manmade structures. A cumulative deficit of 19.4 inches of rainfall from August 1984 through May 1985 reduced surface-water inflow to the Floral City Pool to about 0.5 cu ft/sec by May 1985. During May 1985, pool levels declined approximately 0.04 ft/day. By the end of May, there was no observable outflow. From June 1985 through September 1985, 39.8 inches of rainfall caused above-average inflow to the Floral City Pool and a pool-level increase of 6.2 ft. The inflow of 340 CFS nearly equaled the outflow of 338 CFS by the end of September. (USGS)

  1. Engineered river flow-through to improve mine pit lake and river values.

    PubMed

    McCullough, Cherie D; Schultze, Martin

    2018-05-30

    Mine pit lakes may develop at mine closure when mining voids extend below groundwater levels and fill with water. Acid and metalliferous drainage (AMD) and salinity are common problems for pit lake water quality. Contaminated pit lake waters can directly present significant risk to both surrounding and regional communities and natural environmental values and limit beneficial end use opportunities. Pit lake waters can also discharge into surface and groundwater; or directly present risks to wildlife, stock and human end users. Riverine flow-through is increasingly proposed to mitigate or remediate pit lake water contamination using catchment scale processes. This paper presents the motivation and key processes and considerations for a flow-through pit lake closure strategy. International case studies as precedent and lessons for future application are described from pit lakes that use or propose flow-through as a key component of their mine closure design. Chemical and biological processes including dilution, absorption and flocculation and sedimentation can sustainably reduce pit lake contaminant concentrations to acceptable levels for risk and enable end use opportunities to be realised. Flow-through may be a valid mine closure strategy for pit lakes with poor water quality. However, maintenance of existing riverine system values must be foremost. We further suggest that decant river water quality may, in some circumstances, be improved; notably in examples of meso-eutrophic river waters flowing through slightly acidic pit lakes. Flow-through closure strategies must be scientifically justifiable and risk-based for both lake and receptors potentially affected by surface and groundwater transport. Due to the high-uncertainty associated with this complex strategy, biotic and physico-chemical attributes of both inflow and decant river reaches as well as lake should be well monitored. Monitoring should directly feed into an adaptive management framework discussed with key stakeholders with validation of flow-through as a sustainable strategy prior to mine relinquishment. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. [Arsenic removal by coagulation process and the field expanding experiments for Yangzonghai Lake].

    PubMed

    Chen, Jing; Zhang, Shu; Yang, Xiang-jun; Huang, Zhang-jie; Wang, Shi-xiong; Wang, Chong; Wei, Qun-yan; Zhang, Gen-lin; Xiao, Jun

    2015-01-01

    Yangzonghai Lake is the third largest plateau lake in Yunnan province. In June 2008, arsenic contamination was detected in Yangzonghai Lake and the water quality worsens dramatically from standard grade II to worse than grade V. Since Yongzonghai Lake is so large with the area of 31 km2 and the storage capacity of 6.04 x 10(8) m3, those pretreatment operations of the traditional arsenic removal methods, such as pre oxidation, adjusting pH value, are not applicable. In this study, a facile remediation strategy for arsenic removal by coagulation process, in which ferric chloride was directly sprayed into the contaminated water without any pretreatment, was reported. The results showed that the arsenic removal percentage was up to 95.1%-96.7% for 50 L raw water with reagent dosage of 1.62-3.20 mg x L(-1). Furthermore, the pH value of the lake kept constant in the coagulation process, which was beneficial for fish survival. Re-dissolved arsenic from precipitation was not detected in 954 days. The strategy of ferric chloride coagulation were applied to field experiments for lake water with volumes of 1 x 10(4) m3 and 25 x 10(4) m3, in which arsenic was also removed effectively. The reported strategy was of great advantage for simple operation, low cost and ecological safety, therefore it provides a representative example for arsenic contamination treatment of large lake.

  3. Sexual difference in mercury concentrations of lake trout (Salvelinus namaycush) from Lake Ontario

    USGS Publications Warehouse

    Madenjian, C.P.; Keir, M.J.; Whittle, D.M.

    2011-01-01

    We determined total mercury (Hg) concentrations in 50 female lake trout (Salvelinus namaycush) and 69 male lake trout from Lake Ontario (Ontario, Canada and New York, United States). Results showed that, on average, males were 8% higher in Hg concentration than females in Lake Ontario. We also used bioenergetics modeling to determine whether a sexual difference in gross growth efficiency (GGE) could explain the observed sexual difference in Hg concentrations. According to the bioenergetics modeling results, male GGE was about 3% higher than female GGE, on average. Although the bioenergetics modeling could not explain the higher Hg concentrations exhibited by the males, a sexual difference in GGE remained a plausible explanation for the sexual difference in Hg concentrations of the lake trout. In an earlier study, male lake trout from Lake Ontario were found to be 22% higher in polychlorinated biphenyl (PCB) concentration than females from Lake Ontario. Thus, although males were higher in both Hg and PCB concentrations, the degree of the sexual difference in concentration varied between the two contaminants. Further research on sexual differences in Hg excretion rates and Hg direct uptake rates may be needed to resolve the disparity in results between the two contaminants.

  4. Ground-water contamination by crude oil at the Bemidji, Minnesota, research site- An introduction: Chapter A in Ground-water contamination by crude oil at the Bemidji, Minnesota, research site; US Geological Survey Toxic Waste--ground-water contamination study

    USGS Publications Warehouse

    1984-01-01

    The U.S. Geological Survey has begun a research project to improve understanding of the mobilization, transport, and fate of petroleum contaminants in the shallow subsurface and to use this understanding to develop predictive models of contaminant behavior. The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less. 

  5. Arsenic Movement From Sediment to Water: Microbes and Mobilization in a Contaminated Lake

    NASA Astrophysics Data System (ADS)

    Keimowitz, A. R.; Mailloux, B. J.; Chillrud, S. N.; Ross, J.; Wovkulich, K.; McNamara, P.; Alexandrova, E.; Thompson, L.

    2008-12-01

    Union Lake (Millville, NJ), a reservoir downstream from the Vineland Chemical Company Superfund site, has bottom sediments that are highly contaminated with arsenic (>1 g/kg). Offsite As transport was investigated. Because the lake is a result of damming, it is perched above the water table and therefore As transport may occur via downward movement of porewaters and/or groundwaters. Preliminary evidence for this was found in the form of iron flocculates enriched in As which were found in surface seeps downgradient of the dam. The possibility of As remobilization and/or off-site transport by seasonal anoxia of lake bottom- waters was also explored. Although historically, appreciable As was found in the water column of the lake (up to approximately 200 micrograms/L), As releases over the summers of 2007 and 2008 were negligible to modest with a maximum [As] of 23 micrograms/L. Arsenic mobilization from the contaminated sediments into surface waters of the reservoir are limited in part due to incomplete eutrophication and frequent overturning (approximately 1x/month in summer 2007) of this shallow lake, therefore conditions which promoted greater As release were explored in the laboratory. Field and laboratory samples were examined for changes in the microbial community using a variety of genetic techniques; these changes in microbial community were both a result of, and influenced, seasonal lake cycles.

  6. GREATER HEMOCYTE BACTERICIDAL ACTIVITY IN OYSTERS (CRASSOSTREA VIRGINICA) FROM A RELATIVELY CONTAMINATED SITE IN PENSACOLA BAY, FLORIDA.

    EPA Science Inventory

    Bivalve mollusks such as Crassostrea virginica inhabiting polluted estuaries and coastal areas may bioaccumulate high concentrations of contaminants without apparent ill effects. However, changes in putative internal defense activities have been associated with contaminant accumu...

  7. Investigating seagrass in Toxoplasma gondii transmission in Florida (Trichechus manatus latirostris) and Antillean (T. m. manatus) manatees.

    PubMed

    Wyrosdick, Heidi M; Gerhold, Richard; Su, Chunlei; Mignucci-Giannoni, Antonio A; Bonde, Robert K; Chapman, Alycia; Rivera-Pérez, Carla I; Martinez, Jessica; Miller, Debra L

    2017-12-19

    Toxoplasma gondii is a feline protozoan reported to cause morbidity and mortality in manatees and other marine mammals. Given the herbivorous nature of manatees, ingestion of oocysts from contaminated water or seagrass is presumed to be their primary mode of infection. The objectives of this study were to investigate oocyst contamination of seagrass beds in Puerto Rico and determine the seroprevalence of T. gondii in Antillean (Trichechus manatus manatus) and Florida (T. m. latirostris) manatees. Sera or plasma from Antillean (n = 5) and Florida (n = 351) manatees were tested for T. gondii antibodies using the modified agglutination test. No T. gondii DNA was detected via PCR in seagrass samples (n = 33) collected from Puerto Rico. Seroprevalence was 0%, suggesting a lower prevalence of T. gondii in these manatee populations than previously reported. This was the first study to investigate the potential oocyst contamination of the manatee diet, and similar studies are important for understanding the epidemiology of T. gondii in herbivorous marine mammals.

  8. Relationships of environmental contaminants to reproductive success in red-breasted mergansers (Mergus serrator) from Lake Michigan

    USGS Publications Warehouse

    Heinz, G.H.; Haseltine, S.D.; Reichel, W.L.; Hensler, G.L.

    1983-01-01

    In 1977 and 1978, we studied red-breasted mergansers Mergus serrator nesting on islands in northwestern Lake Michigan to determine whether environmental contaminants were having effects on reproduction. Seventeen contaminants were measured in randomly chosen eggs from 206 nests under study. Using a variety of statistical approaches, we looked for effects of individual contaminants and combinations of contaminants on reproductive measurements such as nest desertion, failure of eggs to hatch, death of newly hatched ducklings, percentage hatching success, number of ducklings leaving the nest and eggshell thickness. We also looked for relationships between the levels of some contaminants in blood samples of 39 incubating females and reproductive success. A small degree of eggshell thinning was attributed to DDE and a few other statistical tests were significant, but no contaminant or combination of contaminants we measured seemed to have a pronounced effect on the aspects of reproduction we followed.

  9. Archive of Digital Boomer Seismic Reflection Data Collected During USGS Field Activity 08LCA04 in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, Central Florida, September 2008

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; Davis, Jeffrey B.; Flocks, James G.; Wiese, Dana S.

    2009-01-01

    From September 2 through 4, 2008, the U.S. Geological Survey and St. Johns River Water Management District (SJRWMD) conducted geophysical surveys in Lakes Cherry, Helen, Hiawassee, Louisa, and Prevatt, central Florida. This report serves as an archive of unprocessed digital boomer seismic reflection data, trackline maps, navigation files, GIS information, FACS logs, and formal FGDC metadata. Filtered and gained digital images of the seismic profiles are also provided. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are also provided.

  10. Survival of young American alligators on a Florida lake

    USGS Publications Warehouse

    Woodward, A.R.; Hines, T.C.; Abercrombie, C.L.; Nichols, J.D.

    1987-01-01

    A capture-recapture study was conducted on Orange Lake, Florida, from 1979 through 1984 to estimate survival rates of young in an American alligator (Alligator mississippiensis) populations. Hatchlings remained together in sibling groups (pods) for at least their 1st year and then began to disperse during their 2nd spring and summer. Mortality through mid-November of their 1st year was negligible. Jolly-Seber (JS) survival estimates of hatchlings for 6 and 12 months were 76 and 41%, respectively. The 2-year JS estimate for the 1980 cohort was 8%. Minimum-Known-Alive (MKA) survival values were 72 and 46% of JS estimates for 6 months and 1 year of age. Survival during the 2nd 6 months of life (spring-summer) tended to be lower than survival during the 1st 6 months (fall-winter).

  11. Fusion of multisource and multiscale remote sensing data for water availability assessment in a metropolitan region

    NASA Astrophysics Data System (ADS)

    Chang, N. B.; Yang, Y. J.; Daranpob, A.

    2009-09-01

    Recent extreme hydroclimatic events in the United States alone include, but are not limited to, the droughts in Maryland and the Chesapeake Bay area in 2001 through September 2002; Lake Mead in Las Vegas in 2000 through 2004; the Peace River and Lake Okeechobee in South Florida in 2006; and Lake Lanier in Atlanta, Georgia in 2007 that affected the water resources distribution in three states - Alabama, Florida and Georgia. This paper provides evidence from previous work and elaborates on the future perspectives that will collectively employ remote sensing and in-situ observations to support the implementation of the water availability assessment in a metropolitan region. Within the hydrological cycle, precipitation, soil moisture, and evapotranspiration can be monitored by using WSR-88D/NEXRAD data, RADARSAT-1 images, and GEOS images collectively to address the spatiotemporal variations of quantitative availability of waters whereas the MODIS images may be used to track down the qualitative availability of waters in terms of turbidity, Chlorophyll-a and other constitutes of concern. Tampa Bay in Florida was selected as a study site in this analysis, where the water supply infrastructure covers groundwater, desalination plant, and surface water at the same time. Research findings show that through the proper fusion of multi-source and multi-scale remote sensing data for water availability assessment in metropolitan region, a new insight of water infrastructure assessment can be gained to support sustainable planning region wide.

  12. Analysis of water-level fluctuations of Lakes Winona and Winnemissett-- two landlocked lakes in a karst terrane in Volusia County, Florida

    USGS Publications Warehouse

    Hughes, G.H.

    1979-01-01

    The water levels of Lakes Winona and Winnemissett in Volusia County, Fla., correlate reasonably well during dry spells but only poorly during wet spells. Disparities develop mostly at times when the lake levels rise abruptly owing to rainstorms passing over the lake basins. The lack of correlation is attributed to the uneven distribution of the storm rainfall, even though the average annual rainfall at National Weather Service gages in the general area of the lakes is about the same. Analyses of the monthly rainfall data show that the rainfall variability between gages is sufficient to account for most of the disparity between monthly changes in the levels of the two lakes. The total annual rainfall at times may differ between rainfall gages by as much as 15 to 20 inches. Such differences tend to balance over the long term but may persist in the same direction for two or more years, causing apparent anomalies in lake-level fluctuations. (Woodard-USGS)

  13. Concentrations of elements in fish fillets, fish muscle plugs, and crayfish from the 2011 Missouri Department of Conservation general contaminant monitoring program

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Brumbaugh, William G.; McKee, Michael J.

    2013-01-01

    This report presents the results of a contaminant monitoring survey conducted annually by the Missouri Department of Conservation to examine the levels of selected elemental contaminants in fish fillets, fish muscle plugs, and crayfish. Fillet samples of yellow bullhead (Ameiurus natalis), golden redhorse (Moxostoma erythrurum), longear sunfish (Lepomis megalotis), and channel catfish (Ictalurus punctatus) were collected from six sites as part of the Missouri Department of Conservation’s Fish Contaminant Monitoring Program. Fish dorsal muscle plugs were collected from largemouth bass (Micropterus salmoides) at eight of the sites, and crayfish from two sites. Following preparation and analysis of the samples, highlights of the data were as follows: cadmium and lead residues were most elevated in crayfish tissue samples from the Big River at Cherokee Landing, with 1 to 8 micrograms per gram dry weight and 22 to 45 micrograms per gram dry weight, respectively. Some dorsal muscle plugs from largemouth bass collected from Clearwater Lake, Lake St. Louis, Noblett Lake, Hazel Creek Lake, and Harrison County Lake contained mercury residues (1.7 to 4.7 micrograms per gram dry weight) that exceeded the U.S. Environmental Protection Agency Water Quality Criterion of 1.5 micrograms per gram dry weight of fish tissue (equivalent to 0.30 micrograms per gram wet weight).

  14. Metal contaminations impact archaeal community composition, abundance and function in remote alpine lakes.

    PubMed

    Compte-Port, Sergi; Borrego, Carles M; Moussard, Hélène; Jeanbille, Mathilde; Restrepo-Ortiz, Claudia Ximena; de Diego, Alberto; Rodriguez-Iruretagoiena, Azibar; Gredilla, Ainara; Fdez-Ortiz de Vallejuelo, Silvia; Galand, Pierre E; Kalenitchenko, Dimitri; Rols, Jean-Luc; Pokrovsky, Oleg S; Gonzalez, Aridane G; Camarero, Lluis; Muñiz, Selene; Navarro-Navarro, Enrique; Auguet, Jean-Christophe

    2018-04-24

    Using the 16S rRNA and mcrA genes, we investigated the composition, abundance and activity of sediment archaeal communities within 18 high-mountain lakes under contrasted metal levels from different origins (bedrock erosion, past-mining activities and atmospheric depositions). Bathyarchaeota, Euryarchaeota and Woesearchaeota were the major phyla found at the meta-community scale, representing 48%, 18.3% and 15.2% of the archaeal community respectively. Metals were equally important as physicochemical variables in explaining the assemblage of archaeal communities and their abundance. Methanogenesis appeared as a process of central importance in the carbon cycle within sediments of alpine lakes as indicated by the absolute abundance of methanogen 16S rRNA and mcrA gene transcripts (10 5 to 10 9 copies g -1 ). We showed that methanogen abundance and activity were significantly reduced with increasing concentrations of Pb and Cd, two indicators of airborne metal contaminations. Considering the ecological importance of methanogenesis in sediment habitats, these metal contaminations may have system wide implications even in remote area such as alpine lakes. Overall, this work was pioneer in integrating the effect of long-range atmospheric depositions on archaeal communities and indicated that metal contamination might significantly compromise the contribution of Archaea to the carbon cycling of the mountain lake sediments. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Protocol to Reconstruct Historical Contaminant Loading to Large Lakes: The Lake Michigan Sediment Record of Mercury

    EPA Science Inventory

    Samples of opportunity from Pb-210 dated sediment cores collected from Lake Michigan between 1994 and 1996 were analyzed for mercury. The storage of both anthropogenic and total (post-1850) mercury in the lake was calculated to be 186 and 228 metric tons, respectively. By setti...

  16. Florida seagrass habitat evaluation: A comparative survey for chemical quality

    EPA Science Inventory

    Contaminant concentrations were determined for media associated with 13 Florida seagrass beds. Concentrations of 10 trace metals were more commonly detected in surface water, sediment and two seagrass species than PAHs, pesticides and PCBs. Concentrations of copper and arsenic ...

  17. Uptake and subcellular distributions of cadmium and selenium in transplanted aquatic insect larvae.

    PubMed

    Rosabal, Maikel; Ponton, Dominic E; Campbell, Peter G C; Hare, Landis

    2014-11-04

    We transplanted larvae of the phantom midge Chaoborus punctipennis from a lake having lower concentrations of Cd and Se (Lake Dasserat) to a more contaminated lake (Lake Dufault) located near a metal smelter in Rouyn-Noranda, Quebec. Transplanted individuals were held in mesh mesocosms for up to 16 days where they were fed with indigenous contaminated zooplankton. Larval Cd and Se burdens increased over time, and came to equal those measured in indigenous C. punctipennis from contaminated Lake Dufault. Larval Se burdens increased steadily, whereas those of Cd showed an initial lag phase that we explain by a change in the efficiency with which this insect assimilated Cd from its prey. We measured Cd and Se in subcellular fractions and found that larvae sequestered the majority (60%) of the incoming Cd in a detoxified fraction containing metal-binding proteins, whereas a minority of this nonessential metal was in sensitive fractions (20%). In contrast, a much higher proportion of the essential element Se (40%) was apportioned to metabolically active sensitive fractions. Larvae took up equimolar quantities of these elements over the course of the experiment. Likewise, Cd and Se concentrations in wild larvae were equimolar, which suggests that they are exposed to equimolar bioavailable concentrations of these elements in our study lakes.

  18. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants.

    PubMed

    Chiovarou, Erica D; Siewicki, Thomas C

    2008-01-15

    Hundreds, if not thousands, of fish kills and kills of other aquatic organisms occur following storms in the US each year, but they are difficult to quantify, investigate, or manage due to the transient nature of major storms and the other priorities following them. Methods are needed to better understand the causes of these kills. The Pesticide Root Zone Model and the Exposure Analysis Modeling System were used to compare risk to resident biota in estuarine headwaters in two locations under various conditions. Contaminants were selected using a landuse-based preliminary risk assessment approach. Atrazine, fipronil, and imidacloprid were compared for potential impacts on important prey species, including copepods and grass shrimp, in Lake Bethel in Volusia County, Florida. Carbaryl, diquat dibromide, and fluoranthene were compared for potential impacts on salmon and other aquatic species in Johnson Creek, near Portland, Oregon. Predictions of contaminant concentrations in groundwater runoff, surface water, benthic sediments, and pelagic biota tissue were obtained based upon watershed characteristics, storm types, and contaminant chemistry and application. For all six contaminants, the simulated concentrations were highest following the 100-yr storms and lowest following the 2-yr storms. Aqueous concentrations ranged between 84 and 2100% higher in 100-yr compared to two-yr storms. Most atrazine and carbaryl concentrations were highest if applied one day before the storm while fipronil, imidacloprid, and diquat dibromide were highest if applied 16 days prior to the storm. Carbaryl and fluoranthene concentrations were highest in the forested segment of the watershed while diquat dibromide concentrations were highest in the agricultural segment. In Florida simulations, groundwater and surface water concentrations generally were highest for atrazine, followed by imidacloprid, and then fipronil. Atrazine poses the highest risk to algae and copepods due to its mobility and high allowable application rates. Fipronil and imidacloprid, though highly toxic, were not predicted to occur at high enough concentrations to pose a risk. In Oregon simulations, groundwater and surface water concentrations generally were highest for carbaryl, followed by fluoranthene, and then diquat dibromide. For salmonids, fluoranthene poses a higher risk than carbaryl, whereas it is unlikely that diquat dibromide will affect salmonids in this system. For crustaceans, carbaryl poses the greatest risk, followed by fluoranthene. Diquat dibromide was determined to pose little risk. These tests demonstrate the use of preliminary risk assessment, along with transport and fate modeling, to characterize risks to aquatic organisms without the need for in situ chemical measurements.

  19. UNDERSTANDING THE IMPACT OF ENVIRONMENTAL VARIABLES ON THE LEACHING OF MERCURY-CONTAMINATED MINE WASTES FROM THE SULFUR BANK MERCURY MINE, CLEAR LAKE, CA

    EPA Science Inventory

    For nearly a century, Clear Lake in northern California has received inputs of mercury (Hg) mining wastes trom the Sulfur Bank Mercury Mine (SBMM). About 1.2 million tons of Hg-contaminated overburden and mine tailings were distributed over a 50-ha surface area due to mining oper...

  20. Ground-water contamination by crude oil at the Bemidji, Minnesota, research site; US Geological Survey Toxic Waste--ground-water contamination study

    USGS Publications Warehouse

    Hult, M.F.

    1984-01-01

    The project site is near Bemidji in northern Minnesota where an accidental spill of 10,500 barrels of crude oil occurred when a pipeline broke on August 20, 1979. Regulatory and remedial actions have been completed. The site is in a remote area with neither man-made hydraulic stresses nor other anthropogenic sources of the compounds of interest. The spill is in the recharge area of a local flow system that discharges to a small closed lake approximately 1,000 feet down the hydraulic gradient. The aquifer is pitted outwash dissected by younger glacial channels and is underlain by poorly permeable till at a depth of about 80 feet. Ground water dissolves oil floating on the water table under the spill site and moves toward the lake. At the water table, ground water enters the lake through lacustrine sediments; at depth, flow may be underneath the lake through the outwash. Contaminant transport has been as rapid as 4 feet per day based on the rate of movement of contaminants monitored through wells installed within a few days of the spill, but average rates are undoubtedly much less.

  1. Chemical contamination and physical characteristics of sediments in the upper Great Lakes connecting channels 1985

    USGS Publications Warehouse

    Bertram, Paul E.; Edsall, Thomas A.; Manny, Bruce A.; Nichols, Susan J.; Schloesser, Donald W.

    1991-01-01

    Contamination of sediments by toxic organic substances and heavy metals was widespread throughout the connecting channels of the upper Great Lakes in 1985. Sediments at 250 stations in the connecting channels were analyzed for total PCBs, oil and grease, phenols, total cyanide, total volatile solids, mercury, cadmium, chromium, cobalt, copper, lead, nickel, and zinc, and the results were evaluated according to U.S. EPA guidelines for polluted sediments. Sediments were most heavily contaminated near industrialized areas, although some areas more than 40 km downstream from known point sources of pollution were moderately contaminated by oil and metals.

  2. Volusia Blue Spring - A Hydrological Treasure

    USGS Publications Warehouse

    German, Edward R.

    2008-01-01

    Springs are natural openings in the ground through which water beneath the surface discharges into hydrologic features such as lakes, rivers, or the ocean. The beautiful springs and spring rivers are among Florida's most valued natural resources; their gemlike refreshing waters have been a focal point of life from prehistoric times to the present (2008). The steady flow of freshwater at a nearly constant water temperature attracted animals now long absent from Florida's landscape. Fossil remains and human artifacts, discovered by divers from many spring runs, attest to the importance of springs to the State's earliest inhabitants. Explorers of Florida, from Ponce de Leon to John and William Bartram and others, often mentioned the springs that were scattered across central and northern Florida. As colonists and settlers began to inhabit Florida, springs continued to be the focus of human activity, becoming sites of missions, towns, and steamboat landings.

  3. Great Lakes fish consumption advisories: is mercury a concern?

    PubMed

    Bhavsar, Satyendra P; Awad, Emily; Mahon, Chris G; Petro, Steve

    2011-10-01

    The majority of the restrictive fish consumption advisories for the Canadian waters of the Great Lakes issued by the Ontario Ministry of the Environment, Canada based on the most restrictive contaminant, are attributed to polychlorinated biphenyls (PCBs) and dioxins/furans. Mercury currently causes about <1-2.5% and 9-16% of the restrictive advisories for the general population (GP) and sensitive population of children under 15 and women of child-bearing age (SP), respectively (the St. Lawrence River is not considered here). Toxaphene causes minor restrictions. At present it is not clear that if PCBs and dioxins/furans were to decrease below their fish consumption advisory guidelines, current fish mercury levels would replace some, most or all of the consumption restrictions. In order to examine this, location-, species- and size-specific fish consumption advisories were calculated for a "mercury only" scenario by disregarding the presence of the other contaminants. In the absence of other contaminants, mercury would replace some of the current advisories caused by other contaminants; however, the overall advisories would be minimally to moderately restrictive (<1-7% for GP; 13-32% for SP). Almost half of the Great Lake blocks considered here would have more than double the unrestricted consumption advisories than they currently have, with Lake Ontario showing the greatest improvement. Certain size ranges of each species across the main basins of the Canadian waters of the Great Lakes would be deemed safe for unrestricted consumption. However, at least some sizes of a number of species from certain locations of each lake would still have "do not eat" advisories issued for the SP, although these restrictions would be minimal for Lake Erie. These results suggest that the current mercury levels in the Canadian Great Lakes fish are of very minor concern for the GP and of moderate concern for the SP.

  4. Water Use in Florida, 2005 and Trends 1950-2005

    USGS Publications Warehouse

    Marella, Richard L.

    2008-01-01

    Water is among Florida's most valued resources. The State has more than 1,700 streams and rivers, 7,800 freshwater lakes, 700 springs, 11 million acres of wetlands, and underlying aquifers yielding quantities of freshwater necessary for both human and environmental needs (Fernald and Purdum, 1998). Although renewable, these water resources are finite, and continued growth in population, tourism, and agriculture will place increased demands on these water supplies. The permanent population of Florida in 2005 totaled 17.9 million, ranking fourth in the Nation (University of Florida, 2006); nearly 86 million tourists visited the State (Orlando Business Journal, 2006). In 2005, Florida harvested two-thirds of the total citrus production in the United States and ranked fifth in the Nation net farm income (Florida Department of Agriculture and Consumer Services, 2006). Freshwater is vital for sustaining Florida's population, economy, and agricultural production. Accurate estimates reflecting water use and trends in Florida are compiled in 5-year intervals by the U.S. Geological Survey (USGS) in cooperation with the Florida Department of Environmental Protection (FDEP) and the Northwest Florida, St. Johns River, South Florida, Southwest Florida, and Suwannee River Water Management Districts (Marella, 2004). This coordinated effort provides the necessary data and information for planning future water needs and resource management. The purpose of this fact sheet is to present the highlights of water use in Florida for 2005 along with some significant trends in withdrawals since 1950.

  5. Effects of recharge from drainage wells on quality of water in the Floridan Aquifer in the Orlando area, central Florida

    USGS Publications Warehouse

    Schiner, G.R.; German, E.R.

