Science.gov

Sample records for contaminated process equipment

  1. Long-length contaminated equipment burial containers fabrication process procedures

    SciTech Connect

    McCormick, W.A., Fluor Daniel Hanford

    1997-03-11

    These special process procedures cover the detailed step-by-step procedures required by the supplier who will manufacture the Long-Length Contaminated Equipment (LLCE) Burial Container design. Also included are detailed step-by-step procedures required by the disposal process for completion of the LLCE Burial Containers at Hanford.

  2. Long-length contaminated equipment disposal process path document

    SciTech Connect

    McCormick, W.A.

    1998-09-30

    The first objective of the LLCE Process Path Document is to guide future users of this system on how to accomplish the cradle-to-grave process for the disposal of long-length equipment. Information will be provided describing the function and approach to each step in the process. Pertinent documentation, prerequisites, drawings, procedures, hardware, software, and key interfacing organizations will be identified. The second objective is related to the decision to lay up the program until funding is made available to complete it or until a need arises due to failure of an important component in a waste tank. To this end, the document will identify work remaining to be completed for each step of the process and open items or issues that remain to be resolved.

  3. Cleaning and sanitation of Salmonella-contaminated peanut butter processing equipment.

    PubMed

    Grasso, Elizabeth M; Grove, Stephen F; Halik, Lindsay A; Arritt, Fletcher; Keller, Susanne E

    2015-04-01

    Microbial contamination of peanut butter by Salmonella poses a significant health risk as Salmonella may remain viable throughout the product shelf life. Effective cleaning and sanitation of processing lines are essential for preventing cross-contamination. The objective of this study was to evaluate the efficacy of a cleaning and sanitation procedure involving hot oil and 60% isopropanol, ± quaternary ammonium compounds, to decontaminate pilot-scale processing equipment harboring Salmonella. Peanut butter inoculated with a cocktail of four Salmonella serovars (∼ 7 log CFU/g) was used to contaminate the equipment (∼ 75 L). The system was then emptied of peanut butter and treated with hot oil (90 °C) for 2 h followed by sanitizer for 1 h. Microbial analysis of food-contact surfaces (7 locations), peanut butter, and oil were conducted. Oil contained ∼ 3.2 log CFU/mL on both trypticase soy agar with yeast extract (TSAYE) and xylose lysine deoxycholate (XLD), indicating hot oil alone was not sufficient to inactivate Salmonella. Environmental sampling found 0.25-1.12 log CFU/cm(2) remaining on processing equipment. After the isopropanol sanitation (± quaternary ammonium compounds), no Salmonella was detected in environmental samples on XLD (<0.16 log CFU/cm(2)). These data suggest that a two-step hot oil clean and isopropanol sanitization treatment may eliminate pathogenic Salmonella from contaminated equipment. PMID:25475272

  4. Cleaning and sanitation of Salmonella-contaminated peanut butter processing equipment.

    PubMed

    Grasso, Elizabeth M; Grove, Stephen F; Halik, Lindsay A; Arritt, Fletcher; Keller, Susanne E

    2015-04-01

    Microbial contamination of peanut butter by Salmonella poses a significant health risk as Salmonella may remain viable throughout the product shelf life. Effective cleaning and sanitation of processing lines are essential for preventing cross-contamination. The objective of this study was to evaluate the efficacy of a cleaning and sanitation procedure involving hot oil and 60% isopropanol, ± quaternary ammonium compounds, to decontaminate pilot-scale processing equipment harboring Salmonella. Peanut butter inoculated with a cocktail of four Salmonella serovars (∼ 7 log CFU/g) was used to contaminate the equipment (∼ 75 L). The system was then emptied of peanut butter and treated with hot oil (90 °C) for 2 h followed by sanitizer for 1 h. Microbial analysis of food-contact surfaces (7 locations), peanut butter, and oil were conducted. Oil contained ∼ 3.2 log CFU/mL on both trypticase soy agar with yeast extract (TSAYE) and xylose lysine deoxycholate (XLD), indicating hot oil alone was not sufficient to inactivate Salmonella. Environmental sampling found 0.25-1.12 log CFU/cm(2) remaining on processing equipment. After the isopropanol sanitation (± quaternary ammonium compounds), no Salmonella was detected in environmental samples on XLD (<0.16 log CFU/cm(2)). These data suggest that a two-step hot oil clean and isopropanol sanitization treatment may eliminate pathogenic Salmonella from contaminated equipment.

  5. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-25

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

  6. Investigation of gas-phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping

    SciTech Connect

    Bundy, R.D.; Munday, E.B.

    1991-01-01

    Construction of the gaseous diffusion plants (GDPs) was begun during World War 2 to produce enriched uranium for defense purposes. These plants, which utilized UF{sub 6} gas, were used primarily for this purpose through 1964. From 1959 through 1968, production shifted primarily to uranium enrichment to supply the nuclear power industry. Additional UF{sub 6}-handling facilities were built in feed and fuel-processing plants associated with the uranium enrichment process. Two of the five process buildings at Oak ridge were shut down in 1964. Uranium enrichment activities at Oak Ridge were discontinued altogether in 1985. In 1987, the Department of Energy (DOE) decided to proceed with a permanent shutdown of the Oak Ridge Gaseous Diffusion Plant (ORGDP). DOE intends to begin decommissioning and decontamination (D D) of ORGDP early in the next century. The remaining two GDPs are expected to be shut down during the next 10 to 40 years and will also require D D, as will the other UF{sub 6}-handling facilities. This paper presents an investigation of gas- phase decontamination of internally radioactively contaminated gaseous diffusion process equipment and piping using powerful fluorinating reagents that convert nonvolatile uranium compounds to volatile UF{sub 6}. These reagents include ClF{sub 3}, F{sub 2}, and other compounds. The scope of D D at the GDPs, previous work of gas-phase decontamination, four concepts for using gas-phase decontamination, plans for further study of gas-phase decontamination, and the current status of this work are discussed. 13 refs., 15 figs.

  7. RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)

    SciTech Connect

    MINETTE, M.J.

    2007-05-30

    The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

  8. Long Length Contaminated Equipment Maintenance Plan

    SciTech Connect

    ESVELT, C.A.

    2000-02-01

    The purpose of this document is to provide the maintenance requirements of the Long Length Contaminated Equipment (LLCE) trailers and provide a basis for the maintenance frequencies selected. This document is applicable to the LLCE Receiver trailer and Transport trailer assembled by Mobilized Systems Inc. (MSI). Equipment used in conjunction with, or in support of, these trailers is not included. This document does not provide the maintenance requirements for checkout and startup of the equipment following the extended lay-up status which began in the mid 1990s. These requirements will be specified in other documentation.

  9. EPA/NSF ETV Equipment Verification Testing Plan for the Removal of Volatile Organic Chemical Contaminants by Adsorptive Media Processes

    EPA Science Inventory

    This document is the Environmental Technology Verification (ETV) Technology Specific Test Plan (TSTP) for evaluation of drinking water treatment equipment utilizing adsorptive media for synthetic organic chemical (SOC) removal. This TSTP is to be used within the structure provid...

  10. Contamination during doffing of personal protective equipment by healthcare providers

    PubMed Central

    Lim, Seong Mi; Cha, Won Chul; Chae, Minjung Kathy; Jo, Ik Joon

    2015-01-01

    Objective In this study, we aimed to describe the processes of both the donning and the doffing of personal protective equipment for Ebola and evaluate contamination during the doffing process. Methods We recruited study participants among physicians and nurses of the emergency department of Samsung Medical Center in Seoul, Korea. Participants were asked to carry out doffing and donning procedures with a helper after a 50-minute brief training and demonstration based on the 2014 Centers for Disease Control and Prevention protocol. Two separate cameras with high-density capability were set up, and the donning and doffing processes were video-taped. A trained examiner inspected all video recordings and coded for intervals, errors, and contaminations defined as the outside of the equipment touching the clinician’s body surface. Results Overall, 29 participants were enrolled. Twenty (68.9%) were female, and the mean age was 29.2 years. For the donning process, the average interval until the end was 234.2 seconds (standard deviation [SD], 65.7), and the most frequent errors occurred when putting on the outer gloves (27.5%), respirator (20.6%), and hood (20.6%). For the doffing process, the average interval until the end was 183.7 seconds (SD, 38.4), and the most frequent errors occurred during disinfecting the feet (37.9%), discarding the scrubs (17.2%), and putting on gloves (13.7%), respectively. During the doffing process, 65 incidences of contamination occurred (2.2 incidents/person). The most vulnerable processes were removing respirators (79.2%), removing the shoe covers (65.5%), and removal of the hood (41.3%). Conclusion A significant number of contaminations occur during the doffing process of personal protective equipment. PMID:27752591

  11. Alternatives Generation Analysis Long Length Contaminated Equipment Removal System Storage

    SciTech Connect

    BOGER, R.M.

    1999-08-13

    The long length contaminated equipment was designed and built to aid in the remote removal and transport of highly radioactive, contaminated equipment from various locations in the tank farms to disposal. The equipment has been stored in an open lay-down yard area, exposed to the elements for the past year and a half. The possible alternatives available to provide shelter for the equipment are investigated.

  12. Trends in powder processing equipment

    SciTech Connect

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  13. Shielding analysis of the long length contaminated equipment transportation package

    SciTech Connect

    Nelson, J.V., Westinghouse Hanford

    1996-05-10

    A shielding analysis of a potential long length contaminated equipment transportation package was completed. The analysis was performed to support the design of the transportation package and external shielding.

  14. Treatment options for tank farms long-length contaminated equipment

    SciTech Connect

    Josephson, W.S.

    1995-10-16

    This study evaluated a variety of treatment and disposal technologies for mixed waste (MW) meeting the following criteria: 1. Single-Shell and Double-Shell Tank System (tank farms) equipment and other debris; 2. length greater than 12 feet; and contaminated with listed MW from the tank farms. This waste stream, commonly referred to as tank farms long-length contaminated equipment (LLCE), poses a unique and costly set of challenges during all phases of the waste management lifecycle.

  15. Contaminated nickel scrap processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  16. Purex: process and equipment performance

    SciTech Connect

    Orth, D.A.

    1986-01-01

    The Purex process is the solvent extraction system that uses tributyl phosphate as the extractant for separating uranium and plutonium from irradiated reactor fuels. Since the first flowsheet was proposed at Oak Ridge National Laboratory in 1950, the process has endured for over 30 years with only minor modifications. The spread of the technology was rapid, and worldwide use or research on Purex-type processes was reported by the time of the 1955 Geneva Conference. The overall performance of the process has been so good that there are no serious contenders for replacing it soon. This paper presents: process description; equipment performance (mixer-settlers, pulse columns, rapid contactors); fission product decontamination; solvent effects (solvent degradation products); and partitioning of uranium and plutonium.

  17. GLOVEBOX DISMANTLEMENT AND EQUIPMENT PROTECTION IN CONTAMINATED ENVIRONMENTS

    SciTech Connect

    Kitamura, Akihiro; Stallings, Ellen; Wilburn, Dianne W.

    2003-02-27

    It has been revealed from the experiences of Decontamination and Decommissioning (D&D) activities that even a small improvement in performance can result in significant risk reduction and cost savings. For example, Race Scan Ear Mic System, which was originally developed for communications between racecar drivers and crews in loud environments, has been successfully applied to D&D work and proved to enhance worker safety and communications. Glovebox dismantlement is an important and costly process in D&D activities of nuclear facilities. Adequate decontamination and size reduction of the gloveboxes are especially important in this activity because they have the potential to reduce risks and costs significantly. This paper presents some simple approaches to support D&D tasks and discusses their potential advantages. Examples discussed include: Repeated shear wiping of large pipes and ducts; Application of thin layers on radiological counters for uninterrupted use; and Partial use of robotics for glovebox dismantling. The paper also discusses schematics for protecting equipment interiors and/or glovebox inner surfaces from contamination, which may result in significant savings and waste minimization upon future dismantlement. Examples discussed include: Smart coating for contamination prevention; and Protecting equipment by geometrically simple cover.

  18. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    SciTech Connect

    Not Available

    1993-08-01

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  19. Process Equipment Cost Estimation, Final Report

    SciTech Connect

    H.P. Loh; Jennifer Lyons; Charles W. White, III

    2002-01-01

    This report presents generic cost curves for several equipment types generated using ICARUS Process Evaluator. The curves give Purchased Equipment Cost as a function of a capacity variable. This work was performed to assist NETL engineers and scientists in performing rapid, order of magnitude level cost estimates or as an aid in evaluating the reasonableness of cost estimates submitted with proposed systems studies or proposals for new processes. The specific equipment types contained in this report were selected to represent a relatively comprehensive set of conventional chemical process equipment types.

  20. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  1. Process for treating contaminated soil

    SciTech Connect

    Lebowitz, H.E.; Kulik, C.J.

    1995-10-24

    A process is provided for treating soil contaminated with oils, tars and light hydrocarbons. A slurry is formed with coal, water and the contaminated soil and agitated at elevated temperature, resulting in the transfer of the oil from the soil to the coal. The coal and soil mixture is then dewatered for disposal by burning or burial in a landfill. 2 figs.

  2. Dose assessment for management alternatives for NORM-contaminated equipment within the petroleum industry

    SciTech Connect

    Blunt, D.L.; Smith, K.P.

    1995-08-01

    The contamination of drilling and production equipment by naturally occurring radioactive material (NORM) is a growing concern for the petroleum industry and regulators. Large volumes of NORM-contaminated scrap metal are generated by the industry each year. The contamination generally occurs as surface contamination on the interior of water-handling equipment. The source of this contamination is accumulation of by-product wastes, in the form of scale and sludge contaminated with NORM that are generated by extraction processes. The primary radionuclides of concern in petroleum industry NORM-wastes are radium-226 (Ra-226), and radium-228 (Ra-228). These isotopes are members of the uranium-238 and thorium-232 decay series, respectively. The uranium and thorium isotopes, which are naturally present in the subsurface formations from which hydrocarbons are extracted, are largely immobile and remain in the subsurface. The more soluble radium can become mobilized in the formation water and be transported to the surface in the produced water waste stream. The radium either remains in solution or precipitates in scale or sludge deposits, depending on water salinity and on temperature and pressure phase changes. NORM-containing scale consists of radium that has coprecipitated with barium, calcium, or strontium sulfates, and sludge typically consists of radium-containing silicates and carbonates. This assessment is limited to the evaluation of potential radiological doses from management options that specifically involve recycle and reuse of contaminated metal. Doses from disposal of contaminated equipment are not addressed. Radiological doses were estimated for workers and the general public for equipment decontamination and smelting. Results of this assessment can be used to examine policy issues concerning the regulation and management of NORM-contaminated wastes generated by the petroleum industry.

  3. Latin American and Caribbean intercomparison of surface contamination monitoring equipment.

    PubMed

    Cabral, T S; Ramos, M M O; Laranjeira, A S; Santos, D S; Suarez, R C

    2011-03-01

    In October 2009, the International Atomic Energy Agency (IAEA) sponsored an intercomparison exercise of surface contamination monitoring equipment, which was held at the Laboratório Nacional de Metrologia das Radiações Ionizantes, from the Instituto de Radioproteção e Dosimetria, IRD/CNEN, Rio de Janeiro. This intercomparison was performed to evaluate the calibration accessibility in Latin America and the Caribbean. Thirteen countries within the region and IAEA have sent instruments to be compared, but only five countries and IAEA were considered apt to participate. Analysis of instruments, results and discussions are presented and recommendations are drawn. PMID:21051429

  4. 76 FR 72902 - Materials Processing Equipment Technical Advisory Committee;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Bureau of Industry and Security Materials Processing Equipment Technical Advisory Committee; Notice of Partially Closed Meeting The Materials Processing Equipment Technical Advisory Committee (MPETAC) will meet... controls applicable to materials processing equipment and related technology. Agenda Open Session...

  5. The Federal Conference on Intelligent Processing Equipment

    SciTech Connect

    Not Available

    1992-04-01

    Research and development projects involving intelligent processing equipment within the following U.S. agencies are addressed: Department of Agriculture, Department of Commerce, Department of Energy, Department of Defense, Environmental Protection Agency, Federal Emergency Management Agency, NASA, National Institutes of Health, and the National Science Foundation.

  6. The Federal Conference on Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Research and development projects involving intelligent processing equipment within the following U.S. agencies are addressed: Department of Agriculture, Department of Commerce, Department of Energy, Department of Defense, Environmental Protection Agency, Federal Emergency Management Agency, NASA, National Institutes of Health, and the National Science Foundation.

  7. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  8. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  9. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  10. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  11. 40 CFR 267.116 - What must I do with contaminated equipment, structure, and soils?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that waste following all applicable requirements of 40 CFR part 262. ... equipment, structure, and soils? 267.116 Section 267.116 Protection of Environment ENVIRONMENTAL PROTECTION..., structure, and soils? You must properly dispose of or decontaminate all contaminated equipment,...

  12. Intelligent Processing Equipment Projects at DLA

    NASA Technical Reports Server (NTRS)

    Obrien, Donald F.

    1992-01-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  13. Intelligent processing equipment projects at DLA

    NASA Astrophysics Data System (ADS)

    Obrien, Donald F.

    1992-04-01

    The Defense Logistics Agency is successfully incorporating Intelligent Processing Equipment (IPE) into each of its Manufacturing Technology thrust areas. Several IPE applications are addressed in the manufacturing of two 'soldier support' items: combat rations and military apparel. In combat rations, in-line sensors for food processing are being developed or modified from other industries. In addition, many process controls are being automated to achieve better quality and to gain higher use (soldier) acceptance. IPE applications in military apparel include: in-process quality controls for identification of sewing defects, use of robots in the manufacture of shirt collars, and automated handling of garments for pressing.

  14. Process water usage and water quality in poultry processing equipment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The operation of poultry processing equipment was analyzed to determine the impact of water reduction strategies on process water quality. Mandates to reduce the consumption of process water in poultry processing facilities have created the need to critically examine water usage patterns and develop...

  15. Bacterial adherence and contamination during radiographic processing.

    PubMed

    Bachman, C E; White, J M; Goodis, H E; Rosenquist, J W

    1990-11-01

    Oral fluids are potential contaminants of radiographic processors. This investigation measured bacterial contamination in a radiographic processing room during times of high and low clinical activity and processing effects on five types of microorganisms. Cultures in the clinical setting, during high and low activity, were taken by brain-heart infusion agar plates placed near automatic processors. Site samples were taken of entrance, developer, fixer, water, and exit surfaces. Measurements of processing effects were accomplished by intentional contamination of films run in series through an automatic processor. Site samples were again taken of the processor. In the clinical setting colony-forming units increased with activity. Radiographic processing after intentional contamination decreased colony-forming units on films, but they increased for all processing solutions. Bacteria on radiographic film survived processing. Although processing procedures significantly reduce the number of bacteria on films, the potential for contamination and cross-contamination remains. PMID:2122350

  16. Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers

    SciTech Connect

    DALE, R.N.

    2000-05-01

    Long Length Contaminated Equipment Removal System Receiver Trailer and Transport Trailer require a configuration management plan for design, requirements and operations baseline documents. This report serves as the plan for the Trailers.

  17. Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers

    SciTech Connect

    DALE, R.N.

    2000-12-18

    Long Length Contaminated Equipment Removal System Receiver Trailers and Transport Trailers require identification and control for the design, requirements and operations baseline documents. This plan serves as those controls for the subject trailers.

  18. Minimum detectable activities of contamination control survey equipment

    SciTech Connect

    Goles, R.W.; Baumann, B.L.; Johnson, M.L.

    1991-08-01

    The Instrumentation External Dosimetry (I ED) Section of the Health Physics Department at the Pacific Northwest Laboratory (PNL) has performed a series of tests to determine the ability of portable survey instruments used at Hanford to detect radioactive contamination at levels required by DOE 5480.11. This semi-empirical study combines instrumental, statistical, and human factors as necessary to derive operational detection limits. These threshold detection values have been compared to existing contamination control requirements, and detection deficiencies have been identified when present. Portable survey instruments used on the Hanford Site identify the presence of radioactive surface contamination based on the detection of {alpha}-, {beta}-, {gamma}-, and/or x-radiation. However, except in some unique circumstances, most contamination monitors in use at Hanford are configured to detect either {alpha}-radiation alone or {beta}- and {gamma}-radiation together. Testing was therefore conducted on only these two categories of radiation detection devices. Nevertheless, many of the results obtained are generally applicable to all survey instruments, allowing performance evaluations to be extended to monitoring devices which are exclusively {gamma}- and/or x-ray- sensitive. 6 figs., 2 tabs.

  19. Space processing applications payload equipment study. Volume 2E: Commercial equipment utility

    NASA Technical Reports Server (NTRS)

    Smith, A. G. (Editor)

    1974-01-01

    Examination of commercial equipment technologies revealed that the functional performance requirements of space processing equipment could generally be met by state-of-the-art design practices. Thus, an apparatus could be evolved from a standard item or derived by custom design using present technologies. About 15 percent of the equipment needed has no analogous commercial base of derivation and requires special development. This equipment is involved primarily with contactless heating and position control. The derivation of payloads using commercial equipment sources provides a broad and potentially cost-effective base upon which to draw. The derivation of payload equipment from commercial technologies poses other issues beyond that of the identifiable functional performance, but preliminary results on testing of selected equipment testing appear quite favorable. During this phase of the SPA study, several aspects of commercial equipment utility were assessed and considered. These included safety, packaging and structural, power conditioning (electrical/electronic), thermal and materials of construction.

  20. Removal and treatment of mercury contamination at gas processing facilities

    SciTech Connect

    Wilhelm, S.M.; McArthur, A.

    1995-12-01

    Processing of gas containing mercury invariably leads to contamination of equipment and can generate waste in the form of sludge and spent adsorbent materials. Occasional accidents can also lead to soil contamination. This paper reviews mercury contamination in the gas processing industry and discusses newly developed methods for clean-up and disposal of mercury waste. Research and development (sponsored by the Gas Research Institute) have produced new technology for mercury removal from complex matrices. Equipment decontamination is accomplished using chemical cleaning solutions that selectively oxidize and complex elemental mercury deposits. These cleaning formulations include aqueous base solutions containing iodine as the completing agent and organic (alcohol) base solutions using completing agents. Soil, sludge, and debris must be thermally processed to remove (recycle) mercury. Thermal systems use vacuum, inert gas, or air as the carder medium. If air is used, sulfur in the matrix is converted to SO{sub 2} and hydrocarbons are oxidized as well, depending upon design. Anaerobic thermal systems employ selective condensation and/or adsorption to separate sulfur and hydrocarbons from mercury. Spent adsorbent materials are also thermally processed using strictly anaerobic conditions to avoid exothermal reactions involving carbon. The regulatory climate relative to mercury is changing rapidly. Regulations covering treated debris and soils may require total mercury concentrations of less than 2 mg/kg for burial. Total mercury analysis rather than leaching procedure (TCLP) is becoming the norm in regulations and specifications. Sampling and analysis procedures for contaminated surfaces are under development.

  1. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  2. Resrad-recycle: a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing radioactively surface-contaminated materials and equipment.

    PubMed

    Cheng, Jing-Jy; Kassas, Bassel; Yu, Charley; Amish, John; LePoire, Dave; Chen, Shih-Yew; Williams, W A; Wallo, A; Peterson, H

    2004-11-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

  3. RESRAD-RECYCLE : a computer model for analyzing radiation exposures resulting from recycling radioactively contaminated scrap metals or reusing ratioactively surface-contaminated materials and equipment.

    SciTech Connect

    Cheng, J. J.; Kassas, B.; Yu, C.; Arnish, J. J.; LePoire, D.; Chen, S.-Y.; Williams, W. A.; Wallo, A.; Peterson, H.; Environmental Assessment; DOE; Univ. of Texas

    2004-11-01

    RESRAD-RECYCLE is a computer code designed by Argonne National Laboratory (ANL) to be used in making decisions about the disposition of radioactively contaminated materials and scrap metals. It implements a pathway analysis methodology to evaluate potential radiation exposures resulting from the recycling of contaminated scrap metals and the reuse of surface-contaminated materials and equipment. For modeling purposes, it divides the entire metal recycling process into six steps: (1) scrap delivery, (2) scrap melting, (3) ingot delivery, (4) product fabrication, (5) product distribution, and (6) use of finished product. RESRAD-RECYCLE considers the reuse of surface-contaminated materials in their original forms. It contains representative exposure scenarios for each recycling step and the reuse process; users can also specify scenarios if desired. The model calculates individual and collective population doses for workers involved in the recycling process and for the public using the finished products. The results are then used to derive clearance levels for the contaminated materials on the basis of input dose restrictions. The model accounts for radiological decay and ingrowth, dilution and partitioning during melting, and distribution of refined metal in the various finished products, as well as the varying densities and geometries of the radiation sources during the recycling process. A complete material balance in terms of mass and radioactivity during the recycling process can also be implemented. In an international validation study, the radiation doses calculated by RESRAD-RECYCLE were shown to agree fairly well with actual measurement data.

  4. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic residues on equipment surfaces in poultry processing plants can generate cross- contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of stainless steel proces...

  5. The role of engineering in the flight equipment purchasing process

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The role of the airline engineering department in the flight equipment acquisition process is examined. The data for the study was collected from six airlines. The principal findings of the study include: (1) engineering activities permeate, but do not dominate the airline flight equipment decision process. (2) The principal criterion for the flight equipment acquisition decision is return on investment. (3) The principal sources of information for the airline engineering departments in the monitoring process are the manufacturers of equipment. Subsidiary information sources include NASA publications and conferences, among others and (4) The engineering department is the principal communication channel for technical information.

  6. Removal of contaminants from equipment and debris and waste minimization using TechXtract{reg_sign} technology

    SciTech Connect

    Bonem, M.W.

    1997-10-01

    Under this Program Research and Development Agreement (PRDA), EET, Inc., is extending its proprietary TechXtract{reg_sign} chemical decontamination technology into an effective, economical, integrated contaminant removal system. This integrated system will consist of a series of decontamination baths using the TechXtract{reg_sign} chemical formulas, followed by a waste treatment process that will remove the contaminants from the spent chemicals. Sufficient decontamination will result so that materials can be released without restriction after they have been treated, even those materials that have traditionally been considered to be {open_quotes}undecontaminable.{close_quotes} The secondary liquid waste will then be treated to separate any hazardous and radioactive contaminants, so that the spent chemicals and wastewater can be discharged through conventional, permitted outlets. The TechXtract{reg_sign} technology is a unique process that chemically extracts hazardous contaminants from the surface and substrate of concrete, steel, and other solid materials. This technology has been used successfully to remove contaminants as varied as PCBs, radionuclides, heavy metals, and hazardous organics. The process` advantage over other alternatives is its effectiveness in safe and consistent extraction of subsurface contamination. TechXtract{reg_sign} is a proprietary process developed, owned, and provided by EET, Inc. The objective of the PRDA is to demonstrate on a full-scale basis an economical system for decontaminating equipment and debris, with further treatment of secondary waste streams to minimize waste volumes. Contaminants will be removed from the contaminated items to levels where they can be released for unrestricted use. The entire system will be designed with maximum flexibility and automation in mind.

  7. New equipment and processing for magnetotelluric remote reference observations

    NASA Astrophysics Data System (ADS)

    Ritter, Oliver; Junge, Andreas; Dawes, Graham

    1998-03-01

    Robust estimates of magnetotelluric and geomagnetic response functions are determined using the coherency and expected uniformity of the magnetic source field as quality criteria. The method is applied on data sets of three simultaneously recording sites. For the data acquisition we used a new generation of geophysical equipment (S.P.A.M. MkIII), which comprises novel concepts of parallel computing and networked, digital data transmission. The data-processing results show that the amount of noise on the horizontal components of the magnetic field varies considerably in time, between sites and over the frequency range. The removal of such contaminated data beforehand is essential for most data-processing schemes, as the magnetic channels are usually assumed to be free of noise. The standard remote reference method is aimed at reducing bias in response function estimates. However, this does not necessarily improve their precision as our results clearly show. With our method, on the other hand, we can filter out source field irregularities, thereby providing suitable working conditions for the robust algorithm, and eventually obtain considerably improved results. Contrary to previous concepts, we suggest rejecting as much data as feasible in order to concentrate on the remaining parts of high-quality observations.

  8. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  9. Hyperspectral imaging technique for detection of poultry fecal residues on food processing equipments

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Kwan; Kim, Moon S.; Chen, Yud-Ren

    2005-11-01

    Emerging concerns about safety and security in current mass production of food products necessitate rapid and reliable inspection for contaminant-free products. Diluted fecal residues on poultry processing plant equipment surface, not easily discernable from water by human eye, are contamination sources for poultry carcasses. Development of sensitive detection methods for fecal residues is essential to ensure safe production of poultry carcasses. Hyperspectral imaging techniques have shown good potential for detecting of the presence of fecal and other biological substances on food and processing equipment surfaces. In this study, use of high spatial resolution hyperspectral reflectance and fluorescence imaging (with UV-A excitation) is presented as a tool for selecting a few multispectral bands to detect diluted fecal and ingesta residues on materials used for manufacturing processing equipment. Reflectance and fluorescence imaging methods were compared for potential detection of a range of diluted fecal residues on the surfaces of processing plant equipment. Results showed that low concentrations of poultry feces and ingesta, diluted up to 1:100 by weight with double distilled water, could be detected using hyperspectral fluorescence images with an accuracy of 97.2%. Spectral bands determined in this study could be used for developing a real-time multispectral inspection device for detection of harmful organic residues on processing plant equipment.

  10. Catalyst regeneration process including metal contaminants removal

    DOEpatents

    Ganguli, Partha S.

    1984-01-01

    Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

  11. Microbial processes and subsurface contaminants

    NASA Astrophysics Data System (ADS)

    Molz, Fred J.

    A Chapman Conference entitled “Microbial Processes in the Transport, Fate, and In Situ Treatment of Subsurface Contaminants” was held in Snowbird, Utah, October 1-3, 1986. Members of the program committee and session chairmen were Lenore Clesceri (Rensselaer Polytechnic Institute, Troy, N.Y.), David Gibson (University of Texas, Austin), James Mercer (GeoTrans, Inc., Herndon , Va.), Donald Michelsen (Virginia Polytechnic Institute and State University, Blacksburg), Fred Molz (Auburn University, Auburn, Ala.), Bruce Rittman (University of Illinois, Urbana), Gary Sayler (University of Tennessee, Knoxville), and John T. Wilson (U.S. Environmental Protection Agency, Ada, Okla.). The following report attempts to highlight the six sessions that constituted the conference. For additional information, including a bound summary and abstracts, contact Fred J. Molz, Civil Engineering Department, Auburn University, AL 36849 (telephone: 205-826-4321).

  12. Reducing the potential for processing contaminant formation in cereal products.

    PubMed

    Curtis, Tanya Y; Postles, Jennifer; Halford, Nigel G

    2014-05-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue. PMID:24882936

  13. Reducing the potential for processing contaminant formation in cereal products

    PubMed Central

    Curtis, Tanya Y.; Postles, Jennifer; Halford, Nigel G.

    2014-01-01

    Processing contaminants may be defined as substances that are produced in a food when it is cooked or processed, are not present or are present at much lower concentrations in the raw, unprocessed food, and are undesirable either because they have an adverse effect on product quality or because they are potentially harmful. The presence of very low levels of processing contaminants in common foods is becoming an increasingly important issue for the food industry, as developments in analytical techniques and equipment bring foods under closer and closer scrutiny. This review considers the formation of lipid oxidation products, hydrogenation of polyunsaturated fatty acids to prevent lipid oxidation and the associated risk of trans fatty acid formation. The formation of acrylamide in the Maillard reaction is described, as well as the genetic and agronomic approaches being taken to reduce the acrylamide-forming potential of cereal grain. The multiple routes for the formation of furan and associated chemicals, including hydroxymethylfurfuryl, are also described. The evolving regulatory and public perception situations for these processing contaminants and their implications for the cereal supply chain are discussed, emphasising the need for cereal breeders to engage with the contaminants issue. PMID:24882936

  14. Equipment, exposure, emission review--specification of process equipment for worker exposure control.

    PubMed

    Bowes, Stephen M

    2008-12-01

    Worker exposure to chemical agents may occur from equipment leaks in closed processes and from open system activities and maintenance (e.g., sampling, tank gauging, line breaking, equipment flushing, and drainage). To prevent worker overexposure to chemical agents, an Equipment, Exposure, Emission Review (EEER) was developed to consistently match equipment properties to the leakage-related inhalation risk posed by each stream. For streams where gas or liquid leakage could cause worker exposure above occupational exposure limits (OEL), the EEER recommended a high performance, low leakage equipment category. Conversely, where standard engineering offered reliable containment for lower health risk streams, the EEER did not recommend over-control. The EEER matched equipment to stream health hazard as follows: (1) the composition of each stream was determined, with particular attention to chemical substances with stringent exposure limits; (2) a mixture exposure limit was calculated for each stream based on stream composition and the OEL for stream constituent chemicals; (3) each stream was classified as to its respiratory exposure hazard on the basis of the stream exposure limit; (4) equipment was recommended as a function of respiratory exposure hazard class using an Equipment Selection Matrix. Equipment options were based, in part, on the emission performance of the equipment and a near-field dispersion model that was used to relate equipment emissions to an OEL. Over a 5-yr implementation period, nearly 1700 streams of 78 refining process units were reviewed. Standard engineering practice was selected for about 70% of the streams reviewed. Benzene, hydrogen sulfide, ethanolamine, and high boiling aromatic oil streams were the primary chemical agents responsible for more stringent controls. Although the EEER criteria for stream classification and control options were arranged in order of magnitude--a form of control banding--the correct selection of control

  15. Cleaning process for contaminated superalloy powders

    NASA Technical Reports Server (NTRS)

    Anglin, A. E.

    1978-01-01

    A cleaning process for removing interstitial contaminants from superalloy powders after wet grinding is described. Typical analyses of oxygen, carbon, nitrogen, and hydrogen in ball-milled WAZ-20 superalloy samples after hydrogen plus vacuum cleaning are presented. The hydrogen cleaning step involves heating retorts containing superalloy powder twice under flowing hydrogen with a 24-hour hold at each temperature. The vacuum step involves heating cold-pressed billets two hours at an elevated temperature at a pressure of 10 microPa. It is suggested that the hydrogen plus vacuum cleaning procedure can be applied to superalloys contaminated by other substances in other industrial processes.

  16. New separation and purification processes and equipment

    SciTech Connect

    Malyusov, V.A.

    1987-09-01

    The authors consider research carried out into new methods and processes for purifying and separating material and on modifying existing separation processes. Areas discussed include cycled mass transfer processes, three-phase liquid extraction, fines removal from suspended submicron particles, adsorption with variable pressure, crystallization from flowing liquid films, extraction by dense gases, combined processes, the application of electric fields, addition of surfactants and new hydrodynamic regimes. The authors discuss membrane distillation as the membrane separation technique in which the driving force is a temperature gradient. Membrane distillation incurs small energy costs and its applications include the production of boiler water, the desalination of sea water using the waste heat from diesel boilers, power stations, or solar energy, the concentration of product solutions, and the combination of concentration and production of desalinated water for industrial use.

  17. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-12-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. {open_quotes}Hard{close_quotes} chemical decontamination solutions, capable of achieving decontamination factors (Df`s) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. {open_quotes}Soft{close_quotes} chemical decontamination solutions, capable of achieving Df`s of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock & Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment.

  18. Self-Tuning SPRT for Continuous Surveillance of Processes & Equipment

    1996-12-18

    SABLE is an Al-based expert system for process and equipment operability surveillance in industrial applications that require high reliability, high sensitivity annunciation of degraded sensors, discrepant signals, or the incipience of system disturbances.

  19. Roadmap for Process Equipment Materials Technology

    SciTech Connect

    none,

    2003-10-01

    This Technology Roadmap addresses the ever-changing material needs of the chemical and allied process industries, and the energy, economic and environmental burdens associated with corrosion and other materials performance and lifetime issues. This Technology Roadmap outlines the most critical of these R&D needs, and how they can impact the challenges facing today’s materials of construction.

  20. EMERGING TECHNOLOGY BULLETIN: PROCESS FOR THE TREATMENT OF VOLATILE ORGANIC CARBON AND HEAVY-METAL- CONTAMINATED SOIL - INTERNATIONAL TECHNOLOGY CORPORATION

    EPA Science Inventory

    The batch steam distillation and metal extraction treatment process is a two-stage system that treats soils contaminated with organics and inorganics. This system uses conventional, readily available process equipment, and does not produce hazardous combustion products. Hazar...

  1. Particle contamination formation in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Sequeda, F.; Huang, C.

    1997-07-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique which provides real-time, {ital in situ} imaging of particles {gt}0.3 {mu}m on the target, substrate, or in the plasma. Using this technique, we demonstrate that the mechanisms for particle generation, transport, and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes, due to the inherent spatial nonuniformity of magnetically enhanced plasmas. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. There, film redeposition induces filament or nodule growth. Sputter removal of these features is inhibited by the dependence of sputter yield on angle of incidence. These features enhance trapping of plasma particles, which then increases filament growth. Eventually the growths effectively {open_quotes}short-circuit{close_quotes} the sheath, causing high currents to flow through these features. This, in turn, causes mechanical failure of the growth resulting in fracture and ejection of the target contaminants into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests it may be universal to many sputter processes. {copyright} {ital 1997 American Vacuum Society.}

  2. Decision process to assess medical equipment for hyperbaric use.

    PubMed

    Burman, F; Sheffield, R; Posey, K

    2009-01-01

    There are very few items of medical equipment specifically designed for hyperbaric use; and little information is available about medical equipment already tested for hyperbaric use. Hyperbaricists are usually left to their own devices in making a determination about the safe and effective use of standard medical equipment in the hyperbaric setting. This article proposes a logical and systematic process to arrive at this determination. The process involves seven steps beginning with a need assessment and ending with endorsement by appropriate individuals. The discussion of decision steps includes identifying risk elements, compliance with safety standards, testing, and documentation.

  3. Safety analysis report for packaging, onsite, long-length contaminated equipment transport system

    SciTech Connect

    McCormick, W.A.

    1997-05-09

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

  4. Long Length Contaminated Equipment Retrieval System Receiver Trailer and Transport Trailer Operations and Maintenance Manual

    SciTech Connect

    DALE, R.N.

    2000-05-01

    A system to accommodate the removal of long-length contaminated equipment (LLCE) from Hanford underground radioactive waste storage tanks was designed, procured, and demonstrated, via a project activity during the 1990s. The system is the Long Length Contaminated Equipment Removal System (LLCERS). LLCERS will be maintained and operated by Tank Farms Engineering and Operations organizations and other varied projects having a need for the system. The responsibility for the operation and maintenance of the LLCERS Receiver Trailer (RT) and Transport Trailer (TT) resides with the RPP Characterization Project Operations organization. The purpose of this document is to provide vendor supplied operating and maintenance (O & M) information for the RT and TT in a readily retrievable form. This information is provided this way instead of in a vendor information (VI) file to maintain configuration control of the operations baseline as described in RPP-6085, ''Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers''. Additional Operations Baseline documents are identified in RPP-6085.

  5. Laboratory investigation into the contribution of contaminants to ground water from equipment materials used in sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P. Evan; Sklarew, Deborah S.

    2004-07-31

    Benzene contamination was detected in water samples from the Ogallala aquifer beneath and adjacent to the Department of Energy's (DOE) Pantex Plant near Amarillo, Texas. DOE assembled a Technical Assistance Team to evaluate the source of benzene. One of the team's recommendations was to assess whether the sampling equipment material could be a source of benzene and other volatile organic compounds. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory tests indicated that the equipment material did, in fact, contribute volatile and semi-volatile organic compounds to the groundwater samples. Specifically, three materials were identified as contributing contaminants to water samples. The nylon-11 tubing used contributed benzene and the plasticizer N-butylbenzenesulfonamide (NBSA), the urethane-coated nylon well liner contributed toluene and trace amounts of NBSA, while the sampling port "spacer" material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests are below the concentrations measured in actual groundwater samples, the equipment material was found to contribute organics to the test water rendering the results reported for the groundwater samples highly suspect.

  6. Medical equipment donations in Haiti: flaws in the donation process.

    PubMed

    Dzwonczyk, Roger; Riha, Chris

    2012-04-01

    The magnitude 7.0 earthquake that struck Haiti on 12 January 2010 devastated the capital city of Port-au-Prince and the surrounding area. The area's hospitals suffered major structural damage and material losses. Project HOPE sought to rebuild the medical equipment and clinical engineering capacity of the country. A team of clinical engineers from the United States of America and Haiti conducted an inventory and assessment of medical equipment at seven public hospitals affected by the earthquake. The team found that only 28% of the equipment was working properly and in use for patient care; another 28% was working, but lay idle for technical reasons; 30% was not working, but repairable; and 14% was beyond repair. The proportion of equipment in each condition category was similar regardless of whether the equipment was present prior to the earthquake or was donated afterwards. This assessment points out the flaws that existed in the medical equipment donation process and reemphasizes the importance of the factors, as delineated by the World Health Organization more than a decade ago, that constitute a complete medical equipment donation.

  7. Ebola virus disease: The use of fluorescents as markers of contamination for personal protective equipment.

    PubMed

    Bell, Todd; Smoot, John; Patterson, Justin; Smalligan, Roger; Jordan, Richard

    2015-01-01

    The recent Ebola virus disease (EVD) outbreak has created interest in personal protective equipment (PPE) content and usage. PPE testing has historically been done by individual component, rather than as a bundle for contact isolation. Fluorescent agents are commonly used in training for infection control techniques. The purpose of our study was to compare 2 PPE bundles and to evaluate the feasibility of fluorescent markers as an assessment tool for PPE effectiveness. Eight healthcare providers volunteered for this preliminary study. Participants were randomized to 1 of 2 PPE bundles that meet current (October 20, 2014) CDC recommendations. One PPE bundle utilized commercial EVD-recommended components. The other PPE bundle used components already available at local hospitals or retail stores. Participants were also randomized to standard or high volume exposures (HVE) to simulate fluid splash. Each participant was assisted in PPE donning and doffing by an experienced trainer. A training mannequin was contaminated with fluorescent agents to simulate bodily fluids. Participants were then given clinical tasks to care for the EVD "patient." De-gowned participants were examined under "black light" for fluorescence indicative of contamination. One participant in each PPE arm had evidence of contamination. One of the contamination events was suspected during the patient care exercise. The other contamination event was not suspected until black light examination. In spite of a large difference in cost of PPE, the two bundle arms performed similarly. Bundle testing using fluorescent markers could help identify optimal PPE systems.

