Fate of Fumonisin B1 in Naturally Contaminated Corn during Ethanol Fermentation
Bothast, R. J.; Bennett, G. A.; Vancauwenberge, J. E.; Richard, J. L.
1992-01-01
Two lots of corn naturally contaminated with fumonisin B1 (15 and 36 ppm) and a control lot (no fumonisin B1 detected) were used as substrates for ethanol production in replicate 8.5-liter yeast fermentations. Ethanol yields were 8.8% for both the control and low-fumonisin corn, while the high-fumonisin corn contained less starch and produced 7.2% ethanol. Little degradation of fumonisin occurred during fermentation, and most was recovered in the distillers' grains, thin stillage, and distillers' solubles fractions. No toxin was detected in the distilled alcohol or centrifuge solids. Ethanol fermentation of fumonisin-contaminated corn coupled with effective detoxification of distillers' grains and aqueous stillage is suggested as a practical process strategy for salvaging contaminated corn. PMID:16348623
Zhu, Yongming; Kim, Tae Hyun; Lee, Y Y; Chen, Rongfu; Elander, Richard T
2006-01-01
A novel method of producing food-grade xylooligosaccharides from corn stover and corn cobs was investigated. The process starts with pretreatment of feedstock in aqueous ammonia, which results delignified and xylan-rich substrate. The pretreated substrates are subjected to enzymatic hydrolysis of xylan using endoxylanase for production of xylooligosaccharides. The conventional enzyme-based method involves extraction of xylan with a strong alkaline solution to form a liquid intermediate containing soluble xylan. This intermediate is heavily contaminated with various extraneous components. A costly purification step is therefore required before enzymatic hydrolysis. In the present method, xylan is obtained in solid form after pretreatment. Water-washing is all that is required for enzymatic hydrolysis of this material. The complex step of purifying soluble xylan from contaminant is essentially eliminated. Refining of xylooligosaccharides to food-grade is accomplished by charcoal adsorption followed by ethanol elution. Xylanlytic hydrolysis of the pretreated corn stover yielded glucan-rich residue that is easily digestible by cellulase enzyme. The digestibility of the residue reached 86% with enzyme loading of 10 filter paper units/g-glucan. As a feedstock for xylooligosaccharides production, corn cobs are superior to corn stover because of high xylan content and high packing density. The high packing density of corn cobs reduces water input and eventually raises the product concentration.
Arbaoui, Sarra; Evlard, Aricia; Mhamdi, Mohamed El Wafi; Campanella, Bruno; Paul, Roger; Bettaieb, Taoufik
2013-07-01
The potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for accumulation of cadmium and zinc was investigated. Plants have been grown in lysimetres containing dredging sludge, a substratum naturally rich in trace metals. Biomass production was determined. Sludge and water percolating from lysimeters were analyzed by atomic absorption spectrometry. No visible symptoms of toxicity were observed during the three- month culture. Kenaf and corn tolerate trace metals content in sludge. Results showed that Zn and Cd were found in corn and kenaf shoots at different levels, 2.49 mg/kg of Cd and 82.5 mg/kg of Zn in kenaf shoots and 2.1 mg/kg of Cd and 10.19 mg/kg in corn shoots. Quantities of extracted trace metals showed that decontamination of Zn and Cd polluted substrates is possible by corn and kenaf crops. Tolerance and bioaccumulation factors indicated that both species could be used in phytoremediation.
Gordon, S H; Schudy, R B; Wheeler, B C; Wicklow, D T; Greene, R V
1997-04-01
Aspergillus flavus and other pathogenic fungi display typical infrared spectra which differ significantly from spectra of substrate materials such as corn. On this basis, specific spectral features have been identified which permit detection of fungal infection on the surface of corn kernels by photoacoustic infrared spectroscopy. In a blind study, ten corn kernels showing bright greenish yellow fluorescence (BGYF) in the germ or endosperm and ten BGYF-negative kernels were correctly classified as infected or not infected by Fourier transform infrared photoacoustic spectroscopy. Earlier studies have shown that BGYF-positive kernels contain the bulk of the aflatoxin contaminating grain at harvest. Ten major spectral features, identified by visual inspection of the photoacoustic spectra of A. flavus mycelium grown in culture versus uninfected corn, were interpreted and assigned by theoretical comparisons of the relative chemical compositions of fungi and corn. The spectral features can be built into either empirical or knowledge-based computer models (expert systems) for automatic infrared detection and segregation of grains or kernels containing aflatoxin from the food and feed supply.
Purschke, Benedict; Scheibelberger, Rafaela; Axmann, Sonja; Adler, Andreas; Jäger, Henry
2017-08-01
Edible insects have emerged as an alternative and sustainable source of high-quality, animal-derived protein and fat for livestock production or direct human nutrition. During the production of insects, substrate quality is a key parameter to assure optimal insect biomass gain as well as the safety of feed and food derived from commercially reared insects. Therefore, the influence of a realistic substrate contamination scenario on growth performance and accumulation behaviour of black soldier fly larvae (BSFL; Hermetia illucens L.) was investigated. Newly hatched larvae were fed on a corn-based substrate spiked with heavy metals (As, Cd, Cr, Hg, Ni, Pb), mycotoxins (aflatoxins B1/B2/G2, deoxynivalenol, ochratoxin A, zearalenone) and pesticides (chlorpyrifos, chlorpyrifos-methyl, pirimiphos-methyl) under defined breeding conditions (10 days, 28°C, 67% relative humidity). The extent of contaminants' bioaccumulation in the larval tissue as well as the effect on growing determinants were examined. The applied heavy metal substrate contamination was shown to impair larval growing indicated by significantly lower post-trial larval mass and feed conversion ratio (FCR). Cd and Pb accumulation factors of 9 and 2, respectively, were determined, while the concentrations of other heavy metals in the larvae remained below the initial substrate concentration. In contrast, mycotoxins and pesticides have neither been accumulated in the larval tissue nor significantly affected the growing determinants in comparison with the control. The use of BSFL as livestock feed requires contaminant monitoring - especially for Cd and Pb - in the substrates as well as in feedstuff containing BSFL to ensure feed and food safety along the value chain.
Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems
NASA Astrophysics Data System (ADS)
Bai, Xiaojuan; Sun, Changpo; Xu, Jing; Liu, Di; Han, Yangying; Wu, Songling; Luo, Xiaohong
2018-02-01
Graphene oxide (GO) and its functionalized systems have very unique structural advantages as excellent adsorbent or substrate material in the removal of organic contaminants. Herein, we reported a strategy to establish functionalized GO system (FGO) using amphiphilic molecules didodecyldimethylammonium bromide (DDAB) as a modifier for the detoxification of zearalenone (ZEN) from corn oil. The adsorption property for the removal of ZEN from edible corn oils under different experimental conditions such as pH, amphiphilic molecules, time and temperature was investigated in detail. The morphology structure, adsorption isotherm, adsorption kinetics and the recyclability of FGO systems have also been researched, systematically. The FGO systems exhibit a higher adsorption efficiency, recyclability and thermostability in comparison with the traditional adsorbent materials. It provides an insight into the detoxification of mycotoxin from edible oils by graphene-based new materials.
Zhang, Jing; Zhang, Baogang; Tian, Caixing; Ye, Zhengfang; Liu, Ye; Lei, Zhongfang; Huang, Wenli; Feng, Chuanping
2013-06-01
Microbial fuel cells (MFCs), representing a promising method to treat combined pollutants with energy recovery, were utilized to remove sulfide and recover power with corn stover filtrate (CSF) as the co-substrate in present study. A maximum power density of 744 mW/m(2) was achieved with sulfide removal of 91% during 72 h operation when the CSF concentrations (mg-COD/l) and the electrolyte conductivity were set at 800 mg/l and 10.06 mS/cm, respectively, while almost 52% COD was removed due to the microbial degradation of CSF to the volatile organic carbons. CSF concentrations and electrolyte conductivities had significant effects on the performance of the MFCs. Simultaneous removals of inorganic pollutant and complex organic compounds with electricity generation in MFCs are reported for the first time. These results provide a good reference for multiple contaminations treatment especially sulfide containing wastewaters based on the MFC technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Monascus pigment production by solid-state fermentation with corn cob substrate.
Velmurugan, Palanivel; Hur, Hyun; Balachandar, Vellingiri; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Lee, Sang-Myung; Chae, Jong-Chan; Shea, Patrick J; Oh, Byung-Taek
2011-12-01
Natural pigments are an important alternative to potentially harmful synthetic dyes. We investigated the feasibility of corn cob powder as a substrate for production of pigments by Monascus purpureus KACC 42430 in solid-state fermentation. A pigment yield of 25.42 OD Units/gram of dry fermented substrate was achieved with corn cob powder and optimized process parameters, including 60% (w/w) initial moisture content, incubation at 30°C, inoculation with 4mL of spores/gram of dry substrate, and an incubation period of 7 days. Pigment yield using corn cobs greatly exceeded those of most other agricultural waste substrates. The pigments were stable at acidic pH, high temperatures, and in salt solutions; all important considerations for industrial applications. Our results indicate the viability of corn cob substrate in combination with M. purpureus for industrial applications. Copyright © 2011 The Society for Biotechnology, Japan. All rights reserved.
Potential economic losses to the USA corn industry from aflatoxin contamination
Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F.
2016-01-01
Mycotoxins, toxins produced by fungi that colonize food crops, can pose a heavy economic burden to the United States corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the US and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (FDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from $52.1 million to $1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years. PMID:26807606
Potential economic losses to the US corn industry from aflatoxin contamination.
Mitchell, Nicole J; Bowers, Erin; Hurburgh, Charles; Wu, Felicia
2016-01-01
Mycotoxins, toxins produced by fungi that colonise food crops, can pose a heavy economic burden to the US corn industry. In terms of economic burden, aflatoxins are the most problematic mycotoxins in US agriculture. Estimates of their market impacts are important in determining the benefits of implementing mitigation strategies within the US corn industry, and the value of strategies to mitigate mycotoxin problems. Additionally, climate change may cause increases in aflatoxin contamination in corn, greatly affecting the economy of the US Midwest and all sectors in the United States and worldwide that rely upon its corn production. We propose two separate models for estimating the potential market loss to the corn industry from aflatoxin contamination, in the case of potential near-future climate scenarios (based on aflatoxin levels in Midwest corn in warm summers in the last decade). One model uses the probability of acceptance based on operating characteristic (OC) curves for aflatoxin sampling and testing, while the other employs partial equilibrium economic analysis, assuming no Type 1 or Type 2 errors, to estimate losses due to proportions of lots above the US Food and Drug Administration (USFDA) aflatoxin action levels. We estimate that aflatoxin contamination could cause losses to the corn industry ranging from US$52.1 million to US$1.68 billion annually in the United States, if climate change causes more regular aflatoxin contamination in the Corn Belt as was experienced in years such as 2012. The wide range represents the natural variability in aflatoxin contamination from year to year in US corn, with higher losses representative of warmer years.
Breeding aflatoxin-resistant maize lines using recent advances in technologies - a review.
Brown, Robert L; Menkir, Abebe; Chen, Zhi-Yuan; Bhatnagar, Deepak; Yu, Jiujiang; Yao, Haibo; Cleveland, Thomas E
2013-01-01
Aflatoxin contamination caused by Aspergillus flavus infection of corn is a significant and chronic threat to corn being used as food or feed. Contamination of crops at levels of 20 ng g(-1) or higher (as regulated by the USFDA) by this toxin and potent carcinogen makes the crop unsalable, resulting in a significant economic burden on the producer. This review focuses on elimination of this contamination in corn which is a major US crop and the basis of many products. Corn is also "nature's example" of a crop containing heritable resistance to aflatoxin contamination, thereby serving as a model for achieving resistance to aflatoxin contamination in other crops as well. This crop is the largest production grain crop worldwide, providing food for billions of people and livestock and critical feedstock for production of biofuels. In 2011, the economic value of the US corn crop was US$76 billion, with US growers producing an estimated 12 billion bushels, more than one-third of the world's supply. Thus, the economics and significance of corn as a food crop and the threat to food safety due to aflatoxin contamination of this major food crop have prompted the many research efforts in many parts of the world to identify resistance in corn to aflatoxin contamination. Plant breeding and varietal selection has been used as a tool to develop varieties resistance to disease. This methodology has been employed in defining a few corn lines that show resistance to A. flavus invasion; however, no commercial lines have been marketed. With the new tools of proteomics and genomics, identification of resistance mechanisms, and rapid resistance marker selection methodologies, there is an increasing possibility of finding significant resistance in corn, and in understanding the mechanism of this resistance.
Yang, J; Bai, F; Zhang, K; Bai, S; Peng, X; Ding, X; Li, Y; Zhang, J; Zhao, L
2012-11-01
The purpose of this study was to evaluate the effects of feeding corn naturally contaminated with aflatoxin B(1) (AFB(1)) and aflatoxin B(2) (AFB(2)) on serum biochemical parameters, hepatic antioxidant enzyme activities, and pathological lesions of broilers. In total, 1,200 Cobb male broilers were randomly allocated into 5 treatments, with 8 replicates per treatment and 30 birds per replicate, in a 42-d experiment. The dietary treatments were as follows: control, 25, 50, 75, and 100% contaminated corn groups. Results showed that serum aspartate aminotransferase activity in the 75 and 100% contaminated groups were higher than that in the control group on d 21 (P < 0.05). Decreased content of hepatic total protein and increased activities of hepatic glutathione reductase and glutathione-S-transferase were observed as the percentage of contaminated corn increased (P < 0.05). The activity of superoxide dismutase and the content of hepatic malondialdehyde increased when the broilers were fed with more than 50% contaminated corn (P < 0.05). A reduction in glutathione peroxidase level was observed in the AFB(1)- and AFB(2)-contaminated groups on d 21 (P < 0.05). The average pathological lesion scores and apoptosis rate of liver cells increased as the concentration of dietary AFB(1) and AFB(2) increased. Ultrastructural changes were found in the livers of broilers fed 100% contaminated corn. In conclusion, diets containing AFB(1) and AFB(2) could induce pathological lesions in the livers, slightly change the serum biochemical parameters, and damage the hepatic antioxidant functions when the inclusion of AFB(1)- and AFB(2)-contaminated corn reached or exceeded 50%.
Transformation kinetics of corn and clover residues in mineral substrates of different composition
NASA Astrophysics Data System (ADS)
Pinskii, D. L.; Maltseva, A. N.; Zolotareva, B. N.; Dmitrieva, E. D.
2017-06-01
Mineralization kinetics of corn and clover residues in quartz sand, loam, sand + 15% bentonite, and sand + 30% kaolinite have been studied. A scheme has been proposed for the transformation of plant residues in mineral substrates. Kinetic parameters of mineralization have been calculated with the use of a first-order two-term exponential polynomial. It has been shown that the share of labile organic carbon pool in the clover biomass is higher (57-63%) than in the corn biomass (47-49%), which is related to the biochemical composition of plant residues. The mineralization constants of clover residues generally significantly exceed those of corn because of the stronger stabilization of the decomposition products of corn residues. The turnover time of the labile clover pool (4-9 days) in all substrates and that of the labile corn pool (8-10 days) in sands and substrates containing kaolinites and bentonite are typical for organic acids, amino acids, and simple sugars. In the loamy substrate, the turnover time of labile corn pool is about 46 days due to the stronger stabilization of components of the labile pool containing large amounts of organic acids. The turnover time of the stable clover pool (0.95 years) is significantly lower than that of the stable corn pool (1.60 years) and largely corresponds to the turnover time of plant biomass.
Yao, H; Hruska, Z; Kincaid, R; Brown, R; Cleveland, T; Bhatnagar, D
2010-05-01
The objective of this study was to examine the relationship between fluorescence emissions of corn kernels inoculated with Aspergillus flavus and aflatoxin contamination levels within the kernels. Aflatoxin contamination in corn has been a long-standing problem plaguing the grain industry with potentially devastating consequences to corn growers. In this study, aflatoxin-contaminated corn kernels were produced through artificial inoculation of corn ears in the field with toxigenic A. flavus spores. The kernel fluorescence emission data were taken with a fluorescence hyperspectral imaging system when corn kernels were excited with ultraviolet light. Raw fluorescence image data were preprocessed and regions of interest in each image were created for all kernels. The regions of interest were used to extract spectral signatures and statistical information. The aflatoxin contamination level of single corn kernels was then chemically measured using affinity column chromatography. A fluorescence peak shift phenomenon was noted among different groups of kernels with different aflatoxin contamination levels. The fluorescence peak shift was found to move more toward the longer wavelength in the blue region for the highly contaminated kernels and toward the shorter wavelengths for the clean kernels. Highly contaminated kernels were also found to have a lower fluorescence peak magnitude compared with the less contaminated kernels. It was also noted that a general negative correlation exists between measured aflatoxin and the fluorescence image bands in the blue and green regions. The correlation coefficients of determination, r(2), was 0.72 for the multiple linear regression model. The multivariate analysis of variance found that the fluorescence means of four aflatoxin groups, <1, 1-20, 20-100, and >or=100 ng g(-1) (parts per billion), were significantly different from each other at the 0.01 level of alpha. Classification accuracy under a two-class schema ranged from 0.84 to 0.91 when a threshold of either 20 or 100 ng g(-1) was used. Overall, the results indicate that fluorescence hyperspectral imaging may be applicable in estimating aflatoxin content in individual corn kernels.
Biological control of aflatoxin is effective and economical in Mississippi field trials
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination of corn is a major grain quality issue and can be a major economic limiting factor to Mississippi corn farmers. Biological control products based on aflatoxin non-producing strains of Aspergillus flavus are commercially available to prevent the contamination of corn with afl...
2003-04-04
processes in the subsurface. This substrate is typically molasses although these substrates can include high fructose corn syrup , whey, etc. (Suthersan...typically comprised of a carbohydrate such as molasses, whey, high fructose corn syrup , lactate, butyrate, or benzoate). Through periodic subsurface...this purpose; other carbohydrates such as high fructose corn syrup and whey can also be effective. This approach has been accepted by regulators and
2004-12-17
other substrates can also be used, including high fructose corn syrup , whey, etc. Through this subsurface molasses injection, the existing aerobic or...is not the only carbohydrate material that can be used for this purpose; other carbohydrates such as high fructose corn syrup and whey can also be... fructose corn syrup , lactate, butyrate, or benzoate). Through periodic subsurface substrate injection, the ERD technology alters existing aerobic or mildly
On the occurrence of aflatoxin M1 in milk and dairy products.
Prandini, A; Tansini, G; Sigolo, S; Filippi, L; Laporta, M; Piva, G
2009-05-01
Aflatoxins are toxic fungal metabolites found in foods and feeds. When ruminants eat AFB(1)-feedstuffs, they metabolise the toxin and excrete AFM(1) in milk. To control AFM(1) in foods it is necessary to reduce AFB(1) contamination of feeds for dairy cattle by preventing fungal growth and AFB(1) formation in agricultural commodities intended for animal use. Corn and corn-based products are one of the most contaminated feedstuffs; therefore risk factor analysis of AFB(1) contamination in corn is necessary to evaluate risk of AFM(1) contamination in milk and milk products. During the corn silage production, the aflatoxins production is mostly influenced by: harvest time; fertilization; irrigation; pest control; silage moisture; and storage practices. Due to the lower moisture at harvest and to the conservation methods, the corn grain is mostly exposed to the contamination by Aspergillus species. Therefore, it is necessary to reduce the probability of this contaminant through choice of: hybrids; seeding time and density; suitable ploughing and fertirrigation; and chemical or biological control. Grains harvested with the lowest possible moisture and conservation moisture close to or less than 14% are necessary to reduce contamination risks, as is maintaining mass to homogeneous moisture. Kernel mechanical damage, grain cleaning practices and conservation temperature are also factors which need to be carefully controlled.
USDA-ARS?s Scientific Manuscript database
Key impediments to corn yield and quality in the southeastern coastal plain region are debatably aflatoxin contamination and damage by ear-feeding insects. The key ear-feeding insects are the corn earworm, Helicoverpa zea (Boddie), the maize weevil, Sitophilus zeamais Motschulsky, and the brown sti...
Extracted sweet corn tassels as a renewable alternative to peat in greenhouse substrates
USDA-ARS?s Scientific Manuscript database
Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops. Sphagnum peat moss is a primary constituent of these substrates and its harvest from endangered ecosystems has become a worldwide concern. Ethanol-extracted, coarse-ground corn (Zea mays L. ‘Sil...
Automatic detection of aflatoxin contaminated corn kernels using dual-band imagery
NASA Astrophysics Data System (ADS)
Ononye, Ambrose E.; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Cleveland, Thomas E.
2009-05-01
Aflatoxin is a mycotoxin predominantly produced by Aspergillus flavus and Aspergillus parasitiucus fungi that grow naturally in corn, peanuts and in a wide variety of other grain products. Corn, like other grains is used as food for human and feed for animal consumption. It is known that aflatoxin is carcinogenic; therefore, ingestion of corn infected with the toxin can lead to very serious health problems such as liver damage if the level of the contamination is high. The US Food and Drug Administration (FDA) has strict guidelines for permissible levels in the grain products for both humans and animals. The conventional approach used to determine these contamination levels is one of the destructive and invasive methods that require corn kernels to be ground and then chemically analyzed. Unfortunately, each of the analytical methods can take several hours depending on the quantity, to yield a result. The development of high spectral and spatial resolution imaging sensors has created an opportunity for hyperspectral image analysis to be employed for aflatoxin detection. However, this brings about a high dimensionality problem as a setback. In this paper, we propose a technique that automatically detects aflatoxin contaminated corn kernels by using dual-band imagery. The method exploits the fluorescence emission spectra from corn kernels captured under 365 nm ultra-violet light excitation. Our approach could lead to a non-destructive and non-invasive way of quantifying the levels of aflatoxin contamination. The preliminary results shown here, demonstrate the potential of our technique for aflatoxin detection.
2007-03-01
subsurface. The substrate is typically molasses, but other substrates can be used, including high fructose corn syrup , whey, etc. Through subsurface...solution, typically consisting of a carbohydrate such as molasses, whey, high fructose corn syrup , lactate, butyrate, or benzoate. The technology alters...lb of PCE Treated Molasses 0.20 – 0.35 0.16 Sugar ( corn syrup ) 0.25 – 0.30 0.4 Sodium Lactate 1.25 – 1.46 NA Whey (powdered, dry) 1.17 NA Whey
USDA-ARS?s Scientific Manuscript database
Corn grown in the United States is susceptible to contamination by ear mold fungi. Some of these fungi can produce mycotoxins which are harmful to animals and humans. It is important to identify novel ways of reducing corn ear mold contamination. Some genetic studies of corn over the years have iden...
Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn.
Ni, Xinzhi; Wilson, Jeffrey P; Buntin, G David; Guo, Baozhu; Krakowsky, Matthew D; Lee, R Dewey; Cottrell, Ted E; Scully, Brian T; Huffaker, Alisa; Schmelz, Eric A
2011-07-01
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed.
Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn
Ni, Xinzhi; Wilson, Jeffrey P.; Buntin, G. David; Guo, Baozhu; Krakowsky, Matthew D.; Lee, R. Dewey; Cottrell, Ted E.; Scully, Brian T.; Huffaker, Alisa; Schmelz, Eric A.
2011-01-01
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed. PMID:22069748
NASA Astrophysics Data System (ADS)
Ramakrishna, M.; Kumari, Juhi; Venkanna, K.; Agarwal, Pratima
2018-05-01
In this paper, we report a-Si:H solar cells fabricated on flexible Polyethylene terephthalate (PET) and corning glass. The a-Si:H thin films were prepared at low substrate temperature (110oC) on corning 1737 glass with different rf powers. The influence of rf power on structural and optoelectronic properties of i-a-Si:H were studied. The films deposited at rf power 50W show less broadening of <ɛ2> peak. This indicates these films are more ordered. With this optimized parameter for i-layer, solar cells fabricated on flexible PET substrate show best efficiency of 3.3% whereas on corning glass 3.82%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Gaynor; McKeon, Tom
Enhanced reductive dechlorination (ERD) has rapidly become a remedy of choice for use on chlorinated solvent contamination when site conditions allow. With this approach, solutions of an organic substrate are injected into the affected aquifer to stimulate biological growth and the resultant production of reducing conditions in the target zone. Under the reducing conditions, hydrogen is produced and ultimately replaces chlorine atoms on the contaminant molecule causing sequential dechlorination. Under suitable conditions the process continues until the parent hydrocarbon precursor is produced, such as the complete dechlorination of trichloroethylene (TCE) to ethene. The process is optimized by use of amore » substrate that maximizes hydrogen production per unit cost. When natural biota are not present to promote the desired degradation, inoculates can be added with the substrate. The in-situ method both reduces cost and accelerates cleanup. Successful applications have been extended from the most common chlorinated compounds perchloroethylene (PCE) and TCE and related products of degradation, to perchlorate, and even explosives such as RDX and trinitrotoluene on which nitrates are attacked in lieu of chloride. In recent work, the process has been further improved through use of beverage industry wastewaters that are available at little or no cost. With material cost removed from the equation, applications can maximize the substrate loading without significantly increasing total cost. The extra substrate loading both accelerates reaction rates and extends the period of time over which reducing conditions are maintained. In some cases, the presence of other organic matter in addition to simple sugars provides for longer performance times of individual injections, thereby working in a fashion similar to emulsified vegetable oil. The paper discusses results of applications at three different sites contaminated with chlorinated ethylenes. The applications have included wastewaters of both natural fruit juices and corn syrup solutions from carbonated beverages. Cost implications include both the reduced cost of substrate and the cost avoidance of needing to pay for treatment of the wastewater. (authors)« less
Measurement of fumonisins in corn with a fiber optic fluoroimmunosensor
NASA Astrophysics Data System (ADS)
Thompson, Vicki S.; Maragos, Chris M.
1997-05-01
A fiber-optic immunosensor was used to determine concentrations of the mycotoxin fumonisin B1(FB1) in both spiked and naturally contaminated corn samples. Samples were extracted with a mixture of methanol/water. Two methods were used to prepare the methanolic corn extracts before introduction to the immunosensor: (1) simple dilution of the methanolic corn extract; or (2) affinity column cleanup. The sensor displayed an IC50 of 70 ng FB1/mL when toxin was introduced in phosphate buffered saline. Simple dilution of methanolic corn extracts yielded an assay with an IC50 equivalent to 25 (mu) gFB1/g corn and a limit of detection of 3.2 (mu) g/g corn, while affinity cleanup of corn extracts yielded an assay with an IC50 of 5 (mu) gFB1/g corn and a limit of detection of 0.4 (mu) gFB1/g corn. The difference in sensitivity between the two cleanup techniques was due to concentration of fumonisins obtained from the affinity cleanup procedure. Naturally contaminated corn samples were also analyzed after either simple dilution or affinity column cleanup. For comparison the naturally contaminated corn samples were analyzed with an HPLC method after isolation of the fumonisins with strong anion exchange (SAX) solid phase extraction cartridges. The SAX/HPLC method and the immunosensor method agreed well except when large amounts of other fumonisins (i.e. fumonisin B2) were present. This was due in part to the cross-reactivity of the monoclonal antibody with other fumonisins. The immunosensor has the potential to screen individual corn samples for fumonisins within six minutes, and is among the fastest of the currently available FB1 detection methods.