    1983-01-01

    Approximately 400 drainage wells in the Orlando area inject, by gravity, large quantities of stormwater runoff that may or may not be suitable for most purposes without treatment into the same freshwater zones of the Floridan aquifer tapped for public supply. The wells are used mostly to control lake levels and dispose of urban storm runoff. Recharge from drainage wells compensates for heavy withdrawals from the Floridan aquifer and helps maintain aquifer pressures that retard upward saltwater encroachment. Sixty-five supply wells and 21 drainage wells within a 16-mile radius of Orlando were sampled from September 1977 to June 1979. Most constituent concentrations were slightly higher in water from drainage wells than in water from supply wells. The most notable differences were in bacteria colony count and total nitrogen concentrations. With the exception of bacteria, water from drainage wells would generally meet the maximum contaminant levels established by the National Interim Primary and Proposed Secondary Drinking Water Regulations. (USGS)

  6. What killed Frame Lake? A precautionary tale for urban planners.

    PubMed

    Gavel, Melody J; Patterson, R Timothy; Nasser, Nawaf A; Galloway, Jennifer M; Hanna, Bruce W; Cott, Peter A; Roe, Helen M; Falck, Hendrik

    2018-01-01

    Frame Lake, located within the city of Yellowknife, Northwest Territories, Canada, has been identified as requiring significant remediation due to its steadily declining water quality and inability to support fish by the 1970s. Former gold mining operations and urbanization around the lake have been suspected as probable causes for the decline in water quality. While these land-use activities are well documented, little information is available regarding their impact on the lake itself. For this reason, Arcellinida, a group of shelled protozoans known to be reliable bioindicators of land-use change, were used to develop a hydroecological history of the lake. The purpose of this study was to use Arcellinida to: (1) document the contamination history of the lake, particularly related to arsenic (As) associated with aerial deposition from mine roaster stacks; (2) track the progress of water quality deterioration in Frame Lake related to mining, urbanization and other activities; and (3) identify any evidence of natural remediation within the lake. Arcellinida assemblages were assessed at 1-cm intervals through the upper 30 cm of a freeze core obtained from Frame Lake. The assemblages were statistically compared to geochemical and loss-on-ignition results from the core to document the contamination and degradation of conditions in the lake. The chronology of limnological changes recorded in the lake sediments were derived from 210 Pb, 14 C dating and known stratigraphic events. The progress of urbanization near the lake was tracked using aerial photography. Using Spearman correlations, the five most significant environmental variables impacting Arcellinida distribution were identified as minerogenics, organics, As, iron and mercury ( p  < 0.05; n  = 30). Based on CONISS and ANOSIM analysis, three Arcellinida assemblages are identified. These include the Baseline Limnological Conditions Assemblage (BLCA), ranging from 17-30 cm and deposited in the early Holocene >7,000 years before present; the As Contamination Assemblage (ACA), ranging from 7-16 cm, deposited after ∼1962 when sedimentation began in the lake again following a long hiatus that spanned to the early Holocene; and the Eutrophication Assemblage (EA), ranging from 1-6 cm, comprised of sediments deposited after 1990 following the cessation of As and other metal contaminations. The EA developed in response to nutrient-rich waters entering the lake derived from the urbanization of the lake catchment and a reduction in lake circulation associated with the development at the lake outlet of a major road, later replaced by a causeway with rarely open sluiceways. The eutrophic condition currently charactering the lake-as evidenced by a population explosion of eutrophication indicator taxa Cucurbitella tricuspis -likely led to a massive increase in macrophyte growth and winter fish-kills. This ecological shift ultimately led to a system dominated by Hirudinea (leeches) and cessation of the lake as a recreational area.

  7. Concentrations of organotin compounds in various fish species in the Finnish lake waters and Finnish coast of the Baltic Sea.

    PubMed

    Rantakokko, Panu; Hallikainen, Anja; Airaksinen, Riikka; Vuorinen, Pekka J; Lappalainen, Antti; Mannio, Jaakko; Vartiainen, Terttu

    2010-05-15

    Organotin compounds (OTCs) leaching from the antifouling paints used in boats and ships have contaminated many water areas worldwide. The purpose of this study was to obtain a general view of the organotin contamination in fish in Finnish lake areas and Finnish coast of the Baltic Sea using perch as the main indicator species. Perch sampling covered areas presumed as less contaminated and areas suspected as more contaminated. Besides perch, 12 other species were sampled from sites presumed as less contaminated. OTCs measured were mono-, di- and tributyltin, mono-, di-, and triphenyltin and dioctyltin. The sum concentration of OTCs (SigmaOTCs) in perch in the least contaminated areas of the Baltic Sea were around 20 ng/g fresh weight (fw) and less than 10 ng/g fw in lake areas. In heavily contaminated areas of the Baltic Sea 150-500 ng/g fw in perch were detected. In lake areas the maximum SigmaOTCs in perch was only 30 ng/g fw. With regard to the other species in the Baltic Sea, salmon, sprat, flounder, whitefish, vendace and lamprey contained low concentrations (SigmaOTCs mainly less than 20 ng/g fw), whereas in pike, pike-perch, burbot and bream concentrations were higher. SigmaOTCs in lake fish were generally lower than in the Baltic Sea. In a distance gradient study, SigmaOTCs in perch decreased quickly from nearly 200 ng/g fw at a contaminated harbor area to 35 ng/g fw during a distance of 5 km. Further decrease was slower and reached 15 ng/g fw at 100 km. In a size dependence study triphenyltin showed better correlation with the fish length than tributyltin for all species studied, i.e. for perch (0.16 vs 0.26), pike-perch (0.13 vs 0.24) and roach (0.46 vs 0.80). High correlation for roach may be partly explained by smaller number of samples collected and small length range. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Particle-associated contaminants in street dust, parking lot dust, soil, lake-bottom sediment, and suspended and streambed sediment, Lake Como and Fosdic Lake watersheds, Fort Worth, Texas, 2004

    USGS Publications Warehouse

    Wilson, Jennifer T.; Van Metre, Peter C.; Werth, Charles J.; Yang, Yanning

    2006-01-01

    A previous study by the U.S. Geological Survey of impaired water bodies in Fort Worth, Texas, reported elevated but variable concentrations of particle-associated contaminants (PACs) comprising chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, and trace elements in suspended and bed sediment of lakes and streams affected by urban land use. The U.S. Geological Survey, in cooperation with the City of Fort Worth, collected additional samples during October 2004 to investigate sources of PACs in the watersheds of two impaired lakes: Lake Como and Fosdic Lake. Source materials and aquatic sediment were sampled and analyzed for PACs. Source materials sampled consisted of street dust and soil from areas with residential and commercial land use and parking lot dust from sealed and unsealed parking lots. Aquatic sediment sampled consisted of bottom-sediment cores from the two lakes and suspended and streambed sediment from the influent stream of each lake. Samples were analyzed for chlorinated hydrocarbons (organochlorine pesticides and polychlorinated biphenyls), polycyclic aromatic hydrocarbons, major and trace elements, organic carbon, grain size, and radionuclides.

  9. The Value of Using Multiple Metrics to Evaluate PCB Exposure.

    PubMed

    Archer, Megan C; Harwood, Amanda D; Nutile, Samuel A; Hartz, Kara E Huff; Mills, Marc A; Garvey, Jim E; Lydy, Michael J

    2018-04-01

    Current methods for evaluating exposure in ecosystems contaminated with hydrophobic organic contaminants typically focus on sediment exposure. However, a comprehensive environmental assessment requires a more holistic approach that not only estimates sediment concentrations, but also accounts for exposure by quantifying other pathways, such as bioavailability, bioaccumulation, trophic transfer potential, and transport of hydrophobic organic contaminants within and outside of the aquatic system. The current study evaluated the ability of multiple metrics to estimate exposure in an aquatic ecosystem. This study utilized a small lake contaminated with polychlorinated biphenyls (PCBs) to evaluate exposure to multiple trophic levels as well as the transport of these contaminants within and outside of the lake. The PCBs were localized to sediments in one area of the lake, yet this area served as the source of PCBs to aquatic invertebrates, emerging insects, and fish and terrestrial spiders in the riparian ecosystem. The Tenax extractable and biota PCB concentrations indicated tissue concentrations were localized to benthic invertebrates and riparian spiders in a specific cove. Fish data, however, demonstrated that fish throughout the lake had PCB tissue concentrations, leading to wider exposure risk. The inclusion of PCB exposure measures at several trophic levels provided multiple lines of evidence to the scope of exposure through the aquatic and riparian food web, which aids in assessing risk and developing potential future remediation strategies.

  10. Peat

    USGS Publications Warehouse

    Jasinski, S.M.

    1998-01-01

    The United States continued as a significant producer and consumer of peat for horticultural, agricultural and industrial applications in 1997. Several operations in the Great Lakes and the Southeast regions dominated US production. Florida, Michigan and Minnesota were the largest producing states.

  11. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms.

    PubMed

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2010-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.

  12. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms

    PubMed Central

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2009-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure. This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period. These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken. PMID:20161425

  13. Integrating remote sensing approach with pollution monitoring tools for aquatic ecosystem risk assessment and management: a case study of Lake Victoria (Uganda).

    PubMed

    Focardi, Silvia; Corsi, Ilaria; Mazzuoli, Stefania; Vignoli, Leonardo; Loiselle, Steven A; Focardi, Silvano

    2006-11-01

    Aquatic ecosystems around the world, lake, estuaries and coastal areas are increasingly impacted by anthropogenic pollutants through different sources such as agricultural, industrial and urban discharges, atmospheric deposition and terrestrial drainage. Lake Victoria is the second largest lake in the world and the largest tropical lake. Bordered by Tanzania, Uganda, and Kenya, it provides a livelihood for millions of Africans in the region. However, the lake is under threat from eutrophication, a huge decline in the number of native fish species caused by several factors including loss of biodiversity, over fishing and pollution has been recently documented. Increasing usage of pesticides and insecticides in the adjacent agricultural areas as well as mercury contamination from processing of gold ore on the southern shores are currently considered among the most emergent phenomena of chemical contamination in the lake. By the application of globally consistent and comprehensive geospatial data-sets based on remote sensing integrated with information on heavy metals accumulation and insecticides exposure in native and alien fish populations, the present study aims at assessing the environmental risk associated to the contamination of the Lake Victoria water body on fish health, land cover distribution, biodiversity and the agricultural area surrounding the lake. By the elaboration of Landsat 7 TM data of November 2002 and Landsat 7 TM 1986 we have calculated the agriculture area which borders the Lake Victoria bay, which is an upland plain. The resulting enhanced nutrient loading to the soil is subsequently transported to the lake by rain or as dry fall. The data has been inserted in a Geographical information System (ARCGIS) to be upgraded and consulted. Heavy metals in fish fillets showed concentrations rather low except for mercury being higher than others as already described in previous investigations. In the same tissue, cholinesterases activity (ChE) as an indicator of insecticides exposure showed significant differences among fish species in both activity and sensitivity of selected inhibitor insecticides. This integrated approach aims at identifying and quantifying selected aquatic environmental issues which integrated with monitoring techniques such as contaminant concentrations and biological responses to insecticides exposure in fish populations will provide a scientific basis for aquatic zones management and assist in policy formulations at the national and international levels.

  14. Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China.

    PubMed

    Zheng, Liu-Gen; Liu, Gui-Jian; Kang, Yu; Yang, Ren-Kang

    2010-07-01

    The Chaohu is one of the largest five freshwater lakes in China. It provides freshwater for agriculture, life, and part of industry. The quality of water becomes worst and worst due to the toxic matter. In this study, we collected the samples from the sedimentary mud in the lake. The distribution of some potential hazardous trace elements (Cu, Ni, Cr, As, Pb, Cd, and Hg) in the sediments of western Chaohu Lake, has been determined and studied, and the enrichment factors, the index of geoaccumulation, and potential ecological risk were analyzed and calculated. The results show that: the levels of selected potential hazardous trace element vary from different sampling sites and significant anthropogenic impact of Pb and Cd occur in sediments. The contamination rank of Pb and Cd are moderate, and Pb has a light potential ecological risk, but Cd is heavy. The total potential ecological risk of the selected hazardous trace elements in this study in Chaohu Lake is moderate. Cluster and correlation analysis indicate that the selected potential hazardous trace element pollutant has different source and co-contamination also occur in sediments.

  15. Uptake of arsenic and metals by tadpoles at an historically contaminated Texas site

    USGS Publications Warehouse

    Clark, D.R.; Cantu, R.; Cowman, D.F.; Maxson, D.J.

    1998-01-01

    On 14 May 1994, tadpoles were collected from Lateral Pond and Municipal Lake in Bryan, Texas. These waters are immediately downstream from Finfeather Lake which was directly contaminated during 53 years of industrial production of arsenic (As)-based cotton defoliants. The tadpoles contained elevated levels of arsenic, chromium (Cr) and zinc (Zn). As far as it is known, the mean concentrations of As (6.87 p.p.m. wet weight) and Cr (6.91 p.p.m. wet weight) in cricket frog (Acris crepitans) tadpoles were the highest ever reported in tadpoles. The Zn in the tadpoles exceeded the levels found in sediments by six to 11 times. The concentrations of As, Cr and Zn in Finfeather Lake in 1994 may have been toxic because tadpoles could not be found there. Ranid tadpoles and a newly transformed ranid frog found dead in Lateral Pond and Municipal Lake in 1994 may indicate that the elements reached toxic levels in some individual amphibians. The concentrations of As, Cr and Zn found in the tadpoles in this study might be toxic to predators. Mortality of turtles showing symptoms linked to chronic exposure to As was reported in Finfeather Lake in 1973. Turtles were not reported in Finfeather Lake again until 1996. Observations at Municipal Lake in 1994-1996 showed abundant tadpoles and turtles but no snakes, which also have not been seen at Finfeather Lake. This absence of snakes may indicate that their sensitivity or exposure to the existing contaminants is greater than that of frogs and turtles.

  16. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.

    PubMed

    Kramer, Benjamin J; Davis, Timothy W; Meyer, Kevin A; Rosen, Barry H; Goleski, Jennifer A; Dick, Gregory J; Oh, Genesok; Gobler, Christopher J

    2018-01-01

    Lake Okeechobee, FL, USA, has been subjected to intensifying cyanobacterial blooms that can spread to the adjacent St. Lucie River and Estuary via natural and anthropogenically-induced flooding events. In July 2016, a large, toxic cyanobacterial bloom occurred in Lake Okeechobee and throughout the St. Lucie River and Estuary, leading Florida to declare a state of emergency. This study reports on measurements and nutrient amendment experiments performed in this freshwater-estuarine ecosystem (salinity 0-25 PSU) during and after the bloom. In July, all sites along the bloom exhibited dissolved inorganic nitrogen-to-phosphorus ratios < 6, while Microcystis dominated (> 95%) phytoplankton inventories from the lake to the central part of the estuary. Chlorophyll a and microcystin concentrations peaked (100 and 34 μg L-1, respectively) within Lake Okeechobee and decreased eastwards. Metagenomic analyses indicated that genes associated with the production of microcystin (mcyE) and the algal neurotoxin saxitoxin (sxtA) originated from Microcystis and multiple diazotrophic genera, respectively. There were highly significant correlations between levels of total nitrogen, microcystin, and microcystin synthesis gene abundance across all surveyed sites (p < 0.001), suggesting high levels of nitrogen supported the production of microcystin during this event. Consistent with this, experiments performed with low salinity water from the St. Lucie River during the event indicated that algal biomass was nitrogen-limited. In the fall, densities of Microcystis and concentrations of microcystin were significantly lower, green algae co-dominated with cyanobacteria, and multiple algal groups displayed nitrogen-limitation. These results indicate that monitoring and regulatory strategies in Lake Okeechobee and the St. Lucie River and Estuary should consider managing loads of nitrogen to control future algal and microcystin-producing cyanobacterial blooms.

  17. Survey design for lakes and reservoirs in the United States to assess contaminants in fish tissue.

    PubMed

    Olsen, Anthony R; Snyder, Blaine D; Stahl, Leanne L; Pitt, Jennifer L

    2009-03-01

    The National Lake Fish Tissue Study (NLFTS) was the first survey of fish contamination in lakes and reservoirs in the 48 conterminous states based on a probability survey design. This study included the largest set (268) of persistent, bioaccumulative, and toxic (PBT) chemicals ever studied in predator and bottom-dwelling fish species. The U.S. Environmental Protection Agency (USEPA) implemented the study in cooperation with states, tribal nations, and other federal agencies, with field collection occurring at 500 lakes and reservoirs over a four-year period (2000-2003). The sampled lakes and reservoirs were selected using a spatially balanced unequal probability survey design from 270,761 lake objects in USEPA's River Reach File Version 3 (RF3). The survey design selected 900 lake objects, with a reserve sample of 900, equally distributed across six lake area categories. A total of 1,001 lake objects were evaluated to identify 500 lake objects that met the study's definition of a lake and could be accessed for sampling. Based on the 1,001 evaluated lakes, it was estimated that a target population of 147,343 (+/-7% with 95% confidence) lakes and reservoirs met the NLFTS definition of a lake. Of the estimated 147,343 target lakes, 47% were estimated not to be sampleable either due to landowner access denial (35%) or due to physical barriers (12%). It was estimated that a sampled population of 78,664 (+/-12% with 95% confidence) lakes met the NLFTS lake definition, had either predator or bottom-dwelling fish present, and could be sampled.

  18. LONG-TERM RECOVERY OF PCB-CONTAMINATED SURFACE SEDIMENTS AT THE SANGAMO-WESTON/TWELVEMILE CREEK/LAKE HARTWELL SUPERFUND SITE

    EPA Science Inventory

    Natural recovery of contaminated sediments relies on burial of contaminated sediments with increasingly clean sediments over time (i.e., natural capping). Natural capping reduces the risk of resuspension of contaminated surface sediments, and it reduces the potential for contamin...

  19. Fish Consumption in Connecticut, Florida, Minnesota, and North Dakota (Final Report)

    EPA Science Inventory

    In August 2013, EPA announced the availability of the final report,Fish Consumption in Connecticut, Florida, Minnesota, and North Dakota. Many state and local health agencies throughout the United States conduct area-specific surveys that monitor and evaluate contaminant ...

  20. Comparison of the hydrogeology and water quality of a ground-water augmented lake with two non-augmented lakes in northwest Hillsborough County, Florida

    USGS Publications Warehouse

    Metz, Patricia A.; Sacks, Laura A.

    2002-01-01

    The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study lakes, which is additional evidence of the limited confinement at Round Lake. A comparison of the water quality and lake-bottom sediments at the three lakes indicate that Round Lake is strongly influenced by the addition of large quantities of calcium-bicarbonate enriched augmentation water. Round Lake had higher alkalinity, pH, calcium and dissolved oxygen concentrations, specific conductance, and water clarity than the two non-augmented lakes. Round Lake was generally saturated to supersaturated with respect to calcite, but was undersaturated when augmentation was low and after high rainfall periods. Calcium carbonate has accumulated in the lake sediments from calcite precipitation, from macrophytes such as Nitella sp., and from the deposition of carbonate-rich mollusk shells, such as Planerbella sp., both of which thrive in the high alkalinity lake water. Lake-bottom sediments and aquatic biota at Round Lake had some of the highest radium-226 activity levels measured in a Florida lake. The high radium-226 levels (27 disintegrations per minute per dry mass) can be atrributed to augmenting the lake with ground water from the Upper Floridan aquifer. Although the ground water has relatively low levels of radium-226 (5.8 disintegrations per minute per liter), the large volumes of ground water added to the lake for more than 30 years have caused radium-226 to accumulate in the sediments and lake biota.The Round Lake basin had higher calcium and bicarbonate concentrations in the surficial aquifer than at the non-augmented lakes, which indicates the lateral leakage of calcium-bicarbonate enriched lake water into the surficial aquifer. Deuterium and oxygen-18 data indicated that water in well nests near the lake consists of as much as 100 percent lake leakage, and water from the augmentation well had a high percentage of recirculated lake water (between 59 and 73 percent lake leakage). The ground water surrounding Round Lake was undersaturated with respect to calcite, indicating that the water is capable of dissolving calcite in the underlying limestone aquifer. Annual and monthly ground-water outflow (lake leakage) was significantly higher at Round Lake than at the non-augmented lakes for the 3-year study period. Minimum estimates of the total annual ground-water inflow and outflow were made from monthly net ground-water flow values. Based on these estimates, total annual groundwater outflow from Round Lake was more than 10 times higher than for the non-augmented lakes. Local ground-water pumping, augmentation, and hydrogeologic factors are responsible for the high net ground-water outflow at Round Lake. Localized ground-water pumping causes the head difference between the lake and the Upper Floridan aquifer to increase, which increases lake leakage and results in lower lake levels. Augmenting the lake further increases the head difference between the lake, the water table, and the Upper Floridan aquifer, which results in an increase in lateral and vertical lake leakage. The lack of confinement or breaches in the intermediate confining unit facilitates the downward movement of this augmented lake water back into the Upper Floridan aquifer. The increase in ground-water circulation in the leakage-dominated hydrogeologic setting at Round Lake has made the basin more susceptible to karst activity (limestone dissolution, subsidence, and sinkhole formation)

  1. Benthic and Pelagic Contributions to Mysis Nutrition across Lake Superior

    EPA Science Inventory

    Quantification of the sources of nutrition to Mysis diluviana is needed to better understand the basis for production in Mysis lakes and to improve models of migration-driven nutrient and contaminant transport. We collected Mysis, plankton, and benthos across Lake Superior using ...

  2. Major hydrologic shifts in northwest Florida during the Holocene from a lacustrine sediment record

    NASA Astrophysics Data System (ADS)

    Rodysill, J. R.; Donnelly, J. P.

    2011-12-01

    Recent climate extremes have threatened water resource availability and destroyed homes and infrastructure along the heavily populated northern Gulf of Mexico coast. Water resources in Northwest Florida, in particular, suffer from declining aquifer levels and salt water intrusion despite the presence of extensive river and aquifer systems. Intensive water resource management has been necessary to meet water supply demands during recent droughts. Advanced preparedness for abrupt climate events requires the ability to anticipate when hydrologic extremes are likely to occur; however, the long-term history of hydrologic extremes is not well known, and the instrumental record is too short to resolve longer-term hydrologic variability. Reconstructing the pre-instrumental hydrologic history is essential to building our understanding of the timing of and the driving forces behind wet and dry extremes. Here we present a new record of paleohydrology in northwest Florida based upon variations in sediment lithology and geochemistry from Rattlesnake Lake. We see evidence for both brief and long-lived changes in the lake environment during the Holocene. We compare our record to published pollen-based reconstructions of paleohydrology to examine the spatial and temporal patterns of paleohydrologic extremes across the northern Gulf of Mexico region during the Holocene.

  3. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Goodbred, Steven L.; Orsak, Erik; Jenkins, Jill A.; Echols, Kathy R.; Rosen, Michael R.; Torres, Leticia

    2015-01-01

    Adult male Common Carp were sampled in 2007/08 over a full reproductive cycle at Lake Mead National Recreation Area. Sites sampled included a stream dominated by treated wastewater effluent, a lake basin receiving the streamflow, an upstream lake basin (reference), and a site below Hoover Dam. Individual body burdens for 252 contaminants were measured, and biological variables assessed included physiological [plasma vitellogenin (VTG), estradiol-17β (E2), 11-ketotestosterone (11KT)] and organ [gonadosomatic index (GSI)] endpoints. Patterns in contaminant composition and biological condition were determined by Principal Component Analysis, and their associations modeled by Principal Component Regression. Three spatially distinct but temporally stable gradients of contaminant distribution were recognized: a contaminant mixture typical of wastewaters (PBDEs, methyl triclosan, galaxolide), PCBs, and DDTs. Two spatiotemporally variable patterns of biological condition were recognized: a primary pattern consisting of reproductive condition variables (11KT, E2, GSI), and a secondary pattern including general condition traits (condition factor, hematocrit, fork length). VTG was low in all fish, indicating low estrogenic activity of water at all sites. Wastewater contaminants associated negatively with GSI, 11KT and E2; PCBs associated negatively with GSI and 11KT; and DDTs associated positively with GSI and 11KT. Regression of GSI on sex steroids revealed a novel, nonlinear association between these variables. Inclusion of sex steroids in the GSI regression on contaminants rendered wastewater contaminants nonsignificant in the model and reduced the influence of PCBs and DDTs. Thus, the influence of contaminants on GSI may have been partially driven by organismal modes-of-action that include changes in sex steroid production. The positive association of DDTs with 11KT and GSI suggests that lifetime, sub-lethal exposures to DDTs have effects on male carp opposite of those reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes.

  4. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA.

    PubMed

    Patiño, Reynaldo; VanLandeghem, Matthew M; Goodbred, Steven L; Orsak, Erik; Jenkins, Jill A; Echols, Kathy; Rosen, Michael R; Torres, Leticia

    2015-08-01

    Adult male Common Carp were sampled in 2007/08 over a full reproductive cycle at Lake Mead National Recreation Area. Sites sampled included a stream dominated by treated wastewater effluent, a lake basin receiving the streamflow, an upstream lake basin (reference), and a site below Hoover Dam. Individual body burdens for 252 contaminants were measured, and biological variables assessed included physiological [plasma vitellogenin (VTG), estradiol-17β (E2), 11-ketotestosterone (11KT)] and organ [gonadosomatic index (GSI)] endpoints. Patterns in contaminant composition and biological condition were determined by Principal Component Analysis, and their associations modeled by Principal Component Regression. Three spatially distinct but temporally stable gradients of contaminant distribution were recognized: a contaminant mixture typical of wastewaters (PBDEs, methyl triclosan, galaxolide), PCBs, and DDTs. Two spatiotemporally variable patterns of biological condition were recognized: a primary pattern consisting of reproductive condition variables (11KT, E2, GSI), and a secondary pattern including general condition traits (condition factor, hematocrit, fork length). VTG was low in all fish, indicating low estrogenic activity of water at all sites. Wastewater contaminants associated negatively with GSI, 11KT and E2; PCBs associated negatively with GSI and 11KT; and DDTs associated positively with GSI and 11KT. Regression of GSI on sex steroids revealed a novel, nonlinear association between these variables. Inclusion of sex steroids in the GSI regression on contaminants rendered wastewater contaminants nonsignificant in the model and reduced the influence of PCBs and DDTs. Thus, the influence of contaminants on GSI may have been partially driven by organismal modes-of-action that include changes in sex steroid production. The positive association of DDTs with 11KT and GSI suggests that lifetime, sub-lethal exposures to DDTs have effects on male carp opposite of those reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes. Published by Elsevier Inc.

  5. Introduction and summary: Chlorinated hydrocarbons as a factor in the reproduction and survival of lake trout (Salvelinus namaycush) in Lake Michigan

    USGS Publications Warehouse

    Willford, Wayne A.; Bergstedt, Roger A.; Berlin, William H.; Foster, Neal R.; Hesselberg, Robert J.; Mac, Michael J.; Passino, Dora R. May; Reinert, Robert E.; Rottiers, Donald V.

    1981-01-01

    Although lake trout (Salvelinus namaycush) were considered extinct in Lake Michigan by the mid 1950's, control of the parasitic sea lamprey (Petromyzon marinus) and extensive restocking resulted in an abundance of hatchery-produced lake trout in the lake by the early 1970's. However, no naturally produced yearling or older lake trout have been found in the lake during nearly a decade of assessment sampling. Among the numerous hypotheses proposed to account for this apparent reproductive failure of the planted lake trout, a frequently suggested cause is the well-documented contamination of the fish by toxic substances such as DDT and its metabolites, and polychlorinated biphenyls (PCB's) at concentrations reported as adversely affecting the hatching of eggs and survival of larval fish. However, manually stripped and fertilized eggs of Lake Michigan lake trout have hatched successfully and the fry have survived normally under a variety of hatchery conditions. This observation led to studies at the Great Lakes Fishery Laboratory on the performance and survival of fry hatched from eggs of Lake Michigan lake trout and exposed for 6 months to PCB's (Aroclor 1254) and DDE at concentrations similar to those present in offshore waters and zooplankton of Lake Michigan (10.0 ng/L PCB's and 1.0 ng/L DDE in water; 1.0 μg/g PCB's and 0.1 μg/g DDE in food), and at concentrations 5 and 25 times higher. Cumulative mortality of the fry exposed to simulated Lake Michigan levels of PCB's and DDE for 6 months was 40.7% — nearly twice that of unexposed (control) fry — and mortality at the highest exposure level was 46.5%. Evaluation of the growth, swimming performance, predator avoidance, temperature preference, and metabolism of the fry showed no significant effects attributable to exposure to PCB's and DDE, except for a lowering of preferred temperature at the highest (25x) exposures (the only concentration tested) to each contaminant and (additively) both contaminants combined. Although several factors have undoubtedly contributed to the lack of recruitment of naturally produced lake trout in Lake Michigan, the levels of PCB's and DDE present during the early to mid 1970's were sufficient to significantly reduce survival of any fry produced in the lake and thereby impede restoration of the lake trout population to self-sustainability. The added exposure of the fry to other toxic substances known to be present in the lake could have further reduced survival.