  8. Ebola virus disease: The use of fluorescents as markers of contamination for personal protective equipment.

    PubMed

    Bell, Todd; Smoot, John; Patterson, Justin; Smalligan, Roger; Jordan, Richard

    2015-01-01

    The recent Ebola virus disease (EVD) outbreak has created interest in personal protective equipment (PPE) content and usage. PPE testing has historically been done by individual component, rather than as a bundle for contact isolation. Fluorescent agents are commonly used in training for infection control techniques. The purpose of our study was to compare 2 PPE bundles and to evaluate the feasibility of fluorescent markers as an assessment tool for PPE effectiveness. Eight healthcare providers volunteered for this preliminary study. Participants were randomized to 1 of 2 PPE bundles that meet current (October 20, 2014) CDC recommendations. One PPE bundle utilized commercial EVD-recommended components. The other PPE bundle used components already available at local hospitals or retail stores. Participants were also randomized to standard or high volume exposures (HVE) to simulate fluid splash. Each participant was assisted in PPE donning and doffing by an experienced trainer. A training mannequin was contaminated with fluorescent agents to simulate bodily fluids. Participants were then given clinical tasks to care for the EVD "patient." De-gowned participants were examined under "black light" for fluorescence indicative of contamination. One participant in each PPE arm had evidence of contamination. One of the contamination events was suspected during the patient care exercise. The other contamination event was not suspected until black light examination. In spite of a large difference in cost of PPE, the two bundle arms performed similarly. Bundle testing using fluorescent markers could help identify optimal PPE systems. PMID:26793445

  9. Ebola virus disease: The use of fluorescents as markers of contamination for personal protective equipment

    PubMed Central

    Bell, Todd; Smoot, John; Patterson, Justin; Smalligan, Roger; Jordan, Richard

    2014-01-01

    The recent Ebola virus disease (EVD) outbreak has created interest in personal protective equipment (PPE) content and usage. PPE testing has historically been done by individual component, rather than as a bundle for contact isolation. Fluorescent agents are commonly used in training for infection control techniques. The purpose of our study was to compare 2 PPE bundles and to evaluate the feasibility of fluorescent markers as an assessment tool for PPE effectiveness. Eight healthcare providers volunteered for this preliminary study. Participants were randomized to 1 of 2 PPE bundles that meet current (October 20, 2014) CDC recommendations. One PPE bundle utilized commercial EVD-recommended components. The other PPE bundle used components already available at local hospitals or retail stores. Participants were also randomized to standard or high volume exposures (HVE) to simulate fluid splash. Each participant was assisted in PPE donning and doffing by an experienced trainer. A training mannequin was contaminated with fluorescent agents to simulate bodily fluids. Participants were then given clinical tasks to care for the EVD “patient.” De-gowned participants were examined under “black light” for fluorescence indicative of contamination. One participant in each PPE arm had evidence of contamination. One of the contamination events was suspected during the patient care exercise. The other contamination event was not suspected until black light examination. In spite of a large difference in cost of PPE, the two bundle arms performed similarly. Bundle testing using fluorescent markers could help identify optimal PPE systems. PMID:26793445

  10. Intelligent Processing Equipment Within the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Greathouse, Daniel G.; Nalesnik, Richard P.

    1992-01-01

    Protection of the environment and environmental remediation requires the cooperation, at all levels, of government and industry. Intelligent processing equipment, in addition to other artificial intelligence based tools, was used by the Environmental Protection Agency to provide personnel safety and improve the efficiency of those responsible for protection and remediation of the environment. These exploratory efforts demonstrate the feasibility and utility of expanding development and widespread use of these tools. A survey of current intelligent processing equipment applications in the Agency is presented and is followed by a brief discussion of possible uses in the future.

  11. Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

    2004-08-30

    Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

  12. Energy from the in situ processing Antrim shale: process equipment used in the extraction trials

    SciTech Connect

    Murdick, D.A.

    1980-08-01

    As one phase of the 1976 contract between The Dow Chemical Company and the US Department of Energy investigating Antrim shale, three extraction trials were made at the shale research site at Peck, MI. This report is an overview of the process equipment used in those extraction trials. Equipment discussed in this report are: the air and nitrogen handling equipment, the methane fuel supply equipment, the field instrumentation, the flare, the well drying equipment, the control room and safety related equipment. After various problems related to each piece of equipment were solved, the equipment worked very well as a total unit. This functioning of the above ground equipment allowed the research group to focus most of its effort on the experimental problems encountered in the Antrim shale layer.

  13. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.

    1995-10-01

    The U.S. Department of Energy issued a Planned Research and Development Announcement (PRDA) in 1993, with the objective of identifying unique technologies which could be applied to the most hazardous waste streams at DOE sites. The combination of radioactive contamination with additional contamination by hazardous constituents such as those identified by the Resource Conservation and Recovery Act (RCRA) pose an especially challenging problem. Traditional remediation technologies are increasingly becoming less acceptable to stakeholders and regulators because of the risks they pose to public health and safety. Desirable recycling technologies were described by the DOE as: (1) easily installed, operated, and maintained; (2) exhibiting superior environmental performance; (3) protective of worker and public health and safety; (4) readily acceptable to a wide spectrum of evaluators; and (5) economically feasible. Molten Metal Technology, Inc. (MMT) was awarded a contract as a result of the PRDA initiative to demonstrate the applicability of Catalytic Extraction Processing (CEP), MMT`s proprietary elemental recycling technology, to DOE`s inventory of low level mixed waste. This includes DOE`s inventory of radioactively- and RCRA-contaminated scrap metal and other waste forms expected to be generated by the decontamination and decommissioning (D&D) of DOE sites.

  14. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  15. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  16. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  17. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  18. 21 CFR 864.3010 - Tissue processing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue processing equipment. 864.3010 Section 864.3010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  19. PROCESS AND EQUIPMENT CHANGES FOR CLEANER PRODUCTION IN FEDERAL FACILITIES

    EPA Science Inventory

    The paper discusses process and equipment changes for cleaner production in federal facilities. During the 1990s, DoD and EPA conducted joint research and development, aimed at reducing the discharge of hazardous and toxic pollutants from military production and maintenance faci...

  20. Contamination control in hybrid microelectronic modules. Identification of critical process and contaminants, part 1

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Hybrid processes, handling procedures, and materials were examined to identify the critical process steps in which contamination is most likely to occur, to identify the particular contaminants associated with these critical steps, and to propose method for the control of these contaminants.

  1. HYNOL PROCESS ENGINEERING: PROCESS CONFIGURATION, SITE PLAN, AND EQUIPMENT DESIGN

    EPA Science Inventory

    The report describes the design of the hydropyrolysis reactor system of the Hynol process. (NOTE: A bench scale methanol production facility is being constructed to demonstrate the technical feasibility of producing methanol from biomass using the Hynol process. The plant is bein...

  2. Process and equipment development for hot isostatic pressing treatability study

    SciTech Connect

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  3. Statistical process control testing of electronic security equipment

    SciTech Connect

    Murray, D.W.; Spencer, D.D.

    1994-06-01

    Statistical Process Control testing of manufacturing processes began back in the 1940`s with the development of Process Control Charts by Dr. Walter A. Shewart. Sandia National Laboratories has developed an application of the SPC method for performance testing of electronic security equipment. This paper documents the evaluation of this testing methodology applied to electronic security equipment and an associated laptop computer-based system for obtaining and analyzing the test data. Sandia developed this SPC sensor performance testing method primarily for use on portal metal detectors, but, has evaluated it for testing of an exterior intrusion detection sensor and other electronic security devices. This method is an alternative to the traditional binomial (alarm or no-alarm) performance testing. The limited amount of information in binomial data drives the number of tests necessary to meet regulatory requirements to unnecessarily high levels. For example, a requirement of a 0.85 probability of detection with a 90% confidence requires a minimum of 19 alarms out of 19 trials. By extracting and analyzing measurement (variables) data whenever possible instead of the more typical binomial data, the user becomes more informed about equipment health with fewer tests (as low as five per periodic evaluation).

  4. Comparison of poultry processing equipment surfaces for susceptibility to bacterial attachment and biofilm formation.

    PubMed

    Arnold, J W; Silvers, S

    2000-08-01

    During processing of poultry meat products, broiler carcasses come in contact with many solid surfaces. Bacteria from the carcasses can attach to wet equipment surfaces, form biofilms, and provide a source of cross-contamination for subsequent carcasses. In this study an array of common equipment surface materials was compared for susceptibility to bacterial attachment and biofilms. To model mixed microbial populations relevant to poultry processing, samples were taken directly from the processing line and exposed to the surface materials. Whole carcasses were rinsed with phosphate-buffered saline (100 mL), and the rinse was diluted in nutrient broth. Absorbance values (412 nm) of the suspensions at varying dilutions containing test surfaces were compared hourly with controls without test surfaces. The kinetics of bacterial attachment and biofilm formation on test surfaces were determined under the influence of pH, time, and bacterial cell density, and the elemental composition of the surface materials was determined by energy-dispersive X-ray analysis. Our results showed that surfaces vary in affinity for bacterial attachment and biofilm formation. Analysis by spectrophotometry and scanning electron microscopy confirmed that attachment to stainless steel, polyethylene, and belting was not significantly different from controls. Attachment to picker-finger rubber was significantly less than attachment to stainless steel and the other surfaces. In fact, picker-finger rubber inhibits bacterial contamination. An increased understanding of bacterial attachment and biofilm formation will assist in the development of interventions to counteract these processes and, thereby, enhance plant sanitation and pathogen control.

  5. IFR fuel cycle process equipment design environment and objectives

    SciTech Connect

    Rigg, R.H.

    1993-03-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session.

  6. IFR fuel cycle process equipment design environment and objectives

    SciTech Connect

    Rigg, R.H.

    1993-01-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session.

  7. Process Upsets Involving Trace Contaminant Control Systems

    NASA Technical Reports Server (NTRS)

    Graf, John C.; Perry, Jay; Wright, John; Bahr, Jim

    2000-01-01

    Paradoxically, trace contaminant control systems that suffer unexpected upsets and malfunctions can release hazardous gaseous contaminants into a spacecraft cabin atmosphere causing potentially serious toxicological problems. Trace contaminant control systems designed for spaceflight typically employ a combination of adsorption beds and catalytic oxidation reactors to remove organic and inorganic trace contaminants from the cabin atmosphere. Interestingly, the same design features and attributes which make these systems so effective for purifying a spacecraft's atmosphere can also make them susceptible to system upsets. Cabin conditions can be contributing causes of phenomena such as adsorbent "rollover" and catalyst poisoning can alter a systems performance and in some in stances release contamination into the cabin. Evidence of these phenomena has been observed both in flight and during ground-based tests. The following discussion describes specific instances of system upsets found in trace contaminant control systems, groups these specific upsets into general hazard classifications, and recommends ways to minimize these hazards.

  8. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  9. Risk assessment of manufacturing equipment surfaces contaminated with DDTs and dicofol.

    PubMed

    Luo, Fei; Song, Jing; Chen, Meng-Fang; Wei, Jing; Pan, Yun-Yu; Yu, Hai-Bo

    2014-01-15

    Decommissioning of manufacturing plant in the chemical industry includes inspection of the surfaces of production equipment for potential contamination and associated health risks. In the present study wipe-samples were taken from the surfaces of dicofol manufacturing equipment at a chemical factory in north China and analyzed for chemicals of concern (COCs). Occupational hygiene assessment was conducted to assess the risks to demolition workers and health risk assessment was performed to evaluate the risks to demolition and general industrial workers. The concentrations of COCs on the equipment surfaces were found to be 0.54-3.75 × 10(4)mg DDTs m(-2) and 0.15-4.38 × 10(3)mg dicofolm(-2). The average concentration of p,p'-DDT does not represent an unacceptable risk to the demolition workers using occupational hygiene assessment. Under the industrial scenario the carcinogenic risks of COCs ranged from 2.28 × 10(-7) to 1.79 × 10(-2) for p,p'-DDT, 6.18 × 10(-7) to 3.04 × 10(-3) for p,p'-DDD and 1.89 × 10(-6) to 0.16 for p,p'-DDE. The non-carcinogenic hazard indices ranged from 3.86 × 10(-3) to 3.03 × 10(2) for p,p'-DDT and 1.16 × 10(-3) to 33.94 for dicofol. Both carcinogenic risk and hazard index of COCs under the industrial scenario were higher than under the demolition scenario. Oral ingestion and dermal contact were the major pathways and accounted for >88% of the total exposure of COCs. Parameter sensitivity analysis shows that equipment surface concentration (Cs), frequency of contact with surface (EV), fraction of dust transferred from surface to skin (FTss) and exposure frequency (EF) were the most sensitive parameters and these should be acquired on a site-specific basis. The accuracy of the risk assessment was controlled largely by the variation in the sensitive parameters and the uncertainty of the exposure model for the inhalation pathway. PMID:24029690

  10. Contamination Control in Hybrid Microelectronic Modules. Part 1: Identification of Critical Process and Contaminants

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Various hybrid processing steps, handling procedures, and materials are examined in an attempt to identify sources of contamination and to propose methods for the control of these contaminants. It is found that package sealing, assembly, and rework are especially susceptible to contamination. Moisture and loose particles are identified as the worst contaminants. The points at which contaminants are most likely to enter the hybrid package are also identified, and both general and specific methods for their detection and control are developed. In general, the most effective controls for contaminants are: clean working areas, visual inspection at each step of the process, and effective cleaning at critical process steps. Specific methods suggested include the detection of loose particles by a precap visual inspection, by preseal and post-seal electrical testing, and by a particle impact noise test. Moisture is best controlled by sealing all packages in a clean, dry, inert atmosphere after a thorough bake-out of all parts.

  11. {open_quote}Lasagna{close_quote} process treats contaminants

    SciTech Connect

    Drennan, D.

    1994-09-01

    This paper describes an integrated in-situ remedial technology for organic or inorganic contaminants in dense soils termed the Lasagna Process. The process, so named for its layers, forces contaminants out of microscopic pores in clay and silt soil regions so they do not leach into groundwater. It introduces in-situ treatment zones in the contaminated area so the waste will not have to be brought to the surface and treats the material within the newly created zones.

  12. The pharmaceutical vial capping process: Container closure systems, capping equipment, regulatory framework, and seal quality tests.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Buettiker, Jean-Pierre; Roehl, Holger; Lam, Philippe; Brown, Helen; Luemkemann, Joerg; Adler, Michael; Huwyler, Joerg; Streubel, Alexander; Mohl, Silke

    2016-02-01

    Parenteral drug products are protected by appropriate primary packaging to protect against environmental factors, including potential microbial contamination during shelf life duration. The most commonly used CCS configuration for parenteral drug products is the glass vial, sealed with a rubber stopper and an aluminum crimp cap. In combination with an adequately designed and controlled aseptic fill/finish processes, a well-designed and characterized capping process is indispensable to ensure product quality and integrity and to minimize rejections during the manufacturing process. In this review, the health authority requirements and expectations related to container closure system quality and container closure integrity are summarized. The pharmaceutical vial, the rubber stopper, and the crimp cap are described. Different capping techniques are critically compared: The most common capping equipment with a rotating capping plate produces the lowest amount of particle. The strength and challenges of methods to control the capping process are discussed. The residual seal force method can characterize the capping process independent of the used capping equipment or CCS. We analyze the root causes of several cosmetic defects associated with the vial capping process.

  13. Removal of Contaminants from Equipment and Debris and Waste Minimization Using the TECHXTRACT(TM) Technology

    SciTech Connect

    Jorg Schwitzgebel; Klaus Schwitzgebel; Michael W. Bonem; Ronald E. Borah

    1998-12-09

    From September, 1996 through July, 1997, EET, Inc. conducted a series of experiments under a U.S. Department of Energy (DOE) Program Research and Development Agreement (PRDA). This project, entitled "Removal of Contaminants from Equipment and Debris and Waste Minimization Using the TECHXTRACT â Technology" was conducted under DOE Contract DE-AC21- 96MC33138, administered by the Federal Energy Technology Center. The contract is divided into two phases - a base phase during which bench scale testing was conducted; and an optional phase for a field demonstration of a full-scale system. This report documents the results from the base phase of the contract. The base phase included the following major elements: - Evaluation of the effectiveness of various decontamination options, using both surrogate and radioactively contaminated samples. - Evaluation of various methods for the treatment of the secondary waste streams from the preferred decontamination system(s). - Evaluation of decontamination effectiveness for concrete rubble. - Preliminary engineering design and cost estimation for a full-scale system. - Preliminary economic analysis of the proposed system versus other currently available options for disposition of the materials. Results from the base phase, which are described in the following report, are very positive. Testing has shown that free release requirements and extremely high decontamination factors can be achieved for a variety of materials and radionuclides. Results for concrete rubble decontamination were less conclusive. The bench scale testing has led to the design of two different systems, both based on the TECHXTRACT â chemistry, for potential full-scale demonstration. Based on the preliminary economic analysis, this system compares favorably with currently available commercial options, including disposal.

  14. Equipment

    NASA Astrophysics Data System (ADS)

    Szumski, Michał

    This chapter describes the most important features of capillary electrophoretic equipment. A presentation of the important developments in high voltage power supplies for chip CE is followed by preparation of fused silica capillaries for use in CE. Detection systems that are used in capillary electrophoresis are widely described. Here, UV-Vis absorbance measurements are discussed including different types of detection cells—also those less popular (u-shaped, Z-shaped, mirror-coated). Fluorescence detection and laser-induced fluorescence detection are the most sensitive detection systems. Several LIF setups, such as collinear, orthogonal, confocal, and sheath-flow cuvette, are presented from the point of view of the sensitivity they can provide. Several electrochemical detectors for CE, such as conductivity, amperometric, and potentiometric, are also shown and their constructions discussed. CE-MS and much less known CE (CEC)-NMR systems are also described. The examples of automation and robotized CE systems together with their potential fields of application are also presented.

  15. Contamination measurements during IUS thermal vacuum tests in a large space chamber. [IUS equipment support system

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Shaw, C. G.

    1984-01-01

    The levels of contamination that originate from inside the IUS equipment support section (ESS) due to outgassing from electronics components and wiring operating at elevated temperatures (80-160 F) were investigated. Pressure was measured inside and outside the ESS. Mass deposition measurements were made with quartz crystal microbalances (QCM) facing into and away from ESS vents. The OCM's were operated at -50 C and -180 C using thermoelectrically and cryogenically cooled QCM's. Gaseous nitrogen flow inside the ESS was used to obtain the effective molecular flow vent area of the ESS, which was evaluated to be 359 sq cm (56 sq in) compared to the 978 sq cm (150 sq in) estimated by an earlier atmosphere pressure billowing test. The total outgassing rate of the ESS materials at a temperature of 60 C (140 F) decays with a time constant of 11.5 hours based on pressure measurements during the hot cycle. A time constant of 22 hours was estimated for the fraction of the outgassing which will condense on a -50 C surface. In contrast, the time constant is only 10.1 hours for the outgassing material which condenses on a surface at -180 C. A surface at -180 C collects approximately one half of the material vented from the ESS which impinges on it. Pressure measurements show very good correlation with the mass deposition measurements.

  16. Process capability determination of new and existing equipment

    NASA Technical Reports Server (NTRS)

    Mcclelland, H. T.; Su, Penwen

    1994-01-01

    The objective of this paper is to illustrate a method of determining the process capability of new or existing equipment. The method may also be modified to apply to testing laboratories. Long term changes in the system may be determined by periodically making new test parts or submitting samples from the original set to the testing laboratory. The technique described has been developed through a series of projects in special topics manufacturing courses and graduate student projects. It will be implemented as a standard experiment in an advanced manufacturing course in a new Manufacturing Engineering program at the University of Wisconsin-Stout campus. Before starting a project of this nature, it is important to decide on the exact question to be answered. In this case, it is desired to know what variation can be reasonably expected in the next part, feature, or test result produced. Generally, this question is answered by providing the process capability or the average value of a measured characteristic of the part or process plus or minus three standard deviations. There are two general cases to be considered: the part or test is made in large quantities with little change, or the process is flexible and makes a large variety of parts. Both cases can be accommodated; however, the emphasis in this report is on short run situations.

  17. Concepts and designs of ion implantation equipment for semiconductor processing

    NASA Astrophysics Data System (ADS)

    Rose, Peter H.; Ryding, Geoffrey

    2006-11-01

    Manufacturing ion implantation equipment for doping semiconductors has grown into a two billion dollar business. The accelerators developed for nuclear physics research and isotope separation provided the technology from which ion implanters have been developed but the unique requirements of the semiconductor industry defined the evolution of the architecture of these small accelerators. Key elements will be described including ion generation and beam transport systems as well as the techniques used to achieve uniform doping over large wafers. The wafers are processed one at a time or in batches and are moved in and out of the vacuum by automated handling systems. The productivity of an implanter is of economic importance and there is continuing need to increase the usable beam current especially at low energies.

  18. US Department of Energy's Efforts in Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    Peavy, Richard D.; Mcfarland, Janet C.

    1992-01-01

    The Department of Energy (DOE) uses intelligent processing equipment (IPE) technologies to conduct research and development and manufacturing for energy and nuclear weapons programs. This paper highlights several significant IPE efforts underway in DOE. IPE technologies are essential to the accomplishment of DOE's missions, because of the need for small lot production, precision, and accuracy in manufacturing, hazardous waste management, and protection of the environment and the safety and health of the workforce and public. Applications of IPE technologies include environmental remediation and waste handling, advanced manufacturing, and automation of tasks carried out in hazardous areas. DOE laboratories have several key programs that integrate robotics, sensor, and control technologies. These programs embody a considerable technical capability that also may be used to enhance U.S. industrial competitiveness. DOE encourages closer cooperation with U.S. industrial partners based on mutual benefits. This paper briefly describes technology transfer mechanisms available for industrial involvement.

  19. Scaling sporting equipment for children promotes implicit processes during performance.

    PubMed

    Buszard, Tim; Farrow, Damian; Reid, Machar; Masters, Rich S W

    2014-11-01

    This study investigated whether children who used scaled equipment compared to full size equipment during a motor task demonstrated reduced conscious involvement in performance. Children (9-11 years) performed a tennis hitting task in two attention conditions (single-task and dual-task) using two types of equipment (scaled and full size). A more skilled group and a less skilled group were formed using hitting performance scores. The more skilled group displayed greater working memory capacity than the less skilled group. For both groups, hitting performance and technique were better when scaled equipment was used. Hitting performance when using scaled equipment was not disrupted in either group by a cognitively demanding secondary task; however, performance was disrupted in the less skilled group when using full size equipment. We conclude that equipment scaling may reduce working memory engagement in motor performance and discuss the findings in the context of implicit motor learning theory.

  20. Process for removing metal contaminants from used lubricating oils

    SciTech Connect

    Johnson, C.B.

    1980-05-27

    A process is provided for removing metal contaminants from used lubricating oil. The used oil is contacted with an aqueous solution of aluminum sulphate and ammonium sulphate at elevated temperature to form compounds of the metal contaminants in an aqueous phase which is phase separable from the oil. An oil product reduced in metal contaminants is thereby produced which is suitable as a cheap fuel or lubricant.

  1. Radiological Monitoring Equipment For Real-Time Quantification Of Area Contamination In Soils And Facility Decommissioning

    SciTech Connect

    M. V. Carpenter; Jay A. Roach; John R Giles; Lyle G. Roybal

    2005-09-01

    The environmental restoration industry offers several sys¬tems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyse radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertifica¬tion analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system to create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where manoeuvrability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the Miamisburg

  2. Parallel Processing of a Groundwater Contaminant Code

    SciTech Connect

    Arnett, Ronald Chester; Greenwade, Lance Eric

    2000-05-01

    The U. S. Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) is conducting a field test of experimental enhanced bioremediation of trichoroethylene (TCE) contaminated groundwater. TCE is a chlorinated organic substance that was used as a solvent in the early years of the INEEL and disposed in some cases to the aquifer. There is an effort underway to enhance the natural bioremediation of TCE by adding a non-toxic substance that serves as a feed material for the bacteria that can biologically degrade the TCE.

  3. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  4. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  5. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  6. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  7. 49 CFR 1242.46 - Computers and data processing equipment (account XX-27-46).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Computers and data processing equipment (account XX-27-46). 1242.46 Section 1242.46 Transportation Other Regulations Relating to Transportation... RAILROADS 1 Operating Expenses-Equipment § 1242.46 Computers and data processing equipment (account...

  8. Utility of a Novel Reflective Marker Visualized by Flash Photography for Assessment of Personnel Contamination During Removal of Personal Protective Equipment.

    PubMed

    Tomas, Myreen E; Cadnum, Jennifer L; Mana, Thriveen S C; Jencson, Annette L; Koganti, Sreelatha; Alhmidi, Heba; Kundrapu, Sirisha; Sunkesula, Venkata C K; Donskey, Curtis J

    2016-06-01

    In an experimental study, the frequency of contamination of healthcare personnel during removal of contaminated personal protective equipment (PPE) was similar for bacteriophage MS2 and a novel reflective marker visualized using flash photography. The reflective marker could be a useful tool to visualize and document personnel contamination during PPE removal. Infect Control Hosp Epidemiol 2016;37:711-713. PMID:26976219

  9. 9. VIEW OF CLOSED CARRIER LINES FOR MOVING CONTAMINATED PROCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF CLOSED CARRIER LINES FOR MOVING CONTAMINATED PROCESS FILTERS AND TRANSPORTING SOLID AND LIQUID MATERIAL SAMPLES. (9/10/96) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  10. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    SciTech Connect

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  11. Processes of contaminant accumulation in an Arctic beluga whale population

    SciTech Connect

    Hickie, B.E.; Muir, D.; Kingsley, M.

    1995-12-31

    As long-lived top predators in marine food chains, marine mammals accumulate high levels of persistent organic contaminants. While arctic marine mammal contaminant concentrations are lower than those from temperate regions, levels are sufficiently high to be a health concern to people who rely on marine mammals as food. Monitoring programs developed to address this problem and to define spatial and temporal trends often are difficult to interpret since tissue contaminant concentrations vary with species, age, sex, reproductive effort, and condition (ie blubber thickness). It can be difficult to relate contaminant concentrations in other environmental compartments to those in marine mammals since their residues reflect exposure over their entire life, often 20 to 30 years. Contaminant accumulation models for marine mammals enable us to better understand the importance of, and interaction between, factors affecting contaminant accumulation, and can provide a dynamic framework for interpreting contaminant monitoring data. The authors developed two models for the beluga whale (Delphinapterus leucas): one provides a detailed view of processes at the individual level, the other examines population-based processes. The models quantify uptake, release and disposition of organic contaminants over their entire lifespan by incorporating all aspects of life-history. These models are used together to examine impact of a variety of factors on patterns and variability of PCBs found in the West Greenland beluga population (sample size: 696, 729). Factors examined include: energetics, growth, birth rate, lactation, contaminant assimilation and clearance rates, and dietary contaminant concentrations. Results are discussed in relation to the use of marine mammals for monitoring contaminant trends.

  12. Detection of organic residues on food processing equipment surfaces by spectral imaging method

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Jun, Won; Kim, Moon S.; Chao, Kaunglin

    2010-04-01

    Organic residues on equipment surfaces in poultry processing plants can generate cross contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of organic residues on poultry processing equipment surfaces. High-power blue LEDs with a spectral output at 410 nm were used as the excitation source for a line-scanning hyperspectral imaging system. Common chicken residue samples including fat, blood, and feces from ceca, colon, duodenum, and small intestine were prepared on stainless steel sheets. Fluorescence emission images were acquired from 120 samples (20 for each type of residue) in the wavelength range of 500-700 nm. LED-induced fluorescence characteristics of the tested samples were determined. PCA (principal component analysis) was performed to analyze fluorescence spectral data. Two SIMCA (soft independent modeling of class analogy) models were developed to differentiate organic residues and stainless steel samples. Classification accuracies using 2-class ('stainless steel' and 'organic residue') and 4-class ('stainless steel', 'fat', 'blood', and 'feces') SIMCA models were 100% and 97.5%, respectively. An optimal single-band and a band-pair that are promising for rapid residue detection were identified by correlation analysis. The single-band approach using the selected wavelength of 666 nm could generate false negative errors for chicken blood inspection. Two-band ratio images using 503 and 666 nm (F503/F666) have great potential for detecting various chicken residues on stainless steel surfaces. This wavelength pair can be adopted for developing a LED-based hand-held fluorescence imaging device for inspecting poultry processing equipment surfaces.

  13. Using a temperature-controlled quartz crystal microbalance in a space equipment cleanroom to monitor molecular contamination

    NASA Technical Reports Server (NTRS)

    Mitchell, William J.

    1994-01-01

    There is a need for continuous monitoring for molecular contamination in clean rooms where spaceflight equipment is assembled, integrated, and tested to insure that contamination budgets are met. The TQCM (temperature-controlled quartz crystal microbalance) can be used to provide both a real time warning and a cumulative measurement of molecular contamination. It has advantages over the other measurement methods such as witness mirrors, NVR (non-volatile residue) plates, and gas analyzers. A comparison of the TQCM sensitivity and ease of operations is made with the other methods. The surface acoustic wave microbalance (SAW), a newly developed instrument similar to TQCM, is considered in the comparison. An example is provided of TQCM use at Goddard Space Flight Center when the Wide Field Planetary Camera 2(WFPC-2) and the Corrective Optics Space Telescope Axial Replacement (COSTAR) were undergoing integrated testing prior to their installation in the Hubble Space Telescope on its first servicing mission. Areas for further investigation are presented.

  14. Application of SMIF isolation to lithography processes for contamination control

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-Bai

    2001-08-01

    Contamination control is particularly important in lithography processes because pattern defects are converted to wafers after each exposure. Contamination, by definition, is undesired matter or energy, which causes product defects or process instabilities, and, consequently, reduces yield and reliability. In lithography processes, particles, condensable hydrocarbosn, base molecules, moisture, and static electricity are examples of contaminants. Particles are inert minute objects, which interfere with the proper formation of circuit features. Condensable hydrocarbosn may cause optics hazing which reduces image homogeneity and energy transmission. Some Chemically Amplified Resists (CAR) are susceptible to molecular base contamination, resulting in image degradation such as T-topping. Moisture can affect the characteristics of photoresist, destabilizing photo-exposure and development processes. In combination with water, amine containing photoresist strippers can form hydroxyl ions that can attack aluminum and aluminum-copper alloys. Charged surfaces can tract and hold contaminants of opposite polarity. In case the electrical field exceeds the dielectric strength, ESD event occurs, often accompanied with damage of reticles, masks, or wafer circuits. With SMIF isolation technologies, yield loss due to defects and/or instabilities is minimized. Reticles, masks, and wafers are isolated form contamination sources through hermetic seal, in conjunction with particle/chemical filtration, and static shielding. Pressurization, inert gas purge, chemical absorbents, and electric grounding or air ionization are techniques of removing contaminants from the critical areas. For best performance, adequate selection of construction materials is critical. This paper discusses impacts of contamination on lithography processes and the possibility of solving such problems using SMIF isolation techniques. Theoretical models are developed and experimental data are presented.

  15. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  16. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  17. High level radioactive waste vitrification process equipment component testing

    SciTech Connect

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system.

  18. Contaminant Attenuation Processes at Mining Sites

    EPA Science Inventory

    Monitored natural attenuation is sometimes used in combination with active treatment technologies to achieve site-specific remediation objectives. The global imprint of acid drainage problems at mining sites, however, is a clear reminder that in most cases natural processes are ...

  19. Molecular methods to assess Listeria monocytogenes route of contamination in a dairy processing plant.

    PubMed

    Alessandria, Valentina; Rantsiou, Kalliopi; Dolci, Paola; Cocolin, Luca

    2010-07-31

    In this study we investigated the occurrence of Listeria monocytogenes in a dairy processing plant during two sampling campaigns in 2007 and 2008. Samples represented by semifinished and finished cheeses, swabs from the equipment and brines from the salting step, were subjected to analysis by using traditional and molecular methods, represented mainly by quantitative PCR. Comparing the results obtained by the application of the two approaches used, it became evident how traditional microbiological analysis underestimated the presence of L. monocytogenes in the dairy plant. Especially samples of the brines and the equipment swabs were positive only with qPCR. For some equipment swabs it was possible to detect a load of 10(4)-10(5) cfu/cm(2), while the modified ISO method employed gave negative results both before and after the enrichment step. The evidences collected during the first sampling year, highlighting a heavy contamination of the brines and of the equipment, lead to the implementation of specific actions that decreased the contamination in these samples during the 2008 campaign. However, no reduction in the number of L. monocytogenes positive final products was observed, suggesting that a more strict control is necessary to avoid the presence of the pathogen. All the isolates of L. monocytogenes were able to attach to abiotic surfaces, and, interestingly, considering the results obtained from their molecular characterization it became evident how strains present in the brines, were genetically connected with isolates from the equipment and from the final product, suggesting a clear route of contamination of the pathogen in the dairy plant. This study underlines the necessity to use appropriate analytical tools, such as molecular methods, to fully understand the spread and persistence of L. monocytogenes in food producing companies. PMID:20193970

  20. Molecular methods to assess Listeria monocytogenes route of contamination in a dairy processing plant.

    PubMed

    Alessandria, Valentina; Rantsiou, Kalliopi; Dolci, Paola; Cocolin, Luca

    2010-07-31

    In this study we investigated the occurrence of Listeria monocytogenes in a dairy processing plant during two sampling campaigns in 2007 and 2008. Samples represented by semifinished and finished cheeses, swabs from the equipment and brines from the salting step, were subjected to analysis by using traditional and molecular methods, represented mainly by quantitative PCR. Comparing the results obtained by the application of the two approaches used, it became evident how traditional microbiological analysis underestimated the presence of L. monocytogenes in the dairy plant. Especially samples of the brines and the equipment swabs were positive only with qPCR. For some equipment swabs it was possible to detect a load of 10(4)-10(5) cfu/cm(2), while the modified ISO method employed gave negative results both before and after the enrichment step. The evidences collected during the first sampling year, highlighting a heavy contamination of the brines and of the equipment, lead to the implementation of specific actions that decreased the contamination in these samples during the 2008 campaign. However, no reduction in the number of L. monocytogenes positive final products was observed, suggesting that a more strict control is necessary to avoid the presence of the pathogen. All the isolates of L. monocytogenes were able to attach to abiotic surfaces, and, interestingly, considering the results obtained from their molecular characterization it became evident how strains present in the brines, were genetically connected with isolates from the equipment and from the final product, suggesting a clear route of contamination of the pathogen in the dairy plant. This study underlines the necessity to use appropriate analytical tools, such as molecular methods, to fully understand the spread and persistence of L. monocytogenes in food producing companies.

  1. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  2. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  3. Concept study: Use of grout vaults for disposal of long-length contaminated equipment

    SciTech Connect

    Clem, D.K.

    1994-09-21

    Study considers the potential for use of grout vaults for disposal of untreated long length equipment removed from waste tanks. Looks at ways to access vaults, material handling, regulatory aspects, and advantages and disadvantages of vault disposal.

  4. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    PubMed

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased.

  5. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: a case study of Bangkok, Thailand.

    PubMed

    Damrongsiri, Seelawut; Vassanadumrongdee, Sujitra; Tanwattana, Puntita

    2016-09-01

    Sue Yai Utit is an old community located in Bangkok, Thailand which dismantles waste electrical and electronic equipment (WEEE). The surface soil samples at the dismantling site were contaminated with copper (Cu), lead (Pb), zinc (Zn), and nickel (Ni) higher than Dutch Standards, especially around the WEEE dumps. Residual fractions of Cu, Pb, Zn, and Ni in coarse soil particles were greater than in finer soil. However, those metals bonded to Fe-Mn oxides were considerably greater in fine soil particles. The distribution of Zn in the mobile fraction and a higher concentration in finer soil particles indicated its readily leachable character. The concentration of Cu, Pb, and Ni in both fine and coarse soil particles was mostly not significantly different. The fractionation of heavy metals at this dismantling site was comparable to the background. The contamination characteristics differed from pollution by other sources, which generally demonstrated the magnification of the non-residual fraction. A distribution pathway was proposed whereby contamination began by the deposition of WEEE scrap directly onto the soil surface as a source of heavy metal. This then accumulated, corroded, and was released via natural processes, becoming redistributed among the soil material. Therefore, the concentrations of both the residual and non-residual fractions of heavy metals in WEEE-contaminated soil increased. PMID:27206753

  6. Impact of the Department of Health initiative to equip and train acute trusts to manage chemically contaminated casualties

    PubMed Central

    Al-Damouk, M; Bleetman, A

    2005-01-01

    Background: Before 1999, there was no national model or standard doctrine for managing casualties from chemical incidents in the UK. A Department of Health (DoH) initiative to prepare the National Health Service (NHS) for chemical incidents was launched in the same year. This led to the distribution of an NHS standard chemical personal protective equipment suit (CPPE) together with a new single half day training package (Structured Approach to Chemical Casualties (SACC)) in 2001. Objectives: To assess the impact of the DoH initiative on acute hospital and ambulance trusts. To identify deficiencies in the design and operational deployment of the new CPPE, training initiative, and decontamination procedures at hospital level. Method: A survey to assess progress in specific areas of chemical incident preparedness and two simulated incidents with "live" chemically contaminated casualties conducted in two acute trusts. Umpires evaluated the operational performance against DoH SACC standards. Results: There has been marked improvement in many aspects of preparedness for chemical incidents since the original National Focus survey. Some deficiencies remain and this study identified areas for further work. In the live casualty exercises, hospital staff complied well with SACC protocols. Some practical difficulties were encountered with the deployment of the CPPE and in some aspects of the operational response, leading to some delays in the delivery of care to the casualties and to the integrity of the uncontaminated (clean) zones within the hospitals. Conclusion: Problems with the design and deployment of the CPPE, together with training difficulties have been fed back into the planning and development process. PMID:15843703

  7. Process selection for treatment of SOC contaminated waters

    SciTech Connect

    Dvorak, B.I.; Lawler, D.F.; Speitel, G.E. Jr.

    1994-12-31

    The selection of the least-cost treatment option for treating synthetic organic chemical (SOC) contaminated wastewaters is often a complex endeavor. There are too many potential treatment processes and series-of-processes to perform a detailed evaluation of all alternatives. This research was undertaken to simplify the selection of the least expensive treatment process(es) for a given set of conditions. Mathematical process performance and cost models were developed for eight treatment processes. Four aqueous treatment processes were considered: air stripping, liquid-phase adsorption, fixed-film biological oxidation, and biodegradation within a carbon adsorption column. Because off-gases from air stripping towers are frequently regulated, four off-gas treatment processes also were considered: gas-phase adsorption (both on and off site regeneration), thermal incineration, and catalytic oxidation. The least-cost design for each process was identified for a set of wastewaters typical of contaminated groundwaters, drinking waters, and industrial wastes. The results were synthesized to create generalizations concerning process selection. The specific objective of this research was to develop analytical tools to aid engineers faced with complex decisions concerning process selection for the treatment of SOC contaminated waters.

  8. Treating contaminated organics using the DETOX process

    SciTech Connect

    Elsberry, K.D.; Dhooge, P.M.

    1993-05-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.

  9. A complete set of the special process equipment for the defect-free production of reticles

    NASA Astrophysics Data System (ADS)

    Avakaw, Syarhei; Iouditski, Valerian; Pushkin, Leanid; Tsitko, Alena

    2007-02-01

    The paper presents an integrated solution of a problem to develop a set of the equipment for the defect-free production of reticles and photomasks. The integrated approach to the equipment design allows to obtain certain advantages disclosed below. Accordingly, the paper highlights the following main issues: *Practical realization of these advantages in the special process equipment developed by the KBTEM-OMO enterprise of the PLANAR. *Advantages in the development of a complete set of the special process equipment; Without taking into account technical and chemical processes, this complete set includes three component parts: *Multi-beam laser pattern generator; *Die-to-Database reticle inspection system; *Laser reticle repair system.

  10. An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure.

    PubMed

    Mingguang, Zhang; Juncheng, Jiang

    2008-10-30

    Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.

  11. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  12. Evaluation of Contaminant-Promoted Ignition in Scuba Equipment and Breathing Gas Delivery Systems

    NASA Technical Reports Server (NTRS)

    Forsyth, Elliott T.; Durkin, Robert; Beeson, Harold D.

    2000-01-01

    As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.

  13. Use of a marker organism in poultry processing to identify sites of cross-contamination and evaluate possible control measures.

    PubMed

    Mead, G C; Hudson, W R; Hinton, M H

    1994-07-01

    1. Nine different sites at a poultry processing plant were selected in the course of a hazard analysis to investigate the degree of microbial cross-contamination that could occur during processing and the effectiveness of possible control measures. 2. At each site, carcases, equipment or working surfaces were inoculated with a non-pathogenic strain of nalidixic acid-resistant Escherichia coli K12; transmission of the organism among carcases being processed was followed qualitatively and, where appropriate, quantitatively. 3. The degree of cross-contamination and the extent to which it could be controlled by the proposed measures varied from one site to another. PMID:7953779

  14. Detection of Blood Culture Bacterial Contamination using Natural Language Processing

    PubMed Central

    Matheny, Michael E.; FitzHenry, Fern; Speroff, Theodore; Hathaway, Jacob; Murff, Harvey J.; Brown, Steven H.; Fielstein, Elliot M.; Dittus, Robert S.; Elkin, Peter L.

    2009-01-01

    Microbiology results are reported in semi-structured formats and have a high content of useful patient information. We developed and validated a hybrid regular expression and natural language processing solution for processing blood culture microbiology reports. Multi-center Veterans Affairs training and testing data sets were randomly extracted and manually reviewed to determine the culture and sensitivity as well as contamination results. The tool was iteratively developed for both outcomes using a training dataset, and then evaluated on the test dataset to determine antibiotic susceptibility data extraction and contamination detection performance. Our algorithm had a sensitivity of 84.8% and a positive predictive value of 96.0% for mapping the antibiotics and bacteria with appropriate sensitivity findings in the test data. The bacterial contamination detection algorithm had a sensitivity of 83.3% and a positive predictive value of 81.8%. PMID:20351890

  15. Detection of blood culture bacterial contamination using natural language processing.

    PubMed

    Matheny, Michael E; Fitzhenry, Fern; Speroff, Theodore; Hathaway, Jacob; Murff, Harvey J; Brown, Steven H; Fielstein, Elliot M; Dittus, Robert S; Elkin, Peter L

    2009-11-14

    Microbiology results are reported in semi-structured formats and have a high content of useful patient information. We developed and validated a hybrid regular expression and natural language processing solution for processing blood culture microbiology reports. Multi-center Veterans Affairs training and testing data sets were randomly extracted and manually reviewed to determine the culture and sensitivity as well as contamination results. The tool was iteratively developed for both outcomes using a training dataset, and then evaluated on the test dataset to determine antibiotic susceptibility data extraction and contamination detection performance. Our algorithm had a sensitivity of 84.8% and a positive predictive value of 96.0% for mapping the antibiotics and bacteria with appropriate sensitivity findings in the test data. The bacterial contamination detection algorithm had a sensitivity of 83.3% and a positive predictive value of 81.8%.

  16. AIR CONTAMINANT EXPOSURE DURING THE OPERATION OF LAWN AND GARDEN EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the Small Engine Exposure Study (SEES) to evaluate potential exposures among users of small, gasoline-powered, non-road spark-ignition (SI) lawn and garden engines. Equipment tested included riding tractors, walk-behind la...

  17. Advances in sanitizing fruit, equipment and surfaces to prevent contamination with human pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of fresh and fresh-cut fruits and vegetables by foodborne pathogens is an ongoing problem. While conventional sanitation methods have yielded positive results, their limitations have prompted research into novel interventions. Of particular interest are technologies which use little or...

  18. Chemical contamination of animal feeding systems: evaluation of two caging systems and standard cage-washing equipment.