NASA Astrophysics Data System (ADS)
Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2012-05-01
Naturally occurring Aspergillus flavus strains can be either toxigenic or atoxigenic, indicating their ability to produce aflatoxin or not, under specific conditions. Corn contaminated with toxigenic strains of A. flavus can result in great losses to the agricultural industry and pose threats to public health. Past research showed that fluorescence hyperspectral imaging could be a potential tool for rapid and non-invasive detection of aflatoxin contaminated corn. The objective of the current study was to assess, with the use of a hyperspectral sensor, the difference in fluorescence emission between corn kernels inoculated with toxigenic and atoxigenic inoculums of A. flavus. Corn ears were inoculated with AF13, a toxigenic strain of A. flavus, and AF38, an atoxigenic strain of A. flavus, at dough stage of development and harvested 8 weeks after inoculation. After harvest, single corn kernels were divided into three groups prior to imaging: control, adjacent, and glowing. Both sides of the kernel, germplasm and endosperm, were imaged separately using a fluorescence hyperspectral imaging system. It was found that the classification accuracies of the three manually designated groups were not promising. However, the separation of corn kernels based on different fungal inoculums yielded better results. The best result was achieved with the germplasm side of the corn kernels. Results are expected to enhance the potential of fluorescence hyperspectral imaging for the detection of aflatoxin contaminated corn.
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination of food products causes liver cancer and weakened immunity in humans, and stunted growth and reduced productivity in animals (CAST, 2003). Effective control of pre-harvest aflatoxin contamination of peanut and corn due to AflaGuard and Aflasafe in the United States and Africa...
Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image
NASA Astrophysics Data System (ADS)
Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.
2010-04-01
Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.
Loading Rates and Impacts of Substrate Delivery for Enhanced Anaerobic Bioremediation
2010-02-01
High Fructose Corn Syrup Food service companies Viscous fluid at 60 to 80 percent by weight Dissolved in water. Slow-Release Substrate...as sulfur, sulfate, and metals that may be of potential concern. Higher grades of molasses or high fructose corn syrup (HFCS) may be used in...ubiquitous in processed foods and beverages. Many confuse pure “ fructose ” with “ high fructose corn syrup ,” a sweetener that never contains fructose
Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey
2018-05-28
Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.
Single Aflatoxin Contaminated Corn Kernel Analysis with Fluorescence Hyperspectral Image
USDA-ARS?s Scientific Manuscript database
Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin leve...
Gene Expression Profiles in Developing Corn Kernels in Response to Drought Stress
USDA-ARS?s Scientific Manuscript database
Preharvest aflatoxin contamination of corn is aggravated by abiotic stress and the hot and humid weather patterns along with suboptimal summer rainfall favor the development. Drought stress is a major factor known to contribute to preharvest aflatoxin contamination. The gene expression studies were ...
Aflatoxin contamination in corn sold for wildlife feed in texas.
Dunham, Nicholas R; Peper, Steven T; Downing, Carson D; Kendall, Ronald J
2017-05-01
Supplemental feeding with corn to attract and manage deer is a common practice throughout Texas. Other species, including northern bobwhites (Colinus virginianus), are commonly seen feeding around supplemental deer feeders. In many cases, supplemental feeding continues year-round so feed supply stores always have supplemental corn in stock. Fluctuating weather and improper storage of corn can lead to and/or amplify aflatoxin contamination. Due to the recent decline of bobwhites throughout the Rolling Plains ecoregion of Texas, there has been interest in finding factors such as toxins that could be linked to their decline. In this study, we purchased and sampled supplemental corn from 19 locations throughout this ecoregion to determine if aflatoxin contamination was present in individual bags prior to being dispersed to wildlife. Of the 57 bags sampled, 33 bags (approximately 58%) contained aflatoxin with a bag range between 0.0-19.91 parts per billion (ppb). Additionally, three metal and three polypropylene supplemental feeders were each filled with 45.4 kg of triple cleaned corn and placed in an open field to study long-term aflatoxin buildup. Feeders were sampled every 3 months from November 2013-November 2014. Average concentration of aflatoxin over the year was 4.08 ± 2.53 ppb (±SE) in metal feeders, and 1.43 ± 0.89 ppb (±SE) in polypropylene feeders. The concentration of aflatoxins is not affected by the type of feeder (metal vs polypropylene), the season corn was sampled, and the location in the feeder (top, middle, bottom) where corn is sampled. It is unlikely that corn used in supplemental feeders is contributing to the bobwhite decline due to the low levels of aflatoxin found in purchased corn and long-term storage of corn used in supplemental feeders.
Duran, Rocio M; Gregersen, Scott; Smith, Timothy D; Bhetariya, Preetida J; Cary, Jeffrey W; Harris-Coward, Pamela Y; Mattison, Christopher P; Grimm, Casey; Calvo, Ana M
2014-06-01
The aflatoxin-producer and opportunistic plant pathogenic, filamentous fungus Aspergillus flavus is responsible for the contamination of corn and other important agricultural commodities. In order to obtain nutrients from the host A. flavus produces a variety of extracellular hydrolytic enzymes. Interestingly, A. flavus amylase and protease activity are dependent on the global regulator veA, a gene known to regulate morphogenesis and secondary metabolism in numerous fungi. Analysis of starch degradation by fungal enzymes secreted into broths of starch- or corn kernel-based media showed a notable accumulation of glucose in samples of the A. flavus control strain while the deletion veA sample accumulated high levels of maltose and maltotriose and only a small amount of glucose. Furthermore, SDS-PAGE and proteomics analysis of culture broths from starch- or corn kernel-based media demonstrated differential production of a number of proteins that included a reduction in the amount of a glucoamylase protein in the veA mutant compared to the control strain, while an alpha-amylase was produced in greater quantities in the veA mutant. Quantitative real-time PCR and western blot analyses using anti-glucoamylase or alpha-amylase antisera supported the proteomics results. Additionally, an overall reduction in protease activity was observed in the veA mutant including production of the alkaline protease, oryzin, compared to the control strain. These findings contribute to our knowledge of mechanisms controlling production of hydrolases and other extracellular proteins during growth of A. flavus on natural starch-based substrates.
USDA-ARS?s Scientific Manuscript database
Biological control is known to be effective in reducing aflatoxin contamination of corn and some transgenic corn hybrids incur greatly reduced damage from corn earworm (Helicoverpa zea). We conducted seven field trials over two years to test the hypothesis that transgenic insect protection and biol...
Nixtamalization Reduces Fumonisin Toxicity
USDA-ARS?s Scientific Manuscript database
Fumonisin B1 is a fungal toxin found in corn and corn-based foods. It causes diseases in animals, and is a suspected risk factor for birth defects in humans depending on contaminated corn as a diet staple. Tortillas, snacks and other foods are made from corn by the alkaline cooking process known as ...
USDA-ARS?s Scientific Manuscript database
Support Vector Machine (SVM) was used in the Genetic Algorithms (GA) process to select and classify a subset of hyperspectral image bands. The method was applied to fluorescence hyperspectral data for the detection of aflatoxin contamination in Aspergillus flavus infected single corn kernels. In the...
Aspergillus flavus Infection and Aflatoxin Production in Corn: Influence of Trace Elements
Lillehoj, E. B.; Garcia, W. J.; Lambrow, M.
1974-01-01
Distribution of trace element levels in corn germ fractions from kernels naturally infected with Aspergillus flavus and from kernels free of the fungus demonstrated an association between the presence of A. flavus and higher levels of metals. A. flavus production of aflatoxin on various autoclaved corn media showed that ground, whole corn was an excellent substrate; similar high levels of toxin were observed on full-fat corn germ but endosperm and defatted corn germ supported reduced yields. The influence of trace elements and their availability in defatted corn germ to A. flavus-mediated aflatoxin biosynthesis were measured. Enrichment of the substrate with 5 to 10 μg of manganese, copper, cadmium, or chromium per g of germ increased toxin yields. Addition of lead or zinc (50 to 250 μg/g) also enhanced toxin accumulation. Aflatoxin elaboration was reduced by the addition of 25 μg of cadmium per g or 500 μg of copper per g of germ. PMID:4216287
Piacentini, Karim C; Rocha, Liliana O; Fontes, Lívia C; Carnielli, Lorena; Reis, Tatiana A; Corrêa, Benedito
2017-03-01
Worldwide, barley is the main source of carbohydrate in the brewing process. However, corn is often used as an adjunct to improve and accelerate the fermentation process. Considering that, these two substrates are susceptible to fungal contamination as well as mycotoxins. The objective of the current study is to determine the incidence of the mycotoxins deoxynivalenol (DON) and fumonisin B 1 (FB 1 ) in industrial beers. The method applied for mycotoxin analyses included high performance liquid chromatography . The mean levels for recovery experiments were 89.6% for DON and 93.3% for FB 1 . DON was not detected in any of the analyzed samples whereas FB 1 was found in 49% of the 114 samples. The current survey demonstrated levels of FB 1 contamination in industrial beer, possibly due to the addition of contaminated adjuncts. It is necessary to establish maximum levels of mycotoxins in beer in Brazil and other countries in order to reduce health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Foreign object detection via texture recognition and a neural classifier
NASA Astrophysics Data System (ADS)
Patel, Devesh; Hannah, I.; Davies, E. R.
1993-10-01
It is rate to find pieces of stone, wood, metal, or glass in food packets, but when they occur, these foreign objects (FOs) cause distress to the consumer and concern to the manufacturer. Using x-ray imaging to detect FOs within food bags, hard contaminants such as stone or metal appear darker, whereas soft contaminants such as wood or rubber appear slightly lighter than the food substrate. In this paper we concentrate on the detection of soft contaminants such as small pieces of wood in bags of frozen corn kernels. Convolution masks are used to generate textural features which are then classified into corresponding homogeneous regions on the image using an artificial neural network (ANN) classifier. The separate ANN outputs are combined using a majority operator, and region discrepancies are removed by a median filter. Comparisons with classical classifiers showed the ANN approach to have the best overall combination of characteristics for our particular problem. The detected boundaries are in good agreement with the visually perceived segmentations.
Reduction of fumonisin B₁ in corn grits by twin-screw extrusion.
Jackson, Lauren S; Jablonski, Joseph; Bullerman, Lloyd B; Bianchini, Andreia; Hanna, Milford A; Voss, Kenneth A; Hollub, April D; Ryu, Dojin
2011-08-01
This study was designed to investigate the fate of fumonisins in flaking corn grits during twin-screw extrusion by measuring fumonisin B₁ (FB₁) and its analogs with a mass balance approach. Food grade corn grits and 2 batches of grits contaminated with FB₁ at 10 and 50 μg/g by Fusarium verticillioides M-2552 were processed with or without glucose supplementation (10%, w/w) with a twin-screw extruder. Extrusion reduced FB₁ in contaminated grits by 64% to 72% without glucose and 89% to 94% with added glucose. In addition, extrusion alone resulted in 26% to 73% reduction in the levels of fumonisin B₂ and fumonisin B₃, while levels of both mycotoxins were reduced by >89% in extruded corn grits containing 10% glucose. Mass balance analysis showed that 38% to 46% of the FB₁ species detected in corn extruded with glucose was N-(deoxy-D-fructos-1-yl)-FB₁, while 23% to 37% of FB₁ species detected in extruded corn grits with and without added glucose was bound to the matrix. It was also found that the hydrolyzed form of FB₁ was a minor species in extruded corn grits with or without added glucose, representing <15% of the total FB₁ species present. Less than 46% of FB₁ originally present in corn grits could be detected in the fumonisin analogues measured in this study. Research is needed to identify the reaction products resulting from extrusion processing of fumonisin-contaminated corn products. Twin-screw extrusion is widely used in food industry for its versatility. This technology may reduce the level of fumonisins in corn particularly with added glucose. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Reduction of fumonisin B1 in corn grits by twin-screw extrusion
USDA-ARS?s Scientific Manuscript database
Fumonisins are mycotoxins found in corn and corn-based foods. Fumonisin B1 (FB1), the most common, causes animal diseases and there is evidence suggesting that it increases the risk of certain cancers and birth defects in humans that are highly dependent on contaminated corn as a diet staple. There...
NASA Astrophysics Data System (ADS)
Abdullah, B.; Maftukhah, S.; Listyaningrum, E.; Faradhiba, F.
2018-03-01
Cellulase is a very important enzyme for ethanol production, food, papper, etc, from lignocellulose and others. Rice straw and corn cob are the largest agricultural waste in Indonesia, while the water hyacinth weed is a plant that has not been used optimally. The content of cellulose is high enough on rice straw, water hyacinth and corn corb so it can be used as a substrate in the production of cellulase to increase the economic value of the rice straw, hyacinth, and corncob. As for the purpose of this study is to use the rice straw, water hyacinth, and corn cob as substrates of cellulase enzyme, determine the effect type of substrates, moisture content and fermentation time in production of cellulase enzyme and also determining the optimum conditions for production of cellulase enzymes. The method is solid fermentation system and using fungi Aspergillus niger ITBCC L74 as inoculum. The variable used were fermentation time is 2, 4, 6, 8 and 10 days, moisture content is 50, 60, 70, and 80%, as well as the type of substrate is rice straw, water hyacinth, and corn cob. The results showed that the highest protein content in the crude enzyme of the rice straw, water hyacinth and corncobs @ is 0.0153 mg/ml, 0.0194 mg/ml and 0. 0146 mg/ml, respectively. The optimum enzyme activity were for the rice straw, water hyacinth and corn cobs @ 2.569 U/ml, 1.606 U/ml and 1.302 U/ml, respectively. The optimum moisture content were obtain for rice straw, water hyacinth and corn cob respectively 80%, 70% and 60%. And the optimum fermentation time for rice straw, corn cob, and water hyacinth is on the sixth day. In this study showed the highest enzyme activity on the type of rice straw substrate with a water content of 80% and fermentation time 6 day.
Breeding aflatoxin resistant maize lines using recent advances in technologies-a review
USDA-ARS?s Scientific Manuscript database
Aflatoxin contamination caused by Aspergillus flavus infection of corn is a significant and chronic threat to corn being used as food or feed. Contamination of crops at levels of 20 ppb or higher (as regulated by the FDA) by this toxin and potent carcinogen makes the crop unsalable. This review focu...
USDA-ARS?s Scientific Manuscript database
For many years, these laboratories have studied the use of biological control methods to reduce aflatoxin contamination in harvested corn using non-aflatoxigenic Aspergillus flavus isolates in grain-based granule and liquid formulations. More recently, research has focused on using various formulat...
Yang, Z B; Wan, X L; Yang, W R; Jiang, S Z; Zhang, G G; Johnston, S L; Chi, F
2014-09-01
One hundred sixty-two 21-d-old ducks were randomly allotted to 6 treatments with 3 levels of mycotoxin-contaminated corn (0, 50, and 100% M) and 2 levels of Calibrin-A (CA, a clay mycotoxin adsorbent, 0 and 0.1%) to evaluate the effects of increasing levels of mycotoxin-contaminated corn on nutrient utilization in ducks fed diets with or without CA. Endogenous losses were obtained from another 27 ducks. Excreta samples were collected to determine DM, OM, CP, amino acids, and gross energy. Gross energy was analyzed for computation of AME and TME. The apparent digestibility (AD) and true digestibility (TD) of the nutrients in all treatments with and without CA had common (P > 0.05) intercepts and slopes except Pro (P < 0.05). The AME, TME, AD, and TD of DM, OM, Phe, and Gly were linearly (P < 0.05) decreased as the concentration of contaminated corn in the diet increased. Ducks fed the 100% M diet supplemented with 0.1% CA increased AD and TD of Gly compared with the 100% M diet, and ducks fed 50 and 100% M diet supplemented with 0.1% CA increased AD and TD of Pro compared with 50% M and 100% M diet, respectively. In the present study, ducks fed mycotoxin-contaminated corn decreased nutrient digestibility in dose-dependent manner, and 0.1% CA supplementation improved AD and TD of Gly and Pro. © 2014 Poultry Science Association Inc.
Owens, D; Nuessly, G S; Kendra, P E; Colquhoun, T A; Seal, D R
2017-08-01
Fresh market sweet corn (Zea mays L., convar. saccharata var. rugosa, Poales: Poaceae) ears produced in Florida are damaged by the larvae of Euxesta stigmatias Loew, Euxesta eluta Loew, and Chaetopsis massyla Walker (Diptera: Ulidiidae) that renders ears unmarketable. No standard lure exists for monitoring these pests. Oviposition substrate and attractant bioassays were designed to identify attractive substrates for further semiochemical investigation. Frass from the fall armyworm, Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae), was more attractive than other ovipositional substrates tested for E. eluta and C. massyla, and resulted in greater ovipositional output. Tassel-derived armyworm frass was more attractive than leaf-derived frass for oviposition. Frass also resulted in greater oviposition output by two species. In attraction bioassays, frass was generally preferred over the corresponding corn tissue, and only C. massyla demonstrated a preference for silk-frass over tassel-frass. The most promising substrates were then evaluated by electroantennography (EAG) to quantify olfactory responses. Frass volatiles also elicited greater antennal responses than corn volatiles. With tassel-frass, greater amplitude EAG responses were recorded from immature E. eluta female antennae, while mature female E. stigmatias exhibited greater responses. Equivalent antennal response to silk-frass was observed from E. eluta. Overall, silk-frass elicited the greatest EAG responses among all three fly species. Our results indicate that armyworm frass is an important resource in the chemical ecology of corn-infesting silk flies, and this substrate warrants further investigation for potential attractants that may facilitate development of novel management tools for these pests. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wilson, J P; Jurjevic, Z; Hanna, W W; Wilson, D M; Potter, T L; Coy, A E
2006-02-01
Pearl millet is widely consumed in regions of Africa and Asia, and is increasingly being grown as an alternative grain in drought-prone regions of the United States. Pearl millet and corn were grown in dryland conditions at Tifton, Georgia, USA and grains were compared for pre-harvest infection by potentially toxigenic fungi and contamination by mycotoxins. Corn hybrids Agripro 9909 and Pioneer 3146, and pearl millet Tifgrain 102 were grown in 2000 and 2001; pearl millet HGM 100 was included in the test in 2001. Hybrids were sown on multiple planting dates in each year to induce variation in flowering time. Host species differed in the frequency of isolation of potentially toxigenic fungal species in both years. Across years, corn hybrids were more prone to infection by Aspergillus flavus Link (maximum isolation frequency = 8.8%) and Fusarium moniliforme Sheldon sensu lato (maximum isolation frequency = 72.8%), with corresponding greater concentrations of aflatoxins (maximum concentration = 204.9 microg kg(-1)) and fumonisins (maximum concentration = 34,039 microg kg(-1)). Pearl millet was more prone to infection by F. semitectum Berk. & Ravenel (maximum isolation = 74.2%) and F. chlamydosporum Wollenweb & Reinking (maximum isolation = 33.0%), and contamination by moniliformin (maximum contamination = 92.1 microg kg(-1)). Beauvericin (maximum concentration = 414.6 microg kg(-1)) was present in both hosts. Planting date of corn affected aflatoxin and beauvericin contamination in 2000, and fumonisin concentration in 2001. The observed differences in mycotoxin contamination of the grains, which are likely due to host-specific differences in susceptibility to pre-harvest mycoflora, may affect food safety when the crops are grown under stress conditions.
Effect of processing on the fumonisins content of corn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, P.A.; Hendrich, S.; Hopmans, E.C.
1995-12-01
Fumonisins (FBs) are a family of mycotoxins produced by Fusarium moniliforme and F. proliferatum, predominant corn pathogens, and are found in most corn-containing foods. The FBs are heat stable, resistant to ammoniation and, unlike most mycotoxins, are water-soluble. The levels in corn and corn-containing foods will be presented ranging from <20 ppb to >2 ppm. The effects of water washing contaminated FB-corn does not reduce the levels significantly. Fermentation of corn to ethanol does not alter FB but distillation yielded FB-free ethanol.
D'Ovidio, K L; Trucksess, M W; Devries, J W; Bean, G
2007-07-01
Fumonisins are metabolites produced in corn primarily by the fungus Fusarium verticillioides (F. moniliforme) and are toxic to humans and animals. Fumonisin B(1) (FB(1)) is the primary fumonisin produced and is found frequently in corn kernels, some of which may be used as food or food ingredients. A three-part study was conducted to determine the effects of gamma- and electron beam irradiation on the levels of fumonisins in naturally contaminated field corn, and the effects of microwave-popping on fumonisins in selected, naturally contaminated popcorn. To date, no effective means have been found to reduce consistently mycotoxin levels once foods are contaminated. Aqueous solutions of FB(1) at various concentrations, samples of whole corn, and samples of ground corn containing known levels of FB(1) were irradiated with various levels of cobalt and electron beam irradiation. Popcorn samples, taken from the reject streams of popcorn processing, were popped using normal microwave-popping conditions. FB(1) in aqueous solutions was reduced by 99.7% using a minimal level of irradiation (0.5 kGray). Gamma- and electron beam irradiation did not significantly reduce levels of FB(1) in whole and ground corn. Aspergillus sp., Penicillium sp. and Fusarium sp. fungi were totally eliminated at 30 kGray in ground corn and at 100 kGray in whole corn. The normal commercial cleaning processes for microwave popcorn before packaging reduced fumonisins to <0.03 microg g(-1) for the cleaned product stream. Microwave popping of popcorn from reject streams of the cleaning operation that contained fumonisins resulted in significant reduction of the mould toxin.
Hu, Jiawei; Wang, Caixia; Tian, Li; Wang, Minjuan; Guo, Rong; Qiao, Haiou
2017-07-01
To investigate the contamination of zearalenone in food in Shaanxi Province, and to assess the dietary zearalenone exposure and the health risk of intaking zearalenone from corn products for Shaanxi residents. In 2013-2016, samples of five kinds of food including grains, vegetable oil, liquor and infants' food were collected randomly from ten cities, and determined with ultra-performance liquid chromatography. Dietary intake assessment of human exposure to zearalenone was carried out in combination of food consumption data with concentration of zearalenone. 1193 samples were detected zearalenone and the total detection rate was 17. 27%, with the mean value of 13. 5 μg/kg. Among all food samples, oil products were more seriously polluted than other kinds of foods, its detection rate was 79. 37%. And 12 samples of grain products exceed the standard, the exceeding standard rate was 1. 64%, which were all corn products. The level of zearalenone detected in wheat flour, rice, millet, beer and bakery products was low. The overall level of zearalenone contamination inmarket food is common, but corn products may be the severely contaminated foods with zearalenone in Shaanxi Province. The risk assessmentresult suggests that the current dietary intake of zearalenone from corn products in Shaanxi Province has no appreciable effect on health, however, the concentrations of zearalenone in corn products are relatively high, and need to be monitored in the future.
Li, Fenghua; Jiang, Dafeng; Zheng, Fengjia; Chen, Jindong; Li, Wei
2015-01-01
In this study a total of 522 samples were collected from Shandong province of China in 2014 and analysed for the occurrence of fumonisin B1 (FB1), FB2 and FB3 by isotope dilution ultrahigh performance liquid chromatography-tandem mass spectrometry. Fumonisins were detected in 98.1% of the corn products, with the average total level of 369.2 μg kg(-1). The individual average values of FB1, FB2 and FB3 in corn products were 268.3, 53.7 and 47.2 μg kg(-1), respectively. The simultaneous occurrence of FB1, FB2 and FB3 was observed in 76.7% of the corn products. Especially, the results demonstrated that the difference in the contamination levels for fumonisins in these three types of corn products was apparent. In addition, 6.2% of the wheat flour samples were contaminated with FB1, with concentrations ranging from 0.3 to 34.6 µg kg(-1). No FB2 or FB3 was detected in wheat flour. In corn oil samples no fumonisins were detected.
NASA Astrophysics Data System (ADS)
Shrestha, Prachand
This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.
Fumonisins in corn (Zea mays L.) from Southern Brazil.
Scussel, Vildes M; Savi, Geovana D; Costas, Lea Luzia Freitas; Xavier, José Junior Mendonça; Manfio, Daniel; Bittencourt, Karoline O; Aguiar, Kin; Stein, Stephanie M
2014-01-01
A total of 232 samples of corn commercialised in Santa Catarina state, Southern Brazil (temperate zone climate), were evaluated from 2007 to 2012 for fumonisins (FBs: FB1 and FB2). Before performing this study, a FBs method with liquid chromatography and fluorescence detection (ex. 335; em. 440 nm) was validated first. FBs were detected in 46.6% (108 samples), with values ranging from 66 to 7832 µg kg(-1) for FB1 and 110 to 1201 µg kg(-1) for FB2. The number of contaminated corn samples for FB1 and FB2 varied and often presented contamination of FB1 only. Per year of analysis, the numbers were: n = 22/8(FB1/FB2), 44/5(FB1/FB2), 25/12(FB1/FB2), 4(FB1), 6(FB1) and 7(FB1) in 2007, 2008, 2009, 2010, 2011 and 2012, respectively. The contamination percentage was 42.3/15.4, 59.5/6.8, 43.8/21.1, 36.4, 35.3 and 33.3%, respectively, during these years. Consumers can be exposed to these mycotoxins and their health can be at risk through the consumption of contaminated corn.
Kebede, Hirut; Abbas, Hamed K; Fisher, Daniel K; Bellaloui, Nacer
2012-11-20
Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.
2010-01-01
Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol at 93% metabolic yield) and WCP (resulting in 30 g/L ethanol at 89% metabolic yield) is reported in this work. Conclusions The current results indicate the feasibility of co-utilization of whole plants (that is, starchy grains plus cellulosic residues) using an ammonia-based (AFEX) pretreatment to increase bioethanol yield and reduce overall production cost. PMID:20534126
Accinelli, Cesare; Abbas, Hamed K; Vicari, Alberto; Shier, W Thomas
2016-08-01
Applying non-aflatoxin-producing Aspergillus flavus isolates to the soil has been shown to be effective in reducing aflatoxin levels in harvested crops, including peanuts, cotton and corn. The aim of this study was to evaluate the possibility of controlling aflatoxin contamination using a novel sprayable formulation consisting of a partially gelatinized starch-based bioplastic dispersion embedded with spores of biocontrol A. flavus strains, which is applied to the leaf surfaces of corn plants. The formulation was shown to be adherent, resulting in colonization of leaf surfaces with the biocontrol strain of A. flavus, and to reduce aflatoxin contamination of harvested kernels by up to 80% in Northern Italy and by up to 89% in the Mississippi Delta. The percentage of aflatoxin-producing isolates in the soil reservoir under leaf-treated corn was not significantly changed, even when the soil was amended with additional A. flavus as a model of changes to the soil reservoir that occur in no-till agriculture. This study indicated that it is not necessary to treat the soil reservoir in order to achieve effective biocontrol of aflatoxin contamination in kernel corn. Spraying this novel bioplastic-based formulation to leaves can be an effective alternative in the biocontrol of A. flavus in corn. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Abbasi, Farzana; Liu, Jingbo; Zhang, Hongfu; Shen, Xiaoyun; Luo, Xuegang
2018-01-01
A 14-d trial was conducted to determine the effects of feeding corn naturally contaminated with aflatoxin B 1 (AFB 1 ) on growth performance, apparent ileal digestibility, serum hormones levels and gene expression of Na + , K + -ATPase in ducklings. A total of 704 ducklings were blocked on the basis of sex and body weight (BW), and then allocated randomly to one of the following two treatments: i) CON, basal diet and ii) AFB 1 , diets with 100% of normal corn replaced with AFB 1 contaminated corn. There were 22 pens per treatment and 16 birds per pen. The concentration of AFB 1 was 195.4 and 124.35 μg/kg in the contaminated corn and AFB 1 diet, respectively. The AFB 1 decreased average daily gain, average daily feed intake, d 7 BW, final BW in the whole trial, and feed conversion ratio (FCR) during d 8 to 14 and d 1 to 14 by 10% to 47% (p<0.05), while FCR during d 1 to 7 was increased (p<0.05). AFB 1 did not affect mortality to 7 d of age, and then increased to 5.8% from 8 to 14 d of age (p<0.01). Apparent ileal gross energy digestibility was reduced by AFB 1 , whereas apparent ileal digestibility of dry matter, nitrogen, and amino acid was improved (p<0.01). Feeding AFB 1 diets increased serum concentration of leptin and insulin-like growth factors-1 (IGF-1) (p<0.05), but had no effect on neuropeptide Y, ghrelin, cholecystokinin-8 or insulin (p>0.05). Dietary treatments did not influence relative expression of jejunal Na + , K + -ATPase gene (p>0.05). Taken together, feeding corn naturally contaminated with AFB 1 reduced growth performance, improved apparent ileal digestibility, and affected serum leptin and IGF-1 in ducklings from d 1 to 14.