  6. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    A researcher from the University of Florida in Gainesville, checks the Dust Atmospheric Recovery Technology, or DART, spacecraft in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  7. About Deer Lake AOC

    EPA Pesticide Factsheets

    Named an Area of Concern under the Great Lakes Water Quality Agreement of 1987, due to beneficial use impairments caused by mercury contamination: consumption restrictions, deformities or reproductive problems, eutrophication.

  8. Seagrass mitigation site modeling and assessment.

    DOT National Transportation Integrated Search

    2013-05-01

    Spatiotemporal analysis of Lake Surprise and SL-15 (15th spoil island in St. Lucie County) has allowed for a robust assessment of successful Florida Department of Transportation (FDOT) activities. Project results showed that bridge construction in La...

  9. 18 CFR 281.202 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Algonquin Gas Transmission Company. Arkansas Louisiana Natural Gas Company. Cities Service Gas Company.... Florida Gas Transmission Company. Great Lakes Gas Transmission Company. Inter-City Minnesota Pipelines... River Transmission Company. Montana Dakota Utilities Company. National Fuel Gas Supply Company. North...

  10. Phase III Early Restoration Meeting - Lake Charles, LA | NOAA Gulf Spill

    Science.gov Websites

    Areas Alabama Florida Louisiana Mississippi Texas Region-wide Open Ocean Data Media & News early restoration planning for Phase III and future early restoration plans. Open House: 5:30pm Public

  11. Magnesium compounds

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  12. Depth estimation for ordinary high water of streams in the Mobile District of the U.S. Army Corps of Engineers, Alabama and adjacent states

    USGS Publications Warehouse

    Harkins, Joe R.; Green, Mark E.

    1981-01-01

    Drainage areas for about 1,600 surface-water sites on streams and lakes in Florida are contained in this report. The sites are generally either U.S. Geological Survey gaging stations or the mouths of gaged streas. Each site is identified by latitude and longitude, by the general stream type, and by the U.S. Geological Survey 7.5-minute topographic map on which it can be located. The gaging stations are furhter identified by a downstream order number, a county code, and a nearby city or town. In addition to drainage areas, the surface areas of lakes are shown for the elevation given on the topographic map. These data were retrieved from the Surface Water Index developed and maintained by the Hydrologic Surveillance section of the Florida District Office, U.S. Geological Survey. (USGS)

  13. Health-Hazard Evaluation Report HETA 84-180-1776, Jacksonville Fire Department, Jacksonville, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kominsky, J.R.

    1987-02-01

    The efficiency of a trichlorotrifluoroethane based system to remove polychlorinated biphenyls (PCBs) from Nomex fabric garments used by the Jacksonville Fire Department, Jacksonville, Florida was evaluated. The system used a sealed dry cleaning machine with a revolving chamber and trichlorotrifluoroethane solvent. From 66 to 99% of fireborne PCB contamination and more than 99% of experimental contamination was removed from fire fighters protective clothing using the system. Because of uncertainty concerning the adequacy of decontamination, the garments were replaced. The author concludes that this system can remove a high percentage of PCB contamination; without established permissible limits for fabric levels ofmore » PCBs, it is not known if the level of decontamination is adequate.« less

  14. Arcobacter in Lake Erie beach waters: an emerging gastrointestinal pathogen linked with human-associated fecal contamination.

    PubMed

    Lee, Cheonghoon; Agidi, Senyo; Marion, Jason W; Lee, Jiyoung

    2012-08-01

    The genus Arcobacter has been associated with human illness and fecal contamination by humans and animals. To better characterize the health risk posed by this emerging waterborne pathogen, we investigated the occurrence of Arcobacter spp. in Lake Erie beach waters. During the summer of 2010, water samples were collected 35 times from the Euclid, Villa Angela, and Headlands (East and West) beaches, located along Ohio's Lake Erie coast. After sample concentration, Arcobacter was quantified by real-time PCR targeting the Arcobacter 23S rRNA gene. Other fecal genetic markers (Bacteroides 16S rRNA gene [HuBac], Escherichia coli uidA gene, Enterococcus 23S rRNA gene, and tetracycline resistance genes) were also assessed. Arcobacter was detected frequently at all beaches, and both the occurrence and densities of Arcobacter spp. were higher at the Euclid and Villa Angela beaches (with higher levels of fecal contamination) than at the East and West Headlands beaches. The Arcobacter density in Lake Erie beach water was significantly correlated with the human-specific fecal marker HuBac according to Spearman's correlation analysis (r = 0.592; P < 0.001). Phylogenetic analysis demonstrated that most of the identified Arcobacter sequences were closely related to Arcobacter cryaerophilus, which is known to cause gastrointestinal diseases in humans. Since human-pathogenic Arcobacter spp. are linked to human-associated fecal sources, it is important to identify and manage the human-associated contamination sources for the prevention of Arcobacter-associated public health risks at Lake Erie beaches.

  15. Remote sensing assessment of oil lakes and oil-polluted surfaces at the Greater Burgan oil field, Kuwait

    NASA Astrophysics Data System (ADS)

    Kwarteng, Andy Yaw

    A heinous catastrophe imposed on Kuwait's desert environment during the 1990 to 1991 Arabian Gulf War was the formation of oil lakes and oil-contaminated surfaces. Presently, the affected areas consist of oil lakes, thick light and disintegrated tarmats, black soil and vegetation. In this study, Landsat TM, Spot, colour aerial photographs and IRS-1D digital image data acquired between 1989 and 1998 were used to monitor the spatial and temporal changes of the oil lakes and polluted surfaces at the Greater Burgan oil field. The use of multisensor datasets provided the opportunity to observe the polluted areas in different wavelengths, look angles and resolutions. The images were digitally enhanced to optimize the visual outlook and improve the information content. The data documented the gradual disappearance of smaller oil lakes and soot/black soil from the surface with time. Even though some of the contaminants were obscured by sand and vegetation and not readily observed on the surface or from satellite images, the harmful chemicals still remain in the soil. Some of the contaminated areas displayed a remarkable ability to support vegetation growth during the higher than average rainfall that occurred between 1992 to 1998. The total area of oil lakes calculated from an IRS-1D panchromatic image acquired on 16 February 1998, using supervised classification applied separately to different parts, was 24.13 km 2.

  16. Selected aquatic biological investigations in the Great Salt Lake basins, 1875-1998, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Giddings, Elise M.P.; Stephens, Doyle W.

    1999-01-01

    This report summarizes previous investigations of aquatic biological communities, habitat, and contaminants in streams and selected large lakes within the Great Salt Lake Basins study unit as part of the U.S. Geological Survey?s National Water-Quality Assessment Program (NAWQA). The Great Salt Lake Basins study unit is one of 59 such units designed to characterize water quality through the examination of chemical, physical, and biological factors in surface and ground waters across the country. The data will be used to aid in the planning, collection, and analysis of biological information for the NAWQA study unit and to aid other researchers concerned with water quality of the study unit. A total of 234 investigations conducted during 1875-1998 are summarized in this report. The studies are grouped into three major subjects: (1) aquatic communities and habitat, (2) contamination of streambed sediments and biological tissues, and (3) lakes. The location and a general description of each study is listed. The majority of the studies focus on fish and macroinvertebrate communities. Studies of algal communities, aquatic habitat, riparian wetlands, and contamination of streambed sediment or biological tissues are less common. Areas close to the major population centers of Salt Lake City, Provo, and Logan, Utah, are generally well studied, but more rural areas and much of the Bear River Basin are lacking in detailed information, except for fish populations..

  17. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    USGS Publications Warehouse

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  18. Can mercury in fish be reduced by water level management? Evaluating the effects of water level fluctuation on mercury accumulation in yellow perch (Perca flavescens)

    USGS Publications Warehouse

    Larson, James H.; Maki, Ryan P.; Knights, Brent C.; Gray, Brian R.

    2014-01-01

    Mercury (Hg) contamination of fisheries is a major concern for resource managers of many temperate lakes. Anthropogenic Hg contamination is largely derived from atmospheric deposition within a lake’s watershed, but its incorporation into the food web is facilitated by bacterial activity in sediments. Temporal variation in Hg content of fish (young-of-year yellow perch) in the regulated lakes of the Rainy–Namakan complex (on the border of the United States and Canada) has been linked to water level (WL) fluctuations, presumably through variation in sediment inundation. As a result, Hg contamination of fish has been linked to international regulations of WL fluctuation. Here we assess the relationship between WL fluctuations and fish Hg content using a 10-year dataset covering six lakes. Within-year WL rise did not appear in strongly supported models of fish Hg, but year-to-year variation in maximum water levels (∆maxWL) was positively associated with fish Hg content. This WL effect varied in magnitude among lakes: In Crane Lake, a 1 m increase in ∆maxWL from the previous year was associated with a 108 ng increase in fish Hg content (per gram wet weight), while the same WL change in Kabetogama was associated with only a 5 ng increase in fish Hg content. In half the lakes sampled here, effect sizes could not be distinguished from zero. Given the persistent and wide-ranging extent of Hg contamination and the large number of regulated waterways, future research is needed to identify the conditions in which WL fluctuations influence fish Hg content.

  19. Multimedia fate modeling of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) in the shallow lake Chaohu, China.

    PubMed

    Kong, Xiangzhen; Liu, Wenxiu; He, Wei; Xu, Fuliu; Koelmans, Albert A; Mooij, Wolf M

    2018-06-01

    Freshwater shallow lake ecosystems provide valuable ecological services to human beings. However, these systems are subject to severe contamination from anthropogenic sources. Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), are among the contaminants that have received substantial attention, primarily due to abundant applications, environment persistence, and potential threats to ecological and human health. Understanding the environmental behavior of these contaminants in shallow freshwater lake environments using a modeling approach is therefore critical. Here, we characterize the fate, transport and transformation of both PFOA and PFOS in the fifth largest freshwater lake in China (Chaohu) during a two-year period (2013-2015) using a fugacity-based multimedia fate model. A reasonable agreement between the measured and modeled concentrations in various compartments confirms the model's reliability. The model successfully quantifies the environmental processes and identifies the major sources and input pathways of PFOA and PFOS to the Chaohu water body. Sensitivity analysis reveals the critical role of nonlinear Freundlich sorption, which contributes to a variable fraction of the model true uncertainty in different compartments (8.1%-93.6%). Through additional model scenario analyses, we further elucidate the importance of nonlinear Freundlich sorption that is essential for the reliable model performance. We also reveal the distinct composition of emission sources for the two contaminants, as the major sources are indirect soil volatilization and direct release from human activities for PFOA and PFOS, respectively. The present study is expected to provide implications for local management of PFASs pollution in Lake Chaohu and to contribute to developing a general model framework for the evaluation of PFASs in shallow lakes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Fish Assemblages in Three Northwest Florida Urbanized Bayous before and after Two Hurricanes

    EPA Science Inventory

    A six-year survey (1993 - 1998) is summarized for fish collected from chemically-contaminated, urbanized bayous in northwest Florida. Fifty-two monthly collections (January - November) were conducted by trawls and seines at 22 sites located in three adjacent bayous associated wi...

  1. DEVELOPMENT OF PROTOCOLS AND DECISION SUPPORT TOOLS FOR ASSESSING WATERSHED SYSTEM ASSIMILATIVE

    EPA Science Inventory

    Investigations are underway on Lake Texoma, a Corps of Engineers lake on the Oklahoma/Texas border, to develop decision support tools and information to evaluate the transport and attenuation of contaminants and stressors in a lake ecosystem, and link them to observable ecologica...

  2. Bottom Sediment as a Source of Organic Contaminants in Lake Mead, Nevada, USA

    EPA Science Inventory

    Treated wastewater effluent from Las Vegas, Nevada and surrounding communities’ flow through Las Vegas Wash (LVW) into the Lake Mead National Recreational Area at Las Vegas Bay (LVB). Lake sediment is a likely sink for many hydrophobic synthetic organic compounds (SOCs); however,...

  3. LAKE MICHIGAN MASS BALANCE STUDY UPDATE

    EPA Science Inventory

    A 2005 field design of tributary and open Lake Michigan sampling will be discussed for the first time at this Council meeting. The sample design is expected to aid in determining whether or not contaminant loads and open lake concentrations have decreased over the past 10 years s...

  4. Innovative Capping Technology To Prevent The Migration of Toxic Chemicals From Contaminated Sediments

    EPA Science Inventory

    Capping is a common strategy for decreasing the risk associated with contaminated sediments in lakes and streams. Historically, caps have been designed to physically isolate contaminated sediments and prevent the transport of contaminants from sediments into the water above them...

  5. Contamination level, distribution and health risk assessment of heavy and toxic metallic and metalloid elements in a cultivated mushroom Pleurotus florida (Mont.) singer.

    PubMed

    Khani, Rouhollah; Moudi, Maryam; Khojeh, Vahid

    2017-02-01

    There are great concentrations of toxic metallic and metalloid elements such as lead, arsenic, mercury, cadmium or silver in many species of mushrooms comparative to other fruits and vegetables. In this study, contamination with heavy and toxic metallic and metalloid elements in the cultivated mushroom of (Pleurotus florida (Mont.) Singer) is investigated. P. florida was cultivated on different substrates; wheat straw (as blank), wheat straw + pine cone, wheat straw + soybean straw and wheat straw + urea and the effects of these substrates on contamination levels of Mn, Fe, Cu, Zn, As, Cd, and Pb were analyzed. The results showed that the concentrations of essential elements (Mn, Fe, Cu, and Zn) in the target mushroom are at the typical levels. The estimated daily intakes of studied metallic and metalloid elements were below their oral reference dosage mentioned by the international regulatory bodies. Health risk index (HRI) was calculated to evaluate the consumer's health risk assessment from the metal intake that contaminated in the cultivated mushroom of P. florida on the different nutrient sources. In this study, the individual HRIs were less than 1, which indicates insignificant potential health risk associated with the consumption of target mushroom from the studied substrates. Based on the HRIs values among the toxic metallic and metalloid elements, As in the target mushroom in the substrate of the wheat straw + pine cone is the main sources of risk, and it may cause severe health problems. Thus, this study suggests that the concentrations of heavy and toxic elements should be periodically monitored in cultivated mushrooms.

  6. Information Summary, Area of Concern: Buffalo River, New York

    DTIC Science & Technology

    1991-03-01

    Niagara River Filamentous Algae ( Cladophora glomerata), 1980 (R-21, Table C.29). 51 Contaminant Concentrations in Lake Erie and Niagara River...Filamentous Algae ( Cladophora glomerata), June 1981 (R-21, Table C.30). 52 Contaminant Concentrations in Lake Erie and Niagara River Filamentous Algae... Cladophora glomerata), July 1981 (R-21, Table C.31). 53 Key to Polychlorinated Biphenyl (PCB) Nomenclature Designated by Inter- national Union of Pure and

  7. NASA Applied Sciences' DEVELOP National Program: Summer 2010 Florida Agriculture

    NASA Technical Reports Server (NTRS)

    Cooley, Zachary C.; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    The main agricultural areas in South Florida are located within the fertile land surrounding Lake Okeechobee. The Atlantic Watershed monthly rainfall anomalies showed a weak but statistically significant correlation to the Oceanic Nino Index (ONI). No other watershed s anomalies showed significant correlations with ONI or the Southern Oscillation Index (SOI). During La Nina months, less sea breeze days and more disturbed days were found to occur compared to El Nino and neutral months. The increase in disturbed days can likely by attributed to the synoptic pattern during La Nina, which is known to be favorable for tropical systems to follow paths that affect South Florida. Overall, neither sea breeze rainfall patterns nor total rainfall patterns in South Florida s main agricultural areas were found to be strongly influenced by the El Nino Southern Oscillation during our study time.

  8. Investigating seagrass in Toxoplasma gondii transmission in Florida (Trichechus manatus latirostris) and Antillean (T. m. manatus) manatees

    USGS Publications Warehouse

    Wyrosdick, Heidi M; Gerhold, Richard; Su, Chunlei; Mignucci-Giannoni, Antonio A.; Bonde, Robert K.; Chapman, Alycia; Riviera-Perez, Carla; Martinez, Jessica; Miller, Debra L.

    2017-01-01

    Toxoplasma gondii is a feline protozoan reported to cause morbidity and mortality in manatees and other marine mammals. Given the herbivorous nature of manatees, ingestion of oocysts from contaminated water or seagrass is presumed to be their primary mode of infection. The objectives of this study were to investigate oocyst contamination of seagrass beds in Puerto Rico and determine the seroprevalence of T. gondii in Antillean (Trichechus manatus manatus) and Florida (T. m. latirostris) manatees. Sera or plasma from Antillean (n = 5) and Florida (n = 351) manatees were tested for T. gondii antibodies using the modified agglutination test. No T. gondii DNA was detected via PCR in seagrass samples (n = 33) collected from Puerto Rico. Seroprevalence was 0%, suggesting a lower prevalence of T. gondii in these manatee populations than previously reported. This was the first study to investigate the potential oocyst contamination of the manatee diet, and similar studies are important for understanding the epidemiology of T. gondii in herbivorous marine mammals.

  9. Halogenated organic contaminants (HOCs) in sediment from a highly eutrophicated lake, China: occurrence, distribution and mass inventories.

    PubMed

    Wang, Ji-Zhong; Liu, Liang-Ying; Zhang, Kai; Liang, Bo; Li, Guo-Lian; Chen, Tian-Hu

    2012-11-01

    Halogenated organic contaminants (HOCs) including 16 polybrominated diphenyl ethers (PBDEs) and 37 polychlorinated biphenyls (PCBs) were determined in 49 surfacial sediments from Chaohu Lake, a highly eutrophicated lake, China. PBDEs were detected in almost samples with the range of the total concentration (defined as Σ(16)PBDEs) from 0.84 to 86.6 ng g(-1). Compared with the occurrence of PBDEs in Pearl River Delta and Yangtze River Delta in China, lower percentage of BDE-209 over the concentration of Σ(16)PBDEs was inferred by the high-volume application of penta-BDE mixture product for local domestic furniture purpose. The total concentration of 37 PCBs (Σ(37)PCBs) ranged from 0.05 to 3.36 ng g(-1) with the most detection of PCB-1, -4, -52 and -71. Both the concentrations of Σ(16)PBDE and Σ(37)PCB poorly correlated with total organic carbon (TOC), suggesting the significant contribution of phytoplankton organic carbons to sediment TOC. The contamination by PBDEs and PCBs in western region of the lake was significantly more serious than in eastern lake. Our findings about the higher residues of PBDEs and PCBs in sediments at the estuary of Nanfei River compared to the other estuaries also supported the conclusion that urban area (Hefei city) was the main source of PBDEs and PCBs. The comparison with the concentration of HOC in the present study with those in other lacustrine sediments around the world suggested the contamination by PBDEs in Chaohu Lake is at middle of the global concentration range, whereas PCBs is at low end of the global range which could be elucidated by local economic development and historical usage of PBDEs and PCBs. The mass inventories of HOCs in the lake were estimated at 561 and 38 kg, which corresponds to only 0.000006% and 0.0001% of these global historical produce volumes, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Areal distribution and concentration of contaminants of concern in surficial streambed and lakebed sediments, Lake St. Clair and tributaries, Michigan, 1990-2003

    USGS Publications Warehouse

    Rachol, Cynthia M.; Button, Daniel T.

    2006-01-01

    As part of the Lake St. Clair Regional Monitoring Project, the U.S. Geological Survey evaluated data collected from surficial streambed and lakebed sediments in the Lake Erie-Lake St. Clair drainages. This study incorporates data collected from 1990 through 2003 and focuses primarily on the U.S. part of the Lake St. Clair Basin, including Lake St. Clair, the St. Clair River, and tributaries to Lake St. Clair. Comparable data from the Canadian part of the study area are included where available. The data are compiled into 4 chemical classes and consist of 21 compounds. The data are compared to effects-based sediment-quality guidelines, where the Threshold Effect Level and Lowest Effect Level represent concentrations below which adverse effects on biota are not expected and the Probable Effect Level and Severe Effect Level represent concentrations above which adverse effects on biota are expected to be frequent.Maps in the report show the spatial distribution of the sampling locations and illustrate the concentrations relative to the selected sediment-quality guidelines. These maps indicate that sediment samples from certain areas routinely had contaminant concentrations greater than the Threshold Effect Concentration or Lowest Effect Level. These locations are the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Big Beaver Creek, Red Run, and Paint Creek. Maps also indicated areas that routinely contained sediment contaminant concentrations that were greater than the Probable Effect Concentration or Severe Effect Level. These locations include the upper reach of the St. Clair River, the main stem and mouth of the Clinton River, Red Run, within direct tributaries along Lake St. Clair and in marinas within the lake, and within the Clinton River headwaters in Oakland County.Although most samples collected within Lake St. Clair were from sites adjacent to the mouths of its tributaries, samples analyzed for trace-element concentrations were collected throughout the lake. The distribution of trace-element concentrations corresponded well with the results of a two-dimensional hydrodynamic model of flow patterns from the Clinton River into Lake St. Clair. The model was developed independent from the bed sediment analysis described in this report; yet it showed a zone of deposition for outflow from the Clinton River into Lake St. Clair that corresponded well with the spatial distribution of trace-element concentrations. This zone runs along the western shoreline of Lake St. Clair from L'Anse Creuse Bay to St. Clair Shores, Michigan and is reflected in the samples analyzed for mercury and cadmium.Statistical summaries of the concentration data are presented for most contaminants, and selected statistics are compared to effects-based sediment-quality guidelines. Summaries were not computed for dieldrin, chlordane, hexachlorocyclohexane, lindane, and mirex because insufficient data are available for these contaminants. A statistical comparison showed that the median concentration for hexachlorobenzene, anthracene, benz[a]anthracene, chrysene, and pyrene are greater than the Threshold Effect Concentration or Lowest Effect Level.Probable Effect Concentration Quotients provide a mechanism for comparing the concentrations of contaminant mixtures against effects-based biota data. Probable Effect Concentration Quotients were calculated for individual samples and compared to effects-based toxicity ranges. The toxicity-range categories used in this study were nontoxic (quotients < 0.5) and toxic (quotients > 0.5). Of the 546 individual samples for which Probable Effect Concentration Quotients were calculated, 469 (86 percent) were categorized as being nontoxic and 77 (14 percent) were categorized as being toxic. Bed-sediment samples with toxic Probable Effect Concentration Quotients were collected from Paint Creek, Galloway Creek, the main stem of the Clinton River, Big Beaver Creek, Red Run, Clinton River towards the mouth, Lake St. Clair along the western shore, and the St. Clair River near Sarnia.

  11. Tumor frequencies in walleye (Stizostedion vitreum) and brown bullhead (Ictalurus nebulosus) and sediment contaminants in tributaries of the Laurentian Great Lakes

    USGS Publications Warehouse

    Baumann, Paul C.; Mac, Michael J.; Smith, Stephen B.; Harshbarger, John C.

    1991-01-01

    To better characterize neoplasm epizootics in the Great Lakes basin and their association with families of contaminants, we sampled five locations: the Fox and Menominee rivers, Lake Michigan; Munuscong Lake, St. Mary's River; and the Black and Cuyahoga rivers, Lake Erie. Frequencies of external and liver tumors were determined for brown bullhead (Ictalurus nebulosus) from all locations except the Black River and for walleye (Stizostedion vitreum) from the Lake Michigan and St. Mary's River sites. Sediment samples were analyzed for metals, polychlorinated aromatics, and polynuclear aromatic hydrocarbons (PAH). Liver neoplasms occurred in brown bullhead from the Cuyahoga River and Munuscong Lake; brown bullhead captured from Munuscong Lake were older than those collected from the other locations. Brown bullhead from these same two rivers had elevated hepatosomatic indexes. No liver neoplasms were found in brown bullhead from the Fox and Menominee rivers, although polychlorinated aromatics were highest in both Fox River sediment and Fox and Menominee brown bullhead, and arsenic was highest in Menominee River sediment and fish. Liver neoplasms in brown bullhead from the Cuyahoga River fit the prevailing hypothesis that elevated PAH in sediment can induce cancer in wild fish. The cause of the liver neoplasms in Munuscong Lake brown bullhead is undetermined.

  12. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies.

    PubMed

    Shuryak, Igor

    2018-06-05

    Water bodies polluted by the Mayak nuclear plant in Russia provide valuable information on multi-generation effects of radioactive contamination on freshwater organisms. For example, lake Karachay was probably the most radioactive lake in the world: its water contained ∼2 × 10 7 Bq/L of radionuclides and estimated dose rates to plankton exceeded 5 Gy/h. We performed quantitative modeling of radiation effects on phytoplankton and zooplankton species richness and abundance in Mayak-contaminated water bodies. Due to collinearity between radioactive contamination, water body size and salinity, we combined these variables into one (called HabitatFactors). We employed a customized machine learning approach, where synthetic noise variables acted as benchmarks of predictor performance. HabitatFactors was the only predictor that outperformed noise variables and, therefore, we used it for parametric modeling of plankton responses. Best-fit model predictions suggested 50% species richness reduction at HabitatFactors values corresponding to dose rates of 10 4 -10 5  μGy/h for phytoplankton, and 10 3 -10 4  μGy/h for zooplankton. Under conditions similar to those in lake Karachay, best-fit models predicted 81-98% species richness reductions for various taxa (Cyanobacteria, Bacillariophyta, Chlorophyta, Rotifera, Cladocera and Copepoda), ∼20-300-fold abundance reduction for total zooplankton, but no abundance reduction for phytoplankton. Rotifera was the only taxon whose fractional abundance increased with contamination level, reaching 100% in lake Karachay, but Rotifera species richness declined with contamination level, as in other taxa. Under severe radioactive and chemical contamination, one species of Cyanobacteria (Geitlerinema amphibium) dominated phytoplankton, and rotifers from the genus Brachionus dominated zooplankton. The modeling approaches proposed here are applicable to other radioecological data sets. The results provide quantitative information and easily interpretable model parameter estimates for the shapes and magnitudes of freshwater plankton responses to a wide range of radioactive contamination levels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. US EPA bioeffects monitoring under the Great Lakes Restoration Initiative: Overview of efforts to assess the biological impacts of CECs

    EPA Science Inventory

    Product Description:Concern exists regarding the potential biological effects of contaminants of emerging concern (CECs) in the Great Lakes. CECs arise from multiple sources, including agriculture, wastewater effluents, and urban nonpoint sources. The Great Lakes Restoration Init...

  14. LONG-TERM RECOVERY OF PCB-CONTAMINATED SEDIMENTS AT THE LAKE HARTWELL SUPERFUND SITE: PCB DECHLORINATION. 2. RATES AND EXTENT

    EPA Science Inventory

    This paper reports on extensive polychlorinated biphenyl (PCB) dechlorination measured in Lake Hartwell (Pickens County, SC) sediments. Vertical sediment cores were collected from 18 locations in Lake Hartwell (Pickens County, SC) and analyzed in 5-cm increments for PCB congeners...

  15. A GIS APPLICATION AND RESOURCE TOOL FOR USE ON STUDIES OF THE LAKE TEXOMA ECOLOGICAL SYSTEM

    EPA Science Inventory

    Investigations are underway at Lake Texoma to develop tools and information needed to evaluate the transport and attenuation of contaminants and stressors in a lake ecosystem, and link them to observable ecological effects. The U. S. Environmental Protection Agency (USEPA),
    ...

  16. Mapping ecosystem services in a Great Lakes estuary supports local decision-making

    EPA Science Inventory

    Estuaries of the Laurentian Great Lakes provide a concentrated supply of ecosystem goods and services from which humans benefit. As long-term centers of human activity, most estuaries of the Great Lakes and have a legacy of chemical contamination, degraded habitats, and non-point...

  17. MERCURY IN SEDIMENT AND FISH FROM NORTH MISSISSIPPI LAKES.

    EPA Science Inventory

    Sediments and/or fish were collected from Sardis, Enid and Grenada Lakes, which are located in three different watersheds in North Mississippi, in order to assess mercury contamination. The mean total mercury concentration in sediments from Enid Lake in 1997 was 0.154 mg Hg/kg, w...

  18. Florida Everglades

    Atmospheric Science Data Center

    2014-05-15

    ... Everglades is a region of broad, slow-moving sheets of water flowing southward over low-lying areas from Lake Okeechobee to the Gulf ... images include a series of shallow impoundments called Water Conservation Areas which were built to speed water flow through the Everglades ...

  19. Cotton Pickin' Good Time.

    ERIC Educational Resources Information Center

    Gentry, Carol

    2000-01-01

    Describes the creation and development of a project at Lake Mary High School in Seminole County, Florida, in which students grew cotton in order to help them experience the production of the art material from the seed to the finished product. (CMK)

  20. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes.