    PubMed

    Fox, J G; Helfrich-Smith, M E

    1980-12-01

    Sodium fluorescein was added as a tracer to an ager gel diet which was fed for 5 day to 90 of 180 rats housed in two different polycarbonate caging systems, shoe-box cages and suspension solid-bottom cages. Cage racks, supplementary equipment, and case washer surfaces were analysed for fluorescein both before and after a complete wash and rinse cycle. Efficacy of washing was greater than 99% for both the inside and outside of the suspended cages and greater than 99% for the inside, but only 93% for the outside, of the shoe-box cages. The shoe-box cages, which were larger than the suspended cages, were spaced closer together on the washer rack, which may account for this variation in cleaning effectiveness. The cage washer surfaces and the water, which was recirculated during each cycle, also became contaminated with fluorescein. Strict adherence to proper cage-washing procedures and careful selection of cage design are important factors in controlling the potential for residual contamination of caging and cage-washing equipment. PMID:7464031

  19. Analysis of Zinc 65 Contamination after Vacuum Thermal Process

    SciTech Connect

    Korinko, Paul S.; Tosten, Michael H.

    2013-01-01

    Radioactive contamination with a gamma energy emission consistent with {sup 65}Zn was detected in a glovebox following a vacuum thermal process. The contaminated components were removed from the glovebox and subjected to examination. Selected analytical techniques were used to determine the nature of the precursor material, i.e., oxide or metallic, the relative transferability of the deposit and its nature. The deposit was determined to be borne from natural zinc and was further determined to be deposited as a metallic material from vapor.

  20. Preliminary Results of Cleaning Process for Lubricant Contamination

    SciTech Connect

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-06

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  1. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    SciTech Connect

    Poa, D.S.; Pierce, R.D.; Mulcahey, T.P.; Johnson, G.K.

    1993-07-06

    A process is described of electrolytically recovering a metal from an oxide of the metal comprising the steps of: (a) providing an electrolytic cell including a molten salt electrolyte containing the metal oxide and one or more halide salts of the metal, a pair of spaced apart electrodes in the electrolyte, and a source of electrical voltage to the electrodes, one of the electrodes being an anode and a source of particulate carbon contamination of the electrolyte during operation of the cell, (b) operating the cell to recover the metal as an element at the other electrode while confining the contaminant to a zone in the electrolyte about the one electrode, and (c) periodically removing the contaminant from the electrolyte zone while interrupting operation of the cell.

  2. Assessment of multi-gate interceptors equipped with baffles in contaminated aquifers.

    PubMed

    Hudak, Paul F

    2011-07-01

    Funnel-and-gate structures with three gates, two funnels (collinear with gates), and two perpendicular flow-directing vanes (baffles) were assessed for capturing contaminated groundwater in a hypothetical unconfined aquifer. Simulated structures, anchored into an underlying aquiclude, were 35 m wide. One 5-m wide gate occupied the center, and two 3-m wide gates occupied the ends, of each structure. Both homogeneous and heterogeneous (with respect to hydraulic conductivity) aquifers were modeled, with baffles at various positions along funnels in alternative configurations. A contaminant transport model, accounting for advection and hydrodynamic dispersion, tested the capability of various structures for capturing contaminant plumes. Based upon modeling results: (1) structures with baffles performed up to 17% better (homogeneous case), but also up to 48% worse (heterogeneous case), than structures without them; (2) the most effective baffles generally occupied interior portions of funnels; and (3) small (1-m) shifts in the locations of baffles resulted in up to a 33% increase (homogeneous case) in remediation timeframe.

  3. An Assessment of the International Space Station's Trace Contaminant Control Subassembly Process Economics

    NASA Technical Reports Server (NTRS)

    Perry J. L.; Cole, H. E.; El-Lessy, H. N.

    2005-01-01

    The International Space Station (ISS) Environmental Control and Life Support System includes equipment speci.cally designed to actively remove trace chemical contamination from the cabin atmosphere. In the U.S. on-orbit segment, this function is provided by the trace contaminant control subassembly (TCCS) located in the atmosphere revitalization subsystem rack housed in the laboratory module, Destiny. The TCCS employs expendable adsorbent beds to accomplish its function leading to a potentially signi.cant life cycle cost over the life of the ISS. Because maintaining the TCCSs proper can be logistically intensive, its performance in .ight has been studied in detail to determine where savings may be achieved. Details of these studies and recommendations for improving the TCCS s process economics without compromising its performance or crew health and safety are presented and discussed.

  4. Effect of dirty-hold time on cleaning process of pharmaceutical equipment.

    PubMed

    Patera, Jan; Stípková, Gabriela; Zámostný, Petr; Bělohlav, Zdeněk; Vltavský, Zdeněk

    2013-02-01

    The work was aimed at the evaluation of a cleanliness of pharmaceutical equipments after the end of the production and subsequent cleaning process. The influence of a dirty-hold time, a time interval between the end of the production period and the beginning of the cleaning process on its efficiency and the cleanliness of the equipment has been studied. The evaluation was performed for commercial tablet antihypertensive formulation with API losartan potassium. Sampling was carried out by a wet-swabbing method from the equipments and consequently obtained samples were analytically evaluated using HPLC. In the production of the concerned pharmaceutical, it has been found that the cleaning process is properly designed and validated. Despite the concentration of losartan in swabs from the equipment was in all cases within the limits of acceptance criteria, the effect of the dirty-hold time was proved. In the equipments with long hold-time period, the monitored substance was found in substantially higher concentrations.

  5. Process for treating waste water having low concentrations of metallic contaminants

    SciTech Connect

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

    2014-12-16

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  6. 7 CFR 58.915 - Batch or continuous in-container thermal processing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hermetically sealed containers (21 CFR part 113). The equipment shall be maintained in such a manner as to... 7 Agriculture 3 2013-01-01 2013-01-01 false Batch or continuous in-container thermal processing... and Grading Service 1 Equipment and Utensils § 58.915 Batch or continuous in-container...

  7. 7 CFR 58.915 - Batch or continuous in-container thermal processing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hermetically sealed containers (21 CFR part 113). The equipment shall be maintained in such a manner as to... 7 Agriculture 3 2014-01-01 2014-01-01 false Batch or continuous in-container thermal processing... and Grading Service 1 Equipment and Utensils § 58.915 Batch or continuous in-container...

  8. 7 CFR 58.915 - Batch or continuous in-container thermal processing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hermetically sealed containers (21 CFR part 113). The equipment shall be maintained in such a manner as to... 7 Agriculture 3 2011-01-01 2011-01-01 false Batch or continuous in-container thermal processing... and Grading Service 1 Equipment and Utensils § 58.915 Batch or continuous in-container...

  9. 7 CFR 58.915 - Batch or continuous in-container thermal processing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hermetically sealed containers (21 CFR part 113). The equipment shall be maintained in such a manner as to... 7 Agriculture 3 2012-01-01 2012-01-01 false Batch or continuous in-container thermal processing... and Grading Service 1 Equipment and Utensils § 58.915 Batch or continuous in-container...

  10. 7 CFR 58.915 - Batch or continuous in-container thermal processing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hermetically sealed containers (21 CFR part 113). The equipment shall be maintained in such a manner as to... 7 Agriculture 3 2010-01-01 2010-01-01 false Batch or continuous in-container thermal processing... and Grading Service 1 Equipment and Utensils § 58.915 Batch or continuous in-container...

  11. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Equipment and procedures for heat... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing... another arrangement is documented by heat distribution data or other documentation from a...

  12. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Equipment and procedures for heat... PREPARATION OF PRODUCTS Canning and Canned Products § 318.305 Equipment and procedures for heat processing... another arrangement is documented by heat distribution data or other documentation from a...

  13. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Equipment and procedures for heat... Products § 381.305 Equipment and procedures for heat processing systems. (a) Instruments and controls... length of the retort unless the adequacy of another arrangement is documented by heat distribution...

  14. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Equipment and procedures for heat... Products § 381.305 Equipment and procedures for heat processing systems. (a) Instruments and controls... length of the retort unless the adequacy of another arrangement is documented by heat distribution...

  15. Roll compaction process modeling: transfer between equipment and impact of process parameters.

    PubMed

    Souihi, Nabil; Reynolds, Gavin; Tajarobi, Pirjo; Wikström, Håkan; Haeffler, Gunnar; Josefson, Mats; Trygg, Johan

    2015-04-30

    In this study, the roll compaction of an intermediate drug load formulation was performed using horizontally and vertically force fed roll compactors. The horizontally fed roll compactor was equipped with an instrumented roll technology allowing the direct measurement of normal stress at the roll surface, while the vertically fed roll compactor was equipped with a force gauge between the roll axes. Furthermore, characterization of ribbons, granules and tablets was also performed. Ribbon porosity was primarily found to be a function of normal stress, exhibiting a quadratic relationship thereof. A similar quadratic relationship was also observed between roll force and ribbon porosity of the vertically fed roll compactor. The predicted peak pressure (Pmax) using the Johanson model was found to be higher than the measured normal stress, however, the predicted Pmax correlated well with the ribbon relative density/porosity and the majority of downstream properties of granules and tablets, demonstrating its use as a scale-independent parameter. A latent variable model was developed for both the horizontal and vertical fed roll compactors to express ribbon porosity as a function of geometric and process parameters. The model validation, performed with new data, resulted in overall good predictions. This study successfully demonstrated the scale up/transfer between two different roll compactors and revealed that the combined use of design of experiments, latent variable models and in silico predictions result in better understanding of the critical process parameters in roll compaction.

  16. Hanford spent nuclear fuel cold vacuum drying process equipment skid modification work plan

    SciTech Connect

    Graves, D.B.

    1998-05-04

    This document provides the work plan for modifications to be made to the first article Process Equipment Skid for the Cold Vacuum Drying (CVD) process. The primary objective is to provide engineering configuration control for any modifications made to the Process Equipment Skid during proof of performance testing at the 306E Facility. Development Control procedures will be used to complete the design drawings and Procurement Specification W-441-Pl-FA. The Process Equipment Skid is a system for removing water and drying Spent Nuclear Fuel contained in Multi-Canister Overpacks. The skid contains the Vacuum Purge System and the Tempered Water System (VPS/TWS). The first article Process Equipment Skid, and subsequent production skids, will later be installed in the Cold Vacuum Drying Facility.

  17. Processes affecting the remediation of chromium-contaminated sites.

    PubMed Central

    Palmer, C D; Wittbrodt, P R

    1991-01-01

    The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium-laden waters. Redox reactions, chemical speciation, adsorption/desorption phenomena, and precipitation/dissolution reactions control the transformation and mobility of chromium. The reduction of CrVI to CrIII can occur in the presence of ferrous iron in solution or in mineral phases, reduced sulfur compounds, or soil organic matter. At neutral to alkaline pH, the CrIII precipitates as amorphous hydroxides or forms complexes with organic matter. CrIII is oxidized by manganese dioxide, a common mineral found in many soils. Solid-phase precipitates of hexavalent chromium such as barium chromate can serve either as sources or sinks for CrVI. Adsorption of CrVI in soils increases with decreasing chromium concentration, making it more difficult to remove the chromium as the concentration decreases during pump-and-treat remediation. Knowledge of these chemical and physical processes is important in developing and selecting effective, cost-efficient remediation designs for chromium-contaminated sites. PMID:1935849

  18. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  19. Seismic and Tilt Data Processing for Monitoring Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Spetzler, H. A.

    2003-12-01

    We are conducting a feasibility study to see if we can detect changes in the state of saturation in groundwater by seismic means. This field study is based on laboratory experiments that show large changes in seismic attenuation when contaminants change the wettability of porous rocks. Three tiltmeters and three seismometers were installed at different distances from a controlled irrigation site near Maricopa, AZ. The research site has a facility to controllably irrigate a 50 m by 50 m area with water and chemical surfactants. The instruments are used to record naturally-occurring, low frequency strain and seismic signals before, during and after irrigations. The purpose of the data analysis is to develop techniques for looking for the differences in station response due to local differences, such as contamination in the vadose zone and groundwater. Ours is not a conventional way of data processing for our non-traditional use of the data, since the variations in instrument response caused by the trace amount of contaminants are very small. We are looking for small changes in the relative response between the instruments. For the seismic data, not only do we examine large events, such as Earthquakes, but also microseisms. We use microseisms as our source and the related processing is an attempt to measure the tiny changes in instrument response caused by differences in irrigation and contamination at the three different locations. In tilt data processing, the large events caused by regional water pumping, oil productions, and Earthquakes, etc. need to be removed, since we wish to use the Earth solid tide as our strain source. The key issue during the process of removing the large events is to make sure that the tide signals are not also removed or greatly distorted. A method and corresponding codes were developed for automatically removing data at the three stations induced by large events. After completing this processing, the signal left is the local Earth tide

  20. Space processing applications payload equipment study. Volume 2A: Experiment requirements

    NASA Technical Reports Server (NTRS)

    Smith, A. G.; Anderson, W. T., Jr.

    1974-01-01

    An analysis of the space processing applications payload equipment was conducted. The primary objective was to perform a review and an update of the space processing activity research equipment requirements and specifications that were derived in the first study. The analysis is based on the six major experimental classes of: (1) biological applications, (2) chemical processes in fluids, (3) crystal growth, (4) glass technology, (5) metallurgical processes, and (6) physical processes in fluids. Tables of data are prepared to show the functional requirements for the areas of investigation.

  1. Thermal dechlorination of heavily PCB-contaminated soils from a sealed site of PCB-containing electrical equipment.

    PubMed

    Gao, Xingbao; Ji, Bingjing; Huang, Qifei

    2016-08-01

    A large amount of soils are contaminated by leakage of polychlorinated biphenyls (PCBs) from sealed-up PCB-containing electrical equipment in China. Thermal dechlorination of soils contaminated with PCBs at a level of 108 mg g(-1) and PCB77 (3,3',4,4'-tetrachlorobiphenyl) as a model isomer in conjunction with calcium oxide was investigated in this study. The PCB dechlorination rate improved with increased temperature and time. The highest dechlorination rate was 85.3 %, and temperature was the main influencing factor. Pentachlorobiphenyl and tetrachlorobiphenyl in soils decreased or disappeared in response to treatment at 350 and 400 °C for 4 h, while monochlorinated biphenyl and biphenyl were detected after the reaction, indicating the presence of a dechlorination/hydrogenation pathway. Discrepancy in chlorine balance was observed after low-temperature thermal dechlorination. The species of dechlorination products were identified as amorphous carbon containing a crystalline graphite plane structure and a carbonyl group-containing polymerized product, demonstrating the existence of a dechlorination/polymerization pathway. The yield of amorphous carbon and high-molecular-weight intermediates increased with heating time. The results showed that the discrepancy in chlorine balance was because of the generation of polymerized products and undetected intermediates.

  2. Thermal dechlorination of heavily PCB-contaminated soils from a sealed site of PCB-containing electrical equipment.

    PubMed

    Gao, Xingbao; Ji, Bingjing; Huang, Qifei

    2016-08-01

    A large amount of soils are contaminated by leakage of polychlorinated biphenyls (PCBs) from sealed-up PCB-containing electrical equipment in China. Thermal dechlorination of soils contaminated with PCBs at a level of 108 mg g(-1) and PCB77 (3,3',4,4'-tetrachlorobiphenyl) as a model isomer in conjunction with calcium oxide was investigated in this study. The PCB dechlorination rate improved with increased temperature and time. The highest dechlorination rate was 85.3 %, and temperature was the main influencing factor. Pentachlorobiphenyl and tetrachlorobiphenyl in soils decreased or disappeared in response to treatment at 350 and 400 °C for 4 h, while monochlorinated biphenyl and biphenyl were detected after the reaction, indicating the presence of a dechlorination/hydrogenation pathway. Discrepancy in chlorine balance was observed after low-temperature thermal dechlorination. The species of dechlorination products were identified as amorphous carbon containing a crystalline graphite plane structure and a carbonyl group-containing polymerized product, demonstrating the existence of a dechlorination/polymerization pathway. The yield of amorphous carbon and high-molecular-weight intermediates increased with heating time. The results showed that the discrepancy in chlorine balance was because of the generation of polymerized products and undetected intermediates. PMID:27126866

  3. Recommendations for composite manufacturing pultrusion process and equipment

    NASA Astrophysics Data System (ADS)

    Steiner, R. L.; Cole, J. D.; Strong, A. B.; Todd, R. H.

    1992-10-01

    Pultrusion is an important composite manufacturing process that holds great potential for reducing the cost of composite parts. However, pultrusion machine manufacturers and those using this continuous process have generally worked in relative isolation from each other and have, therefore, repeated many of the same errors. This paper reports the findings of a research program involving input from 15 pultruder manufacturers who have contributed non-proprietary information for the "best" design for the pultrusion machine. Key areas of design difficulty have been identified and some suggested remedies given. The results of this program will be used to construct a "state-of-the-art" pultrusion machine in the authors' laboratory. The initial findings provided input for a Quality Function Deployment (QFD) study which is basis for the functional specification for the pultrusion machine. By using QFD, capabilities of existing machines were determined and design requirements for an improved state-of-the-art machine were established. The QFD exercise provided an in-depth look at the relationship between desired machine capabilities and machine design requirements.

  4. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the retort during the process cycle. (5) Water valves. All retort water lines that are intended to be closed during a process cycle shall be equipped with a globe valve or other equivalent-type valve or piping arrangement that will prevent leakage of water into the retort during the process cycle....

  5. Model of nanodegradation processes in electronic equipment of NPP Kozloduy

    NASA Astrophysics Data System (ADS)

    Popov, A.

    2014-12-01

    From the complex studies it was proof that the main degradation processes in the three groups of elements for the extended period of time are slow; do not lead to a hopping change in basic parameters and to catastrophic failures. This gives grounds to suggest a common diffusion model, which is limited to the following: -in electronic components containing a p-n junction, is performed diffusion of residual cooper atoms, that are accumulated in the area of a spatial charge under the influence of the electric field and the local temperature, creating micro-shunt regions; -in the contactor systems whose contact surfaces are made of metal alloys under the influence of increased temperature starts decomposition of a homogeneous alloy. Conditions are created for diffusion of individual atoms to the surface, micro-phases of homogeneous atoms are formed and modify the contact resistances; -in the course of time in the insulating materials are changed the mechanisms of polarization, double bonds and dipoles are disrupting, leading to the release of carbon atoms. The latter diffuse at elevated temperatures and form conductive cords, which amend the dielectric losses and the specific resistance of the materials.

  6. Process and Equipment for Nitrogen Oxide Waste Conversion to Fertilizer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)

    2000-01-01

    The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: (1) directing a vapor stream containing at least nitrogen-containing oxidizing agent to a first contact zone; (2) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen- containing oxidizing agent; (3) directing said acid(s) as a second stream to a second contact zone; (4) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrite form present within said second stream to nitrate ion; (5) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; (6) adding hydrogen peroxide to said second contact zone when a level on hydrogen peroxide less than 0.1% by weight in said second stream is determined by said sampling; (7) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and (8) removing sais solution of potassium nitrate from said second contact zone.

  7. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  8. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.

    2003-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the Redesigned Solid Rocket Motor (RSRM) system. Work with a previous generation of rubber equipment at MSFC in the 1970's had involved the use of Oxygen Deficient Center (ODC's) such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  9. Selection of a Non-ODC Solvent for Rubber Processing Equipment Cleaning

    NASA Technical Reports Server (NTRS)

    Morgan, R. E.; Thornton, T. N.; Semmel, L.; Selvidge, S. A.; Cash, Steve (Technical Monitor)

    2002-01-01

    NASA/MSFC has recently acquired new equipment for the manufacture and processing of rubber and rubber containing items that are used in the RSRM (Reusable Solid Rocket Motor) system. Work with a previous generation of rubber equipment at MSFC (Marshall Space Flight Center) in the 1970's had involved the use of ODC's such as 1,1,1-Trichloroethane or VOC's such as Toluene as the solvents of choice in cleaning the equipment. Neither of these options is practical today. This paper addresses the selection and screening of candidate cleaning solvents that are not only effective, but also meet the new environmental standards.

  10. Process for minimizing solids contamination of liquids from coal pyrolysis

    DOEpatents

    Wickstrom, Gary H.; Knell, Everett W.; Shaw, Benjamin W.; Wang, Yue G.

    1981-04-21

    In a continuous process for recovery of liquid hydrocarbons from a solid carbonaceous material by pyrolysis of the carbonaceous material in the presence of a particulate source of heat, particulate contamination of the liquid hydrocarbons is minimized. This is accomplished by removing fines from the solid carbonaceous material feed stream before pyrolysis, removing fines from the particulate source of heat before combining it with the carbonaceous material to effect pyrolysis of the carbonaceous material, and providing a coarse fraction of reduced fines content of the carbon containing solid residue resulting from the pyrolysis of the carbonaceous material before oxidizing carbon in the carbon containing solid residue to form the particulate source of heat.

  11. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOEpatents

    Poa, Davis S.; Pierce, R. Dean; Mulcahey, Thomas P.; Johnson, Gerald K.

    1993-01-01

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  12. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    SciTech Connect

    Poa, D.S.; Pierce, R.D.; Mulcahey, T.P.; Johnson, G.K.

    1991-12-31

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl{sub 2}-CaF{sub 2} with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  13. Development of an equipment management model to improve effectiveness of processes

    SciTech Connect

    Chang, H. S.; Ju, T. Y.; Song, T. Y.

    2012-07-01

    The nuclear industries have developed and are trying to create a performance model to improve effectiveness of the processes implemented at nuclear plants in order to enhance performance. Most high performing nuclear stations seek to continually improve the quality of their operations by identifying and closing important performance gaps. Thus, many utilities have implemented performance models adjusted to their plant's configuration and have instituted policies for such models. KHNP is developing a standard performance model to integrate the engineering processes and to improve the inter-relation among processes. The model, called the Standard Equipment Management Model (SEMM), is under development first by focusing on engineering processes and performance improvement processes related to plant equipment used at the site. This model includes performance indicators for each process that can allow evaluating and comparing the process performance among 21 operating units. The model will later be expanded to incorporate cost and management processes. (authors)

  14. EQUIPMENT LAYOUT OF MAIN PROCESSING BUILDING (CPP601) LCELL PLAN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EQUIPMENT LAYOUT OF MAIN PROCESSING BUILDING (CPP-601) L-CELL PLAN AND SECTION SHOWS COMPLEXITY OF CELLS. INL DRAWING NUMBER 200-0601-00-098-105687. ALTERNATE ID NUMBER 4289-20-301. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. Characterization of microbial growth on processing equipment by electrochemical impedance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial activity that leads to the formation of biofilms on process equipment can accelerate corrosion, reduce heat transfer rates, and generally decrease process efficiencies. Additional concerns arise in the food and pharma industries where product quality and safety are a high priority. Followi...

  16. Elucidation of Listeria monocytogenes Contamination Routes in Cold-Smoked Salmon Processing Plants Detected by DNA-Based Typing Methods

    PubMed Central

    Fonnesbech Vogel, Birte; Huss, Hans Henrik; Ojeniyi, Bente; Ahrens, Peter; Gram, Lone

    2001-01-01

    The contamination routes of Listeria monocytogenes in cold-smoked salmon processing plants were investigated by analyzing 3,585 samples from products (produced in 1995, 1996, 1998, and 1999) and processing environments (samples obtained in 1998 and 1999) of two Danish smokehouses. The level of product contamination in plant I varied from 31 to 85%, and no L. monocytogenes was found on raw fish (30 fish were sampled). In plant II, the levels of both raw fish and product contamination varied from 0 to 25% (16 of 185 raw fish samples and 59 of 1,000 product samples were positive for L. monocytogenes). A total of 429 strains of L. monocytogenes were subsequently compared by random amplified polymorphic DNA (RAPD) profiling, and 55 different RAPD types were found. The RAPD types detected on the products were identical to types found on the processing equipment and in the processing environment, suggesting that contamination of the final product (cold-smoked salmon) in both plants (but primarily in plant I) was due to contamination during processing rather than to contamination from raw fish. However, the possibility that raw fish was an important source of contamination of the processing equipment and environment could not be excluded. Contamination of the product occurred in specific areas (the brining and slicing areas). In plant I, the same RAPD type (RAPD type 12) was found over a 4-year period, indicating that an established in-house flora persisted and was not eliminated by routine hygienic procedures. In plant II, where the prevalence of L. monocytogenes was much lower, no RAPD type persisted over long periods of time, and several different L. monocytogenes RAPD types were isolated. This indicates that persistent strains may be avoided by rigorous cleaning and sanitation; however, due to the ubiquitous nature of the organism, sporadic contamination occurred. A subset of strains was also typed by using pulsed-field gel electrophoresis and amplified fragment length

  17. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    PubMed

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  18. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    PubMed

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. PMID:23360773

  19. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE)

    SciTech Connect

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R.StJ.; Möller, Kenneth

    2013-04-15

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.

  20. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to

  1. Intelligent processing equipment developments within the Navy's Manufacturing Technology Centers of Excellence

    NASA Astrophysics Data System (ADS)

    Nanzetta, Philip

    1992-04-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  2. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  3. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.

    PubMed

    Ganguly, Arnab; Alexeenko, Alina A; Schultz, Steven G; Kim, Sherry G

    2013-10-01

    A physics-based model for the sublimation-transport-condensation processes occurring in pharmaceutical freeze-drying by coupling product attributes and equipment capabilities into a unified simulation framework is presented. The system-level model is used to determine the effect of operating conditions such as shelf temperature, chamber pressure, and the load size on occurrence of choking for a production-scale dryer. Several data sets corresponding to production-scale runs with a load from 120 to 485 L have been compared with simulations. A subset of data is used for calibration, whereas another data set corresponding to a load of 150 L is used for model validation. The model predictions for both the onset and extent of choking as well as for the measured product temperature agree well with the production-scale measurements. Additionally, we study the effect of resistance to vapor transport presented by the duct with a valve and a baffle in the production-scale freeze-dryer. Computation Fluid Dynamics (CFD) techniques augmented with a system-level unsteady heat and mass transfer model allow to predict dynamic process conditions taking into consideration specific dryer design. CFD modeling of flow structure in the duct presented here for a production-scale freeze-dryer quantifies the benefit of reducing the obstruction to the flow through several design modifications. It is found that the use of a combined valve-baffle system can increase vapor flow rate by a factor of 2.2. Moreover, minor design changes such as moving the baffle downstream by about 10 cm can increase the flow rate by 54%. The proposed design changes can increase drying rates, improve efficiency, and reduce cycle times due to fewer obstructions in the vapor flow path. The comprehensive simulation framework combining the system-level model and the detailed CFD computations can provide a process analytical tool for more efficient and robust freeze-drying of bio-pharmaceuticals.

  4. Contamination Revealed by Indicator Microorganism Levels during Veal Processing.

    PubMed

    Bosilevac, Joseph M; Wang, Rong; Luedtke, Brandon E; Wheeler, Tommy L; Koohmaraie, Mohammad

    2016-08-01

    During site visits of veal processors, the U.S. Department of Agriculture, Food Safety Inspection Service (FSIS) has reported processing deficiencies that likely contribute to increased levels of veal contamination. Here, we report the results of measuring aerobic plate count bacteria (APC), Enterobacteriaceae, coliforms (CF), and Escherichia coli during eight sample collections at five veal processors to assess contamination during the harvest of bob veal and formula-fed veal before (n = 5 plants) and after (n = 3 plants) changes to interventions and processing practices. Hides of veal calves at each plant had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 6.02 to 8.07, 2.95 to 5.24, 3.28 to 5.83, and 3.08 to 5.59, respectively. Preintervention carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 3.08 to 5.22, 1.16 to 3.47, 0.21 to 3.06, and -0.07 to 3.10, respectively, before and 2.72 to 4.50, 0.99 to 2.76, 0.69 to 2.26, and 0.33 to 2.12, respectively, after changes were made to improve sanitary dressing procedures. Final veal carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 0.36 to 2.84, -0.21 to 1.59, -0.23 to 1.59, and -0.38 to 1.45 before and 0.44 to 2.64, -0.16 to 1.33, -0.42 to 1.20, and 0.48 to 1.09 after changes were made to improve carcass-directed interventions. Whereas the improved dressing procedures resulted in improved carcass cleanliness, the changes to carcass-directed interventions were less successful, and veal processors are urged to use techniques that ensure uniform and consistent delivery of antimicrobials to carcasses. Analysis of results comparing bob veal to formula-fed veal found bob veal hides, preintervention carcasses, and final carcasses to have increased (P < 0.05) APC, Enterobacteriaceae, CF, and E. coli (with the exception of hide Enterobacteriaceae; P > 0.05) relative to formula fed veal. When both veal categories were harvested at the same plant on

  5. Contamination Revealed by Indicator Microorganism Levels during Veal Processing.

    PubMed

    Bosilevac, Joseph M; Wang, Rong; Luedtke, Brandon E; Wheeler, Tommy L; Koohmaraie, Mohammad

    2016-08-01

    During site visits of veal processors, the U.S. Department of Agriculture, Food Safety Inspection Service (FSIS) has reported processing deficiencies that likely contribute to increased levels of veal contamination. Here, we report the results of measuring aerobic plate count bacteria (APC), Enterobacteriaceae, coliforms (CF), and Escherichia coli during eight sample collections at five veal processors to assess contamination during the harvest of bob veal and formula-fed veal before (n = 5 plants) and after (n = 3 plants) changes to interventions and processing practices. Hides of veal calves at each plant had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 6.02 to 8.07, 2.95 to 5.24, 3.28 to 5.83, and 3.08 to 5.59, respectively. Preintervention carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 3.08 to 5.22, 1.16 to 3.47, 0.21 to 3.06, and -0.07 to 3.10, respectively, before and 2.72 to 4.50, 0.99 to 2.76, 0.69 to 2.26, and 0.33 to 2.12, respectively, after changes were made to improve sanitary dressing procedures. Final veal carcasses had mean log CFU/100 cm(2) APC, Enterobacteriaceae, CF, and E. coli of 0.36 to 2.84, -0.21 to 1.59, -0.23 to 1.59, and -0.38 to 1.45 before and 0.44 to 2.64, -0.16 to 1.33, -0.42 to 1.20, and 0.48 to 1.09 after changes were made to improve carcass-directed interventions. Whereas the improved dressing procedures resulted in improved carcass cleanliness, the changes to carcass-directed interventions were less successful, and veal processors are urged to use techniques that ensure uniform and consistent delivery of antimicrobials to carcasses. Analysis of results comparing bob veal to formula-fed veal found bob veal hides, preintervention carcasses, and final carcasses to have increased (P < 0.05) APC, Enterobacteriaceae, CF, and E. coli (with the exception of hide Enterobacteriaceae; P > 0.05) relative to formula fed veal. When both veal categories were harvested at the same plant on

  6. Contamination and changes of food factors during processing with modeling applications-safety related issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical and microbiological contamination of food during processing and preservation can result in foodborne illness outbreaks and food poisoning. Chemical contaminations can occur through exposure of foods to illegal additives, pesticides and fertilizer residues, toxic compounds formed by microbes...

  7. Contamination Control Techniques

    SciTech Connect

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  8. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    SciTech Connect

    Quintana, Sarah V.

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  9. The microbial ecology of processing equipment in different fish industries-analysis of the microflora during processing and following cleaning and disinfection.

    PubMed

    Bagge-Ravn, Dorthe; Ng, Yin; Hjelm, Mette; Christiansen, Jesper N; Johansen, Charlotte; Gram, Lone

    2003-11-01

    The microflora adhering to the processing equipment during production and after cleaning and disinfecting procedures was identified in four different processing plants. A total of 1009 microorganisms was isolated from various-agar plates and identified. A stepwise procedure using simple phenotypic tests was used to identify the isolates and proved a fast way to group a large collection of microorganisms. Pseudomonas, Neisseriaceae, Enterobactericeae, Coryneform, Acinetobacter and lactic acid bacteria dominated the microflora of cold-smoked salmon plants, whereas the microflora in a plant processing semi-preserved herring consisted of Pseudomonas, Alcaligenes and Enterobactericeae. Psychrobacter, Staphylococcus and yeasts were found in a caviar processing plant. Overall, many microorganisms that are often isolated from fish were also isolated from the fish processing plants. However, some selection depending on processing parameters occurred, since halo- and osmo-tolerant organisms dominated in the caviar processing. After cleaning and disinfection, yeasts, Pseudomonas, Neisseriaceae and Alcaligenes remained in smokehouses, yeasts and Pseudomonas in the herring plant and Pseudomonas, Staphylococcus and yeasts in the caviar plant. The dominant adhering organisms after cleaning and disinfection were pseudomonads and yeasts independently of the microflora during processing. Knowledge of the adhering microflora is essential in the Good Hygienic Practises programme of food processing plants, as the development and design of improved cleaning and disinfecting procedures should target the microorganisms persisting and potentially contaminating the product. PMID:14527796

  10. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  11. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY...

  12. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY...

  13. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY...

  14. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY...

  15. 41 CFR 109-45.309-54 - Automatic Data Processing Equipment (ADPE).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Automatic Data Processing Equipment (ADPE). 109-45.309-54 Section 109-45.309-54 Public Contracts and Property Management Federal Property Management Regulations System (Continued) DEPARTMENT OF ENERGY PROPERTY...

  16. PROCESS WATER BUILDING, TRA605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605, INTERIOR. FIRST FLOOR. ELECTRICAL EQUIPMENT IN LEFT HALF OF VIEW. CAMERA IS IN NORTHWEST CORNER FACING SOUTHEAST. INL NEGATIVE NO. HD46-27-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Two Computer Programs for Equipment Cost Estimation and Economic Evaluation of Chemical Processes.

    ERIC Educational Resources Information Center

    Kuri, Carlos J.; Corripio, Armando B.

    1984-01-01

    Describes two computer programs for use in process design courses: an easy-to-use equipment cost estimation program based on latest cost correlations available and an economic evaluation program which calculates two profitability indices. Comparisons between programed and hand-calculated results are included. (JM)

  18. An improved SOIL*EX{trademark} process for the removal of hazardous and radioactive contaminants from soils, sludges and other materials

    SciTech Connect

    Bloom, R.R.; Bonnema, B.E.; Navratil, J.D.; Falconer, K.L.; Van Vliet, J.A.; Diel, B.N.

    1995-12-31

    Rust`s patented SOIL*EX process is designed to remove hazardous and radioactive contaminants from soils, sludges and a matrix of other materials while destroying volatile organic compounds often associated with contaminated soil and debris. The process is comprised of three major process operations. The first operation involves the dissolution of contaminants that are chemically or mechanically bonded to the solid phase. The second process operation involves separation of the solid phase from the dissolution solution (mother liquor), which contains the dissolved contaminants. The final operation concentrates and removes the contaminants from the mother liquor. A pilot-scale SOIL*EX system was constructed at Rust`s Clemson Technical Center for a Proof-of-Process demonstration. The demonstration program included the design, fabrication, and operation of pilot scale and demonstration equipment and systems. The pilot plant, an accurate scaled-down version of a proposed full-scale treatment system, was operated for five months to demonstrate the efficiency of the overall process. The pilot plant test program focused on demonstrating that the SOIL*EX process would remove and concentrate the contaminants and destroy volatile organic compounds. The pilot plant processed nearly 20 tons of soils and sludges, and test results indicated that all contaminants of concern were removed. Additionally, Rust completed numerous bench scale tests to optimize the chemistry. This paper discusses the pilot plant test criteria and results along with the salient design features of the SOIL*EX system and planned improvements.

  19. Isotopic Tracers for Biogeochemical Processes and Contaminant Transport: Hanford, Washington

    SciTech Connect

    Donald J. DePaolo; John N. Christensen; Mark E. Conrad; and P. Evan Dresel

    2007-04-19

    Our goal is to use isotopic measurements to understand how contaminants are introduced to and stored in the vadose zone, and what processes control migration from the vadose zone to groundwater and then to surface water. We have been using the Hanford Site in south-central Washington as our field laboratory, and our investigations are often stimulated by observations made as part of the groundwater monitoring program and vadose zone characterization activities. Understanding the transport of contaminants at Hanford is difficult due to the presence of multiple potential sources within small areas, the long history of activities, the range of disposal methods, and the continuing evolution of the hydrological system. Observations often do not conform to simple models, and cannot be adequately understood with standard characterization approaches, even though the characterization activities are quite extensive. One of our objectives is to test the value of adding isotopic techniques to the characterization program, which has the immediate potential benefit of addressing specific remediation issues, but more importantly, it allows us to study fundamental processes at the scale and in the medium where they need to be understood. Here we focus on two recent studies at the waste management area (WMA) T-TX-TY, which relate to the sources and transport histories of vadose zone and groundwater contamination and contaminant fluid-sediment interaction. The WMA-T and WMA-TX-TY tank farms are located within the 200 West Area in the central portion of the Hanford Site (Fig. 2). They present a complicated picture of mixed groundwater plumes of nitrate, {sup 99}Tc, Cr{sup 6+}, carbon tetrachloride, etc. and multiple potential vadose zone sources such as tank leaks and disposal cribs (Fig. 3). To access potential vadose zone sources, we analyzed samples from cores C3832 near tank TX-104 and from C4104 near tank T-106. Tank T-106 was involved in a major event in 1973 in which 435,000 L

  20. Bioremediation of trichloroethylene contaminated groundwater using anaerobic process.

    PubMed

    Chomsurin, Cheema; Kajorntraidej, Juthathip; Luangmuang, Kongrit

    2008-01-01

    Anaerobic remediation of trichloroethylene (TCE) contaminated soil and groundwater was studied in laboratory setups. In this process fermentation of polymeric organic materials (POMS) produced volatile fatty acids (VFAs) that were electron donors in reductive dechlorination of TCE. Shredded peanut shell was selected as low cost POM and the experiments were set up in 500 ml Erlenmeyer flasks. In the setups, approximately 25 mg of leachate contaminated soil was used as the main source of microorganisms and about 5 g of shredded peanut shell (0.5-2.36 mm) was added to produce VFAs for dechlorination of TCE. In the first set of experiments, fermentation of soil and shredded peanut shell was studied and it was found that VFAs were produced continuously with increasing concentration (5.63 mM as CH3COOH from the first day to 17.17 in the 10th day of the experiment). During the fermentation, concentration of ammonia-nitrogen was 22-50 mg/L, the ratio of VFA to NH3 was 15.29-23.44 and pH was 5.24-6.00. These results show that the system was appropriate for microorganism activities. In the second set of experiments, TCE (approximately 48 mg/L) was added to the fermentation system and remediation of TCE by reductive dechlorination was studied. It was found that 0.04(+/-0.01) mg TCE adsorbed to a gram of soil and peanut shells at the beginning of the experiment and based on mass balance of the system, TCE concentration in water was linearly reduced at the rate of 0.0098 mg/hr.

  1. Laser cutting eliminates nucleic acid cross-contamination in dried-blood-spot processing.

    PubMed

    Murphy, Sean C; Daza, Glenda; Chang, Ming; Coombs, Robert

    2012-12-01

    Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing.

  2. Assessment of intelligent processing equipment in the National Aeronautics and Space Administration, 1991

    NASA Astrophysics Data System (ADS)

    Jones, C. S.

    1992-04-01

    Summarized here is an assessment of intelligent processing equipment (IPE) within NASA. An attempt is made to determine the state of IPE development and research in specific areas where NASA might contribute to the national capability. Mechanisms to transfer NASA technology to the U.S. private sector in this critical area are discussed. It was concluded that intelligent processing equipment is finding extensive use in the manufacture of space hardware, especially in the propulsion components of the shuttle. The major benefits are found in improved process consistency, which lowers cost as it reduces rework. Advanced feedback controls are under development and being implemented gradually into shuttle manufacturing. Implementation is much more extensive in new programs, such as in the advanced solid rocket motor and the Space Station Freedom.

  3. Assessment of Intelligent Processing Equipment in the National Aeronautics and Space Administration, 1991

    NASA Technical Reports Server (NTRS)

    Jones, C. S.

    1992-01-01

    Summarized here is an assessment of intelligent processing equipment (IPE) within NASA. An attempt is made to determine the state of IPE development and research in specific areas where NASA might contribute to the national capability. Mechanisms to transfer NASA technology to the U.S. private sector in this critical area are discussed. It was concluded that intelligent processing equipment is finding extensive use in the manufacture of space hardware, especially in the propulsion components of the shuttle. The major benefits are found in improved process consistency, which lowers cost as it reduces rework. Advanced feedback controls are under development and being implemented gradually into shuttle manufacturing. Implementation is much more extensive in new programs, such as in the advanced solid rocket motor and the Space Station Freedom.

  4. INNOVATIVE PROCESSES FOR RECLAMATION OF CONTAMINATED SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    Research to better assess the capabilities and limitations of fixed-film bioreactors for removing selected organic contaminants from ground water or from contaminated vapor streams produced by air stripping of polluted ground water and by soil venting operations is described. ...

  5. Effects of chemical protective equipment on team process performance in small unit rescue operations.

    PubMed

    Grugle, Nancy L; Kleiner, Brian M

    2007-09-01

    In the event of a nuclear, biological, or chemical terrorist attack against civilians, both military and civilian emergency response teams must be able to respond and operate efficiently while wearing protective equipment. Chemical protective equipment protects the user by providing a barrier between the individual and hazardous environment. Unfortunately, the same equipment that is designed to support the user can potentially cause heat stress, reduced task efficiency, and reduced range-of-motion. Targeted Acceptable Responses to Generated Events of Tasks (TARGETS), an event-based team performance measurement methodology was used to investigate the effects of Mission Oriented Protective Posture (MOPP) on the behavioral processes underlying team performance during simulated rescue tasks. In addition, this study determined which team processes were related to team performance outcomes. Results of six primary analyses indicated that team process performance was not degraded by MOPP 4 on any rescue task and that the team processes critical for successful task performance are task-dependent. This article discusses the implications of these results with respect to the study design and the limitations of using an event-based team performance measurement methodology.

  6. Characterization of Contaminants from a Sanitized Milk Processing Plant

    PubMed Central

    Cleto, Sara; Matos, Sónia; Kluskens, Leon; Vieira, Maria João

    2012-01-01

    Milk processing lines offer a wide variety of microenvironments where a diversity of microorganisms can proliferate. We sampled crevices and junctions where, due to deficient reach by typical sanitizing procedures, bacteria can survive and establish biofilms. The sampling sites were the holding cell, cold storage tank, pasteurizer and storage tank - transfer pump junction. The culturable bacteria that were isolated after the sanitation procedure were predominantly Pseudomonas spp., Serratia spp, Staphylococcus sciuri and Stenotrophomonas maltophilia. We assayed several phenotypic characteristics such as the ability to secrete enzymes and siderophores, as well as the capacity of the strains to form biofilms that might contribute to their survival in a mixed species environment. The Pseudomonas spp. isolates were found to either produce proteases or lecithinases at high levels. Interestingly, protease production showed an inverse correlation with siderophore production. Furthermore, all of the Serratia spp. isolates were strong biofilm formers and spoilage enzymes producers. The organisms identified were not mere contaminants, but also producers of proteins with the potential to lower the quality and shelf-life of milk. In addition, we found that a considerable number of the Serratia and Pseudomonas spp. isolated from the pasteurizer were capable of secreting compounds with antimicrobial properties. PMID:22761957

  7. Hospitals changing their buying habits. Overhauled technology-acquisition processes help equip facilities to make prudent purchases.