Ariño, Agustín; Juan, Teresa; Estopañan, Gloria; González-Cabo, José F
2007-01-01
Sixty samples of corn from both conventional and organic farms were tested for internal fungal contamination. Molds were identified to genus, and those belonging to the genus Fusarium were identified to species. Twenty isolates of Fusarium verticillioides were tested with a high-performance liquid chromatography-naphthalene dicarboxaldehyde-fluorescence method for their ability to produce fumonisins B1 and B2. The internal fungal infection in organic maize (63.20%) was significantly higher than that in conventional maize (40.27%) (P < 0.05). However, the distribution of fungal genera indicated a significantly higher prevalence of Fusarium in conventional (34.93%) than in organic (18.15%) maize, making Fusarium the predominant fungus in conventional maize. This difference in mold distribution between organic and conventional maize was attributed to the difference in cultivation system. The dominant Fusarium species in both conventional and organic samples was F. verticillioides. There were no significant differences in the ability of 20 selected isolates of F. verticillioides to produce fumonisins on conventional or organic corn. Up to 13.3% of the conventional corn samples contained fumonisins B1 and B2 at mean concentrations of 43 and 22 ng/g, respectively. Organic corn samples had somewhat lower levels of contamination: 35 ng/g fumonisin B1 and 19 ng/g fumonisin B2 (P > 0.05). The organic farming system, with well-balanced crop rotation, tillage, and compost fertilization, produced corn that was less likely to be contaminated with Fusarium species, although no significant difference in fumonisin concentrations was found between the two types of contaminated corn.
Gordon, S H; Jones, R W; McClelland, J F; Wicklow, D T; Greene, R V
1999-12-01
An urgent need for rapid sensors to detect contamination of food grains by toxigenic fungi such as Aspergillus flavus prompted research and development of Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) as a highly sensitive probe for fungi growing on the surfaces of individual corn kernels. However, the photoacoustic technique has limited potential for screening bulk corn because currently available photoacoustic detectors can accommodate only a single intact kernel at a time. Transient infrared spectroscopy (TIRS), on the other hand, is a promising new technique that can acquire analytically useful infrared spectra from a moving mass of solid materials. Therefore, the potential of TIRS for on-line, noncontact detection of A. flavus contamination in a moving bed of corn kernels was explored. Early test results based on visual inspection of TIRS spectral differences predict an 85% or 95% success rate in distinguishing healthy corn from grain infected with A. flavus. Four unique infrared spectral features which identified infected corn in FTIR-PAS were also found to be diagnostic in TIRS. Although the technology is still in its infancy, the preliminary results indicate that TIRS is a potentially effective screening method for bulk quantities of corn grain.
The Renewable Fuel Standard (RFS) requires oil refiners to reach a target of 15 billion gallons of corn-based ethanol by 2022. However, there are concerns that the broad-scale use of corn as a source of ethanol may lead to unintended economic and environmental consequences. Thi...
Spatial patterns of aflatoxin levels in relation to ear-feeding insect damage in pre-harvest corn
USDA-ARS?s Scientific Manuscript database
Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, m...
Natural occurrence of fumonisins in corn from Iran.
Shephard, G S; Marasas, W F; Leggott, N L; Yazdanpanah, H; Rahimian, H; Safavi, N
2000-05-01
Corn collected in the Mazandaran and Isfahan Provinces of Iran was analyzed for fumonisin B(1) (FB(1)), fumonisin B(2) (FB(2)), and fumonisin B(3) (FB(3)). The samples from Mazandaran Province, situated on the Caspian littoral of Iran, were random samples from farmers' corn lots collected in September 1998, whereas those from Isfahan Province, situated further south in the center of Iran, were bought as corn cobs in the local retail market during October 1998. All 11 samples from Mazandaran showed high levels of fumonisin contamination with FB(1) levels between 1.270 and 3.980 microg/g, FB(2) levels between 0.190 and 1.175 microg/g, and FB(3) levels between 0.155 and 0.960 microg/g. Samples from Isfahan showed lower levels of contamination with eight of eight samples having detectable FB(1) (0.010-0.590 microg/g), two of eight samples having detectable FB(2) (0.050-0.075 microg/g), and two of eight samples having detectable FB(3) (0.050-0.075 microg/g). This is the first report of fumonisin contamination of corn from Iran, in which samples from the area of high esophageal cancer on the Caspian littoral have been shown to contain high levels of fumonisins.
Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil.
Chouychai, Waraporn; Kruatrachue, Maleeya; Lee, Hung
2015-01-01
The influence of three plant growth regulators, indolebutyric acid (IBA), thidiazuron (TDZ) and gibberellic acid (GA3), either individually or in pair-wise combinations, on the ability of waxy corn plant to remove hexachlorocyclohexane (HCH) from contaminated soil was studied. Waxy corn seeds were immersed for 3 h in solutions of 1.0 mg/l IBA, 0.01 mg/l TDZ, 0.1 mg/l GA3, or a mixture of two of the growth regulators, and then inoculated in soil contaminated with 46.8 mg/kg HCH for 30 days. Pretreatment of corn seeds with the plant growth regulators did not enhance corn growth when compared with those immersed in distilled water (control), but the pretreatment enhanced HCH removal significantly. On day 30, HCH concentration in the bulk soil planted with corn seeds pretreated with GA3 or TDZ+GA3 decreased by 97.4% and 98.4%, respectively. In comparison, HCH removal in soil planted with non-pretreated control waxy corn seeds was only 35.7%. The effect of several growth regulator application methods was tested with 0.01 mg/l TDZ. The results showed that none of the methods, which ranged from seed immersion, watering in soil, or spraying on shoots, affected HCH removal from soil. However, the method of applying the growth regulators may affect corn growth. Watering the corn plant with TDZ in soil led to higher root fresh weight (2.2 g) and higher root dried weight (0.57 g) than the other treatments (0.2-1.7 g root fresh weight and 0.02-0.43 g root dried weight) on day 30. Varying the concentrations of GA3 did not affect the enhancement of corn growth and HCH removal on day 30. The results showed that plant growth regulators may have potential for use to enhance HCH phytoremediation.
Pérez-Rodríguez, N; García-Bernet, D; Domínguez, J M
2016-12-01
Due to their lignocellulosic nature, corn cob and vine trimming shoots (VTS) could be valorized by anaerobic digestion for biogas production. To enhance the digestibility of substrates, pretreatments of lignocellulosic materials are recommended. The effect of enzymatic hydrolysis, ultrasounds pretreatments (US) and the combination of both was assayed in lignocellulosic composition, methane, and biogas yields. The pretreatments leaded to a reduction in lignin and an increase in neutral detergent soluble compounds making corn cob and VTS more amendable for biogas conversion. The US were negative for biogas production from both substrates and in particular strongly detrimental for VTS. On the opposite side, the enzymatic hydrolysis was certainly beneficial increasing 59.8% and 14.6% the methane production from VTS and corn cob, respectively. The prior application of US did not potentiate (or not sufficiently) the improvement in the methane production reflected by the enzymatic hydrolysis pretreatment of VTS and corn cob. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking).
Voss, Kenneth; Ryu, Dojin; Jackson, Lauren; Riley, Ronald; Gelineau-van Waes, Janee
2017-08-23
Fumonisins are mycotoxins found in corn. They are toxic to animals and cause cancer in rodents and neural tube defects in LM/Bc mice. Reducing their concentrations in corn-based foods is therefore desirable. Chemical analysis or in vitro bioassays of food extracts might not detect toxic fumonisin reaction products that are unknown or unextractable from food matrices, thus potentially underestimating in vivo toxicity. The effectiveness of two common cooking methods, extrusion and nixtamalization (alkaline cooking), to reduce the toxicity of fumonisin-contaminated corn grits (extrusion) and whole kernel corn (nixtamalization) was shown by means of rat feeding bioassays using fumonisin-specific kidney effects as indicators of potential toxicity. A third bioassay showed that in contrast to fumonisin B 1 (FB 1 ), hydrolyzed fumonisin B 1 (HFB 1 ; formed from FB 1 during nixtamalization) did not cause neural tube defects in LM/Bc mice. The findings indicate that extrusion and nixtamalization reduce the potential toxicity of FB 1 -contaminated corn.
Rasmussen, Mary L; Koziel, Jacek A; Jane, Jay-lin; Pometto, Anthony L
2015-06-03
Ozonation of uncooked corn mash from the POET BPX process was investigated as a potential disinfection method for reducing bacterial contamination prior to ethanol fermentation. Corn mash (200 g) was prepared from POET ground corn and POET corn slurry and was ozonated in 250 mL polypropylene bottles. Lactic and acetic acid levels were monitored daily during the fermentation of ozonated, aerated, and nontreated corn mash samples to evaluate bacterial activity. Glycerol and ethanol contents of fermentation samples were checked daily to assess yeast activity. No yeast supplementation, no addition of other antimicrobial agents (such as antibiotics), and spiking with a common lactic acid bacterium found in corn ethanol plants, Lactobacillus plantarum, amplified the treatment effects. The laboratory-scale ozone dosages ranged from 26-188 mg/L, with very low estimated costs of $0.0008-0.006/gal ($0.21-1.6/m(3)) of ethanol. Ozonation was found to decrease the initial pH of ground corn mash samples, which could reduce the sulfuric acid required to adjust the pH prior to ethanol fermentation. Lactic and acetic acid levels tended to be lower for samples subjected to increasing ozone dosages, indicating less bacterial activity. The lower ozone dosages in the range applied achieved higher ethanol yields. Preliminary experiments on ozonating POET corn slurry at low ozone dosages were not as effective as using POET ground corn, possibly because corn slurry samples contained recycled antimicrobials from the backset. The data suggest additional dissolved and suspended organic materials from the backset consumed the ozone or shielded the bacteria.
Thermophilic fermentation of acetoin and 2,3-butanediol by a novel Geobacillus strain
2012-01-01
Background Acetoin and 2,3-butanediol are two important biorefinery platform chemicals. They are currently fermented below 40°C using mesophilic strains, but the processes often suffer from bacterial contamination. Results This work reports the isolation and identification of a novel aerobic Geobacillus strain XT15 capable of producing both of these chemicals under elevated temperatures, thus reducing the risk of bacterial contamination. The optimum growth temperature was found to be between 45 and 55°C and the medium initial pH to be 8.0. In addition to glucose, galactose, mannitol, arabionose, and xylose were all acceptable substrates, enabling the potential use of cellulosic biomass as the feedstock. XT15 preferred organic nitrogen sources including corn steep liquor powder, a cheap by-product from corn wet-milling. At 55°C, 7.7 g/L of acetoin and 14.5 g/L of 2,3-butanediol could be obtained using corn steep liquor powder as a nitrogen source. Thirteen volatile products from the cultivation broth of XT15 were identified by gas chromatography–mass spectrometry. Acetoin, 2,3-butanediol, and their derivatives including a novel metabolite 2,3-dihydroxy-3-methylheptan-4-one, accounted for a total of about 96% of all the volatile products. In contrast, organic acids and other products were minor by-products. α-Acetolactate decarboxylase and acetoin:2,6-dichlorophenolindophenol oxidoreductase in XT15, the two key enzymes in acetoin metabolic pathway, were found to be both moderately thermophilic with the identical optimum temperature of 45°C. Conclusions Geobacillus sp. XT15 is the first naturally occurring thermophile excreting acetoin and/or 2,3-butanediol. This work has demonstrated the attractive prospect of developing it as an industrial strain in the thermophilic fermentation of acetoin and 2,3-butanediol with improved anti-contamination performance. The novel metabolites and enzymes identified in XT15 also indicated its strong promise as a precious biological resource. Thermophilic fermentation also offers great prospect for improving its yields and efficiencies. This remains a core aim for future work. PMID:23217110
Toxicity of lead-contaminated sediment to mallards
Heinz, G.H.; Hoffman, D.J.; Sileo, L.; Audet, D.J.; LeCaptain, L.J.
1999-01-01
Because consumption of lead-contaminated sediment has been suspected as the cause of waterfowl mortality in the Coeur d?Alene River basin in Idaho, we studied the bioavailability and toxicity of this sediment to mallards (Anas platyrhynchos). In experiment 1, one of 10 adult male mallards died when fed a pelleted commercial duck diet that contained 24% lead-contaminated sediment (with 3,400 μg/g lead in the sediment). Protoporphyrin levels in the blood increased as the percentage of lead-contaminated sediment in the diet increased. Birds fed 24% lead-contaminated sediment exhibited atrophy of the breast muscles, green staining of the feathers around the vent, viscous bile, green staining of the gizzard lining, and renal tubular intranuclear inclusion bodies. Mallards fed 24% lead-contaminated sediment had means of 6.1 μg/g of lead in the blood and 28 μg/g in the liver (wet-weight basis) and 1,660 μg/g in the feces (dry-weight basis). In experiment 2, we raised the dietary concentration of the lead-contaminated sediment to 48%, but only about 20% sediment was actually ingested due to food washing by the birds. Protoporphyrin levels were elevated in the lead-exposed birds, and all of the mallards fed 48% lead-contaminated sediment had renal tubular intranuclear inclusion bodies. The concentrations of lead in the liver were 9.1 μg/g for mallards fed 24% lead-contaminated sediment and 16 μg/g for mallards fed 48% lead-contaminated sediment. In experiment 3, four of five mallards died when fed a ground corn diet containing 24% lead-contaminated sediment (with 4,000 μg/g lead in this sample of sediment), but none died when the 24% lead-contaminated sediment was mixed into a nutritionally balanced commercial duck diet; estimated actual ingestion rates for sediment were 14% and 17% for the corn and commercial diets. Lead exposure caused elevations in protoporphyrin, and four of the five mallards fed 24% lead-contaminated sediment in a commercial diet and all five fed the contaminated sediment in a corn diet had renal intranuclear inclusion bodies. Lead was higher in the livers of mallards fed 24% lead-contaminated sediment in the corn diet (38 μg/g) than in the commercial diet (13 μg/g).
Zucali, Maddalena; Bava, Luciana; Colombini, Stefania; Brasca, Milena; Decimo, Marilù; Morandi, Stefano; Tamburini, Alberto; Crovetto, G Matteo
2015-04-01
Anaerobic spore-forming bacteria (ASFB) in milk derive from the farm environment, and the use of silages and management practices are the main responsible of milk ASFB contamination. The aim of this study was to evaluate the relationships between feeding, milking routine and cow hygiene and milk and Grana Padano cheese (produced with and without lysozyme) ASFB contamination. The study involved 23 dairy farms. ASFB in corn silage were on average 2.34 ± 0.87 log10 MPN g(-1). For grass, Italian ryegrass and alfalfa, ASFB (log10 MPN g(-1)) were numerically higher for silages (3.22) than hays (2.85). The use of corn silages of high quality (high lactic and acetic acids concentrations) decreased the milk ASFB contamination, whilst the use of herbage silages did not affect it. The presence (>40%) of cows with dirty udders increased the ASFB contamination of milk, while forestripping had a positive effect (-9% ASFB). Ripened Grana Padano had an ASFB count below the analytical limit; Clostridium tyrobutyricum DNA was found only in wheels produced without lysozyme, which also showed late blowing. The factors increasing milk spore contamination were corn silage quality, cow udder hygiene and inadequate milking routine. Late blowing was present only in cheeses without lysozyme. © 2014 Society of Chemical Industry.
Aflatoxin contamination of developing corn kernels.
Amer, M A
2005-01-01
Preharvest of corn and its contamination with aflatoxin is a serious problem. Some environmental and cultural factors responsible for infection and subsequent aflatoxin production were investigated in this study. Stage of growth and location of kernels on corn ears were found to be one of the important factors in the process of kernel infection with A. flavus & A. parasiticus. The results showed positive correlation between the stage of growth and kernel infection. Treatment of corn with aflatoxin reduced germination, protein and total nitrogen contents. Total and reducing soluble sugar was increase in corn kernels as response to infection. Sucrose and protein content were reduced in case of both pathogens. Shoot system length, seeding fresh weigh and seedling dry weigh was also affected. Both pathogens induced reduction of starch content. Healthy corn seedlings treated with aflatoxin solution were badly affected. Their leaves became yellow then, turned brown with further incubation. Moreover, their total chlorophyll and protein contents showed pronounced decrease. On the other hand, total phenolic compounds were increased. Histopathological studies indicated that A. flavus & A. parasiticus could colonize corn silks and invade developing kernels. Germination of A. flavus spores was occurred and hyphae spread rapidly across the silk, producing extensive growth and lateral branching. Conidiophores and conidia had formed in and on the corn silk. Temperature and relative humidity greatly influenced the growth of A. flavus & A. parasiticus and aflatoxin production.
Hyperspectral imaging system for whole corn ear surface inspection
NASA Astrophysics Data System (ADS)
Yao, Haibo; Kincaid, Russell; Hruska, Zuzana; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2013-05-01
Aflatoxin is a mycotoxin produced mainly by Aspergillus flavus (A.flavus) and Aspergillus parasitiucus fungi that grow naturally in corn. Very serious health problems such as liver damage and lung cancer can result from exposure to high toxin levels in grain. Consequently, many countries have established strict guidelines for permissible levels in consumables. Conventional chemical-based analytical methods used to screen for aflatoxin such as thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) are time consuming, expensive, and require the destruction of samples as well as proper training for data interpretation. Thus, it has been a continuing effort within the research community to find a way to rapidly and non-destructively detect and possibly quantify aflatoxin contamination in corn. One of the more recent developments in this area is the use of spectral technology. Specifically, fluorescence hyperspectral imaging offers a potential rapid, and non-invasive method for contamination detection in corn infected with toxigenic A.flavus spores. The current hyperspectral image system is designed for scanning flat surfaces, which is suitable for imaging single or a group of corn kernels. In the case of a whole corn cob, it is preferred to be able to scan the circumference of the corn ear, appropriate for whole ear inspection. This paper discusses the development of a hyperspectral imaging system for whole corn ear imaging. The new instrument is based on a hyperspectral line scanner using a rotational stage to turn the corn ear.
Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents
2004-09-01
high - fructose corn syrup (HFCS), whey, bark mulch and compost, chitin, and gaseous hydrogen. Table 1.2...Benzoate Injection wells or circulation systems Dissolved in water Continuous to monthly Molasses, High Fructose Corn Syrup Injection wells...to 0.35 High (> 100) Refined Sugars ( high fructose corn syrup ) 0.25 to 0.30 Moderate (> 20) Soluble substrates may be used for source
Wang, Chen; Zhang, Hengli; Cai, Heng; Zhou, Zhihui; Chen, Yilu; Chen, Yali; Ouyang, Pingkai
2014-01-01
Corynebacterium glutamicum wild type lacks the ability to utilize the xylose fractions of lignocellulosic hydrolysates. In the present work, we constructed a xylose metabolic pathway in C. glutamicum by heterologous expression of the xylA and xylB genes coming from Escherichia coli. Dilute-acid hydrolysates of corn cobs containing xylose and glucose were used as a substrate for succinic acid production by recombinant C. glutamicum NC-2. The results indicated that the available activated charcoal pretreatment in dilute-acid hydrolysates of corn cobs could be able to overcome the inhibitory effect in succinic acid production. Succinic acid was shown to be efficiently produced from corn cob hydrolysates (55 g l(-1) xylose and 4 g l(-1) glucose) under oxygen deprivation with addition of sodium carbonate. Succinic acid concentration reached 40.8 g l(-1) with a yield of 0.69 g g(-1) total sugars within 48 h. It was the first report of succinic acid production from corn cob hydrolysates by metabolically engineered C. glutamicum. This study suggested that dilute-acid hydrolysates of corn cobs may be an alternative substrate for the efficient production of succinic acid by C. glutamicum.
Schmidt-Jeffris, Rebecca A; Huseth, Anders S; Nault, Brian A
2016-07-24
European corn borer, Ostrinia nubilalis (Hübner), is a major pest of processing snap bean because larvae are contaminants in pods. The incidence of O. nubilalis-contaminated beans has become uncommon in New York, possibly because widespread adoption of Bt field corn has suppressed populations. Snap bean fields located where Bt corn has been intensively grown in space and time may be at lower risk for O. nubilalis than fields located where Bt corn is not common. To manage O. nubilalis infestation risk, growers determine insecticide application frequency in snap bean based on pheromone-trapping information in nearby sweet corn fields; adult activity is presumed equivalent in both crops. Our goal was to determine if corn planting intensity and adult activity in sweet corn could be used to estimate O. nubilalis populations in snap bean in New York in 2014-2015. Numbers of O nubilalis adults captured in pheromone-baited traps located in snap bean fields where corn was and was not intensively grown were similar, suggesting that O. nubilalis does not respond to local levels of Bt corn in the landscape. Numbers of Ostrinia nubilalis captured in pheromone-baited traps placed by snap bean fields and proximal sweet corn fields were not related, indicating that snap bean growers should no longer make control decisions based on adult activity in sweet corn. Our results also suggest that the risk of O. nubilalis infestations in snap bean is low (∼80% of the traps caught zero moths) and insecticide applications targeting this pest should be reduced or eliminated. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chen, Longjian; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Zhang, Haiyan; Han, Lujia
2016-05-05
Corn stover was pretreated with acid under moderate conditions (1.5%, w/w, 121°C, 60min), and kinetic enzymolysis experiments were performed on the pretreated substrate using a mixture of Celluclast 1.5L (20FPU/g dry substrate) and Novozyme 188 (40CBU/g dry substrate). Integrated chemical and multi-scale structural methods were then used to characterize both processes. Chemical analysis showed that acid pretreatment removed considerable hemicellulose (from 19.7% in native substrate to 9.28% in acid-pretreated substrate) and achieved a reasonably high conversion efficiency (58.63% of glucose yield) in the subsequent enzymatic hydrolysis. Multi-scale structural analysis indicated that acid pretreatment caused structural changes via cleaving acetyl linkages, solubilizing hemicellulose, relocating cell wall surfaces and enlarging substrate porosity (pore volume increased from 0.0067cm(3)/g in native substrate to 0.019cm(3)/g in acid-pretreated substrate), thereby improving the polysaccharide digestibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multistressor predictive models of invertebrate condition in the Corn Belt, USA
Waite, Ian R.; Van Metre, Peter C.
2017-01-01
Understanding the complex relations between multiple environmental stressors and ecological conditions in streams can help guide resource-management decisions. During 14 weeks in spring/summer 2013, personnel from the US Geological Survey and the US Environmental Protection Agency sampled 98 wadeable streams across the Midwest Corn Belt region of the USA for water and sediment quality, physical and habitat characteristics, and ecological communities. We used these data to develop independent predictive disturbance models for 3 macroinvertebrate metrics and a multimetric index. We developed the models based on boosted regression trees (BRT) for 3 stressor categories, land use/land cover (geographic information system [GIS]), all in-stream stressors combined (nutrients, habitat, and contaminants), and for GIS plus in-stream stressors. The GIS plus in-stream stressor models had the best overall performance with an average cross-validation R2 across all models of 0.41. The models were generally consistent in the explanatory variables selected within each stressor group across the 4 invertebrate metrics modeled. Variables related to riparian condition, substrate size or embeddedness, velocity and channel shape, nutrients (primarily NH3), and contaminants (pyrethroid degradates) were important descriptors of the invertebrate metrics. Models based on all measured in-stream stressors performed comparably to models based on GIS landscape variables, suggesting that the in-stream stressor characterization reasonably represents the dominant factors affecting invertebrate communities and that GIS variables are acting as surrogates for in-stream stressors that directly affect in-stream biota.
Production of Biosurfactants by Pseudomonas Species for Application in the Petroleum Industry.
Silva, Maria Aparecida M; Silva, Aline F; Rufino, Raquel D; Luna, Juliana M; Santos, Valdemir A; Sarubbo, Leonie A
2017-02-01
The production of surfactants by microorganisms has become an attractive option in the treatment of oil-contaminated environments because biosurfactants are biodegradable and less toxic than synthetic surfactants, although production costs remain high. With the aim of reducing the cost of biosurfactant production, three strains of Pseudomonas (designated P1, P2, and P3) were cultivated in a low-cost medium containing molasses and corn steep liquor as substrates. Following the selection of the best producer (P3), a rotational central composite design (RCCD) was used to determine the influence of substrates concentration on surface tension and biosurfactant yield. The biosurfactant reduced the surface tension of water to 27.5 mN/m, and its CMC was determined to be 600 mg/L. The yield was 4.0 g/L. The biosurfactant demonstrated applicability under specific environmental conditions and was able to remove 80 to 90% of motor oil adsorbed to sand. The properties of the biosurfactant suggest its potential application in bioremediation of hydrophobic pollutants.
Tamura, Masayoshi; Mochizuki, Naoki; Nagatomi, Yasushi; Harayama, Koichi; Toriba, Akira; Hayakawa, Kazuichi
2015-02-16
Three compounds, hypothesized as fumonisin A1 (FA1), fumonisin A2 (FA2), and fumonisin A3 (FA3), were detected in a corn sample contaminated with mycotoxins by high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS). One of them has been identified as FA1 synthesized by the acetylation of fumonisin B1 (FB1), and established a method for its quantification. Herein, we identified the two remaining compounds as FA2 and FA3, which were acetylated fumonisin B2 (FB2) and fumonisin B3 (FB3), respectively. Moreover, we examined a method for the simultaneous analysis of FA1, FA2, FA3, FB1, FB2, and FB3. The corn samples were prepared by extraction using a QuEChERS kit and purification using a multifunctional cartridge. The linearity, recovery, repeatability, limit of detection, and limit of quantification of the method were >0.99, 82.9%-104.6%, 3.7%-9.5%, 0.02-0.60 μg/kg, and 0.05-1.98 μg/kg, respectively. The simultaneous analysis of the six fumonisins revealed that FA1, FA2, and FA3 were present in all corn samples contaminated with FB1, FB2, and FB3. The results suggested that corn marketed for consumption can be considered as being contaminated with both the fumonisin B-series and with fumonisin A-series. This report presents the first identification and quantification of FA1, FA2, and FA3 in corn samples.
Study on mycoflora of poultry feed ingredients and finished feed in Iran
Ghaemmaghami, Seyed Soheil; Modirsaneii, Mehrdad; Khosravi, Ali Reza; Razzaghi-Abyaneh, Mehdi
2016-01-01
Background and Objectives: Unhygienic poultry feedstuffs can lead to nutrient losses and detrimental effect on poultry production and public health. In the present study, mycobiota and colony-forming units per gram in ingredients and finish poultry feed was evaluated with special reference to potentially mycotoxigenic fungi. Materials and Methods: Eighty five samples of corn, soybean meal and poultry finished feed were collected from nine poultry feed factories located in three provinces i.e. Tehran, Alborz and Qom in Iran from October 2014 to January 2015. Samples were cultured on Sabouraud dextrose agar (SDA), Aspergillus flavus and parasiticus agar (AFPA) and dichloran rosebengal chloramphenicol agar (DRBC) and incubated at 28 °C for 7–10 days. Purified fungal colonies were identified by a combination of macro- and microscopic morphological criteria. For determining the rate of fungal contamination, samples were cultured on SDA and colony forming units (CFUs) were calculated. Results: A total of 384 fungal isolates belonging to 7 genera of filamentous fungi and yeasts were obtained from corn (124 isolates), soybean meal (92 isolates), and feed before (72 isolates), and after pelleting (96 isolates). The most prominent fungal isolate in corn, soybean meal and feed before pelleting (feed as mash form) was Fusarium but in feed after pelleting was Aspergillus. Among 5 Aspergillus species isolated, potentially aflatoxigenic A. flavus isolates was predominant in corn (46.6%), soybean meal (72.7%) and poultry finished feed (75%). CFUs results indicated that 9/22 corn samples (40.9%), none of 22 soybean meal samples, 19/41 finished feed (46.3%) were contaminated higher than the standard limit. Conclusions: Our results indicated that corn, soybean meal and finished feed of poultry feed mill are contaminated with various fungal genera by different levels sometimes higher that the standard limits. Contamination with potentially mycotoxigenic fungi especially Aspergillus species may be considered as a human public health hazard. PMID:27092224
Study on mycoflora of poultry feed ingredients and finished feed in Iran.