    PubMed

    Czekalski, Nadine; Sigdel, Radhika; Birtel, Julia; Matthews, Blake; Bürgmann, Helmut

    2015-08-01

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants, known to be continuously discharged into the aquatic environment via human and animal waste. Freshwater aquatic environments represent potential reservoirs for ARG and potentially allow sewage-derived ARG to persist and spread in the environment. This may create increased opportunities for an eventual contact with, and gene transfer to, human and animal pathogens via the food chain or drinking water. However, assessment of this risk requires a better understanding of the level and variability of the natural resistance background and the extent of the human impact. We have analyzed water samples from 21 Swiss lakes, taken at sampling points that were not under the direct influence of local contamination sources and analyzed the relative abundance of ARG using quantitative real-time PCR. Copy numbers of genes mediating resistance to three different broad-spectrum antibiotic classes (sulfonamides: sul1, sul2, tetracyclines: tet(B), tet(M), tet(W) and fluoroquinolones: qnrA) were normalized to copy numbers of bacterial 16S rRNA genes. We used multiple linear regression to assess if ARG abundance is related to human activities in the catchment, microbial community composition and the eutrophication status of the lakes. Sul genes were detected in all sampled lakes, whereas only four lakes contained quantifiable numbers of tet genes, and qnrA remained below detection in all lakes. Our data indicate higher abundance of sul1 in lakes with increasing number and capacity of wastewater treatment plants (WWTPs) in the catchment. sul2 abundance was rather related to long water residence times and eutrophication status. Our study demonstrates the potential of freshwater lakes to preserve antibiotic resistance genes, and provides a reference for ARG abundance from lake systems with low human impact as a baseline for assessing ARG contamination in lake water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The distance that contaminated aquatic subsidies extend into lake riparian zones.

    PubMed

    Raikow, David F; Walters, David M; Fritz, Ken M; Mills, Marc A

    2011-04-01

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by delta13C and delta15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of 5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process.

  2. The distance that contaminated aquatic subsidies extend into lake riparian zones

    USGS Publications Warehouse

    Raikow, D.F.; Walters, D.M.; Fritz, K.M.; Mills, M.A.

    2011-01-01

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by ??13C and ??15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of ???5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process. ?? 2011 by the Ecological Society of America.

  3. COMPARISON OF THE REPRODUCTIVE PHYSIOLOGY OF LARGEMOUTH BASS, MICROPTERUS SALMOIDES, COLLECTED FROM THE ESCAMBIA AND BLACKWATER RIVERS IN FLORIDA

    EPA Science Inventory

    Largemouth bass (LMB), Micropterus salmoides, were taken from the Escambia River (contaminated site) and the Blackwater River (reference site) near Pensacola, Florida. The Escambia River collection occurred downstream of the effluent from two identified point sources of pollution...

  4. Risks and benefits of consumption of Great Lakes fish.

    PubMed

    Turyk, Mary E; Bhavsar, Satyendra P; Bowerman, William; Boysen, Eric; Clark, Milton; Diamond, Miriam; Mergler, Donna; Pantazopoulos, Peter; Schantz, Susan; Carpenter, David O

    2012-01-01

    Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk-benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Great Lakes fish contain persistent contaminants--many of which have documented adverse health effects--that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk-benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed.

  5. Parasitic Diseases: Glossary

    MedlinePlus

    ... from swimming pools, hot tubs, Jacuzzis, spas, fountains, lakes, rivers, springs, ponds, streams, or the ocean. Recreational ... contact with contaminated water from swimming pools, spas, lakes, rivers, or the ocean. Back To Top (https:// ...

  6. Mountain Lake, Presidio National Park, San Francisco: Paleoenvironment, heavy metal contamination, sedimentary record rescue, remediation, and public outreach

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.

    2014-12-01

    Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to determine whether people lived at the tip of the SF peninsula as early as 2000 BP. In October 2014 the Presidio Trust opened a Heritage Gallery that interprets the cultural and natural history of the park for the public. The Mountain Lake sedimentary record is an important component of this exhibit, which includes an epoxy-embedded core from the lake.

  7. In situ experimental assessment of lake whitefish development following a freshwater oil spill.

    PubMed

    Debruyn, Adrian M H; Wernick, Barbara G; Stefura, Corey; McDonald, Blair G; Rudolph, Barri-Lynn; Patterson, Luanne; Chapman, Peter M

    2007-10-15

    Wabamun Lake (Alberta, Canada) has been subject to ongoing contamination with polycyclic aromatic hydrocarbons (PAHs) from multiple sources for decades and in August 2005 was exposed to ca. 149 500 L of bunker C oil following a train derailment. We compared the pattern, frequency, and severity of deformity in larvae of lake whitefish (Coregonus clupeaformis) incubated in situ in areas of Wabamun Lake exposed only to "background" PAH contamination and in areas additionally exposed to PAHs from the oil. All sites in the lake (including reference areas) showed incidences of deformity higher than are typically observed in laboratory studies. A small number of oil-exposed sites showed higher incidences of some teratogenic deformities and a tendency to exhibit deformities of higher severity than sites not exposed to oil. The frequency of moderate to severe deformities in 8 of 16 classes was correlated with PAH exposure. Nonmetric multivariate ordination of deformity data revealed a general pattern of increasing incidence and severity of several skeletal (lordosis, scoliosis) and craniofacial (ocular, jaw) deformities at sites with relatively high exposure to oil-derived PAHs. A simultaneous consideration of incidence, severity, and pattern of deformity enabled us to detect a consistent (overall approximately 5% above background) response to the oil despite high variability and high background deformity rates in this historically contaminated environment.

  8. Proceedings of the Annual Meeting (14th) Aquatic Plant Control Research Planning and Operations Review, Held at Lake Eufaula, Oklahoma on 26-29 November 1979.

    DTIC Science & Technology

    1980-10-01

    Development; Problem Identification and Assessment for Aquatic Plant Management; Natural Succession of Aquatic Plants; Large-Scale Operations Management Test...of Insects and Pathogens for Control of Waterhyacinth in Louisiana; Large-Scale Operations Management Test to Evaluate Prevention Methodology for...Control of Eurasian Watermilfoil in Washington; Large-Scale Operations Management Test Using the White Amur at Lake Conway, Florida; and Aquatic Plant Control Activities in the Panama Canal Zone.

  9. Hydrologic and land-cover features of the Caloosahatchee River Basin, Lake Okeechobee to Franklin Lock, Florida

    USGS Publications Warehouse

    LaRose, Henry R.; McPherson, Benjamin F.

    1980-01-01

    The freshwater part of the Caloosahatchee River basin, Fla., from Franklin Lock to Lake Okeechobee, is shown at a scale of 1 inch equals 1 mile on an aerial photomosaic, dated January 1979. The basin is divided into 16 subbasins, and the land cover and land use in each subbasin are given. The basin is predominantly rangeland and agricultural land. Surface-water flow in the basin is largely controlled. Some selected data on water quality are given. (USGS)

  10. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

    USGS Publications Warehouse

    Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, Christopher L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; Heyes, A.; Hintelmann, H.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.E.; Mason, R.P.; Paterson, M.J.; Podemski, C.L.; Robinson, A.; Sandilands, K.A.; Southworthn, G.R.; St. Louis, V.L.; Tate, M.T.

    2007-01-01

    Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wild-life worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed. ?? 2007 by The National Academy of Sciences of the USA.

  11. Estimating sediment quality thresholds to prevent restrictions on fish consumption: Application to polychlorinated biphenyls and dioxins-furans in the Canadian Great Lakes.

    PubMed

    Bhavsar, Satyendra P; Gewurtz, Sarah B; Helm, Paul A; Labencki, Tanya L; Marvin, Christopher H; Fletcher, Rachael; Hayton, Alan; Reiner, Eric J; Boyd, Duncan

    2010-10-01

    Sediment quality thresholds (SQTs) are used by a variety of agencies to assess the potential for adverse impact of sediment-associated contaminants on aquatic biota, typically benthic invertebrates. However, sedimentary contaminants can also result in elevated fish contaminant levels, triggering consumption advisories that are protective of humans. As such, SQTs that would result in fish concentrations below consumption advisory levels should also be considered. To illustrate how this can be addressed, we first calculate biota sediment accumulation factors (BSAFs) for polychlorinated biphenyls (total PCB) and polychlorinated dioxins-furans (PCDD/Fs) in the Canadian Great Lakes using measured lake sediment and fish tissue concentrations in 4 fish species, namely, lake trout, whitefish, rainbow trout, and channel catfish. Using these BSAFs and tissue residue values for fish consumption advisories employed by the Ontario Ministry of the Environment (OMOE, Canada), we derive fish consumption advisory-based SQTs (fca-SQTs) that are likely to result in fish tissue residues that are safe to eat without restriction. The PCDD/Fs fca-SQTs ranged from 6 to 128 pg toxic equivalents (TEQ)/g dry weight (dw) and were above the Canadian Council of the Ministers of the Environment (CCME) threshold effect level (TEL) of 0.85 pg TEQ/g dw. In contrast, the total PCB fca-SQTs ranged from 1 to 60 ng/g dw and were generally below the CCME's TEL of 34.1 ng/g and OMOE's lowest effect level (LEL) of 70 ng/g; however, they were consistent with the OMOE's no effect level (NEL) of 10 ng/g. The fca-SQTs derived using the BSAF as well as food chain multiplier (FCM) approach for a smaller scale system (Hamilton Harbour in Lake Ontario) corresponded well with average lakewide Lake Ontario fca-SQTs. This analysis provides approximate sediment concentrations necessary for reducing fish consumption advisories for each of the Canadian Great Lakes and emphasizes the impacts of historical lake sediment contamination on fish advisories. We believe that this approach merits consideration in sediment guideline development. © 2010 SETAC.

  12. Lake Worth bottom sediments : A chronicle of water-quality changes in western Fort Worth, Texas, 1914-2001

    USGS Publications Warehouse

    Braun, Christopher L.; Harwell, Glenn R.

    2004-01-01

    In spring 2000, the Texas Department of Health issued a fish-consumption advisory for Lake Worth, Tex., because of elevated concentrations of polychlorinated biphenyls (PCBs) in fish (Texas Department of Health, 2000). In response to the advisory and in cooperation with the U.S. Air Force, the U.S. Geological Survey (USGS) collected 21 surficial samples and three deeper gravity core samples from the sediment deposited at the bottom of Lake Worth. The purpose of that study was to assess the spatial distribution and historical trends of selected hydrophobic contaminants, including PCBs, and to determine, to the extent possible, sources of selected metals and hydrophobic organic contaminants (HOCs) to Lake Worth. Hydrophobic (literally “water fearing”) contaminants tend to chemically adsorb to soils and sediments. Fifteen of the top 20 contaminants on the Agency for Toxic Substances and Disease Registry (2001) priority list of hazardous substances are hydrophobic. Chemical analysis of sediment cores is one method that can be used to determine trends in HOCs such as PCBs. As sediments accumulate in lakes and reservoirs, they generate a partial historical record of water quality. This fact sheet describes the collection of sediment cores, age-dating methods, and historical trends in PCBs in Lake Worth sediments. The fact sheet also describes the spatial distribution of PCBs in surficial sediments and concludes with objectives for the second phase of data collection and the approach that will be used to achieve these objectives. The USGS published a comprehensive report on the first phase of the study (Harwell and others, 2003). Lake Worth is a reservoir on the West Fork Trinity River on the western edge of Fort Worth in Tarrant County. In 1914, the City of Fort Worth completed the reservoir to serve as a municipal water supply. Lake Worth has a surface area of 13.2 square kilometers and a storage capacity of 47 million cubic meters. The drainage area to the reservoir is 5,350 square kilometers(Ruddy and Hitt, 1990). The surrounding area to the south and east is primarily urban, and the area to the north and northwest is mostly residential.

  13. Perfluorooctane sulfonate (PFOS) contamination of fish in urban lakes: a prioritization methodology for lake management.

    PubMed

    Xiao, Feng; Gulliver, John S; Simcik, Matt F

    2013-12-15

    The contamination of urban lakes by anthropogenic pollutants such as perfluorooctane sulfonate (PFOS) is a worldwide environmental problem. Large-scale, long-term monitoring of urban lakes requires careful prioritization of available resources, focusing efforts on potentially impaired lakes. Herein, a database of PFOS concentrations in 304 fish caught from 28 urban lakes was used for development of an urban-lake prioritization framework by means of exploratory data analysis (EDA) with the aid of a geographical information system. The prioritization scheme consists of three main tiers: preliminary classification, carried out by hierarchical cluster analysis; predictor screening, fulfilled by a regression tree method; and model development by means of a neural network. The predictive performance of the newly developed model was assessed using a training/validation splitting method and determined by an external validation set. The application of the model in the U.S. state of Minnesota identified 40 urban lakes that may contain elevated levels of PFOS; these lakes were not previously considered in PFOS monitoring programs. The model results also highlight ongoing industrial/commercial activities as a principal determinant of PFOS pollution in urban lakes, and suggest vehicular traffic as an important source and surface runoff as a primary pollution carrier. In addition, the EDA approach was further compared to a spatial interpolation method (kriging), and their advantages and disadvantages were discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Using groundwater age to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand

    NASA Astrophysics Data System (ADS)

    Morgenstern, U.; Daughney, C. J.; Leonard, G.; Gordon, D.; Donath, F. M.; Reeves, R.

    2014-08-01

    The water quality of Lake Rotorua has declined continuously over the past 50 yr despite mitigation efforts over recent decades. Delayed response of the groundwater discharges to historic land-use intensification 50 yr ago was the reason suggested by early tritium measurements, which indicated large transit times through the groundwater system. We use the isotopic and chemistry signature of the groundwater for detailed understanding of the origin, fate, flow pathways, lag times, and future loads of contaminants. A unique set of high-quality tritium data over more than four decades, encompassing the time when the tritium spike from nuclear weapons testing moved through the groundwater system, allows us to determine detailed age distribution parameters of the water discharging into Lake Rotorua. The Rotorua volcanic groundwater system is complicated due to the highly complex geology that has evolved through volcanic activity. Vertical and steeply-inclined geological contacts preclude a simple flow model. The extent of the Lake Rotorua groundwater catchment is difficult to establish due to the deep water table in large areas, combined with inhomogeneous groundwater flow patterns. Hierarchical cluster analysis of the water chemistry parameters provided evidence of the recharge source of the large springs near the lake shore, with discharge from the Mamaku ignimbrite through lake sediment layers. Groundwater chemistry and age data show clearly the source of nutrients that cause lake eutrophication, nitrate from agricultural activities and phosphate from geologic sources. With a naturally high phosphate load reaching the lake continuously via all streams, the only effective way to limit algae blooms and improve lake water quality in such environments is by limiting the nitrate load. The groundwater in the Rotorua catchment, once it has passed through the soil zone, shows no further decrease in dissolved oxygen, indicating absence of electron donors in the aquifer that could facilitate microbial denitrification reactions. Nitrate from land-use activities that leaches out of the root zone of agricultural land into the deeper part of the groundwater system must be expected to travel with the groundwater to the lake. The old age and the highly mixed nature of the water discharges imply a very slow and lagged response of the streams and the lake to anthropogenic contaminants in the catchment, such as nitrate. Using the age distribution as deduced from tritium time series data measured in the stream discharges into the lake allows prediction of future nutrient loads from historic land-use activities 50 yr ago. For Hamurana Stream, the largest stream to Lake Rotorua, it takes more than a hundred years for the groundwater-dominated stream discharge to adjust to changes in land-use activities. These time scales apply to activities that cause contamination, but also to remediation action.

  15. Assessing the effectiveness of remediation of contaminated sediments in the Ottawa River Segment of the Maumee Great Lakes Area of Concern (AOC) using biological endpoints: toxicity, food web tissue contamination, biotic condition and DNA damage

    EPA Science Inventory

    The Ottawa River lies in extreme northwest Ohio, flowing into Lake Erie’s western basin at the City of Toledo. The Ottawa River is a component of the Maumee River AOC as defined by the International Commission. The Ottawa River is approximately 45 miles long; however, the 2...

  16. The distance that contaminated aquatic subsidies extend into lake riparian zones

    EPA Science Inventory

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertevores. We characterized the spatial extent and magnit...

  17. PHYSICAL, CHEMICAL AND BIOLOGICAL TOOLS FOR EVALUATING, MONITORED NATURAL RECOVERY OF PCB CONTAMINATED SEDIMENTS IN LAKE HARTWELL, CLEMSON, SC

    EPA Science Inventory

    Management of contaminated sediments poses significant challenges due to varied contaminants and volumes of sediments to
    manage. Dredging, capping, and monitored natural recovery (MNR) are the primary approaches for managing the contaminated sediment risks.
    Understanding ho...

  18. A MULTI-ORD LAB AND REGIONAL ASSESSMENT OF MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS IN LAKE HARTWELL, CLEMSON, SC

    EPA Science Inventory

    Management of contaminated sediments poses many challenges due to varied contaminants and volumes of sediments to manage. Dredging, capping, and monitored natural recovery (MNR) are the primary approaches for managing the contaminated sediment risks. Understanding how well the ...

  19. A PHYSICAL, CHEMICAL, AND BIOLOGICAL ASSESSMENT OF MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS IN LAKE HARTWELL, CLEMSON, NC

    EPA Science Inventory

    Management of contaminated sediments poses significant challenges due to varied contaminants and volumes of sediments to manage. Dredging, capping, and monitored natural recovery (MNR) are the primary approaches for managing the contaminated sediment risks. Understanding how eff...

  20. Productivity, embryo and eggshell characteristics, and contaminants in bald eagles from the Great Lakes, USA, 1986 to 2000

    USGS Publications Warehouse

    Best, David A.; Elliott, Kyle; Bowerman, William; Shieldcastle, Mark C.; Postupalsky, Sergej; Kubiak, Timothy J.; Tillitt, Donald E.; Elliott, John E.

    2010-01-01

    Chlorinated hydrocarbon concentrations in eggs of fish-eating birds from contaminated environments such as the Great Lakes of North America tend to be highly intercorrelated, making it difficult to elucidate mechanisms causing reproductive impairment, and to ascribe cause to specific chemicals. An information- theoretic approach was used on data from 197 salvaged bald eagle (Haliaeetus leucocephalus) eggs (159 clutches) that failed to hatch in Michigan and Ohio, USA (1986–2000). Contaminant levels declined over time while eggshell thickness increased, and by 2000 was at pre-1946 levels. The number of occupied territories and productivity increased during 1981 to 2004. For both the entire dataset and a subset of nests along the Great Lakes shoreline, polychlorinated biphenyls (ΣPCBs, fresh wet wt) were generally included in the most parsimonious models (lowest-Akaike's information criterion [AICs]) describing productivity, with significant declines in productivity observed above 26 µg/g ΣPCBs (fresh wet wt). Of 73 eggs with a visible embryo, eight (11%) were abnormal, including three with skewed bills, but they were not associated with known teratogens, including ΣPCBs. Eggs with visible embryos had greater concentrations of all measured contaminants than eggs without visible embryos; the most parsimonious models describing the presence of visible embryos incorporated dieldrin equivalents and dichlorodiphenyldichloroethylene (DDE). There were significant negative correlations between eggshell thickness and all contaminants, with ΣPCBs included in the most parsimonious models. There were, however, no relationships between productivity and eggshell thickness or Ratcliffe's index. The ΣPCBs and DDE were negatively associated with nest success of bald eagles in the Great Lakes watersheds, but the mechanism does not appear to be via shell quality effects, at least at current contaminant levels, while it is not clear what other mechanisms were involved.

  1. Reproductive success and contaminant associations in tree swallows (Tachycineta bicolor) used to assess a Beneficial Use Impairment in U.S. and Binational Great Lakes' Areas of Concern.

    PubMed

    Custer, Christine M; Custer, Thomas W; Etterson, Matthew A; Dummer, Paul M; Goldberg, Diana; Franson, J Christian

    2018-05-01

    During 2010-2014, tree swallow (Tachycineta bicolor) reproductive success was monitored at 68 sites across all 5 Great Lakes, including 58 sites located within Great Lakes Areas of Concern (AOCs) and 10 non-AOCs. Sample eggs were collected from tree swallow clutches and analyzed for contaminants including polychlorinated biphenyls (PCBs), dioxins and furans, polybrominated diphenyl ethers, and 34 other organic compounds. Contaminant data were available for 360 of the clutches monitored. Markov chain multistate modeling was used to assess the importance of 5 ecological variables and 11 of the dominant contaminants in explaining the pattern of egg and nestling failure rates. Four of 5 ecological variables (Female Age, Date within season, Year, and Site) were important explanatory variables. Of the 11 contaminants, only total dioxin and furan toxic equivalents (TEQs) explained a significant amount of the egg failure probabilities. Neither total PCBs nor PCB TEQs explained the variation in egg failure rates. In a separate analysis, polycyclic aromatic hydrocarbon exposure in nestling diet, used as a proxy for female diet during egg laying, was significantly correlated with the daily probability of egg failure. The 8 sites within AOCs which had poorer reproduction when compared to 10 non-AOC sites, the measure of impaired reproduction as defined by the Great Lakes Restoration Initiative, were associated with exposure to dioxins and furan TEQs, PAHs, or depredation. Only 2 sites had poorer reproduction than the poorest performing non-AOC. Using a classic (non-modeling) approach to estimating reproductive success, 82% of nests hatched at least 1 egg, and 75% of eggs laid, excluding those collected for contaminant analyses, hatched.

  2. Chemical, physical, and radiological quality of selected public water supplies in Florida, February-April 1980

    USGS Publications Warehouse

    Franks, Bernard J.; Irwin, G.A.

    1981-01-01

    Virtually all treated public water supplies in Florida meet the National Interim Primary and Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 126 raw and treated public water supplies throughout the State during the period February through April 1980. Primary drinking water regulations maximum contaminant levels were rarely exceeded, although mercury (1 site), fluoride (2 sites), and radionuclides (3 sites) in water supplies were above established maximum contaminant levels. Dissolved solids, chloride, copper, manganese, iron, color, sulfate, and pH, were occasionally slightly in excess of the recommended maximum contaminant levels of the secondary drinking water regulation. The secondary regulations, however, pertain mainly to the esthetic quality of drinking water and not directly to public health aspects. (USGS)

  3. Hydrogeologic conditions and saline-water intrusion, Cape Coral, Florida, 1978-81

    USGS Publications Warehouse

    Fitzpatrick, D.J.

    1986-01-01

    The upper limestone unit of the intermediate aquifer system, locally called the upper Hawthorn aquifer, is the principal source of freshwater for Cape Coral, Florida. The aquifer has been contaminated with saline water by downward intrusion from the surficial aquifer system and by upward intrusion from the Floridan aquifer system. Much of the intrusion has occurred through open wellbores where steel casings are short or where casings have collapsed because of corrosion. Saline-water contamination of the upper limestone unit due to downward intrusion from the surficial aquifer is most severe in the southern and eastern parts of Cape Coral; contamination due to upward intrusion has occurred in many areas throughout Cape Coral. Intrusion is amplified in areas of heavy water withdrawals and large water-level declines. (USGS)

  4. Potential for Biomagnification of Contaminants within Marine and Freshwater Food Webs

    DTIC Science & Technology

    1984-11-01

    level. 17. In a turtle grass (Thalassia testudinum) community in Card Sound, Florida, Gilio and Segar (1976) found no indication of increased Cd...Florida, were reported by Gilio and Segar (1976). Table 6 shows that the highest mean Cu concentrations were 21, 12, 7.4, and 5.8 ppm, respectively...elements in Card Sound, Florida, showed no trend toward biomagnification of Pb ( Gilio and Segar 1976). The mean Pb concentrations in the macrofauna were

  5. KSC-2014-4904

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher from the University of Florida in Gainesville, checks the Dust Atmospheric Recovery Technology, or DART, spacecraft in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  6. Evaluation of a Florida coastal golf complex as a local and watershed source of bioavailable contaminants

    EPA Science Inventory

    Lewis, Michael A., Robert L. Quarles, Darrin D. Dantin and James C. Moore. 2004. Evaluation of a Coastal Golf Complex as a Local and Watershed Source of Bioavailable Contaminants. Mar. Pollut. Bull. 48(3-4):254-262. (ERL,GB 1183).

    Contaminant fate in coastal areas impacte...

  7. Florida Law Enforcement’s Role in Agroterrorism

    DTIC Science & Technology

    2014-12-01

    INTERDICTION OF CONTAMINATED FOOD PRODUCTS ..............48 E. THREAT AND VULNERABILITY ASSESSMENTS ..............................53 F. AGRICULTURE...imported and possibly contaminated food products? NIJ212280 recommends establishment of a SFIT. • Are agroterrorism trainings available and/or being...strengths as well as significant gaps. Some areas were identified in which solid prevention efforts have been taken, such as contaminated food interdiction

  8. Simulation of the effects of time and size at stocking on PCB accumulation in lake trout

    USGS Publications Warehouse

    Madenjian, Charles P.; Carpenter, Stephen R.

    1993-01-01

    Manipulations of size at stocking and timing of stocking have already been used to improve survival of stocked salmonines in the Great Lakes. It should be possible to stock salmonines into the Great Lakes in a way that reduces the rate of polychlorinated biphenyl (PCB) accumulation in these fishes. An individual-based model (IBM) was used to investigate the effects of size at stocking and timing of stocking on PCB accumulation by lake trout Salvelinus namaycush in Lake Michigan. The individual-based feature of the model allowed lake trout individuals to encounter prey fish individuals and then consume sufficiently small prey fish. The IBM accurately accounted for the variation in PCB concentrations observed within the Lake Michigan lake trout population. Results of the IBM simulations revealed that increasing the average size at stocking from 110 to 160 mm total length led to an increase in the average PCB concentration in the stocked cohort at age 5, after the fish had spent 4 years in the lake, from 2.33 to 2.65 mg/kg; the percentage of lake trout in the cohort at the end of the simulated time period with PCB concentration of 2 mg/kg or more increased from 62% to 79%. Thus, PCB contamination was reduced when the simulated size at stocking was smallest. An overall stocking strategy for lake trout into Lake Michigan should weigh this advantage regarding PCB contamination against the poor survival of lake trout that may occur if the trout are stocked at too small a size.

  9. Interactions of Polychlorinated Biphenyls and Organochlorine Pesticides with Sedimentary Organic Matter of Retrogressive Thaw Slump-Affected Lakes in the Tundra Uplands Adjacent to the Mackenzie Delta, NT, Canada

    NASA Astrophysics Data System (ADS)

    Eickmeyer, D.; Kimpe, L.; Kokelj, S.; Pisaric, M. F.; Smol, J. P.; Sanei, H.; Thienpont, J. R.; Blais, J. M.

    2016-12-01

    Increased incidences and severity of thermokarst activity, such as retrogressive thaw slumping, in the permafrost-rich western Canadian Arctic have been previously shown to influence basic water chemistry and sedimentation rates of affected lakes. Using a comparative spatial analysis of sediment cores from 8 lakes in tundra uplands adjacent to the Mackenzie Delta, NT, we examined how the presence of retrogressive thaw slumps on lake shores affected persistent organic pollutant (POPs, including polychlorinated biphenyls (PCB), hexa- and pentachlorobenzenes (CBz)and dichlorodiphenyltrichloroethane and metabolites (DDT)) accumulation in lake sediments. Sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes that were unaffected by thaw slumps. PCB and DDT deposition rates to the sediment were not significantly different between reference and affected lakes; however, CBz flux to sediment was found to be higher in slump-affected lakes. Mean focus-corrected inorganic sedimentation rates were positively related to TOC-normalized contaminant concentrations, explaining 58 - 94% of the variation in POP concentrations in sediment, suggesting that reduced organic carbon in slump-affected lake water results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water. Higher POP concentrations observed in sediment of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic organic contaminants onto a smaller pool of available organic carbon when compared to neighboring lakes unaffected by thaw slump development.

  10. Biochemical indicators of contaminant exposure in birds and turtles of the Great Lakes-St. Lawrence River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, C.; Trudeau, S.; Kennedy, S.

    1995-12-31

    Pre-fledgling chicks of tree swallows, double-crested cormorants, herring gulls, common terns and hatchling snapping turtles were collected from contaminated Areas of Concern and reference sites in the Great Lakes and St. Lawrence River to determine the geographic and species variation in biomarker responses. EROD activity in colonial waterbirds was generally an order of magnitude above EROD activity in tree swallows and snapping turtles. Notably, EROD activity in colonial waterbirds did not correlate with organochlorine contamination in livers at one industrialized site suggesting that exposure to other contaminants, possibly PAHs, may be an important factor. Retinol concentrations in cormorants were non-detectablemore » and retinyl palmitate concentrations were equal or greater than those in herring gulls. In tree swallows, there was a significant negative correlation between vitamin A concentration in liver and kidney and EROD activity. In snapping turtles, there was a significant induction in EROD activity and significantly higher cytochrome P450 IAI level in livers from the Great Lakes site relative to a clean inland location. There were no significant differences in porphyrin concentrations between sites.« less

  11. A GIS BASED DECISION SUPPORT SYSTEM AND RESOURCE TOOL FOR USE ON STUDIES OF THE LAKE TEXOMA ECOSYSTEM

    EPA Science Inventory

    Investigations are underway at Lake Texoma, to develop decision support tools and information to evaluate the transport and attenuation of contaminants and stressors in a lake ecosystem, and link them to observable ecological effects. The U.S. EPA, USGS, U. S. Army Corps of Eng...