    PubMed

    Wagner, M

    1990-11-26

    As hospitals face increasing pressure to rein in costs, equipment spending faces stiff competition for limited funds. When facilities replace aging or outdated equipment, they're often replacing the entire technology assessment process as well. One hospital facing a $4 million bill to equip a new building is revamping its purchasing process based on department "wish lists." And an Ohio system has formed a special division to speed assessment and implementation of new technologies and procedures.

  8. Developing a Logistics Data Process for Support Equipment for NASA Ground Operations

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman

    2010-01-01

    The United States NASA Space Shuttle has long been considered an extremely capable yet relatively expensive rocket. A great part of the roughly US $500 million per launch expense was the support footprint: refurbishment and maintenance of the space shuttle system, together with the long list of resources required to support it, including personnel, tools, facilities, transport and support equipment. NASA determined to make its next rocket system with a smaller logistics footprint, and thereby more cost-effective and quicker turnaround. The logical solution was to adopt a standard Logistics Support Analysis (LSA) process based on GEIA-STD-0007 http://www.logisticsengineers.org/may09pres/GEIASTD0007DEXShortIntro.pdf which is the successor of MIL-STD-1388-2B widely used by U.S., NATO, and other world military services and industries. This approach is unprecedented at NASA: it is the first time a major program of programs, Project Constellation, is factoring logistics and supportability into design at many levels. This paper will focus on one of those levels NASA ground support equipment for the next generation of NASA rockets and on building a Logistics Support Analysis Record (LSAR) for developing and documenting a support solution and inventory of resources for. This LSAR is actually a standards-based database, containing analyses of the time and tools, personnel, facilities and support equipment required to assemble and integrate the stages and umbilicals of a rocket. This paper will cover building this database from scratch: including creating and importing a hierarchical bill of materials (BOM) from legacy data; identifying line-replaceable units (LRUs) of a given piece of equipment; analyzing reliability and maintainability of said LRUs; and therefore making an assessment back to design whether the support solution for a piece of equipment is too much work, i.e., too resource-intensive. If one must replace or inspect an LRU too much, perhaps a modification of

  9. Advances in Plasma Process Equipment Development using Plasma and Electromagnetics Modeling

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur

    2013-10-01

    Plasma processing is widely used in the semiconductor industry for thin film etching and deposition, modification of near-surface material, and cleaning. In particular, the challenges for plasma etching have increased as the critical feature dimensions for advanced semiconductor devices have decreased to 20 nm and below. Critical scaling limitations are increasingly driving the transition to 3D solutions such as multi-gate MOSFETs and 3D NAND structures. These structures create significant challenges for dielectric and conductor etching, especially given the high aspect ratio (HAR) of the features. Plasma etching equipment must therefore be capable of exacting profile control across the entire wafer for feature aspect ratios up to 80:1, high throughput, and exceptionally high selectivity. The multiple challenges for advanced 3D structures are addressed by Applied Material's plasma etching chambers by providing highly sophisticated control of ion energy, wafer temperature and plasma chemistry. Given the costs associated with such complex designs and reduced development time-scales, much of these design innovations have been enabled by utilizing advanced computational plasma modeling tools. We have expended considerable effort to develop 3-dimensional coupled plasma and electromagnetic modeling tools in recent years. In this work, we report on these modeling software and their application to plasma processing system design and evaluation of strategies for hardware and process improvement. Several of these examples deal with process uniformity, which is one of the major challenges facing plasma processing equipment design on large substrates. Three-dimensional plasma modeling is used to understand the sources of plasma non-uniformity, including the radio-frequency (RF) current path, and develop uniformity improvement techniques. Examples from coupled equipment and process models to investigate the dynamics of pulsed plasmas and their impact on plasma chemistry will

  10. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments

    SciTech Connect

    Mohanty, Santosh R.; Kollah, Bharati; Hedrick, David B.; Peacock, Aaron D.; Kukkadapu, Ravi K.; Roden, Eric E.

    2008-06-15

    A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of TEAPs was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4 2- reduction, and CH4 production proceeding in sequence until all of the added 13C-ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(III) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment. Only gradual reduction of NO3 -, and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III) or SO4 2- reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Oxalobacter in the ethanolamended slurries. PLFAs indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA 13C/12C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of 13C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfovibrio took place during the brief period of sulfate reduction which followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations.

  11. 4-rotor Desiccant Cooling Process Equipped with a Double Stage Dehumidification

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Okano, Hiroshi; Asada, Toshinobu

    2-rotor desiccant cooling process consisting of a honeycomb rotor dehumidifier and a sensible heat exchanger is a mainstream of the desiccant cooling process which are practically applied to supermarket, hospital and so on. However, this process cannot produce a sufficient dehumidifying performance in high humidity region. In this study, 4-rotor desiccant cooling process equipped with a double stage dehumidification was proposed and investigated experimentally. In this process, regeneration temperature around 60°C could produce a sufficient dehumidifying performance even at high ambient humidity. “Serial heat supply” mode was considered to improve the heat efficiency by the cascade use of regeneration heat inside the cooling cycle. The dehumidifying performance of the “serial heat supply” mode was only slightly lower than that of a “parallel heat supply” mode at which the same temperature hot air was supplied to the both heaters. However, dehumidifying performance of this “serial heat supply” mode was much higher than that of conventional 2-rotor desiccant cooling process. Furthermore, the desiccant rotors of 0.1m in thickness were mounted to 4-rotor desiccant cooling process in place of the 0.2m desiccant rotors. It was found that the drop of dehumidifying performance of the process equipped with 0.1m desiccant rotors was only by 10 percents comparing with the 0.2m rotor process. Moreover, it was found that optimization of rotation speed of the desiccant rotor was needed to improve the energy efficiency. Regarding the supply point of return air, it was also found that return air should be supplied to the regeneration inlet of the second stage for higher dehumidifying performance.

  12. [Effect of domestic laundry processes on mycotic contamination of textiles].

    PubMed

    Ossowski, B; Duchmann, U

    1997-06-01

    Inadequately decontaminated clothing may be a source of reinfection following therapy of dermato- and onychomycoses. The objective of this study was to determine whether domestic laundering is suitable for cleansing mycotically contaminated garments. Textile-samples contaminated with Trichophyton rubrum, Trichophyton mentagrophytes, Candida albicans and Scopulariopsis brevicaulis were washed in an ordinary washing machine at different temperatures. Regardless of the textiles and detergents used, reliable decontamination was achieved by laundering at 60 degrees C. Trichophyton rubrum was eliminated with a washing temperature of 30 degrees C.

  13. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured

  14. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    PubMed

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured

  15. Development of a Pulp Process Treating Contaminated HEPA Filters (III)

    SciTech Connect

    Hu, J. S.; Ramer, J.; Argyle, M. D.; Demmer, R. L.

    2002-02-28

    The Pulp Process (PP) Treatment option was conceived as a replacement for the current Filter Leaching System (FLS). The FLS has operated at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory since 1995 to treat radioactive, mixed waste HEPA filters. In recent years, the FLS has exhibited difficulty in removing mercury from the HEPA filters as the concentration of mercury in the spent HEPA filters has increased. The FLS leaches and washes the whole filter without any preparation or modification. The filter media and the trapped calcine particles are confined in a heavy filter housing that contributes to poor mixing zones around the edges of the filter, low media permeability, channeling of the liquid through cracks and tears in the filter media, and liquid retention between leach and rinse cycles. In the PP, the filter media and the trapped calcine particles are separated from the filter housing and treated as a pulp, taking advantage of improved contact with the leach solution that cannot be achieved when the media is still in the HEPA filter housing. In addition to removing the mercury more effectively, the PP generates less volume of liquid waste, requires a shorter leach cycle time, and possesses the versatility for treating filters of different sizes. A series of tests have been performed in the laboratory to demonstrate the advantages of the PP concept. These tests compare the PP with the FLS under controlled conditions that simulate the current operating parameters. A prior study using blended feed, a mixture of shredded clean HEPA filter media and non-radioactive calcine particles, indicated that the PP would significantly increases the calcine dissolution percentages. In this study, hazardous-metal contaminated HEPA filter media was studied. The results of side-by-side tests indicated that the PP increased the mercury removal percentage by 80% and might be a solution to the mercury removal

  16. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    SciTech Connect

    Doehrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Risch, Johannes F. H.; Mannweiler, Roman; Roth, Stephan V.; Bommel, Sebastian; Brunner, Simon; Metwalli, Ezzeldin; Mueller-Buschbaum, Peter

    2013-04-15

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  17. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  18. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users. PMID:23635203

  19. Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.

    PubMed

    Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio

    2008-09-01

    Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.

  20. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    SciTech Connect

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  1. Development of guidance on applications of regulatory requirements for regulating large, contaminated equipment and large decommissioning and decontamination (D and D) components

    SciTech Connect

    Pope, R.B.; Easton, E.P.; Cook, J.R.; Boyle, R.W.

    1997-10-01

    In 1985, the International Atomic Energy Agency issued revised regulations for the safe transport of radioactive material. Significant were major changes to requirements for Low Specific Activity material and Surface Contaminated Objects. As these requirements were adopted into regulations in the US, it was recognized that guidance on how to apply these requirements to large, contaminated/activated pieces of equipment and decommissioning and decontamination objects would be needed both by the regulators and those regulated to clarify technical uncertainties and ensure implementation. Thus, the US Department of Transportation and the US Nuclear Regulatory Commission, with assistance of staff from Oak Ridge National Laboratory, are preparing regulatory guidance which will present examples of acceptable methods for demonstrating compliance with the revised rules for large items. Concepts being investigated for inclusion in the pending guidance are discussed in this paper. Under current plans, the guidance will be issued for public comment before final issuance in 1997.

  2. Optimal Medical Equipment Maintenance Service Proposal Decision Support System combining Activity Based Costing (ABC) and the Analytic Hierarchy Process (AHP).

    PubMed

    da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose

    2005-01-01

    This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment.

  3. Optimal Medical Equipment Maintenance Service Proposal Decision Support System combining Activity Based Costing (ABC) and the Analytic Hierarchy Process (AHP).

    PubMed

    da Rocha, Leticia; Sloane, Elliot; M Bassani, Jose

    2005-01-01

    This study describes a framework to support the choice of the maintenance service (in-house or third party contract) for each category of medical equipment based on: a) the real medical equipment maintenance management system currently used by the biomedical engineering group of the public health system of the Universidade Estadual de Campinas located in Brazil to control the medical equipment maintenance service, b) the Activity Based Costing (ABC) method, and c) the Analytic Hierarchy Process (AHP) method. Results show the cost and performance related to each type of maintenance service. Decision-makers can use these results to evaluate possible strategies for the categories of equipment. PMID:17281912

  4. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... systems, transfer and loading systems, and open storage piles. (a) On and after the date on which the... conveying equipment, coal storage system, or coal transfer and loading system processing coal...

  5. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  6. Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes

    SciTech Connect

    Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

    2008-09-01

    The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D&D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D&D process provides substantial dose reduction for the workers.

  7. Low cost solar array project production process and equipment task: A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.

  8. 9 CFR 381.94 - Contamination with Microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Contamination with Microorganisms... § 381.94 Contamination with Microorganisms; process control verification criteria and testing; pathogen... “Sample Collection Guidelines and Procedure for Isolation and Identification of Salmonella from Raw...

  9. 9 CFR 381.94 - Contamination with Microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Contamination with Microorganisms... § 381.94 Contamination with Microorganisms; process control verification criteria and testing; pathogen... “Sample Collection Guidelines and Procedure for Isolation and Identification of Salmonella from Raw...

  10. 9 CFR 381.94 - Contamination with Microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Contamination with Microorganisms... § 381.94 Contamination with Microorganisms; process control verification criteria and testing; pathogen... “Sample Collection Guidelines and Procedure for Isolation and Identification of Salmonella from Raw...

  11. 9 CFR 381.94 - Contamination with Microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Contamination with Microorganisms... § 381.94 Contamination with Microorganisms; process control verification criteria and testing; pathogen... “Sample Collection Guidelines and Procedure for Isolation and Identification of Salmonella from Raw...

  12. 9 CFR 381.94 - Contamination with Microorganisms; process control verification criteria and testing; pathogen...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination with Microorganisms... § 381.94 Contamination with Microorganisms; process control verification criteria and testing; pathogen... “Sample Collection Guidelines and Procedure for Isolation and Identification of Salmonella from Raw...

  13. Outbreak of Pseudomonas Oryzihabitans Pseudobacteremia Related to Contaminated Equipment in an Emergency Room of a Tertiary Hospital in Korea

    PubMed Central

    Woo, Kwang-Sook; Choi, Jae-Lim; Kim, Bo-Ram; Kim, Ji-Eun; Kim, Kyeong-Hee; Kim, Jeong-Man

    2014-01-01

    Pseudomonas oryzihabitans is frequently found in various sites within hospital settings, including sink drains and respiratory therapy equipment. Although it rarely causes human infections, P. oryzihabitans has recently been considered a potential nosocomial pathogen, especially in immunocompromised hosts. We report our experience of an outbreak of P. oryzihabitans pseudobacteremia, presumably due to faulty aseptic preparation of a saline gauze canister. PMID:24693469

  14. Outbreak of pseudomonas oryzihabitans pseudobacteremia related to contaminated equipment in an emergency room of a tertiary hospital in Korea.

    PubMed

    Woo, Kwang-Sook; Choi, Jae-Lim; Kim, Bo-Ram; Kim, Ji-Eun; Kim, Kyeong-Hee; Kim, Jeong-Man; Han, Jin-Yeong

    2014-03-01

    Pseudomonas oryzihabitans is frequently found in various sites within hospital settings, including sink drains and respiratory therapy equipment. Although it rarely causes human infections, P. oryzihabitans has recently been considered a potential nosocomial pathogen, especially in immunocompromised hosts. We report our experience of an outbreak of P. oryzihabitans pseudobacteremia, presumably due to faulty aseptic preparation of a saline gauze canister.

  15. Outbreak of pseudomonas oryzihabitans pseudobacteremia related to contaminated equipment in an emergency room of a tertiary hospital in Korea.

    PubMed

    Woo, Kwang-Sook; Choi, Jae-Lim; Kim, Bo-Ram; Kim, Ji-Eun; Kim, Kyeong-Hee; Kim, Jeong-Man; Han, Jin-Yeong

    2014-03-01

    Pseudomonas oryzihabitans is frequently found in various sites within hospital settings, including sink drains and respiratory therapy equipment. Although it rarely causes human infections, P. oryzihabitans has recently been considered a potential nosocomial pathogen, especially in immunocompromised hosts. We report our experience of an outbreak of P. oryzihabitans pseudobacteremia, presumably due to faulty aseptic preparation of a saline gauze canister. PMID:24693469

  16. A top specified boundary layer (TSBL) approximation approach for the simulation of groundwater contamination processes

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    1996-01-01

    This paper presents improvements in the 'classical boundary layer' (CBL) approximation method to obtain simple but robust initial characterization of aquifer contamination processes. Contaminants are considered to penetrate into the groundwater through the free surface of the aquifer. The improved method developed in this study is termed the 'top specified boundary layer' (TSBL) approach. It involves the specification of the contaminant concentration at the top of the contaminated 'region of interest' (ROI), which is simulated as a boundary layer. the TSBL modification significantly improves the ability of the boundary layer method to predict the development of concentration profiles over both space and time. The TSBL method can be useful for the simulation of cases in which the contaminant concentration is prescribed at the aquifer's free surface as well as for cases in which the contaminant mass flux is prescribed at the surface.

  17. Bead and Process for Removing Dissolved Metal Contaminants

    SciTech Connect

    Summers, Bobby L., Jr.; Bennett, Karen L.; Foster, Scott A.

    2005-01-18

    A bead is provided which comprises or consists essentially of activated carbon immobilized by crosslinked poly (carboxylic acid) binder, sodium silicate binder, or polyamine binder. The bead is effective to remove metal and other ionic contaminants from dilute aqueous solutions. A method of making metal-ion sorbing beads is provided, comprising combining activated carbon, and binder solution (preferably in a pin mixer where it is whipped), forming wet beads, and heating and drying the beads. The binder solution is preferably poly(acrylic acid) and glycerol dissolved in water and the wet beads formed from such binder solution are preferably heated and crosslinked in a convection oven.

  18. SU-E-J-189: Credentialing of IGRT Equipment and Processes for Clinical Trials

    SciTech Connect

    Court, L; Aristophanous, M; Followill, D; Kirsner, S; Kisling, K; Pidikiti, R; Wong, P; Balter, P; Bellezza, D; Massingill, B; Papanikolaou, N; Parker, B; Zhen, H

    2014-06-01

    Purpose: Current dosimetry phantoms used for clinical trial credentialing do not directly assess IGRT processes. This work evaluates a custom-built IGRT phantom for credentialing of multiple IGRT modalities and processes. Methods: An IGRT phantom was built out of a low-density body with two inserts. Insert A is used for the CT simulation. Insert B is used for the actual treatment. The inserts contain identical targets in different locations. Relative positions are unknown to the user. The user simulates the phantom (with insert A) as they would a patient, including marking the phantom. A treatment plan is created and sent to the treatment unit. The phantom (with insert B) is then positioned using local IGRT practice. Shifts (planned isocenter, if applicable, and final isocenter) are marked on the phantom using room lasers. The mechanical reproducibility of re-inserting the inserts within the phantom body was tested using repeat high-resolution CT scans. The phantom was tested at 7 centers, selected to include a wide variety of imaging equipment. Results: Mechanical reproducibility was measured as 0.5-0.9mm, depending on the direction. Approaches tested to mark (and transfer) simulation isocenter included lasers, fiducials and reflective markers. IGRT approaches included kV imaging (Varian Trilogy, Brainlab ExacTrac), kV CT (CT-on-rails), kV CBCT (Varian Trilogy, Varian Truebeam, Elekta Agility) and MV CT (Tomotherapy). Users were able to successfully use this phantom for all combinations of equipment and processes. IGRT-based shifts agreed with the truth within 0.8mm, 0.8mm and 1.9mm in the LR, AP, and SI directions, respectively. Conclusion: Based on these preliminary results, the IGRT phantom can be used for credentialing of clinical trials with an action level of 1mm in AP and LR directions, and 2mm in the SI direction, consistent with TG142. We are currently testing with additional institutions with different equipment and processes, including Cyberknife. This

  19. Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis

    PubMed Central

    Morganti, Marina; Scaltriti, Erika; Cozzolino, Paolo; Bolzoni, Luca; Casadei, Gabriele; Pierantoni, Marco; Foni, Emanuela

    2015-01-01

    The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments. PMID:26590278

  20. Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis.

    PubMed

    Morganti, Marina; Scaltriti, Erika; Cozzolino, Paolo; Bolzoni, Luca; Casadei, Gabriele; Pierantoni, Marco; Foni, Emanuela; Pongolini, Stefano

    2015-11-20

    The quantitative and qualitative patterns of environmental contamination by Listeria monocytogenes were investigated in the production chain of dry-cured Parma ham. Standard arrays of surfaces were sampled in processing facilities during a single visit per plant in the three compartments of the food chain, i.e., ham production (19 plants) and postproduction, which was divided into deboning (43 plants) and slicing (25 plants) steps. The numbers of sampled surfaces were 384 in ham production, with 25 positive for L. monocytogenes, and 1,084 in postproduction, with 83 positives. Statistical analysis of the prevalence of contaminated surfaces showed that in ham production, contamination was higher at the beginning of processing and declined significantly toward the end, while in postproduction, prevalence rose toward the end of processing. Prevalence was higher in the deboning facilities than in slicing facilities and was dependent on the type of surface (floor/drainage > clothing > equipment). The qualitative pattern of contamination was investigated through an analysis of the survey isolates and a set of isolates derived from routine monitoring, including longitudinal isolations. Pulsed-field gel electrophoresis (PFGE) and whole-genome single-nucleotide polymorphism (SNP) analysis revealed a remarkable clonality of L. monocytogenes within plants, with the detection of 16 plant-specific clones out of 17 establishments with multiple isolates. Repeated detections of clonal isolates >6 months apart were also observed. Six was the maximum number of between-isolate differences in core SNPs observed within these clones. Based on the same six-SNP threshold, three clusters of clonal isolates, shared by six establishments, were also identified. The spread of L. monocytogenes within and between plants, as indicated by its clonal behavior, is a matter of concern for the hygienic management of establishments.

  1. Process for reduction of volume of contaminated soil by compaction

    SciTech Connect

    Johanan, W.L.

    1994-12-31

    Burial costs for low-level radioactive waste are assessed by the volume of the waste. These costs are presently at $10 per cubic foot and will continue to increase with time. A reduction in waste volume can be directly converted to a reduction in burial costs. A large amount of low-level contaminated soil exists throughout the DOE complex. The Nuclear Complex Modernization Task Force has identified over 5 million cubic feet of contaminated soil for eventual clean-up at the Mound site ($50,000,000 to bury at FY 1991 costs). By using a combination of a rock separator (trommel), crusher, clay soil compactor, automatic loading system, specially designed dust enclosures, and specifically designed containers for both on-site haulage and shipment to the Nevada Test Site (NTS), the total waste volume, and burial cost, can be reduced by up to 30% by compacting the soil into high-density bricks (depending upon the compaction quality of the soil). Several tests have been performed on Mound`s cold on-site soils, with resulting densities of 131 pounds per cubic foot. When this is compared to normal LSA metal box filling of 80--90 pounds per cubic foot, one can readily see the savings.

  2. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process.

    PubMed

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-01

    In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio/video equipment.

  3. Lunar surface mining for automated acquisition of helium-3: Methods, processes, and equipment

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Wittenberg, L. J.

    1992-09-01

    In this paper, several techniques considered for mining and processing the regolith on the lunar surface are presented. These techniques have been proposed and evaluated based primarily on the following criteria: (1) mining operations should be relatively simple; (2) procedures of mineral processing should be few and relatively easy; (3) transferring tonnages of regolith on the Moon should be minimized; (4) operations outside the lunar base should be readily automated; (5) all equipment should be maintainable; and (6) economic benefit should be sufficient for commercial exploitation. The economic benefits are not addressed in this paper; however, the energy benefits have been estimated to be between 250 and 350 times the mining energy. A mobile mining scheme is proposed that meets most of the mining objectives. This concept uses a bucket-wheel excavator for excavating the regolith, several mechanical electrostatic separators for beneficiation of the regolith, a fast-moving fluidized bed reactor to heat the particles, and a palladium diffuser to separate H2 from the other solar wind gases. At the final stage of the miner, the regolith 'tailings' are deposited directly into the ditch behind the miner and cylinders of the valuable solar wind gases are transported to a central gas processing facility. During the production of He-3, large quantities of valuable H2, H2O, CO, CO2, and N2 are produced for utilization at the lunar base. For larger production of He-3 the utilization of multiple-miners is recommended rather than increasing their size. Multiple miners permit operations at more sites and provide redundancy in case of equipment failure.

  4. Lunar surface mining for automated acquisition of helium-3: Methods, processes, and equipment

    NASA Technical Reports Server (NTRS)

    Li, Y. T.; Wittenberg, L. J.

    1992-01-01

    In this paper, several techniques considered for mining and processing the regolith on the lunar surface are presented. These techniques have been proposed and evaluated based primarily on the following criteria: (1) mining operations should be relatively simple; (2) procedures of mineral processing should be few and relatively easy; (3) transferring tonnages of regolith on the Moon should be minimized; (4) operations outside the lunar base should be readily automated; (5) all equipment should be maintainable; and (6) economic benefit should be sufficient for commercial exploitation. The economic benefits are not addressed in this paper; however, the energy benefits have been estimated to be between 250 and 350 times the mining energy. A mobile mining scheme is proposed that meets most of the mining objectives. This concept uses a bucket-wheel excavator for excavating the regolith, several mechanical electrostatic separators for beneficiation of the regolith, a fast-moving fluidized bed reactor to heat the particles, and a palladium diffuser to separate H2 from the other solar wind gases. At the final stage of the miner, the regolith 'tailings' are deposited directly into the ditch behind the miner and cylinders of the valuable solar wind gases are transported to a central gas processing facility. During the production of He-3, large quantities of valuable H2, H2O, CO, CO2, and N2 are produced for utilization at the lunar base. For larger production of He-3 the utilization of multiple-miners is recommended rather than increasing their size. Multiple miners permit operations at more sites and provide redundancy in case of equipment failure.

  5. West Valley Demonstration Project vitrification process equipment Functional and Checkout Testing of Systems (FACTS)

    SciTech Connect

    Carl, D.E.; Paul, J.; Foran, J.M.; Brooks, R.

    1990-09-30

    The Vitrification Facility (VF) at the West Valley Demonstration Project was designed to convert stored radioactive waste into a stable glass for disposal in a federal repository. The Functional and Checkout Testing of Systems (FACTS) program was conducted from 1984 to 1989. During this time new equipment and processes were developed, installed, and implemented. Thirty-seven FACTS tests were conducted, and approximately 150,000 kg of glass were made by using nonradioactive materials to simulate the radioactive waste. By contrast, the planned radioactive operation is expected to produce approximately 500,000 kg of glass. The FACTS program demonstrated the effectiveness of equipment and procedures in the vitrification system, and the ability of the VF to produce quality glass on schedule. FACTS testing also provided data to validate the WVNS waste glass qualification method and verify that the product glass would meet federal repository acceptance requirements. The system was built and performed to standards which would have enabled it to be used in radioactive service. As a result, much of the VF tested, such as the civil construction, feed mixing and holding vessels, and the off-gas scrubber, will be converted for radioactive operation. The melter was still in good condition after being at temperature for fifty-eight of the sixty months of FACTS. However, the melter exceeded its recommended design life and will be replaced with a similar melter. Components that were not designed for remote operation and maintenance will be replaced with remote-use items. The FACTS testing was accomplished with no significant worker injury or environmental releases. During the last FACTS run, the VF processes approximated the remote-handling system that will be used in radioactive operations. Following this run the VF was disassembled for conversion to a radioactive process. Functional and checkout testing of new components will be performed prior to radioactive operation.

  6. In-Line Detection and Measurement of Molecular Contamination in Semiconductor Process Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Jason; West, Michael; Han, Ye; McDonald, Robert C.; Yang, Wenjing; Ormond, Bob; Saini, Harmesh

    2005-09-01

    This paper discusses a fully automated metrology tool for detection and quantitative measurement of contamination, including cationic, anionic, metallic, organic, and molecular species present in semiconductor process solutions. The instrument is based on an electrospray ionization time-of-flight mass spectrometer (ESI-TOF/MS) platform. The tool can be used in diagnostic or analytical modes to understand process problems in addition to enabling routine metrology functions. Metrology functions include in-line contamination measurement with near real-time trend analysis. This paper discusses representative organic and molecular contamination measurement results in production process problem solving efforts. The examples include the analysis and identification of organic compounds in SC-1 pre-gate clean solution; urea, NMP (N-Methyl-2-pyrrolidone) and phosphoric acid contamination in UPW; and plasticizer and an organic sulfur-containing compound found in isopropyl alcohol (IPA). It is expected that these unique analytical and metrology capabilities will improve the understanding of the effect of organic and molecular contamination on device performance and yield. This will permit the development of quantitative correlations between contamination levels and process degradation. It is also expected that the ability to perform routine process chemistry metrology will lead to corresponding improvements in manufacturing process control and yield, the ability to avoid excursions and will improve the overall cost effectiveness of the semiconductor manufacturing process.

  7. In Situ Vitrification: Recent test results for a contaminated soil melting process

    SciTech Connect

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1988-06-01

    In Situ Vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy and other clients for the stabilization of soils and sludges contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product that is similar to obsidian. In June 1987, a large-scale test of the process was completed at a transuranic- contaminated soil site. This constituted the first full-scale demonstration of the ISV process at an actual site. This paper summarizes the preliminary results of this test and describes the processes' potential adaptation to radioactive and hazardous chemical waste contaminated soils. 10 refs., 10 figs.

  8. Contamination control in hybrid microelectronic modules. Part 3: Specifications for coating material and process controls

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.

    1975-01-01

    Resin systems for coating hybrids prior to hermetic sealing are described. The resin systems are a flexible silicone junction resin system and a flexible cycloaliphatic epoxy resin system. The coatings are intended for application to the hybrid after all the chips have been assembled and wire bonded, but prior to hermetic sealing of the package. The purpose of the coating is to control particulate contamination by immobilizing particles and by passivating the hybrid. Recommended process controls for the purpose of minimizing contamination in hybrid microcircuit packages are given. Emphasis is placed on those critical hybrid processing steps in which contamination is most likely to occur.

  9. Comparison of contamination of femoral heads and pre-processed bone chips during hip revision arthroplasty.

    PubMed

    Mathijssen, N M C; Sturm, P D; Pilot, P; Bloem, R M; Buma, P; Petit, P L; Schreurs, B W

    2013-12-01

    With bone impaction grafting, cancellous bone chips made from allograft femoral heads are impacted in a bone defect, which introduces an additional source of infection. The potential benefit of the use of pre-processed bone chips was investigated by comparing the bacterial contamination of bone chips prepared intraoperatively with the bacterial contamination of pre-processed bone chips at different stages in the surgical procedure. To investigate baseline contamination of the bone grafts, specimens were collected during 88 procedures before actual use or preparation of the bone chips: in 44 procedures intraoperatively prepared chips were used (Group A) and in the other 44 procedures pre-processed bone chips were used (Group B). In 64 of these procedures (32 using locally prepared bone chips and 32 using pre-processed bone chips) specimens were also collected later in the procedure to investigate contamination after use and preparation of the bone chips. In total, 8 procedures had one or more positive specimen(s) (12.5 %). Contamination rates were not significantly different between bone chips prepared at the operating theatre and pre-processed bone chips. In conclusion, there was no difference in bacterial contamination between bone chips prepared from whole femoral heads in the operating room and pre-processed bone chips, and therefore, both types of bone allografts are comparable with respect to risk of infection.

  10. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  11. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  12. Signal processing and display interface studies. [performance tests - design analysis/equipment specifications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Signal processing equipment specifications, operating and test procedures, and systems design and engineering are described. Five subdivisions of the overall circuitry are treated: (1) the spectrum analyzer; (2) the spectrum integrator; (3) the velocity discriminator; (4) the display interface; and (5) the formatter. They function in series: (1) first in analog form to provide frequency resolution, (2) then in digital form to achieve signal to noise improvement (video integration) and frequency discrimination, and (3) finally in analog form again for the purpose of real-time display of the significant velocity data. The formatter collects binary data from various points in the processor and provides a serial output for bi-phase recording. Block diagrams are used to illustrate the system.

  13. Study of Degradation Processes in Dielectric Materials Used in Electronic Control Equipment Operated in ``Kozloduy'' NPP

    NASA Astrophysics Data System (ADS)

    Naydenov, Nayden; Popov, Angel

    2007-04-01

    The electronic equipment for control of different systems of Units 5 and 6 is studied for presence of degradation processes occurring in result of continuous usage in conditions of controlled radiation background in compliance with ``Kozloduy'' NPP safety codes. Systems, operated in a continuous mode in the course of about 10 years were chosen - separate units containing different dielectric materials (varnish coating, circuit board bases, cable insulations, electro protective elements, etc.) were extrapolated. Series of test samples were prepared which were connected with flat or coaxial condensers and their characteristic parameters were measured: tgδ, ɛ, low voltage conductivity and leak currents at voltages that exceed the working ones several times. When comparing the obtained data with the reference ones, a conclusion is made about the effectiveness of electric ageing during operation in the course of time.

  14. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  15. Recent Process and Equipment Improvements to Increase High Level Waste Throughput at The Defense Waste Processing Facility (DWPF)

    SciTech Connect

    O'Driscoll, R.J.; Barnes, A.B.; Coleman, J.R.; Glover, T.L.; Hopkins, R.C.; Iverson, D.C.; Leita, J.N.

    2008-07-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in an 8 % waste throughput increase over the standard 28 % waste loading based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (7 %), glass surge (siphon) protection software (2 %), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2 %) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3 %) for a total increase in canister production of 14 %. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed. (authors)

  16. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

    2008-01-15

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

  17. In situ vitrification: Test results for a contaminated soil-melting process

    SciTech Connect

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1989-10-01

    In situ vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy to stabilize soils and sludges that are contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product similar to obsidian and basalt. In June 1987, a large-scale test of the process was completed at a transuranic-contaminated soil site. The test constituted the first full-scale demonstration of ISV at an actual site. This paper summarizes the results of that test and describes the potential adaptation of the process to radioactive and hazardous chemical waste-contaminated soils. 15 refs., 9 figs., 3 tabs.

  18. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    PubMed Central

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  19. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    PubMed

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  20. Influence of process parameters and equipment on dry foam formulation properties using indomethacin as model drug.

    PubMed

    Sprunk, Angela; Page, Susanne; Kleinebudde, Peter

    2013-10-15

    Dry foam technology was developed to overcome insufficient oral bioavailability of poorly soluble and wettable active pharmaceutical ingredients (APIs). It is intended to enable a faster and more efficient dissolution by avoiding API agglomeration and floating of non-wetted API particles. The aim of this study was to investigate the influence of process parameters, such as paste water content and type of equipment used on dry foam morphology, granule characteristics and dissolution behavior of the corresponding tablets using indomethacin as model compound. Multiple analytical methods, namely scanning electron microscopy, X-ray micro-computed tomography and mercury porosimetry, specific surface area analysis and sieve analysis were employed. Dissolution of dry foam formulation tablets was compared to a reference formulation in biorelevant media. Process parameters proved to have a distinct influence on dry foam morphology and granule characteristics, correlations between paste viscosity and pore size distribution could be observed. Dissolution behavior of indomethacin was improved by dry foam technology compared to the reference formulation. Variation of process parameters within the studied ranges did not alter the characteristics of the dry foam formulation dissolution behavior. Therefore, dry foam technology seems a promising future technology with the option of continuous manufacturing. PMID:23891743

  1. Tracking an Escherichia coli O157:H7-contaminated batch of leafy greens through a pilot-scale fresh-cut processing line.

    PubMed

    Buchholz, Annemarie L; Davidson, Gordon R; Marks, Bradley P; Todd, Ewen C D; Ryser, Elliot T

    2014-09-01

    Cross-contamination of fresh-cut leafy greens with residual Escherichia coli O157:H7-contaminated product during commercial processing was likely a contributing factor in several recent multistate outbreaks. Consequently, radicchio was used as a visual marker to track the spread of the contaminated product to iceberg lettuce in a pilot-scale processing line that included a commercial shredder, step conveyor, flume tank, shaker table, and centrifugal dryer. Uninoculated iceberg lettuce (45 kg) was processed, followed by 9.1 kg of radicchio (dip inoculated to contain a four-strain, green fluorescent protein-labeled nontoxigenic E. coli O157:H7 cocktail at 10(6) CFU/g) and 907 kg (2,000 lb) of uninoculated iceberg lettuce. After collecting the lettuce and radicchio in about 40 bags (∼22.7 kg per bag) along with water and equipment surface samples, all visible shreds of radicchio were retrieved from the bags of shredded product, the equipment, and the floor. E. coli O157:H7 populations were quantified in the lettuce, water, and equipment samples by direct plating with or without prior membrane filtration on Trypticase soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Based on triplicate experiments, the weight of radicchio in the shredded lettuce averaged 614.9 g (93.6%), 6.9 g (1.3%), 5.0 g (0.8%), and 2.8 g (0.5%) for bags 1 to 10, 11 to 20, 21 to 30, and 31 to 40, respectively, with mean E. coli O157:H7 populations of 1.7, 1.2, 1.1, and 1.1 log CFU/g in radicchio-free lettuce. After processing, more radicchio remained on the conveyor (9.8 g; P < 0.05), compared with the shredder (8.3 g), flume tank (3.5 g), and shaker table (0.1 g), with similar E. coli O157:H7 populations (P > 0.05) recovered from all equipment surfaces after processing. These findings clearly demonstrate both the potential for the continuous spread of contaminated lettuce to multiple batches of product during processing and the need for improved equipment designs that minimize

  2. Tracking an Escherichia coli O157:H7-contaminated batch of leafy greens through a pilot-scale fresh-cut processing line.

    PubMed

    Buchholz, Annemarie L; Davidson, Gordon R; Marks, Bradley P; Todd, Ewen C D; Ryser, Elliot T

    2014-09-01

    Cross-contamination of fresh-cut leafy greens with residual Escherichia coli O157:H7-contaminated product during commercial processing was likely a contributing factor in several recent multistate outbreaks. Consequently, radicchio was used as a visual marker to track the spread of the contaminated product to iceberg lettuce in a pilot-scale processing line that included a commercial shredder, step conveyor, flume tank, shaker table, and centrifugal dryer. Uninoculated iceberg lettuce (45 kg) was processed, followed by 9.1 kg of radicchio (dip inoculated to contain a four-strain, green fluorescent protein-labeled nontoxigenic E. coli O157:H7 cocktail at 10(6) CFU/g) and 907 kg (2,000 lb) of uninoculated iceberg lettuce. After collecting the lettuce and radicchio in about 40 bags (∼22.7 kg per bag) along with water and equipment surface samples, all visible shreds of radicchio were retrieved from the bags of shredded product, the equipment, and the floor. E. coli O157:H7 populations were quantified in the lettuce, water, and equipment samples by direct plating with or without prior membrane filtration on Trypticase soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Based on triplicate experiments, the weight of radicchio in the shredded lettuce averaged 614.9 g (93.6%), 6.9 g (1.3%), 5.0 g (0.8%), and 2.8 g (0.5%) for bags 1 to 10, 11 to 20, 21 to 30, and 31 to 40, respectively, with mean E. coli O157:H7 populations of 1.7, 1.2, 1.1, and 1.1 log CFU/g in radicchio-free lettuce. After processing, more radicchio remained on the conveyor (9.8 g; P < 0.05), compared with the shredder (8.3 g), flume tank (3.5 g), and shaker table (0.1 g), with similar E. coli O157:H7 populations (P > 0.05) recovered from all equipment surfaces after processing. These findings clearly demonstrate both the potential for the continuous spread of contaminated lettuce to multiple batches of product during processing and the need for improved equipment designs that minimize

  3. Salmonella contamination risk points in broiler carcasses during slaughter line processing.

    PubMed

    Rivera-Pérez, Walter; Barquero-Calvo, Elías; Zamora-Sanabria, Rebeca

    2014-12-01

    Salmonella is one of the foodborne pathogens most commonly associated with poultry products. The aim of this work was to identify and analyze key sampling points creating risk of Salmonella contamination in a chicken processing plant in Costa Rica and perform a salmonellosis risk analysis. Accordingly, the following examinations were performed: (i) qualitative testing (presence or absence of Salmonella), (ii) quantitative testing (Salmonella CFU counts), and (iii) salmonellosis risk analysis, assuming consumption of contaminated meat from the processing plant selected. Salmonella was isolated in 26% of the carcasses selected, indicating 60% positive in the flocks sampled. The highest Salmonella counts were observed after bleeding (6.1 log CFU per carcass), followed by a gradual decrease during the subsequent control steps. An increase in the percentage of contamination (10 to 40%) was observed during evisceration and spray washing (after evisceration), with Salmonella counts increasing from 3.9 to 5.1 log CFU per carcass. According to the prevalence of Salmonella -contaminated carcasses released to trade (20%), we estimated a risk of 272 cases of salmonellosis per year as a result of the consumption of contaminated chicken. Our study suggests that the processes of evisceration and spray washing represent a risk of Salmonella cross-contamination and/ or recontamination in broilers during slaughter line processing.

  4. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O. ); Weir, T.J. )

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  5. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  6. [Evaluation of microbial contamination of linens in industrial laundry processes].

    PubMed

    Sanna, Adriana; Coroneo, Valentina; Dessì, Sandro; Brandas, Valeria

    2013-01-01

    Laundering linens and protecting them from microbiological recontamination are critical issues for the hotel and food industries and especially for hospitals. This study was performed to evaluate a sample of industrial laundries in Sardinia (Italy), to assess their compliance with national hygienic and sanitary regulations, along the complete laundering process. Study results indicate that industrial laundering processes are effective and that better awareness of staff who handle laundered textiles is required to reduce the risk of recontamination.

  7. [Evaluation of microbial contamination of linens in industrial laundry processes].

    PubMed

    Sanna, Adriana; Coroneo, Valentina; Dessì, Sandro; Brandas, Valeria

    2013-01-01

    Laundering linens and protecting them from microbiological recontamination are critical issues for the hotel and food industries and especially for hospitals. This study was performed to evaluate a sample of industrial laundries in Sardinia (Italy), to assess their compliance with national hygienic and sanitary regulations, along the complete laundering process. Study results indicate that industrial laundering processes are effective and that better awareness of staff who handle laundered textiles is required to reduce the risk of recontamination. PMID:23903035

  8. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry.

  9. 40 CFR Table 1 to Subpart F of... - Batch Processes Monitoring Frequency for Equipment Other Than Connectors

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Batch Processes Monitoring Frequency for Equipment Other Than Connectors 1 Table 1 to Subpart F of Part 65 Protection of Environment... Leaks Pt. 65, Subpt. F, Table 1 Table 1 to Subpart F of Part 65—Batch Processes Monitoring Frequency...

  10. 40 CFR Table 1 to Subpart F of... - Batch Processes Monitoring Frequency for Equipment Other Than Connectors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Batch Processes Monitoring Frequency for Equipment Other Than Connectors 1 Table 1 to Subpart F of Part 65 Protection of Environment... Leaks Pt. 65, Subpt. F, Table 1 Table 1 to Subpart F of Part 65—Batch Processes Monitoring Frequency...

  11. 40 CFR Table 1 to Subpart F of... - Batch Processes Monitoring Frequency for Equipment Other Than Connectors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Batch Processes Monitoring Frequency for Equipment Other Than Connectors 1 Table 1 to Subpart F of Part 65 Protection of Environment... Leaks Pt. 65, Subpt. F, Table 1 Table 1 to Subpart F of Part 65—Batch Processes Monitoring Frequency...

  12. 40 CFR Table 1 to Subpart F of... - Batch Processes Monitoring Frequency for Equipment Other Than Connectors

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Batch Processes Monitoring Frequency for Equipment Other Than Connectors 1 Table 1 to Subpart F of Part 65 Protection of Environment... Leaks Pt. 65, Subpt. F, Table 1 Table 1 to Subpart F of Part 65—Batch Processes Monitoring Frequency...

  13. 40 CFR Table 1 to Subpart F of... - Batch Processes Monitoring Frequency for Equipment Other Than Connectors

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Batch Processes Monitoring Frequency for Equipment Other Than Connectors 1 Table 1 to Subpart F of Part 65 Protection of Environment... Leaks Pt. 65, Subpt. F, Table 1 Table 1 to Subpart F of Part 65—Batch Processes Monitoring Frequency...

  14. 40 CFR 60.5400 - What equipment leak standards apply to affected facilities at an onshore natural gas processing...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected facilities at an onshore natural gas processing plant? 60.5400 Section 60.5400 Protection of... NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas Production, Transmission... natural gas processing plant? This section applies to the group of all equipment, except...

  15. 40 CFR 60.5400 - What equipment leak standards apply to affected facilities at an onshore natural gas processing...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected facilities at an onshore natural gas processing plant? 60.5400 Section 60.5400 Protection of... NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas Production, Transmission... natural gas processing plant? This section applies to the group of all equipment, except...