Ghaemmaghami, Seyed Soheil; Modirsaneii, Mehrdad; Khosravi, Ali Reza; Razzaghi-Abyaneh, Mehdi
2016-02-01
Unhygienic poultry feedstuffs can lead to nutrient losses and detrimental effect on poultry production and public health. In the present study, mycobiota and colony-forming units per gram in ingredients and finish poultry feed was evaluated with special reference to potentially mycotoxigenic fungi. Eighty five samples of corn, soybean meal and poultry finished feed were collected from nine poultry feed factories located in three provinces i.e. Tehran, Alborz and Qom in Iran from October 2014 to January 2015. Samples were cultured on Sabouraud dextrose agar (SDA), Aspergillus flavus and parasiticus agar (AFPA) and dichloran rosebengal chloramphenicol agar (DRBC) and incubated at 28 °C for 7-10 days. Purified fungal colonies were identified by a combination of macro- and microscopic morphological criteria. For determining the rate of fungal contamination, samples were cultured on SDA and colony forming units (CFUs) were calculated. A total of 384 fungal isolates belonging to 7 genera of filamentous fungi and yeasts were obtained from corn (124 isolates), soybean meal (92 isolates), and feed before (72 isolates), and after pelleting (96 isolates). The most prominent fungal isolate in corn, soybean meal and feed before pelleting (feed as mash form) was Fusarium but in feed after pelleting was Aspergillus. Among 5 Aspergillus species isolated, potentially aflatoxigenic A. flavus isolates was predominant in corn (46.6%), soybean meal (72.7%) and poultry finished feed (75%). CFUs results indicated that 9/22 corn samples (40.9%), none of 22 soybean meal samples, 19/41 finished feed (46.3%) were contaminated higher than the standard limit. Our results indicated that corn, soybean meal and finished feed of poultry feed mill are contaminated with various fungal genera by different levels sometimes higher that the standard limits. Contamination with potentially mycotoxigenic fungi especially Aspergillus species may be considered as a human public health hazard.
Han, X M; Zhang, H Y; Zhang, J; Xu, W J; Liu, D; Jiang, T; Xu, J; Li, F Q
2016-10-06
Objective: To investigate fungi contamination and the natural occurrence of mycotoxins in corn feed ingredients collected from China. Methods: A total of 94 corn feed ingredient samples were collected from 8 Chinese provinces(i.e., Anhui, Hebei, Heilongjiang, Jilin, Jiangsu, Liaoning, Inner Mongolia, and Shandong)in February 2014. A tandem ultra-performance liquid chromatographymass spectrometry method was used for simultaneous detection of twelve kinds of mycotoxins, including aflatoxin(AF), type A and type B tricothecenes, and zearalenone(ZEN). Contaminated fungi were also identified and counted. Results: AF was detected in 36.2%(34/94)of samples; the concentration of AFB 1 was the highest in the four AFs with the range: 0.3~181.3 μg/kg; and then followed by AFB 2 (range: 1.0-74.3 μg/kg). There were 7 samples(7.5%)with AFB 1 concentrations higher than the tolerance limit of 50 μg/kg. The concentration of type A tricothecenes in all samples was lower(0.1-10.5 μg/kg). DON had the most serious contamination than other kind of type B tricothecenes(range: 0.7-606.6 μg/kg; median: 66.3 μg/kg). The DON concentration in all samples was below the tolerance limit of 1 000 μg/kg. ZEN was detected in 76.6%(72/ 94)of samples(median: 36.9 μg/kg), with 3 samples having ZEN concentrations higher than the tolerance limit of 500 μg/kg. The survey on fungi contamination showed that all samples were contaminated by fungi(range: 5.0-1.4×10 5 CFU/g). There were 18 and 3 samples with quantities of fungi higher than the tolerance and forbidden limits, respectively. The Aspergillus , Penicillium , Fusarium , Trichoderma and Mucor genuses were the predominant fungi in corn feed ingredients, with detection rates of 71.3%(67), 60.6%(57), 71.3%(67), 27.7%(26), and 24.5%(23), respectively. The detection rate of Fusarium moniliforme , 73.4%(69/94)was higher than that of Aspergillus flavus , 41.5%(39/94). Conclusion: In this survey, the corn feed ingredients were not seriously contaminated by AF and type A tricothecenes but mainly contaminated by type B trichothecenes, including DON and its derivatives, as well as ZEN. They were also contaminated by fungi such as Aspergillus , Penicillium , and Fusarium .
Fungi immobilization for landfill leachate treatment.
Saetang, Jenjira; Babel, Sandhya
2010-01-01
This paper investigated treatment of landfill leachate collected from Nonthaburi landfill site, Thailand, by using immobilized white rot fungi, namely, Trametes versicolor BCC 8725 and Flavodon flavus BCC 17421. Effects of pH and co-substrates were investigated at different contact times. Three types of co-substrates as carbon source used in this study are glucose, corn starch and cassava. Treatment efficiency was evaluated based on color, BOD, and COD removal. Initial BOD and COD were found to be 5,600 and 34,560 mg/L, respectively. The optimum pH was found to be 4, the optimum co-substrate concentration (glucose, corn starch and cassava) was 3 g/L and the optimum contact time was 10 days for both types of fungi. Addition of glucose, corn starch and cassava as co-substrate at optimum conditions could remove 78, 74, and 66% of color, respectively for T. versicolor and 73, 68, and 60%, respectively, for F. flavus. Moreover, for T. versicolor, BOD and COD reduction of 69 and 57%, respectively, could be achieved at optimum conditions when using glucose as a co-substrate. For F. flavus, BOD and COD reduction of 66 and 52%, respectively were obtained when using glucose as a co-substrate. White rot fungi can be considered potentially useful in the treatment of landfill leachate as they can help in removing color, BOD and COD due to their biodegradative abilities.
Contamination issues in continuous fermentation for ethanol production
USDA-ARS?s Scientific Manuscript database
Continuous fermentation processes are employed by corn wet milling plants all over world to convert starch to ethanol. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields. Contaminants compete with inoculate...
NASA Astrophysics Data System (ADS)
Yunilas; Mirwandhono, E.
2018-02-01
The role of Lactic Acid Bacteria (LAB) on the starter culture can be seen from the ability to grow and suppress the growth of microbial contaminants (fungi). The research aimed to investigate the role of LAB (Lactobacillus sp YEL133) in inhibiting microbial contaminants (fungi) on starter cultures of various fillers. The materials used in this research was Lactobacillus sp YEL133 from beef and various fillers (rice flour, corn starch and wheat flour). The research methods used completely randomized design (CRD) with 3 treatments and 4 replications. The treatments of this research was P1(rice flour), P2 (corn starch) and P3 (wheat flour) that inoculated with Lactobacillus sp YEL133. Parameters which is observed such as: growth of lactic acid bacteria, total microbes and total fungi as microbial contaminants. The results showed that the starter culture with a filler material of rice flour produce lactic acid bacteria and microbes were highly significant (P <0.01) for corn starch and wheat flour, as well as able to suppress the growth of microbial contaminants (fungi). The conclusion of the research is the use Lactobacillus sp YEL133 can suppress the growth of fungi on the starter culture using rice flour.
d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard
2016-02-10
Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production. Copyright © 2015 Elsevier B.V. All rights reserved.
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirect...
Troubleshooting fermentation in corn wet milling ethanol production
USDA-ARS?s Scientific Manuscript database
To convert starch to ethanol, continuous fermentation processes are employed by corn wet milling plants all over world. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields (Abbott and Ingledew 2005, Skinner an...
Contamination issues in a continuous ethanol production corn wet milling facility
USDA-ARS?s Scientific Manuscript database
Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification ste...
Development of narrow-band fluorescence index for the detection of aflatoxin contaminated corn
NASA Astrophysics Data System (ADS)
Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2011-06-01
Aflatoxin is produced by the fungus Aspergillus flavus when the fungus invades developing corn kernels. Because of its potent toxicity, the levels of aflatoxin are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food, and feed intended for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests. These tests require the destruction of samples, can be costly and time consuming, and often rely on less than desirable sampling techniques. Thus, the ability to detect aflatoxin in a rapid, non-invasive way is crucial to the corn industry in particular. This paper described how narrow-band fluorescence indices were developed for aflatoxin contamination detection based on single corn kernel samples. The indices were based on two bands extracted from full wavelength fluorescence hyperspectral imagery. The two band results were later applied to two large sample experiments with 25 g and 1 kg of corn per sample. The detection accuracies were 85% and 95% when 100 ppb threshold was used. Since the data acquisition period is significantly lower for several image bands than for full wavelength hyperspectral data, this study would be helpful in the development of real-time detection instrumentation for the corn industry.
Tamura, Masayoshi; Mochizuki, Naoki; Nagatomi, Yasushi; Harayama, Koichi; Toriba, Akira; Hayakawa, Kazuichi
2015-01-01
Three compounds, hypothesized as fumonisin A1 (FA1), fumonisin A2 (FA2), and fumonisin A3 (FA3), were detected in a corn sample contaminated with mycotoxins by high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS). One of them has been identified as FA1 synthesized by the acetylation of fumonisin B1 (FB1), and established a method for its quantification. Herein, we identified the two remaining compounds as FA2 and FA3, which were acetylated fumonisin B2 (FB2) and fumonisin B3 (FB3), respectively. Moreover, we examined a method for the simultaneous analysis of FA1, FA2, FA3, FB1, FB2, and FB3. The corn samples were prepared by extraction using a QuEChERS kit and purification using a multifunctional cartridge. The linearity, recovery, repeatability, limit of detection, and limit of quantification of the method were >0.99, 82.9%–104.6%, 3.7%–9.5%, 0.02–0.60 μg/kg, and 0.05–1.98 μg/kg, respectively. The simultaneous analysis of the six fumonisins revealed that FA1, FA2, and FA3 were present in all corn samples contaminated with FB1, FB2, and FB3. The results suggested that corn marketed for consumption can be considered as being contaminated with both the fumonisin B-series and with fumonisin A-series. This report presents the first identification and quantification of FA1, FA2, and FA3 in corn samples. PMID:25690692
Góngora-Echeverría, Virgilio René; Martin-Laurent, Fabrice; Quintal-Franco, Carlos; Giácoman-Vallejos, German; Ponce-Caballero, Carmen
2017-04-01
Misuse of pesticides in farming activities leads to contamination of drinking water sources and is responsible for animal and human health problems. The biobeds are practicable option to minimize contamination by pesticides during preparation, use and washing of equipment for pesticide treatments. This research aimed at testing substrate mixtures to optimize biobed efficiency to remove pesticides under the climate of the Yucatan (México). Agricultural soil and 11 mixtures adding vegetable compost, sisal pulp, corn stover and seaweed were tested under controlled conditions. Each biomixture was exposed to a mixture of five pesticides (2,4-diclorophenoxyacetic acid "2,4-D" [1.08 mg cm -3 ], atrazine [2.50 mg cm -3 ], carbofuran [0.23 mg cm -3 ], diazinon [0.34 mg cm -3 ], and glyphosate [0.36 mg cm -3 ]) in a period of 41 days. Monitoring of the dissipation of pesticide residues showed that pesticides were quickly dissipated in soil at microcosm level experiment, while at two critical times of 20 and 41 days, all mixtures of substrates (biomixtures) were efficient in dissipation of high concentrations of pesticide in a short time (>99%). Time, biomixture and type of pesticide were shown to be the main parameters influencing pesticide dissipation (P < 0.05). Several other physicochemical parameters of the biomixtures, such as organic matter (OM), lignin, water holding capacity (WHC), and pH, were also significant on pesticide dissipation (P < 0.05), being pH the most significant.
Masked mycotoxins in corn: an update
USDA-ARS?s Scientific Manuscript database
Mycotoxins are frequent contaminants in corn infested with Aspergillus and Fusarium molds. Consumption of mycotoxin products have been shown to be harmful to both humans and animals. Mycotoxins can be “masked” or “hidden” from detection by common antibody-based and chemical analytical methods. The “...
Shamala, T R; Vijayendra, S V N; Joshi, G J
2012-07-01
Polyhydroxyalkanoates (PHA) and α-amylase (α-1,4 glucan-4-glucanohydrolase, E.C. 3.2.1.1) were co-produced by Bacillus sp. CFR-67 using unhydrolysed corn starch as a substrate. Bacterial growth and polymer production were enhanced with the supplementation of hydrolysates of wheat bran (WBH) or rice bran (RBH) individually or in combination (5-20 g L(-1), based on weight of soluble substrates-SS). In batch cultivation, a mixture of WBH and RBH (1:1, 10 g L(-1) of SS) along with ammonium acetate (1.75 g L(-1)) and corn starch (30 g L(-1)) produced maximum quantity of biomass (10 g L(-1)) and PHA (5.9 g L(-1)). The polymer thus produced was a copolymer of polyhydroxybutyrate-co-hydroxyvalerate of 95:5 to 90:10 mol%. Presence of WBH and corn starch (10-50 g L(-1)) in the medium enhanced fermentative yield of α-amylase (2-40 U mL(-1) min(-1)). The enzyme was active in a wide range of pH (4-9) and temperature (40-60°C). This is the first report on simultaneous production of copolymer of bacterial PHA and α-amylase from unhydrolysed corn starch and agro-industrial residues as substrates.
Ni, Xinzhi; Wilson, Jeffrey P; Toews, Michael D; Buntin, G David; Lee, R Dewey; Li, Xin; Lei, Zhongren; He, Kanglai; Xu, Wenwei; Li, Xianchun; Huffaker, Alisa; Schmelz, Eric A
2014-10-01
Spatial and temporal patterns of insect damage in relation to aflatoxin contamination in a corn field with plants of uniform genetic background are not well understood. After previous examination of spatial patterns of insect damage and aflatoxin in pre-harvest corn fields, we further examined both spatial and temporal patterns of cob- and kernel-feeding insect damage, and aflatoxin level with two samplings at pre-harvest in 2008 and 2009. The feeding damage by each of the ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs) and maize weevil population were assessed at each grid point with five ears. Sampling data showed a field edge effect in both insect damage and aflatoxin contamination in both years. Maize weevils tended toward an aggregated distribution more frequently than either corn earworm or stink bug damage in both years. The frequency of detecting aggregated distribution for aflatoxin level was less than any of the insect damage assessments. Stink bug damage and maize weevil number were more closely associated with aflatoxin level than was corn earworm damage. In addition, the indices of spatial-temporal association (χ) demonstrated that the number of maize weevils was associated between the first (4 weeks pre-harvest) and second (1 week pre-harvest) samplings in both years on all fields. In contrast, corn earworm damage between the first and second samplings from the field on the Belflower Farm, and aflatoxin level and corn earworm damage from the field on the Lang Farm were dissociated in 2009. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
USDA-ARS?s Scientific Manuscript database
Many factors, including sharply fluctuating fuel prices and questions regarding the sustainability of fuel produced from potential food crops, have bolstered interest in renewable fuels from alternative feedstocks. We tested pretreated and nonpretreated corn fiber for its susceptibility to hydrolys...
Fandohan, Pascal; Gbenou, Joachim D; Gnonlonfin, Benoit; Hell, Kerstin; Marasas, Walter F O; Wingfield, Michael J
2004-11-03
Essential oils extracted by hydrodistillation from local plants in Benin, western Africa, and oil from seeds of the neem tree (Azadirachta indica) were evaluated in vitro and in vivo for their efficacy against Fusarium verticillioides infection and fumonisin contamination. Fumonisin in corn was quantified using a fluorometer and the Vicam method. Oils from Cymbopogon citratus, Ocimum basilicum, and Ocimum gratissimum were the most effective in vitro, completely inhibiting the growth of F. verticillioides at lower concentrations over 21 days of incubation. These oils reduced the incidence of F. verticillioides in corn and totally inhibited fungal growth at concentrations of 8, 6.4, and 4.8 microL/g, respectively, over 21 days. At the concentration of 4.8 microL/g, these oils did not affect significantly fumonisin production. However, a marked reduction of fumonisin level was observed in corn stored in closed conditions. The oils adversely affected kernel germination at 4.8 microL/g and therefore cannot be recommended for controlling F. verticillioides on stored corn used as seeds, when used at this concentration. The oil of neem seeds showed no inhibitory effect but rather accelerated the growth of F. verticillioides.
Impact of Increased Corn Production on Ground Water Quality and Human Health
In this study, we use a complex coupled modeling system to assess the impacts of increased corn production on groundwater. In particular, we show how the models provide new information on the drivers of contamination in groundwater, and then relate pollutant concentration change...
NASA Astrophysics Data System (ADS)
Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas
2015-05-01
Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.
NASA Astrophysics Data System (ADS)
Madaka, Ramakrishna; Kanneboina, Venkanna; Agarwal, Pratima
2018-05-01
Direct deposition of hydrogenated amorphous silicon (a-Si:H) thin films and fabrication of solar cells on polyimide (PI) and photo-paper (PP) substrates using a rf-plasma-enhanced chemical vapor deposition technique is reported. Intrinsic amorphous silicon films were deposited on PI and PP substrates by varying the substrate temperature (T s) over 70-150°C to optimize the deposition parameters for best quality films. The films deposited on both PI and PP substrates at a temperature as low as 70°C showed a photosensitivity (σ ph/σ d) of nearly 4 orders of magnitude which increased to 5-6 orders of magnitude when the substrate temperature was increased to 130-150°C. The increase in σ ph/σ d is due to the presence of a few nanometer-sized crystallites embedded in the film. Solar cells (n-i-p) were fabricated directly on PI, PP and Corning 1737 glass (Corning) at 150°C for different thicknesses of an intrinsic amorphous silicon layer (i-layer). With the increase in i-layer thickness from 330 nm to 700 nm, the solar cell efficiency was found to increase from 3.81% to 5.02% on the Corning substrate whereas on the flexible PI substrate an increase from 3.38% to 4.38% was observed. On the other hand, in the case of cells on PP, the i-layer thickness was varied from 200 nm to 700 nm and the best cell efficiency 1.54% was obtained for the 200-nm-thick i-layer. The fabrication of a-Si (n-i-p) solar cells on photo-paper is presented for the first time.
Costs of Pelleting to Enhance the Logistics of Distillers Grains Shipping
USDA-ARS?s Scientific Manuscript database
Biofuels, especially corn-based ethanol, can help meet some of the increasing demand for transportation fuels. Currently, the most heavily utilized substrate is corn grain, which is readily converted into ethanol at a relatively low cost compared to other biomass sources. The production of ethanol...
Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production
USDA-ARS?s Scientific Manuscript database
Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia ...
USDA-ARS?s Scientific Manuscript database
Fresh market sweet corn produced in Florida is threatened by larval damage by Euxesta stigmatias Loew, E. eluta Loew, and Chaetopsis massyla Walker (Diptera: Ulidiidae) that renders ears unmarketable. No standard lure exists for monitoring these pests. Oviposition and attraction bioassays were desig...
USDA-ARS?s Scientific Manuscript database
Aflatoxins are toxic secondary metabolites predominantly produced by the fungi Aspergillus flavus and A. parasiticus. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin leve...
An outbreak of aflatoxin poisoning in dogs associated with aflatoxin B1-contaminated maize products.
Wouters, Angelica Terezinha Barth; Casagrande, Renata Assis; Wouters, Flademir; Watanabe, Tatiane Terumi Negrão; Boabaid, Fabiana Marques; Cruz, Cláudio Estêvão Farias; Driemeier, David
2013-03-01
An aflatoxicosis outbreak affected 65 dogs from 9 different farms after they were fed diets with cooked corn meal as a common ingredient. Of the dogs, 60 died. Numerous dogs died on additional farms, but those dogs were not included in the study. The farmers acquired the contaminated maize products, in the form of whole corn grain or as corn meal, from the same supplier. The corn product was mixed with meat that was left over from home or commercial rations to form corn polenta, which was fed to the dogs. Necropsy was performed on 3 dogs. Two of the dogs died after a few days of refusing food, showing anorexia, polydipsia, icteric mucous membranes, hematemesis, hematochezia, or melena, and bleeding of the skin, eye, ear, and mouth. The primary necropsy findings included jaundice, hemorrhages in several organs, and yellowish enlarged liver with enhanced lobular pattern. The dog that experienced chronic ascites had a yellowish liver with reduced volume, irregular surface, and increased consistency. The main histological findings included hepatocyte fatty degeneration, biliary duct hyperplasia, cholestasis and, in the chronic case, hepatic fibrosis. High-performance liquid chromatography analysis of the corn meal from 2 affected farms revealed 1,640 ppb and 1,770 ppb of aflatoxin B1, respectively. The current study demonstrates an additional way that dogs can be exposed to, poisoned, and killed by aflatoxin.
Utilization of agroindustrial residues for lipase production by solid-state fermentation
Damaso, Mônica Caramez Triches; Passianoto, Moisés Augusto; de Freitas, Sidinéa Cordeiro; Freire, Denise Maria Guimarães; Lago, Regina Celi Araujo; Couri, Sonia
2008-01-01
The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation tests, two substrates were also investigated: wheat bran and corn cob, both supplemented with olive oil. The best results were obtained with wheat bran. Additionally, three industrial by-products from corn oil refining (soapstock, stearin and fatty acids) were evaluated as substitutes to the olive oil in the function of lipases production inducer. Among them, soapstock and stearin were the best inducers, whereas fatty acids presented an inhibitor effect. The highest lipase activities using soapstock, stearin and fatty acids were 62.7 U/gds, 37.7 U/gds and 4.1 U/gds, respectively. PMID:24031288
Croce, Serena; Wei, Qiao; D'Imporzano, Giuliana; Dong, Renjie; Adani, Fabrizio
2016-12-01
Anaerobic digestion (AD) is a useful method for producing renewable energy/biofuel. Today, biogas production uses a large amount of energy crops (EC), with the effect of increasing AD costs and creating conflict between food/feed vs. energy use. A partial solution to this might be the substitution of EC with agricultural wastes, e.g. straw. Straw and corn stover are widely available in the world and approximately 1600millionMgyear -1 of these substrates are available. Straw can be useful used for biogas production but its characteristics limit its performance so that sometimes the energetic balance can be negative. In this review, the limits for the conversion of this substrate into biogas were investigated and solutions/proposals for getting higher straw biogas production performance are reported. In addition, energetic balances for untreated and pre-treated substrates are reported, giving indicative evaluations of the sustainability of straw and corn stover use for biogas production. Copyright © 2016 Elsevier Inc. All rights reserved.
Stoloff, L; Trucksess, M W
1981-05-01
Corn grits naturally contaminated with aflatoxins were used for making boiled grits, and portions of the boiled grits were used for making pan-fried grits; cornmeal naturally contaminated with aflatoxins was used for making corn muffins. Procedures and recipes were derived from cookbook and market package recommendations. From analyses of the products for aflatoxins before and after preparation of the table-ready products, it was determined that 72 +/- 9% (n = 15) of the aflatoxin found in the original grits could be recovered after the grits were boiled. The recovery of aflatoxin B1 after the grits were fried was either 66 +/- 10% (n = 6) or 47 +/- 8% (n = 9), depending on whether 3 cups of water or 4 cups of water per cup of grits, respectively, were used for preparing the boiled grits before frying. Similarly, it was determined that 87 +/- 4% (n = 9) of the aflatoxin B1 found in the original cornmeal could be recovered from the baked muffins. No detectable aflatoxin B2 a was present in the extracts from any of the table-ready products.
Rezza, Carmela; Albanese, Stefano; Ayuso, Robert A.; Lima, Annamaria; Sorvari, Jaana; De Vivo, Benedetto
2018-01-01
A geochemical survey was carried out to investigate metal contamination in the Domizio Littoral and Agro Aversano area (Southern Italy) by means of soil, groundwater, human hair and corn samples. Pb isotope ratios were also determined to identify the sources of metals. Specifically, the investigation focused on topsoils (n = 1064), groundwater (n = 26), 25 human hair (n = 24) and corn samples (n = 13). Topsoils have been sampled and analysed in a previous study for 53 elements (including potentially harmful ones), and determined by ICP-MS after dissolving with aqua regia. Groundwater was analysed for 72 elements by ICP-MS and by ICP-ES. Samples of human hair were prepared and analysed for 16 elements by ICP-MS. Dried corn collected at several farms were also analysed for 53 elements by ICP-MS. The isotopic ratios of 206Pb/207Pb and 208Pb/207Pb in selected topsoil (n = 24), groundwater (n = 9), human hair (n = 9) and corn (n = 4) samples were analysed from both eluates and residues to investigate possible anthropogenic contamination and geogenic contributions. All data were processed and mapped by ArcGis software to produce interpolated maps and contamination factor maps of potentially harmful elements, in accordance with Italian Environmental Law (Legislative Decree 152/06). Results show that soil sampling sites are characterized by As, Cd, Co, Cr, Cu, Hg, Pb, Se, and Zn contents exceeding the action limits established for residential land use (RAL) and, in some cases, also the action limits for industrial land use (IAL) as established by Legislative Decree 152/06. A map of contamination factors and a map showing the degrees of contamination indicate that the areas in the municipalities of Acerra, Casoria and Giugliano have been affected by considerable anthropogenic-related pollution. To interpret the isotopic data and roughly estimate proportion of Pb from an anthropogenic source we broadly defined possible natural and anthropogenic Pb end-member fields based on literature data. For example, we summarized data for Vesuvius and Campi Flegrei volcanic rocks, gasoline, and aerosol deposits.Lead isotope data show mixing between geogenic and anthropogenic sources. Topsoil, groundwater, human hair and corn samples show a greater contribution from geogenic sources like the Yellow Tuff (from Campi Flegrei) and volcanic rocks from Mt. Vesuvius. Aerosols, fly ash and gasoline (anthropogenic sources) have also been contributors. In detail, 46% of the topsoil residues, 96% of topsoil leachates, 88% of groundwater, 90% of human hair, and 25% of corn samples indicate that > 50% percent of the lead in this area can be ascribed to anthropogenic activity.
Ethanol Fermentation of Various Pretreated and Hydrolyzed Substrates at Low Initial pH
NASA Astrophysics Data System (ADS)
Kádár, Zsófia; Maltha, San Feng; Szengyel, Zsolt; Réczey, Kati; de Laat, Wim
Lignocellulosic materials represent an abundant feedstock for bioethanol production. Because of their complex structure pretreatment is necessary to make it accessible for enzymatic attack. Steam pretreatment with or without acid catalysts seems to be one of the most promising techniques, which has already been applied for large variety of lignocellulosics in order to improve enzymatic digestibility. During this process a range of toxic compounds (lignin and sugar degradation products) are formed which inhibit ethanol fermentation. In this study, the toxicity of hemicellulose hydrolysates obtained in the steam pretreatment of spruce, willow, and corn stover were investigated in ethanol fermentation tests using a yeast strain, which has been previously reported to have a resistance to inhibitory compounds generated during steam pretreatment. To overcome bacterial contamination, fermentations were carried out at low initial pH. The fermentability of hemicellulose hydrolysates of pretreated lignocellulosic substrates at low pH gave promising results with the economically profitable final 5 vol% ethanol concentration corresponding to 85% of theoretical. Adaptation experiments have shown that inhibitor tolerance of yeast strain can be improved by subsequent transfer of the yeast to inhibitory medium.