  12. DEVELOPMENT OF A CONTAMINANT TRANSPORT AND FATE MASS BALANCE CALIBRATION MODEL FOR LAKE MICHIGAN MASS BALANCE PROJECT (LMMBP)

    EPA Science Inventory

    Lake Michigan Mass Balance Project (LMMBP) was initiated to directly support the development of a lakewide management plan (LaMP) for Lake Michigan. A mass balance modeling approach is proposed for the project to addrss the realtionship between sources of toxic chemicals and thei...

  13. MERCURY IN SEDIMENTS AND FISH FROM NORTH MISSISSIPPI LAKES AND SUBSEQUENT HUMAN HAZARD EVALUATION

    EPA Science Inventory

    Sediments and/or fish were collected from Sardis, Enid and Grenada Lakes, which are located in three different watersheds in North Mississippi, in order to assess mercury contamination. The mean total mercury concentration in sediments from Enid Lake in 1997 was 0.154 mg Hg/kg, w...

  14. Sampling history and 2009--2010 results for pesticides and inorganic constituents monitored by the Lake Wales Ridge Groundwater Network, central Florida

    USGS Publications Warehouse

    Choquette, Anne F.; Freiwald, R. Scott; Kraft, Carol L.

    2012-01-01

    The Lake Wales Ridge Monitoring (LWRM) Network was established to provide a long-term record of water quality of the surficial aquifer in one of the principal citrus-production areas of Florida. This region is underlain by sandy soils that contain minimal organic matter and are highly vulnerable to leaching of chemicals into the subsurface. This report documents the 1989 through May 2010 sampling history of the LWRM Network and summarizes monitoring results for 38 Network wells that were sampled during the period January 2009 through May 2010. During 1989 through May 2010, the Network’s citrus land-use wells were sampled intermittently to 1999, quarterly from April 1999 to October 2009, and thereafter quarterly to semiannually. The water-quality summaries in this report focus on the period January 2009 through May 2010, during which the Network’s citrus land-use wells were sampled six times and the non-citrus land-use wells were sampled two times. Within the citrus land-use wells sampled, a total of 13 pesticide compounds (8 parent pesticides and 5 degradates) were detected of the 37 pesticide compounds analyzed during this period. The most frequently detected compounds included demethyl norflurazon (83 percent of wells), norflurazon (79 percent), aldicarb sulfoxide (41 percent), aldicarb sulfone (38 percent), imidacloprid (38 percent), and diuron (28 percent). Agrichemical concentrations in samples from the citrus land-use wells during the 2009 through May 2010 period exceeded Federal drinking-water standards (maximum contaminant levels, MCLs) in 1.5 to 24 percent of samples for aldicarb and its degradates (sulfone and sulfoxide), and in 68 percent of the samples for nitrate. Florida statutes restrict the distance of aldicarb applications to drinking-water wells; however, these statutes do not apply to monitoring wells. Health-screening benchmark levels that identify unregulated chemicals of potential concern were exceeded for norflurazon and diuron in 29 and 7 percent, respectively, of the 2009–2010 samples. A comparison of agrichemical land-use effects on groundwater quality, determined on the basis of samples from LWRM Network wells in citrus and in non-citrus land-use areas, indicated significantly higher (p<0.05) concentrations of inorganic constituents in samples from citrus land-use areas compared to samples from non-citrus areas. These inorganic constituents include calcium, magnesium, chloride, sulfate, potassium, nitrate, aluminum, manganese, strontium, and total nitrogen, and also specific conductance, an indicator of total dissolved solutes in water. In addition to land use, including irrigation, site differences such as soils and groundwater reduction/oxidation conditions might have contributed to the differences in some of these constituents. Pesticide detections were primarily restricted to the citrus land-use wells, where 22 of 23 wells yielded pesticide detections, with a median of four detected pesticide compounds per well. For the non-citrus land-use wells, typically surrounded by mixed land use including developed and undeveloped land, one of the eight sampled wells yielded pesticide detections consisting of norflurazon and its degradate, and the source(s) of these detections might have been active or recently active citrus orchards in the vicinity of this well. Results from the LWRM Network during the 1989 through May 2010 period have provided early warning of chemicals prone to leaching, guidance for developing or modifying chemical usage practices to minimize impacts to groundwater, and a mechanism for prioritizing State sampling of domestic wells to assure safe drinking-water supplies. Given the typically long time period (years to tens of years or longer) required to remove chemical contamination once it enters the groundwater system, groundwater monitoring is important to protect drinking-water sources as well as the numerous lakes in this region, which are closely connected with the surficial aquifer. Long-term monitoring of the LWRM Network is planned to continue providing early warning of potential for groundwater contamination, and to assess spatial and temporal trends in water quality resulting from changes in pesticide-use patterns and in land use.

  15. Initial Impacts of the Mount Polley Tailings Pond Breach on Adjacent Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Petticrew, Ellen; Gantner, Nikolaus; Albers, Sam; Owens, Philip

    2015-04-01

    On August 4th 2014, the Mount Polley Tailings pond breach near Likely, B.C., released approximately 24 million cubic metres of tailings material into Polley Lake, Hazeltine Creek and Quesnel Lake. The discharge scoured and eroded a swath of soil and sediment delivering an unknown amount of metals and sediment into this tributary ecosystem of the Fraser River. Subsequent efforts by the mine operator to remediate by pumping tailings water from Polley Lake into Hazeltine Creek, which flows into Quesnel Lake, resulted in additional and continuous release of unknown volumes of contaminated water and sediments into the watershed. Heavy metals (e.g., selenium, copper, or mercury) reported as stored in the tailings pond entered the downstream aquatic environment and have been monitored in the water column of Quesnel Lake since August. These contaminants are likely particle-bound and thus subject to transport over long distances without appreciable degradation, resulting in the potential for chronic exposures and associated toxicological effects in exposed biota. While significant dilution is expected during aquatic transport, and the resulting concentrations in the water will likely be low, concentrations in exposed biota may become of concern over time. Metals such as mercury and selenium undergo bioaccumulation and biomagnification, once incorporated into the food chain/web. Thus, even small concentrations of such contaminants in water can lead to greater concentrations (~100 fold) in top predators. Over time, our predictions are that food web transfer will lead to an increase in concentrations from water (1-2 years)->invertebrates (1-2 yrs) ->fishes (2-5 yrs). Pacific salmon travel great distances in this watershed and may be exposed to contaminated water during their migrations. Resident species will be exposed to the contaminated waters and sediments in the study lakes year round. Little or no background/baseline data for metals in biota from Quesnel Lake exists. Notably, some of these fish provide food to recipients as diverse as aboriginal communities and large commercial markets embedded within a global marketplace. Moreover, metals can be accumulated in aquatic organisms, thus it is very important to understand its long-term biomagnification and potential health effects on organisms. We present initial findings from physical and chemical limnological early response-sampling and recommendations for future monitoring in the affected watershed.

  16. Pesticides in Ichkeul Lake-Bizerta Lagoon Watershed in Tunisia: use, occurrence, and effects on bacteria and free-living marine nematodes.

    PubMed

    Salem, Fida Ben; Said, Olfa Ben; Aissa, Patricia; Mahmoudi, Ezzeddine; Monperrus, Mathilde; Grunberger, Olivier; Duran, Robert

    2016-01-01

    This study aimed to identify the most commonly used agricultural pesticides around Ichkeul Lake-Bizerta Lagoon watershed. First survey of pesticide use on agricultural watershed was performed with farmers, Regional Commissioner for Agricultural Development, and pesticide dealers. Then, sediment contamination by pesticides and response of benthic communities (bacteria and free-living marine nematode) were investigated. The analysis of 22 active organochlorine pesticides in sediments was performed according to quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, biodiversity of indigenous bacterial community sediment was determined by terminal restriction fragment length polymorphism (T-RFLP), and free-living marine nematodes were counted. The results of the field survey showed that iodosulfuron, mesosulfuron, 2,4-dichlorophenoxyacetic acid (2,4 D), glyphosate, and fenoxaprops were the most used herbicides, tebuconazole and epoxiconazole the most used fungicides, and deltamethrin the most used insecticide. Sixteen organochlorine pesticide compounds among the 22 examined were detected in sediments up to 2 ppm in Ichkeul Lake, endrin, dieldrin, and hexachlorocyclohexane being the most detected molecules. The most pesticide-contaminated site in the lake presented the higher density of nematode, but when considering all sites, no clear correlation with organochlorine pesticide (OCP) content could be established. The bacterial community structure in the most contaminated site in the lake was characterized by the terminal restriction fragments (T-RFs) 97, 146, 258, 285, and 335 while the most contaminated site in the lagoon was characterized by the T-RFs 54, 263, 315, 403, and 428. Interestingly, T-RFs 38 and 143 were found in the most contaminated sites of both lake and lagoon ecosystems, indicating that they were resistant to OCPs and able to cope with environmental fluctuation of salinity. In contrast, the T-RFs 63, 100, 118, and 381 in the lake and the T-RFs 40, 60, 80, 158, 300, 321, and 357 in the lagoon were sensitive to OCPs. This study highlighted that the intensive use of pesticides in agriculture, through transfer to aquatic ecosystem, may disturb the benthic ecosystem functioning of the protected area. The free-living marine nematodes and bacterial communities represent useful proxy to follow the ecosystem health and its capacity of resilience.

  17. Neurotoxic behavioral effects of Lake Ontario salmon diets in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzler, D.R.

    1990-03-01

    Six experiments were conducted to examine possible neurotoxic effects of the exposure to contaminants in Lake Ontario salmon administered through the diets of rats. Rats were fed different concentrations of fish (8%, 15% or 30%) in one of three diet conditions: Lake Ontario salmon, Pacific Ocean salmon, or laboratory rat chow only. Following 20 days on the diets, rats were tested for five minutes per day in a modified open field for one or three days. Lake Ontario salmon diets consistently produced significantly lower activity, rearing, and nosepoke behaviors in comparison with ocean salmon or rat chow diet conditions. Amore » dose-response effect for concentration of lake salmon was obtained, and the attenuation effect occurred in males, females, adult or young animals, and postweaning females, with fish sampled over a five-year period. While only two of several potential contaminants were tested, both fish and brain analyses of mirex and PCBs relate to the behavioral effects.« less

  18. The impact of an urban-industrial region on the magnitude and variability of persistent organic pollutant deposition to Lake Michigan.

    PubMed

    Hornbuckle, Keri C; Green, Mark L

    2003-09-01

    A predictive model for gas-phase PCBs and trans-nonachlor over Lake Michigan has been constructed and the resulting data examined for trends. In this paper, we describe the model results to show how the magnitude and variability of a plume of contaminants from the Chicago area contributes to a highly variable region of net contaminant deposition over the entire lake. For the whole lake, gross annual deposition of PCBs is approximately 3200 kg, although the net annual gas exchange is not significantly different from zero. The data-driven model illustrates that on a daily basis, the net exchange of persistent organic pollutants (POPs) can change from net deposition to net volatilization depending on the area of plume impact. These findings suggest that i) control of urban areas can accelerate the rate of volatilization from lakes; and ii) release of POPs from urban areas is largely a result of volatilization processes.

  19. A brief geologic history of Volusia County, Florida

    USGS Publications Warehouse

    German, Edward R.

    2009-01-01

    Volusia County is in a unique and beautiful setting. This Florida landscape is characterized by low coastal plains bordered by upland areas of sandy ridges and many lakes. Beautiful streams and springs abound within the vicinity. Underneath the land surface is a deep layer of limestone rocks that stores fresh, clean water used to serve drinking and other needs. However, the landscape and the subsurface rocks have not always been as they appear today. These features are the result of environmental forces and processes that began millions of years ago and are still ongoing. This fact sheet provides a brief geologic history of the Earth, Florida, and Volusia County, with an emphasis on explaining why the Volusia County landscape and geologic structure exists as it does today.

  20. Large-Scale Operations Management Test of Use of the White Amur for Control of Problem Aquatic Plants. Selected Life History Information of Animal Species on Lake Conway, Florida.

    DTIC Science & Technology

    1982-08-01

    Name Management Information 2 Loplsostus i. Inhabits warm, sluggish waters. (Continued) platyrhincus Can live in very stagnant waters 3 Amia calva a...water with abundant vegetation. Amia calva can survive very stagnant water due to its ability to surface and ’breathe’ the air. Active at twilight and...Name Scientific Name FishSpecies 1 Longnose gar Loplsosteus osseus 2 Florida gar Lepisosteus platjrhincus 3 Bowf in Aula calva 4 American eel Anguilla

  1. Debromoaplysiatoxin in Lyngbya-dominated mats on manatees (Trichechus manatus latirostris) in the Florida King's Bay ecosystem.

    PubMed

    Harr, Kendal E; Szabo, Nancy J; Cichra, Mary; Phlips, Edward J

    2008-08-01

    Proliferation of the potentially toxic cyanobacterium, Lyngbya, in Florida lakes and rivers has raised concerns about ecosystem and human health. Debromoaplysiatoxin (DAT) was measured in concentrations up to 6.31 microg/g wet weight lyngbyatoxin A equivalents (WWLAE) in Lyngbya-dominated mats collected from natural substrates. DAT was also detected (up to 1.19 microg/g WWLAE) in Lyngbya-dominated mats collected from manatee dorsa. Ulcerative dermatitis found on manatees is associated with, but has not been proven to be caused by DAT.

  2. High-resolution single-channel seismic reflection surveys of Orange Lake and other selected sites of north central Florida

    USGS Publications Warehouse

    Kindinger, Jack G.; Davis, Jeffrey B.; Flocks, James G.

    1994-01-01

    The potential fluid exchange between lakes of north central Florida and the Floridan aquifer and the process by which exchange occurs is of critical concern to the St. Johns Water Management District. High-resolution seismic tools with relatively new digital technology were utilized in collecting geophysical data from Orange, Kingsley, Lowry and Magnolia Lakes, and the Drayton Island area of St. Johns River. The data collected shows the application of these techniques in understanding the formation of individual lakes, thus aiding in the management of these natural resources by identifying breaches or areas where the confining units are thin or absent between the water bodies and the Floridan aquifer. Orange Lake, the primary focus of the study, is a shallow flooded plain that was formed essentially as an erosional depression in the clayey Hawthorn formation. The primary karstic features identified in the lake were cover subsidence, cover collapse and buried sinkholes structures in various sizes and stages of development. Orange Lake was divided into three areas southeast, southwest, and north-central. Karst features within the southeast area of Orange Lake are mostly cover subsidence sinkholes and associated features. Many of the subsidence features found are grouped together to form larger composite sinkholes, some greater than 400 m in diameter. The size of these composite sinkholes and the number of buried subsidence sinkholes distinguish the southeast area from the others. The potential of lake waters leaking to the aquifer in the southeast area is probably controlled by the permeability of the cover sediments or by fractures that penetrate the lake floor. The lake bottom and subsurface of the north-central areas are relatively subsidence sinkholes that have no cover sediments overlying them, implying that the sinks have been actively subsiding with some seepage into the aquifer from the lake in this area due to the possible presence of the active subsidence and faulting. The largest and most important features in the lake are the collapse sinkholes found along the southwestern shore that provide conduits for exchange between the lake and subsurface aquifer. There are two basic differences between the southwest and other areas of the lake: (1) the features found towards the central part of the lake are smaller in scale (1to 10 m across) and tend to be singular structures compare to the southwest area where features combined to form larger sinkholes (>400 m), and; (2) the southwest area is the only site where collapse dolines were identified. These dolines are located along the southwestern shoreline adjacent to Heagy-Burry Park. The comparison of seismic profiles from the several other selected lake and river sites to the Orange Lake profiles showed that other study areas were constructed of one or two large subsidences or a combination of sinkholes to form one large sinkhole. Aside from the difference in scale the basic characteristics of the subsidence sinkholes were similar.

  3. Effect of oil pollution on fresh groundwater in Kuwait

    NASA Astrophysics Data System (ADS)

    Al-Sulaimi, J.; Viswanathan, M. N.; Székely, F.

    1993-11-01

    Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one.

  4. Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes.

    PubMed

    Li, H B; Yu, S; Li, G L; Deng, H

    2012-08-01

    Lead contamination becomes of importance to urban resident health worldwide, especially for child health and growth. Undisturbed lake sediment cores are increasingly employed as a useful tool to backdate environmental contamination history. Five intact sediment cores collected from lakes in five urban parks were dated using (210)Pb and analyzed for total Pb content and isotope ratio to reconstruct the Pb contamination history over the last century in Shanghai, China. Total Pb content in the sediment cores increased by about 2- to 3-fold since 1900s. The profile of Pb flux in each sediment core revealed a remarkable increase of Pb contamination in Shanghai over the past century, especially in the latest three decades when China was experiencing a rapid economic and industrial development. Significant correlations were found between Pb fluxes in sediment cores and Pb emission from coal combustion in Shanghai. Coal combustion emission dominated anthropogenic Pb sources during the past century contributing from 52% to 69% of total Pb in cores, estimated by a three-end member model of Pb isotope ratios. Leaded gasoline emission generally contributed <30% of total Pb, which was banned by 1997 in the Shanghai region. Our results implicate that coal combustion-based energy consumption should be replaced, or at least partially replaced, to reduce health risks of Pb contamination in Shanghai. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Discrimination of fluoride and phosphate contamination in central Florida for analyses of environmental effects

    NASA Technical Reports Server (NTRS)

    Coker, A. E.; Marshall, R.; Thomson, F.

    1972-01-01

    A study was made of the spatial registration of fluoride and phosphate pollution parameters in central Florida by utilizing remote sensing techniques. Multispectral remote sensing data were collected over the area and processed to produce multispectral recognition maps. These processed data were used to map land areas and waters containing concentrations of fluoride and phosphate. Maps showing distribution of affected and unaffected vegetation were produced. In addition, the multispectral data were processed by single band radiometric slicing to produce radiometric maps used to delineate areas of high ultraviolet radiance, which indicates high fluoride concentrations. The multispectral parameter maps and radiometric maps in combination showed distinctive patterns, which are correlated with areas known to be affected by fluoride and phosphate contamination. These remote sensing techniques have the potential for regional use to assess the environmental impact of fluoride and phosphate wastes in central Florida.

  6. Inorganic Contaminants, Nutrient Reserves and Molt Intensity in Autumn Migrant Red-Necked Grebes (Podiceps grisegena) at Georgian Bay.

    PubMed

    Holman, Katie L; Schummer, Michael L; Petrie, Scott A; Chen, Yu-Wei; Belzile, Nelson

    2015-11-01

    Red-necked grebes (Podiceps grisegena) are piscivorous waterbirds that breed on freshwater lakes in northwestern Canada and stop-over at the Great Lakes during autumn migration to molt feathers and replenish lipid and protein reserves. The objectives of this study were to (1) describe concentrations of, and correlations among, inorganic contaminants in a sample of autumn migrant red-necked grebes from the Great Lakes, (2) compare concentrations of inorganic contaminants to those in autumn migrant common loons from Schummer et al. (Arch Environ Contam Toxicol 62:704, 2011a), (3) evaluate if the inorganic elements are negatively associated with lipid and protein reserves, and (4) determine if nutrient reserves and molt intensity were correlated. None of the 14 contaminants analyzed were above threshold levels known to cause acute health problems in piscivorous birds. Body masses of plucked birds were within the normal reported range. Lipid reserves varied positively with hepatic concentrations of arsenic, copper, iron, nickel, lead, and selenium and negatively with mercury and magnesium. Protein reserves variety negatively with hepatic concentrations of arsenic, calcium, nickel, lead, and zinc and positively with aluminum, cadmium, and iron. A negative correlation was observed between chest molt and lipid reserves but not between nutrient reserves and other feather tracts. The relationships between lipid reserves and both mercury and selenium were consistent with current research on other piscivorous waterbirds at the Great Lakes and justify continued work to determine interactions of these contaminants in waterbirds that breed, stage, and winter in the region.

  7. 40 CFR 131.43 - Florida.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a copy of all materials submitted to EPA, at the time of submittal to EPA, to facilitate the State... time for a specific lake in lieu of the site-specific alternative criteria procedure described in...: Waccasassa Coastal Drainage Area, Withlacoochee Coastal Drainage Area, Crystal/Pithlachascotee Coastal...

  8. Quality of Ground Water in the Biscayne Aquifer in Miami-Dade, Broward, and Palm Beach Counties, Florida, 1996-1998, with Emphasis on Contaminants

    DTIC Science & Technology

    2005-01-01

    Blasland, Bouck, and Lee, Inc., 1992), arsenic and copper used as fungicide on grape - fruit and as a wood preservative (Sherwood and others, 1973), and...for nematode control (400 pounds per acre from Noling and Gilreath, 1998) would provide 44.8 grams per square meter to the soil. The decomposition... nematode control: A south Florida synopsis: Gainesville, University of Florida, Institute for Food and Agricultural Science: accessed October 8, 2002

  9. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  10. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  11. DART Employees at Work

    NASA Image and Video Library

    2014-10-31

    Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces.

  12. EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE & ORGANIC CONTAMINATION IN GROUNDWATER (SALT LAKE CITY, UT)

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) for radionuclides and inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing ...

  13. A comparison of mercury burdens between St. Marks National Wildlife Refuge and St. Andrew Bay, Florida: Evaluation of fish body burdens and physiological responses in largemouth bass, spotted seatrout, striped mullet, and sunfish

    USGS Publications Warehouse

    Huge, D.H.; Rauschenberger, R.H.; Wieser, F.M.; Hemming, J.M.

    2011-01-01

    Musculature from the dorsal region of 130 largemouth bass (Micropterus salmoides), 140 sunfish (Lepomis sp.), 41 spotted seatrout (Cynoscion nebulosus) and 67 striped mullet (Mugil cephalus) were collected from five estuarine and five freshwater sites within the St. Marks National Wildlife Refuge and two estuarine and two freshwater sites from St. Andrew Bay, Florida, United States of America. Musculature was analyzed for total mercury content, sagittal otoliths were removed for age determination and physiological responses were measured. Largemouth bass and sunfish from the refuge had higher mercury concentrations in musculature than those from the bay. Male spotted seatrout, male striped mullet, male and female sunfish and female largemouth bass had mercury burdens positively correlated with length. The majority of all four species of fish from both study areas contained mercury levels below 1.5 part per million, the limit for safe consumption recommended the Florida Department of Health. In comparison, a significant percentage of largemouth bass and sunfish from several sampled sites, most notably Otter Lake and Lake Renfroe within St. Marks National Wildlife Refuge, had mercury levels consistent with the health department's guidelines of 'limited consumption' or 'no consumption guidelines.'

  14. Bioavailability of sediment-associated mercury to Hexagenia mayflies in a contaminated floodplain river

    USGS Publications Warehouse

    Naimo, T.J.; Wiener, J.G.; Cope, W.G.; Bloom, N.S.

    2000-01-01

    We examined the bioavailability of mercury in sediments from the contaminated Sudbury River (Massachusetts, U.S.A.). Mayfly nymphs (Hexagenia) were exposed in four 21-day bioaccumulation tests to contaminated and reference sediments (treatments) from reservoirs, flowing reaches, palustrine wetlands, and a riverine lake. Mean total mercury (Sigma Hg) ranged from 880 to 22 059 ng.g dry weight(-1) in contaminated sediments and from 90 to 272 ng.g(-1) in reference sediments. Mean final concentrations of methyl mercury (MeHg) in test water were greatest (8-47 ng Hg.L-1) in treatments with contaminated wetland sediments, which had mean Sigma Hg ranging from 1200 to 2562 ng.g(-1). In mayflies, final mean concentrations of MeHg were highest in treatments with contaminated wetland sediments (122-183 ng Hg.g(-1)), intermediate in treatments with contaminated sediments from reservoirs, flowing reaches, and a riverine lake (75-127 ng Hg.g(-1)), and lowest in treatments with reference sediments (32-41 ng Hg.g(-1)). We conclude that the potential entry of MeHg into the benthic food chain was greater in contaminated palustrine wetlands than in the contaminated reservoirs, which had the most contaminated sediments.

  15. Searching for life in extreme environments relevant to Jovian's Europa: Lessons from subglacial ice studies at Lake Vostok (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Bulat, Sergey A.; Alekhina, Irina A.; Marie, Dominique; Martins, Jean; Petit, Jean Robert

    2011-08-01

    The objective was to estimate the genuine microbial content of ice samples from refrozen water (accretion ice) from the subglacial Lake Vostok (Antarctica) buried beneath the 4-km thick East Antarctic ice sheet. The samples were extracted by heavy deep ice drilling from 3659 m below the surface. High pressure, a low carbon and chemical content, isolation, complete darkness and the probable excess of oxygen in water for millions of years characterize this extreme environment. A decontamination protocol was first applied to samples selected for the absence of cracks to remove the outer part contaminated by handling and drilling fluid. Preliminary indications showed the accretion ice samples to be almost gas free with a low impurity content. Flow cytometry showed the very low unevenly distributed biomass while repeated microscopic observations were unsuccessful.We used strategies of Ancient DNA research that include establishing contaminant databases and criteria to validate the amplification results. To date, positive results that passed the artifacts and contaminant databases have been obtained for a pair of bacterial phylotypes only in accretion ice samples featured by some bedrock sediments. The phylotypes included the chemolithoautotrophic thermophile Hydrogenophilus thermoluteolus and one unclassified phylotype. Combined with geochemical and geophysical considerations, our results suggest the presence of a deep biosphere, possibly thriving within some active faults of the bedrock encircling the subglacial lake, where the temperature is as high as 50 °C and in situ hydrogen is probably present.Our approach indicates that the search for life in the subglacial Lake Vostok is constrained by a high probability of forward-contamination. Our strategy includes strict decontamination procedures, thorough tracking of contaminants at each step of the analysis and validation of the results along with geophysical and ecological considerations for the lake setting. This may serve to establish a guideline protocol for studying extraterrestrial ice samples.

  16. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    PubMed

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.

  17. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-08-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  18. A Combined Field and Laboratory Study on Activated Carbon-Based Thin Layer Capping in a PCB-Contaminated Boreal Lake.

    PubMed

    Abel, Sebastian; Akkanen, Jarkko

    2018-04-17

    The in situ remediation of aquatic sediments with activated carbon (AC)-based thin layer capping is a promising alternative to traditional methods, such as sediment dredging. Applying a strong sorbent like AC directly to the sediment can greatly reduce the bioavailability of organic pollutants. To evaluate the method under realistic field conditions, a 300 m 2 plot in the PCB-contaminated Lake Kernaalanjärvi, Finland, was amended with an AC cap (1.6 kgAC/m 2 ). The study lake showed highly dynamic sediment movements over the monitoring period of 14 months. This led to poor retention and rapid burial of the AC cap under a layer of contaminated sediment from adjacent sites. As a result, the measured impact of the AC amendment was low: Both the benthic community structure and PCB bioaccumulation were similar on the plot and in surrounding reference sites. Corresponding follow-up laboratory studies using Lumbriculus variegatus and Chironomus riparius showed that long-term remediation success is possible, even when an AC cap is covered with contaminated sediment. To retain a measurable effectiveness (reduction in contaminant bioaccumulation), a sufficient intensity and depth of bioturbation is required. On the other hand, the magnitude of the adverse effect induced by AC correlated positively with the measured remediation success.

  19. Simulated Effects of Ground-Water Augmentation on the Hydrology of Round and Halfmoon Lakes in Northwestern Hillsborough County, Florida

    USGS Publications Warehouse

    Yager, Richard M.; Metz, P.A.