  16. Radioactive contamination of the Balchug (Upper Yenisey) floodplain, Russia in relation to sedimentation processes and geomorphology.

    PubMed

    Linnik, V G; Brown, J E; Dowdall, M; Potapov, V N; Surkov, V V; Korobova, E M; Volosov, A G; Vakulovsky, S M; Tertyshnik, E G

    2005-03-01

    The radioactive contamination of a riverine floodplain, heavily influenced by discharges from Krasnoyarsk-26, has been studied with respect to sedimentation processes and the geomorphology of the Upper Yenisey floodplain. The study was effected by implementation of a regime of in situ observations and measurements, sampling, and the interpretation of satellite images. The results of the study indicate that on the Balchug Bypass Floodplain, radionuclide contamination is primarily influenced by the thickness of the deposited sediments, and the area can be considered as two depositional environments. The Balchug floodplain area was contaminated due to sedimentation of radionuclide-contaminated alluvium, whose depositional regime significantly changed after the construction of a hydroelectric power station in 1967. Contamination levels are lower on the upstream part of the floodplain where sediment depth is less than 0.2-0.3 m, and this contamination started to accumulate in 1967, while the downstream part of the floodplain, exhibiting deeper deposits, displays higher levels of radionuclide contamination because radionuclides began to deposit here in 1958 when the Krasnoyarsk-26 Mining and Chemical Combine (KMCC) commenced operation. Radionuclide contamination of the floodplain is also related to the elevation of the floodplain, higher regions of the floodplain typically having lower contamination than low-lying areas, which tend to be frequently inundated with sediments being deposited during such inundations. Local relief, its orientation, and vegetation cover have also combined to form sediment traps with significantly higher radionuclide contamination. Lithological analysis combined with radiometric assay indicates a total 137Cs floodplain inventory of 33.7 GBq.

  17. Modification and Validation of an Automotive Data Processing Unit, Compessed Video System, and Communications Equipment

    SciTech Connect

    Carter, R.J.

    1997-04-01

    The primary purpose of the "modification and validation of an automotive data processing unit (DPU), compressed video system, and communications equipment" cooperative research and development agreement (CRADA) was to modify and validate both hardware and software, developed by Scientific Atlanta, Incorporated (S-A) for defense applications (e.g., rotary-wing airplanes), for the commercial sector surface transportation domain (i.e., automobiles and trucks). S-A also furnished a state-of-the-art compressed video digital storage and retrieval system (CVDSRS), and off-the-shelf data storage and transmission equipment to support the data acquisition system for crash avoidance research (DASCAR) project conducted by Oak Ridge National Laboratory (ORNL). In turn, S-A received access to hardware and technology related to DASCAR. DASCAR was subsequently removed completely and installation was repeated a number of times to gain an accurate idea of complete installation, operation, and removal of DASCAR. Upon satisfactory completion of the DASCAR construction and preliminary shakedown, ORNL provided NHTSA with an operational demonstration of DASCAR at their East Liberty, OH test facility. The demonstration included an on-the-road demonstration of the entire data acquisition system using NHTSA'S test track. In addition, the demonstration also consisted of a briefing, containing the following: ORNL generated a plan for validating the prototype data acquisition system with regard to: removal of DASCAR from an existing vehicle, and installation and calibration in other vehicles; reliability of the sensors and systems; data collection and transmission process (data integrity); impact on the drivability of the vehicle and obtrusiveness of the system to the driver; data analysis procedures; conspicuousness of the vehicle to other drivers; and DASCAR installation and removal training and documentation. In order to identify any operational problems not captured by the systems testing

  18. Evaluation of processing factors for selected organic contaminants during virgin olive oil production: Distribution of BTEXS during olives processing.

    PubMed

    López-Blanco, Rafael; Gilbert-López, Bienvenida; Rojas-Jiménez, Rubén; Robles-Molina, José; Ramos-Martos, Natividad; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-05-15

    The presence of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) in virgin olive oils can be attributed to environmental contamination, but also to biological processes during oil lipogenesis (styrene). In this work, the processing factor of BTEXS from olives to olive oil during its production was evaluated at lab-scale with an Abencor system. Benzene showed the lowest processing factor (15%), whereas toluene and xylenes showed an intermediate behavior (with 40-60% efficiency), and ethylbenzene and styrene were completely transferred (100%). In addition, an attempt to examine the contribution of potential sources to olives contamination with BTEXS was carried out for the first time. Two types of olives samples were classified according to their proximity to the contamination source (road). Although higher levels of BTEXS were found in samples close to roads, the concentrations were relatively low and do not constitute a major contribution to BTEXS usually detected in olive oil.

  19. Evaluation of processing factors for selected organic contaminants during virgin olive oil production: Distribution of BTEXS during olives processing.

    PubMed

    López-Blanco, Rafael; Gilbert-López, Bienvenida; Rojas-Jiménez, Rubén; Robles-Molina, José; Ramos-Martos, Natividad; García-Reyes, Juan F; Molina-Díaz, Antonio

    2016-05-15

    The presence of BTEXS (benzene, toluene, ethylbenzene, xylenes and styrene) in virgin olive oils can be attributed to environmental contamination, but also to biological processes during oil lipogenesis (styrene). In this work, the processing factor of BTEXS from olives to olive oil during its production was evaluated at lab-scale with an Abencor system. Benzene showed the lowest processing factor (15%), whereas toluene and xylenes showed an intermediate behavior (with 40-60% efficiency), and ethylbenzene and styrene were completely transferred (100%). In addition, an attempt to examine the contribution of potential sources to olives contamination with BTEXS was carried out for the first time. Two types of olives samples were classified according to their proximity to the contamination source (road). Although higher levels of BTEXS were found in samples close to roads, the concentrations were relatively low and do not constitute a major contribution to BTEXS usually detected in olive oil. PMID:26775971

  20. Occurrence of rhodamine B contamination in capsicum caused by agricultural materials during the vegetation process.

    PubMed

    Gao, Wei; Wu, Naiying; Du, Jingjing; Zhou, Li; Lian, Yunhe; Wang, Lei; Liu, Dengshuai

    2016-08-15

    This paper reports on the environmental rhodamine B (RhB) contamination in capsicum caused by agricultural materials during the vegetation process. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect 64 capsicum samples from China, Peru, India and Burma. Results demonstrated that RhB was found in all samples at low concentrations (0.11-0.98 μg/kg), indicating RhB contamination in capsicums is probably a ubiquitous phenomenon. In addition, studies into soils, roots, stems and leaves in Handan of Hebei province, China showed that the whole ecologic chain had been contaminated with RhB with the highest levels in leaves. The investigation into the agricultural environment in Handan of Hebei province and Korla of Xinjiang province, China demonstrated that the appearances of RhB contamination in the tested capsicums are mainly due to the agricultural materials contamination. The study verified that environmental contamination should be an important origin for the RhB contamination in capsicum fruits.

  1. REMOVAL OF PCBS FROM A CONTAMINATED SOIL USING CF-SYSTEMS SOLVENT EXTRACTION PROCESS

    EPA Science Inventory

    The US EPA's START team in cooperation with EPA's SITE program evaluated a pilot scale solvent extraction process developed by CF-Systems. This process uses liquified propane to extract organic contaminants from soils, sludges, and sediments. A pilot-scale evaluation was conducte...

  2. High pressure processing as an intervention for raw virus-contaminated shellfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 7 years, the USDA ARS Seafood Safety Laboratory has evaluated the potential use of high pressure processing (HPP) as a processing strategy for virus-contaminated shellfish. HPP can inactivate hepatitis A virus, (HAV), the human norovirus surrogates feline calicivirus and murine norovi...

  3. Adaptive Image Processing Methods for Improving Contaminant Detection Accuracy on Poultry Carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract A real-time multispectral imaging system has demonstrated a science-based tool for fecal and ingesta contaminant detection during poultry processing. In order to implement this imaging system at commercial poultry processing industry, the false positives must be removed. For doi...

  4. EVALUATION OF THE ADA TECHNOLOGIES' ELECTRO-DECON PROCESS TO REMOVE RADIOLOGICAL CONTAMINATION

    SciTech Connect

    Pao, Jenn-Hai; Demmer, Rick L.; Argyle, Mark D.; Veatch, Brad D.

    2003-02-27

    A surface decontamination system featuring the use of ADA's electrochemical process was tested and evaluated. The process can be flexibly deployed by using an electrolyte delivery system that has been demonstrated to be reliable and effective. Experimental results demonstrate the effectiveness of this system for the surface decontamination of radiologically contaminated stainless steel.

  5. Control considerations for high frequency, resonant, power processing equipment used in large systems

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Schreiner, K. E.; Wolff, F.

    1987-01-01

    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects, and (6) limits and overloads.

  6. Control considerations for high frequency, resonant, power processing equipment used in large systems

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Schreiner, K. E.; Wolff, F.

    1987-01-01

    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects; and (6) limits and overloads.

  7. Long-term oil contamination increases deterministic assembly processes in soil microbes.

    PubMed

    Liang, Yuting; Zhang, Xu; Zhou, Jizhong; Li, Guanghe

    2015-07-01

    The mechanisms that drive microbial turnover in time and space have received considerable attention but remain unclear, especially for situations with anthropogenic perturbation. To understand the impact of long-term oil contamination on microbial spatial turnover, 100 soil samples were taken from five oil exploration fields located in different geographic regions across China. The microbial functional diversity was analyzed with a high-throughput functional gene array, GeoChip. Our results indicated that soil microbial α-diversity (richness and Shannon diversity index) decreased significantly with contamination. All contaminated and uncontaminated samples exhibited significant spatial autocorrelation between microbial community similarity and spatial distance, as described by a distance-decay relationship (DDR). However, long-term oil exposure flattened the slopes of the DDRs of all of the functional genes and each functional group involved in C/N/P/S cycling, particularly of those involved in contaminant degradation. The relative importance of deterministic and stochastic processes in microbial assembly was determined. The decrease in microbial spatial turnover with long-term oil contamination was coupled with an increase in the proportion of deterministic processes that structured microbial assembly based on null model analysis. The results indicated long-term oil contamination significantly affects soil microbial community spatial structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities. PMID:26485952

  8. Long-term oil contamination increases deterministic assembly processes in soil microbes.

    PubMed

    Liang, Yuting; Zhang, Xu; Zhou, Jizhong; Li, Guanghe

    2015-07-01

    The mechanisms that drive microbial turnover in time and space have received considerable attention but remain unclear, especially for situations with anthropogenic perturbation. To understand the impact of long-term oil contamination on microbial spatial turnover, 100 soil samples were taken from five oil exploration fields located in different geographic regions across China. The microbial functional diversity was analyzed with a high-throughput functional gene array, GeoChip. Our results indicated that soil microbial α-diversity (richness and Shannon diversity index) decreased significantly with contamination. All contaminated and uncontaminated samples exhibited significant spatial autocorrelation between microbial community similarity and spatial distance, as described by a distance-decay relationship (DDR). However, long-term oil exposure flattened the slopes of the DDRs of all of the functional genes and each functional group involved in C/N/P/S cycling, particularly of those involved in contaminant degradation. The relative importance of deterministic and stochastic processes in microbial assembly was determined. The decrease in microbial spatial turnover with long-term oil contamination was coupled with an increase in the proportion of deterministic processes that structured microbial assembly based on null model analysis. The results indicated long-term oil contamination significantly affects soil microbial community spatial structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.

  9. Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process.

    PubMed

    Basílio, A C M; de Araújo, P R L; de Morais, J O F; da Silva Filho, E A; de Morais, M A; Simões, D A

    2008-04-01

    Monitoring for wild yeast contaminants is an essential component of the management of the industrial fuel ethanol manufacturing process. Here we describe the isolation and molecular identification of 24 yeast species present in bioethanol distilleries in northeast Brazil that use sugar cane juice or cane molasses as feeding substrate. Most of the yeast species could be identified readily from their unique amplification-specific polymerase chain reaction (PCR) fingerprint. Yeast of the species Dekkera bruxellensis, Candida tropicalis, Pichia galeiformis, as well as a species of Candida that belongs to the C. intermedia clade, were found to be involved in acute contamination episodes; the remaining 20 species were classified as adventitious. Additional physiologic data confirmed that the presence of these major contaminants cause decreased bioethanol yield. We conclude that PCR fingerprinting can be used in an industrial setting to monitor yeast population dynamics to early identify the presence of the most important contaminant yeasts.

  10. Particle contamination control in plasma processing: Building-in reliability for semiconductor fabrication

    SciTech Connect

    Selwyn, G.S.

    1995-12-31

    Plasma processing is used for {approximately}35% of the process steps required for semiconductor manufacturing. Recent studies have shown that plasma processes create the greatest amount of contaminant dust of all the manufacturing steps required for device fabrication. Often, the level of dust in a plasma process tool exceeds the cleanroom by several orders of magnitude. Particulate contamination generated in a plasma tool can result in reliability problems as well as device failure. Inter-level wiring shorts different levels of metallization on a device is a common result of plasma particulate contamination. We have conducted a thorough study of the physics and chemistry involved in particulate formation and transport in plasma tools. In-situ laser light scattering (LLS) is used for real-time detection of the contaminant dust. The results of this work are highly surprising: all plasmas create dust; the dust can be formed by homogeneous as well as heterogeneous chemistry; this dust is charged and suspended in the plasma; additionally, it is transported to favored regions of the plasma, such as those regions immediately above wafers. Fortunately, this work has also led to a novel means of controlling and eliminating these unwanted contaminants: electrostatic {open_quotes}drainpipes{close_quotes} engineered into the electrode by means of specially designed grooves. These channel the suspended particles out of the plasma and into the pump port before they can fall onto the wafer.

  11. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOEpatents

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  12. Contaminants of the bismuth phosphate process as signifiers of nuclear reprocessing history.

    SciTech Connect

    Schwantes, Jon M.; Sweet, Lucas E.

    2012-10-01

    Reagents used in spent nuclear fuel recycling impart unique contaminant patterns into the product stream of the process. Efforts are underway at Pacific Northwest National Laboratory to characterize and understand the relationship between these patterns and the process that created them. A main challenge to this effort, recycling processes that were employed at the Hanford site from 1944-1989 have been retired for decades. This precludes direct measurements of the contaminant patterns that propagate within product streams of these facilities. In the absence of any operating recycling facilities at Hanford, we have taken a multipronged approach to cataloging contaminants of U.S. reprocessing activities using: (1) historical records summarizing contaminants within the final Pu metal button product of these facilities; (2) samples of opportunity that represent intermediate products of these processes; and (3) lab-scale experiments and model simulations designed to replicate contaminant patterns at each stage of nuclear fuel reprocessing. This report provides a summary of the progress and results from Fiscal Year (April 1, 2010-September 30) 2011.

  13. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    SciTech Connect

    Oguchi, Masahiro; Sakanakura, Hirofumi; Terazono, Atsushi; Takigami, Hidetaka

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered during the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as audio

  14. Degradation of carbofuran-contaminated water by the Fenton process.

    PubMed

    Ma, Ying-Shih; Kumar, Mathava; Lin, Jih-Gaw

    2009-07-15

    In this study, the Fenton process was applied for the degradation of carbofuran from aqueous system. Batch experiments were conducted at two different carbofuran concentrations i.e., 10 and 50 mg/L, and at pH 3. Batch experiments at each carbofuran concentration were designed by central composite design (CCD) with two independent variables i.e. Fe2+ and H2O2. Experimental results indicate that more than 90% of carbofuran removal was observed within 5 mins of Fenton reaction at 5 mg/L of Fe2+ concentration and 100 mg/L of H202 concentration. Increases in Fe2+ and/or H2O2 concentrations beyond 5 and 100 mg/L, respectively produced 100% carbofuran removal. Based on the experimental observations, the optimal Fe2+ and H2O2 dosages required for 10 mg/L of aqueous carbofuran removal were estimated as 7.4 and 143 mg/L, respectively. During this study, three carbofuran intermediates such as 7-benzofuranol,2,3,-dihydro-2,2-dimethyl, 7-hydroxy-2,2-dimethyl-benzofuran-3-one and 1,4-Benzene-di-carboxaldehyde were identified using GC/MS analyses.

  15. 41 CFR 109-43.307-53 - Automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS UTILIZATION AND DISPOSAL 43-UTILIZATION OF PERSONAL PROPERTY 43.3-Utilization of Excess § 109-43.... Designated computer support personnel must indicate that the equipment has been sanitized by attaching...

  16. 41 CFR 109-43.307-53 - Automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS UTILIZATION AND DISPOSAL 43-UTILIZATION OF PERSONAL PROPERTY 43.3-Utilization of Excess § 109-43.... Designated computer support personnel must indicate that the equipment has been sanitized by attaching...

  17. 41 CFR 109-43.307-53 - Automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS UTILIZATION AND DISPOSAL 43-UTILIZATION OF PERSONAL PROPERTY 43.3-Utilization of Excess § 109-43.... Designated computer support personnel must indicate that the equipment has been sanitized by attaching...

  18. 41 CFR 109-43.307-53 - Automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS UTILIZATION AND DISPOSAL 43-UTILIZATION OF PERSONAL PROPERTY 43.3-Utilization of Excess § 109-43.... Designated computer support personnel must indicate that the equipment has been sanitized by attaching...

  19. 41 CFR 109-43.307-53 - Automatic data processing equipment (ADPE).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS UTILIZATION AND DISPOSAL 43-UTILIZATION OF PERSONAL PROPERTY 43.3-Utilization of Excess § 109-43.... Designated computer support personnel must indicate that the equipment has been sanitized by attaching...

  20. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing material and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.

  1. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    SciTech Connect

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

  2. Identification of risk factors for Campylobacter contamination levels on broiler carcasses during the slaughter process.

    PubMed

    Seliwiorstow, Tomasz; Baré, Julie; Berkvens, Dirk; Van Damme, Inge; Uyttendaele, Mieke; De Zutter, Lieven

    2016-06-01

    Campylobacter carcass contamination was quantified across the slaughter line during processing of Campylobacter positive batches. These quantitative data were combined together with information describing slaughterhouse and batch related characteristics in order to identify risk factors for Campylobacter contamination levels on broiler carcasses. The results revealed that Campylobacter counts are influenced by the contamination of incoming birds (both the initial external carcass contamination and the colonization level of caeca) and the duration of transport and holding time that can be linked with feed withdrawal period. In addition, technical aspects of the slaughter process such as a dump based unloading system, electrical stunning, lower scalding temperature, incorrect setting of plucking, vent cutter and evisceration machines were identified as risk factors associated with increased Campylobacter counts on processed carcasses. As such the study indicates possible improvements of the slaughter process that can result in better control of Campylobacter numbers under routine processing of Campylobacter positive batches without use of chemical or physical decontamination. Moreover, all investigated factors were existing variations of the routine processing practises and therefore proposed interventions are practically and economically achievable.

  3. L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling.

    PubMed

    Rückerl, I; Muhterem-Uyar, M; Muri-Klinger, S; Wagner, K-H; Wagner, M; Stessl, B

    2014-10-17

    The aim of this study was to analyze the changing patterns of Listeria monocytogenes contamination in a cheese processing facility manufacturing a wide range of ready-to-eat products. Characterization of L. monocytogenes isolates included genotyping by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Disinfectant-susceptibility tests and the assessment of L. monocytogenes survival in fresh cheese were also conducted. During the sampling period between 2010 and 2013, a total of 1284 environmental samples were investigated. Overall occurrence rates of Listeria spp. and L. monocytogenes were 21.9% and 19.5%, respectively. Identical L. monocytogenes genotypes were found in the food processing environment (FPE), raw materials and in products. Interventions after the sampling events changed contamination scenarios substantially. The high diversity of globally, widely distributed L. monocytogenes genotypes was reduced by identifying the major sources of contamination. Although susceptible to a broad range of disinfectants and cleaners, one dominant L. monocytogenes sequence type (ST) 5 could not be eradicated from drains and floors. Significantly, intense humidity and steam could be observed in all rooms and water residues were visible on floors due to increased cleaning strategies. This could explain the high L. monocytogenes contamination of the FPE (drains, shoes and floors) throughout the study (15.8%). The outcome of a challenge experiment in fresh cheese showed that L. monocytogenes could survive after 14days of storage at insufficient cooling temperatures (8 and 16°C). All efforts to reduce L. monocytogenes environmental contamination eventually led to a transition from dynamic to stable contamination scenarios. Consequently, implementation of systematic environmental monitoring via in-house systems should either aim for total avoidance of FPE colonization, or emphasize a first reduction of L. monocytogenes to sites where

  4. 3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility

    NASA Astrophysics Data System (ADS)

    Stirewalt, G. L.; Shepherd, J. C.

    2003-12-01

    Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams

  5. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for coal processing and conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal...

  6. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for coal processing and conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal...

  7. 40 CFR Table 1 to Subpart Uu of... - Batch Processes Monitoring Frequency For Equipment Other Than Connectors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Batch Processes Monitoring Frequency For Equipment Other Than Connectors 1 Table 1 to Subpart UU of Part 63 Protection of Environment...-Control Level 2 Standards Pt. 63, Subpt. UU, Table 1 Table 1 to Subpart UU of Part 63—Batch...

  8. 40 CFR Table 1 to Subpart Uu of... - Batch Processes Monitoring Frequency For Equipment Other Than Connectors

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Batch Processes Monitoring Frequency For Equipment Other Than Connectors 1 Table 1 to Subpart UU of Part 63 Protection of Environment...-Control Level 2 Standards Pt. 63, Subpt. UU, Table 1 Table 1 to Subpart UU of Part 63—Batch...

  9. 40 CFR Table 1 to Subpart Uu of... - Batch Processes Monitoring Frequency For Equipment Other Than Connectors

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Batch Processes Monitoring Frequency For Equipment Other Than Connectors 1 Table 1 to Subpart UU of Part 63 Protection of Environment...-Control Level 2 Standards Pt. 63, Subpt. UU, Table 1 Table 1 to Subpart UU of Part 63—Batch...

  10. 40 CFR Table 1 to Subpart Uu of... - Batch Processes Monitoring Frequency For Equipment Other Than Connectors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Batch Processes Monitoring Frequency For Equipment Other Than Connectors 1 Table 1 to Subpart UU of Part 63 Protection of Environment...-Control Level 2 Standards Pt. 63, Subpt. UU, Table 1 Table 1 to Subpart UU of Part 63—Batch...

  11. Decontamination Strategy for Large Area and/or Equipment Contaminated with Chemical and Biological Agents using a High Energy Arc Lamp (HEAL)

    SciTech Connect

    Schoske, Richard; Kennedy, Patrick; Duty, Chad E; Smith, Rob R; Huxford, Theodore J; Bonavita, Angelo M; Engleman, Greg; Vass, Arpad Alexander; Griest, Wayne H; Ilgner, Ralph H; Brown, Gilbert M

    2009-04-01

    A strategy for the decontamination of large areas and or equipment contaminated with Biological Warfare Agents (BWAs) and Chemical Warfare Agents (CWAs) was demonstrated using a High Energy Arc Lamp (HEAL) photolysis system. This strategy offers an alternative that is potentially quicker, less hazardous, generates far less waste, and is easier to deploy than those currently fielded by the Department of Defense (DoD). For example, for large frame aircraft the United States Air Force still relies on the combination of weathering (stand alone in environment), air washing (fly aircraft) and finally washing the aircraft with Hot Soapy Water (HSW) in an attempt to remove any remaining contamination. This method is laborious, time consuming (upwards of 12+ hours not including decontamination site preparation), and requires large amounts of water (e.g., 1,600+ gallons for a single large frame aircraft), and generates large amounts of hazardous waste requiring disposal. The efficacy of the HEAL system was demonstrated using diisopropyl methyl phosphonate (DIMP) a G series CWA simulant, and Bacillus globigii (BG) a simulant of Bacillus anthracis. Experiments were designed to simulate the energy flux of a field deployable lamp system that could stand-off 17 meters from a 12m2 target area and uniformly expose a surface at 1360 W/m2. The HEAL system in the absence of a catalyst reduced the amount of B. globigii by five orders of magnitude at a starting concentration of 1.63 x 107 spores. In the case of CWA simulants, the HEAL system in the presence of the catalyst TiO2 effectively degraded DIMP sprayed onto a 100mm diameter Petri dish in 5 minutes.

  12. Mobilisation processes responsible for iron and manganese contamination of groundwater in Central Adriatic Italy.

    PubMed

    Palmucci, William; Rusi, Sergio; Di Curzio, Diego

    2016-06-01

    Iron and manganese are two of the most common contaminants that exceed the threshold imposed by international and national legislation. When these contamination occurs in groundwater, the use of the water resource is forbidden for any purposes. Several studies investigated these two metals in groundwater, but research focused in the Central Adriatic area are still lacking. Thus, the objective of this study is to identify the origin of Fe and Mn contamination in groundwater and the hydrogeochemical processes that can enrich aquifers with these metals. This work is based on hydrogeochemical and multivariate statistical analysis of analytical results undertaken on soils and groundwater. Fe and Mn contamination are widespread in the alluvial aquifers, and their distribution is regulated by local conditions (i.e. long residence time, presence of peat or organic-rich fine sediments or anthropic pollution) that control redox processes in the aquifers and favour the mobilisation of these two metals in groundwater. The concentration of iron and manganese identified within soil indicates that the latter are a concrete source of the two metals. Anthropic impact on Fe and Mn contamination of groundwater is not related to agricultural activities, but on the contrary, the contribution of hydrocarbons (e.g. spills) is evident.

  13. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect

    Daniel Tao; Craig A. Blue

    2006-07-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a 2 times improvement of the service life.

  14. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect

    Daniel Tao; R. Honaker; B. K. Parekh

    2007-09-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral and coal processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a significant improvement of the service life.

  15. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect

    Daniel Tao; Craig A. Blue

    2005-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, a novel surface treatment technology, laser surface engineering (LSE) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated specimen were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and AISI 4140 steels can be increased 10 and 25 folds, respectively by the application of LSE process. Initial field testing showed a 2 times improvement of the service life of a raw coal screen panel.

  16. Understanding Mechanisms of Radiological Contamination

    SciTech Connect

    Rick Demmer; John Drake; Ryan James, PhD

    2014-03-01

    Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel, spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.

  17. NATURAL ARSENIC CONTAMINATION OF HOLOCENE ALLUVIAL AQUIFERS BY LINKED TECTONIC, WEATHERING, AND MICROBIAL PROCESSES

    EPA Science Inventory

    Linked tectonic, geochemical, and biologic processes lead to natural arsenic contamination of groundwater in Holocene alluvial aquifers, which are the main threat to human health around the world. These groundwaters are commonly found a long distance from their ultimate source of...

  18. EPA Treatability Database Digs Deep for Data on Drinking Water Contaminants and Treatment Processes

    EPA Science Inventory

    The TDB is an interactive database that was initially developed in 2006-2007. The TDB currently contains more than 60 regulated and unregulated contaminants and 28 treatment processes that are known to be effective and are commonly employed at drinking water utilities. TDB lite...

  19. MICROBIAL PROCESSES AFFECTING MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE

    EPA Science Inventory

    Among the alternatives considered for the remediation of soil and ground water at hazardous wastes sites are the use of natural processes to reduce or remove the contaminants of concern. Under favorable conditions, the use of natural attenuation can result in significant cost sa...

  20. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    SciTech Connect

    Korte, N.E.; Siegrist, R.L.; Ally, M.

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations.

  1. EXPERIMENTS WITH A RESIN-IN-PULP PROCESS FOR TREATING LEAD-CONTAMINATED SOIL

    EPA Science Inventory

    This paper presents the results of experiments to evaluate the potential for using a resin-in-pulp process to remove lead contamination from soil. These experiments examined the kinetics and equilibrium partitioning of lead, lead carbonate, lead oxide, and lead sulfate in resin-s...

  2. Rapid evolution of redox processes in a petroleum hydrocarbon-contaminated aquifer

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.; Lovley, D.R.; O'Neill, K.; Landmeyer, J.E.

    2002-01-01

    Ground water chemistry data collected over a six-year period show that the distribution of contaminants and redox processes in a shallow petroleum hydrocarbon-contaminated aquifer has changed rapidly over time. Shortly after a gasoline release occurred in 1990, high concentrations of benzene were present near the contaminant source area. In this contaminated zone, dissolved oxygen in ground water was depleted, and by 1994 Fe(III) reduction and sulfate reduction were the predominant terminal electron accepting processes. Significantly, dissolved methane was below measurable levels in 1994, indicating the absence of significant methanogenesis. By 1996, however, depletion of solid-phase Fe(III)-oxyhydroxides in aquifer sediments and depletion of dissolved sulfate in ground water resulted in the onset of methanogenesis. Between 1996 and 2000, water-chemistry data indicated that methanogenic metabolism became increasingly prevalent. Molecular analysis of 16S-rDNA extracted from sediments shows the presence of a more diverse methanogenic community inside as opposed to outside the plume core, and is consistent with water-chemistry data indicating a shift toward methanogenesis over time. This rapid evolution of redox processes reflects several factors including the large amounts of contaminants, relatively rapid ground water flow (???0.3 m/day [???1 foot/day]), and low concentrations of microbially reducible Fe(III) oxyhydroxides (???1 ??mol/g) initially present in aquifer sediments. These results illustrate that, under certain hydrologic conditions, redox conditions in petroleum hydrocarbon-contaminated aquifers can change rapidly in time and space, and that the availability of solid-phase Fe(III)-oxyhydroxides affects this rate of change.

  3. Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods.

    PubMed

    Feisthauer, Stefan; Seidel, Martin; Bombach, Petra; Traube, Sebastian; Knöller, Kay; Wange, Martin; Fachmann, Stefan; Richnow, Hans H

    2012-05-15

    Decisions to employ monitored natural attenuation (MNA) as a remediation strategy at contaminated field sites require a comprehensive characterization of the site-specific biodegradation processes. In the present study, compound-specific carbon and hydrogen isotope analysis (CSIA) was used to investigate intrinsic biodegradation of benzene and ethylbenzene in an aquifer with high levels of aromatic and aliphatic hydrocarbon contamination. Hydrochemical data and isotope fractionation analysis of sulfate and methane was used complementarily to elucidate microbial degradation processes over the course of a three year period, consisting of six sampling campaigns, in the industrial area of Weißandt-Gölzau (Saxony-Anhalt, Germany). Enrichment of (13)C and (2)H isotopes in the residual benzene and ethylbenzene pool downgradient from the pollution sources provided evidence of biodegradation of BTEX compounds at this site, targeting both compounds as the key contaminants of concern. The enrichment of heavy sulfur isotopes accompanied by decreasing sulfate concentrations and the accumulation of isotopically light methane suggested that sulfate-reducing and methanogenic processes are the major contributors to overall biodegradation in this aquifer. Along the contaminant plume, the oxidation of methane with δ(13)C(CH4) values of up to +17.5‰ was detected. This demonstrates that methane formed in the contaminant source can be transported along groundwater flow paths and be oxidized in areas with higher redox potentials, thereby competing directly with the pollutants for electron acceptors. Hydrochemical and isotope data was summarized in a conceptual model to assess whether MNA can be used as viable remediation strategy in Weißandt-Gölzau. The presented results demonstrate the benefits of combining different isotopic methods and hydrochemical approaches to evaluate the fate of organic pollutants in contaminated aquifers.

  4. Mathematical Modeling for the Development of Equipment for Thermochemical Processing of Wood Waste in to Dimethyl Ether

    NASA Astrophysics Data System (ADS)

    Sadrtdinov, Almaz R.; Esmagilova, Liliya M.; Saldaev, Vladimir A.; Sattarova, Zulfiya G.; Mokhovikov, Alexey A.

    2016-08-01

    The paper describes the process of thermochemical wood waste processing in to dimethyl ether. The physical picture of the process of waste wood recycling was compiled and studied and the mathematical model in the form of differential and algebraic equations with initial and boundary conditions was developed on its basis. The mathematical model allows to determine the optimum operating parameters of synthesis gas producing process, suitable for the catalytic synthesis of dimethyl ether and to calculate the basic constructive parameters of the equipment flowsheet.

  5. 9 CFR 318.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-flow valve which shall be fully opened to permit rapid removal of air from retorts during the venting... controlled by a gate, plug cock, or other full-flow valve and the manifold shall be of a size such that the... every 5 feet (1.5 m) of retort length, equipped with a gate, plug cock, or other full-flow valve...

  6. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    SciTech Connect

    LaFrate, P.; Elliott, J.; Valasquez, M.

    1996-11-15

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail.

  7. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  8. Evaluation of electrochemical processes for the removal of several target aromatic hydrocarbons from petroleum contaminated water.

    PubMed

    Alsalka, Yamen; Karabet, François; Hashem, Shahir

    2011-03-01

    Ground and surface water contamination resulting from the leakage of crude oil and refined petroleum products is a serious and growing environmental problem throughout the world. Consequently, a study of the use of electrochemical treatment in the clean-up was undertaken with the aim of reducing the water contamination by aromatic pollutants to more acceptable levels. In the experiments described, water contamination by refined petroleum products was simulated under laboratory conditions. Electrochemical treatment, using aluminium electrodes, has been optimised by full factorial design and surface response analysis in term of BTEX and PAHs removal and energy consumption. The optimal conditions of pH, current density, electrolysis time, electrolyte type, and electrolyte concentration have then been applied in the treatment of real water samples which were monitored as petroleum contaminated samples. Treatment results have shown that electrochemical methods could achieve the concentration of these pollutants to undetectable levels in particular groundwater and surface water, hence, they can be highly effective in the remediation of water contaminated by aromatic hydrocarbons, and the use of these processes is therefore recommended.

  9. Distribution of terminal electron-accepting processes in an aquifer having multiple contaminant sources

    USGS Publications Warehouse

    McMahon, P.B.; Bruce, B.W.

    1997-01-01

    Concentrations of electron acceptors, electron donors, and H2 in groundwater were measured to determine the distribution of terminal electron-accepting processes (TEAPs) in an alluvial aquifer having multiple contaminant sources. Upgradient contaminant sources included two separate hydrocarbon point sources, one of which contained the fuel oxygenate methyl tertbutyl ether (MTBE). Infiltrating river water was a source of dissolved NO31 SO4 and organic carbon (DOC) to the downgradient part of the aquifer. Groundwater downgradient from the MTBE source had larger concentrations of electron acceptors (dissolved O2 and SO4) and smaller concentrations of TEAP end products (dissolved inorganic C, Fe2+ and CH4) than groundwater downgradient from the other hydrocarbon source, suggesting that MTBE was not as suitable for supporting TEAPs as the other hydrocarbons. Measurements of dissolved H2 indicated that SO4 reduction predominated in the aquifer during a period of high water levels in the aquifer and river. The predominant TEAP shifted to Fe3+ reduction in upgradient areas after water levels receded but remained SO4 reducing downgradient near the river. This distribution of TEAPs is the opposite of what is commonly observed in aquifers having a single contaminant point source and probably reflects the input of Dec and SO4 to the aquifer from the river. Results of this study indicate that the distribution of TEAPs in aquifers having multiple contaminant sources depends on the composition and location of the contaminants and on the availability of electron acceptors.

  10. Distribution of Escherichia coli passaged through processing equipment during ground beef production using inoculated trimmings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contamination of raw ground beef by Escherichia coli O157:H7 is not only a public health issue but also an economic concern to meat producers. When E. coli O157:H7 is detected in ground beef, products made immediately before and after the positive sample are discarded or diverted to lethality t...

  11. Contamination patterns of Listeria monocytogenes in cold-smoked pork processing.

    PubMed

    Bērziņš, Aivars; Hellström, Sanna; Siliņš, Indulis; Korkeala, Hannu

    2010-11-01

    Contamination patterns of Listeria monocytogenes were studied in a cold-smoked pork processing plant to identify the sources and possible reasons for the contamination. Environmental sampling combined with pulsed-field gel electrophoresis (PFGE) subtyping and serotyping were applied to investigate the genetic diversity of L. monocytogenes in the plant environment and ready-to-eat (RTE) cold-smoked pork products. A total of 183 samples were collected for contamination analyses, including samples of the product at different stages during manufacture (n = 136) and environmental samples (n = 47) in 2009. L. monocytogenes isolates, previously recovered from 73 RTE cold-smoked pork samples and collected from the same meat processing plant in 2004, were included in this study. The brining machine and personnel working with brining procedures were the most contaminated places with L. monocytogenes. The overall prevalence of L. monocytogenes in raw pork (18%) increased to 60% after the brining injections. The brining machine harbored six different PFGE types belonging to serotypes 1/2a, 1/2c, 4b, and 4d, which were found on the feeding teeth, smooth surfaces, and spaces of the machine, thus potentially facilitating dissemination of L. monocytogenes contamination. Two PFGE types (2 and 8) belonging to serotypes 1/2a and 1/2c were recovered from RTE cold-smoked pork collected in 2004, and from surfaces of the brining machine sampled in 2009, and may indicate the presence of persistent L. monocytogenes strains in the plant. Due to poor hygiene design, removal of the brining machine from the production of cold-smoked meat products should be considered to reduce L. monocytogenes contamination in the finished products. PMID:21219726

  12. Efficiency of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing gloves.

    PubMed

    Liu, Chengchu; Su, Yi-Cheng

    2006-07-15

    Food processing gloves are typically used to prevent cross-contamination during food preparation. However, gloves can be contaminated with microorganisms and become a source of contamination. This study investigated the survival of Listeria monocytogenes on gloves and determined the efficacy of electrolyzed oxidizing (EO) water for reducing L. monocytogenes contamination on seafood processing gloves. Three types of reusable gloves (natural rubber latex, natural latex, and nitrile) and two types of disposable gloves (latex and nitrile) were cut into small pieces (4 x 4 cm(2)) and inoculated with 5-strain L. monocytogenes cocktail (5.1 x 10(7) CFU/cm(2)) with and without shrimp meat residue attached to surfaces. L. monocytogenes did not survive well on clean reusable gloves and its populations decreased rapidly to non-detectable levels within 30 min at room temperature. However, high levels of Listeria cells were recovered from clean disposable gloves after 30 min of inoculation. Presence of shrimp meat residue on gloves enhanced the survival of L. monocytogenes. Cells of L. monocytogenes were detected on both reusable and disposal gloves even after 2 h at room temperature. Soaking inoculated gloves in EO water at room temperature for 5 min completely eliminated L. monocytogenes on clean gloves (>4.46 log CFU/cm(2) reductions) and significantly (p<0.05) reduced the contamination on soil-containing gloves when compared with tap water treatment. EO water could be used as a sanitizer to reduce L. monocytogenes contamination on gloves and reduce the possibility of transferring L. monocytogenes from gloves to RTE seafoods. PMID:16690154

  13. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C. Judson; MacKenzie, Patricia D.

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  14. Process for removal of ammonia and acid gases from contaminated waters

    DOEpatents

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  15. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  16. [Contamination with genetically modified maize MON863 of processed foods on the market].

    PubMed

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  17. Evaluation, modelling and optimization of the cleaning process of contaminated plastic food refillables.

    PubMed

    Devlieghere, F; De Meulenaer, B; Sekitoleko, P; Estrella Garcia, A A; Huyghebaert, A

    1997-01-01

    In this study several types of bottle materials (glass, PET (polyethylene terephthalate), PC (polycarbonate), HDPE (high density polyethylene), PP (polypropylene) and PVC (polyvinyl chloride)) were evaluated in order to be used as food refillables, comparing the residual chemical contamination after classical caustic washing. Bottles were contaminated with model chemicals (chloroxylenol and d-limonene) and caustic washed with varied process parameters using a simulated laboratory-scale washing procedure. After washing, the chemical-contaminated bottles were filled with water and stored for 28 days at 37 degrees C. The concentrations of the model chemicals in the water after storage were taken as a measure of chemical contamination. The influence of the cleaning parameters (temperature, caustic and commercial additive concentration) was studied using response surface methodology. Washing temperature showed a significant influence on the removal of absorbed chemicals from surfaces compared with the effect of the caustic and especially the additive concentration. Optimization of caustic cleaning for the cleaning process in question led to better cleaning effectiveness, although none of the different washing conditions were able to remove all absorbed chemicals out of the polymeric resins. Commercially available plastic refillables (PET and PC) showed the best chemical rinsability. Glass bottles, however, had in every case the best rinsing characteristics.

  18. Discovery of environmental rhodamine B contamination in paprika during the vegetation process.

    PubMed

    Lu, Qingguo; Gao, Wei; Du, Jingjing; Zhou, Li; Lian, Yunhe

    2012-05-16

    Recently, rhodamine B (RhB) in paprika and chilli has attracted much attention. Almost all the literature has deemed that the detectable RhB was attributed to malicious intents in the fabrication process. However, the occurrence of increasing cases with ultratrace levels of RhB was difficult to understand on the basis of that statement. Here, we report on the discovery of environmental RhB contamination in paprika during its vegetation process. Samples including paprika, soils, and stems collected from seven fields in the Xinjiang Region, China, were detected by ultraperformance liquid chromatography-tandem mass spectrometry. Far from any anthropogenic addition, the ultratrace RhB concentrations in all the paprika samples provided unambiguous evidence that environmental RhB contamination in paprika had really occurred over its growth period. Further illation suggests that the soil contaminated by RhB is one of the major contamination sources and that there may be a degradation of RhB in paprika during the late maturation stage. The discovery has significant implications for re-evaluating the origin of the RhB in paprika- and chilli-containing products.

  19. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  20. Evaluation of environmental control equipment for thin film silicon photovoltaic cell processing: Phase I

    SciTech Connect

    Khanna, A.K.; Gupta, R.; Joseph, A.; Singh, N.; Vojtek, M.E.

    1987-01-01

    Thin film silicon:hydrogen alloys are commanding an increasing share of the photovoltaic marketplace. Due to the hazardous nature of the materials involved in their manufacture, it is important to control and render harmless those reactants that are not consumed as inert coating. Environmental control equipment used for such purposes must meet important safety, throughput, efficiency, and reliability requirements. This report discusses the analytical methodology and performance results obtained for various environmental systems evaluated at a photovoltaic research facility.

  1. Ontology-Based Gap Analysis for Technology Selection: A Knowledge Management Framework for the Support of Equipment Purchasing Processes

    NASA Astrophysics Data System (ADS)

    Macris, Aristomenis M.; Georgakellos, Dimitrios A.

    Technology selection decisions such as equipment purchasing and supplier selection are decisions of strategic importance to companies. The nature of these decisions usually is complex, unstructured and thus, difficult to be captured in a way that will be efficiently reusable. Knowledge reusability is of paramount importance since it enables users participate actively in process design/redesign activities stimulated by the changing technology selection environment. This paper addresses the technology selection problem through an ontology-based approach that captures and makes reusable the equipment purchasing process and assists in identifying (a) the specifications requested by the users' organization, (b) those offered by various candidate vendors' organizations and (c) in performing specifications gap analysis as a prerequisite for effective and efficient technology selection. This approach has practical appeal, operational simplicity, and the potential for both immediate and long-term strategic impact. An example from the iron and steel industry is also presented to illustrate the approach.