Song, Hui-Ting; Gao, Yuan; Yang, Yi-Min; Xiao, Wen-Jing; Liu, Shi-Hui; Xia, Wu-Cheng; Liu, Zi-Lu; Yi, Li; Jiang, Zheng-Bing
2016-11-01
Synergistic combination of cellulase and xylanase has been performed on pre-treated substrates in many previous studies, while few on natural substrates. In this study, three unpretreated lignocellulosic substrates were studied, including corncob, corn stover, and rice straw. The results indicated that when the mixed cellulase and xylanase were applied, reducing sugar concentrations were calculated as 19.53, 15.56, and 17.35mg/ml, respectively, based on the 3,5 dinitrosalicylic acid (DNS) method. Compared to the treatment with only cellulose, the hydrolysis yields caused by mixed cellulase and xylanase were improved by 133%, 164%, and 545%, respectively. In addition, the conversion yield of corncob, corn stover, and rice straw by cellulase-xylanase co-treatment reached 43.9%, 48.5%, and 40.2%, respectively, based on HPLC analysis, which confirmed the synergistic effect of cellulase-xylanase that was much higher than either of the single enzyme treatment. The substrate morphology was also evaluated to explore the synergistic mechanism of cellulase-xylanase. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Aflatoxins are produced by Aspergillus species including A. flavus and A. parasiticus. Fumonisins are produced by Fusarium species, mainly F. verticillioides and F. parasiticus. These mycotoxins are common contaminants of commodities and have been shown to co-contaminate corn. Aflatoxins are know...
Liu, Shan; Wu, Shubiao; Pang, Changle; Li, Wei; Dong, Renjie
2014-02-01
The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH₄ yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7% and CH4 yield by 11.7 to 21.2% because pretreatment could decrease dry mass loss (14.2%) and increase substrate biodegradability (19.9% cellulose, 32.4% hemicellulose, and 22.6% lignin). By contrast, the higher dry mass loss in corn stover (55.3%) after microbial pretreatment was accompanied by 54.7% cellulose, 64.0% hemicellulose, and 61.1% lignin degradation but did not significantly influence biogas production.
USDA-ARS?s Scientific Manuscript database
Agriculture is one of the most important sources of nutrient contamination, mainly inorganic nitrogen (N) fertilization of intensive crops, such as corn (Zea mays L). Proper irrigation and nutrient management can reduce nutrient leaching while maintaining crop yield, which is critical in enhancing t...
Acid and neutral trehalase activities in mutants of the corn rot fungus Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a fungal pathogen known to cause corn rot and other plant diseases and to contaminate grain with toxic metabolites. We are characterizing trehalose metabolism in F. verticillioides with the hope that this pathway might serve as a target for controlling Fusarium disease. T...
NCFST/IFSH US Army Project (Contract W911NF-09-2-0051, Illinois Institute of Technology)
2012-01-01
Hollub, A.D. and D. Ryu. 2011. Reduction of fumonisin B1 in corn grits by twin-screw extrusion. Journal of Food Science. 76(6), T150-T155. 13...Ryu. 2011. Extrusion cooking with glucose supplementation of fumonisin -contaminated corn grits protects against nephrotoxicity and disrupted
Reduction of Fumonisin Toxicity by Extrusion and Nixtamalization (Alkaline Cooking)
USDA-ARS?s Scientific Manuscript database
Fumonisins are found in corn. The most common, fumonisin FB1 (FB1) is toxic to animals, disrupts sphingolipid metabolism, and is a suspected risk factor for neural tube defects (NTDs; serious birth defect) and cancer in humans that consume contaminated corn as a diet staple. FB1 levels in foods an...
Efficacy of a biopesticide for control of aflatoxins in corn.
Dorner, Joe W
2010-03-01
A 2-year study was carried out to determine the efficacy of a biopesticide in reducing aflatoxin contamination in corn. The biopesticide, afla-guard, delivers a nontoxigenic strain of Aspergillus flavus to the field where it competes with naturally occurring toxigenic strains of the fungus. Afla-guard was applied to entire fields in two areas of Texas at either 11.2 or 22.4 kg/ha. Specific nontreated fields in close proximity to treated fields were designated as controls. Samples of corn were collected at harvest and analyzed for aflatoxins and density of toxigenic and nontoxigenic isolates of A. flavus. Aflatoxin concentrations were generally quite low in 2007, but the mean concentration in treated samples (0.5 ppb) was reduced by 85% compared with controls (3.4 ppb). In 2008, samples from treated and control fields averaged 1.5 and 12.4 ppb, respectively, an 88% reduction. There were no significant differences between the two afla-guard application rates. In conjunction with the reductions in aflatoxin contamination, treatments produced significant reductions in the incidence of toxigenic isolates of A. flavus in corn.
Four-year surveillance for ochratoxin a and fumonisins in retail foods in Japan.
Aoyama, Koji; Nakajima, Masahiro; Tabata, Setsuko; Ishikuro, Eiichi; Tanaka, Toshitsugu; Norizuki, Hiroko; Itoh, Yoshinori; Fujita, Kazuhiro; Kai, Shigemi; Tsutsumi, Toru; Takahashi, Masanori; Tanaka, Hiroki; Iizuka, Seiichiro; Ogiso, Motoki; Maeda, Mamoru; Yamaguchi, Shigeaki; Sugiyama, Kei-Ichi; Sugita-Konishi, Yoshiko; Kumagai, Susumu
2010-02-01
Between 2004 and 2007 we examined foods from Japanese retail shops for contamination with ochratoxin A (OTA) and fumonisins B(1), B(2), and B(3). A total of 1,358 samples of 27 different products were examined for OTA, and 831 samples of 16 different products were examined for fumonisins. The limits of quantification ranged from 0.01 to 0.5 microg/kg for OTA and 2 to 10 microg/kg for the fumonisins. OTA was detected in amounts higher than limits of quantification in wheat flour, pasta, oatmeal, rye, buckwheat flour and dried buckwheat noodles, raisins, wine, beer, coffee beans and coffee products, chocolate, cocoa, and coriander. OTA was found in more than 90% of the samples of instant coffee and cocoa, and the highest concentration of OTA, 12.5 microg/kg, was detected in raisins. The concentration of OTA in oatmeal, rye, raisins, wine, and roasted coffee beans varied remarkably from year to year. Fumonisins were detected in frozen and canned corn, popcorn grain, corn grits, cornflakes, corn soups, corn snacks, beer, soybeans, millet, and asparagus. The highest concentrations of fumonisins B(1), B(2), and B(3) were detected in corn grits (1,670, 597, and 281 microg/kg, respectively). All of the samples of corn grits were contaminated with fumonisins, and more than 80% of the samples of popcorn grain and corn snacks contained fumonisins. OTA and fumonisins were detected in several food products in Japan; however, although Japan has not set regulatory levels for these mycotoxins, their concentrations were relatively low.
Examining the impacts of increased corn production on ...
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥ 5 mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additio
Weaver, Mark A; Abbas, Hamed K; Jin, Xixuan; Elliott, Brad
2016-01-01
Field experiments were conducted in 2011 and 2012 to evaluate the efficacy of water-dispersible granule (WDG) formulations of biocontrol strains of Aspergillus flavus in controlling aflatoxin contamination of corn. In 2011, when aflatoxin was present at very high levels, there was no WDG treatment that could provide significant protection against aflatoxin contamination. The following year a new WDG formulation was tested that resulted in 100% reduction in aflatoxin in one field experiment and ≥ 49% reduction in all five WDG treatments with biocontrol strain 21882. Large sampling error, however, limited the resolution of various treatment effects. Corn samples were also subjected to microbial analysis to understand better the mechanisms of successful biocontrol. In the samples examined here, the size of the A. flavus population on the grain was associated with the amount of aflatoxin, but the toxigenic status of that population was a poor predictor of aflatoxin concentration.
BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
Yang, Bin; Wyman, Charles E
2006-07-05
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis. (c) 2006 Wiley Periodicals, Inc.
Stability of immobilized amyloglucosidase in the process of Cassava starch saccharification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanin, G.M.; De Moraes, F.F.
1995-12-31
The half-life of immobilized amyloglucosidase was determined in a fluidized-bed reactor operating continuously with a 30% w/v liquefied cassava starch solution at pH 4.5 and temperatures from 50 to 70{degrees}C. For the higher temperatures: 60, 65, and 70{degrees}C, thermal deactivation gives half-lives of 127, 38 and 7.3 h, respectively, in close agreement with corn starch data. For the lower temperatures: 55 and 60{degrees}C, the deposition of impurities over the immobilized enzyme particle contributes significantly to deactivation, lowering expected half-lives to 32.6 and 13.2 d, respectively. Commercial exploitation of this process would then require low temperature of operation, thorough purification ofmore » the substrate solution, and control of microbial contamination to achieve sufficiently long half-lives.« less
Inhibition of polygylcine hydrolases by substrate analog peptides
USDA-ARS?s Scientific Manuscript database
Polyglycine hydrolases are proteases secreted by fungal pathogens that target corn defense chitinases. They cleave interdomain glycine-glycine bonds within a polyglycine linker, separating substrate chitinases into two single domain proteins. Polyglycine hydrolases consist of 640 amino acids with a ...
USDA-ARS?s Scientific Manuscript database
One of the most critical stages of conversion of plant biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Important benefits of...
Soil-test biological activity with the flush of CO2: III. Corn yield responses to applied nitrogen
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) is an important cereal grain in many states and typically receives large N fertilizer inputs, irrespective of historical management. Tailoring N inputs to soil-specific conditions would help to increase efficiency of N use and avoid environmental contamination. A total of 47 tri...
USDA-ARS?s Scientific Manuscript database
Since its first introduction in the early 1990s, tremendous progress has been made in the application of biocontrol techniques for reducing aflatoxin contamination in corn. In almost three decades, the basic concept has remained centered on massive application of propagules of non-aflatoxigenic A. f...
Influence of Modified Atmosphere Storage on Aflatoxin Production in High Moisture Corn
Wilson, David M.; Jay, Edward
1975-01-01
Samples of freshly harvested corn and remoistened corn were inoculated with Aspergillus flavus and stored for 4 weeks at about 27 C in air and three modified atmospheres. Aflatoxins and fat acidity were determined weekly. Corn stored in the modified atmospheres did not accumulate over 15 μg of aflatoxin B1 per kg and 20 μg of total aflatoxins per kg. Corn from the high CO2 treatment (61.7% CO2, 8.7% O2, and 29.6% N2) was visibly molded at 4 weeks and had a higher fat acidity than the other treatments. In the N2 (99.7% N2 and 0.3% O2) and controlled atmosphere (13.5% CO2, 0.5% O2, 84.8% N2) treatments, a fermentation-like odor was detected. When the corn was removed from the modified atmospheres it deteriorated rapidly and was soon contaminated with aflatoxins. PMID:803817
Giordano, Debora; Beta, Trust; Gagliardi, Federica; Blandino, Massimo
2018-05-02
Among the agronomic practices carried out in corn cultivation, the early sowing time is increasingly used by farmers of temperate regions to improve yield and reduce mycotoxin contamination of corn grains. The present study determined the influence of sowing time on the phytochemical content of grains of 10 colored genotypes of corn. There was a significant improvement of both grain yield (+26%), thousand kernel weight (+3%), and test weight (+2%) in plots sown early. The early sowing also significantly influenced the chemical composition of corn grains, with an increase in the concentration of cell-wall-bound phenolic acids (+5%) and β-cryptoxanthin (+23%) and a decrease in the concentration of lutein (-18%) and total anthocyanins (-21%). Environmental conditions that occurred during grain development significantly influenced the phytochemical content of corn grain, and early spring sowing could impart advantages in terms of both productivity and content of some antioxidants of whole-meal corn flour.
Li, Yangyang; Xu, Fuqing; Li, Yu; Lu, Jiaxin; Li, Shuyan; Shah, Ajay; Zhang, Xuehua; Zhang, Hongyu; Gong, Xiaoyan; Li, Guoxue
2018-03-01
Anaerobic co-digestion is commonly believed to be benefical for biogas production. However, additional of co-substrates may require additional energy inputs and thus affect the overall energy efficiency of the system. In this study, reactor performance and energy analysis of solid state anaerobic digestion (SS-AD) of tomato residues with dairy manure and corn stover were investigated. Different fractions of tomato residues (0, 20, 40, 60, 80 and 100%, based on volatile solid weight (VS)) were co-digested with dairy manure and corn stover at 15% total solids. Energy analysis based on experimental data was conducted for three scenarios: SS-AD of 100% dairy manure, SS-AD of binary mixture (60% dairy manure and 40% corn stover, VS based), and SS-AD of ternary mixture (36% dairy manure, 24% corn stover, and 40% tomato residues, VS based). For each scenario, the energy requirements for individual process components, including feedstock collection and transportation, feedstock pretreatment, biogas plant operation, digestate processing and handling, and the energy production were examined. Results showed that the addition of 20 and 40% tomato residues increased methane yield compared to that of the dairy manure and corn stover mixture, indicating that the co-digestion could balance nutrients and improve the performance of solid-state anaerobic digestion. The energy required for heating substrates had the dominant effect on the total energy consumption. The highest volatile solids (VS) reduction (57.0%), methane yield (379.1 L/kg VS feed ), and net energy production were achieved with the mixture of 24% corn stover, 36% dairy manure, and 40% tomato residues. Thus, the extra energy input for adding tomato residues for co-digestion could be compensated by the increase of methane yield. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E
2013-08-01
In an effort to address the problem of rapid detection of aflatoxin in grain, particularly oilseeds, the current study assessed the spectral differences of aflatoxin production in kernels from a cornfield inoculated with spores from 2 different strains of toxigenic Aspergillus flavus. Aflatoxin production in corn from the same field due to natural infestation was also assessed. A small corn plot in Baton Rouge, La., U.S.A., was used during the 2008-growing season. Two groups of 400 plants were inoculated with 2 different inocula and 1 group of 400 plants was designated as controls. Any contamination detected in the controls was attributed to natural infestation. A subset of each group was imaged with a visible near infra red (VNIR) hyperspectral system under ultra violet (UV) excitation and subsequently analyzed for aflatoxin using affinity column fluorometry. Group differences were statistically analyzed. Results indicate that when all the spectral data across all groups were averaged, any potential differences between groups (treated and untreated) were obscured. However, spectral analysis based on contaminated "hot" pixel classification showed a distinct spectral shift/separation between contaminated and clean ears with fluorescence peaks at 501 and 478 nm, respectively. All inoculated and naturally infected control ears had fluorescence peaks at 501 nm that differed from uninfected corn ears. Results from this study may be useful in evaluating rapid, noninvasive instrumentation and/or methodology for aflatoxin detection in grain. © 2013 Institute of Food Technologists®
2015-09-24
kapton, Polydimethylsiloxane ( PDMS ), photo-print paper (laminate side) and Corning Willow glass (WG). Guanine was deposited onto graphene that had been...flexible substrates-kapton, PDMS , photo-print paper, and WG were performed to determine whether the graphene-substrate interface effects the graphene...flexible substrates-kapton, PDMS , photo-print paper, and WG. Kapton, PDMS , and photo-print paper were chosen as flexible substrates due to their
Van Nevel, Christian J; Dierick, Noel A; Decuypere, Jaak A; De Smet, Stefaan M
2006-12-01
Fermentability of fibre has a great impact on the bacterial flora along the gastrointestinal tract of newly weaned piglets. Therefore, this parameter was determined by incubating in vitro different fibre substrates (chicory roots, sugar beet pulp, wheat bran and corn cobs) with contents of jejunum or caecum sampled from slaughtered pigs. Incubating with small intestinal contents, lactic acid was the only fermentation product. Fermentability was highest for chicory roots, followed by wheat bran and sugar beet pulp, while corn cobs were not fermented. Based on SCFA formed in the incubations with caecal contents, ranking of the fermentability of the fibre substrates was in the same order. The effect of adding different fibre substrates to diets of newly weaned piglets on bacteriological and morphological aspects of the gastrointestinal tract was also investigated. In Experiment 1 three groups of five piglets, weaned at four weeks of age, received a control feed (C), C supplemented with corn cobs (50 g/kg) or with chicory roots (20 g/kg). In Experiment 2, diet C was supplemented with sugar beet pulp (120 g/kg) or with wheat bran (75 g/kg). After three weeks animals were euthanized and digesta were sampled from stomach, proximal and distal jejunum, caecum and colon. Furthermore, mucosal scrapings were prepared and tissue samples were taken from jejunum, caecum and colon. Viscosity was determined for jejunal, caecal and colon contents. Corn cobs in the feed increased the number of total bacteria, lactobacilli and bifidobacteria in the stomach and proximal duodenum, while a decreased count of streptococci in distal jejunum contents was noted. Chicory roots increased the counts of Escherichia coli in the distal jejunum and on the mucosa, while sugar beet pulp decreased the number of lactobacilli on the mucosa only. Wheat bran seemed to increase the count of E. coli in jejunal digesta and on the mucosa, and also the number of lactobacilli in the stomach and jejunum. Bifidobacterial numbers were increased but only in the proximal part of the jejunum. Fibre substrates affected the concentration of lactate and SCFA in different parts of the intestinal tract. Feeding corn cobs increased villus length in the proximal jejunum by 13%. The number of intra-epithelial lymphocytes in the villous epithelium of proximal and distal jejunum was decreased by corn cobs and chicory roots supplementation while beet pulp and wheat bran had the opposite effect. In Experiment 1, apoptotic index of the mucosa of the distal jejunum was very low and decreased when corn cobs were fed. Mitotic index in the crypts was only affected by the wheat bran diet and a small decrease was noted. It was concluded that the fermentability of fibre was not an ideal criterion for predicting its effects on the flora. The effect of fibres on viscosity of digesta was negligible probably explaining the lack of clear and consistent influences on the intestinal mucosa.
Fermentation Methods for Protein Enrichment of Cassava and Corn with Candida tropicalis
Azoulay, Edgard; Jouanneau, Françoise; Bertrand, Jean-Claude; Raphael, Alain; Janssens, Jacques; Lebeault, Jean Michel
1980-01-01
Candida tropicalis grows on soluble starch, corn, and cassava powders without requiring that these substrates be previously hydrolyzed. C. tropicalis possesses the enzyme needed to hydrolyze starch, namely, an α-amylase. That property has been used to develop a fermentation process whereby C. tropicalis can be grown directly on corn or cassava powders so that the resultant mixture of biomass and residual corn or cassava contains about 20% protein, which represents a balanced diet for either animal fodder or human food. The fact that no extra enzymes are required to hydrolyze starch results in a particularly efficient way of improving the nutritional value of amylaceous products, through a single-step fermentation process. PMID:16345495
Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing
2012-08-01
The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.
Jin, Du-Xin; Liu, Xiao-Lan; Zheng, Xi-Qun; Wang, Xiao-Jie; He, Jun-Fang
2016-08-01
Corn gluten meal is a major co-product of corn wet milling. Corn gluten meal was hydrolyzed with Alcalase, Flavourzyme, Alcalase+Flavourzyme and Flavourzyme+Alcalase. At the substrate concentration of 10%, corn protein hydrolysate catalyzed by Alcalase had a degree of hydrolysis of 17.83%, which was higher than that by Flavourzyme (3.65%). The hydrolysate catalyzed by Alcalase+Flavourzyme exhibited better antioxidant activities and was further purified. Three novel antioxidant peptides were purified by a series of chromatographic techniques. Sequences of the three peptides were identified as Cys-Ser-Gln-Ala-Pro-Leu-Ala, Tyr-Pro-Lys-Leu-Ala-Pro-Asn-Glu and Tyr-Pro-Gln-Leu-Leu-Pro-Asn-Glu, respectively. Among the three peptides, Cys-Ser-Gln-Ala-Pro-Leu-Ala exhibited good reducing power and excellent scavenging capacities for DPPH radical and superoxide anion radical, with IC50 values of 0.116 and 0.39mg/ml, respectively. The results from our study indicate antioxidant potency of corn protein hydrolysates and peptides separated from corn gluten meal and can provide basic understanding for the application of corn protein hydrolysates as natural antioxidants. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive....
Abbas, Hamed K; Accinelli, Cesare; Shier, W Thomas
2017-08-23
Aflatoxin contamination has a major economic impact on crop production in the southern United States. Reduction of aflatoxin contamination in harvested crops has been achieved by applying nonaflatoxigenic biocontrol Aspergillus flavus strains that can out-compete wild aflatoxigenic A. flavus, reducing their numbers at the site of application. Currently, the standard method for applying biocontrol A. flavus strains to soil is using a nutrient-supplying carrier (e.g., pearled barley for Afla-Guard). Granules of Bioplastic (partially acetylated corn starch) have been investigated as an alternative nutritive carrier for biocontrol agents. Bioplastic granules have also been used to prepare a sprayable biocontrol formulation that gives effective reduction of aflatoxin contamination in harvested corn kernels with application of much smaller amounts to leaves later in the growing season. The ultimate goal of biocontrol research is to produce biocontrol systems that can be applied to crops only when long-range weather forecasting indicates they will be needed.
USDA-ARS?s Scientific Manuscript database
Background: Contamination of corn mash by lactic acid bacteria (LAB) reduces ethanol yields and the overall efficiency of the ethanol fermentation process, and the industry relies heavily on antibiotics for contamination control. There is a need to develop alternative methods for the control of cont...
Effects of lactic acid bacteria contamination on lignocellulosic ethanol fermentation
USDA-ARS?s Scientific Manuscript database
Slower fermentation rates, mixed sugar compositions, and lower sugar concentrations may make lignocellulosic fermentations more susceptible to contamination by lactic acid bacteria (LAB), which is a common and costly problem to the corn-based fuel ethanol industry. To examine the effects of LAB con...
USDA-ARS?s Scientific Manuscript database
Fumonisin B1 (FB1) is a toxic chemical produced by molds. The molds that produce fumonisin are common in corn. Consumption of contaminated corn by farm animals has been shown to be the cause of disease. Fumonisin has been hypothesized to be an environmental risk factor for diseases in humans in c...
USDA-ARS?s Scientific Manuscript database
Fumonisin B1 (FB1) is a toxic chemical produced by molds. The molds that produce fumonisin are common in corn. Consumption of contaminated corn by farm animals has been shown to be the cause of animal disease. The proximate cause (key event) in the induction of diseases in animals is inhibition of t...
USDA-ARS?s Scientific Manuscript database
Fumonisin B1 (FB1) is a toxic chemical produced by molds. The molds that produce fumonisin are common in corn. Consumption of contaminated corn by farm animals has been shown to be the cause of disease. Fumonisin has been hypothesized to be an environmental risk factor for diseases in humans in c...
Su, Yuhong; Liang, Yongchao
2013-05-15
The foliar uptake and downward translocation of trichloroethylene (TCE) and 1,2,3-trichlorobenzene (TCB) in wheat, corn, and tomato seedlings were investigated following 2-48-h exposure of the plant shoots to vapor-contaminated air. The results showed that both TCE and TCB could be rapidly transported from air to plant rhizosphere solution through the foliar uptake and downward transport; the TCE and TCB concentrations in rhizosphere solutions increased with exposure time and external contaminant concentration. Among the three plant species studied, the TCE and TCB downward transport followed the order of wheat>tomato>corn. The transport efficiency of TCE by the three plants was far greater than that of TCB. With a 24-h uptake time, the amounts of TCE transported into the rhizosphere solution by wheat, tomato, and corn seedlings were 2.39 ± 0.42, 1.50 ± 0.22 and 1.45 ± 0.08 μg TCE per gram of fresh weight biomass, respectively, when the initial external TCE concentration was set at 12 mg l(-1). In a 48-h uptake experiment with corn seedlings, the TCE concentration in the rhizosphere solutions was lower in the TCE-TCB mixture system than in the single TCE system, whereas there was no significant difference in TCB concentration between the single TCB and TCE-TCB mixture systems at 48 h. The downward transport processes of TCE were inhibited, while those of TCB were enhanced in the mixed contaminant system within a 48-h uptake time. Copyright © 2013 Elsevier B.V. All rights reserved.
Valicente, F H; Tuelher, E S; Pena, R C; Andreazza, R; Guimarães, M R F
2013-04-01
Cannibalism in the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) (FAW), is a limiting factor in a baculovirus production system. To detect the impact of cannibalism, a two-step bioassay was conducted with different larval ages of FAW fed on two food sources (corn and castor bean leaves) contaminated with the S. frugiperda multiple-embedded nucleopolyhedrovirus. In a first bioassay, the food source affected the cannibalism, being higher for all larval ages tested (5-, 6- and 7-day-old larvae) in larvae fed on corn than on those fed on castor bean leaves. Larval mortality, weight equivalent and larval equivalents (LEs) per hectare decreased as the larval age increased. Larval weight, occlusion bodies (OBs)/larva and total OBs increased when the larval age increased. In a second bioassay, in which only 6- and 7-day-old larvae were used because of the performance in the first bioassay, the cannibalism rates were affected by the interaction between food sources and time of feeding (48 and 72 h), reaching the highest values for 6- and 7-day-old larvae fed on corn leaves for 72 h. Mortality of the FAW was affected by the interaction between food sources, larval age and time of feeding. The lowest mortalities were on 7-day-old larvae when they were fed on castor bean leaves for 48 and 72 h. Larval weight, OBs/larva, total OBs and LEs were affected by the interaction between food sources and larval age. A significant correlation was observed between larval weight and OBs/larva that fed on both food sources, suggesting that larval weight can be used to achieve a concentration to be sprayed in 1 ha.
Imaging surface plasmon resonance detection for T-2 toxin in wheat
USDA-ARS?s Scientific Manuscript database
T-2 toxin is a trichothecene (Type A) mycotoxin harmful to humans and animals. It is produced by mainly Fusarium species, particularly F. sporotrichoides. Fusarium species often contaminate grains such as corn, wheat, barley, oats, rice and rye. T-2 toxin contamination in grains has been observed mo...
Escobar, Arturo; Regueiro, Olga Sanchez
2002-01-01
The presence of aflatoxin B1 was analyzed in imported food and feedstuffs of national production in the period of 1990 through 1996, destined to animal and human consumption using an immunoenzymatic reagent kit (Aflacen, Ckure, la Habana, Cuba) with a detection limit of 0.3 microg/kg. It was found that the 17.04% of a total of 4,594 analyzed samples presented aflatoxin B1, and the biggest percentages were in sorghum and peanut with an 83.3 and 40.4%, respectively. The corn, oat, wheat, and soy are fundamental raw ingredients in the elaboration of concentrates. Percentages of contamination with aflatoxin B1 of 23.3, 10.7, 25, and 4.6 were found in corn, oat, wheat, and soy, respectively. Other analyzed foods like rice, beans, and peas presented percentages of contamination with aflatoxin B1 inferior to 5% of the analyzed samples. It was found that more than 455 samples surpassed the value of 10 microg/kg. Corn and peanut products present a high demand in population showing levels of contamination superior to 50 microg/kg. The 11.3% of the samples contaminated with aflatoxin B1 have values between 1 and 20 microg/kg, where peanut and concentrates show the highest percentages (21.9 and 18.7), respectively. These results show levels of aflatoxin B1 in the population that constitute a great risk for human and animal health.
NASA Astrophysics Data System (ADS)
Lanier, Caroline; Richard, Estelle; Heutte, Natacha; Picquet, Rachel; Bouchart, Valérie; Garon, David
2010-05-01
In agricultural areas, the contamination of feedstuffs with molds and mycotoxins presents major environmental and health concerns. During cattle feeding, fungi and mycotoxins were monitored in corn silage, oilseed cakes and bioaerosols collected in Normandy. Most of the corn silages were found to be contaminated by deoxynivalenol (mean concentration: 1883 μg kg -1) while a few of oilseed cakes were contaminated by alternariol, fumonisin B 1 or gliotoxin. In ambient bioaerosols, the values for fungi per cubic meter of air varied from 4.3 × 10 2 to 6.2 × 10 5 cfu m -3. Seasonal variations were observed with some species like Aspergillus fumigatus which significantly decreased between the 2 seasons ( P = 0.0186) while the Penicillium roqueforti group significantly increased during the second season ( P = 0.0156). In the personal bioaerosols, the values for fungi per cubic meter of air varied from 3.3 10 3 to 1.7 10 6 cfu m -3 and the number of A. fumigatus spores significantly decreased between the 2 seasons ( P = 0.0488). Gliotoxin, an immunosuppressive mycotoxin, was quantified in 3 personal filters at 3.73 μg m -3, 1.09 μg m -3 and 2.97 μg m -3.