    2004-01-01

    Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were estimated through steady-state simulations of average conditions in July 1996. Simulated hydrographs computed by the Round and Halfmoon Lake models closely matched measured water-level fluctuations, except during El Ni?o, when the Halfmoon Lake model was unable to accurately reproduce water levels. Possibly, potential recharge during El Ni?o was diverted through ground-water-flow outlets that were not represented in the Halfmoon Lake model, or a large part of the rainfall was diverted into runoff before it could become recharge. Solute transport simulations with MT3D indicate that leakage of lake water extended 250 to 400 feet into the surficial aquifer around Round Lake, and from 75 to 150 feet around Halfmoon Lake before flowing to the underlying Upper Floridan aquifer. These results are in agreement with concentrations of stable isotopes of oxygen-18 (d18O) and deuterium (dD) in the surficial aquifer. Schedules of monthly augmentation rates to maintain constant stages in Round and Halfmoon Lakes were computed using an equation that accounted for changes in the Upper Floridan aquifer head and the deviation from the mean recharge rate. Resulting lake stages were nearly constant during the first half of the study, but increased above target lake stages during El Ni?o; modifying the computation of augmentation rates to account for the higher recharge rate during El Ni?o resulted in lake stages that were closer to the target lake stage. Substantially more lake leakage flows to the Upper Floridan aquifer from Round Lake than from Halfmoon Lake, because the estimated vertical hydraulic conductivities of lake and confining layer sediments and breaches in the confining layer beneath Round Lake are much greater. Augmentation rates required to maintain the low guidance stages in Round Lake (53 feet) and Halfmoon Lake (42 feet) under average Upper Floridan aquifer heads are estimated as 33,850 cubic feet per day and 1,330 to 10,000 cubic feet per day, respectively. T

  20. Distribution of organic contamination of sediments from Ichkeul Lake and Bizerte Lagoon, Tunisia.

    PubMed

    Ben Salem, Fida; Ben Said, Olfa; Mahmoudi, Ezzeddine; Duran, Robert; Monperrus, Mathilde

    2017-10-15

    Analyses of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and butyl tins (BuSn) were conducted on sediments from Ichkeul Lake-Bizerte Lagoon watershed (Tunisia). A total of 59 compounds (16 PAHs, 12 PCBs, 22 OCPs and 9 BuSn) were measured in 40 surface sediment samples collected during two campaigns. High concentrations of total PAHs were identified in the lagoon ranging from 122 to 19600ng·g -1 . Several OCPs, including endrin, dieldrin, and lindane (Hexachlorocyclohexane or HCH or BHC) were found in high concentrations in Ichkeul Lake, ranging from 28 to 2012ngg -1 . PAHs and OCPs varied seasonally, in response to the complex hydrology of the watershed. The concentrations of total PCBs ranged between 0.04 and 10.653ngg -1 and suggests low total PCBs sediment contamination, when compared to most international criteria. Total BuSn concentrations range between 67 and 526ng·g -1 , which are relatively low when compared to most international criteria and ecological risk assessments. This is the first study of organic contamination in Ichkeul Lake (RAMSAR and UNESCO World Heritage site). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Production of Hexagenia limbata nymphs in contaminated sediments in the Upper Great Lakes connecting channels

    USGS Publications Warehouse

    Edsall, Thomas A.; Manny, Bruce A.; Schloesser, Donald W.; Nichols, Susan J.; Frank, Anthony M.

    1991-01-01

    In April through October 1986, we sampled sediments and populations of nymphs of the burrowing mayfly, Hexagenia limbata (Serville), at 11 locations throughout the connecting channels of the upper Great Lakes, to determine if sediment contaminants adversely affected nymph production. Production over this period was high (980 to 9231 mg dry wt m-2) at the five locations where measured sediment levels of oil, cyanide, and six metals were below the threshold criteria of the U.S. Environmental Protection Agency and the Ontario Ministry of Environment for contaminated or polluted sediments, and also where the criterion for visible oil given in the Water Quality Agreement between the U.S.A. and Canada for connecting waters of the Great Lakes was not exceeded. At the other six locations where sediments were polluted, production was markedly lower (359 to 872 mg dry wt m-2). This finding is significant because it indicates that existing sediment quality criteria can be applied to protect H. limbata from oil, cyanide, and metals in the Great Lakes and connecting channels where the species fulfills a major role in secondary production and trophic transfer of energy.

  2. Trophic transfer of persistent organic pollutants through a pelagic food web: The case of Lake Como (Northern Italy).

    PubMed

    Mazzoni, Michela; Boggio, Emanuela; Manca, Marina; Piscia, Roberta; Quadroni, Silvia; Bellasi, Arianna; Bettinetti, Roberta

    2018-05-30

    Despite DDT and PCB having been banned for about 40 years, they are still detectable in the environment. In the present research we specifically investigated the trophic transfer of these organochlorine contaminants (OC) through a pelagic food web of a deep lake in Northern Italy (Lake Como) over time. Zooplankton and fish were sampled each season of a year and OC concentrations and the carbon and nitrogen isotopic ratios were measured. By using stable isotopes, the direct trophic relationship between pelagic zooplankton and zooplanktivorous fish was confirmed for Alosa agone only in summer. Based on this result, the biomagnification factor normalized on the trophic level (BMF TL ) for organic contaminants was calculated. BMF TL values were within the range 0.9-1.9 for DDT isomers and 1.6-4.9 for some PCB congeners (PCB 95, PCB 101, PCB 149, PCB 153, PCB 138 - present both in zooplankton and in fish and representing >60% of the PCB contamination), confirming the biomagnification of these compounds in one of the two zooplanktivorous fish species of the lake. Copyright © 2018. Published by Elsevier B.V.

  3. Contaminants in wood stork eggs and their effects on reproduction, Florida, 1982

    USGS Publications Warehouse

    Fleming, W.J.; Rodgers, J.A.; Stafford, C.J.

    1984-01-01

    One egg was removed from five Wood Stork (Mycteria americana) nests at each of eight colonies in central and northern Florida in 1982. DDE and mercury were present in all eggs with concentrations ranging up to 9.4 and 0.73 ppm wet weight, respectively. PCBs occurred in 25 eggs with a high value of 3.5 ppm. No other organochlorine compounds occurred in more than 307. of the eggs. Contaminant concentrations were remarkably similar among colonies. DDE was negatively correlated with eggshell thickness (r=-0.48 P < 0.01). Eggshell thickness averaged 4.2% less than for eggs collected before 1947. Contaminants showed no significant link to hatching or fledging success. However, eggs from nests with less than 100 percent hatching success showed a tendency toward higher DDE and PCB concentrations (P= 0.09 and 0.12, respectively).

  4. Viral Tracer Studies Indicate Contamination of Marine Waters by Sewage Disposal Practices in Key Largo, Florida

    PubMed Central

    Paul, J. H.; Rose, J. B.; Brown, J.; Shinn, E. A.; Miller, S.; Farrah, S. R.

    1995-01-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys. PMID:16535046

  5. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    PubMed

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.

  6. An evaluation of remote sensing technologies for the detection of residual contamination at ready-for-anticipated use sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2014-01-01

    Operational problems with site access and information, XRF instrument operation, and imagery collections hampered the effective data collection and analysis process. Of the 24 sites imaged and analyzed, 17 appeared to be relatively clean with no discernible metal contamination, hydrocarbons, or asbestos in the soil. None of the samples for the sites in Louisiana had any result exceeding the appropriate industrial or residential standard for arsenic or lead. One site in South Carolina (North Street Dump) had two samples that exceeded the residential standard for lead. One site in Texas (Cadiz Street), and four sites in Florida (210 North 12th Street, Encore Retail Site, Clearwater Auto, and 22nd Street Mixed Use) were found to have some level of residual metal contamination above the applicable residential or commercial Risk-Based Concentration (RBC) standard. Three of the Florida sites showing metal contamination also showed a pattern of vegetation stress based on standard vegetation analysis techniques.

  7. Integrated use of biomarkers and bioaccumulation data in Zebra mussel (Dreissena polymorpha) for site-specific quality assessment.

    PubMed

    Binelli, A; Ricciardi, F; Riva, C; Provini, A

    2006-01-01

    One of the useful biological tools for environmental management is the measurement of biomarkers whose changes are related to the exposure to chemicals or environmental stress. Since these responses might vary with different contaminants or depending on the pollutant concentration reached in the organism, the support of bioaccumulation data is needed to prevent false conclusions. In this study, several persistent organic pollutants -- 23 polychlorinated biphenyl (PCB) congeners, 11 polycyclic aromatic hydrocarbons (PAHs), six dichlorodiphenyltricholroethane (DDT) relatives, hexachlorobenzene (HCB), chlorpyrifos and its oxidized metabolite -- and some herbicides (lindane and the isomers alpha, beta, delta; terbutilazine; alachlor; metolachlor) were measured in the soft tissues of the freshwater mollusc Zebra mussel (Dreissena polymorpha) from 25 sampling sites in the Italian portions of the sub-alpine great lakes along with the measure of ethoxyresorufin dealkylation (EROD) and acetylcholinesterase (AChE) activity. The linkage between bioaccumulation and biomarker data allowed us to create site-specific environmental quality indexes towards man-made chemicals. This classification highlighted three different degrees of xenobiotic contamination of the Italian sub-alpine great lakes: a high water quality in Lake Lugano with negligible pollutant levels and no effects on enzyme activities, an homogeneous poor quality for Lakes Garda, Iseo and Como, and the presence of some xenobiotic point-sources in Lake Maggiore, whose ecological status could be jeopardized, also due to the heavy DDT contamination revealed since 1996.

  8. Levels and potential sources of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (DecaBDE) in lake and marine sediments in Sweden.

    PubMed

    Ricklund, Niklas; Kierkegaard, Amelie; McLachlan, Michael S

    2010-03-15

    Decabromodiphenyl ethane (DBDPE) is a brominated flame retardant (BFR) used as a replacement for the structurally similar decabromodiphenyl ether (decaBDE), which is a regulated environmental contaminant of concern. DBDPE has been found in indoor dust, sewage sludge, sediment, and biota, but little is known about its occurrence and distribution in the environment In this paper, sediment was analyzed from 11 isolated Swedish lakes and along a transect running from central Stockholm through the Stockholm archipelago to the Baltic Sea. DBDPE was present in all samples. In lake sediment, the levels ranged from 0.23 to 11 ng/g d.wt. and were very similar to the levels of decaBDE (0.48-11 ng/g d.wt.). Since the lakes have no known point sources of BFRs, their presence in the sediments provides evidence for long-range atmospheric transport and deposition. In the marine sediment, the DBDPE and decaBDE levels decreased by a factor of 20-50 over 40 km from the inner harbor to the outer archipelago. There the DBDPE and decaBDE levels were similar to the levels in nearby isolated lakes. The results indicate that contamination of the Swedish environment with DBDPE has already approached that of decaBDE, and that this contamination is primarily occurring via the atmosphere.

  9. Mercury contribution to an Adirondack lake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scrudato, R.J.; Long, D.; Weinbloom, R.

    1987-01-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipitation.

  10. Mercury contribution to an adirondack lake

    NASA Astrophysics Data System (ADS)

    Scrudato, R. J.; Long, D.; Weinbloom, Robert

    1987-10-01

    Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.

  11. Science Plan U.S. Geological Survey Florida District

    DTIC Science & Technology

    2001-01-01

    coastline of the United States during a particularly active period of hurricane activity in 1998. endocrine disruptors , are beginning to receive...reconnaissance sampling for emergent contaminants (pharmaceuticals, pesticides, endocrine disruptor compounds) to develop additional projects. Figure 31...pathogens, and endocrine disruptor compounds. (Issue 4) • Evaluation of new instrumentation for specific applications in Florida, such as

  12. Geohydrology of the lower Apalachicola-Chattahoochee-Flint River basin, southwestern Georgia, northwestern Florida, and southeastern Alabama

    USGS Publications Warehouse

    Torak, Lynn J.; Painter, Jaime A.

    2006-01-01

    The lower Apalachicola-Chattahoochee-Flint (ACF) River Basin contains about 4,600 square miles of karstic and fluvial plains and nearly 100,000 cubic miles of predominantly karst limestone connected hydraulically to the principal rivers and lakes in the Coastal Plain of southwestern Georgia, northwestern Florida, and southwestern Alabama. Sediments of late-middle Eocene to Holocene in hydraulic connection with lakes, streams, and land surface comprise the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower semiconfining unit and contribute to the exchange of ground water and surface water in the stream-lake-aquifer flow system. Karst processes, hydraulic properties, and stratigraphic relations limit ground-water and surface-water interaction to the following hydrologic units of the stream-lake-aquifer flow system: the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Geologic units corresponding to these hydrologic units are, in ascending order: Lisbon Formation; Clinchfield Sand; Ocala, Marianna, Suwannee, and Tampa Limestones; Hawthorn Group; undifferentiated overburden (residuum); and terrace and undifferentiated (surficial) deposits. Similarities in hydraulic properties and direct or indirect interaction with surface water allow grouping sediments within these geologic units into the aforementioned hydrologic units, which transcend time-stratigraphic classifications and define the geohydrologic framework for the lower ACF River Basin. The low water-transmitting properties of the lower confining unit, principally the Lisbon Formation, allow it to act as a nearly impermeable base to the stream-lake-aquifer flow system. Hydraulic connection of the surficial aquifer system with surface water and the Upper Floridan aquifer is direct where sandy deposits overlie the limestone, or indirect where fluvial deposits overlie clayey limestone residuum. The water level in perched zones within the surficial aquifer system fluctuates independently of water-level changes in the underlying aquifer, adjacent streams, or lakes. Where the surficial aquifer system is connected with surface water and the Upper Floridan aquifer, water-table fluctuations parallel those in adjacent streams or the underlying aquifer. More...

  13. Reconnaissance for trace metals in bed sediment, Wright Patman Lake, near Texarkana, Texas

    USGS Publications Warehouse

    McKee, Paul W.

    2001-01-01

    Many contaminants can be introduced into the environment by urban and industrial activities. The drainage area of Wright Patman Lake is influenced by these activities. Among the contaminants associated with urban and industrial activities are trace metals such as arsenic, lead, mercury, and zinc. These contaminants are relatively insoluble in water and commonly are found in stream, lake, and reservoir bottom sediment, especially the clays and silts within the sediment.Wright Patman Lake serves as the major potable water supply for the city of Texarkana and surrounding communities. Texarkana, located in the northeastern corner of Texas and the southwestern corner of Arkansas, had a population of about 56,000 in 1998, which reflects an increase of about 3.4 percent from the 1990 census (Ramos, 1999). Texarkana Water Utilities, which manages the water-treatment facilities for Texarkana, proposes to dredge the lake bed near the water intake in the Elliot Creek arm of Wright Patman Lake. It is possible that arsenic, lead, mercury, and other trace metals might be released into the water if the bed sediment is disturbed. Bed sediment in the Elliot Creek arm of the lake, in particular, could contain trace metals because of its proximity to Red River Army Depot and because industrial land use is prevalent in the headwaters of Elliot Creek.The U.S. Geological Survey (USGS), in cooperation with Reconnaissance for Trace Metals in Bed Sediment, Wright Patman Lake, Near Texarkana, Texas In cooperation with the Texarkana Water Utilities conducted a reconnaissance of Wright Patman Lake to collect bed-sediment samples for analysis of trace metals. This report presents trace metal concentrations in bed-sediment samples collected at six sites along the Elliot Creek arm of the lake, one site each in two adjacent arms, and one site near the dam on June 16, 1999 (fig. 1). One bed-sediment sample was collected at each of the nine sites, and one sediment core was collected at each of two of the sites. Trace metal concentrations are compared to sediment-quality guidelines for the protection of aquatic life and to screening levels based on historical trace metal concentrations in bed sediment of Texas reservoirs.

  14. A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA.

    PubMed

    Subedi, Bikram; Codru, Neculai; Dziewulski, David M; Wilson, Lloyd R; Xue, Jingchuan; Yun, Sehun; Braun-Howland, Ellen; Minihane, Christine; Kannan, Kurunthachalam

    2015-04-01

    On-site wastewater treatment systems (OWTSs or septic systems) are designed to treat and dispose effluents on the same property that produces the wastewater. Approximately 25% of the U.S. population is served by such facilities. Nevertheless, studies on the treatment efficiency and discharge of organic contaminants through septic effluents are lacking. This pilot study showed the occurrence of organic contaminants including pharmaceuticals and personal care products (PPCPs), perfluoroalkyl surfactants (PFASs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in septic effluents, adjacent lake water samples, household drinking water in homes that use lake water or a well adjacent to the lake as a source of drinking water, and offshore lake water samples. Septic effluent as well as lake and tap water samples were collected from several households with OWTSs around Skaneateles Lake located in central New York. The advanced on-site systems were installed in some households for the purpose of limiting nutrient levels in the effluent to protect the local surface water. Additionally, because many of these systems serve homes with limited land, advanced treatment systems were needed. The median concentrations of ten PPCPs (ranged from 0.45 to 388 ng/L) and eleven PFASs (ranged from 0.20 to 14.6 ng/L) in septic water were significantly higher (p ≤ 0.01) than in lake water samples. The median concentrations of PPCPs and PFASs in lake and tap water samples were not significantly different (p ≥ 0.65). The median concentrations of ∑PBDEs in septic, lake, and tap water samples were 7.47, 3.49, and 2.22 ng/L, respectively, and those for ∑PCBs were 33.1, 29.2, and 28.6 ng/L, respectively. The mass flux of PPCPs (i.e. the mass flow of PPCPs per unit area per unit time) through the disposal of treated septic effluent from textile biofilter and aerobic treatments to the dispersal unit ranged from 12 (carbamazepine) to 66900 μg/m(2)/day (caffeine) whereas that for PFASs ranged from 7.0 (perfluorobutanesulfonate) to 833 μg/m(2)/day (perfluorooctanoic acid). Based on the ratio of measured concentrations and method detection limit, triclocarban, perfluorooctanoic acid, and perfluorooctanesulfonate have the potential to be used as chemical tracers of septic water contamination in Skaneateles Lake. The median concentrations of atenolol, a beta-blocker drug, in septic water were significantly (ρ = 0.86, p = 0.01) correlated with enterococci counts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Integration of analytical and biological measurements for assessing the effects of contaminants present at Great Lakes areas of concern

    EPA Science Inventory

    Assessing the potential biological impacts of complex contaminant mixtures in aquatic environments is often a challenge for ecotoxicologists. Instrumental analysis of site waters provides insights into the occurrence of contaminants, but provides little information about possibl...

  16. Remedial Action Plan for Deer Lake Area of Concern, 1987

    EPA Pesticide Factsheets

    Stage I document details Deer Lake’s history of mercury and other contamination, and describes sources of pollution and future remedial actions, to address beneficial use impairments identified by the Great Lakes Water Quality Board (WQB).

  17. Genotoxicity of Water Contaminants from the Basin of Lake Sevan, Armenia Evaluated by the Comet Assay in Gibel Carp (Carassius auratus gibelio) and Tradescantia Bioassays.

    PubMed

    Simonyan, Anna; Gabrielyan, Barduch; Minasyan, Seyran; Hovhannisyan, Galina; Aroutiounian, Rouben

    2016-03-01

    Combination of bioassays and chemical analysis was applied to determine the genotoxic/mutagenic contamination in four different sites of the basin of Lake Sevan in Armenia. Water genotoxicity was evaluated using the single cell gel electrophoresis technique (comet assay) in erythrocytes of gibel carp (Carassius auratus gibelio), Tradescantia micronucleus (Trad-MCN) and Tradescantia stamen hair mutation (Trad-SHM) assays. Significant inter-site differences in the levels of water genotoxicity according to fish and Trad-MCN bioassays have been revealed. Two groups of locations with lower (south-southwest of the village Shorzha and Peninsula of Lake Sevan) and higher (estuaries of Gavaraget and Dzknaget rivers) levels of water genotoxicity were distinguished. Correlation analysis support the hypothesis that the observed genetic alterations in fish and plant may be a manifestation of the effects of water contamination by nitrate ions, Si, Al, Fe, Mn and Cu. Increase of DNA damage in fish also correlated with content of total phosphorus.

  18. Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.

    PubMed

    Sandheinrich, Mark B; Bhavsar, Satyendra P; Bodaly, R A; Drevnick, Paul E; Paul, Eric A

    2011-10-01

    Contamination of fish populations with methylmercury is common in the region of the Laurentian Great Lakes as a result of atmospheric deposition and methylation of inorganic mercury. Using fish mercury monitoring data from natural resource agencies and information on tissue concentrations injurious to fish, we conducted a screening-level risk assessment of mercury to sexually mature female walleye (Sander vitreus), northern pike (Esox lucius), smallmouth bass (Micropterus dolomieu), and largemouth bass (Micropterus salmoides) in the Great Lakes and in interior lakes, impoundments, and rivers of the Great Lakes region. The assessment included more than 43,000 measurements of mercury in fish from more than 2000 locations. Sexually mature female fish that exceeded threshold-effect tissue concentrations of 0.20 μg g(-1) wet weight in the whole body occurred at 8% (largemouth bass) to 43% (walleye) of sites. Fish at 3% to 18% of sites were at risk of injury and exceeded 0.30 μg g(-1) where an alteration in reproduction or survival is predicted to occur. Most fish at increased risk were from interior lakes and impoundments. In the Great Lakes, no sites had sexually mature fish that exceeded threshold-effect concentrations. Results of this screening-level assessment indicate that fish at a substantive number of locations within the Great Lakes region are potentially at risk from methylmercury contamination and would benefit from reduction in mercury concentrations.

  19. Symptoms and implications of selenium toxicity in fish: the Belews Lake case example

    Treesearch

    A. Dennis Lemly

    2002-01-01

    Belews Lake, North Carolina was contaminated by selenium in wastewater from a coal-fired power plant during the mid-1970s and toxic impacts to the resident fish community (20 species) were studied for over two decades. Symptoms of chronic selcnitun poisoning in Belews Lake fish included, (1) telangiectasia (swelling) of gill lamellae; (2) elevated lymphocytes; (3)...

  20. AN INVESTIGATION OF MERCURY LEVELS IN THE FOOD WEB OF ISLE ROYALE NATIONAL PARK, MICHIGAN: REPORT FOR THE AQUATIC SUBPROJECT, SARGENT AND RICHIE LAKES, SUMMER 1998-99

    EPA Science Inventory

    Toxic contaminants are one of the most pressing environmental concerns in the Lake Superior Basin. The "Binational Program to Protect and Restore the Lake Superior Basin," a U.S. and Canadian governmental effort established to address this concern, has initially identified nine c...

  1. Mercury concentrations of a resident freshwater forage fish at Adak Island, Aleutian Archipelago, Alaska.

    PubMed

    Kenney, Leah A; von Hippel, Frank A; Willacker, James J; O'Hara, Todd M

    2012-11-01

    The Aleutian Archipelago is an isolated arc of over 300 volcanic islands stretching 1,600 km across the interface of the Bering Sea and North Pacific Ocean. Although remote, some Aleutian Islands were heavily impacted by military activities from World War II until recently and were exposed to anthropogenic contaminants, including mercury (Hg). Mercury is also delivered to these islands via global atmospheric transport, prevailing ocean currents, and biotransport by migratory species. Mercury contamination of freshwater ecosystems is poorly understood in this region. Total Hg (THg) concentrations were measured in threespine stickleback fish (Gasterosteus aculeatus) collected from eight lakes at Adak Island, an island in the center of the archipelago with a long military history. Mean THg concentrations for fish whole-body homogenates for all lakes ranged from 0.314 to 0.560 mg/kg dry weight. Stickleback collected from seabird-associated lakes had significantly higher concentrations of THg compared to non-seabird lakes, including all military lakes. The δ(13)C stable isotope ratios of stickleback collected from seabird lakes suggest an input of marine-derived nutrients and/or marine-derived Hg. Copyright © 2012 SETAC.

  2. Planning applications in east central Florida. [resources management and planning, land use, and lake algal blooms in Brevard County from Skylab imagery

    NASA Technical Reports Server (NTRS)

    Hannah, J. W.; Thomas, G. L.; Esparza, F. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Lake Apopka and three lakes downstream of it (Dora, Eustis, and Griffin) are in an advanced state of eutrophication with high algal concentrations. This feature has shown up consistently on ERTS-1 images in the form of a characteristic water color for those lakes. As expected, EREP photographs also show a characteristic color for those lakes. What was not expected is that Lake Griffin shows a clear pattern of this coloration. Personnel familiar with the lake believe that the photograph does, indeed, show an algal bloom. It is reported that the algal concentration is often significantly higher in the southern portion of the lake. What the photograph shows that was not otherwise known is the pattern of the algal bloom. A similar, but less pronounced, effect is seen in Lake Tohopekaliga. Personnel stationed at Kissimmee reported that there was an algal bloom on that lake at the time of the EREP pass and that its extent corresponded approximately to that shown on the photograph. Again, the EREP photograph gives information about the extent of the bloom that could not be obtained practically by sampling. ERTS-1 images give some indication of this algal distribution on Lake Griffin in some cases, but are inconclusive.

  3. Occurrence and Trends of Selected Chemical Constituents in Bottom Sediment, Grand Lake O' the Cherokees, Northeast Oklahoma, 1940-2008

    USGS Publications Warehouse

    Juracek, Kyle E.; Becker, Mark F.

    2009-01-01

    After over 100 years of continuous activity, lead and zinc mining in the Tri-State Mining District (hereafter referred to as the TSMD) in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma ended in the 1970s. The mining activity resulted in substantial historical and ongoing input of cadmium, lead, and zinc to the environment including Grand Lake O' the Cherokees (hereafter referred to as Grand Lake), a large reservoir in northeast Oklahoma. To help determine the extent and magnitude of contamination in Grand Lake, a one-year study was conducted by the U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service. Bottom-sediment coring at five sites was used to investigate the occurrence of cadmium, lead, zinc, and other selected constituents in the bottom sediment of Grand Lake. Cadmium concentrations in the bottom sediment of Grand Lake ranged from 2.3 to 3.6 mg/kg (milligrams per kilogram) with a median of 3.5 mg/kg (5 samples). Compared to an estimated local background concentration of 0.6 mg/kg, the historical mining activity increased cadmium concentrations by about 280 to 500 percent. Lead concentrations ranged from 35 to 102 mg/kg with a median of 59 mg/kg (50 samples). Compared to an estimated local background concentration of 20 mg/kg, the historical mining activity increased lead concentrations by about 75 to 410 percent. The range in zinc concentrations was 380 to 986 mg/kg with a median of 765 mg/kg (50 samples). Compared to an estimated local background concentration of 100 mg/kg, the historical mining activity increased zinc concentrations by about 280 to 890 percent. With the exception of the most upstream coring site, the lead and zinc depositional profiles generally were similar in terms of the range in concentrations measured and the temporal pattern observed. Depositional profiles for lead and zinc indicated mid-core peaks followed by concentrations that decreased since about the 1980s. The depositional profiles reflect the complex interaction of several factors including historical mining and related activities, mine drainage, remediation, landscape stabilization, precipitation and associated runoff, and the erosion and transport of contaminated and clean sediments within the basin. Compared to sediment-quality guidelines, the Grand Lake samples had cadmium concentrations that were substantially less than the general probable-effects concentration (PEC) (4.98 mg/kg) and a TSMD-specific PEC (11.1 mg/kg). The PECs represent the concentration above which toxic biological effects are likely to occur. Likewise, all sediment samples had lead concentrations that were substantially less than the general PEC (128 mg/kg) and a TSMD-specific PEC (150 mg/kg). Zinc concentrations typically exceeded the general PEC (459 mg/kg), but were substantially less than a TSMD-specific PEC (2,083 mg/kg). Throughout the history of Grand Lake, lead and zinc concentrations in the deposited sediment did not approach or exceed the TSMD-specific PECs. As of 2008, legacy effects of mining still included the delivery of contaminated sediment to Grand Lake by the Spring and Neosho Rivers. The Neosho River, with its larger flows and less-contaminated sediment, likely dilutes the load of contaminated sediment delivered to Grand Lake by the Spring River. The information contained in this report provides a baseline of Grand Lake conditions with which to compare future conditions that may represent a response to changes in mining-related activity in the Grand Lake Basin.

  4. Chemical and biological quality of Lakes Faith, Hope, and Charity at Maitland, Florida, with emphasis on the effects of storm runoff and bulk precipitation, 1971-1974

    USGS Publications Warehouse

    Gaggiani, Neville G.; Lamonds, A.G.

    1978-01-01

    Located in a closed basin, near Orlands, Fla., Lake Faith, Hope, and Charity cover a combined area of 132 acres and are surrounded by residential, citrus grove and undeveloped areas. All of these areas affect the water quality of the lakes through storm runoff and transport of windborne material. During a study from April 1971 to June 1974, stages of Lakes Faith, Hope, and Charity declined 1.5, 1.4, and 3.0 ft, respectively, because the rainfall was 3.78 in. below average for the area. Inflow to the lakes during this 3-year period was approximately 1,966 acre-ft of which 84 percent was by rainfall and 16 percent was by storm runoff. Rainfall and runoff brought in 82 tons of dissolved solids of which storm runoff carried 51 tons and bulk precipitation carried 32 tons. Dissolved solids concentrations in the lakes were relatively low, averaging 91, 132, and 212 mg/liter for Lakes Faith, Hope, and Charity, respecetively. Major ions, trace elements and nutrients were present in the lakes in relatively low concentrations. Phytoplankton and coliform population showed sharp seasonal fluctuations with the maximum population generally occurring during the warmer months. Blue-green algae predominated in all three lakes. (Woodard-USGS)

  5. Bioavailability and uptake of smelter emissions in freshwater zooplankton in northeastern Washington, USA lakes using Pb isotope analysis and trace metal concentrations.