  2. Real-time image processing for rapid contaminant detection on broiler carcasses

    NASA Astrophysics Data System (ADS)

    Park, Bosoon; Lawrence, Kurt C.; Windham, William R.; Snead, M. Preston

    2004-11-01

    Recently, the imaging research group at Russell Research Center, ARS in Athens, Georgia has developed a real-time multispectral imaging system for fecal and ingesta contaminant detection on broiler carcasses. The prototype system includes a common aperture camera with three optical trim filters (515.4, 566.4 and 631-nm wavelength), which were selected by visible/NIR spectroscopy and validated by a hyperspectral imaging system. The preliminary results showed that the multispectral imaging technique can be used effectively for detecting feces (from duodenum, ceca, and colon) and ingesta on the surface of poultry carcasses with a processing speed of 140 birds per minute. The accuracy for the detection of fecal and ingesta contaminates was 96%. However, the system contains many false positives including scabs, feathers, and boundaries. This paper demonstrates calibration of common aperture multispectral imaging hardware and real-time multispectral image processing software. The software design, especially the Unified Modeling Language (UML) design approach was used to develop real-time image processing software for on-line application. The UML models including class, object, activity, sequence, and collaboration diagram were discussed. Both hardware and software for a real-time fecal and ingesta contaminant detection were tested at the pilot-scale poultry processing line.

  3. Evaluation of radiation resistance of the bacterial contaminants from femoral heads processed for allogeneic transplantation

    NASA Astrophysics Data System (ADS)

    Singh, Rita; Singh, Durgeshwer

    2009-09-01

    Femoral heads excised during surgery were obtained from patients who had a fractured neck of the femur and were processed as bone allograft. The bacterial contaminants were isolated from femoral heads at different stages of processing and identified based on morphological characteristics and biochemical tests. Bacterial contaminants on bone were mainly Gram-positive bacilli and cocci (58.3%). Twenty-four isolates from bone samples were screened for resistance to radiation. The D10 values for Gram-negative bacteria isolated from femoral heads ranged from 0.17 to 0.65 kGy. Higher D10 values 0.56-1.04 kGy were observed for Gram-positive bacterial isolates.

  4. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    SciTech Connect

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  5. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    SciTech Connect

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.

  6. A signal processing framework for simultaneous detection of multiple environmental contaminants

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subhadeep; Manahan, Michael P.; Mench, Matthew M.

    2013-11-01

    The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the critical need for fundamental research enabling the reliable, unambiguous and early detection of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the identification and classification of simultaneously present multiple environmental contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the extraction of statistically rich information from the current response. The dynamic response, being a function of the degree and mechanism of contamination, is then processed with a symbolic dynamic filter for the extraction of representative patterns, which are then classified using a trained neural network. The approach presented in this paper promises to extend the sensing power and sensitivity of these EC sensors by augmenting and complementing sensor technology with state-of-the-art embedded real-time signal processing capabilities.

  7. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.

    PubMed

    Scholl, Martha A; Cozzarelli, Isabelle M; Christenson, Scott C

    2006-08-10

    site. Organic compounds more labile than the leachate NVDOC may be present in the root zone, and SO(4)(2-) reduction may be coupled to methane oxidation. The results show that sulfur (and possibly nitrogen) redox processes within the top 2 m of the aquifer are directly related to recharge timing and seasonal water level changes in the aquifer. The results suggest that SO(4)(2-) reduction associated with the infiltration of recharge may be a significant factor affecting natural attenuation of contaminants in alluvial aquifers. PMID:16677736

  8. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate

    USGS Publications Warehouse

    Scholl, M.A.; Cozzarelli, I.M.; Christenson, S.C.

    2006-01-01

    present in the root zone, and SO42- reduction may be coupled to methane oxidation. The results show that sulfur (and possibly nitrogen) redox processes within the top 2??m of the aquifer are directly related to recharge timing and seasonal water level changes in the aquifer. The results suggest that SO42- reduction associated with the infiltration of recharge may be a significant factor affecting natural attenuation of contaminants in alluvial aquifers. ?? 2006 Elsevier B.V. All rights reserved.

  9. The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities

    SciTech Connect

    Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M.; Charboneau, S.; Bond, F.

    2006-07-01

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  10. CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES

    SciTech Connect

    HOPKINS, A.M.

    2006-03-17

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  11. MIC damage in a water coolant header for remote process equipment

    SciTech Connect

    Jenkins, C.F.

    1994-09-27

    Stainless steel water piping used to supply coolant for remote chemical separations equipment developed leaks during low flow conditions resulting from an extended interruption of operations. All the leaks occurred at welds in the bottom zone of the pipe, which was blanketed with silt deposits from the unfiltered well water used for cooling. Ultrasonic, radiographic, and metallographic examinations of leak sites revealed worm hole pitting adjacent to the welds. Seepage at the penetrations was strongly acidic and resulted in corrosion on the external pipe surfaces beneath brown crusty deposits which had developed. Analyses of the water and deposits suggest a strong propensity toward microbiologically influenced corrosion (MIC) and fouling.

  12. MIC damage in a water coolant header for remote process equipment

    SciTech Connect

    Jenkins, C.F.

    1996-02-01

    Stainless steel water piping, used to supply coolant for remote chemical separations equipment, developed several leaks during low flow conditions, the result of an extended interruption of operations. All the leaks occurred at welds in the bottom of the pipe, which was blanketed with silt deposits from unfiltered well water used for cooling. Ultrasonic, radiographic, and metallographic examinations of the leak sites revealed worm-hole pitting adjacent to the welds. Seepage at the penetrations was strongly acidic and corroded the external pipe surfaces. Analyses of the water and deposits suggested microbiologically influenced corrosion and fouling.

  13. Medicare Program; Prior Authorization Process for Certain Durable Medical Equipment, Prosthetics, Orthotics, and Supplies. Final rule.

    PubMed

    2015-12-30

    This final rule establishes a prior authorization program for certain durable medical equipment, prosthetics, orthotics, and supplies (DMEPOS) items that are frequently subject to unnecessary utilization. This rule defines unnecessary utilization and creates a new requirement that claims for certain DMEPOS items must have an associated provisional affirmed prior authorization decision as a condition of payment. This rule also adds the review contractor's decision regarding prior authorization of coverage of DMEPOS items to the list of actions that are not initial determinations and therefore not appealable.

  14. Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.

  15. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report

    SciTech Connect

    Brown Jr., G. E.; Chambers, S. A.

    1999-10-31

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals.

  16. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... valve or piping arrangement that will prevent leakage of air into the retort during the process cycle. (5) Water valves. All retort water lines that are intended to be closed during a process cycle shall... leakage of water into the retort during the process cycle. (b) Pressure processing in steam—(1)...

  17. Capping widespread creosote contamination in Eagle Harbor, WA: Problems, process, and prognosis

    SciTech Connect

    Hale, E.; Duncan, P.B.

    1995-12-31

    Eagle Harbor`s marine sediments are contaminated with creosote from a former wood-treatment facility and with mercury from a former shipyard. Under the Superfund remedial investigation process, areas requiring remediation were defined based on comparison to state of Washington sediment management standards for sediment chemistry and biological effects (bioassays for oyster larvae, amphipod). From a variety of cleanup alternatives, capping was selected for a heavily contaminated subtidal area as the most cost-effective way to provide clean benthic habitat, isolate the contamination, and prevent further contaminant migration. Sandy material for the cap was dredged the Snohomish River as part of a routine federal navigation project and, over a six-month period, was placed in Eagle Harbor using two methods. Within ferry navigation lanes, a split hull barge was opened slowly while under tow. In areas with softer bottom sediments, cap material was hosed off a flat-top barge. GPS and real-time mapping of tracklines allowed for even coverage. Monitoring during and after the construction included analysis of suspended sediments (sediment traps on cap periphery), measurements of cap thickness (bathymetry, subbottom profiling, sediment vertical profile photography, settlement plates), and diver observations of nearby eelgrass beds. Final measurements show that the 21.4 hectare cap ranges from 30 to 270 cm thick, but is at least 60 cm thick in more than 60% of the area. Although PAHs were measured in the sediment traps during capping, significant levels have not been found since. Videos indicate the rapid return of epibiota, and the eelgrass surveys indicated no capping impacts on shoot density. Periodic monitoring of the cap is planned, as well as capping of remaining contaminated subtidal areas.

  18. Phototransformation of wastewater-derived trace organic contaminants in open-water unit process treatment wetlands.

    PubMed

    Jasper, Justin T; Sedlak, David L

    2013-10-01

    Open-water cells in unit process treatment wetlands can be used to exploit sunlight photolysis to remove trace organic contaminants from municipal wastewater effluent. To assess the performance of these novel systems, a photochemical model was calibrated using measured photolysis rates for atenolol, carbamazepine, propranolol, and sulfamethoxazole in wetland water under representative conditions. Contaminant transformation by hydroxyl radical ((•)OH) and carbonate radical ((•)CO3(-)) were predicted from steady-state radical concentrations measured at pH values between 8 and 10. Direct photolysis rates and the effects of light screening by dissolved organic matter on photolysis rates were estimated using solar irradiance data, contaminant quantum yields, and light screening factors. The model was applied to predict the land area required for 90% removal of a suite of wastewater-derived organic contaminants by sunlight-induced reactions under a variety of conditions. Results suggest that during summer, open-water cells that receive a million gallons of water per day (i.e., about 4.4 × 10(-2) m(3) s(-1)) of nitrified wastewater effluent can achieve 90% removal of most compounds in an area of about 15 ha. Transformation rates were strongly affected by pH, with some compounds exhibiting faster transformation rates under the high pH conditions associated with photosynthetic algae at the sediment-water interface and other contaminants exhibiting faster transformation rates at the circumneutral pH values characteristic of algae-free cells. Lower dissolved organic carbon concentrations typically resulted in increased transformation rates.

  19. Geochemical information and isotopic ratios in pinpointing the rates of contamination processes generated at mine sites

    NASA Astrophysics Data System (ADS)

    Turunen, Kaisa; Kittilä, Anniina; Backnäs, Soile; Pasanen, Antti; Hendriksson, Nina

    2015-04-01

    The isotopic composition of water is an important fingerprinting method for tracing recharge sources, distribution processes and possible hydraulic connections of mine waters. However, since, the isotopes alone do not indicate the contamination derived from mining activities; also a set of geochemical analysis of harmful substance in water is acquired. This complex approach will allow a detailed insight in migration of potentially harmful substances, their reactions, mixing and dilution in ground and surface waters. The data can be applied also when comparing geogenic and anthropogenic emissions. Isotopic methods are rather new approach to estimate mining related emissions in Finland and thus, a novel approach of isotopic methods for investigation and monitoring of migration of harmful substances from mine sites are tested in two mine sites in Finland. The aim of this study is to assess the emission sources, flow paths and interaction between mine waters, groundwater and surface waters. A set of isotopic data, including S, Li, Mg, U, Sr, Pb, O, and H, will be combined with chemical information and physical parameters of water in order to assess the source and extent of possible contamination as well as the rates of processes that generate or at best attenuate the contamination. The results obtained from water analyses and field measurements will be used in hydrogeochemical modelling for the prediction of chemical transformation and long-term impacts of mining at study site and its surroundings.

  20. Processing practices contributing to Campylobacter contamination in Belgian chicken meat preparations.

    PubMed

    Sampers, Imca; Habib, Ihab; Berkvens, Dirk; Dumoulin, Ann; Zutter, Lieven De; Uyttendaele, Mieke

    2008-12-10

    The aim of this study was to obtain insight into processing practices in the poultry sector contributing to the variability in Campylobacter contamination in Belgian chicken meat preparations. This was achieved by company profiling of eleven food business operators, in order to evaluate variation of processing management, in addition to statistical modelling of microbiological testing results for Campylobacter spp. contamination in 656 end product samples. Almost half (48%) of chicken meat preparation samples were positive for Campylobacter spp. Results revealed a statistically significant variation in Campylobacter contamination between 11 chicken meat producers across Belgium at both quantitative and qualitative detection levels. All producers provided Campylobacter-positive samples, but prevalence ranged from 9% up to 85% at single producer level. The presence or addition of skin during production of chicken meat preparations resulted in almost 2.2-fold increase in the probability of a sample being positive for Campylobacter, while chicken meat preparations made from frozen meat, or partly containing pre-frozen meat, had a significant (Odds Ratio=0.41; CI 95% 0.18:0.98) lower probability of being positive for Campylobacter. However, the quantitative results indicated that the positive freezing effect on Campylobacter count was compromised by the presence and/or adding of skin.

  1. Stable isotope ( 18O) investigations on the processes controlling fluoride contamination of groundwater

    NASA Astrophysics Data System (ADS)

    Datta, P. S.; Deb, D. L.; Tyagi, S. K.

    1996-10-01

    Groundwater is being used extensively in the Delhi area for both irrigation and raw water requirement. Fluoride contamination in groundwater is therefore a matter of concern for the planners and managers of water resources. Stable isotope ( 18O) and fluoride signatures in groundwater have been discussed, in this context, to characterise the sources and controlling processes of fluoride contamination. The study indicates that almost 50% of the area is affected by fluoride contamination beyond the maximum permissible limit. The wide range (0.10-16.5 ppm) in fluoride concentration suggests contributions from both point and non-point sources. Very high fluoride levels in groundwater are mostly found in the vicinity of brick kilns. Significant quantities of evaporated (isotopically enriched) rainfall, irrigation water and surface runoff water from surrounding farmland also percolate along with fluoride salts from the soils to the groundwater system. The process of adsorption and dispersion of fluoride species in the soil as well as lateral mixing of groundwater along specific flow-paths control the groundwater fluoride and 18O composition. The groundwater system has more than two isotopically distinct non-point source origins, causing spatial and temporal variations in fluoride concentration. Issues related to harmful effects of excessive use of high-fluoride groundwater and management options have also been discussed.

  2. Sensitive parameters in predicting exposure contaminants concentration in a risk assessment process.

    PubMed

    Avagliano, Salvatore; Vecchio, Antonella; Belgiorno, Vincenzo

    2005-12-01

    A sensitivity analysis (SA) was conducted on the analytical models considered in the risk-based corrective-action (RBCA) methodology of risk analysis, as developed by the American Society for Testing of Materials (ASTM), to predict a contaminant's concentration in the affected medium at the point of human exposure. These models are of interest because evaluations regarding the best approach to contaminated site remediation are shifting toward increased use of risk-based decision, and the ASTM RBCA methodology represents the most effective and internationally widely used standardized guide for risk assessment process. This paper identifies key physical and chemical parameters that need additional precision and accuracy consideration in order to reduce uncertainty in models prediction, thereby saving time, money and engineering effort in the data collection process. SA was performed applying a variance-based method to organic contaminants migration models with reference to soil-to-groundwater leaching ingestion exposure scenario. Results indicate that model output strongly depends on the organic-carbon partition coefficient, organic-carbon content, net infiltration, Darcy velocity, source-receptor distance, and first-order decay constant.

  3. Microbiologically-influenced corrosion damage in a water coolant header for remote process equipment

    SciTech Connect

    Jenkins, C.F.

    1995-10-01

    Stainless steel water piping, used to supply coolant for remote chemical separations equipment, developed several leaks during low-flow conditions resulting from an extended interruption of operations. All the leaks occurred at welds in the bottom zone of the pipe, which was blanketed with silt deposits from the unfiltered well water used for cooling. Ultrasonic, radiographic, and metallographic examinations of the leak sites revealed worm-hole pitting adjacent to the welds. Seepage at the penetrations was strongly acidic and resulted in corrosion on the external pipe surfaces beneath brown crusty deposits which had developed. Analyses of the water and deposits suggested a strong propensity toward microbiologically-influenced corrosion (MIC) and fouling.

  4. 40 CFR Table 1 to Subpart Uu of... - Batch Processes Monitoring Frequency For Equipment Other Than Connectors

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Equipment Leaks... Monitoring Frequency For Equipment Other Than Connectors Operating time(% of year) Equivalent...

  5. Bioterrorism: processing contaminated evidence, the effects of formaldehyde gas on the recovery of latent fingermarks.

    PubMed

    Hoile, Rebecca; Walsh, Simon J; Roux, Claude

    2007-09-01

    In the present age of heightened emphasis on counter terrorism, law enforcement and forensic science are constantly evolving and adapting to the motivations and capabilities of terrorist groups and individuals. The use of biological agents on a population, such as anthrax spores, presents unique challenges to the forensic investigator, and the processing of contaminated evidence. In this research, a number of porous and non-porous items were contaminated with viable [corrected] spores and marked with latent fingermarks. The test samples were then subjected to a standard formulation of formaldehyde gas. Latent fingermarks were then recovered post decontamination using a range of methods. Standard fumigation, while effective at destroying viable spores, contributed to the degradation of amino acids leading to loss of ridge detail. A new protocol for formaldehyde gas decontamination was developed which allows for the destruction of viable spores and the successful recovery of latent marks, all within a rapid response time of less than 1 h. PMID:17767655

  6. Petroleum refinery secondary effluent polishing using freezing processes--toxicity and organic contaminant removal.

    PubMed

    Gao, W; Smith, D W; Habib, M

    2008-06-01

    A petroleum refinery secondary effluent was treated using two freezing techniques--spray freezing and unidirectional downward freezing (UDF). The freezing processes were effective to remove toxicity and total organic carbon (TOC)- and chemical oxygen demand (COD)-causing materials in the effluent. Agitation of the liquid during UDF significantly improved the impurity separation efficiency; 85 to 96% removal of TOC and COD was achieved without any pretreatment and freezing only 70% of the feed water. The treatment efficiency of the spray freezing was at the same level as that of UDF without mixing. The spray ice with longer storage time released more contaminants with early meltwater. The initial contaminant concentration of the feed water and the freezing temperatures (-10 degrees C and -25 degrees C) had no significant influence on the treatment efficiency. A small fluctuation in effluent TOC concentration caused a dramatic change in effluent toxicity (Microtox). The effective concentration (EC20) (Microtox) was effective in detecting effluent toxicity. PMID:18686927

  7. Characterization of a site contaminated by waste from a monazite ore processing plant

    SciTech Connect

    Lauria, D.C.; Reis, V.R.; Nouailhetas, Y.; Godoy, J.M.; Agudo, E.G.

    1993-12-31

    A radiological survey of an area of 60,000 m{sup 2}, previously occupied by the Usina de Interlagos (USIN), a branch of the Brazilian State Monazite Company was conducted. External exposure gamma rates, surface soil, subsurface soil and groundwater concentration of the long-life radionuclides from the uranium and thorium decay chain were determined. Two areas, one of 4,800 m{sup 2} and other of 1,750 m{sup 2}, were found to be contaminated with different radioactive materials, originating from the chemical and physical processing of the monazite sand. {sup 228}Ra is present up to 2.2 {times} 10{sup 4} Bq/kg in soil and 93 Bq/l in groundwater. Based on future scenarios, an allowable residual contamination level of {sup 232}Th and {sup 226}Ra of around 200 Bq/kg was derived. Clean-up actions are suggested.

  8. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    SciTech Connect

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  9. Carcinogenicity of consumption of red and processed meat: What about environmental contaminants?

    PubMed

    Domingo, José L; Nadal, Martí

    2016-02-01

    In October 26, 2015, the International Agency for Research on Cancer (IARC) issued a press release informing of the recent evaluation of the carcinogenicity of red and processed meat consumption. The consumption of red meat and processed meat was classified as "probably carcinogenic to humans", and as "carcinogenic to humans", respectively. The substances responsible of this potential carcinogenicity would be generated during meat processing, such as curing and smoking, or when meat is heated at high temperatures (N-nitroso-compounds, polycyclic aromatic hydrocarbons and heterocyclic aromatic amines). However, in its assessments, the IARC did not make any reference to the role that may pose some carcinogenic environmental pollutants, which are already present in raw or unprocessed meat. The potential role of a number of environmental chemical contaminants (toxic trace elements, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polybrominated diphenyl ethers, polychlorinated diphenyl ethers, polychlorinated naphthalenes and perfluoroalkyl substances) on the carcinogenicity of consumption of meat and meat products is discussed in this paper. A case-study, Catalonia (Spain), is specifically assessed, while the influence of cooking on the concentrations of environmental pollutants is also reviewed. It is concluded that although certain cooking processes could modify the levels of chemical contaminants in food, the influence of cooking on the pollutant concentrations depends not only on the particular cooking process, but even more on their original contents in each specific food item. As most of these environmental pollutants are organic, cooking procedures that release or remove fat from the meat should tend to reduce the total concentrations of these contaminants in the cooked meat. PMID:26656511

  10. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    DOEpatents

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  11. Mineral-Water Interface Processes Affecting Uranium Fate in Contaminated Sediments

    NASA Astrophysics Data System (ADS)

    Catalano, J. G.

    2011-12-01

    Widespread uranium contamination of soil, sediments, and groundwater systems has resulted from mining activities, nuclear weapon production, and energy generation. The fate and transport of uranium in such systems is strongly affected by geochemical processes occurring at mineral-water interfaces. I will present a summary of the mineral-water interface processes found to affect uranium fate in example contaminated sediments at the U.S. Department of Energy's Hanford sites and in related model systems. Processes occurring under oxic conditions will be the primary focus of this talk as under these conditions uranium is most mobile and thus presents the greatest hazard. Three dominant solid-phase uranium species are observed in contaminated soil and sediments at the Hanford site: uranyl silicates, uranyl phosphates, and uranyl adsorbed to clays and iron oxides. In deep sediments, uranyl silicates are found in microfractures in feldspar grains, likely because slow diffusion in such fractures maintains a high silicate activity. Such silicates are also found in waste-impacted shallow sediments and soil; waste fluids or evaporative processes may have generated the silicate activity needed to produce such phases. Uranyl phosphates are less abundant, occurring primarily in shallow sediments exposed to P-bearing waste fluids. However, remediation approaches under consideration may produce substantial quantities of uranyl phosphates in the future. Adsorbed uranyl is dispersed throughout contaminated soils and shallow sediments and likely has the greatest potential for remobilization. Analogue studies show that precipitation of uranyl phosphates is rapid when such phases are supersaturated and that both homogeneous and heterogeneous nucleation may occur. Specific adsorption of uranyl to minerals is strongly affected by the presence of complexation anions. Carbonate suppresses uranyl adsorption but also forms uranyl-carbonate ternary surface complexes. At conditions below

  12. Pesticide-sampling equipment, sample-collection and processing procedures, and water-quality data at Chicod Creek, North Carolina, 1992

    USGS Publications Warehouse

    Manning, T.K.; Smith, K.E.; Wood, C.D.; Williams, J.B.

    1994-01-01

    Water-quality samples were collected from Chicod Creek in the Coastal Plain Province of North Carolina during the summer of 1992 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Chicod Creek is in the Albemarle-Pamlico drainage area, one of four study units designated to test equipment and procedures for collecting and processing samples for the solid-phase extraction of selected pesticides, The equipment and procedures were used to isolate 47 pesticides, including organonitrogen, carbamate, organochlorine, organophosphate, and other compounds, targeted to be analyzed by gas chromatography/mass spectrometry. Sample-collection and processing equipment equipment cleaning and set-up procedures, methods pertaining to collecting, splitting, and solid-phase extraction of samples, and water-quality data resulting from the field test are presented in this report Most problems encountered during this intensive sampling exercise were operational difficulties relating to equipment used to process samples.

  13. Coal liquefaction and hydrogenation: Processes and equipment. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations of selected patents concerning methods, processes, and apparatus for coal liquefaction and hydrogenation. Included are patents for catalytic two-stage, catalytic single-step, fixed-bed, hydrogen-donor, internal heat transfer, and multi-phase processes. Topics also include catalyst production, catalyst recovery, desulfurization, pretreatment of coals, energy recovery processes, solvent product separation, hydrogenating gases, and pollution control. (Contains 250 citations and includes a subject term index and title list.)

  14. Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility

    SciTech Connect

    Mack, J.E.; Williams, L.C.

    1982-01-01

    Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

  15. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    PubMed

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment.

  16. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue.

    PubMed

    Graham, Margaret C; Farmer, John G; Anderson, Peter; Paterson, Edward; Hillier, Stephen; Lumsdon, David G; Bewley, Richard J F

    2006-07-01

    Past disposal of high-lime chromite ore processing residue (COPR) from a chemical works in S.E. Glasgow, UK, has led to continuing release of toxic and carcinogenic hexavalent chromium (Cr(VI)) to groundwaters which are highly contaminated with Cr(VI)O4(2-). Traditional methods of remediating Cr(VI)-contaminated land, e.g. using ferrous sulfate and organic matter, have had limited success in converting Cr(VI) to less harmful and insoluble Cr(III). This paper describes the first application of calcium polysulfide (CaS(x)) to the remediation of contaminated groundwater and high-lime COPR in a series of laboratory experiments, which have demonstrated the effectiveness of the treatment in quantitatively and rapidly reducing Cr(VI) to Cr(III) over the pH range (8-12.5) typically found at the sites. Cr(III)-organic complexes, present in groundwater at one location, were also effectively precipitated upon treatment with CaS(x). The potential for large-scale use of CaS(x) in the remediation of Cr(VI) from COPR is also discussed.

  17. Natural attenuation processes for remediation of arsenic contaminated soils and groundwater.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2006-12-01

    Arsenic (As) contamination presents a hazard in many countries. Natural attenuation (NA) of As-contaminated soils and groundwater may be a cost-effective in situ remedial option. It relies on the site intrinsic assimilative capacity and allows in-place cleanup. Sorption to solid phases is the principal mechanism immobilizing As in soils and removing it from groundwater. Hydroxides of iron, aluminum and manganese, clay and sulfide minerals, and natural organic matter are commonly associated with soils and aquifer sediments, and have been shown to be significant As adsorbents. The extent of sorption is influenced by As speciation and the site geochemical conditions such as pH, redox potential, and the co-occurring ions. Microbial activity may catalyze the transformation of As species, or mediate redox reactions thus influencing As mobility. Plants that are capable of hyperaccumulating As may translocate As from contaminated soils and groundwater to their tissues, providing the basis for phytoremediation. However, NA is subject to hydrological changes and may take substantial periods of time, thus requiring long-term monitoring. The current understanding of As NA processes remains limited. Sufficient site characterization is critical to the success of NA. Further research is required to develop conceptual and mathematical models to predict the fate and transport of As and to evaluate the site NA capacity. Engineering enhanced NA using environmentally benign products may be an effective alternative.

  18. PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION

    EPA Science Inventory

    Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...

  19. The removal of odors and pyrophorics from produced water sites, sour water tanks, and process equipment using potassium permanganate

    SciTech Connect

    Vella, P.

    1996-12-31

    In the production of oil, the water that is generated contains a number of different organic and inorganic compounds. The compounds that commonly cause problems are those having an odor such as mercaptans and hydrogen sulfide (H{sub 2}S). Disposal of this water is becoming increasingly difficult due to environmental restrictions, especially concerning sulfides. Previous methods for disposal, such as deep well injection, are no longer acceptable. Other alternatives must be found. A similar problem exists at a refinery with respect to sour water. Sour water is defined as any water, process or otherwise, that is contaminated with H{sub 2}S. The sour water is usually cycled between a sour water tank and the unit process requiring the water. At some point in time, the water becomes too contaminated for use in the process, and must be discharged. The water is usually stored in a sour water tank, which can also contain organic sludge, suspended solids, dissolved organics, and other hazardous materials. This paper describes the use of potassium permanganate for the removal of odors at production/refining sites.

  20. Putative Cross-Contamination Routes of Listeria monocytogenes in a Meat Processing Facility in Romania.

    PubMed

    Bolocan, Andrei Sorin; Oniciuc, Elena Alexandra; Alvarez-Ordóñez, Avelino; Wagner, Martin; Rychli, Kathrin; Jordan, Kieran; Nicolau, Anca Ioana

    2015-09-01

    Putative routes of Listeria monocytogenes contamination, based on the workflow of the employees, were studied in a meat processing facility by investigating 226 samples collected from food contact surfaces, non-food contact surfaces, raw materials, and ready-to-eat meat products on four occasions over a 1-year period. In total, 19.7% of non-food contact surfaces, 22.9% of food contact surfaces, 45% of raw materials, and 20% of ready-to-eat meat products were positive for L. monocytogenes (analyzed by the International Organization for Standardization standard method ISO 11290). Pulsed-field gel electrophoresis (PFGE) profiles were determined for a representative subset of these isolates, and 11 distinct pulsotypes were identified, two of which were frequently isolated (T4 and T8) and considered persistent. Strains from the various pulsotypes were screened for the presence of bcrABC and qacH, the genes responsible for tolerance responses to quaternary ammonium compounds. Two strains harbored bcrABC, and these strains had a higher benzalkonium chloride tolerance; however, they were not considered persistent strains. The frequently isolated PFGE pulsotype T8 strains were highly adhesive to abiotic surfaces at 10 and 20°C; however, the pulsotype T6 strain, which was isolated only at the last sampling time, had the highest adhesion ability, and the pulsotype T4 strain (the second most persistent pulsotype) had only modest adhesion. Four putative cross-contamination routes were confirmed by mapping the persistent and other isolates. This information could allow a food safety manager to adjust the work flow to improve the hygienic conditions in a meat processing facility. This study revealed the prevalence and persistence of L. monocytogenes strains in a meat processing facility and established the importance of developing strategies to avoid cross-contamination, recalls, and outbreaks of listeriosis.

  1. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.

    PubMed

    Liu, Chengchu; Duan, Jingyun; Su, Yi-Cheng

    2006-02-15

    The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p<0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments. PMID:16219378

  2. Comparison of Eh and H2 measurements for delineating redox processes in a contaminated aquifer

    USGS Publications Warehouse

    Chapelle, Francis H.; Haack, Sheridan K.; Adriaens, Peter; Henry, Mark A.; Bradley, Paul M.

    1996-01-01

    Measurements of oxidation−reduction potential (Eh) and concentrations of dissolved hydrogen (H2) were made in a shallow groundwater system contaminated with solvents and jet fuel to delineate the zonation of redox processes. Eh measurements ranged from +69 to −158 mV in a cross section of the contaminated plume and accurately delineated oxic from anoxic groundwater. Plotting measured Eh and pH values on an equilibrium stability diagram indicated that Fe(III) reduction was the predominant redox process in the anoxic zone and did not indicate the presence of methanogenesis and sulfate reduction. In contrast, measurements of H2concentrations indicated that methanogenesis predominated in heavily contaminated sediments near the water table surface (H2 ∼ 7.0 nM) and that the methanogenic zone was surrounded by distinct sulfate-reducing (H2 ∼ 1−4 nM) and Fe(III)-reducing (H2 ∼ 0.1−0.8 nM) zones. The presence of methanogenesis, sulfate reduction, and Fe(III) reduction was confirmed by the distribution of dissolved oxygen, sulfate, Fe(II), and methane in groundwater. These results show that H2 concentrations were more useful for identifying anoxic redox processes than Ehmeasurements in this groundwater system. However, H2-based redox zone delineations are more reliable when H2 concentrations are interpreted in the context of electron-acceptor (oxygen, nitrate, sulfate) availability and the presence of final products [Fe(II), sulfide, methane] of microbial metabolism.

  3. Geochemical and microbiological methods for evaluating anaerobic processes in an aquifer contaminated by landfill leachate

    USGS Publications Warehouse

    Cozzarelli, I.M.; Suflita, J.M.; Ulrich, G.A.; Harris, S.H.; Scholl, M.A.; Schlottmann, J.L.; Christenson, S.

    2000-01-01

    A combined geochemical and microbiological approach was needed to delineate the biogeochemical processes occurring in an aquifer contaminated by landfill leachate in Norman, OK, where the important microbially mediated reactions in an anoxic plume were iron reduction, sulfate reduction, and methanogenesis. The highest rates of sulfate reduction (13.2 ??M/day) were detected near the water table where sulfate levels were maximal (up to 4.6 mM). The enrichment of 34S in the sulfate pools (??34S of SO42- was 67-69%0), and dissolved hydrogen measurements provided additional support for the importance of sulfate reduction near the water table. Methane was detected in the center of the plume where sulfate was depleted. Microbial incubations demonstrated concomitant sulfate reduction and methanogenesis in the anoxic portion of the plume. Although high concentrations of soluble reduced iron were detected throughout the aquifer and H2 levels were indicative of iron reduction under steady-state conditions, microbiological experiments showed that iron reduction was active only at the edges of the sulfate-depleted portion of the plume. This study demonstrates the benefits of using a combined geochemical and microbiological approach to elucidate the spatial distribution of biogeochemical processes in contaminated aquifers.A combined geochemical and microbiological approach was needed to delineate the biogeochemical processes occurring in an aquifer contaminated by landfill leachate in Norman, OK, where the important microbially mediated reactions in an anoxic plume were iron reduction, sulfate reduction, and methanogenesis. The highest rates of sulfate reduction (13.2 ??M/day) were detected near the water table where sulfate levels were maximal (up to 4.6 mM). The enrichment of 34S in the sulfate pools (??34S of SO42- was 67-69 per mil), and dissolved hydrogen measurements provided additional support for the importance of sulfate reduction near the water table. Methane was

  4. Summary report on the demonstration of the Duratek process for treatment of mixed-waste contaminated groundwater

    SciTech Connect

    Singh, S.P.N.; Lomenick, T.F.

    1992-04-01

    This report presents the results of the demonstration of the Duratek process for removal of radioactive and hazardous waste compounds from mixed-waste contaminated groundwaters found at the Department of Energy (DOE) sites managed by Martin Marietta Energy Systems (Energy Systems). The process uses Duratek proprietary Durasil{reg_sign} ion-exchange media to remove the above contaminants from the water to produce treated water that can meet current and proposed drinking water quality standards with regard to the above contaminants. The demonstration showed that the process is simple, compact, versatile, and rugged and requires only minimal operator attention. It is thus recommended that this process be considered for remediating the mixed-waste contaminated waters found at the Energy Systems-managed DOE sites.

  5. Summary report on the demonstration of the Duratek process for treatment of mixed-waste contaminated groundwater

    SciTech Connect

    Singh, S.P.N.; Lomenick, T.F.

    1992-04-01

    This report presents the results of the demonstration of the Duratek process for removal of radioactive and hazardous waste compounds from mixed-waste contaminated groundwaters found at the Department of Energy (DOE) sites managed by Martin Marietta Energy Systems (Energy Systems). The process uses Duratek proprietary Durasil{reg sign} ion-exchange media to remove the above contaminants from the water to produce treated water that can meet current and proposed drinking water quality standards with regard to the above contaminants. The demonstration showed that the process is simple, compact, versatile, and rugged and requires only minimal operator attention. It is thus recommended that this process be considered for remediating the mixed-waste contaminated waters found at the Energy Systems-managed DOE sites.

  6. Improving petroleum contaminated land remediation decision-making through the MCA weighting process.

    PubMed

    Balasubramaniam, Anopama; Boyle, Alexander Rohan; Voulvoulis, Nikolaos

    2007-01-01

    Internationally petroleum contamination is widespread, posing serious environmental risks including surface and groundwater contamination, thus remediation is essential. The implementation of remediation options is becoming more complex with the increasing influence of stakeholders on the outcome of decision-making processes. Acceptance of remediation schemes during implementation can be increased by involving stakeholders and the public in the decision-making stage. In petroleum remediation involving multiple stakeholders, Multicriteria Analysis has been employed due to its ability to incorporate the preferences of each stakeholder through weighting. The research focused on investigating ways to improve the weighting process. The study demonstrated the utility of SWING, and determined which type of participant and how many participants to include in the decision process, through the application of ELECTRE III and Weighted Summation. It was recommended that a mixture of stakeholders, the public and experts be involved. The total number of participants will be limited by the choice of participatory and weighting methods. The careful selection of participants, as well as the choice of participatory and weighting methods, can minimize the subjectivity involved in MCA weighting, thereby lending decisions in petroleum remediation greater legitimacy.

  7. Tracing the contamination origin of coliform bacteria in two small food-processing factories.

    PubMed

    Tominaga, Tatsuya; Sekine, Masahiro; Oyaizu, Hiroshi

    2008-09-01

    The objective of this study was to trace contamination sources of coliform bacteria by comparing the types of coliforms between food samples and the processing environments in two small food-processing factories (factories A and B). Fermentation tests of five sugars enabled the successful classification of 16 representative type strains into eight distinct groups. The grouping procedure was then applied to comparison of the coliform flora between food products and various locations in their processing environments. The consistency between each food and the tested locations was evaluated using the Jaccard index. The air conditioner and refrigeration room floor in factory A showed an index of 1.00, while the shaping machine in factory B showed an index of 0.98, indicating that these locations could be contamination sources. The validity of our results was confirmed by randomly amplified polymorphic DNA, which showed 100% matched profiles between the air conditioner and the food in factory A, and highly matched profiles between the machine and the food in factory B. This method for comparing the coliform flora between food and environments has the potential to be a reliable tracing tool for various food industries. PMID:18810877

  8. Ecotoxicity of arsenic contaminated sludge after mixing with soils and addition into composting and vermicomposting processes.

    PubMed

    Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub

    2016-11-01

    Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays. PMID:27348256

  9. Ecotoxicity of arsenic contaminated sludge after mixing with soils and addition into composting and vermicomposting processes.

    PubMed

    Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub

    2016-11-01

    Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays.

  10. Toxicological investigations in the semiconductor industry: IV. Studies on the subchronic oral toxicity and genotoxicity of vacuum pump oils contaminated by waste products from aluminum plasma etching processes.

    PubMed

    Bauer, S; Wolff, I; Werner, N; Schmidt, R; Blume, R; Pelzing, M

    1995-01-01

    Dry etching processes in semiconductor manufacturing use ionized gases in closed reactors at pressures below 1 torr. Vacuum pump systems that service the reaction chambers are potential sources of exposure to complex mixtures of inorganic and organic compounds. These mixtures consist of unused process gases and process by-products that condense and accumulate in the vacuum pump oils. To evaluate potential hazards of dry etch vacuum equipment, a contaminated vacuum pump oil sample from a BCl3/Cl2 etching process was analyzed. The waste oil was administered by gavage for 14 or 28 days to male and female Wistar rats. Neither death nor behavioral changes occurred after subchronic treatment or during a 14-day posttreatment period. Only slight effects on body weights, clinical chemistry, and hematology data were seen in the exposed animals, although the livers of all waste oil-exposed rats of both sexes showed remarkable hypertrophic degenerations. Genotoxicological investigations were performed through the Ames assay (Salmonella assay) and the Micronucleus assay. The contaminated oil sample caused clear genotoxic effects in both test systems. PMID:8677517

  11. Automatic Data Processing Equipment (ADPE) acquisition plan for the medical sciences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An effective mechanism for meeting the SLSD/MSD data handling/processing requirements for Shuttle is discussed. The ability to meet these requirements depends upon the availability of a general purpose high speed digital computer system. This system is expected to implement those data base management and processing functions required across all SLSD/MSD programs during training, laboratory operations/analysis, simulations, mission operations, and post mission analysis/reporting.

  12. The analysis and minimization of oxygen contamination in the powder processing of molybdenum disilicide

    SciTech Connect

    Shannon, K.

    1994-04-24

    Problems with MoSi{sub 2} include low-temperature fracture toughness, high-temperature creep resistance, and ``pest`` phenomena. Oxygen introduced by powder processing may be the cause of some of these problems. This study led to the following conclusions: Supplied powders have significant oxygen present prior to processing (up to 2.5 %), in the form of silica on the surface. This oxygen contamination did not increase by exposure to air at room temperature. An improved powder processing method was developed that uses glass encapsulation. Analysis of microstructures created from powders that contained 4900 to 24,100 ppM oxygen showed that the silica was transferred to the fully dense MoSi{sub 2} as SiO{sub 2} inclusions. A method of producing MoSi{sub 2} with less oxygen was attempted.

  13. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents.

    PubMed

    Ohyama, Seiichi; Abe, Keiko; Ohsumi, Hitoshi; Kobayashi, Hirokazu; Miyazaki, Naotsugu; Miyadera, Koji; Akasaka, Kin-ichi

    2009-06-01

    Fully automated measuring equipment for aqueous boron (referred to as the online boron monitor) was developed on the basis of a rapid potentiometric determination method using a commercial BF4(-) ion-selective electrode (ISE). The equipment can measure boron compounds with concentration ranging from a few to several hundred mg/L, and the measurement is completed in less than 20 min without any pretreatment of the sample. In the monitor, a series of operations for the measurement, i.e., sampling and dispensing of the sample, addition of the chemicals, acquisition and processing of potentiometric data, rinsing of the measurement cell, and calibration of the BF4(-) ISE, is automated. To demonstrate the performance, we installed the monitor in full-scale coal-fired power plants and measured the effluent from a flue gas desulfurization unit. The boron concentration in the wastewater varied significantly depending on the type of coal and the load of power generation. An excellent correlation (R2 = 0.987) was obtained in the measurements between the online boron monitor and inductively coupled plasma atomic emission spectrometry, which proved that the developed monitor can serve as a useful tool for managing boron emission in industrial process effluent.

  14. Contamination Control

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Upjohn Company sought a solution to their problem of potential particulate contamination of sterile injectable drugs. Contamination was caused by dust particles attracted by static electrical charge, which clung to plastic curtains in clean rooms. Upjohn found guidance in NASA Tech Briefs which provided detailed information for reducing static electricity. Guidelines for setting up static free work stations, materials and equipment needed to maintain antistatic protection.

  15. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  16. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  17. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1.

    PubMed

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-12-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by (137)Cesium ((137)Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as (132)Te-(132)I, (131)I, (134)Cs and (137)Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h(-1) per initial (137)Cs deposition of 1000 kBq m(-2), whereas it was 100 μGy h(-1) around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m(-2) for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums ((134)Cs + (137)Cs) around Chernobyl and Fukushima-1, respectively.

  18. Hygiene and Safety in the Meat Processing Environment from Butcher Shops: Microbiological Contamination and Listeria monocytogenes.

    PubMed

    Silva, Danilo Augusto Lopes da; Dias, Mariane Rezende; Cossi, Marcus Vinícius Coutinho; Castilho, Natália Parma Augusto de; Camargo, Anderson Carlos; Nero, Lúis Augusto

    2016-04-01

    The quality and safety of meat products can be estimated by assessing their contamination by hygiene indicator microorganisms and some foodborne pathogens, with Listeria monocytogenes as a major concern. To identify the main sources of microbiological contamination in the processing environment of three butcher shops, surface samples were obtained from the hands of employees, tables, knives, inside butcher displays, grinders, and meat tenderizers (24 samples per point). All samples were subjected to enumeration of hygiene indicator microorganisms and detection of L. monocytogenes, and the obtained isolates were characterized by their serogroups and virulence genes. The results demonstrated the absence of relevant differences in the levels of microbiological contamination among butcher shops; samples with counts higher than reference values indicated inefficiency in adopted hygiene procedures. A total of 87 samples were positive for Listeria spp. (60.4%): 22 from tables, 20 from grinders, 16 from knives, 13 from hands, 9 from meat tenderizers, and 7 from butcher shop displays. Thirty-one samples (21.5%) were positive for L. monocytogenes, indicating the presence of the pathogen in meat processing environments. Seventy-four L. monocytogenes isolates were identified, with 52 from serogroups 1/2c or 3c and 22 from serogroups 4b, 4d, 4a, or 4c. All 74 isolates were positive for hlyA, iap, plcA, actA, and internalins (inlA, inlB, inlC, and inlJ). The establishment of appropriate procedures to reduce microbial counts and control the spread of L. monocytogenes in the final steps of the meat production chain is of utmost importance, with obvious effects on the quality and safety of meat products for human consumption.