Benefits from Tween during enzymic hydrolysis of corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaar, W.E.; Holtzapple, M.T.
1998-08-20
Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. The critical relationship was the Tweenmore » loading on the biomass, not the Tween concentration in solution. The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector.« less
A Preliminary Mycological Investigation of Endemic Nephropathy in Yugoslavia,
FUNGI , *FOOD, *MOLDS(ORGANISMS), DISEASES, KIDNEYS, CORN, CEREALS, PORK, BIOLOGICAL CONTAMINATION, EPIDEMIOLOGY, DIAGNOSIS(MEDICINE), CORRELATION TECHNIQUES, INFECTIOUS DISEASES, ETIOLOGY, POPULATION, YUGOSLAVIA.
Likus-Cieślik, Justyna; Pietrzykowski, Marcin; Chodak, Marcin
2018-01-01
The impact of tree litter on soil chemistry leachate and sulfurous substrates of mine soils from former Jeziórko sulfur mine was investigated. Composites were used: soil substrate (less contaminated at mean 5090 mg kg -1 S or high contaminated at 42,500 mg kg -1 S) + birch or pine litter and control substrate (no litter). The composites were rinsed with distilled water over 12 weeks. In the obtained leachate, pH, EC, dissolved organic carbon, N, Ca, Mg, Al, and S were determined. Physicochemical parameters of the substrates and their basal respiration rate were determined. Rinsing and litter application lowered sulfur concentration in high contamination substrates. Pine litter application decreased EC and increased pH of the low-contaminated substrate. The substrate pH remained at low phytotoxic level (i.e., below 3.0), resulting in the low biological activity of the composites. Birch litter application increased leaching of N and Mg, indicating the possibility of an intensification of soil-forming processes in contaminated sites.
Heat stress increases the efficiency of EDTA in phytoextraction of heavy metals.
Chen, Ya-Hua; Mao, Ying; He, Shi-Bin; Guo, Peng; Xu, Ke
2007-04-01
Solution culture and pot experiments were carried out to investigate the effects of root damage on phytoextraction of heavy metals. In hydroponics, roots of corn (Zea mays L.) seedlings were pretreated with heating stress, and then were exposed to 250 microM Pb+250 microM EDTA solutions for 7d. The results showed that the preheating treatment significantly increased Pb transportation from roots to shoots. In pot experiments, the effect of hot EDTA solution (95 degrees C) on the accumulation of heavy metal in the shoot of corn and pea (Pisum sativum L.) was also examined. Compared to normal EDTA (25 degrees C) treatment, application of hot EDTA solution to the soil surface increased the total removal of Pb in shoots of corn and pea by about 8- and 12-fold, respectively, in an artificially multimetal-contaminated soil. In addition, hot EDTA solution increased the shoot Cu removal by about 6-fold for corn and 9-fold for pea, respectively, in a naturally Cu-contaminated soil. These results suggested that exposure of roots to high temperature could increase the efficiency of EDTA on the accumulation of heavy metals in shoots. This new approach can help to minimize the amount of chelate applied in the field and reduce the potential risk of heavy metals' leaching.
Detection of Fusarium verticillioides by PCR-ELISA based on FUM21 gene.
Omori, Aline Myuki; Ono, Elisabete Yurie Sataque; Bordini, Jaqueline Gozzi; Hirozawa, Melissa Tiemi; Fungaro, Maria Helena Pelegrinelli; Ono, Mario Augusto
2018-08-01
Fusarium verticillioides is a primary corn pathogen and fumonisin producer which is associated with toxic effects in humans and animals. The traditional methods for detection of fungal contamination based on morphological characteristics are time-consuming and show low sensitivity and specificity. Therefore, the objective of this study was to develop a PCR-ELISA based on the FUM21 gene for F. verticillioides detection. The DNA of the F. verticillioides, Fusarium sp., Aspergillus sp. and Penicillium sp. isolates was analyzed by conventional PCR and PCR-ELISA to determine the specificity. The PCR-ELISA was specific to F. verticillioides isolates, showed a 2.5 pg detection limit and was 100-fold more sensitive than conventional PCR. In corn samples inoculated with F. verticillioides conidia, the detection limit of the PCR-ELISA was 1 × 10 4 conidia/g and was also 100-fold more sensitive than conventional PCR. Naturally contaminated corn samples were analyzed by PCR-ELISA based on the FUM21 gene and PCR-ELISA absorbance values correlated positively (p < 0.05) with Fusarium sp. counts (CFU/g). These results suggest that the PCR-ELISA developed in this study can be useful for F. verticillioides detection in corn samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Swelling and Contraction of Corn Mitochondria 1
Stoner, C. D.; Hanson, J. B.
1966-01-01
A survey has been made of the properties of corn mitochondria in swelling and contraction. The mitochondria swell spontaneously in KCl but not in sucrose. Aged mitochondria will swell rapidly in sucrose if treated with citrate or EDTA. Swelling does not impair oxidative phosphorylation if bovine serum albumin is present. Contraction can be maintained or initiated with ATP + Mg or an oxidizable substrate, contraction being more rapid with the substrate. Magnesium is not required for substrate powered contraction. Contraction powered by ATP is accompanied by the release of phosphate. Oligomycin inhibits both ATP-powered contraction and the release of phosphate. However, it does not affect substrate-powered contraction. Substrate powered contraction is inhibited by electron-transport inhibitors. The uncoupler, carbonyl cyanide m-chlorophenyl hydrazone, accelerates swelling and inhibits both ATP-and substrate-powered contraction. However, the concentrations required are well in excess of those required to produce uncoupling and to accelerate adenosine triphosphatase; the concentrations required inhibit respiration in a phosphorylating medium. Phosphate is a very effective inhibitor of succinate-powered contraction. Neither oligomycin nor Mg affects the phosphate inhibition. Phosphate is less inhibitory with the ATP-powered contraction. The results are discussed in terms of a hypothesis that contraction is associated with a nonphosphorylated high energy intermediate of oxidative phosphorylation. Images PMID:16656248
Miller, D N; Berry, E D; Wells, J E; Ferrell, C L; Archibeque, S L; Freetly, H C
2006-09-01
Three beef cattle diets were assessed for their potential to produce odorous compounds from cattle feces excreted during the growing and finishing periods. Eight pens containing 51 steers of varying proportions of Brahman and MARC III genotypes were fed either a chopped bromegrass hay diet or a corn silage diet for a 119-d growing period. After the growing period, all steers were switched to the same high-corn finishing diet (high corn) and fed to a target weight of 560 kg (finishing period). Fecal slurries were prepared from a composite of fresh fecal pats collected in each pen during both periods and incubated anaerobically. In additional flasks, starch, protein, or cellulose was added to the composite fecal subsamples to determine the preferred substrates for fermentation and odorous compound production. The content and composition of the fermentation products varied both initially and during the incubation, depending on the diet fed to the steers. The corn silage and high corn feces had the greater initial content of VFA (381.0 and 524.4 micromol/g of DM, respectively) compared with the bromegrass feces (139.3 micromol/g of DM) and accumulated more VFA than the bromegrass feces during the incubation. l-Lactic acid and VFA accumulation in the high corn and corn silage feces was at the expense of starch, based on starch loss and the production of straight-chain VFA. In the bromegrass feces, accumulation of branched-chain VFA and aromatic compounds and the low starch availability indicated that the protein in the feces was the primary source for odorous compound production. Substrate additions confirmed these conclusions. We conclude that starch availability was the primary factor determining accumulation and composition of malodorous fermentation products, and when starch was unavailable, fecal microorganisms utilized protein.
Garcia, Valerie; Cooter, Ellen; Crooks, James; Hinckley, Brian; Murphy, Mark; Xing, Xiangnan
2017-05-15
This study demonstrates the value of a coupled chemical transport modeling system for investigating groundwater nitrate contamination responses associated with nitrogen (N) fertilizer application and increased corn production. The coupled Community Multiscale Air Quality Bidirectional and Environmental Policy Integrated Climate modeling system incorporates agricultural management practices and N exchange processes between the soil and atmosphere to estimate levels of N that may volatilize into the atmosphere, re-deposit, and seep or flow into surface and groundwater. Simulated values from this modeling system were used in a land-use regression model to examine associations between groundwater nitrate-N measurements and a suite of factors related to N fertilizer and groundwater nitrate contamination. Multi-variable modeling analysis revealed that the N-fertilizer rate (versus total) applied to irrigated (versus rainfed) grain corn (versus other crops) was the strongest N-related predictor variable of groundwater nitrate-N concentrations. Application of this multi-variable model considered groundwater nitrate-N concentration responses under two corn production scenarios. Findings suggest that increased corn production between 2002 and 2022 could result in 56% to 79% increase in areas vulnerable to groundwater nitrate-N concentrations ≥5mg/L. These above-threshold areas occur on soils with a hydraulic conductivity 13% higher than the rest of the domain. Additionally, the average number of animal feeding operations (AFOs) for these areas was nearly 5 times higher, and the mean N-fertilizer rate was 4 times higher. Finally, we found that areas prone to high groundwater nitrate-N concentrations attributable to the expansion scenario did not occur in new grid cells of irrigated grain-corn croplands, but were clustered around areas of existing corn crops. This application demonstrates the value of the coupled modeling system in developing spatially refined multi-variable models to provide information for geographic locations lacking complete observational data; and in projecting possible groundwater nitrate-N concentration outcomes under alternative future crop production scenarios. Published by Elsevier B.V.
do Nascimento, Rodrigo Pires; Junior, Nelson Alves; Coelho, Rosalie Reed Rodrigues
2011-01-01
Brewer’s spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production by actinomycetes, using BSG and CSL as economically feasible substrates. PMID:24031767
Detoxification of zearalenone and ochratoxin A by ozone and quality evaluation of ozonised corn.
Qi, Lijun; Li, Yulin; Luo, Xiaohu; Wang, Ren; Zheng, Ruihang; Wang, Li; Li, Yongfu; Yang, Dan; Fang, Wenmiao; Chen, Zhengxing
2016-11-01
Zearalenone (ZEN) and ochratoxin A (OTA) are secondary toxic metabolites of fungi that can contaminate a wide range of food and feedstuff. In this study, the effects of ozone treatment on ZEN and OTA and the quality of ozonised corn are investigated. Ozone significantly affects ZEN and OTA solutions. ZEN was undetectable 5 s after being treated with 10 mg l -1 ozone. However, OTA was resistant to ozonation with a degradation rate of 65.4% after 120 s of treatment. Moreover, ZEN and OTA solutions were difficult to degrade after being dried by a nitrogen stream. Results showed that ozone effectively degraded ZEN and OTA in corn. The degradation rates of ZEN and OTA in corn increased with ozone concentration and treatment time. The degradation of ZEN and OTA at different ozone concentrations appropriately conformed to first-order kinetics with an R 2 value > 0.8749. Furthermore, under the same conditions, corn with increased moisture content (MC) (19.6%) was more sensitive to ozone than corn with a low MC (14.1%). When treated with 100 mg l -1 ozone for 180 min, ZEN and OTA in corn with 19.6% MC decreased by 90.7% and 70.7%, respectively. To evaluate the quality of ozonised corn, subsequent quality experiments were conducted using corn samples treated at different times with 100 mg l -1 ozone. The MC of corn decreased after ozone treatment. The whiteness and yellowness of the corn increased and decreased with increasing time, respectively. The fatty acid value of the corn increased significantly (p ≤ 0.05) after 180 min of treatment. This study verified that ozone can effectively degrade ZEN and OTA in corn, but slightly affected corn quality.
Korosteleva, S N; Smith, T K; Boermans, H J
2009-04-01
A previous study in dairy cows showed some effect of feed contaminated with Fusarium mycotoxins on metabolism and immunity. A subsequent experiment investigated the effect of feedborne Fusarium mycotoxins on some immune functions in more detail. A total mixed ration (TMR) containing a blend of feedstuffs naturally contaminated with Fusarium mycotoxins was fed for 63 d to 12 mid-lactation Holstein cows with an average milk production of 36 kg/d in a completely randomized design with repeated measures including 1) control TMR and 2) contaminated TMR. Wheat, corn, hay, and corn silage were the contaminated feedstuffs. Deoxynivalenol was the major contaminant and was found in TMR at 3.5 mg/kg of dry matter. The parameters measured were 1) performance: body weight, body condition score, dry matter intake, milk production, composition and somatic cell count; 2) health: blood serum chemistry, hematology, coagulation profile, and rumen fluid ammonia levels; 3) immune function: total serum immunoglobulins (IgA, IgG, IgM), specific antibody response to ovalbumin, and neutrophil phagocytosis. Dry matter intake, body weight, milk production, and milk composition were not affected by diet. Neutrophil phagocytosis was depressed throughout the experiment in cows fed the contaminated diet. Serum sodium concentrations and osmolality were significantly elevated throughout the experiment in cows fed the contaminated diet. Primary antibody response to ovalbumin immunization was higher in cows fed the contaminated diet compared with controls. It was concluded that feed naturally contaminated with Fusarium mycotoxins can affect metabolic parameters and immune function of dairy cows.
Effects of lead-contaminated sediment and nutrition on mallard duckling behavior and growth
Douglas-Stroebel, E.; Brewer, G.L.; Hoffman, D.J.
2005-01-01
Sediment ingestion has become a recognized exposure route for toxicants in waterfowl. The effects of lead-contaminated sediment from the Coeur d?Alene River Basin (CDARB) in Idaho were evaluated on mallard (Anas platyryhnchos) duckling behavior and growth over a five-week period using time-activity budgets. Day-old ducklings received either a clean sediment (24%) supplemented control diet, CDARB sediment (3,449 ug/g lead) supplemented diets at 12% or 24%, or a positive control diet (24% clean sediment with equivalent lead acetate to the 24% CDARB diet). Ten different behaviors were monitored for time spent, including resting, standing, moving, drinking, dabbling, feeding, pecking, preening, bathing and swimming. Contaminated sediment (24% CDARB ) and lead acetate significantly decreased the proportion of time spent swimming. There were also problems with balance and mobility in the 24% CDARB and the lead acetate groups. With a less optimal diet (mixture of two thirds corn and one third standard diet) containing 24% clean sediment, nutrient level alone affected six different behaviors including feeding, pecking, swimming, preening, standing, and dabbling. Nutrient level also significantly decreased the growth rate and delayed the initial time of molt. When the corn diet contained CDARB sediment, the proportion of time spent bathing in the 24% CDARB group significantly decreased with marginal effects on resting and feeding. There were also instances of imbalance with 24% CDARB and corn diet, and duckling weights were significantly lower than in corn diet controls. The decreased time spent swimming or bathing, coupled with problems of balance and mobility, decreased growth, histopathological lesions and altered brain biochemistry (reported elsewhere) illustrate a potential threat to the survival of ducklings in the wild that are exposed to lead-containing sediments within the CDARB or elsewhere.
Pretreatment of corn stover by solid acid for d-lactic acid fermentation.
Wang, Xiqing; Wang, Gang; Yu, Xiaoxiao; Chen, Huan; Sun, Yang; Chen, Guang
2017-09-01
Solid acid is a new acid that is safe and green, which has been widely used in the fields of acid pickling. In this study, we adopted solid acid to pretreat corn stover and used the pretreated corn stover in the fermentation of d-lactic acid. Finally, we obtained optimal conditions for the pretreatment of corn stover by solid acid: digestion temperature of 120°C, digestion time of 80min, and solid acid concentration of 1.5%. Then adding cellulase of 30FPU/g, the conversion rate of glucose reached 71.06% after enzymatic hydrolysis for 72h. In addition, the changes of corn stover structure after pretreatment were further represented by using scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). At the same time, we used the pretreated corn stover as fermentation substrate and Lactobacillus. delbrueckii sp. bulgaricus as the starting strain to produce d-lactic acid. The yield reached 18g/L, with the optical purity being 99%e.e. This research has provided a new way to comprehensively utilizae corn stover. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Built-In Strategy to Mitigate Transgene Spreading from Genetically Modified Corn
Li, Jing; Yu, Hui; Zhang, Fengzhen; Lin, Chaoyang; Gao, Jianhua; Fang, Jun; Ding, Xiahui; Shen, Zhicheng; Xu, Xiaoli
2013-01-01
Transgene spreading is a major concern in cultivating genetically modified (GM) corn. Cross-pollination may cause the spread of transgenes from GM cornfields to conventional fields. Occasionally, seed lot contamination, volunteers, mixing during sowing, harvest, and trade can also lead to transgene escape. Obviously, new biological confinement technologies are highly desired to mitigate transgene spreading in addition to physical separation and isolation methods. In this study, we report the development of a built-in containment method to mitigate transgene spreading in corn. In this method, an RNAi cassette for suppressing the expression of the nicosulfuron detoxifying enzyme CYP81A9 and an expression cassette for the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene G10 were constructed and transformed into corn via Agrobacterium-mediated transformation. The GM corn plants that were generated were found to be sensitive to nicosulfuron but resistant to glyphosate, which is exactly the opposite of conventional corn. Field tests demonstrated that GM corn plants with silenced CYP81A9 could be killed by applying nicosulfuron at 40 g/ha, which is the recommended dose for weed control in cornfields. This study suggests that this built-in containment method for controlling the spread of corn transgenes is effective and easy to implement. PMID:24324711
Wall-Martínez, H A; Ramírez-Martínez, A; Wesolek, N; Brabet, C; Rodríguez-Jimenes, G C; García-Alvarado, M A; Salgado-Cervantes, M A; Robles-Olvera, V J; Roudot, A C
2017-05-01
Corn consumption was evaluated in the population of Veracruz City, Mexico, through two different dietary intake questionnaires. The selection of 300 sampling locations was completely random. The population was segregated into gender and age categories. A daily consumption questionnaire was used to determine the consumption of corn tortillas and a frequency questionnaire to determine the consumption of other corn products. A book of photographs was used to adjust criteria on the size of the portions of corn products and a probability distribution was built of the weight and content of corn for tortillas. Probability density functions (PDFs) were used to describe the consumption of each corn product. Men and those between 14 and 65 years old have the highest consumption of tortillas. Tortillas, antojitos, tacos and chilaquiles are the products that provide the largest amount of corn to the Veracruz people's diet. Even though these products are nixtamalisated, there is evidence that after a thermo-alkaline process some contaminants such as mycotoxins (like aflatoxin, which is a mutagenic, teratogenic and carcinogenic toxin) could be present in high concentrations. These results highlight the need to characterise the consumption of one of the main foods included in dietary staple in Mexico as a first step for a probabilistic risk assessment.
Kos, Gregor; Krska, Rudolf; Lohninger, Hans; Griffiths, Peter R
2004-01-01
An investigation into the rapid detection of mycotoxin-producing fungi on corn by two mid-infrared spectroscopic techniques was undertaken. Corn samples from a single genotype (RWA2, blanks, and contaminated with Fusarium graminearum) were ground, sieved and, after appropriate sample preparation, subjected to mid-infrared spectroscopy using two different accessories (diffuse reflection and attenuated total reflection). The measured spectra were evaluated with principal component analysis (PCA) and the blank and contaminated samples were classified by cluster analysis. Reference data for fungal metabolites were obtained with conventional methods. After extraction and clean-up, each sample was analyzed for the toxin deoxynivalenol (DON) by gas chromatography with electron capture detection (GC-ECD) and ergosterol (a parameter for the total fungal biomass) by high-performance liquid chromatography with diode array detection (HPLC-DAD). The concentration ranges for contaminated samples were 880-3600 microg/kg for ergosterol and 300-2600 microg/kg for DON. Classification efficiency was 100% for ATR spectra. DR spectra did not show as obvious a clustering of contaminated and blank samples. Results and trends were also observed in single spectra plots. Quantification using a PLS1 regression algorithm showed good correlation with DON reference data, but a rather high standard error of prediction (SEP) with 600 microg/kg (DR) and 490 microg/kg (ATR), respectively, for ergosterol. Comparing measurement procedures and results showed advantages for the ATR technique, mainly owing to its ease of use and the easier interpretation of results that were better with respect to classification and quantification.
Bioremediation of aflatoxin B1-contaminated maize by king oyster mushroom (Pleurotus eryngii).
Branà, Maria Teresa; Cimmarusti, Maria Teresa; Haidukowski, Miriam; Logrieco, Antonio Francesco; Altomare, Claudio
2017-01-01
Aflatoxin B1 (AFB1) is the most harmful mycotoxin that occurs as natural contaminant of agricultural commodities, particularly maize. Practical solutions for detoxification of contaminated staples and reduction of agricultural wastes are scarce. We investigated the capability of the white-rot and edible fungus Plerotus eryngii (king oyster mushroom) to degrade AFB1 both in vitro and in a laboratory-scale mushroom cultivation, using a substrate similar to that routinely used in mushroom farms. In malt extract broth, degradation of AFB1 (500 ng/mL) by nine isolates of P. eryngii ranged from 81 to 99% after 10 days growth, and reached 100% for all isolates after 30 days. The growth of P. eryngii on solid medium (malt extract-agar, MEA) was significantly reduced at concentrations of AFB1 500 ng/mL or higher. However, the addition of 5% wheat straw to the culture medium increased the tolerance of P. eryngii to AFB1 and no inhibition was observed at a AFB1 content of 500 ng/mL; degradation of AFB1 in MEA supplemented with 5% wheat straw and 2.5% (w/v) maize flour was 71-94% after 30 days of growth. Further, AFB1 degradation by P. eryngii strain ITEM 13681 was tested in a laboratory-scale mushroom cultivation. The mushroom growth medium contained 25% (w/w) of maize spiked with AFB1 to the final content of 128 μg/kg. Pleurotus eryngii degraded up to 86% of the AFB1 in 28 days, with no significant reduction of either biological efficiency or mushroom yield. Neither the biomass produced on the mushroom substrate nor the mature basidiocarps contained detectable levels of AFB1 or its metabolite aflatoxicol, thus ruling out the translocation of these toxins through the fungal thallus. These findings make a contribution towards the development of a novel technology for remediation of AFB1- contaminated corn through the exploitation of the degradative capability of P. eryngii and its bioconversion into high nutritional value material intended for feed production.
Zhang, Haiyan; Chen, Longjian; Lu, Minsheng; Li, Junbao; Han, Lujia
2016-01-01
Ultrafine grinding is an environmentally friendly pretreatment that can alter the degree of polymerization, the porosity and the specific surface area of lignocellulosic biomass and can, thus, enhance cellulose hydrolysis. Enzyme adsorption onto the substrate is a prerequisite for the enzymatic hydrolysis process. Therefore, it is necessary to investigate the enzyme adsorption properties of corn stover pretreated by ultrafine grinding. The ultrafine grinding pretreatment was executed on corn stover. The results showed that ultrafine grinding pretreatment can significantly decrease particle size [from 218.50 μm of sieve-based grinding corn stover (SGCS) to 17.45 μm of ultrafine grinding corn stover (UGCS)] and increase the specific surface area (SSA), pore volume (PV) and surface composition (SSA: from 1.71 m(2)/g of SGCS to 2.63 m(2)/g of UGCS, PV: from 0.009 cm(3)/g of SGCS to 0.024 m(3)/g of UGCS, cellulose surface area: from 168.69 m(2)/g of SGCS to 290.76 m(2)/g of UGCS, lignin surface area: from 91.46 m(2)/g of SGCS to 106.70 m(2)/g of UGCS). The structure and surface composition changes induced by ultrafine grinding increase the enzyme adsorption capacity from 2.83 mg/g substrate of SGCS to 5.61 mg/g substrate of UGCS. A film-pore-surface diffusion model was developed to simultaneously predict the enzyme adsorption kinetics of both the SGCS and UGCS. Satisfactory predictions could be made with the model based on high R (2) and low RMSE values (R (2) = 0.95 and RMSE = 0.16 mg/g for the UGCS, R (2) = 0.93 and RMSE = 0.09 mg/g for the SGCS). The model was further employed to analyze the rate-limiting steps in the enzyme adsorption process. Although both the external-film and internal-pore mass transfer are important for enzyme adsorption on the SGCS and UGCS, the UGCS has a lower internal-pore resistance compared to the SGCS. Ultrafine grinding pretreatment can enhance the enzyme adsorption onto corn stover by altering structure and surface composition. The film-pore-surface diffusion model successfully captures features on enzyme adsorption on ultrafine grinding pretreated corn stover. These findings identify wherein the probable rate-limiting factors for the enzyme adsorption reside and could, therefore, provide a basis for enhanced cellulose hydrolysis processes.
Xia, Wei; Chen, Wei; Peng, Wei-Fu; Li, Kun-Tai
2015-06-01
The aerobic Pseudomonas denitrificans is widely used for industrial and commercial vitamin B12 fermentation, due to its higher productivity compared to the anaerobic vitamin B12-producing microorganisms. This paper aimed to develop a cost-effective fermentation medium for industrial vitamin B12 production by P. denitrificans in 120,000-l fermenter. It was found that maltose syrup (a low-cost syrup from corn starch by means of enzymatic or acid hydrolysis) and corn steep liquor (CSL, a by-product of starch industry) were greatly applicable to vitamin B12 production by P. denitrificans. Under the optimal fermentation medium performed by response surface methodology, 198.27 ± 4.60 mg/l of vitamin B12 yield was obtained in 120,000-l fermenter, which was close to the fermentation with the refined sucrose (198.80 mg/l) and was obviously higher than that obtained under beet molasses utilization (181.75 mg/l). Therefore, maltose syrups and CSL were the efficient and economical substrates for industrial vitamin B12 fermentation by P. denitrificans.
Sweet sorghum bagasse and corn stover serving as substrates for producing sophorolipids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samad, Abdul; Zhang, Ji; Chen, Da
To make the process of producing sophorolipids by Candida bombicola truly sustainable, we investigated production of these biosurfactants on biomass hydrolysates. This study revealed: (1) yield of sophorolipds on bagasse hydrolysate decreased from 0.56 to 0.54 and to 0.37 g/g carbon source when yellow grease was dosed at 10, 40 and 60 g/L, respectively. In the same order, concentration of sophorolipids was 35.9, 41.9, and 39.3 g/L; (2) under similar conditions, sophorolipid yield was 0.12, 0.05 and 0.04 g/g carbon source when corn stover hydrolysate was mixed with soybean oil at 10, 20 and 40 g/L. Sophorolipid concentration was 11.6,more » 4.9, and 3.9 g/L for the three oil doses from low to high; and (3) when corn stover hydrolysate and yellow grease served as the substrates for cultivating the yeast in a fermentor, sophorolipid concentration reached 52.1 g/L. Upon further optimization, sophorolipids production from ligocellulose will be indeed sustainable.« less
Sweet sorghum bagasse and corn stover serving as substrates for producing sophorolipids.
Samad, Abdul; Zhang, Ji; Chen, Da; Chen, Xiaowen; Tucker, Melvin; Liang, Yanna
2017-03-01
To make the process of producing sophorolipids by Candida bombicola truly sustainable, we investigated production of these biosurfactants on biomass hydrolysates. This study revealed: (1) yield of sophorolipds on bagasse hydrolysate decreased from 0.56 to 0.54 and to 0.37 g/g carbon source when yellow grease was dosed at 10, 40 and 60 g/L, respectively. In the same order, concentration of sophorolipids was 35.9, 41.9, and 39.3 g/L; (2) under similar conditions, sophorolipid yield was 0.12, 0.05 and 0.04 g/g carbon source when corn stover hydrolysate was mixed with soybean oil at 10, 20 and 40 g/L. Sophorolipid concentration was 11.6, 4.9, and 3.9 g/L for the three oil doses from low to high; and (3) when corn stover hydrolysate and yellow grease served as the substrates for cultivating the yeast in a fermentor, sophorolipid concentration reached 52.1 g/L. Upon further optimization, sophorolipids production from ligocellulose will be indeed sustainable.