    PubMed

    Child, A W; Moore, B C; Vervoort, J D; Beutel, M W

    2018-07-01

    The upper Columbia River and associated valley systems are highly contaminated with metal wastes from nearby smelting operations in Trail, British Columbia, Canada (Teck smelter), and to a lesser extent, Northport, Washington, USA (Le Roi smelter). Previous studies have investigated depositional patterns of airborne emissions from these smelters, and documented the Teck smelter as the primary metal contamination source. However, there is limited research directed at whether these contaminants are bioavailable to aquatic organisms. This study investigates whether smelter derived contaminants are bioavailable to freshwater zooplankton. Trace metal (Zn, Cd, As, Sb, Pb and Hg) concentrations and Pb isotope compositions of zooplankton and sediment were measured in lakes ranging from 17 to 144 km downwind of the Teck smelter. Pb isotopic compositions of historic ores used by both smelters are uniquely less radiogenic than local geologic formations, so when zooplankton assimilate substantial amounts of smelter derived metals their compositions deviate from local baseline compositions toward ore compositions. Sediment metal concentrations and Pb isotope compositions in sediment follow significant (p < 0.001) negative exponential and sigmoidal patterns, respectively, as distance from the Teck smelting operation increases. Zooplankton As, Cd, and Sb contents were related to distance from the Teck smelter (p < 0.05), and zooplankton Pb isotope compositions suggest As, Cd, Sb and Pb from historic and current smelter emissions are biologically available to zooplankton. Zooplankton from lakes within 86 km of the Teck facility display isotopic evidence that legacy ore pollution is biologically available for assimilation. However, without water column data our study is unable to determine if legacy contaminants are remobilized from lake sediments, or erosional pathways from the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Organochlorine-associated immunosuppression in prefledgling Caspian terns and herring gulls from the Great Lakes: an ecoepidemiological study.

    PubMed Central

    Grasman, K A; Fox, G A; Scanlon, P F; Ludwig, J P

    1996-01-01

    The objectives of study were to determine whether contaminant-associated immunosuppression occurs in prefledgling herring gulls and Caspian terns from the Great Lakes and to evaluate immunological biomarkers for monitoring health effects in wild birds. During 1992 to 1994, immunological responses and related variables were measured in prefledgling chicks at colonies distributed across a broad gradient of organochlorine contamination (primarily polychlorinated biphenyls), which was measured in eggs. The phytohemagglutinin skin test was used to assess T-lymphocyte function. In both species, there was a strong exposure-response relationship between organochlorines and suppressed T-cell-mediated immunity. Suppression was most severe (30-45%) in colonies in Lake Ontario (1992) and Saginaw Bay (1992-1994) for both species and in western Lake Erie (1992) for herring gulls. Both species exhibited biologically significant differences among sites in anti-sheep red blood cells antibody titers, but consistent exposure-response relationships with organochlorines were not observed. In Caspian terns and, to a lesser degree, in herring gulls, there was an exposure-response relationship between organochlorines and reduced plasma retinol (vitamin A). In 1992, altered White blood cell numbers were associated with elevated organochlorine concentrations in Caspian terns but not herring gulls. The immunological and hematological biomarkers used in this study revealed contaminant-associated health effects in wild birds. An epidemiological analysis strongly supported the hypothesis that suppression of T-cell-mediated immunity was associated with high perinatal exposure to persistent organochlorine contaminants. PMID:8880006

  7. Dermal exposure to environmental contaminants in the Great Lakes.

    PubMed Central

    Moody, R P; Chu, I

    1995-01-01

    This paper reviews the literature to determine the importance of the dermal route of exposure for swimmers and bathers using Great Lakes waters and summarizes the chemical water contaminants of concern in the Great Lakes along with relevant dermal absorption data. We detail in vivo and in vitro methods of quantifying the degree of dermal absorption and discuss a preference for infinite dose data as opposed to finite dose data. The basic mechanisms of the dermal absorption process, routes of chemical entry, and the environmental and physiological factors affecting this process are also reviewed, and we discuss the concepts of surface slick exposure to lipophilic compounds and the adsorption of contaminants to water sediment. After presenting mathematical constructs for calculating the degree of exposure, we present in vitro data concerning skin absorption of polyaromatic hydrocarbons adsorbed to Great Lakes water sediment to show that in a worst-case scenario exposure via the dermal route can be equally important to the oral route. We have concluded that prolonged exposure of the skin, especially under conditions that may enhance dermal absorption (e.g., sunburn) may result in toxicologically significant amounts of certain water contaminants being absorbed. It is recommended that swimming should be confined to public beaches, people should refrain from swimming if they are sunburned, and skin should be washed with soap as soon as possible following exposure. Future studies should be conducted to investigate the importance of the dermal exposure route to swimmers and bathers. PMID:8635434

  8. Importance of growth rate on mercury and polychlorinated biphenyl bioaccumulation in fish

    USGS Publications Warehouse

    Li, Jiajia; Haffner, G. Douglas; Patterson, Gordon; Walters, David M.; Burtnyk, Michael D.; Drouillard, Ken G.

    2018-01-01

    To evaluate the effect of fish growth on mercury (Hg) and polychlorinated biphenyl (PCB) bioaccumulation, a non–steady‐state toxicokinetic model, combined with a Wisconsin bioenergetics model, was developed to simulate Hg and PCB bioaccumulation in bluegill (Lepomis macrochirus). The model was validated by comparing observed with predicted Hg and PCB 180 concentrations across 5 age classes from 5 different waterbodies across North America. The non–steady‐state model generated accurate predictions for Hg and PCB bioaccumulation in 3 of 5 waterbodies: Apsey Lake (ON, Canada), Sharbot Lake (ON, Canada), and Stonelick Lake (OH, USA). The poor performance of the model for the Detroit River (MI, USA/ON, Canada) and Lake Hartwell (GA/SC, USA), which are 2 well‐known contaminated sites with possibly high heterogeneity in spatial contamination, was attributed to changes in feeding behavior and/or prey contamination. Model simulations indicate that growth dilution is a major component of contaminant bioaccumulation patterns in fish, especially during early life stages, and was predicted to be more important for hydrophobic PCBs than for Hg. Simulations that considered tissue‐specific growth provided some improvement in model performance particularly for PCBs in fish populations that exhibited changes in their whole‐body lipid content with age. Higher variation in lipid growth compared with that of lean dry protein was also observed between different bluegill populations, which partially explains the greater variation in PCB bioaccumulation slopes compared with Hg across sampling sites.

  9. Earth observations taken during the STS-103 mission

    NASA Image and Video Library

    1999-12-25

    STS103-501-152 (19-27 December 1999) --- One of the astronauts aboard the Earth-orbiting Space Shuttle Discovery used a handheld large format camera to photograph this southern Florida scene. The city of Miami encroaches the eastern edge of the Everglades, which constitute an International Biosphere Reserve World Heritage Site. This subtropical wilderness encompasses a relatively flat (does not exceed 2.4 m above sea level) saw-grass marsh region of 10,000 square kilometers (4,000 square miles). According to NASA Earth scientists, the only source of water in the Everglades is from rainfall. The flow of water is detectable in this image, slowly moving from Lake Okeechobee to Florida Bay; the light blue, shallow area between the mainland and the Keys; and the southwestern Florida coast.

  10. Water withdrawals, use, discharge, and trends in Florida, 1995

    USGS Publications Warehouse

    Marella, R.L.

    1999-01-01

    In 1995, the total amount of water withdrawn in Florida was nearly 18,200 million gallons per day (Mgal/d), of which 60 percent was saline and 40 percent was freshwater. Ground water accounted for 60 percent of freshwater withdrawals and surface water accounted for the remaining 40 percent. Ninety-three percent of the 14.15 million people in Florida relied on ground water for their drinking water needs in 1995. Almost all (99.9 percent) saline water withdrawals were from surface water. Public supply accounted for 43 percent of ground water withdrawn in 1995, followed by agricultural self-supplied (35 percent), commercial-industrial self-supplied (including mining) (10 percent), domestic self-supplied (7 percent), recreational irrigation (4.5 percent), and power generation (0.5 percent). Agricultural self-supplied accounted for 60 percent of fresh surface water withdrawn in 1995, followed by power generation (21 percent), commercial-industrial self-supplied (9 percent), public supply (7 percent), and recreational irrigation (3 percent). Almost all of saline water withdrawn was used for power generation. The largest amount of freshwater was withdrawn in Palm Beach County and the largest amount of saline water was withdrawn in Hillsborough County. Significant withdrawals (more than 200 Mgal/d) of fresh ground water occurred in Dade, Broward, Polk, Orange, and Palm Beach Counties. Significant withdrawals (more than 200 Mgal/d) of fresh surface water occurred in Palm Beach, Hendry, and St. Lucie Counties. The South Florida Water Management District accounted for the largest amount of freshwater withdrawn (nearly 50 percent). About 57 percent of the total ground water withdrawn was from the Floridan aquifer system; 20 percent was from the Biscayne aquifer. Most of the surface water used in Florida was from managed and maintained canal systems or large water bodies. Major sources of fresh surface water include the Caloosahatchee River, Deer Point Lake, Hillsborough River, Lake Apopka, Lake Okeechobee and associated canals, and the St. Johns River. Freshwater withdrawals increased nearly 29 percent in Florida between 1970 and 1995. Ground-water withdrawals increased 56 percent, and surface-water withdrawals increased 2 percent during this period. Between 1990 and 1995, freshwater withdrawals decreased 5 percent. Fresh ground-water withdrawals decreased 7 percent, and fresh surface-water withdrawals decreased 1 percent during this period. Saline water withdrawals increased 13 percent between 1970 and 1995, and increased 6 percent between 1990 and 1995. An estimated 39 percent of the freshwater withdrawn in Florida was consumed; the remaining 61 percent was returned for use again. Wastewater discharged from the 615 treatment facilities inventoried in 1995 totaled 1,836 Mgal/d, of which 84 percent was from domestic wastewater facilities and the remaining 16 percent was from industrial facilities. Domestic wastewater discharge increased 37 percent between 1985 and 1995, while industrial wastewater discharge increased 7 percent during this period.

  11. South Lake Elementary students enjoy gift of computers

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Nancy Nichols, principal of South Lake Elementary School, Titusville, Fla., joins students in teacher Michelle Butler's sixth grade class who are unwrapping computer equipment donated by Kennedy Space Center. South Lake is one of 13 Brevard County schools receiving 81 excess contractor computers thanks to an innovative educational outreach project spearheaded by the Nasa k-12 Education Services Office at ksc. The Astronaut Memorial Foundation, a strategic partner in the effort, and several schools in rural Florida and Georgia also received refurbished computers as part of the year-long project. Ksc employees put in about 3,300 volunteer hours to transform old, excess computers into upgraded, usable units. A total of $90,000 in upgraded computer equipment is being donated.

  12. EFFECT OF ACUTE STRESS ON PLASMA CONCENTRATIONS OF SEX AND STRESS HORMONES IN JUVENILE ALLIGATORS LIVING IN CONTROL AND CONTAMINATED LAKES

    EPA Science Inventory

    Environmental contaminants can act as stressors, inducing elevated circulating concentrations of stress hormones such as corticosterone and cortisol. Development in contaminated eggs has been reported to modify circulating sex steroid hormone concentrations in alligators (Alligat...

  13. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

    EPA Science Inventory

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the ...

  14. Integration of analytical and biological measurements for assessing the effects of contaminants present at a Great Lakes area of concern

    EPA Science Inventory

    Assessing the potential biological impacts of complex contaminant mixtures in aquatic environments is a challenge. Instrumental analyses of site waters provide insights into the occurrence of contaminants, but provide little information about possible effects. Biological measur...

  15. SPATIAL AND TEMPORAL DYNAMICS IN ARSENIC SPECIATION ACROSS THE GROUND WATER-SURFACE WATER TRANSITION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into a small lake. The ground-water plume contains elevated levels of arsenic and hydrocarbon contaminants derived from historical disposal of process wastes ...

  16. Health burden of gastrointestinal symptoms resulting from swimming in fecally-contaminated recreational waters.

    EPA Science Inventory

    Millions of people swim and recreate in oceans and lakes every year. Fecal contamination of these waters can occur from sewage discharges, runoff, and other point and non-point sources. Measures of fecal indicator contamination (e.g., the fecal indicator bacteria E. coli and Ent...

  17. ELEMENTAL FISH TISSUE CONTAMINATION IN NORTHEASTERN U.S. LAKES: EVALUATION OF AN APPROACH TO REGIONAL ASSESSMENT

    EPA Science Inventory

    The approach of the Environmental Monitoring and Assessment Program (EMAP) to monitoring of fish tissue contaminants is shown to have utility for regional assessment,and for discrimination of regional from local contamination.The survey sampling design employed by EMAP can be use...

  18. ELEMENTAL FISH TISSUE CONTAMINATION IN NORTHEASTERN U.S. LAKES: EVALUATION OF AN APPROACH TO REGIONAL ASSESSMENT

    EPA Science Inventory

    The approach of the Environmental Monitoring and Assessment Program (EMAP) to monitoring of fish tissue contaminants is shown to have utility for regional assessment, and for discrimination of regional from local contamination. The survey sampling design employed EMAP can be used...

  19. Hydrogeology and simulated effects of ground-water withdrawals from the Floridan aquifer system in Lake County and in the Ocala National Forest and vicinity, north-central Florida

    USGS Publications Warehouse

    Knowles, Leel; O'Reilly, Andrew M.; Adamski, James C.

    2002-01-01

    The hydrogeology of Lake County and the Ocala National Forest in north-central Florida was evaluated (1995-2000), and a ground-water flow model was developed and calibrated to simulate the effects of both present day and future ground-water withdrawals in these areas and the surrounding vicinity. A predictive model simulation was performed to determine the effects of projected 2020 ground-water withdrawals on the water levels and flows in the surficial and Floridan aquifer systems. The principal water-bearing units in Lake County and the Ocala National Forest are the surficial and Floridan aquifer systems. The two aquifer systems generally are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Florida aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which generally are separated by one or two less-permeable confining units. The Floridan aquifer system is the major source of ground water in the study area. In 1998, ground-water withdrawals totaled about 115 million gallons per day in Lake County and 5.7 million gallons per day in the Ocala National Forest. Of the total ground water pumped in Lake County in 1998, nearly 50 percent was used for agricultural purposes, more than 40 percent for municipal, domestic, and recreation supplies, and less than 10 percent for commercial and industrial purposes. Fluctuations of lake stages, surficial and Floridan aquifer system water levels, and Upper Floridan aquifer springflows in the study area are highly related to cycles and distribution of rainfall. Long-term hydrographs for 9 lakes, 8 surficial aquifer system and Upper Floridan aquifer wells, and 23 Upper Floridan aquifer springs show the most significant increases in water levels and springflows following consecutive years with above-average rainfall, and significant decreases following consecutive years with below-average rainfall. Long-term (1940-2000) hydrographs of lake and ground-water levels and springflow show a slight downward trend; however, after the early 1960's, this downward trend generally is more pronounced, which corresponds with accumulating rainfall deficits and increased development. The U.S. Geological Survey three-dimensional ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the surficial and Floridan aquifer systems in Lake County, the Ocala National Forest, and adjacent areas. A steady-state calibration to average 1998 conditions was facilitated by using the inverse modeling capabilities of MODFLOW-2000. Values of hydrologic properties from the calibrated model were in reasonably close agreement with independently estimated values and results from previous modeling studies. The calibrated model generally produced simulated water levels and flows in reasonably close agreement with measured values and was used to simulate the hydrologic effects of projected 2020 conditions. Ground-water withdrawals in the model area have been projected to increase from 470 million gallons per day in 1998 to 704 million gallons per day in 2020. Significant drawdowns were simulated in Lake County from average 1998 to projected 2020 conditions: the average and maximum drawdowns, respectively, were 0.5 and 5.7 feet in the surficial aquifer system, 1.1 and 7.6 feet in the Upper Floridan aquifer, and 1.4 and 4.3 feet in the Lower Floridan aquifer. The largest drawdowns in Lake County were simulated in the southeastern corner of the County and in the vicinities of Clermont and Mount Dora. Closed-basin lakes and wetlands are more likely to be affected by future pumping in these large drawdown areas, as opposed to other areas of Lake County. However, within the Ocala National Forest, drawdowns were relatively small: the average and maximum drawdowns, respectively, were 0.1 and 1.0 feet in the surficial aquifer system, 0.2 and

  20. The significance of sediment contamination in the Elbe River floodplain (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Chalupová, Dagmar; Janský, Bohumír; Langhammer, Jakub; Šobr, Miroslav; Jiři, Medek; Král, Stanislav; Jiřinec, Petr; Kaiglova, Jana; Černý, Michal; Žáček, Miroslav; Leontovyčova, Drahomíra; Halířová, Jarmila

    2015-04-01

    The abstract brings the information about the research that was focused on anthropogenic pollution of river and lake sediments in the middle course of the Elbe River (Czech Republic). The main aim was to identify and to evaluate the significance of old polluted sediments in the river and its side structures (old meanders, cut lakes, oxbow lakes) between Hradec Králové and Mělník (confluence with the Moldau River) and to assess the risk coming from the remobilization of the contaminated matter. The Elbe River floodplain has been highly inhabited since the Middle Ages, and, especially in the 20th century, major industrial plants were founded here. Since that time, the anthropogenic load of the river and it`s floodplain has grown. Although the contaminants bound to the sediment particles are usually stable, the main risk is coming from the fact that under changes in hydrological regime and water quality (floods, changes in pH, redox-potential, presence of complex substances etc.), the pollution can be released and remobilized again. The most endangered areas are: the surroundings of Pardubice (chemical factory Synthesia, Inc.; refinery PARAMO), and Neratovice (chemical factory Spolana, Inc.). The chemical factories situated close to these towns represented the most problematic polluters of the Elbe River especially during 2nd half of 20th century. In the research, the main attention was aimed at subaquatic sediments of selected cut lakes situated in the vicinity of the above mentioned sources of pollution. To describe the outreach of contamination, several further fluvial lakes were taken into account too. Sediment sampling was carried out from boats on lakes and with the help of drilling rig in the floodplain. Gained sediment cores were divided into several parts which were analysed separately. Chemical analyses included substances identified by ICPER (International Commission for the Protection of the Elbe River) as well as chemicals considered as significant in the previous explorations (heavy metals, PCB, DDT, HCH, PAHs etc.). The results of grain structure analysis were used for modelling the remobilization of contaminated matter during floods. At the selected river sections, maps of overflow and discharge velocity (Q1, Q5, Q20, Q100) were created. The results of the project provided information of the amount of polluted sediments in the most contaminated localities in the middle course of the Elbe River and described the possibility of remobilization of the polluted sediments during floods. On the basis of these outcomes, the risk management and environmental measures were suggested to protect the ecosystems from contamination stemming from these old pollution loads.

  1. GOLF COURSES AS A SOURCE OF COASTAL CONTAMINATION AND TOXICITY: A FLORIDA EXPERIENCE

    EPA Science Inventory

    The chemical and biological impacts of two coastal golf courses that receive wastewater spray irrigation were determined during a two-year period. A variety of techniques were used to assess the spatial and temporal variability of contaminant levels and their bioavailability in t...

  2. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower East Tampa Bay

    EPA Science Inventory

    Contaminant concentrations are reported for surface water, sediment, seagrass, mangroves, Florida Crown conch, blue crabs and fish collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay. Concentrations of trace metals, chlorinated pesticides, atrazine, total ...

  3. MASCULINIZATION OF FEMALE MOSQUITOFISH IN KRAFT MILL EFFLUENT-CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...

  4. DELTA-13C VALUES OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) COLLECTED FROM TWO CREOSOTE-CONTAMINATED WASTE SITES

    EPA Science Inventory

    Groundwater samples were collected from the American Creosote Works (ACW) Superfund site in Pensacola, Florida in June and September 1994. Sampling wells were located along a transect leading away from the most contaminated area. PAHs were extracted from the groundwater samples w...

  5. MODIS-derived spatiotemporal water clarity patterns in optically shallow FloridaKeys waters: A new approach to remove bottom contamination

    EPA Science Inventory

    Retrievals of water quality parameters from satellite measurements over optically shallow waters have been problematic due to bottom contamination of the signals. As a result, large errors are associated with derived water column properties. These deficiencies greatly reduce the ...

  6. KSC-2014-4900

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  7. KSC-2014-4901

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – A researcher at NASA’s Kennedy Space Center in Florida checks a reading on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2014-4903

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-2014-4902

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – Researchers at NASA’s Kennedy Space Center in Florida check readings on the Dust Atmospheric Recovery Technology, or DART, spacecraft inside a laboratory at the Space Life Sciences Lab. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  10. KSC-2014-4899

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  11. KSC-2014-4898

    NASA Image and Video Library

    2014-10-31

    CAPE CANAVERAL, Fla. – The Dust Atmospheric Recovery Technology, or DART, spacecraft is being assembled in a laboratory inside the Space Life Sciences Lab at NASA’s Kennedy Space Center in Florida. DART will characterize the dust loading and microbial diversity in the atmosphere over Florida during summer months with a special emphasis on their interactions during an African dust storm. DART will be used to collect atmospheric aerosols and suspended microbial cells over Florida and Kennedy. Results will help predict the risks of excessive microbial contamination adhering to spacecraft surfaces. Photo credit: NASA/Dimitri Gerondidakis

  12. Impact of Lake Okeechobee Sea Surface Temperatures on Numerical Predictions of Summertime Convective Systems over South Florida

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Splitt, Michael E.; Fuell, Kevin K.; Santos, Pablo; Lazarus, Steven M.; Jedlovec, Gary J.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\\olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF-simulated Lake Okeechobee breezes evolved differently due to the SST initialization. The effects on wind fields and precipitation systems will be emphasized, including validation against surface mesonet observations and Stage IV precipitation grids.

  13. Metsulfuron in Surface Groundwater of a North Florida Flatwoods

    Treesearch

    J.L. Michael; D.G. Neary; J. Fischer; H. Gibbs

    1991-01-01

    A 4 ha Florida flatwcods pine site was monitored for surface groundwater contamination following application of 0.084 kg ai/ha (1.2 oz metsulfuron/ac) in 140 liters of water carrier per hectare. Treatment was applied in November 1989. An HPIC analytical prccedure is presentedwhich has a detection limit of 1 mg m-3 (1 ppb). A total of 24...

  14. Use of Spatial Sampling and Microbial Source-Tracking Tools for Understanding Fecal Contamination at Two Lake Erie Beaches

    USGS Publications Warehouse

    Francy, Donna S.; Bertke, Erin E.; Finnegan, Dennis P.; Kephart, Christopher M.; Sheets, Rodney A.; Rhoades, John; Stumpe, Lester

    2006-01-01

    Source-tracking tools were used to identify potential sources of fecal contamination at two Lake Erie bathing beaches: an urban beach (Edgewater in Cleveland, Ohio) and a beach in a small city (Lakeshore in Ashtabula, Ohio). These tools included identifying spatial patterns of Escherichia coli (E. coli) concentrations in each area, determining weather patterns that caused elevated E. coli, and applying microbial source tracking (MST) techniques to specific sites. Three MST methods were used during this study: multiple antibiotic resistance (MAR) indexing of E. coli isolates and the presence of human-specific genetic markers within two types of bacteria, the genus Bacteroides and the species Enterococcus faecium. At Edgewater, sampling for E. coli was done during 2003-05 at bathing-area sites, at nearshore lake sites, and in shallow ground water in foreshore and backshore areas. Spatial sampling at nearshore lake sites showed that fecal contamination was most likely of local origin; E. coli concentrations near the mouths of rivers and outfalls remote to the beach were elevated (greater than 235 colony-forming units per 100 milliliters (CFU/100 mL)) but decreased along transport pathways to the beach. In addition, E. coli concentrations were generally highest in bathing-area samples collected at 1- and 2-foot water depths, midrange at 3-foot depths, and lowest in nearshore lake samples typically collected 150 feet from the shoreline. Elevated E. coli concentrations at bathing-area sites were generally associated with increased wave heights and rainfall, but not always. E. coli concentrations were often elevated in shallow ground-water samples, especially in samples collected less than 10 feet from the edge of water (near foreshore area). The interaction of shallow ground water and waves may be a mechanism of E. coli storage and accumulation in foreshore sands. Infiltration of bird feces through sand with surface water from rainfall and high waves may be concentrating E. coli in shallow ground water in foreshore and backshore sands. At Lakeshore, sampling for E. coli was done at bathing-area, nearshore lake, and parking-lot sites during 2004-05. Low concentrations of E. coli at nearshore lake sites furthest from the shoreline indicated that fecal contamination was most likely of local origin. High concentrations of E. coli in water and bed sediments at several nearshore lake sites showed that contamination was emanating from several points along the shoreline during wet and dry weather, including the boat ramp, an area near the pond drainage, and parking-lot sediments. Physical evidence confirmed that runoff from the parking lot leads to degradation of water quality at the beach. MST samples were collected to help interpret spatial findings and determine whether sources of fecal contamination were from wastewater or bird feces and if a human-specific marker was present. MAR indices were useful in distinguishing between bird feces and wastewater sources because they were about 10 times higher in the latter. The results from MAR indices agreed with results from the two human-specific markers in some but not all of the samples tested. Bacteroides and enterococci human-specific markers were found on one day at Edgewater and two days at Lakeshore. On three days at Edgewater and two days at Lakeshore, the MAR index indicated a mixed source, but neither marker was found in bathing-water samples; this may be because bacterial indicator concentrations were too low to detect a marker. Multiple tools are needed to help identify sources of fecal contamination at coastal beaches. Spatial sampling identified patterns in E. coli concentrations and yielded information on the physical pathways of contamination. MST methods provided information on whether the source was likely of human or nonhuman origin only; however, MST did not provide information on the pathways of contamination.

  15. Ground-water models as a management tool in Florida

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    Highly sophisticated computer models provide powerful tools for analyzing historic data and for simulating future water levels, water movement, and water chemistry under stressed conditions throughout the ground-water system in Florida. Models that simulate the movement of heat and subsidence of land in response to aquifer pumping also have potential for application to hydrologic problems in the State. Florida, with 20 ground-water modeling studies reported since 1972, has applied computer modeling techniques to a variety of water-resources problems. Models in Florida generally have been used to provide insight to problems of water supply, contamination, and impact on the environment. The model applications range from site-specific studies, such as estimating contamination by wastewater injection at St. Petersburg, to a regional model of the entire State that may be used to assess broad-scale environmental impact of water-resources development. Recently, groundwater models have been used as management tools by the State regulatory authority to permit or deny development of water resources. As modeling precision, knowledge, and confidence increase, the use of ground-water models will shift more and more toward regulation of development and enforcement of environmental laws. (USGS)

  16. Earth Observation

    NASA Image and Video Library

    2014-06-24

    ISS040-E-018729 (24 June 2014) --- One of the Expedition 40 crew members aboard the Earth-orbiting International Space Station photographed this image featuring the peninsular portion of the state of Florida. Lake Okeechobee stands out in the south central part of the state. The heavily-populated area of Miami can be traced along the Atlantic Coast near the bottom of the scene. Cape Canaveral and the Kennedy Space Center are just below center frame on the Atlantic Coast. The Florida Keys are at the south (left) portion of the scene and the Gulf Coast, including the Tampa-St. Petersburg area, is near frame center.

  17. Toxicity to Daphnia pulex and QSAR predictions for polycyclic hydrocarbons representative of Great Lakes contaminants

    USGS Publications Warehouse

    Passino-Reader, D.R.; Hickey, J.P.; Ogilvie, L.M.

    1997-01-01

    The objectives of this study were (1) to determine the toxicity of several types of polycyclic hydrocarbons characteristic of Great Lakes samples to Daphnia pulex, a Great Lakes zooplankter, (2) to investigate the influence of different structural characteristics on toxicity, and (3) to determine the linear solvation energy relationship (LSER) parameters and model that describe these compounds. These results will be related to comparative toxicity of other Great Lakes environmental compounds and to their application in site specific risk assessment.

  18. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

    USGS Publications Warehouse

    Davis, John M.; Ekman, Drew R.; Teng, Quincy; Ankley, Gerald T.; Berninger, Jason P.; Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Schroeder, Anthony L.; Villeneuve, Daniel L.; Jorgenson, Zachary G.; Lee, Kathy E.; Collette, Timothy W.

    2016-01-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493–2502.

  19. Water resources of southeastern Florida, with special reference to geology and ground water of the Miami area

    USGS Publications Warehouse

    Parker, Garald G.; Ferguson, G.E.; Love, S.K.