  19. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1.

    PubMed

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-12-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by (137)Cesium ((137)Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as (132)Te-(132)I, (131)I, (134)Cs and (137)Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h(-1) per initial (137)Cs deposition of 1000 kBq m(-2), whereas it was 100 μGy h(-1) around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m(-2) for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums ((134)Cs + (137)Cs) around Chernobyl and Fukushima-1, respectively. PMID:26568603

  20. Comparison of the accident process, radioactivity release and ground contamination between Chernobyl and Fukushima-1

    PubMed Central

    Imanaka, Tetsuji; Hayashi, Gohei; Endo, Satoru

    2015-01-01

    In this report, we have reviewed the basic features of the accident processes and radioactivity releases that occurred in the Chernobyl accident (1986) and in the Fukushima-1 accident (2011). The Chernobyl accident was a power-surge accident that was caused by a failure of control of a fission chain reaction, which instantaneously destroyed the reactor and building, whereas the Fukushima-1 accident was a loss-of-coolant accident in which the reactor cores of three units were melted by decay heat after losing the electricity supply. Although the quantity of radioactive noble gases released from Fukushima-1 exceeded the amount released from Chernobyl, the size of land area severely contaminated by 137Cesium (137Cs) was 10 times smaller around Fukushima-1 compared with around Chernobyl. The differences in the accident process are reflected in the composition of the discharged radioactivity as well as in the composition of the ground contamination. Volatile radionuclides (such as 132Te-132I, 131I, 134Cs and 137Cs) contributed to the gamma-ray exposure from the ground contamination around Fukishima-1, whereas a greater variety of radionuclides contributed significantly around Chernobyl. When radioactivity deposition occurred, the radiation exposure rate near Chernobyl is estimated to have been 770 μGy h−1 per initial 137Cs deposition of 1000 kBq m−2, whereas it was 100 μGy h−1 around Fukushima-1. Estimates of the cumulative exposure for 30 years are 970 and 570 mGy per initial deposition of 1000 kBq m−2 for Chernobyl and Fukusima-1, respectively. Of these exposures, 49 and 98% were contributed by radiocesiums (134Cs + 137Cs) around Chernobyl and Fukushima-1, respectively. PMID:26568603

  1. 40 CFR 63.1324 - Batch process vents-monitoring equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... position before any substantial heat exchange occurs. (ii) Where a catalytic incinerator is used... required. (3) Where a boiler or process heater of less than 44 megawatts design heat input capacity is used... appropriate adjustments for pressure drop. (B) If the scrubber is subject to regulations in 40 CFR parts...

  2. 9 CFR 381.305 - Equipment and procedures for heat processing systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Chart graduations shall not exceed 2 °F (or 1 °C) within a range of 10 °F (or 5 °C) of the process... devices shall be installed either within the retort shell or in external wells attached to the retort... within the retort shell or in external wells attached to the retort. External wells shall be connected...

  3. Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

    SciTech Connect

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

    2009-03-23

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the

  4. METHODS OF PREVENTING THE SPREAD OF ZINC CONTAMINATION DURING VACUUM PROCESSING

    SciTech Connect

    Korinko, P.; Stoner, K.; Duncan, A.

    2013-11-20

    Radioactive zinc, {sup 65}Zn, was detected after a thermal vacuum process that extracted a desired product from articles out of a commercial light water reactor. While the facility is designed to handle radioactive materials, the location of the {sup 65}Zn was in an area that is not designed for gamma emitting contaminants. A series of experiments were conducted to entrain the contaminant in an easily replaceable trap within the process piping. The experiments were conducted with increasing levels of complexity. Initially a simple apparatus was developed to determine the effect of substrate temperature on the vapor capture, this was followed by experiments to determine the effect of filter pore size on pumping and trapping, finally the interactive effects of both pore size and temperature were evaluated. The testing was conducted on a system that used a roughing vacuum pump using model and prototypic materials. It was determined that heating the substrate to nominally 200°C resulted in effective trapping on the model as well as prototypic material.

  5. Environmental assessment on a soil washing process of a Pb-contaminated shooting range site: a case study.

    PubMed

    Kim, Do-Hyung; Hwang, Bo-Ram; Moon, Deok-Hyun; Kim, Yong-Seok; Baek, Kitae

    2013-12-01

    In this study, an environmental assessment on a soil washing process for the remediation of a Pb-contaminated shooting range site was conducted, using a green and sustainable remediation tool, i.e., SiteWise ver. 2, based on data relating specifically to the actual remediation project. The entire soil washing process was classified into four major stages, consisting of soil excavation (stage I), physical separation (stage II), acid-based (0.2 N HCl) chemical extraction (stage III), and wastewater treatment (stage IV). Environmental footprints, including greenhouse gas (GHG) emissions, energy consumption, water consumption, and critical air pollutant productions such as PM10, NO x , and SO x , were calculated, and the relative contribution of each stage was analyzed in the environmental assessment. In stage I, the relative contribution of the PM10 emissions was 55.3 % because the soil excavation emitted the fine particles. In stage II, the relative contribution of NO x and SO x emissions was 42.5 and 52.5 %, respectively, which resulted from electricity consumption for the operation of the separator. Stage III was the main contributing factor to 63.1 % of the GHG emissions, 67.5 % of total energy used, and 37.4 % of water consumptions. The relatively high contribution of stage III comes from use of consumable chemicals such as HCl and water-based extraction processes. In stage IV, the relative contributions of GHG emissions, total energy used, and NO x and SO x emissions were 23.2, 19.4, 19.5, and 25.3 %, respectively, which were caused by chemical and electricity demands for system operation. In conclusion, consumable chemicals such as HCl and NaOH, electric energy consumption for system operation, and equipment use for soil excavation were determined to be the major sources of environmental pollution to occur during the soil washing process. Especially, the acid-based chemical extraction process should be avoided in order to improve the sustainability of soil

  6. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  7. Virtual welding equipment for simulation of GMAW processes with integration of power source regulation

    NASA Astrophysics Data System (ADS)

    Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander

    2011-06-01

    A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.

  8. An integrated bioremediation process for petroleum hydrocarbons removal and odor mitigation from contaminated marine sediment.

    PubMed

    Zhang, Zhen; Lo, Irene M C; Yan, Dickson Y S

    2015-10-15

    This study developed a novel integrated bioremediation process for the removal of petroleum hydrocarbons and the mitigation of odor induced by reduced sulfur from contaminated marine sediment. The bioremediation process consisted of two phases. In Phase I, acetate was dosed into the sediment as co-substrate to facilitate the sulfate reduction process. Meanwhile, akaganeite (β-FeOOH) was dosed in the surface layer of the sediment to prevent S(2-) release into the overlying seawater. In Phase II, NO3(-) was injected into the sediment as an electron acceptor to facilitate the denitrification process. After 20 weeks of treatment, the sequential integration of the sulfate reduction and denitrification processes led to effective biodegradation of total petroleum hydrocarbons (TPH), in which about 72% of TPH was removed. In Phase I, the release of S(2-) was effectively controlled by the addition of akaganeite. The oxidation of S(2-) by Fe(3+) and the precipitation of S(2-) by Fe(2+) were the main mechanisms for S(2-) removal. In Phase II, the injection of NO3(-) completely inhibited the sulfate reduction process. Most of residual AVS and S(0) were removed within 4 weeks after NO3(-) injection. The 16S rRNA clone library-based analysis revealed a distinct shift of bacterial community structure in the sediment over different treatment phases. The clones affiliated with Desulfobacterales and Desulfuromonadales were the most abundant in Phase I, while the clones related to Thioalkalivibrio sulfidophilus, Thiohalomonas nitratireducens and Sulfurimonas denitrificans predominated in Phase II.

  9. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%.

  10. Remediation of Pb/Cr co-contaminated soil using electrokinetic process and approaching electrode technique.

    PubMed

    Ng, Yee-Sern; Sen Gupta, Bhaskar; Hashim, Mohd Ali

    2016-01-01

    Electrokinetic process has emerged as an important tool for remediating heavy metal-contaminated soil. The process can concentrate heavy metals into smaller soil volume even in the absence of hydraulic flow. This makes it an attractive soil pre-treatment method before other remediation techniques are applied such that the chemical consumption in the latter stage can be reduced. The present study evaluates the feasibility of electrokinetic process in concentrating lead (Pb) and chromium (Cr) in a co-contaminated soil using different types of wetting agents, namely 0.01 M NaNO3, 0.1 M citric acid and 0.1 M EDTA. The data obtained showed that NaNO3 and citric acid resulted in poor Pb electromigration in this study. As for Cr migration, these agents were also found to give lower electromigration rate especially at low pH region as a result of Cr(VI) adsorption and possible reduction into Cr(III). In contrast, EDTA emerged as the best wetting agent in this study as it formed water-soluble anionic complexes with both Pb and Cr. This provided effective one-way electromigration towards the anode for both ions, and they were accumulated into smaller soil volume with an enrichment ratio of 1.55-1.82. A further study on the application of approaching cathode in EDTA test showed that soil alkalisation was achieved, but this did not provide significant enhancement on electromigration for Pb and Cr. Nevertheless, the power consumption for electrokinetic process was decreased by 22.5%. PMID:26330317

  11. Spectrum correction algorithm for detectors in airborne radioactivity monitoring equipment NH-UAV based on a ratio processing method

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Tang, Xiao-Bin; Wang, Peng; Meng, Jia; Huang, Xi; Wen, Liang-Sheng; Chen, Da

    2015-10-01

    The unmanned aerial vehicle (UAV) radiation monitoring method plays an important role in nuclear accidents emergency. In this research, a spectrum correction algorithm about the UAV airborne radioactivity monitoring equipment NH-UAV was studied to measure the radioactive nuclides within a small area in real time and in a fixed place. The simulation spectra of the high-purity germanium (HPGe) detector and the lanthanum bromide (LaBr3) detector in the equipment were obtained using the Monte Carlo technique. Spectrum correction coefficients were calculated after performing ratio processing techniques about the net peak areas between the double detectors on the detection spectrum of the LaBr3 detector according to the accuracy of the detection spectrum of the HPGe detector. The relationship between the spectrum correction coefficient and the size of the source term was also investigated. A good linear relation exists between the spectrum correction coefficient and the corresponding energy (R2=0.9765). The maximum relative deviation from the real condition reduced from 1.65 to 0.035. The spectrum correction method was verified as feasible.

  12. The relationships of salmonellae from infected broiler flocks, transport crates or processing plants to contamination of eviscerated carcases.

    PubMed Central

    Rigby, C E; Pettit, J R; Bentley, A H; Spencer, J L; Salomons, M O; Lior, H

    1982-01-01

    Three flocks raised for broiler or roaster performance tests were studied to determine the incidence and sources of salmonellae during the growing period, transport and processing and to relate these to contamination of processed carcasses. Day old chicks in two of the tests, (tests IV and V), were treated with a culture of intestinal anaerobes derived from mature chickens. The incidence of salmonellae during the growing period was too low to permit any conclusions about the efficacy of this culture in preventing Salmonella infection, but it had no adverse effect on flock performance. Carcasses from all three flocks were contaminated with salmonellae. Although the test IV flock was raised free of salmonellae, 46% of the carcasses tested from this flock were contaminated. The apparent source was the transport crates, 99% of which yielded salmonellae before the flock was loaded. In test V, 92% of the carcasses tested yielded salmonellae. The apparent sources were: flock infection (apparently originating from the parent flock), contaminated crates, spread during transport, and plant contamination. The flock of test VI was infected with Salmonella albany, and 54% of the carcasses tested were contaminated with this serovar. Carcasses of chicks infected early in life were more likely to be contaminated than those of chickens which contacted salmonellae later in the growing period. PMID:7127193

  13. Homogenous VUV advanced oxidation process for enhanced degradation and mineralization of antibiotics in contaminated water.

    PubMed

    Pourakbar, Mojtaba; Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-03-01

    This study was aimed to evaluate the degradation and mineralization of amoxicillin(AMX), using VUV advanced process. The effect of pH, AMX initial concentration, presence of water ingredients, the effect of HRT, and mineralization level by VUV process were taken into consideration. In order to make a direct comparison, the test was also performed by UVC radiation. The results show that the degradation of AMX was following the first-order kinetic. It was found that direct photolysis by UVC was able to degrade 50mg/L of AMX in 50min,while it was 3min for VUV process. It was also found that the removal efficiency by VUV process was directly influenced by pH of the solution, and higher removal rates were achieved at high pH values.The results show that 10mg/L of AMX was completely degraded and mineralized within 50s and 100s, respectively, indicating that the AMX was completely destructed into non-hazardous materials. Operating the photoreactor in contentious-flow mode revealed that 10mg/L AMX was completely degraded and mineralized at HRT values of 120s and 300s. it was concluded that the VUV advanced process was an efficient and viable technique for degradation and mineralization of contaminated water by antibiotics. PMID:26669695

  14. Treatment Processes for Removal of Wastewater Contaminants (WERF Report INFR8SG09)

    EPA Science Inventory

    This study investigated the nature of colloids associated with wastewater effluents. It also evaluated the association of emerging contaminants with these wastewater colloids. Two distinct emerging contaminants were investigated to gain general insight into the potential importan...

  15. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    PubMed

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.

  16. Reservoir and contaminated sediments impacts in high-Andean environments: Morphodynamic interactions with biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Escauriaza, C. R.; Contreras, M. T.; Müllendorff, D. A.; Pasten, P.; Pizarro, G. E.

    2014-12-01

    Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and biogeochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long-term. The future construction of a reservoir in the Lluta river, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments. Research has been supported by Fondecyt grant 1130940 and CONICYT/FONDAP Grant 15110017

  17. Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes

    DOE PAGESBeta

    Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph

    2016-02-24

    Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg–1. Analysis of δ15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less

  18. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    PubMed

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. PMID:24875868

  19. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    Microbial Enhanced Oil Recovery (MEOR) and remediation of aquifers contaminated with hydrophobic contaminants require insitu production of biosurfactants for mobilization of entrapped hydrophobic liquids. Most of the biosurfactant producing microorganisms produce them under aerobic condition and hence surfactant production is limited in subsurface condition due to lack of oxygen. Currently bioremediation involves expensive air sparging or excavation followed by exsitu biodegradation. Use of microorganisms which can produce biosurfactants under anaerobic conditions can cost effectively expedite the process of insitu bioremediation or mobilization. In this work, the feasibility of anaerobic biosurfactant production in three mixed anaerobic cultures prepared from groundwater and soil contaminated with chlorinated compounds and municipal sewage sludge was investigated. The cultures were previously enriched under complete anaerobic conditions in the presence of Tetrachloroethylene (PCE) for more than a year before they were studied for biosurfactant production. Biosurfactant production under anaerobic conditions was simulated using two methods: i) induction of starvation in the microbial cultures and ii) addition of complex fermentable substrates. Positive result for biosurfactant production was not observed when the cultures were induced with starvation by adding PCE as blobs which served as the only terminal electron acceptor. However, slight reduction in interfacial tension was noticed which was caused by the adherence of microbes to water-PCE interface. Biosurfactant production was observed in all the three cultures when they were fed with complex fermentable substrates and surface tension of the liquid medium was lowered below 35 mN/m. Among the fermentable substrates tested, vegetable oil yielded highest amount of biosurfactant in all the cultures. Complete biodegradation of PCE to ethylene at a faster rate was also observed when vegetable oil was amended to the

  20. A multi-level systems approach for the development of tools, equipment and work processes for the construction industry.

    PubMed

    Vedder, Joachim; Carey, Eilís

    2005-07-01

    Ergonomics is a key issue in the construction industry. Many work tasks and associated equipment and tools are not designed with ergonomics principles in mind. Often, in the development of power tools for construction, any attention to ergonomics is restricted to the human-machine interface and handle design. The need for ergonomics intervention in the development process originates from considerations of safety, health, physical work load, and productivity. It is argued that in each of these respects, the construction industry has lower standards than other industries and therefore has a need and opportunity for improvement. A multi-level ergonomics approach is proposed addressing these issues. The approach defines five levels of ergonomics intervention, from designing individual tools for safety, to designing wider aspects of construction and work flow for optimal productivity. This holistic approach is illustrated using case study examples of the development of power tools and work methods.

  1. Coatings for protection of equipment for biochemical processing of geothermal residues: Progress report FY`97

    SciTech Connect

    Allan, M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobacillus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  2. COATINGS FOR PROTECTION OF EQUIPMENT FOR BIOCHEMICAL PROCESSING OF GEOTHERMAL RESIDUES: PROGRESS REPORT FY 97

    SciTech Connect

    ALLAN,M.L.

    1997-11-01

    Thermal sprayed ethylene methacrylic acid (EMAA) and ethylene tetrafluoroethylene (ETFE), spray-and-bake ETFE and polyvinylidene fluoride (PVDF) and brushable ceramic-epoxy coatings were evaluated for corrosion protection in a biochemical process to treat geothermal residues. The findings are also relevant to other moderate temperature brine environments where corrosion is a problem. Coupon, Atlas cell, peel strength, cathodic disbondment and abrasion tests were performed in aggressive environments including geothermal sludge, hypersaline brine and sulfur-oxidizing bacteria (Thiobadus ferrooxidans) to determine suitability for protecting storage tanks and reaction vessels. It was found that all of the coatings were resistant to chemical attack and biodegradation at the test temperature of 55 C. The EMAA coatings protected 316L stainless steel from corrosion in coupon tests. However, corrosion of mild steel substrates thermal sprayed with EMAA and ETFE occurred in Atlas cell tests that simulated a lined reactor operating environment and this resulted in decreased adhesive strength. Peel tests to measure residual adhesion revealed that failure mode was dependent on exposure conditions. Long-term tests on the durability of ceramic-epoxy coatings in brine and bacteria are ongoing. Initial indications are that this coating has suitable characteristics. Abrasion tests showed that the ceramic-epoxy had good resistance to the abrasive effects of sludge. Thermal sprayed EMAA coatings also displayed abrasion resistance. Cathodic disbondment tests in brine at room temperature indicated that EMAA coatings are resistant to disbondment at applied potentials of {minus}780 to {minus}1,070 mV SCE for the test conditions and duration. Slight disbondment of one specimen occurred at a potential of {minus}1,500 mV SCE. The EMAA may be suited to use in conjunction with cathodic protection although further long-term, higher temperature testing would be needed.

  3. Troubleshooting rotating equipment

    SciTech Connect

    Wong, R.F. )

    1992-10-01

    This paper reports that equipment problems in a Peruvian refinery illustrate the process engineer's role as a troubleshooter. Examples show that rotating equipment problems can stem from mechanical or process factors and involve both inspection/maintenance specialists and process engineers.

  4. Effects of trace contaminants on catalytic processing of biomass-derived feedstocks.

    PubMed

    Elliott, Douglas C; Peterson, Keith L; Muzatko, Danielle S; Alderson, Eric V; Hart, Todd R; Neuenschwander, Gary G

    2004-01-01

    Model compound testing was conducted in a batch reactor to evaluate the effects of trace contaminant components on catalytic hydrogenation of sugars. Trace components are potential catalyst poisons when processing biomass feedstocks to value-added chemical products. Trace components include inorganic elements such as alkali metals and alkaline earths, phosphorus, sulfur, aluminum, silicon, chloride, or transition metals. Protein components in biomass feedstocks can lead to formation of peptide fractions (from hydro-lysis) or ammonium ions (from more severe breakdown), both of which might interfere with catalysis. The batch reactor tests were performed in a 300-mL stirred autoclave, with multiple liquid samples withdrawn over the period of the experiment. Evaluation of these test results suggests that most of the catalyst inhibition is related to nitrogen-containing components. PMID:15054234

  5. Plant processes important for the transformation and degradation of explosives contaminants.

    PubMed

    Best, Elly P H; Kvesitadze, G K; Khatisahvili, G; Sadunishvili, T

    2005-01-01

    Environmental contamination by explosives is a worldwide problem. Of the 20 energetic compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are the most powerful and commonly used. Nitroamines are toxic and considered as possible carcinogens. The toxicity and persistence of nitroamines requires that their fate in the environment be understood and that contaminated soil and groundwater be remediated. This study, written as a minireview, provides further insights for plant processes important for the transformation and degradation of explosives. Plants metabolize TNT and the distribution of the transformation products, conjugates, and bound residues appears to be consistent with the green liver model concept. Metabolism of TNT in plants occurs by reduction as well as by oxidation. Reduction probably plays an important role in the tolerance of plants towards TNT, and, therefore a high nitroreductase capacity may serve as a biochemical criterion for the selection of plant species to remediate TNT. Because the activities and the inducibilities of the oxidative enzymes are far lower than of nitroreductase, reducing processes may predominate. However, oxidation may initiate the route to conjugation and sequestration leading ultimately to detoxification of TNT, and, therefore, particularly the oxidative pathway deserves more study. It is possible that plants metabolize RDX also according to the green liver concept. In the case of plant metabolism of HMX, a conclusion regarding compliance with the green liver concept was not reached due to the limited number of available data.

  6. Redox processes and release of organic matter after thermal treatment of a TCE-contaminated aquifer.

    PubMed

    Friis, A K; Albrechtsen, H J; Heron, G; Bjerg, P L

    2005-08-01

    Redox conditions in heated and unheated microcosm experiments were studied to evaluate the effect of thermal remediation treatment on biogeochemical processes in subsurface environments. The results were compared to field-scale observations from thermal treatments of contaminated sites. Trichloroethene-contaminated aquifer material and groundwater from Ft. Lewis, WA were incubated for 200 days at ambient temperature (i.e., 10 degrees C) or heated to 100 degrees C for 10 days and cooled slowly over a period of 150 days to mimic a thermal treatment. Increases of up to 14 mM dissolved organic carbon were observed in the aqueous phase after heating. Redox conditions did generally not change during heating in the laboratory experiment, and only minor changes occurred as an effect of heat treatment in the field. The conditions were slightly manganese/iron-reducing in two sediments and possibly sulfate-reducing in the third sediment based on production of up to 0.20 mM dissolved iron and 0.15 mM dissolved manganese and consumption of 0.08 mM sulfate. The calculated energy gain of less than -20 kJ/mol H2 for iron and sulfate reduction as well as methane production indicated that these processes were thermodynamically favorable. Sulfate reduction and methane production occurred in the unheated microcosms upon lactate amendment. Little or no reduction of the redox level was identified in heated lactate-amended microcosms, possibly because of limited microbial activity. Because the redox conditions, pH, and alkalinity remained within normal aquifer levels upon heating, bioaugmentation may be feasible for stimulating anaerobic dechlorination in heated samples or in future field applications.

  7. Remediating ethylbenzene-contaminated clayey soil by a surfactant-aided electrokinetic (SAEK) process.

    PubMed

    Yuan, Ching; Weng, Chih-Huang

    2004-10-01

    The objectives of this research are to investigate the remediation efficiency and electrokinetic behavior of ethylbenzene-contaminated clay by a surfactant-aided electrokinetic (SAEK) process under a potential gradient of 2 Vcm(-1). Experimental results indicated that the type of processing fluids played a key role in determining the removal performance of ethylbenzene from clay in the SAEK process. A mixed surfactant system consisted of 0.5% SDS and 2.0% PANNOX 110 showed the best performance of ethylbenzene removed in the SAEK system. The removal efficiency of ethylbenzene was determined to be 63-98% in SAEK system while only 40% was achieved in an electrokinetic system with tap water as processing fluid. It was found that ethylbenzene was accumulated in the vicinity of anode in an electrokinetic system with tap water as processing fluid. However, the concentration front of ethylbenzene was shifted toward cathode in the SAEK system. The electroosmotic permeability and power consumption were 0.17 x 10(-6)-3.01 x 10(-6) cm(2)V(-1)s(-1) and 52-123 kW h m(-3), respectively. The cost, including the expense of energy and surfactants, was estimated to be 5.15-12.65 USD m(-3) for SAEK systems, which was 2.0-4.9 times greater than that in the system of electrokinetic alone (2.6 USD m(-3)). Nevertheless, by taking the remediation efficiency of ethylbenzene and the energy expenditure into account for the overall process performance evaluation, the system SAEK was still a cost-effective alternative treatment method.

  8. FIELD METHODS TO MEASURE CONTAMINANT REMOVAL EFFECTIVENESS OF GAS-PHASE AIR FILTRATION EQUIPMENT - PHASE 1: SEARCH OF LITERATURE AND PRIOR ART

    EPA Science Inventory

    The report, Phase 1 of a two-phase research project, gives results of a literature search into the
    effectiveness of in-field gas-phase air filtration equipment (GPAFE) test methods, including required instrumentation and costs. GPAFE has been used in heating, ventilation, and ...

  9. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    SciTech Connect

    Puls, R.W.

    1991-07-01

    Identification and understanding of the chemical, physical, and biological processes controlling subsurface contaminant migration is essential for making accurate predictions on the fate and transport of these constituents. Remediation assessment requires these predictions where pollution from municipal and industrial activities has occurred, and for the responsible siting of waste isolation and storage facilities. Geochemical processes include ion-exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport. Current approaches to quantify the effect of these processes on transport in a ground water system primarily involve laboratory techniques. These include the use of closed static systems (batch experiments) and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. The latter approach may be more representative of in situ conditions than the former, however, when compared to large-scale field experiments both are still constrained by: differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors, scaling factors for laboratory versus field data, corroboration or confirmation of batch and column results, and for validation of sampling techniques.

  10. Modeling the Kinetics of Contaminants Oxidation and the Generation of Manganese(III) in the Permanganate/Bisulfite Process.

    PubMed

    Sun, Bo; Dong, Hongyu; He, Di; Rao, Dandan; Guan, Xiaohong

    2016-02-01

    Permanganate can be activated by bisulfite to generate soluble Mn(III) (noncomplexed with ligands other than H2O and OH(-)) which oxidizes organic contaminants at extraordinarily high rates. However, the generation of Mn(III) in the permanganate/bisulfite (PM/BS) process and the reactivity of Mn(III) toward emerging contaminants have never been quantified. In this work, Mn(III) generated in the PM/BS process was shown to absorb at 230-290 nm for the first time and disproportionated more easily at higher pH, and thus, the utilization rate of Mn(III) for decomposing organic contaminant was low under alkaline conditions. A Mn(III) generation and utilization model was developed to get the second-order reaction rate parameters of benzene oxidation by soluble Mn(III), and then, benzene was chosen as the reference probe to build a competition kinetics method, which was employed to obtain the second-order rate constants of organic contaminants oxidation by soluble Mn(III). The results revealed that the second-order rate constants of aniline and bisphenol A oxidation by soluble Mn(III) were in the range of 10(5)-10(6) M(-1) s(-1). With the presence of soluble Mn(III) at micromolar concentration, contaminants could be oxidized with the observed rates several orders of magnitude higher than those by common oxidation processes, implying the great potential application of the PM/BS process in water and wastewater treatment.

  11. The Impact of Biofilms on the Process of Back Diffusion From a Contaminated Rock Matrix

    NASA Astrophysics Data System (ADS)

    Yungwirth, G. A.; Novakowski, K. S.; Ross, N.

    2005-12-01

    Groundwater remediation in fractured rock settings is complicated by the diffusion of contaminants into the rock matrix and the subsequent back diffusion into the fractures. The process of back diffusion, in particular, leads to extended periods of low-level contamination in the fracture network that persists long after the source area is hydraulically or otherwise removed. In such a case, we hypothesize that back diffusion could be limited by growing a biofilm which coats the rock fracture surface and potentially invades the rock micropores. This would effectively sequester the contamination potentially in perpetuity. To explore the viability of this concept, diffusion experiments were conducted in which the effect of biofilm growth on diffusion through thin (0.8 to 1.2 cm) slices of dolostone core obtained from the Lockport Formation, Southern Ontario, was investigated. The experiments were conducted using a double-cell method, in which the core slices were encapsulated inside Teflon coated hydraulic hose, fitted with ultra high molecular weight polyethylene endcaps having stainless steel sample ports. Diffusion was established across the core slice by spiking one reservoir with a conservative tracer and monitoring the tracer arrival in the reservoir located on the other side of the coupon. The experiments were conducted both in the presence and absence of a biofilm. Biofilm was grown on the rock coupons in a separate bath before the coupons were transferred to the apparatus for the diffusion experiments. Microbial populations indigenous to the groundwater used in the bath were stimulated to form the biofilm with the addition of a beef extract and peptone nutrient broth in 1g/L concentration. The extent of biofilm growth was monitored using a modified Dubois et al (1956) colorimetric method for sugar determination. Results were simulated using an analytical model that was developed for the geometry of the diffusion experiments. Governing equations for the model

  12. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes.

    PubMed

    Rybnikova, V; Usman, M; Hanna, K

    2016-09-01

    Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe(0), Fe/Ni, Fe3O4, Fe3 - x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe(0) and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe(0) and Fe/Ni (18-19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250-500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings

  13. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    NASA Technical Reports Server (NTRS)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  15. Processing results of 1,800 gallons of mercury and radioactively contaminated mixed waste rinse solution

    SciTech Connect

    Thiesen, B.P.

    1993-01-01

    The mercury-contaminated rinse solution (INEL waste ID{number_sign} 123; File 8 waste) was successfully treated at the Idaho National Engineering Laboratory (INEL). This waste was generated during the decontamination of the Heat Transfer Reactor Experiment 3 (HTRE-3) reactor shield tank. Approximately 1,800 gal of waste was generated and was placed into 33 drums. Each drum contained precipitated sludge material ranging from 1--10 in. in depth, with the average depth of about 2.5 in. The pH of each drum varied from 3--11. The bulk liquid waste had a mercury level of 7.0 mg/l, which exceeded the Resource Conservation and Recovery Act (RCRA) limit of 0.2 mg/l. The average liquid bulk radioactivity was about 2.1 pCi/ml, while the average sludge contamination was about 13,800 pci/g. Treatment of the waste required separation of the liquid from the sludge, filtration, pH adjustment, and ion exchange. Because of difficulties in processing, three trials were required to reduce the mercury levels to below the RCRA limit. In the first trial, insufficient filtration of the waste allowed solid particulate produced during pH adjustment to enter into the ion exchange columns and ultimately the waste storage tank. In the second trial, the waste was filtered down to 0.1 {mu} to remove all solid mercury compounds. However, before filtration could take place, a solid mercury complex dissolved and mercury levels exceeded the RCRA limit after filtration. In the third trial, the waste was filtered through 0.3-A filters and then passed through the S-920 resin to remove the dissolved mercury. The resulting solution had mercury levels at 0.0186 mg/l and radioactivity of 0.282 pCi/ml. This solution was disposed of at the TAN warm waste pond, TAN782, TSF-10.

  16. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.

    PubMed

    Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E

    2015-12-01

    Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pH<2 due to the instability of CH particles in acid media. Langmuir isotherm described better than Freundlich and Temkin equations the equilibrium adsorption data. Pseudo-second order rate provided the best fitting to the kinetic data in comparison to pseudo-first order and Elovich equations. Chemical analysis to determine the oxidation state of the adsorbed Cr, showed that Cr(VI) was adsorbed on CH particles without further reduction; in contrast Cr(VI) removed from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water. PMID:26151484

  17. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.

    PubMed

    Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E

    2015-12-01

    Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pH<2 due to the instability of CH particles in acid media. Langmuir isotherm described better than Freundlich and Temkin equations the equilibrium adsorption data. Pseudo-second order rate provided the best fitting to the kinetic data in comparison to pseudo-first order and Elovich equations. Chemical analysis to determine the oxidation state of the adsorbed Cr, showed that Cr(VI) was adsorbed on CH particles without further reduction; in contrast Cr(VI) removed from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water.

  18. An Inventory of Skills and Knowledge Necessary for a Career as a Data Processing Equipment Maintenance Technician, Computer Technician, or Computer Repairer.

    ERIC Educational Resources Information Center

    Hawaii State Board for Vocational Education, Honolulu.

    In response to a mandate in the 1984 Perkins Act, representatives of Hawaii's computer/data processing industry and state council on vocational education formed a technical committee to develop an inventory of the skills and knowledge necessary for a career as a data processing equipment maintenance technician, a computer technician, or a computer…

  19. THE EXPANDED USE OF DATA PROCESSING EQUIPMENT IN THE LOS ANGELES COLLEGES, AN INFORMATIONAL REPORT OF THE DIVISION OF COLLEGE AND ADULT EDUCATION, LOS ANGELES CITY SCHOOLS.

    ERIC Educational Resources Information Center

    LOMBARDI, JOHN; WARBURTON, T. STANLEY

    A STUDY OF THE POTENTIAL APPLICATIONS OF DATA PROCESSING EQUIPMENT AND SERVICES IN THIS MULTICAMPUS DISTRICT SHOWED THAT USES COULD BE DIVIDED INTO THREE CLASSES--(1) ADMINISTRATION AND SERVICES, INCLUDING DECISION MAKING, PROCESSING, COMMUNICATING, AND SUMMARIZING, (2) DIRECT AND INDIRECT SERVICES TO FACULTY MEMBERS, AND (3) INSTRUCTION. TO…

  20. Composition and process for organic and metal contaminant fixation in soil

    DOEpatents

    Schwitzgebel, Klaus

    1994-02-08

    A method and compositions using a first ferrous iron containing solution with the iron concentration in excess of theoretical requirements to treat a contaminated site to reduce hexavalent chromium to trivalent chromium and coprecipitate trivalent chromium with other heavy metals and using a second solution of silicate containing a destabilizing salt to form a relatively impermeable gel in the contaminated site thereby fixing metals and organics to the extent that there should be no detectable ground water contamination.

  1. Heap leaching of Cu contaminated soil with [S,S]-EDDS in a closed process loop.

    PubMed

    Finzgar, Neza; Zumer, Alenka; Lestan, Domen

    2006-07-31

    Heap leaching of Cu contaminated soil (412+/-11 mg kg(-1)) with 5 mmol kg(-1) ethylenediamine disuccinate [S,S]-EDDS as a chelator was tested in a laboratory-scale soil column study. The washing solution was recycled in a closed process loop after microbial (using a microbially active permeable bed, composed of substrate and absorbent) and oxidative chemical (using combined ozonation and UV irradiation) degradation of metal-[S,S]-EDDS complexes and retention of released Cu on a commercial absorbent Slovakite. Heap leaching using the permeable bed removed 25.5+/-3.6% of initial total Cu from the soil. Ozone/UV treatment of the [S,S]-EDDS washing solution removed much more, 47.5+/-7.4%, of Cu. Both methods yielded a clear and colorless final (waste) washing solution, with 7.0+/-10.0 and 2.6+/-0.7 mg L(-1) Cu (permeable bed and ozone/UV method, respectively). The results of our study indicate that chemical treatment of chelator washing solution with ozone/UV in a closed process loop could lead to the development of a new, efficient and environmentally safe remediation method with controllable Cu emissions. PMID:16439058

  2. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect

    Lambrecht, Bill; Dixon, Joe; Neuville, John R.

    2012-07-01

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  3. ADAPTIVE WATER SENSOR SIGNAL PROCESSING: EXPERIMENTAL RESULTS AND IMPLICATIONS FOR ONLINE CONTAMINANT WARNING SYSTEMS

    EPA Science Inventory

    A contaminant detection technique and its optimization algorithms have two principal functions. One is the adaptive signal treatment that suppresses background noise and enhances contaminant signals, leading to a promising detection of water quality changes at a false rate as low...

  4. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY MEMBRANE AND GAC PROCESSES

    EPA Science Inventory

    Bench-scale treatment data for membrane and granular activated carbon technologies are presented for the organic contaminants on the U.S. Environmental Protection Agency's Contaminant Candidate List (CCL). For granular activated carbon (GAC), isotherm results are presented and q...

  5. ADVANCED OXIDATION PROCESSES IN THE TREATMENT OF CONTAMINANT CANDIDATE LIST (CCL) COMPOUNDS

    EPA Science Inventory

    The current (2nd) Contaminant Candidate List was completed in 2005 by the United States EPA as an update to the Safe Drinking Water Act. The list of 42 chemical contaminants spans a wide array of classes, from pesticides to pharmaceuticals to elements, all of which are anticipate...

  6. Torque coordinating robust control of shifting process for dry dual clutch transmission equipped in a hybrid car

    NASA Astrophysics Data System (ADS)

    Zhao, Z.-G.; Chen, H.-J.; Yang, Y.-Y.; He, L.

    2015-09-01

    For a hybrid car equipped with dual clutch transmission (DCT), the coordination control problems of clutches and power sources are investigated while taking full advantage of the integrated starter generator motor's fast response speed and high accuracy (speed and torque). First, a dynamic model of the shifting process is established, the vehicle acceleration is quantified according to the intentions of the driver, and the torque transmitted by clutches is calculated based on the designed disengaging principle during the torque phase. Next, a robust H∞ controller is designed to ensure speed synchronisation despite the existence of model uncertainties, measurement noise, and engine torque lag. The engine torque lag and measurement noise are used as external disturbances to initially modify the output torque of the power source. Additionally, during the torque switch phase, the torque of the power sources is smoothly transitioned to the driver's demanded torque. Finally, the torque of the power sources is further distributed based on the optimisation of system efficiency, and the throttle opening of the engine is constrained to avoid sharp torque variations. The simulation results verify that the proposed control strategies effectively address the problem of coordinating control of clutches and power sources, establishing a foundation for the application of DCT in hybrid cars.

  7. A new process and equipment for waste minimization: Conversion of NO(x) scrubber liquor to fertilizer

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Barile, Ronald G.; Gamble, Paul H.; Lueck, Dale E.; Young, Rebecca C.

    1995-01-01

    A new emissions control system for the oxidizer scrubbers that eliminates the current oxidizer liquor waste and lowers the NO(x) emissions is described. Since fueling and deservicing spacecraft constitute the primary operations in which environmental emissions occur, this will eliminate the second largest waste stream at KSC. This effort is in accord with Executive Order No. 12856 (Federal Compliance with Right-to-Know Laws and Pollution Prevention Requirements, data 6 Aug. 1993) and Executive Order No. 12873 (Federal Acquisition, Recycling, and Waste Prevention, dated 20 Oct. 1993). A recent study found that the efficiencies of the oxidizer scrubbers during normal operations ranged from 70 percent to 99 percent. The new scrubber liquor starts with 1% hydrogen peroxide at a pH of 7 and the process control system adds hydrogen peroxide and potassium hydroxide to the scrubber liquor to maintain those initial conditions. The result is the formation of a solution of potassium nitrate, which is sold as a fertilizer. This report describes the equipment and procedures used to monitor and control the conversion of the scrubber liquor to fertilizer, while reducing the scrubber emissions.

  8. The Influence of Process Equipment on the Properties of Suspension Plasma Sprayed Yttria-Stabilized Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Marr, Michael; Waldbillig, David; Kesler, Olivera

    2013-03-01

    Suspension plasma-sprayed YSZ coatings were deposited at lab-scale and production-type facilities to investigate the effect of process equipment on coating properties. The target application for these coatings is solid oxide fuel cell (SOFC) electrolytes; hence, dense microstructures with low permeability values were preferred. Both facilities had the same torch but different suspension feeding systems, torch robots, and substrate holders. The lab-scale facility had higher torch-substrate relative speeds compared with the production-type facility. On porous stainless steel substrates, permeabilities and microstructures were comparable for coatings from both facilities, and no segmentation cracks were observed. Coating permeability was further reduced by increasing substrate temperatures during deposition or reducing suspension feed rates. On SOFC cathode substrates, coatings made in the production-type facility had higher permeabilities and more segmentation cracks compared with coatings made in the lab-scale facility. Increased cracking in coatings from the production-type facility was likely caused mainly by its lower torch-substrate relative speed.

  9. Evaluation of a remediation process for lead contaminated soil by toxicity bioassays: Plants and earthworms

    SciTech Connect

    Chana, L.W.; Smith, K.

    1995-12-31

    Soil from a site contaminated with heavy metals (predominantly lead) was treated using the TERRAMET{reg_sign} lead extraction process. Earthworm acute toxicity and plant seed germination/root elongation (SG/RE) bioassays were used to evaluate the toxicity of the soil before treatment (BT), after treatment (AT) and after treatment, followed by rinsing with water, intended to simulate exposure to rainfall (RT). The results showed BT and RT were not toxic to earthworms in a 14-day exposure while AT showed significant toxicity. The LC{sub 50} values for Eisenia and Lumbricus were 44.04 and 28.83 (as % AT soil/test soil mixture), respectively. The phytotoxicity data indicated that all 3 test soils significantly inhibited lettuce SG/RE in a dose-related manner, with AT being the most phytotoxic. In oats, RT had no effect on SG/RE and AT was more toxic than BT. For the two local-site grass seeds tested (blue grama and sideoat grama), the AT soil was the most phytotoxic followed by BT and RT. The results suggest that the soil after this remediation process exerts significant toxicity on both plant and earthworm, but after a rain-simulating rinse, the toxicity is the same as, or less than, the toxicity before treatment. Further studies are in progress to confirm the assumption that the high salt concentrations generated by acidification during the leaching process, followed by neutralization are responsible for the increased toxicity of unrinsed soil in both plant and earthworm.

  10. Toxicological benchmarks for screening potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    SciTech Connect

    Will, M.E.; Suter, G.W. II

    1994-09-01

    One of the initial stages in ecological risk assessments for hazardous waste sites is the screening of contaminants to determine which of them are worthy of further consideration as {open_quotes}contaminants of potential concern.{close_quotes} This process is termed {open_quotes}contaminant screening.{close_quotes} It is performed by comparing measured ambient concentrations of chemicals to benchmark concentrations. Currently, no standard benchmark concentrations exist for assessing contaminants in soil with respect to their toxicity to soil- and litter-dwelling invertebrates, including earthworms, other micro- and macroinvertebrates, or heterotrophic bacteria and fungi. This report presents a standard method for deriving benchmarks for this purpose, sets of data concerning effects of chemicals in soil on invertebrates and soil microbial processes, and benchmarks for chemicals potentially associated with United States Department of Energy sites. In addition, literature describing the experiments from which data were drawn for benchmark derivation. Chemicals that are found in soil at concentrations exceeding both the benchmarks and the background concentration for the soil type should be considered contaminants of potential concern.

  11. Treatment of plutonium contaminated soil/sediment from the Mound site using the ACT*DE*CON{sup SM} process

    SciTech Connect

    Negri, M.C.; Swift, N.A.; North, J.P.

    1996-10-01

    The removal and/or treatment of contaminated soil is a major problem facing the US DOE. The EG&G Mound Applied Technologies site in Miamisburg, Ohio, has an estimated 1.5 million cubic feet of soils from past disposal and waste burial practices awaiting remediation from plutonium contamination. This amount includes sediment from the Miami-Erie Canal that was contaminated in 1969 following a pipe- rupture accident. Conventional soil washing techniques that use particle separation would generate too large a waste volume to be economically feasible. Therefore, innovative technologies are needed for the cleanup. The ACT*DE*CON process was developed by SELENTEC for washing soils to selectively dissolve and remove heavy metals and radionuclides. ACT*DE*CON chemically dissolves and removes heavy metals and radionuclides from soils and sediments into an aqueous medium. The ACT*DE*CON process uses oxidative carbonate/chelant chemistry to dissolve the contaminant from the sediment and hold the contaminant in solution. The objective of recent work was to document the proves conditions necessary to achieve the Mound-site and regulatory-cleanup goals using the ACT*DE*CON technology.