Nkemka, Valentine Nkongndem; Gilroyed, Brandon; Yanke, Jay; Gruninger, Robert; Vedres, Darrell; McAllister, Tim; Hao, Xiying
2015-06-01
Bioaugmentation with an anaerobic fungus, Piromyces rhizinflata YM600, was evaluated in an anaerobic two-stage system digesting corn silage and cattail. Comparable methane yields of 328.8±16.8mLg(-1)VS and 295.4±14.5mLg(-1)VS and hydrogen yields of 59.4±4.1mLg(-1)VS and 55.6±6.7mLg(-1)VS were obtained for unaugmented and bioaugmented corn silage, respectively. Similar CH4 yields of 101.0±4.8mLg(-1)VS and 104±19.1mLg(-1)VS and a low H2 yield (<1mLg(-1)VS) were obtained for unaugmented and bioaugmented cattail, respectively. However, bioaugmentation resulted in an initial increase in CH4 and H2 production rates and also increased volatile fatty acid degradation rate for both substrates. Our study demonstrates the potential of bioaugmentation with anaerobic fungus for improving the digestibility of lignocellulose substrates for biogas and biohydrogen production. Copyright © 2015 Crown Copyright. Published by Elsevier Ltd.. All rights reserved.
Compositions and methods for removing arsenic in water
Gadgil, Ashok Jagannth [El Cerrito, CA
2011-02-22
Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.
Zhu, Zhiguang; Sathitsuksanoh, Noppadon; Vinzant, Todd; Schell, Daniel J; McMillan, James D; Zhang, Y-H Percival
2009-07-01
Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only approximately 60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m(2)/g, nearly twice that of the DA-pretreated biomass (5.89 m(2)/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility. (c) 2009 Wiley Periodicals, Inc.
Mansouri, Tahereh; Golchin, Ahmad; Kouhestani, Hossein
2017-08-13
Soil pollution by arsenic increases the potential risk of arsenic entrance into the food chain. The usefulness of maleic anhydride- styrene- acrylic acid copolymer on the mobility and phytoavailability of arsenic was evaluated. Treatments were the concentrations of acrylic copolymer (0, 0.05, 0.10, and 0.20% w/w) and the concentrations of soil total arsenic (0, 6, 12, 24, 48, and 96 mg kg -1 ). Sodium arsenate was added in appropriate amounts to subsamples of an uncontaminated soil to give contaminated soils with different levels of arsenic. The contaminated soils were subjected to a greenhouse experiment using corn as the test crop. The results showed that contamination of soil by arsenic increased the concentrations of soil available arsenic, root and aerial parts arsenic. By the use of acrylic copolymer, the concentration of available arsenic in the soil and the accumulation of arsenic in the root and aerial parts of the corn plant decreased but the dry weights of the root and aerial parts increased significantly. When the concentration of soil total arsenic was 96 mg kg -1 , the application of copolymer at the concentration of 0.20% w/w reduced the concentrations of arsenic in soil, root, and aerial parts by 62.53, 43.65, and 37.00% respectively, indicating that application of acrylic copolymer immobilized arsenic in soils.
Aflatoxins, hepatocellular carcinoma and public health.
Magnussen, Arvin; Parsi, Mansour A
2013-03-14
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide, primarily affecting populations in the developing countries. Aflatoxin, a food contaminant produced by the fungi Aspergillus flavus and Aspergillus parasiticus, is a known human carcinogen that has been shown to be a causative agent in the pathogenesis of HCC. Aflatoxin can affect a wide range of food commodities including corns, oilseeds, spices, and tree nuts as well as milk, meat, and dried fruit. Many factors affect the growth of Aspergillus fungi and the level of aflatoxin contamination in food. Drought stress is one of the factors that increase susceptibility of plants to Aspergillus and thus aflatoxin contamination. A recent drought is thought to be responsible for finding of trace amounts of aflatoxin in some of the corn harvested in the United States. Although it's too soon to know whether aflatoxin will be a significant problem, since United States is the world's largest corn producer and exporter, this has raised alarm bells. Strict regulations and testing of finished foods and feeds in the United States should prevent a major health scare, and prevent human exposure to deleterious levels of aflatoxin. Unfortunately, such regulations and testing are not in place in many countries. The purpose of this editorial is to summarize the current knowledge on association of aflatoxin and HCC, encourage future research and draw attention to this global public health issue.
USDA-ARS?s Scientific Manuscript database
In the northeastern United States, the brown marmorated stink bug (BMSB), Halyomorpha halys, is an emerging invasive species of grave concern to agriculture. BMSB is a highly polyphagous plant pest but also has potentially negative impact to dairy industry through contamination of silage and potent...
USDA-ARS?s Scientific Manuscript database
Preharvest aflatoxin contamination of grain grown on the U.S. Southeastern Coast Plain is provoked and aggravated by both biotic and abiotic stress factors that influence infection by Asperigillus flavus. An array of arthropod species contribute to the dispersal of this fungus as they attack and fee...
Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime.
Zu, Shuai; Li, Wen-zhi; Zhang, Mingjian; Li, Zihong; Wang, Ziyu; Jameel, Hasan; Chang, Hou-min
2014-01-01
In this study, a two stage process was evaluated to increase the sugar recovery. Firstly, corn stover was treated with diluted hydrochloric acid to maximize the xylose yield, and then the residue was treated with lime to alter the lignin structure and swell the cellulose surface. The optimal condition was 120 °C and 40 min for diluted hydrochloric acid pretreatment followed by lime pretreatment at 60 °C for 12h with lime loading at 0.1 g/g of substrate. The glucose and xylose yield was 78.0% and 97.0%, respectively, with cellulase dosage at 5 FPU/g of substrate. The total glucose yield increased to 85.9% when the cellulase loading was increased to 10 FPU/g of substrate. This two stage process was effective due to the swelling of the internal surface, an increase in the porosity and a decrease in the degree of polymerization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Utilization of lignocellulosic polysaccharides
NASA Astrophysics Data System (ADS)
Fenske, John James
Lignocellulosic biomass represents a vast supply of fermentable carbohydrates and functional aromatic compounds. Conversion of lignocellulosics to ethanol and other useful products would be of widespread economical and environmental benefit. Better understanding of the behavior of different lignocellulosic feedstocks in fermentation protocols as well as catalytic activities involved in lignocellulosic depolymerization will further enhance the commercial viability of biomass-to-ethanol conversion processes. The relative toxicity of the combined non-xylose components in prehydrolysates derived from three different lignocellulosic biomass feedstocks (poplar, corn stover and switchgrass, or Panicum virgatum L.) was determined using a Pichia stipits fermentation assay. The relative toxicity of the prehydrolysates, in decreasing order, was poplar-derived prehydrolysates > switchgrass-derived prehydrolysates > corn stover-derived prehydrolysates. Ethanol yields averaged 74%, 83% and 88% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Volumetric ethanol productivities (g ethanol lsp{-1} hsp{-1}) averaged 32%, 70% and 102% of control values for poplar, switchgrass and corn stover prehydrolysates, respectively. Ethanol productivities correlated closely with acetate concentrations in the prehydrolysates; however, regression lines correlating acetate concentrations and ethanol productivities were found to be feedstock-dependent. Differences in the relative toxicity of xylose-rich prehydrolysates derived from woody and herbaceous feedstocks are likely due to the relative abundance of a variety of inhibitory compounds, e.g. acetate and aromatic compounds. Fourteen aromatic monomers present in prehydrolysates prepared from corn stover, switchgrass, and poplar were tentatively identified by comparison with published mass spectra. The concentrations of the aromatic monomers totaled 112, 141 and 247 mg(l)sp{-1} for corn stover, switchgrass and poplar prehydrolysates, respectively. The woody and herbaceous feedstocks differed in both amount and type of aromatic monomers. The cellulases of Trichoderma reesei are the most widely studied for use in the depolymerization of lignocellulosics. The Trichoderma cellobiohydrolases CBH1 and CBH2 are traditionally categorized as exo-acting cellulases. A simple individual-based model was created to explore the potential effects of native endo activity on substrate-velocity profiles. The model results indicate that an enzyme with a small amount of endo activity will show an apparent substrate inhibition as substrate levels are increased. Actual hydrolysis studies using affinity chromatography-purified CBH2 preparations from three laboratories indicate that CBH2 has native endo activity, while CBH1 does not.
Yao, Linxing; Lee, Show-Ling; Wang, Tong; de Moura, Juliana M L N; Johnson, Lawrence A
2012-09-01
Soy skim, a protein-rich liquid co-product from the aqueous extraction of soybeans, was co-fermented with corn to produce ethanol. Effects of soy skim addition level, type of skim, corn particle size, water-to-solids ratio, and urea on co-fermentation were determined. The addition of 20-100% skim increased the fermentation rate by 18-27% and shortened the fermentation time by 5-7h without affecting ethanol yield. Finely ground corn or high water-to-solids ratio (≥ 3.0) in the mash gave higher fermentation rates, but did not increase the ethanol yield. When the water was completely replaced with soy skim, the addition of urea became unnecessary. Soy skim retentate that was concentrated by nanofiltration increased fermentation rate by 25%. The highest level of skim addition resulted in a finished beer with 16% solids, 47% protein (dwb) containing 3.6% lysine, and an ethanol yield of 39 g/100g dry corn. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gerber, H
1986-01-01
In the official method for rodent filth in corn meal, filth and corn meal are separated in organic solvents, and particles are identified by the presence of hair and a mucous coating. The solvents are toxic, poor separation yields low recoveries, and fecal characteristics are rarely present on all fragments, especially on small particles. The official AOAC alkaline phosphatase test for mammalian feces, 44.181-44.184, has therefore been adapted to determine the presence of mammalian feces in corn meal. The enzyme cleaves phosphate radicals from a test indicator/substrate, phenolphthalein diphosphate. As free phenolphthalein accumulates, a pink-to-red color develops in the gelled test agar medium. In a collaborative study conducted to compare the proposed method with the official method for corn meal, 44.049, the proposed method yielded 45.5% higher recoveries than the official method. Repeatability and reproducibility for the official method were roughly 1.8 times more variable than for the proposed method. The method has been adopted official first action.
Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst.
Li, Wenzhi; Zhu, Yuanshuai; Lu, Yijuan; Liu, Qiyu; Guan, Shennan; Chang, Hou-Min; Jameel, Hasan; Ma, Longlong
2017-12-01
With the aim to enhance the direct conversion of raw corn stover into furfural, a promising approach was proposed employing a novel heterogeneous strong acid catalyst (SC-CaC t -700) in different solvents. The novel catalyst was characterized by elemental analysis, N 2 adsorption-desorption, FT-IR, XPS, TEM and SEM. The developed catalytic system demonstrated superior efficacy for furfural production from raw corn stover. The effects of reaction temperature, residence time, catalyst loading, substrate concentration and solvent were investigated and optimized. 93% furfural yield was obtained from 150mg corn stover at 200°C in 100min using 45mg catalyst in γ-valerolactone (GVL). In comparison, 51.5% furfural yield was achieved in aqueous media under the same conditions (200°C, 5h, and 45mg catalyst), which is of great industrial interest. Furfural was obtained from both hemicelluloses and cellulose in corn stover, which demonstrated a promising routine to make the full use of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strippable containment and decontamination coating composition and method of use
Moore, Robert C [Edgewood, NM; Tucker, Mark D [Albuquerque, NM; Jones, Joseph A [Albuquerque, NM
2009-04-07
A method for containing at least a portion of radioisotopes, radionuclides, heavy metal or combination thereof contaminating a substrate wherein a containment composition is applied to the substrate. The ingredients within the containment composition interact with the contaminants on the surface of the substrate until the containment composition has polymerized to a water insoluble form containing at least a portion of the contaminates enmeshed therein. The dried composition is removed from the contaminated surface removing with the composition at least a portion of the contaminate.
Ground water contamination and costs of pesticide restrictions in the southeastern coastal plain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielson, L.E.; Carlson, G.A.; Liu, S.
The project developed new methodology for estimating: (1) groundwater contamination potential (GWCP) in the Southeast Coastal Plain, and (2) the potential economic impacts of selected policies that restrict pesticide use. The potential for ground water contamination was estimated by use of a simple matrix for combining ratings for both soil leaching potential and pesticide leaching potential. Key soil variables included soil texture, soil acidity and organic matter content. Key pesticide characteristics included Koc, pesticide half-life, the rate of application and the fraction of the pesticide hitting the soil. Comparisons of pesticide use from various farmer and expert opinion surveys weremore » made for pesticide groups and for individual pesticide products. Methodology for merging the GWCP changes and lost benefits from selected herbicide cancellations was developed using corn production in the North Carolina Coastal Plain. Economic evaluations of pesticide cancellations for corn included national and Coastal Plain estimates for atrazine; metolachlor; dicamba; dicamba and atrazine; and dicamba, atrazine and metolachlor.« less
Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F
2013-04-03
The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.
Ghosh, Anuradha; Zurek, Ludek
2015-03-01
House flies are a common pest at food animal facilities, including cattle feedlots. Previously, house flies were shown to play an important role in the ecology of Escherichia coli O157:H7; house flies in cattle feedlots carried this zoonotic pathogen and were able to contaminate cattle through direct contact and/or by contamination of drinking water and feed. Because house flies aggregate in large numbers on fresh ( # 6 h) steam-flaked corn (FSFC) used in cattle feed, the aim of this study was to assess FSFC in a cattle feedlot as a potentially important site of fecal coliform contamination by house flies. House flies and FSFC samples were collected, homogenized, and processed for culturing of fecal coliforms on membrane fecal coliform agar. Selected isolates were identified by 16S rRNA gene sequencing, and representative isolates from each phylogenetic group were genotyped by pulsed-field gel electrophoresis. Fecal coliforms were undetectable in FSFC shortly (0 h) after flaking; however, in summer, after 4 to 6 h, the concentrations of fecal coliforms ranged from 1.9 × 10(3) to 3.7 × 10(4) CFU/g FSFC (mean, 1.1 ± 3.0 × 10(4) CFU/g). House flies from FSFC carried between 7.6 × 10(2) and 4.1 × 10(6) CFU of fecal coliforms per fly (mean, 6.0 ± 2.3 × 10(5) CFU per fly). Fecal coliforms were represented by E. coli (85.1%), Klebsiella spp. (10.6%), and Citrobacter spp. (4.3%). Pulsed-field gel electrophoresis demonstrated clonal matches of E. coli and Klebsiella spp. between house flies and FSFC. In contrast, in winter and in the absence of house flies, the contamination of corn by fecal coliforms was significantly (∼10-fold) lower. These results indicate that FSFC is an important site for bacterial contamination by flies and possible exchange of E. coli and other bacteria among house flies. Further research is needed to evaluate the potential use of screens or blowers to limit the access of house flies to FSFC and therefore their effectiveness in preventing bacterial contamination.
Chakraborty, Panchali; Muthukumarappan, Kasiviswanathan; Gibbons, William R.
2012-01-01
The research described in this present study was part of a larger effort focused on developing a dual substrate, dual fermentation process to produce Polyhydroxyalkanoate (PHA). The focus of this study was developing and optimizing a strategy for feeding a mixture of SCFAs (simulated ARF) and maximizing PHA production in a cost-effective way. Three different feeding strategies were examined in this study. The substrate evaluated in this study for the growth phase of R. eutropha was condensed corn solubles, a low-value byproduct of the dry-mill, corn ethanol industry. The culture was grown to high cell densities in nitrogen-supplemented condensed corn solubles media in 5 L bioreactors. The overall growth rate of R. eutropha was 0.2 h−1. The 20 mL ARF feeding every 3 h from 48 to 109 h strategy gave the best results in terms of PHA production. PHA productivity (0.0697 g L−1 h−1), PHA concentration (8.37 g L−1), and PHA content (39.52%) were the highest when ARF was fed every 3 h for 61 h. This study proved that condensed corn solubles can be potentially used as a growth medium to boost PHA production by R. eutropha thus reducing the overall cost of biopolymer production. PMID:23118512
Rios-Iribe, Erika Y; Hernández-Calderón, Oscar M; Reyes-Moreno, C; Contreras-Andrade, I; Flores-Cotera, Luis B; Escamilla-Silva, Eleazar M
2013-01-01
A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H-984) grown in varying ratios of glucose-corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first-order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3 ) in G. fujikuroi. © 2013 American Institute of Chemical Engineers.
Dunière, Lysiane; Gleizal, Audrey; Chaucheyras-Durand, Frédérique; Chevallier, Isabelle; Thévenot-Sergentet, Delphine
2011-01-01
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for human illness. Ruminants are recognized as a major reservoir of STEC, and animal feeds, such as silages, have been pointed out as a possible vehicle for the spread of STEC. The present study aimed to monitor the fate of pathogenic E. coli O26 strains in corn material experimentally inoculated (105 CFU/g) during ensiling, just after silo opening, and after several days of aerobic exposure. The addition of 3 bacterial inoculants, Propionibacterium sp., Lactobacillus buchneri, and Leuconostoc mesenteroides (106 CFU/g), was evaluated for their abilities to control these pathogens. The results showed that E. coli O26 could not survive in corn silage 5 days postensiling, and the 3 inoculants tested did not modify the fate of pathogen survival during ensiling. In the case of direct contamination at silo opening, E. coli O26 could be totally eradicated from corn silage previously inoculated with Leuconostoc mesenteroides. The combination of proper ensiling techniques and the utilization of selected bacterial inoculants appears to represent a good strategy to guarantee nutritional qualities of cattle feed while at the same time limiting the entry of pathogenic E. coli into the epidemiological cycle to improve the microbial safety of the food chain. PMID:21984243
Transformation of corn plant residues in loamy and sandy substrates
NASA Astrophysics Data System (ADS)
Mal'tseva, A. N.; Zolotareva, B. N.; Pinskii, D. L.
2014-05-01
The mineralization and humification dynamics of corn plant residues in loamy and sandy substrates have been studied under laboratory conditions. It has been shown that the dynamics are determined by the undulating development laws of the microbial community under constant temperature and moisture conditions. At the same time, the intensity and final results of the processes significantly differ depending on the composition and properties of the mineral substrate. The loss of Corg during the mineralization and the content of newly formed humic substances reached the maximum values a month after the beginning of the experiment. The mineralization is more intensive in sand at the early stages, and the humification is more active in loam throughout the incubation period. The loamy substrate has better protective properties compared to the sand; therefore, it favors the accumulation of significant amounts of fulvic acids (FAs), along with humic acids (HAs), and causes the relative fulvatization of the humic substances. It has been found using densimetric fractionation and Fourier IR spectroscopy that the different mineralogy of the fractions results in differences in the chemical composition of the formed mineral-organic compounds of newly formed humic substances, mainly due to carboxyl and nitrogen-containing groups. The similarity of the humification products in the heavy fractions of the loamy and sandy substrates has been revealed.
Aflatoxin effect on erythrocyte profile and histopathology of broilers given different additives
NASA Astrophysics Data System (ADS)
Karimy, M. F.; Sutrisno, B.; Agus, A.; Suryani, A. E.; Istiqomah, L.; Damayanti, E.
2017-12-01
The aim of this study was to evaluate erythrocyte profile and microscopic changes effect of AF induces by low level (57.18 ppb) and chronic exposure (34 days) with administration of additive (Lactobacillus plantarum G7 and methionine). Aflatoxin-contaminated corn was prepared by inoculate Aspergillus flavus FNCC 6002 on corn. Total number of 576 broiler Lohman strain (MB202) unsexed DOC were allocated completely randomized into four treatments and 12 replicates, with 12 broiler chicks each. The treatments as follows: T1 = aflatoxin-contaminated diet, T2 = aflatoxin-contaminated diet + 1% of LAB (w/w), T3 = aflatoxin-contaminated diet + 0.8% of methionine (w/w), and T4 = aflatoxin-contaminated diet + 1% of LAB + 0.8% of methionine (w/w). The effect of treatments was evaluated using ANOVA and the difference among mean treatments were analyzed using DMRT. The result showed that administration of additives had no significant effect (P>0.05) on erythrocyte profile, liver, and bursa of Fabricius. The dose of additive in each treatment (T2, T3, T4) were insufficient to reduce adverse effect of chronic aflatoxicosis. It was concluded that the LAB dose for binding AF (57.18%) should be evaluated and the dose for methionine should be reduced for chronic treatment of aflatoxicosis.
Zhang, Liping; Wang, Jiansheng; Zhang, Chulong; Wang, Qiaomei
2013-02-01
Fusarium species are common fungal contaminants of maize and a number of them can produce mycotoxin fumonisins. China is one of the largest maize producers in the world. This study investigated the contamination of maize samples from three areas in eastern China by Fusarium and fumonisin-producing fungi as well as their fumonisin-producing potential. A total of 22 Fusarium strains were isolated, 19 of which were able to produce fumonisin. Among the 19 strains, 16 belonged to F. verticillioides, two to F. subglutinans and one to F. proliferatum. The majority (17/19) of the fumonisin-forming strains were high FB(1) producers, which is a potential health risk for the population in these areas. Fusarium contamination in samples from the mideastern area was the most serious (11 Fusarium strains, with nine producing fumonisin, isolated from 24 samples), followed by the northeastern area (nine Fusarium strains, with all nine producing fumonisin, isolated from 21 samples) and the southeastern area (two Fusarium strains, with one producing fumonisin, isolated from 19 samples). Although the overall levels of FBs and contamination by fumonisin-producing fungi in corn samples were not serious, the contaminating Fusarium strains possessed fairly strong toxicogenic ability and potential risk for food safety. Copyright © 2012 Society of Chemical Industry.
Kabel, Mirjam A.; Yeoman, Carl J.; Han, Yejun; Dodd, Dylan; Abbas, Charles A.; de Bont, Jan A. M.; Morrison, Mark; Cann, Isaac K. O.; Mackie, Roderick I.
2011-01-01
We measured expression and used biochemical characterization of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate to gain insight into the carbohydrate esterase activities of this hemicellulolytic rumen bacterium. The P. ruminicola 23 genome contains 16 genes predicted to encode carbohydrate esterase activity, and based on microarray data, four of these were upregulated >2-fold at the transcriptional level during growth on an ester-enriched oligosaccharide (XOSFA,Ac) from corn relative to a nonesterified fraction of corn oligosaccharides (AXOS). Four of the 16 esterases (Xyn10D-Fae1A, Axe1-6A, AxeA1, and Axe7A), including the two most highly induced esterases (Xyn10D-Fae1A and Axe1-6A), were heterologously expressed in Escherichia coli, purified, and biochemically characterized. All four enzymes showed the highest activity at physiologically relevant pH (6 to 7) and temperature (30 to 40°C) ranges. The P. ruminicola 23 Xyn10D-Fae1A (a carbohydrate esterase [CE] family 1 enzyme) released ferulic acid from methylferulate, wheat bran, corn fiber, and XOSFA,Ac, a corn fiber-derived substrate enriched in O-acetyl and ferulic acid esters, but exhibited negligible activity on sugar acetates. As expected, the P. ruminicola Axe1-6A enzyme, which was predicted to possess two distinct esterase family domains (CE1 and CE6), released ferulic acid from the same substrates as Xyn10D-Fae1 and was also able to cleave O-acetyl ester bonds from various acetylated oligosaccharides (AcXOS). The P. ruminicola 23 AxeA1, which is not assigned to a CE family, and Axe7A (CE7) were found to be acetyl esterases that had activity toward a broad range of mostly nonpolymeric acetylated substrates along with AcXOS. All enzymes were inhibited by the proximal location of other side groups like 4-O-methylglucuronic acid, ferulic acid, or acetyl groups. The unique diversity of carbohydrate esterases in P. ruminicola 23 likely gives it the ability to hydrolyze substituents on the xylan backbone and enhances its capacity to efficiently degrade hemicellulose. PMID:21742923
Sun, Guiju; Wang, Shaokang; Hu, Xu; Su, Jianjia; Huang, Tianren; Yu, Jiahua; Tang, Lili; Gao, Weimin; Wang, Jia-Sheng
2007-02-01
Fumonisin B1 (FB1) is reportedly the causative agent of several animal mycotoxicoses and has etiologically been linked to human oesophageal and liver cancer in certain areas of South Africa and China. To study a possible relationship between exposure to FB1 and human cancer risk, the current status of FB1 contamination in food samples in Huaian and Fusui, where incidences of oesophageal and liver cancer are amongst the highest in China, was investigated. A total of 259 corn samples were collected from individual households in five villages of different townships in Huaian during December 2001 and December 2002, and in four villages of different townships in Fusui during May 2001 and May 2002. Corn samples were also collected from individual households in two villages in Huantai, an area with low incidences of both cancers. Enzyme-linked immunosorbent assays (ELISA) and immunoaffinity-HPLC methods were used for FB1 analysis. In corn samples from Huaian, FB1 was detectable in 95.7% (112/117) of the samples, with an average of 2.84 mg kg-1 (range 0.1-25.5 mg kg-1). FB1 was detected in 83.0% (78/94) of the Fusui samples, with an average of 1.27 mg kg-1 (range 0.1-14.9 mg kg-1), and in 83.3% (40/48) of Huantai samples, with an average of 0.65 mg kg-1 ranging from 0.1 to 5.7 mg kg-1. The level of FB1 in corn samples from Huaian was significantly higher than from Huantai (P < 0.001). In addition, 47 of 112 (42.0%) positive Huaian samples had FB1 level greater than 2.0 mg kg-1, which was significantly higher than 10.0% (4/40) of Huantai samples (P < 0.001). Furthermore, variations were found between samples collected in different years and different villages. The high contamination rates of FB1 found in food from these areas, along with previous reports, suggest a possible contributing role of FB1 in human esophageal- and hepato-carcinogenesis.
USDA-ARS?s Scientific Manuscript database
Brown marmorated stink bug (BMSB), Halyomorpha halys, is an emerging invasive species of grave concern to agriculture as a polyphagous plant pest with potential negative impact on the dairy industry. We sought to determine the risk of including BMSB contaminated silage in lactating dairy cow ratio...
USDA-ARS?s Scientific Manuscript database
Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. ...
High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol.
Varga, Enikõ; Klinke, Helene B; Réczey, Kati; Thomsen, Anne Belinda
2004-12-05
In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serate, Jose; Xie, Dan; Pohlmann, Edward
Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics duringmore » the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. In conclusion, our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate.« less
Serate, Jose; Xie, Dan; Pohlmann, Edward; ...