    1955-01-01

    The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface partly occupied by fresh-water lakes and marshes. Elsewhere in southern Florida the deposits are mainly limestone and sandy terrace deposits. The Pliocene surface upon which there Pleistocene sediments were deposited was highest to the north and west of the present Everglades and Kissimmee River basin, and it sloped gently to the south, southeast, and east. On this slightly sloping floor, alternately submerged and emerged, the later materials were built; these materials, modified by wind, rain, and surface and ground waters. Have largely determined the present topographic and ecologic character of southern Florida. The most important aquifer in southern Florida, and the one in which most of the wells are developed, is the Biscayne aquifer. It is composed of parts of the Tamiami formation (Miocene), Caloosahatchee marl (Pliocene), fort Thompson formation, Anastasia formation, Key Largo limestone, Miami oolite, and Pamlico sand (Pleistoncene). In some parts of southern Florida, the Pamlico sand and the Anastasia formation are not a part of the Biscayne aquifer; however, they are utilized in the development of small water supplies. Most of the Calossahatchee marl and the Fort Thompson formation in the Lake Okeechobeee area is of very low permeability. In the northern Everglades their less permeable parts contain highly mineralized waters, which appear to have been trapped since the invasions by the Pleistocene seas. These waters have been modified by dilution with fresh ground water and by chemical reactions with surrounding materials. Sea-level fluctuations, starting at the close of the Pliocene with highest levels and progressing toward the Recent with successively lower levels. Have built a series of nearly flat marine terraces abutting against one another much like a series of broad stairsteps. Erosion and solution have deface and, in places, have obliterated the original surficial forms of these old sea bottoms, shores, and shoreline feathers,

  20. Water Quality and Occurrence of Methyl Tert-Butyl Ether (MTBE) and Other Fuel-Related Compounds in Lakes and Ground Water at Lakeside Communities in Sussex and Morris Counties, New Jersey, 1998-1999

    USGS Publications Warehouse

    Baehr, Arthur L.; Reilly, Timothy J.

    2001-01-01

    Densely populated communities surround many of the larger lakes in northwestern New Jersey. These communities derive most of their water supply from wells. The lakes can be navigated by gasoline-powered watercraft, can be in various stages of eutrophication, may contain pathogens associated with bathing and waterfowl, and are periodically subjected to chemical applications to control aquatic plant growth. Another feature that contributes to water-quality concerns in lakeside communities is the widespread use of septic tanks. Concentrations of methyl tert-butyl ether (MTBE), a gasoline oxygenate, in samples from Cranberry Lake and Lake Lackawanna ranged from 20 to 30 ug/L (micrograms per liter) and 5 to 14 ug/L during the summers of 1998 and 1999, respectively. These levels were persistent throughout the depth of the lakes when mixing conditions were present. MTBE concentrations in samples from the top 20 feet of Lake Hopatcong during summer 1999 were about 10 ug/L and about 2 to 3 ug/L in samples below 20 feet. The source of the MTBE in the lakes was determined to be gasoline-powered watercraft. Other constituents of gasoline--tertiary amyl methyl ether (TAME) and benzene, toluene, ethylbenzene, and xylenes (BTEX)--were detected in the lakes but at much lower concentrations than MTBE. Ambient ground-water quality at Cranberry Lake and Lake Lackawanna appears to be affected by the use of gasoline-powered watercraft. MTBE was detected in water samples from 13 of the 14 wells sampled at Cranberry Lake in fall 1998 and summer 1999. The wells were selected to monitor ambient ground-water quality and had no history of contamination. In ground-water samples collected during fall 1998, MTBE concentrations ranged from 0.12 to 19.8 ug/L, and the median concentration was 0.43 ug/L. In samples from summer 1999, MTBE concentrations ranged from 0.14 to 13.2 ug/L, and the median concentration was 0.38 ug/L. MTBE was detected in samples from four of the five wells at Lake Lackawanna in summer 1999;concentrations ranged from 0.05 to 0.19 ug/L. Lake/ground water interaction is a feasible explanation for the nearly ubiquitous presence of MTBE in ground water. The movement of water from lakes to wells is feasible because many static water levels and essentially all pumped water levels in the wells were below lake levels. Furthermore, diatom fragments were present in samples from the wells. Ambient ground water at Cranberry Lake also may be affected by septic-tank effluent, as indicated by the relation among concentrations of nitrate, boron, and chloroform. This result indicates potential vulnerability of the water supply to contamination by other chemicals and pathogens. Radon in ambient ground water is a concern throughout northern New Jersey. In particular, the median radon concentrations in ground-water samples collected from 14 wells at Cranberry Lake in 1998 and 1999 were 1,282 and 1,046 pCi/L, respectively. The median radon concentration in five ground-water samples collected at Lake Lackawanna in 1999 was 340 pCi/L. Although these values exceed regulatory levels, they are not high relative to radon concentrations measured in northwestern New Jersey. Eight wells in a neighborhood of Cranberry Lake with known MTBE contamination were sampled by the U.S. Geological Survey in summer 1998. MTBE was detected at concentrations greater than or equal to 40 ug/L in five of the wells. Concentrations of TAME, another gasoline oxygenate, were highly correlated with concentrations of MTBE; MTBE concentrations were about 10 times the TAME concentrations. In all samples, however, the concentrations of the BTEX compounds were less than 0.05 ug/L, and the sample from the most highly contaminated well, where the MTBE concentration was 900 ug/L, had no detectable BTEX.

  1. 75 FR 4173 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    .... 2009. What Is in Our Drinking Water. United States Environmental Protection Agency, Office of Research and Development. http://www.epa.gov/extrmurl/research/process/drinkingwater.html . Accessed December... and fauna.\\7\\ \\7\\ National Research Council, 2000. Clean Coastal Waters: Understanding and Reducing...

  2. An Analysis of Selected Factors Influencing Enrollment Patterns.

    ERIC Educational Resources Information Center

    Heck, James

    This report presents an analysis of factors influencing enrollment patterns at Lake City Community College (LCCC; Florida) and recommends ways to increase enrollments at the college. Section I reviews the methods of collecting data for the report, which included interviews with key college personnel, an examination of social indicators such as…

  3. 40 CFR 131.43 - Florida.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a copy of all materials submitted to EPA, at the time of submittal to EPA, to facilitate the State... all CWA purposes. The State may use this procedure one time for a specific lake in lieu of the site... Coastal Drainage Area, Crystal/Pithlachascotee Coastal Drainage Area, small, direct Tampa Bay tributary...

  4. 40 CFR 131.43 - Florida.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... all CWA purposes. The State may use this procedure one time for a specific lake in lieu of the site... Coastal Drainage Area, Crystal/Pithlachascotee Coastal Drainage Area, small, direct Tampa Bay tributary... a copy of all materials submitted to EPA, at the time of submittal to EPA, to facilitate the State...

  5. 75 FR 33578 - Endangered Species; File Nos. 14508 and 14655

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... (Lepidochelys kempii) sea turtles for purposes of scientific research. ADDRESSES: The permit and related... abundance, genetic origin and feeding ecology of sea turtles using Lake Worth Lagoon in Palm Beach County, Florida. Up to 50 green, 5 loggerhead, 2 hawksbill, and 1 Kemp's ridley sea turtles may be captured...

  6. Brief reconnaissance study for the addition of hydropower for Lake Manatee Dam, Bradenton, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhard, T.G. Jr.

    1983-02-24

    The following are presented: summary sheet; site description; business data; environmental, institutional, and safety data; plant characteristics and power potential; project economics; and photographs. It was concluded that the development of hydroelectric power at this site does not appear to be economically feasible. (MHR)

  7. [GIS Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediments of Shallow Lakes in Jiangsu Province].

    PubMed

    Li, Ying-jie; Zhang, Lie-yu; Wu, Yi-wen; Li, Cao-le; Yang, Tian-xue; Tang, Jun

    2016-04-15

    To understand pollution of heavy metals in surface sediments of shallow lakes, surface sediments samples of 11 lakes in Jiangsu province were collected to determine the content of six heavy metals including As, Cr, Cu, Pb, Zn and Ni. GIS was used to analyze the spatial distribution of heavy metals, and geological accumulation index (Igeo), modified contamination index (mCd) pollution load index (PLI) and potential ecological risk index (RI) were used to evaluate heavy metal contamination in the sediments. The results showed that: in the lakes' surface sediments, the average content of As, Cu, Zn, Cr, Pb, Ni in multiples of soil background of Jiangsu province were 1.74-3.85, 0.65-2.66, 0.48-3.56, 0.43-1.52, 0.02-1.49 and 0.12-1.42. According to the evaluation results of Igeo and RI, As, which had high degree of enrichment and great potential ecological risk, was the main pollutant, followed by Cu, and pollution of the rest of heavy metals was relatively light. Combining the results of several evaluation methods, in surface sediments of Sanjiu Lake, Gaoyou Lake and Shaobo Lake, these heavy metals had the most serious pollution, the maximum pollution loading and moderate potential ecological risk; in surface sediments of Gehu Lake, Baima Lake and Hongze Lake, some regions were polluted by certain metals, the overall trend of pollution was aggravating, the pollution loading was large, and the potential ecological risk reached moderate; in the other 5 lakes, the risk of sediments polluted by heavy metals, as well as the pollution loading, was small, and the overall was not polluted.

  8. Stable Isotopes Reveal Nitrogen Loading to Lake Tanganyika from Remote Shoreline Villages

    NASA Astrophysics Data System (ADS)

    Kelly, Brianne; Mtiti, Emmanuel; McIntyre, Peter B.; Vadeboncoeur, Yvonne

    2017-02-01

    Access to safe water is an ongoing challenge in rural areas in Tanzania where communities often lack access to improved sanitation. Methods to detect contamination of surface water bodies, such as monitoring nutrient concentrations and bacterial counts, are time consuming and results can be highly variable in space and time. On the northeast shore of Lake Tanganyika, Tanzania, the low population density coupled with the high potential for dilution in the lake necessitates the development of a sensitive method for detecting contamination in order to avoid human health concerns. We investigated the potential use of nitrogen and carbon stable isotopes of snail tissues to detect anthropogenic nutrient loading along the northeast shore of Lake Tanganyika. δ15N of snails was positively related to human population size in the nearest village, but only for villages with >4000 inhabitants. The areal footprint of villages within their watershed was also significantly correlated with snail δ15N, while agricultural land use and natural vegetation were not. Dissolved nutrient concentrations were not significantly different between village and reference sites. Our results indicate that nitrogen isotopes provide a sensitive index of local nutrient loading that can be used to monitor contamination of oligotrophic aquatic environments with low surrounding population densities.

  9. Origin and spatial-temporal distribution of faecal bacteria in a bay of Lake Geneva, Switzerland.

    PubMed

    Poté, John; Goldscheider, Nico; Haller, Laurence; Zopfi, Jakob; Khajehnouri, Fereidoun; Wildi, Walter

    2009-07-01

    The origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet. Analyses included Escherichia coli, enterococci (ENT), total coliforms (TC), and heterotrophic plate counts (HPC). E. coli input flux rates from the WWTP can reach 2.5 x 10(10) CFU/s; those from the river are one to three orders of magnitude lower. Different pathogenic Salmonella serotypes were identified in water from these sources. FIB levels in the bay are highly variable. Results demonstrate that (1) the WWTP outlet at 30 m depth impacts near-surface water quality during holomixis in winter; (2) when the lake is stratified, the effluent water is generally trapped below the thermocline; (3) during major floods, upwelling across the thermocline may occur; (4) the river permanently contributes to contamination, mainly near the river mouth and during floods, when the storm water outlet contributes additionally; (5) the lowest FIB levels in the near-surface water occur during low-flow periods in the bathing season.

  10. Laboratory estimation of net trophic transfer efficiencies of PCB congeners to lake trout (Salvelinus namaycush) from its prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Rediske, Richard R.; O'Keefe, James P.; David, Solomon R.

    2014-01-01

    A technique for laboratory estimation of net trophic transfer efficiency (γ) of polychlorinated biphenyl (PCB) congeners to piscivorous fish from their prey is described herein. During a 135-day laboratory experiment, we fed bloater (Coregonus hoyi) that had been caught in Lake Michigan to lake trout (Salvelinus namaycush) kept in eight laboratory tanks. Bloater is a natural prey for lake trout. In four of the tanks, a relatively high flow rate was used to ensure relatively high activity by the lake trout, whereas a low flow rate was used in the other four tanks, allowing for low lake trout activity. On a tank-by-tank basis, the amount of food eaten by the lake trout on each day of the experiment was recorded. Each lake trout was weighed at the start and end of the experiment. Four to nine lake trout from each of the eight tanks were sacrificed at the start of the experiment, and all 10 lake trout remaining in each of the tanks were euthanized at the end of the experiment. We determined concentrations of 75 PCB congeners in the lake trout at the start of the experiment, in the lake trout at the end of the experiment, and in bloaters fed to the lake trout during the experiment. Based on these measurements, γ was calculated for each of 75 PCB congeners in each of the eight tanks. Mean γ was calculated for each of the 75 PCB congeners for both active and inactive lake trout. Because the experiment was replicated in eight tanks, the standard error about mean γ could be estimated. Results from this type of experiment are useful in risk assessment models to predict future risk to humans and wildlife eating contaminated fish under various scenarios of environmental contamination.

  11. The High Arctic's Only Great Lake Is Succumbing To Climate Warming

    NASA Astrophysics Data System (ADS)

    St Louis, V. L.; Lehnherr, I.; Schiff, S. L.; Sharp, M. J.; Smol, J. P.; Muir, D.; Gardner, A. S.; Tarnocai, C.; St Pierre, K.; Michelutti, N.; Emmerton, C. A.; Mortimer, C.; Talbot, C.; Wiklund, J.

    2016-12-01

    Lake Hazen, located within Quttinirpaaq National Park on northern Ellesmere Island (Nunavut, Canada), is the largest lake by volume north of the Arctic Circle and the High Arctic's only true Great Lake. Lake Hazen has a maximum depth of 267 m, a surface area of 540 km2 and a 8400 km2 watershed that is 1/3 glaciated. The climate of the Lake Hazen watershed has experienced a recent strong warming trend of 0.21 °C yr-1 from 2000-2012. During this period, modeled glacier mass-balance values showed a distinct shift from net annual mass gain of 0.3 Gt to a net annual mass loss of up to 1.4 Gt beginning in 2007-2008. Recent warming of soils (0.14 oC yr-1) and deepening of the active layer in the Lake Hazen watershed have also occurred. Rising temperatures had important consequences for summer lake ice cover: the ice-free area on the lake increased by an average of 3 km2 yr-1 from 2000 to 2012, and full ice-off on Lake Hazen became more frequent, from 60% of the years between 1985-95 to 88% of the years between 2006-12. The 250 year sediment record obtained from the floor of Lake Hazen showed that, in the past 15 years, changes in diatom species % abundance, sedimentation rates, geological inputs from the catchment, the abundance of redox sensitive elements such as Fe and Mn in the sediments, and fluxes of organic carbon and contaminants are historically unprecedented and consistent with the observed trends of rising surface temperatures, increasing glacial melt and runoff, and decreasing summer lake ice cover. These changes have important implications for in-lake processes that pertain to ecosystem net productivity, and the cycling of carbon, nutrients and contaminants. We demonstrate that even more resilient ecosystems such as very large lakes are exhibiting regime shifts due to climate change and entering new ecological states.

  12. Estimation of recharge through selected drainage wells and potential effects from well closure, Orange County, Florida

    USGS Publications Warehouse

    Bradner, L.A.

    1996-01-01

    Drainage wells have been used in Orange County, Florida, and surrounding areas to alleviate flooding and to control lake levels since 1904. Over 400 drainage wells have been drilled in the county, but many are now redundant because of surface drainage systems that have been installed within the last two or three decades. Most of the drainage wells emplace water into the Upper Floridan aquifer, a zone of high transmissivity within the Floridan aquifer system. In 1992, the Orange County Stormwater Management Department identified 23 wells that were considered noncritical or redundant for current drainage control. These wells were targeted for closure to eliminate maintenance and possible contamination problems. A 3-year study (1992 through 1994) encompassed several drainage basins in the county. Inflow to 18 of the 23 drainage wells on the noncritical list and the effects of closure of these noncritical wells on the potentiometric surface of the Upper Floridan aquifer were estimated. Three sites were chosen for intensive study and were used for further extrapolation to other noncritical sites. The total average annual recharge rate through the 18 selected wells was estimated to be 9 cubic feet per second, or about 6 million gallons per day. The highest rate of long-term recharge, 4.6 cubic feet per second, was to well H-35. Several wells on the noncritical list were already plugged or had blocked intakes. Yields, or the sum of surface-water outflows and drainage-well recharge, from the drainage basins ranged from 20 to 33 inches per year. In some of the basins, all the yield from the basin was recharge through a drainage well. In other basins, most of the yield was surface outflow through canals rather than to drainage wells. The removal of the recharge from closure of the wells was simulated by superposition in a three-dimensional ground-water flow model. As a second step in the model, water was also applied to two sites in western Orange County that could receive redirected surface water. One of the sites is CONSERV II, a distribution system used to apply reclaimed water to the surficial aquifer system through rapid infiltration basins and grove irrigation. The second site, Lake Sherwood, has an extremely high downward recharge rate estimated to be at least 54 inches per year. The results from the simulations showed a decline of 1 foot or less in the potentiometric surface of the Upper Floridan aquifer with removal of the recharge and a mound of about 1 foot in the vicinity of the two sites in western Orange County. The Lake Sherwood site seems to reduce the declines caused by closure of the wells to a greater degree than the CONSERV II site, partly because the Lake Sherwood site is closer to the drainage-well basins.

  13. Middle Holocene humidity increase in Florida: climate or sea-level?

    NASA Astrophysics Data System (ADS)

    Donders, Timme H.

    2014-11-01

    Florida climate in highly sensitive to both high and low latitude climate perturbations due to its latitudinal position surrounded by water masses that transport heat northward. A well-studied aspect is that middle Holocene conditions became significantly wetter in Florida, initiating widespread peat accumulation in the Everglades. This environmental change has been attributed to various climate forcings, such as migration of the Intertropical Convergence Zone (ITCZ), increases in tropical storm intensity, position of the Bermuda High, intensification of the El Niño Southern Oscillation (ENSO), and post glacial sea level rise (SLR). Discerning between these forcings is only possible with quantitative reconstructions from a transect of sites that are affected differentially. Application of a transfer function on a north-to-south gradient of pollen records from Florida lakes here shows that the pattern of increasing precipitation during the middle Holocene cannot be explained by SLR, but that ENSO intensification is an important contributing factor. Seasonal-resolved proxy records with improved age models are urgently needed to further solve these issues.

  14. Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand

    NASA Astrophysics Data System (ADS)

    Morgenstern, U.; Daughney, C. J.; Leonard, G.; Gordon, D.; Donath, F. M.; Reeves, R.

    2015-02-01

    The water quality of Lake Rotorua has steadily declined over the past 50 years despite mitigation efforts over recent decades. Delayed response of the groundwater discharges to historic land-use intensification 50 years ago was the reason suggested by early tritium measurements, which indicated large transit times through the groundwater system. We use the isotopic and chemistry signature of the groundwater for detailed understanding of the origin, fate, flow pathways, lag times and future loads of contaminants. A unique set of high-quality tritium data over more than four decades, encompassing the time when the tritium spike from nuclear weapons testing moved through the groundwater system, allows us to determine detailed age distribution parameters of the water discharging into Lake Rotorua. The Rotorua volcanic groundwater system is complicated due to the highly complex geology that has evolved through volcanic activity. Vertical and steeply inclined geological contacts preclude a simple flow model. The extent of the Lake Rotorua groundwater catchment is difficult to establish due to the deep water table in large areas, combined with inhomogeneous groundwater flow patterns. Hierarchical cluster analysis of the water chemistry parameters provided evidence of the recharge source of the large springs near the lake shore, with discharge from the Mamaku ignimbrite through lake sediment layers. Groundwater chemistry and age data show clearly the source of nutrients that cause lake eutrophication, nitrate from agricultural activities and phosphate from geologic sources. With a naturally high phosphate load reaching the lake continuously via all streams, the only effective way to limit algae blooms and improve lake water quality in such environments is by limiting the nitrate load. The groundwater in the Rotorua catchment, once it has passed through the soil zone, shows no further decrease in dissolved oxygen, indicating an absence of bioavailable electron donors along flow paths that could facilitate microbial denitrification reactions. Nitrate from land-use activities that leaches out of the root zone of agricultural land into the deeper part of the groundwater system must be expected to travel with the groundwater to the lake. The old age and the highly mixed nature of the water discharges imply a very slow and lagged response of the streams and the lake to anthropogenic contaminants in the catchment, such as nitrate. Using the age distribution as deduced from tritium time series data measured in the stream discharges into the lake allows prediction of future nutrient loads from historic land-use activities 50 years ago. For Hamurana Stream, the largest stream to Lake Rotorua, it takes more than a hundred years for the groundwater-dominated stream discharge to adjust to changes in land-use activities. About half of the currently discharging water is still pristine old water, and after this old water is completely displaced by water affected by land use, the nitrogen load of Hamurana Stream will approximately double. These timescales apply to activities that cause contamination, but also to remediation action.

  15. Variations in anthropogenic silver in a large Patagonian lake correlate with global shifts in photographic processing technology.

    PubMed

    Juncos, Romina; Campbell, Linda; Arcagni, Marina; Daga, Romina; Rizzo, Andrea; Arribére, María; Ribeiro Guevara, Sergio

    2017-04-01

    At the beginning of the 21st century, digital imaging technology replaced the traditional silver-halide film photography which had implications in Ag contamination. Lake Nahuel Huapi is a popular Patagonia tourist destination impacted by municipal silver (Ag) contamination from photographic processing facilities since 1990's. Silver concentrations in a dated sediment core from the lake bottom showed a 10-fold increase above background levels in the second half of the 20th century, then a decrease. This trend corresponds well with published annual global photography industry demand for Ag, which clearly shows the evolution and replacement of the traditional silver-halide film photography by digital imaging technology. There were significant decreases in Ag concentrations in sediments, mussels and fish across the lake between 1998 and 2011. Lower trophic organisms had variable whole-body Ag concentrations, from 0.2-2.6 μg g -1 dry weight (DW) in plankton to 0.02-3.1 μg g -1 DW in benthic macroinvertebrates. Hepatic Ag concentrations in crayfish, mussels and predatory fish were significantly elevated relative to muscle which often have Ag concentrations below the detection limit (0.01-0.05 μg g -1 DW). Trophodynamic analyses using δ 15 N and whole-body invertebrate and muscle Ag concentrations indicated food web biodilution trends. High sedimentation rates in conjunction with the reduction of silver waste products discharged to the lake, as a result of the change to digital image processing technologies, are resulting in unplanned but welcome remediation of the Ag contamination in Lake Nahuel Huapi. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Accumulation by fish of contaminants released from dredged sediments

    USGS Publications Warehouse

    Seelye, James G.; Hesselberg, Robert J.; Mac, Michael J.

    1982-01-01

    Inasmuch as the process of dredging and disposing of dredged materials causes a resuspension of these materials and an increase in bioavailability of associated contaminants, we conducted a series of experiments to examine the potential accumulation by fish of contaminants from suspended sediments. In the first experiment we compared accumulation of contaminants by yellow perch of hatchery and lake origin and found that after 10 days of exposure to nonaerated sediments, fish of hatchery origin accumulated PCBs and Fe, while fish of lake origin accumulated As, Cr, Fe, and Na. Two additional exposures were conducted to evaluate the effects of aerating the sediments prior to measuring bioavailability of associated contaminants. Fish of hatchery origin exposed to nonaerated sediments for 10 days accumulated PCBs and Hg, while fish of hatchery origin exposed to aerated sediments for 10 days accumulated PCBs, DDE, Zn, Fe, Cs, and Se. These results demonstrated not only the potential for uptake of contaminants by fish as a result of dredging but also the potential utility of fish bioassays in evaluating proposed dredging operations.

  17. Contaminants in wood stork eggs and their effects on reproduction, Florida, 1982

    USGS Publications Warehouse

    Fleming, W.J.; Rodgers, J.A.; Stafford, C.J.

    1984-01-01

    One egg was removed from five Wood Stork (Mycteria americana) nests at each of eight colonies in central and northern Florida in 1982. DDE and mercury were present in all eggs with concentrations ranging up to 9.4 and 0.73 ppm wet weight, respectively. PCBs were detected in 25 eggs (63%) with a high value of 3.5 ppm. Other organochlorine compounds occurred in less than 30% of the eggs. Contaminant concentrations were remarkably similar among colonies. Overall, DDE and PCB concentrations were significantly less (P < 0.05) in Wood Stork eggs collected in Florida in 1982 vs. those collected in 1973. DDE was negatively correlated with eggshell thickness (r = -0.48 P <.0.01). Eggshell thickness was greater in 1982 than it was during the period 1967-73 (P.< 0.09) but was still 4.3% less than in eggs collected before 1947 (P < 0.05). Eggs from nests with less than 100% hatching success were linked with higher DDE concentrations (2.92 ppm vs 1.01; P = 0.09), but contaminants showed no significant link to fledging success. Although it is possible that a few individuals may have been affected by DDE, we found no evidence that organochlorine pesticides, PCBs, or mercury were significantly depressing Wood Stork populations.

  18. A source of PCB contamination in modified high-volume air samplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu, I.; O'Dell, J.M.; Arnold, K.

    2000-02-01

    Modified Anderson High Volume (Hi-Vol) air samplers are widely used for the collection of semi-volatile organic compounds (such as PCBs) from air. The foam gasket near the main air flow path in these samplers can become contaminated with PCBs if the sampler or the gasket is stored at a location with high indoor air PCB levels. Once the gasket is contaminated, it releases PCBs back into the air stream during sampling, and as a result, incorrectly high air PCB concentrations are measured. This paper presents data demonstrating this contamination problem using measurements from two Integrated Atmospheric Deposition Network sites: onemore » at Sleeping Bear Dunes on Lake Michigan and the other at Point Petre on Lake Ontario. The authors recommend that these gaskets be replaced by Teflon tape and that the storage history of each sampler be carefully tracked.« less

  19. DNA damage and external lesions in brown bullheads (Ameiurus nebulosus) from contaminated habitats

    USGS Publications Warehouse

    Yang, X.; Meier, J.; Chang, L.; Rowan, M.; Baumann, P.C.

    2006-01-01

    The Comet assay was used to compare levels of DNA damage in brown bullheads (Ameiurus nebulosus) collected from three known contaminated locations, the Cuyahoga River (OH, USA), Ashtabula River (OH, USA; both tributaries to Lake Erie, USA), and Ashumet Pond (Cape Cod, MA, USA), with brown bullheads collected from three paired reference sites, Old Woman Creek (OH, USA), Conneaut River (OH, USA; both tributaries to Lake Erie), and Great Herring Pond (mainland MA, USA), respectively. Blood was sampled from each fish, and the Comet assay was conducted on erythrocytes. The assay results demonstrate that fish from the three contaminated sites each suffered higher DNA damage compared with fish from their respective reference sites. The results also show that the genetic damage was associated with the occurrence of external lesions and deformities in fish. The Comet assay is sufficiently sensitive to detect exposure of natural fish populations to environmental levels of genotoxic contaminants. ?? 2006 SETAC.

  20. Reproductive success, developmental anomalies and environmental contaminants in double-crested cormorants (Phalacrocorax auritus)

    USGS Publications Warehouse

    Larson, J.M.; Karasov, W.H.; Sileo, L.; Stromborg, K.L.; Hanbidge, B.A.; Giesy, J.P.; Jones, P.D.; Tillitt, D.E.; Verbrugge, D.A.

    1996-01-01

    To test an association between environmental contaminants and the prevalence of congenital anomalies in colonial waterbirds, we collected representative eggs for chemical analysis from double-crested cormorant nests at colonies in Lake Michigan, Wisconsin, USA, and Lake Winnipegosis, Manitoba, Canada, and periodically revisited the nests to determine the hatching success, survivorship of hatchlings, and number of deformed hatchlings in the remainder of each clutch. Total concentrations of polychlorinated biphenyls (PCBs) in eggs were determined by capillary gas chromatography. The combined activity of planar chlorinated hydrocarbons (PCHs) in the eggs was measured in an in vitro bioassay based on the induction of ethoxyresorufin-O-deethylase (EROD) activity in rat hepatoma cells. The combined EROD induction activity was expressed as 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ). Total concentrations of PCBs and TCDD-EQ were seven to eight times greater in eggs from Lake Michigan (7.8 μg/g and 138 pg/g, respectively) than in those from Lake Winnipegosis (1.0 μg/g and 19 pg/g, respectively). The proportion of eggs hatching at the Lake Michigan colony (59%) was less (p < 0.05) than at Lake Winnipegosis (70%), and the prevalence of hatchlings with deformed bills was greater (p < 0.001) at Lake Michigan (0.79 vs. 0.06%). However, within the Lake Michigan colony, concentrations of PCBs and TCDD-EQ were not correlated with either hatching success or the occurrence of deformities in nestlings.

Top