  12. A Review of International Space Station Habitable Element Equipment Offgassing Characteristics

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2010-01-01

    Crewed spacecraft trace contaminant control employs both passive and active methods to achieve acceptable cabin atmospheric quality. Passive methods include carefully selecting materials of construction, employing clean manufacturing practices, and minimizing systems and payload operational impacts to the cabin environment. Materials selection and manufacturing processes constitute the first level of equipment offgassing control. An element-level equipment offgassing test provides preflight verification that passive controls have been successful. Offgassing test results from multiple International Space Station (ISS) habitable elements and cargo vehicles are summarized and implications for active contamination control equipment design are discussed

  13. Equipment decontamination: A brief survey of the DOE complex

    SciTech Connect

    Conner, C.; Chamberlain, D.B; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes.

  14. Technical assessment of processes to enable recycling of low-level contaminated metal waste

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

  15. Microbiological contamination and resistance genes in biofilms occurring during the drinking water treatment process.

    PubMed

    Farkas, Anca; Butiuc-Keul, Anca; Ciatarâş, Dorin; Neamţu, Călin; Crăciunaş, Cornelia; Podar, Dorina; Drăgan-Bularda, Mihail

    2013-01-15

    Biofilms are the predominant mode of microbial growth in drinking water systems. A dynamic exchange of individuals occurs between the attached and planktonic populations, while lateral gene transfer mediates genetic exchange in these bacterial communities. Integrons are important vectors for the spread of antimicrobial resistance. The presence of class 1 integrons (intI1, qac and sul genes) was assessed in biofilms occurring throughout the drinking water treatment process. Isolates from general and specific culture media, covering a wide range of environmental bacteria, fecal indicators and opportunistic pathogens were tested. From 96 isolates tested, 9.37% were found to possess genetic determinants of putative antimicrobial resistance, and these occurred in both Gram-positive and Gram-negative bacteria. Class 1 integron integrase gene was present in 8.33% of bacteria, all positive for the qacEΔ1 gene. The sul1 gene was present in 3.12% of total isolates, representing 37.5% of the class 1 integron positive cells. The present study shows that biofilm communities in a drinking water treatment plant are a reservoir of class 1 integrons, mainly in bacteria that may be associated with microbiological contamination. Eight out of nine integron bearing strains (88.8%) were identified based on 16S rRNA gene sequencing as either enteric bacteria or species that may be connected to animal and anthropogenic disturbance.

  16. Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics.

    PubMed

    Banerjee, Souvik; Dastidar, M G

    2005-11-01

    A study was conducted to examine the potential of jute processing waste (JPW) for the treatment of wastewater contaminated with dye and other organics generated from various activities associated with jute cultivation and fibre production. Adsorption studies in batch mode have been conducted using dye solution as an adsorbate and JPW as an adsorbent. A comparative adsorption study was made with standard adsorbents such as powdered and granular activated carbon (PAC and GAC, respectively). A maximum removal of 81.7% was obtained with methylene blue dye using JPW as compared to 61% using PAC and 40% using GAC under similar conditions. The adsorption potential of JPW was observed to be dependent on various parameters such as type of dye, initial dye concentration, pH and dosage of adsorbent. The batch sorption data conformed well to the Langmuir and Freundlich isotherms. However, lower BOD (33.3%) and COD (13.8%) removal from retting effluent was observed using JPW as compared to 75.6% BOD removal and 71.1% COD removal obtained with GAC.

  17. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    PubMed

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils. PMID:27380094

  18. Implications of Using Thermal Desorption to Remediate Contaminated Agricultural Soil: Physical Characteristics and Hydraulic Processes.

    PubMed

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Derby, Nathan E; Wick, Abbey F

    2016-07-01

    Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils.

  19. The food processing contaminant glyoxal promotes tumour growth in the multiple intestinal neoplasia (Min) mouse model.

    PubMed

    Svendsen, Camilla; Høie, Anja Hortemo; Alexander, Jan; Murkovic, Michael; Husøy, Trine

    2016-08-01

    Glyoxal is formed endogenously and at a higher rate in the case of hyperglycemia. Glyoxal is also a food processing contaminant and has been shown to be mutagenic and genotoxic in vitro. The tumourigenic potential of glyoxal was investigated using the multiple intestinal neoplasia (Min) mouse model, which spontaneously develops intestinal tumours and is susceptible to intestinal carcinogens. C57BL/6J females were mated with Min males. Four days after mating and throughout gestation and lactation, the pregnant dams were exposed to glyoxal through drinking water (0.0125%, 0.025%, 0.05%, 0.1%) or regular tap water. Female and male offspring were housed separately from PND21 and continued with the same treatment. One group were only exposed to 0.1% glyoxal from postnatal day (PND) 21. There was no difference in the number of intestinal tumours between control and treatment groups. However, exposure to 0.1% glyoxal starting in utero and at PND21 caused a significant increase in tumour size in the small intestine for male and female mice in comparison with respective control groups. This study suggests that glyoxal has tumour growth promoting properties in the small intestine in Min mice.

  20. Hazard analysis of Listeria monocytogenes contaminations in processing of salted roe from walleye pollock (Theragra chalcogramma) in Hokkaido, Japan.

    PubMed

    Takeshi, Koichi; Kitagawa, Masahiko; Kadohira, Mutsuyo; Igimi, Shizunobu; Makino, Sou-Ichi

    2009-01-01

    Hazard analysis of Listeria monocytogenes contamination during processing of salted walleye pollock (Theragra chalcogramma) roe was performed for a seafood plant in Japan from December 2005 to February 2006. As a result, L. monocytogenes number was detected on the pallet used for transport of barrels in the salting process and one of the rollers of the roller conveyor, which rotates while in contact with the bottoms of the barrels, but was not detected in any raw materials, interim products or final products. Thus, we believe that the pallet contamination initially occurred because of insufficient washing, that it was passed on to the bottoms of the barrels and that it was then passed on the roller of the roller conveyor by cross-contamination. Therefore, it is possible that interim and final products may become contaminated by processing devices and machinery. In addition, we conducted an inoculation study designed at the 1/20 actual factory scale using interim products with or without artificial color and seeded with L. monocytogenes to observe changes in its growth. In the inoculation study, multiplication of L. monocytogenes during the salting process was not confirmed in the samples with artificial color.

  1. Hazard analysis of Listeria monocytogenes contaminations in processing of salted roe from walleye pollock (Theragra chalcogramma) in Hokkaido, Japan.

    PubMed

    Takeshi, Koichi; Kitagawa, Masahiko; Kadohira, Mutsuyo; Igimi, Shizunobu; Makino, Sou-Ichi

    2009-01-01

    Hazard analysis of Listeria monocytogenes contamination during processing of salted walleye pollock (Theragra chalcogramma) roe was performed for a seafood plant in Japan from December 2005 to February 2006. As a result, L. monocytogenes number was detected on the pallet used for transport of barrels in the salting process and one of the rollers of the roller conveyor, which rotates while in contact with the bottoms of the barrels, but was not detected in any raw materials, interim products or final products. Thus, we believe that the pallet contamination initially occurred because of insufficient washing, that it was passed on to the bottoms of the barrels and that it was then passed on the roller of the roller conveyor by cross-contamination. Therefore, it is possible that interim and final products may become contaminated by processing devices and machinery. In addition, we conducted an inoculation study designed at the 1/20 actual factory scale using interim products with or without artificial color and seeded with L. monocytogenes to observe changes in its growth. In the inoculation study, multiplication of L. monocytogenes during the salting process was not confirmed in the samples with artificial color. PMID:19194081

  2. Analysis of Process Gases and Trace Contaminants in Membrane-Aerated Gaseous Effluent Streams.

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Lunn, Griffin Michael; Meyer, Caitlin E.

    2015-01-01

    In membrane-aerated biofilm reactors (MABRs), hollow fibers are used to supply oxygen to the biofilms and bulk fluid. A pressure and concentration gradient between the inner volume of the fibers and the reactor reservoir drives oxygen mass transport across the fibers toward the bulk solution, providing the fiber-adhered biofilm with oxygen. Conversely, bacterial metabolic gases from the bulk liquid, as well as from the biofilm, move opposite to the flow of oxygen, entering the hollow fiber and out of the reactor. Metabolic gases are excellent indicators of biofilm vitality, and can aid in microbial identification. Certain gases can be indicative of system perturbations and control anomalies, or potentially unwanted biological processes occurring within the reactor. In confined environments, such as those found during spaceflight, it is important to understand what compounds are being stripped from the reactor and potentially released into the crew cabin to determine the appropriateness or the requirement for additional mitigation factors. Reactor effluent gas analysis focused on samples provided from Kennedy Space Center's sub-scale MABRs, as well as Johnson Space Center's full-scale MABRs, using infrared spectroscopy and gas chromatography techniques. Process gases, such as carbon dioxide, oxygen, nitrogen, nitrogen dioxide, and nitrous oxide, were quantified to monitor reactor operations. Solid Phase Microextraction (SPME) GC-MS analysis was used to identify trace volatile compounds. Compounds of interest were subsequently quantified. Reactor supply air was examined to establish target compound baseline concentrations. Concentration levels were compared to average ISS concentration values and/or Spacecraft Maximum Allowable Concentration (SMAC) levels where appropriate. Based on a review of to-date results, current trace contaminant control systems (TCCS) currently on board the ISS should be able to handle the added load from bioreactor systems without the need

  3. REVIEW OF MULTI-AGENCY RADIATION SURVEY & SITE INVESTIGATION MANUAL (MARSSIM) SUPPLEMENT: MULTI-AGENCY RADIATION SURVEY AND ASSESSMENT OF MATERIALS AND EQUIPMENT (MARSAME)

    EPA Science Inventory

    Radioactive materials have been produced, processed, used, and transported amongst thousands of sites throughout the United States. Owners and operators of these sites would like to determine if materials or equipment on these sites are contaminated with radioactive materials, i...

  4. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process.

    PubMed

    Wang, Jing-Yuan; Huang, Xiang-Jun; Kao, Jimmy C M; Stabnikova, Olena

    2007-06-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01M HNO(3) solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process. PMID:17110023

  5. Removal of PCBs and HCB from contaminated solids using a novel successive self-propagated sintering process.

    PubMed

    Zhao, Long; Zhu, Tengfei; Hou, Hong; Qin, Xiaopeng; Li, Fasheng; Terada, Akihiko; Hosomi, Masaaki

    2015-11-01

    Thermal treatments are the primary technologies used to remove persistent organic pollutants from contaminated solids. The high energy consumption during continuous heating, required cost for treating the exhaust gas, and potential formation of secondary pollutants during combustion have prevented their implementation. A novel successive self-propagated sintering process was proposed for removing polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) from contaminated solids in a low-cost and environmentally friendly way. Nine laboratory-scale experiments involving different initial concentrations of pollutants and solid compositions were performed. Almost all PCBs (>99%) and HCB (>97%) were removed from solids under constant experimental conditions. Varying initial concentrations of PCBs and HCB in the contaminated solids did not influence the removal efficiency of the pollutants; however, the degradation efficiency of pollutants increased as their initial concentrations increased. Although varying levels of PCDD/Fs were detected in the effluent gas, they were all within the emission standard limit.

  6. Independent technical evaluation and recommendations for contaminated groundwater at the department of energy office of legacy management Riverton processing site

    SciTech Connect

    Looney, Brain B.; Denham, Miles E.; Eddy-Dilek, Carol A.

    2014-04-01

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) manages the legacy contamination at the Riverton, WY, Processing Site – a former uranium milling site that operated from 1958 to 1963. The tailings and associated materials were removed in 1988-1989 and contaminants are currently flushing from the groundwater. DOE-LM commissioned an independent technical team to assess the status of the contaminant flushing, identify any issues or opportunities for DOE-LM, and provide key recommendations. The team applied a range of technical frameworks – spatial, temporal, hydrological and geochemical – in performing the evaluation. In each topic area, an in depth evaluation was performed using DOE-LM site data (e.g., chemical measurements in groundwater, surface water and soil, water levels, and historical records) along with information collected during the December 2013 site visit (e.g., plant type survey, geomorphology, and minerals that were observed, collected and evaluated).

  7. Removal of PCBs and HCB from contaminated solids using a novel successive self-propagated sintering process.

    PubMed

    Zhao, Long; Zhu, Tengfei; Hou, Hong; Qin, Xiaopeng; Li, Fasheng; Terada, Akihiko; Hosomi, Masaaki

    2015-11-01

    Thermal treatments are the primary technologies used to remove persistent organic pollutants from contaminated solids. The high energy consumption during continuous heating, required cost for treating the exhaust gas, and potential formation of secondary pollutants during combustion have prevented their implementation. A novel successive self-propagated sintering process was proposed for removing polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) from contaminated solids in a low-cost and environmentally friendly way. Nine laboratory-scale experiments involving different initial concentrations of pollutants and solid compositions were performed. Almost all PCBs (>99%) and HCB (>97%) were removed from solids under constant experimental conditions. Varying initial concentrations of PCBs and HCB in the contaminated solids did not influence the removal efficiency of the pollutants; however, the degradation efficiency of pollutants increased as their initial concentrations increased. Although varying levels of PCDD/Fs were detected in the effluent gas, they were all within the emission standard limit. PMID:26139404

  8. Evaluation of an alcohol-based sanitizer spray's bactericidal effects on Salmonella inoculated onto stainless steel and shell egg processing equipment.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    . Improved sanitation procedures may reduce the risk of food-borne illness . Experiments were conducted to determine the ability of an alcohol-quaternary ammonium sanitizer or water to reduce Salmonella inoculated onto stainless steel and shell egg processing equipment. A nalidixic acid-resistant Sa...

  9. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    NASA Astrophysics Data System (ADS)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  10. Multiple-tracer tests for contaminant transport process identification in saturated municipal solid waste

    SciTech Connect

    Woodman, N.D. Rees-White, T.C.; Stringfellow, A.M.; Beaven, R.P.; Hudson, A.P.

    2015-04-15

    Highlights: • Multiple tracers were applied to saturated MSW to test dual-porosity properties. • Lithium demonstrated to be non-conservative as a tracer. • 260 mm diameter column too small to test transport properties of MSW. • The classical advection-dispersion mode was rejected due to high dispersivity. • Characteristic diffusion times did not vary with the tracer. - Abstract: Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a biologically active landfill to determine dominant transport mechanisms occurring in landfills. An improved understanding of contaminant transport process in wastes is required for developing better predictions about potential length of the long term aftercare of landfills, currently measured in timescales of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave conservatively. Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself and the findings of previous tests which assume that it has behaved conservatively may need revisiting. The smaller column test could not be fitted with continuum models, probably because the volume of waste was below a representative elemental volume. Modelling compared advection-dispersion (AD), dual porosity (DP) and hybrid AD–DP models. Of these models, the DP model was found to be the most suitable. Although there is good evidence to suggest that diffusion is an important transport mechanism, the breakthrough curves of the different tracers did not differ from each other as would be predicted based on the free-water diffusion coefficients. This suggested that solute diffusion in wastes requires further study.

  11. Microbiological safety of Minas Frescal Cheese (MFC) and tracking the contamination of Escherichia coli and Staphylococcus aureus in MFC processing.

    PubMed

    Freitas, Rosangela; Brito, Maria Aparecida Vasconcelos Paiva; Nero, Luís Augusto; de Carvalho, Antonio Fernandes

    2013-11-01

    Minas Frescal cheese (MFC) is a traditional food produced and consumed in Brazil, characterized by its soft texture, low sodium, and high moisture content. This study characterized the microbiological contamination by coliforms, Escherichia coli and Staphylococcus aureus, in 99 MFC samples obtained in retail sale and produced by three distinct industrial procedures. Dairy processors were selected to investigate the key points of E. coli and S. aureus contamination during cheese processing. MFC samples produced by the addition of lactic culture presented higher counts of coliforms and E. coli, when compared to other samples (p<0.05). MFC samples produced by the addition of rennet alone presented higher counts of S. aureus when compared to other samples (p<0.05). Fourteen of 19 MFC samples produced by the addition of lactic culture presented E. coli counts higher than 5 × 10(2) colon-forming units/g. The processing steps after pasteurization were identified as the main sources of E. coli and S. aureus contamination of MFC. Based on the results, MFC was characterized as a potential hazard for consumers due to the high frequency of samples contaminated with E. coli and S. aureus counts in noncompliance with Brazilian standards for sanitary quality and safety.

  12. Demonstration of EIC's copper sulfate process for removal of hydrogen sulfide and other trace contaminants from geothermal steam at turbine inlet temperatures and pressures. Final report

    SciTech Connect

    Not Available

    1980-05-01

    The results obtained during the operation of an integrated, one-tenth commercial scale pilot plant using EIC's copper sulfate process for the removal of hydrogen sulfide and other contaminants from geothermal steam at turbine upstream conditions are discussed. The tests took place over a six month period at Pacific Gas and Electric Company's Unit No. 7 at The Geysers Power Plant. These tests were the final phase of a development effort which included the laboratory research and engineering design work which led to the design of the pilot plant. Broadly, the objectives of operating the pilot plant were to confirm the preliminary design criteria which had been developed, and provide data for their revisions, if appropriate, in a plant which contained all the elements of a commercial process using equipment of a size sufficient to provide valid scale-up data. The test campaign was carried out in four phases: water testing; open circuit, i.e., non integrated scrubbing, liquid-solid separation and regeneration testing; closed circuit short term; and closed circuit long term testing.

  13. Integrated system for gathering, processing, and reporting data relating to site contamination

    DOEpatents

    Long, D.D.; Goldberg, M.S.; Baker, L.A.

    1997-11-11

    An integrated screening system comprises an intrusive sampling subsystem, a field mobile laboratory subsystem, a computer assisted design/geographical information subsystem, and a telecommunication linkup subsystem, all integrated to provide synergistically improved data relating to the extent of site soil/groundwater contamination. According to the present invention, data samples related to the soil, groundwater or other contamination of the subsurface material are gathered and analyzed to measure contaminants. Based on the location of origin of the samples in three-dimensional space, the analyzed data are transmitted to a location display. The data from analyzing samples and the data from the locating the origin are managed to project the next probable sample location. The next probable sample location is then forwarded for use as a guide in the placement of ensuing sample location, whereby the number of samples needed to accurately characterize the site is minimized. 10 figs.

  14. Integrated system for gathering, processing, and reporting data relating to site contamination

    DOEpatents

    Long, Delmar D.; Goldberg, Mitchell S.; Baker, Lorie A.

    1997-01-01

    An integrated screening system comprises an intrusive sampling subsystem, a field mobile laboratory subsystem, a computer assisted design/geographical information subsystem, and a telecommunication linkup subsystem, all integrated to provide synergistically improved data relating to the extent of site soil/groundwater contamination. According to the present invention, data samples related to the soil, groundwater or other contamination of the subsurface material are gathered and analyzed to measure contaminants. Based on the location of origin of the samples in three-dimensional space, the analyzed data are transmitted to a location display. The data from analyzing samples and the data from the locating the origin are managed to project the next probable sample location. The next probable sample location is then forwarded for use as a guide in the placement of ensuing sample location, whereby the number of samples needed to accurately characterize the site is minimized.

  15. Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process.

    PubMed

    Yarlagadda, Saketa; Gude, Veera Gnaneswar; Camacho, Lucy Mar; Pinappu, Saireddy; Deng, Shuguang

    2011-09-15

    In this study, the feasibility of the direct contact membrane distillation (DCMD) process to recover arsenic, uranium and fluoride contaminated saline ground waters was investigated. Two types of membranes (polypropylene, PP; and polytetrafluoroethylene, PTFE) were tested to compare the permeate production rates and contaminant removal efficiencies. Several experiments were conducted to study the effect of salts, arsenic, fluoride and uranium concentrations (synthetic brackish water with salts: 1000-10,000 ppm; arsenic and uranium: 10-400 ppb; fluoride: 1-30 ppm) on the desalination efficiency. The effect of process variables such as feed flow rate, feed temperature and pore size was studied. The experimental results proved that the DCMD process is able to achieve over 99% rejection of the salts, arsenic, fluoride and uranium contaminants and produced a high quality permeate suitable for many beneficial uses. The ability to utilize the low grade heat sources makes the DCMD process a viable option to recover potable water from a variety of impaired ground waters.

  16. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes.

    PubMed

    Cho, Jae Han; Eom, Yujin; Lee, Tai Gyu

    2014-08-15

    This study examined the stabilization and solidification (S/S) of mercury (Hg)-contaminated waste ash generated from an industrial waste incinerator using chemically bonded phosphate ceramic (CBPC) technology. A magnesium potassium phosphate (MKP; MgKPO4 · 6H2O) ceramic, fabricated from MgO and KH2PO4, and a calcium sodium phosphate (CNP; CaNaPO4) ceramic, fabricated from CaO and Na2HPO4, were used as solidification binders in the CBPC process, and Na2S or FeS was added to each solidification binder to stabilize the Hg-contaminated waste ash. The S/S processes were conducted under various operating conditions (based on the solidification binder and stabilization reagent, stabilization reagent dosage, and waste loading ratio), and the performance characteristics of the S/S sample under each operating condition were compared, including the Hg leaching value and compressive strength. The Hg leaching value of untreated Hg-contaminated waste ash was 231.3 μg/L, whereas the S/S samples treated using the MKP and CNP processes exhibited Hg leaching values below the universal treatment standard (UTS) limit (25 μg/L). Although the compressive strengths of the S/S samples decreased as the sulfide dosage and waste loading ratio were increased, most of the S/S samples fabricated by the MKP and CNP processes exhibited good mechanical properties.

  17. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for final standards. Volume 2A. Comments on process vents, storage vessels, transfer operations, and equipment leaks. Final report

    SciTech Connect

    Not Available

    1994-03-01

    This background information document (BID) provides summaries and responses for public comments received regarding the Hazardous Organic National Emission Standard for Hazardous Air Pollutants (NESHAP), commonly referred to as the HON. The HON will primarily affect the Synthetic Organic Chemical Manufacturing Industry (SOCMI). However, the provisions for equipment leaks also apply to certain polymer and resin production processes, certain pesticide production processes, and certain miscellaneous processes that are subject to the negotiated regulation for equipment leaks. Volume 2A is organized by emission point and contains discussions of specific technical issues related to process vents, storage vessels, transfer operations, and equipment leaks. Volume 2A discusses specific technical issues such as control technology, cost analysis, emission estimates, Group 1/Group 2 determination, compliance options and demonstrations, and monitoring.

  18. Redefinition of Space and Equipment in the Kindergarten and Involving the Children in the Process of Designing.

    ERIC Educational Resources Information Center

    Bika, Anastasia

    This research examined the extent to which 2.5- to 5-year-old children in three Kindergarten classrooms in Thessaloniki, Greece could be taught about the use of classroom space and equipment. The study combined the theoretical perspectives of Piaget, Vygotsky, Bruner, and Frangos with the views of theater director Peter Brook. Mixed-age groups of…

  19. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  20. Toxicological benchmarks for potential contaminants of concern for effects on soil and litter invertebrates and heterotrophic process

    SciTech Connect

    Will, M.E.; Suter, G.W. II

    1995-09-01

    An important step in ecological risk assessments is screening the chemicals occur-ring on a site for contaminants of potential concern. Screening may be accomplished by comparing reported ambient concentrations to a set of toxicological benchmarks. Multiple endpoints for assessing risks posed by soil-borne contaminants to organisms directly impacted by them have been established. This report presents benchmarks for soil invertebrates and microbial processes and addresses only chemicals found at United States Department of Energy (DOE) sites. No benchmarks for pesticides are presented. After discussing methods, this report presents the results of the literature review and benchmark derivation for toxicity to earthworms (Sect. 3), heterotrophic microbes and their processes (Sect. 4), and other invertebrates (Sect. 5). The final sections compare the benchmarks to other criteria and background and draw conclusions concerning the utility of the benchmarks.

  1. Transfer of Escherichia coli O157:H7 from equipment surfaces to fresh-cut leafy greens during processing in a model pilot-plant production line with sanitizer-free water.

    PubMed

    Buchholz, Annemarie L; Davidson, Gordon R; Marks, Bradley P; Todd, Ewen C D; Ryser, Elliot T

    2012-11-01

    Escherichia coli O157:H7 contamination of fresh-cut leafy greens has become a public health concern as a result of several large outbreaks. The goal of this study was to generate baseline data for E. coli O157:H7 transfer from product-inoculated equipment surfaces to uninoculated lettuce during pilot-scale processing without a sanitizer. Uninoculated cored heads of iceberg and romaine lettuce (22.7 kg) were processed using a commercial shredder, step conveyor, 3.3-m flume tank with sanitizer-free tap water, shaker table, and centrifugal dryer, followed by 22.7 kg of product that had been dip inoculated to contain ∼10(6), 10(4), or 10(2) CFU/g of a four-strain avirulent, green fluorescent protein-labeled, ampicillin-resistant E. coli O157:H7 cocktail. After draining the flume tank and refilling the holding tank with tap water, 90.8 kg of uninoculated product was similarly processed and collected in ∼5-kg aliquots. After processing, 42 equipment surface samples and 46 iceberg or 36 romaine lettuce samples (25 g each) from the collection baskets were quantitatively examined for E. coli O157:H7 by direct plating or membrane filtration using tryptic soy agar containing 0.6% yeast extract and 100 ppm of ampicillin. Initially, the greatest E. coli O157:H7 transfer was seen from inoculated lettuce to the shredder and conveyor belt, with all equipment surface populations decreasing 90 to 99% after processing 90.8 kg of uncontaminated product. After processing lettuce containing 10(6) or 10(4) E. coli O157:H7 CFU/g followed by uninoculated lettuce, E. coli O157:H7 was quantifiable throughout the entire 90.8 kg of product. At an inoculation level of 10(2) CFU/g, E. coli O157:H7 was consistently detected in the first 21.2 kg of previously uninoculated lettuce at 2 to 3 log CFU/100 g and transferred to 78 kg of product. These baseline E. coli O157:H7 transfer results will help determine the degree of sanitizer efficacy required to better ensure the safety of fresh-cut leafy

  2. Workshop on Monitored Natural Attenuation for Inorganic Contaminants: 1 – Introduction, MNA Processes and Characterization

    EPA Science Inventory

    The purpose of this training is to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. The training will include discussion of the types of ...

  3. REMOVAL OF ORGANIC CCL CONTAMINANTS FROM DRINKING WATERS BY GAC, AIR STRIPPING, AND MEMBRANE PROCESSES

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act (SWDA) require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as t...

  4. REMOVING ORGANIC CONTAMINANTS OF REGULATORY INTEREST WITH MEMBRANE PROCESSES: USEPA'S SCREENING STUDIES

    EPA Science Inventory

    The 1996 amendments to the Safe Drinking Water Act require the US Environmental Protection Agency (USEPA) to establish a list of unregulated microbiological and chemical contaminants to aid in priority-setting for the Agency's drinking water program. This list, known as the Cont...

  5. Value Added Processing of Aflatoxin Contaminated Peanut Meal: Aflatoxin Sequestration During Protein Extraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of a bentonite clay, Astra-Ben 20A (AB20A), to sequester aflatoxin from contaminated (~110 ppb) peanut meal during protein extraction was studied. Aqueous peanut meal dispersions (10% w/w) were prepared varying pH, temperature, enzymatic hydrolysis conditions, and concentrations of AB2...

  6. Processes affecting geochemistry and contaminant movement in the middle Claiborne aquifer of the Mississippi embayment aquifer system

    USGS Publications Warehouse

    Katz, Brian G.; Kingsbury, James A.; Welch, Heather L.; Tollett, Roland W.

    2012-01-01

    Groundwater chemistry and tracer-based age data were used to assess contaminant movement and geochemical processes in the middle Claiborne aquifer (MCA) of the Mississippi embayment aquifer system. Water samples were collected from 30 drinking-water wells (mostly domestic and public supply) and analyzed for nutrients, major ions, pesticides, volatile organic compounds (VOCs), and transient age tracers (chlorofluorocarbons, tritium and helium-3, and sulfur hexafluoride). Redox conditions are highly variable throughout the MCA. However, mostly oxic groundwater with low dissolved solids is more vulnerable to nitrate contamination in the outcrop areas east of the Mississippi River in Mississippi and west Tennessee than in mostly anoxic groundwater in downgradient areas in western parts of the study area. Groundwater in the outcrop area was relatively young (apparent age of less than 40 years) with significantly (p 50 m depth) indicated contaminant movement from shallow parts of the aquifer into deeper oxic zones. Given the persistence of nitrate in young oxic groundwater that was recharged several decades ago, and the lack of a confining unit, the downward movement of young contaminated water may result in higher nitrate concentrations over time in deeper parts of the aquifer containing older oxic water.

  7. Performance of food safety management systems in poultry meat preparation processing plants in relation to Campylobacter spp. contamination.

    PubMed

    Sampers, Imca; Jacxsens, Liesbeth; Luning, Pieternel A; Marcelis, Willem J; Dumoulin, Ann; Uyttendaele, Mieke

    2010-08-01

    A diagnostic instrument comprising a combined assessment of core control and assurance activities and a microbial assessment instrument were used to measure the performance of current food safety management systems (FSMSs) of two poultry meat preparation companies. The high risk status of the company's contextual factors, i.e., starting from raw materials (poultry carcasses) with possible high numbers and prevalence of pathogens such as Campylobacter spp., requires advanced core control and assurance activities in the FSMS to guarantee food safety. The level of the core FSMS activities differed between the companies, and this difference was reflected in overall microbial quality (mesophilic aerobic count), presence of hygiene indicators (Enterobacteriaceae, Staphylococcus aureus, and Escherichia coli), and contamination with pathogens such as Salmonella, Listeria monocytogenes, and Campylobacter spp. The food safety output expressed as a microbial safety profile was related to the variability in the prevalence and contamination levels of Campylobacter spp. in poultry meat preparations found in a Belgian nationwide study. Although a poultry meat processing company could have an advanced FSMS in place and a good microbial profile (i.e., lower prevalence of pathogens, lower microbial numbers, and less variability in microbial contamination), these positive factors might not guarantee pathogen-free products. Contamination could be attributed to the inability to apply effective interventions to reduce or eliminate pathogens in the production chain of (raw) poultry meat preparations.

  8. Temporal variations in parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated solvents

    USGS Publications Warehouse

    McGuire, Jennifer T.; Smith, Erik W.; Long, David T.; Hyndman, David W.; Haack, Sheridan K.; Klug, Michael J.; Velbel, Michael A.

    2000-01-01

    A fundamental issue in aquifer biogeochemistry is the means by which solute transport, geochemical processes, and microbiological activity combine to produce spatial and temporal variations in redox zonation. In this paper, we describe the temporal variability of TEAP conditions in shallow groundwater contaminated with both waste fuel and chlorinated solvents. TEAP parameters (including methane, dissolved iron, and dissolved hydrogen) were measured to characterize the contaminant plume over a 3-year period. We observed that concentrations of TEAP parameters changed on different time scales and appear to be related, in part, to recharge events. Changes in all TEAP parameters were observed on short time scales (months), and over a longer 3-year period. The results indicate that (1) interpretations of TEAP conditions in aquifers contaminated with a variety of organic chemicals, such as those with petroleum hydrocarbons and chlorinated solvents, must consider additional hydrogen-consuming reactions (e.g., dehalogenation); (2) interpretations must consider the roles of both in situ (at the sampling point) biogeochemical and solute transport processes; and (3) determinations of microbial communities are often necessary to confirm the interpretations made from geochemical and hydrogeological measurements on these processes.

  9. Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies.

    PubMed

    Madera, Carmen; Monjardín, Cristina; Suárez, Juan E

    2004-12-01

    Milk contamination by phages, the susceptibility of the phages to pasteurization, and the high levels of resistance to phage infection of starter strains condition the evolution dynamics of phage populations in dairy environments. Approximately 10% (83 of 900) of raw milk samples contained phages of the quasi-species c2 (72%), 936 (24%), and P335 (4%). However, 936 phages were isolated from 20 of 24 (85%) whey samples, while c2 was detected in only one (4%) of these samples. This switch may have been due to the higher susceptibility of c2 to pasteurization (936-like phages were found to be approximately 35 times more resistant than c2 strains to treatment of contaminated milk in a plate heat exchanger at 72 degrees C for 15 s). The restriction patterns of 936-like phages isolated from milk and whey were different, indicating that survival to pasteurization does not result in direct contamination of the dairy environment. The main alternative source of phages (commercial bacterial starters) does not appear to significantly contribute to phage contamination. Twenty-four strains isolated from nine starter formulations were generally resistant to phage infection, and very small progeny were generated upon induction of the lytic cycle of resident prophages. Thus, we postulate that a continuous supply of contaminated milk, followed by pasteurization, creates a factory environment rich in diverse 936 phage strains. This equilibrium would be broken if a particular starter strain turned out to be susceptible to infection by one of these 936-like phages, which, as a consequence, became prevalent. PMID:15574937

  10. Contaminants from Cretaceous Black Shale Part 1: Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Fahy, Juli W.; Elliott, John G.; Grauch, Richard I.; Stillings, Lisa L.

    2013-01-01

    Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the

  11. Status of pre-processing of waste electrical and electronic equipment in Germany and its influence on the recovery of gold.

    PubMed

    Chancerel, Perrine; Bolland, Til; Rotter, Vera Susanne

    2011-03-01

    Waste electrical and electronic equipment (WEEE) contains gold in low but from an environmental and economic point of view relevant concentration. After collection, WEEE is pre-processed in order to generate appropriate material fractions that are sent to the subsequent end-processing stages (recovery, reuse or disposal). The goal of this research is to quantify the overall recovery rates of pre-processing technologies used in Germany for the reference year 2007. To achieve this goal, facilities operating in Germany were listed and classified according to the technology they apply. Information on their processing capacity was gathered by evaluating statistical databases. Based on a literature review of experimental results for gold recovery rates of different pre-processing technologies, the German overall recovery rate of gold at the pre-processing level was quantified depending on the characteristics of the treated WEEE. The results reveal that - depending on the equipment groups - pre-processing recovery rates of gold of 29 to 61% are achieved in Germany. Some practical recommendations to reduce the losses during pre-processing could be formulated. Defining mass-based recovery targets in the legislation does not set incentives to recover trace elements. Instead, the priorities for recycling could be defined based on other parameters like the environmental impacts of the materials. The implementation of measures to reduce the gold losses would also improve the recovery of several other non-ferrous metals like tin, nickel, and palladium. PMID:20406755

  12. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites.

    PubMed

    Qin, X S; Huang, G H; Chakma, A; Chen, B; Zeng, G M

    2007-08-01

    Widespread use of dense non-aqueous phase liquids (DNAPLs) such as TCE and PCE has resulted in contamination of enormous valuable groundwater resources and become high-priority environmental problems. However, experiences from the past decades have demonstrated that DNAPL-contaminated sites were difficult to investigate and challenging to remediate. In this study, a simulation-based process optimization system was developed through integrating a multidimensional simulator, a multivariate statistical tool and an optimization model within a general framework for supporting decisions of surfactant-enhanced aquifer remediation (SEAR). A 3D multiphase and multi-component subsurface model was first provided to simulate SEAR process; dual-response surface models were then established to build a bridge between remediation actions and system performance; a nonlinear optimization model was then formulated for identifying optimal operating conditions for SEAR operations. The results in simulating a typical PCE spill event and the associated SEAR remediation operations in a heterogeneous subsurface indicated that SEAR would be capable of cleaning up the contaminated aquifer with improved efficiencies and cost-effectiveness compared with direct pump-and-treat actions. The regression-analysis results demonstrated that the proposed dual-response surface models were able to predict system responses under given operating conditions. The optimization results demonstrated that the developed simulation-optimization approach was effective in seeking cost-effective SEAR strategies for DNAPL-contaminated sites. With the developed method, optimum operation conditions under various environmental and economic considerations could be compiled into a database that would supports further studies of on-site process-control with injection and extraction rates being the main control variables.

  13. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.

    PubMed

    Goor, François; Thiry, Yves

    2004-06-01

    of 137Cs level in the wood. The 137Cs contamination of tree components is the result of different influential processes like root uptake, internal translocation and immobilisation. For more accurate predictions, the calibration of existing models would be benefited by comparing with the 137Cs annual fluxes instead of the simple transfer factor coefficients. In the perspective of other applications, there is a need of such data for other radionuclides as well as for heavy metals. PMID:15144787

  14. Evaluation of the assimilation of As by vegetables in contaminated soils submitted to a remediation process

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez Sanchez, Maria Jose; Agudo, Ines; Belen Martinez, Lucia; Bech, Jaume

    2016-04-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of plants (lettuce, onion and broccoli), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). The experiments were carried out to check the validity of the use of calcareous materials to recover soils contaminated with heavy metals. The aim of this work was to apply a technology for decontamination to ensure that As do not enter into the trophic chain at risky levels and analyze and to assess the risk pre and post operational of the different treatments proposed. The materials used was a soils to be remediated (mining soils) and the materials used for remediation were lime filler and Construction and Demolition Waste (CDW). The plants were cultivated in greenhouse with several types of soil. Five experiments were used, namely, Tc (contaminated soil), T1 (uncontaminated soil (blank soil)), T2 (50% T1 + 50% Tc), T3 (Tc + (25%) lime residues coming from quarries) and T4 (Tc + (25%) residues coming from demolition and construction activities). The entire project involves twenty experiments which were prepared from soils highly contaminated mixed with two types of calcareous materials. The total As content of the soils samples, rhizosphere and vegetable samples, were measured and the translocation factor (TF), which is defined as the ratio of metal concentration in the leaves or shoots to the roots, and the Bioconcentration factor (BCF), which is defined as the ratio of metal concentration in the roots to that in soil were calculated. The use of CDR is shown to be a suitable way for remediating soils contaminated by metals. The methodology permits a revalorization of CDW.

  15. Separate process wastewaters, part A: Contaminated flow collection and treatment system for the Kansas City Plant

    SciTech Connect

    Not Available

    1995-01-01

    The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) to assist the agency in complying with the National Environmental Policy Act (NEPA) of 1969 as it applies to modification of ongoing groundwater treatment at DOE`s Kansas City Plant (KCP), located about 19 km (12 miles) south of the central business district of Kansas City, Missouri. The KCP is currently owned by DOE and is operated by the Kansas City Division of AlliedSignal Inc. The plant manufactures nonnuclear components for nuclear weapons. The purpose of and need for the DOE action is to treat identified toxic organic contaminated groundwater at the KCP to ensure that human health and the environment are protected and to comply with groundwater treatment requirements of the U.S. Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) 3008(h) Administrative Order on Consent and the discharge requirements of the Kansas City, Missouri, ordinances for the city sewer system. Four source streams of toxic organic contaminated groundwater have been identified that require treatment prior to discharge to the city sewer system. The toxic organic contaminants of concern consist of volatile organic compounds (VOCS) in the groundwater and polychlorinated biphenyls (PCBS) predominantly associated with some soils near the Main Manufacturing Building. The no-action alternative is to continue with the current combination of treatment and nontreatment and to continue operation of the KCP groundwater treatment system in its current configuration at Building 97 (B97). The DOE proposed action is to collect and treat all identified toxic organic contaminated groundwater prior to discharge to the city sewer system. The proposed action includes constructing an Organics Collection System and Organics Treatment Building, moving and expanding the existing groundwater treatment system, and operating the new groundwater treatment facility.

  16. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    SciTech Connect

    Vijayan, S.; Wong, Chi Fun; Buckley, L.P.

    1992-12-31

    It is an object of the claimed invention to combine chemical treatment with microfiltration process to treat groundwater, leachate from contaminated soil washing, surface and run-off waters contaminated with toxic metals, radionuclides and trace amounts of organics from variety of sources. The process can also be used to treat effluents from industrial processes such as discharges associated with smelting, mining and refining operations. Influent contaminants amenable to treatment are from a few mg/L to hundreds of mg/L. By selecting appropriate precipitation, ion exchange and adsorption agents and conditions, efficiencies greater than 99.9 percent can be achieved for removal of contaminants. The filtered water for discharge can be targeted with either an order of magnitude greater or lower than contaminant levels for drinking water.

  17. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): implications for the mercury cycle.

    PubMed

    Windmöller, Cláudia C; Durão Júnior, Walter A; de Oliveira, Aline; do Valle, Cláudia M

    2015-02-01

    Investigations of the redox process and chemical speciation of Hg(II) lead to a better understanding of biogeochemical processes controlling the transformation of Hg(II) into toxic and bioaccumulative monomethyl mercury, mainly in areas contaminated with Hg(0). This study investigates the speciation and redox processes of Hg in soil samples from a small area contaminated with Hg(0) as a result of gold mining activities in the rural municipality of Descoberto (Minas Gerais, Brazil). Soil samples were prepared by adding Hg(0) and HgCl2 separately to dry soil, and the Hg redox process was monitored using thermodesorption coupled to atomic absorption spectrometry. A portion of the Hg(0) added was volatilized (up to 37.4±2.0%) or oxidized (from 36±7% to 88±16%). A correlation with Mn suggests that this oxidation is favored, but many other factors must be evaluated, such as the presence of microorganisms and the types of organic matter present. The interaction of Hg with the matrix is suggested to involve Hg(II)-complexes formed with inorganic and organic sulfur ligands and/or nonspecific adsorption onto oxides of Fe, Al and/or Mn. The kinetics of the oxidation reaction was approximated for two first-order reactions; the faster reaction was attributed to the oxidation of Hg(0)/Hg(I), and the slower reaction corresponded to Hg(I)/Hg(II). The second stage was 43-139 times slower than the first. The samples spiked with Hg(II) showed low volatilization and a shifting of the signal of Hg(II) to lower temperatures. These results show that the extent, rate and type of redox process can be adverse in soils. Descoberto can serve as an example for areas contaminated with Hg(0).

  18. Automated space processing payloads study. Volume 3: Equipment development resource requirements. [instrument packages and the space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Facilities are described on which detailed preliminary design was undertaken and which may be used on early space shuttle missions in the 1979-1982 time-frame. The major hardware components making up each facility are identified, and development schedules for the major hardware items and the payload buildup are included. Cost data for the facilities, and the assumptions and ground rules supporting these data are given along with a recommended listing of supporting research and technology needed to ensure confidence in the ability to achieve successful development of the equipment and technology.

  19. Decision Analysis for Equipment Selection

    ERIC Educational Resources Information Center

    Cilliers, J. J.

    2005-01-01

    Equipment selection during process design is a critical aspect of chemical engineering and requires engineering judgment and subjective analysis. When educating chemical engineering students in the selection of proprietary equipment during design, the focus is often on the types of equipment available and their operating characteristics. The…

  20. [Medical Equipment Maintenance Methods].

    PubMed

    Liu, Hongbin

    2015-09-01

    Due to the high technology and the complexity of medical equipment, as well as to the safety and effectiveness, it determines the high requirements of the medical equipment maintenance work. This paper introduces some basic methods of medical instrument maintenance, including fault tree analysis, node method and exclusive method which are the three important methods in the medical equipment maintenance, through using these three methods for the instruments that have circuit drawings, hardware breakdown maintenance can be done easily. And this paper introduces the processing methods of some special fault conditions, in order to reduce little detours in meeting the same problems. Learning is very important for stuff just engaged in this area.