2015-11-14
Microbial conversion of lignocellulosic feedstocks into biofuels remains an attractive means to produce sustainable energy. It is essential to produce lignocellulosic hydrolysates in a consistent manner in order to study microbial performance in different feedstock hydrolysates. Because of the potential to introduce microbial contamination from the untreated biomass or at various points during the process, it can be difficult to control sterility during hydrolysate production. In this study, we compared hydrolysates produced from AFEX-pretreated corn stover and switchgrass using two different methods to control contamination: either by autoclaving the pretreated feedstocks prior to enzymatic hydrolysis, or by introducing antibiotics duringmore » the hydrolysis of non-autoclaved feedstocks. We then performed extensive chemical analysis, chemical genomics, and comparative fermentations to evaluate any differences between these two different methods used for producing corn stover and switchgrass hydrolysates. Autoclaving the pretreated feedstocks could eliminate the contamination for a variety of feedstocks, whereas the antibiotic gentamicin was unable to control contamination consistently during hydrolysis. Compared to the addition of gentamicin, autoclaving of biomass before hydrolysis had a minimal effect on mineral concentrations, and showed no significant effect on the two major sugars (glucose and xylose) found in these hydrolysates. However, autoclaving elevated the concentration of some furanic and phenolic compounds. Chemical genomics analyses using Saccharomyces cerevisiae strains indicated a high correlation between the AFEX-pretreated hydrolysates produced using these two methods within the same feedstock, indicating minimal differences between the autoclaving and antibiotic methods. Comparative fermentations with S. cerevisiae and Zymomonas mobilis also showed that autoclaving the AFEX-pretreated feedstocks had no significant effects on microbial performance in these hydrolysates. In conclusion, our results showed that autoclaving the pretreated feedstocks offered advantages over the addition of antibiotics for hydrolysate production. The autoclaving method produced a more consistent quality of hydrolysate.« less
Torres, P; Guzmán-Ortiz, M; Ramírez-Wong, B
2001-06-01
Naturally aflatoxin-contaminated corn (Zea mays L.) was made into tortillas, tortilla chips, and corn chips by the traditional and commercial alkaline cooking processes. The traditional nixtamalization (alkaline-cooking) process involved cooking and steeping the corn, whereas the commercial nixtamalization process only steeps the corn in a hot alkaline solution (initially boiling). A pilot plant that includes the cooker, stone grinder, celorio cutter, and oven was used for the experiments. The traditional process eliminated 51.7, 84.5, and 78.8% of the aflatoxins content in tortilla, tortilla chips, and corn chips, respectively. The commercial process was less effective: it removed 29.5, 71.2, and 71.2 of the aflatoxin in the same products. Intermediate and final products did not reach a high enough pH to allow permanent aflatoxin reduction during thermal processing. The cooking or steeping liquor (nejayote) is the only component of the system with a sufficiently high pH (10.2-10.7) to allow modification and detoxification of aflatoxins present in the corn grain. The importance of removal of tip, pericarp, and germ during nixtamalization for aflatoxin reduction in tortilla is evident.
Suo, Yukai; Fu, Hongxin; Ren, Mengmeng; Yang, Xitong; Liao, Zhengping; Wang, Jufang
2018-02-01
Lignocellulosic biomass is the most abundant and renewable substrate for biological fermentation, but the inhibitors present in the lignocellulosic hydrolysates could severely inhibit the cell growth and productivity of industrial strains. This study confirmed that overexpressing of native groESL in Clostridium tyrobutyricum could significantly improve its tolerance to lignocellulosic hydrolysate-derived inhibitors, especially for phenolic compounds. Consequently, ATCC 25755/groESL showed a better performance in butyric acid fermentation with hydrolysates of corn cob, corn straw, rice straw, wheat straw, soybean hull and soybean straw, respectively. When corn straw and rice straw hydrolysates, which showed strong toxicity to C. tyrobutyricum, were used as the substrates, 29.6 g/L and 30.1 g/L butyric acid were obtained in batch fermentation, increased by 26.5% and 19.4% as compared with the wild-type strain, respectively. And more importantly, the butyric acid productivity reached 0.31 g/L·h (vs. 0.20-0.21 g/L·h for the wild-type strain) due to the shortened lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermogravimetric kinetics of corn stalk pretreated by oleaginous fungi Cunninghamella echinulata.
Wu, Jianguo; Gao, Shi; Wan, Jilin; Zeng, Yelin; Ma, Fuying; Zhang, Xiaoyu
2011-04-01
The thermogravimetric and composition of corn stalk pretreated by oleaginous fungi Cunninghamella echinulata had been studied in this paper. Results indicated that pretreatment by oleaginous fungi C. echinulata could decrease the activation energy and make the pyrolysis more efficient and energy-saving. By bio-pretreatment, the contents of elements agreed with the weight loss, sugar content, and oil contents, especially the sulfur content was greatly decreased, greatly eliminating the inventory of gas contamination such as the emission of SOx and making the pyrolysis more environmentally friendly. Therefore, corn stalk with sugar pretreated by oleaginous fungi C. echinulata should be a good pyrolysis material to obtain high quality bio-oil. Copyright © 2011 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Introduction: Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs). FB1 inhibits the enzyme ceramide synthase in de novo sphingolipid biosynthes...
In vivo toxicity assessment of aflatoxin B1-contaminated corn after ozone degradation.
Luo, Xiaohu; Li, Ke; Xing, Jiali; Qi, Lijun; Yang, Ming; Wang, Ren; Wang, Li; Li, Yanan; Chen, Zhengxing
2018-02-01
Corn is an important food and feedstuff in China and worldwide. The problems caused by aflatoxin B 1 -contaminated corn (ACC) are of great concern. Our previous studies have demonstrated that ozone can effectively degrade AFB 1 in corn, prompting us to investigate the in vivo toxicity of treated ACC. In this study, 35 Kunming mice were used to assess the in vivo toxicity of ozone treated ACC. Results indicated that compared to mice fed with basal feedstuff (provided by the Shanghai SLAC Laboratory), those fed with ACC have significantly decreased mean weight as well as total protein (TP), albumin (ALB), and globulin (GLB) contents (p < 0.05). On the other hand, the liver and kidney/body weight ratio as well as the serum alanine transaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) levels significantly increased (p < 0.05). Obvious histopathological changes were found in the liver and kidney. When mice were fed with the ozone-treated ACC, no significant differences were observed in the mean weight, the liver and kidney/body weight ratio and in the major serum indexes ALT, TP, ALB, and GLB (p > 0.05). However, AST and ALP significantly increased (p < 0.05), and slight histopathological changes were found in liver tissues. This study indicated that ACC may lead to significant changes in various physiological characteristics and biochemical indexes in liver and kidney tissues, but ozone treatment of ACC could significantly reduce these changes.
Ezeji, Thaddeus C; Qureshi, Nasib; Blaschek, Hans P
2007-12-01
A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l(-1)) in a batch process resulted in the production of 18.4 g l(-1) ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l(-1) ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l(-1) ABE was produced compared to 18.6 g l(-1) (control). In this integrated system, 225.8 g l(-1) SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l(-1) glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation.
Zampa, Andrea; Silvi, Stefania; Fabiani, Roberto; Morozzi, Guido; Orpianesi, Carla; Cresci, Alberto
2004-02-01
The main source of carbon in the human large intestine comes from carbohydrates like starches and oligosaccharides which remain unchanged by gastric digestion. These polysaccharides are metabolised in the colon by saccharolytic bacteria whose composition is dependent upon the substrate availability. Among the metabolites produced, the short-chain fatty acids (SCFA) are important for colon function and to prevent diseases. In particular, butyrate affects several cellular functions (proliferation, membrane synthesis, sodium absorption), and it has been shown to be protective against colorectal cancer. In addition, faecal bacteria are responsible for the conversion of primary bile acids (BA) to secondary BA, which are considered tumor promoters. In this study we investigated the in vitro effect of different substrates (CrystaLean starch, xylo-oligosaccharides, corn starch) supplied to human faecal micro-flora, on the SCFA production, on the bowel micro-flora composition and on the primary BA conversion rate. In addition, with corn starch as substrate, we considered the effect of enriching normal human faecal micro-flora with lactobacilli and bifidobacteria, on the above reported parameters.
A Simple and Rapid ELISA for Detecting Aflatoxin Contamination in Corn
ERIC Educational Resources Information Center
Weck, Robert; Van Putte, Robb
2006-01-01
Learn how to use biotechnology to investigate a serious agricultural problem. The exercise presented here provides an inexpensive way to introduce students to ELISA techniques in an economically and agriculturally important context.
Bowers, Erin; Hellmich, Richard; Munkvold, Gary
2014-07-09
Field trials were conducted from 2007 to 2010 to compare grain fumonisin levels among non-Bt maize hybrids and Bt hybrids with transgenic protection against manual infestations of European corn borer (ECB) and Western bean cutworm (WBC). HPLC and ELISA were used to measure fumonisin levels. Results of the methods were highly correlated, but ELISA estimates were higher. Bt hybrids experienced less insect injury, Fusarium ear rot, and fumonisin contamination compared to non-Bt hybrids. WBC infestation increased fumonisin content compared to natural infestation in non-Bt and hybrids expressing Cry1Ab protein in five of eight possible comparisons; in Cry1F hybrids, WBC did not impact fumonisins. These results indicate that WBC is capable of increasing fumonisin levels in maize. Under WBC infestation, Cry1F mitigated this risk more consistently than Cry1Ab or non-Bt hybrids. Transgenically expressed Bt proteins active against multiple lepidopteran pests can provide broad, consistent reductions in the risk of fumonisin contamination.
Recent research on fumonisins: a review.
Scott, P M
2012-01-01
Fumonisins are well known mycotoxins produced by Fusarium verticillioides, F. proliferatum and other Fusarium species. Many new fumonisins and fumonisin-like compounds have been detected by mass spectrometry in cultures of F. verticillioides. Recently, fumonisins B(2) and B(4) were produced by Aspergillus niger isolated from coffee and fumonisin B(2) in A. niger from grapes. Fumonisin B(2) was itself detected in coffee beans, wine and beer, adding to the list of foodstuffs and feedstuffs other than corn (maize) and sorghum in which fumonisins have been found in recent years. Fumonisin B(1) (FB(1)) can bind to proteins (PB FB(1)) and to other matrix components during food processing involving heat. The occurrence of bound fumonisins in processed corn foods is common. Another type of binding (or association) relates to observed instability of fumonisins in rice flour, corn starch and corn meal at room temperature; this can affect the immunoaffinity column clean-up procedure in analysis of naturally contaminated starch-containing corn foods for fumonisins. The occurrence of N-fatty acylated fumonisin derivatives in retail fried corn foods has also been demonstrated. Bioaccessibility of free FB(1) and total bound FB(1) (TB FB(1)) present in corn flakes has been estimated by in vitro digestion experiments. Intentional binding of fumonisins to cholestyramine has been demonstrated in vivo and is a potential means of detoxification of animal feed.
de Fombelle, A; Veiga, L; Drogoul, C; Julliand, V
2004-12-01
This trial was conducted to determine the extent of prececal starch digestibility depending on the botanical origin of starch and on diet characteristics (i.e., composition and feeding pattern). The prececal disappearance of six substrates (oats, barley, corn, horse bean, potato, and wheat) was measured in four cannulated horses fed (as-fed basis) 11.8 g/kg BW of a high-fiber (HF) or high-starch (HS) pelleted feed and 10.0 g/kg BW of meadow hay using the mobile bag technique (MBT). The daily feeding pattern was either three meals (two meals of pellets and one meal of hay) or five meals (three meals of pellets and two meals of hay). The experimental procedure was a 2 x 2 factorial arrangement tested in a Latin square design. After 2 wk of adaptation to the diet, collections were made on 5 d. Thirty nylon bags, composed of five bags of each substrate, were intubated to each horse during the ingestion of the morning meal. Bags were collected in the cecum, using a magnet, at 9 h postintubation. In spite of strong interindividual differences, approximately 80% of the intubated bags were collected. On average, the mean retention time of the bags was 6.2 h (+/-0.17). Regardless of the feeding pattern, the transit of the bags was faster when the fiber content of the diet was higher (P = 0.003). Likewise, regardless of the meal composition, transit was also faster when the ration was split into five daily meals (P = 0.001). The DM disappearance, corrected with particulate losses (DMD(c)), differed depending on the substrate tested (33.5, 57.1, 63.8, 67.7, 78.6, and 86.2% for potato, horse bean, oats, barley, corn, and wheat, respectively; P = 0.001). The DMD(c) of corn, barley, and potato was higher when HS was fed (P = 0.020); regardless of the substrate, DMD(c) was higher with five daily meals (P = 0.001). The starch disappearance (StarchD(c)) was different depending on the substrate (P = 0.001; 36.1, 71.2, 86.6, 89.2, 99.0, and 99.7% for potato, horse bean, barley, corn, wheat, and oats, respectively). Whatever the substrate, StarchD(c) was higher when HS was fed (P = 0.007), but it was not affected by the feeding pattern of the diet. Although passage rate was modified and feed intake was different, the botanical origin of starch was the main factor that affected prececal starch disappearance in horses.
Chi, Zhe; Wang, Ji-Ming; Chi, Zhen-Ming; Ye, Fang
2010-01-01
In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30 degrees C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80 degrees C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.
Production of ethanol and xylitol from corn cobs by yeasts.
Latif, F; Rajoka, M I
2001-03-01
Saccharomyces cerevisiae and Candida tropicalis were used separately and as co-culture for simultaneous saccharification and fermentation (SSF) of 5-20% (w/v) dry corn cobs. A maximal ethanol concentration of 27, 23, 21 g/l (w/v) from 200 g/l (w/v) dry corn cobs was obtained by S. cerevisiae, C. tropicalis and the co-culture, respectively, after 96 h of fermentation. However, theoretical yields of 82%, 71% and 63% were observed from 50 g/l dry corn cobs for the above cultures, respectively. Maximal xylitol concentration of 21, 20 and 15 g/l from 200 g/l (w/v) dry corn cobs was obtained by C. tropicalis, co-culture, and S. cerevisiae, respectively. Maximum theoretical yields of 79.0%, 77.0% and 58% were observed from 50 g/l of corn cobs, respectively. The volumetric productivities for ethanol and xylitol increased with the increase in substrate concentration, whereas, yield decreased. Glycerol and acetic acid were formed as minor by-products. S. cerevisiae and C. tropicalis resulted in better product yields (0.42 and 0.36 g/g) for ethanol and (0.52 and 0.71 g/g) for xylitol, respectively, whereas, the co-culture showed moderate level of ethanol (0.32 g/g) and almost maximal levels of xylitol (0.69 g/g).
Castellari, Claudia C; Cendoya, María G; Marcos Valle, Facundo J; Barrera, Viviana; Pacin, Ana M
2015-01-01
In order to determine the behavior of mycotoxin-producing fungal populations linked with silobags stored corn grains with a moisture content greater at the recommended as safe, 270 samples taken in three times (beginning, 90 days, final) over a five month period of storage were evaluated. The fungal biota was quantified and identified and the contamination with fumonisin and aflatoxin was determined. Extrinsic factors (environment), intrinsic factors (grains) and technological factors (location of the grains in the profile of silobag) were taken into account to evaluate the presence and quantity of total and mycotoxigenic fungal populations. The pH of grains and O2 levels were significantly reduced after five months, while CO2 concentration increased in the same period. The total counts of mycobiota were significantly higher in grains located in the top layer of silobag. Mycotoxigenic species of Fusarium, Aspergillus, Penicillium and Eurotium were identified. The frequency of isolation of Fusarium verticillioides decreased at the end of storage and Aspergillus flavus was isolated only at the beginning of storage. The counts of the Penicillium spp. and Eurotium spp. were increased at the end of storage. Fumonisin contamination was found in all the samples (100%) with maximum levels of 5.707mg/kg whereas aflatoxin contaminated only 40% with maximum levels of 0.0008mg/kg. The environmental and substrate conditions generated during the storage limited the development of mycotoxigenic fungi and mycotoxin production. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Correlation of Zn2+ content with aflatoxin content of corn.
Failla, L J; Lynn, D; Niehaus, W G
1986-01-01
Forty-nine samples from the 1983 Virginia corn harvest were analyzed for aflatoxin, zinc, copper, iron, and manganese content. Values (mean +/- standard deviation) were as follows: aflatoxin, 117 +/- 360 micrograms/kg; zinc, 22.5 +/- 3.4 mg/kg; copper, 2.27 +/- 0.56 mg/kg; iron, 40.8 +/- 18.7 mg/kg; and manganese, 5.1 +/- 1.1 mg/kg. Aflatoxin levels positively correlated with zinc (Spearman correlation coefficient, 0.385; P less than 0.006) and copper levels (Spearman correlation coefficient, 0.573; P less than 0.0001). Based on biochemical data in the literature, we believe that the correlation with zinc is important and that there may be a cause-and-effect relationship between zinc levels in corn and aflatoxin levels which are produced upon infection with Aspergillus flavus or A. parasiticus. Control of aflatoxin contamination in field corn by decreasing the zinc levels may be feasible, but no methods to decrease zinc levels are currently available. PMID:3729406
Kulisek, E S; Hazebroek, J P
2000-01-01
The Associatian of Official Analytical Chemists approved method for quantification of fumonisin B(1) (FB(1)) in corn meal or corn-based food products includes extraction into methanol (MeOH)/water (3:1, v/v). Disposal of the extraction medium can pose safety and environmental problems. To secure a rapid and inexpensive screen for FB(1) contamination, a sensitive competitive ELISA using a rabbit polyclonal antibody was developed. This assay was used in a comparative study measuring the extraction efficiency of FB(1) in aqueous or organic solvent buffers using 16 field corn samples. An aqueous phosphate buffer was found to be suitable for extracting FB(1), thus eliminating the need for organic solvents. HPLC and ELISA determinations compared well in fortified samples at known concentrations between 1 and 50 microg/mL of extract. Overestimation at levels >50 microg/mL were common. The characteristics and application of the ELISA for screening purposes are discussed.
Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.
Bijelic-Donova, Jasmina; Flett, Andrew; Lassila, Lippo V J; Vallittu, Pekka K
2018-05-31
This in vitro study aimed to evaluate the shear bond strength (SBS) of particulate filler composite (PFC) to saliva- or water-contaminated fiber-reinforced composite (FRC). One type of FRC substrate with semi-interpenetrating polymer matrix (semi-IPN) (everStick C&B) was used in this investigation. A microhybrid PFC (Filtek Z250) substrate served as control. Freshly cured PFC and FRC substrates were first subjected to different contamination and surface cleaning treatments, then the microhybrid PFC restorative material (Filtek Z250) was built up on the substrates in 2-mm increments and light cured. Uncontaminated and saliva- or water-contaminated substrate surfaces were either left untreated or were cleaned via phosphoric acid etching or water spray accompanied with or without adhesive composite application prior applying the adherent PFC material. SBS was evaluated after thermocycling the specimens (6000 cycles, 5°C and 55°C). Three-way ANOVA showed that both the surface contamination and the surface treatment signficantly affected the bond strength (p < 0.05). Saliva contamination reduced the SBS more than did the water contamination. SBS loss after saliva contamination was 73.7% and 31.3% for PFC and FRC, respectively. After water contamination, SBS loss was 17.2% and 13.3% for PFC and FRC, respectively. The type of surface treatment was significant for PFC (p < 0.05), but not for FRC (p = 0.572). Upon contamination of freshly cured PFC or semi-IPN FRC, surfaces should be re-prepared via phosphoric acid etching, water cleaning, drying, and application of adhesive composite in order to recover optimal bond strength.
Harlow, Brittany E; Lawrence, Laurie M; Harris, Patricia A; Aiken, Glen E; Flythe, Michael D
2017-01-01
Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P < 0.0001). Specifically, addition of either L. reuteri or L. acidophilus was most effective at mitigating pH decline with both corn and wheat fermentation, in which the greatest acidification occurred (P < 0.05). Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P < 0.0001). In oat fermentations, L. acidophilus and L. reuteri inhibited pH decline and increased lactate-utilizers while decreasing amylolytics (P < 0.0001). For all substrates, L. reuteri additions (regardless of viability) had the lowest number of GPC and the highest number of lactobacilli and lactate-utilizers (P < 0.05). There were no additive effects when lactobacilli were mixed. Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not decrease total (24 h) starch utilization in any case. These results indicate that exogenous lactobacilli can impact the microbial community and pH of cereal grain fermentations by equine fecal microflora ex vivo. Additionally, dead (autoclaved) exogenous lactobacilli had similar effects as live lactobacilli on fermentation. This latter result indicates that the mechanism by which lactobacilli impact other amylolytic bacteria is not simple resource competition.
Harlow, Brittany E.; Lawrence, Laurie M.; Harris, Patricia A.; Aiken, Glen E.
2017-01-01
Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P < 0.0001). Specifically, addition of either L. reuteri or L. acidophilus was most effective at mitigating pH decline with both corn and wheat fermentation, in which the greatest acidification occurred (P < 0.05). Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P < 0.0001). In oat fermentations, L. acidophilus and L. reuteri inhibited pH decline and increased lactate-utilizers while decreasing amylolytics (P < 0.0001). For all substrates, L. reuteri additions (regardless of viability) had the lowest number of GPC and the highest number of lactobacilli and lactate-utilizers (P < 0.05). There were no additive effects when lactobacilli were mixed. Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not decrease total (24 h) starch utilization in any case. These results indicate that exogenous lactobacilli can impact the microbial community and pH of cereal grain fermentations by equine fecal microflora ex vivo. Additionally, dead (autoclaved) exogenous lactobacilli had similar effects as live lactobacilli on fermentation. This latter result indicates that the mechanism by which lactobacilli impact other amylolytic bacteria is not simple resource competition. PMID:28358885
Method of transferring a thin crystalline semiconductor layer
Nastasi, Michael A [Sante Fe, NM; Shao, Lin [Los Alamos, NM; Theodore, N David [Mesa, AZ
2006-12-26
A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.
Burow, Karen R.; Shelton, Jennifer L.; Dubrovsky, Neil M.
1998-01-01
The processes that affect nitrate and pesticide occurrence may be better understood by relating ground-water quality to natural and human factors in the context of distinct, regionally extensive, land- use settings. This study assesses nitrate and pesticide occurrence in ground water beneath three agricultural land-use settings in the eastern San Joaquin Valley, California. Water samples were collected from 60 domestic wells in vineyard, almond, and a crop grouping of corn, alfalfa, and vegetable land-use settings. Each well was sampled once during 1993?1995. This study is one element of the U.S. Geological Survey?s National Water-Quality Assessment Program, which is designed to assess the status of, and trends in, the quality of the nation?s ground- and surface-water resources and to link the status and trends with an understanding of the natural and human factors that affect the quality of water. The concentrations and occurrence of nitrate and pesticides in ground-water samples from domestic wells in the eastern alluvial fan physiographic region were related to differences in chemical applica- tions and to the physical and biogeochemical processes that charac- terize each of the three land-use settings. Ground water beneath the vineyard and almond land-use settings on the coarse-grained, upper and middle parts of the alluvial fans is more vulnerable to nonpoint- source agricultural contamination than is the ground water beneath the corn, alfalfa, and vegetable land-use setting on the lower part of the fans, near the basin physiographic region. Nitrate concentrations ranged from less than 0.05 to 55 milligrams per liter, as nitrogen. Nitrate concentrations were significantly higher in the almond land-use setting than in the vineyard land-use setting, whereas concentrations in the corn, alfalfa, and vegetable land-use setting were intermediate. Nitrate concentrations exceeded the maximum contaminant level in eight samples from the almond land- use setting (40 percent), in seven samples from the corn, alfalfa, and vegetable land-use setting (35 percent), and in three samples from the vineyard land-use setting (15 percent). The physical and chemical characteristics of the vineyard and the almond land-use settings are similar, characterized by coarse-grained sediments and high dissolved- oxygen concentrations, reflecting processes that promote rapid infiltration of water and solutes. The high nitrate concentrations in the almond land-use setting reflect the high amount of nitrogen appli- cations in this setting, whereas the low nitrate concentrations in the vineyard land-use setting reflect relatively low nitrogen applications. In the corn, alfalfa, and vegetable land-use setting, the relatively fine-grained sediments, and low dissolved-oxygen concentrations, reflect processes that result in slow infiltration rates and longer ground-water residence times. The intermediate nitrate concentrations in the corn, alfalfa, and vegetable land-use setting are a result of these physical and chemical characteristics, combined with generally high (but variable) nitrogen applications. Twenty-three different pesticides were detected in 41 of 60 ground- water samples (68 percent). Eighty percent of the ground-water samples from the vineyard land-use setting had at least one pesticide detection, followed by 70 percent in the almond land-use setting, and 55 percent in the corn, alfalfa, and vegetable land-use setting. All concentra- tions were less than state or federal maximum contaminant levels only 5 of the detected pesticides have established maximum contaminant levels) with the exception of 1,2-dibromo-3-chloropropane, which exceeded the maximum contaminant level of 0.2 micrograms per liter in 10 ground-water samples from vineyard land-use wells and in 5 ground- water samples from almond land-use wells. Simazine was detected most often, occurring in 50 percent of the ground-water samples from the vineyard land-use wells and in 30 percent
MICROARRAY SYSTEM FOR CONTAMINATED WATER ANALYSIS
We used the optimum slide treatment as determined by the previous study*: water plasma cleaning, photo-hydrolytic weathering, and silane treatment using 3-aminopropyl triethoxysilane (APS). Anti-E.coli antibodies were printed onto Corning 2947 (soda-lime-silicate) ...
An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.
Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun
2016-01-01
Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.
Santos, M C; Golt, C; Joerger, R D; Mechor, G D; Mourão, Gerson B; Kung, L
2017-02-01
The objective of this study was to identify species of yeasts in samples of high moisture corn (HMC) and corn silage (CS) collected from farms throughout the United States. Samples were plated and colonies were isolated for identification using DNA analysis. Randomly selected colonies were also identified by fatty acid methyl esters (FAME) and by physiological substrate profiling (ID 32C). For CS, Candida ethanolica, Saccharomyces bulderi, Pichia anomala, Kazachstania unispora, and Saccharomyces cerevisiae were the predominant yeasts. Pichia anomala, Issatchenkia orientalis, S. cerevisiae, and Pichia fermentans were the prevalent species in HMC. The 3 identification methods were in agreement at the species level for 16.6% of the isolates and showed no agreement for 25.7%. Agreement in species identification between ID 32C and DNA analysis, FAME and ID 32C, and FAME and DNA analysis was 41.1, 14.4, and 2.2%, respectively. Pichia anomala and I. orientalis were able to grow on lactic acid, whereas S. cerevisiae metabolized sugars (galactose, sucrose, and glucose) but failed to use lactic acid. The yeast diversity in CS and HMC varied due to type of feed and location. Differences in species assignments were seen among methods, but identification using substrate profiling generally corresponded with that based on DNA analysis. These findings provide information about the species that may be expected in silages, and this knowledge may lead to interventions that control unwanted yeasts. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, S. E.; Donohoe, B. S.; Beery, K. E.
Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. Thesemore » probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.« less
Maia, Margarida R G; Fonseca, António J M; Oliveira, Hugo M; Mendonça, Carla; Cabrita, Ana R J
2016-08-30
This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.
Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.
2016-01-01
This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions. PMID:27572486
Perspective and prospective of pretreatment of corn straw for butanol production.
Baral, Nawa Raj; Li, Jiangzheng; Jha, Ajay Kumar
2014-01-01
Corn straw, lignocellulosic biomass, is a potential substrate for microbial production of bio-butanol. Bio-butanol is a superior second generation biofuel among its kinds. Present researches are focused on the selection of butanol tolerant clostridium strain(s) to optimize butanol yield in the fermentation broth because of toxicity of bio-butanol to the clostridium strain(s) itself. However, whatever the type of the strain(s) used, pretreatment process always affects not only the total sugar yield before fermentation but also the performance and growth of microbes during fermentation due to the formation of hydroxyl-methyl furfural, furfural and phenolic compounds. In addition, the lignocellulosic biomasses also resist physical and biological attacks. Thus, selection of best pretreatment process and its parameters is crucial. In this context, worldwide research efforts are increased in past 12 years and researchers are tried to identify the best pretreatment method, pretreatment conditions for the actual biomass. In this review, effect of particle size, status of most common pretreatment method and enzymatic hydrolysis particularly for corn straw as a substrate is presented. This paper also highlights crucial parameters necessary to consider during most common pretreatment processes such as hydrothermal, steam explosion, ammonia explosion, sulfuric acid, and sodium hydroxide pretreatment. Moreover, the prospective of pretreatment methods and challenges is discussed.
NASA Astrophysics Data System (ADS)
Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.
2016-08-01
This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions.
Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.
Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J
2007-03-01
Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of hybrid poplar plants were not affected by scrubber by-product applications of up to 5% w:w.
Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo
2014-01-01
Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192
Grand, I; Bellon-Fontaine, M-N; Herry, J-M; Hilaire, D; Moriconi, F-X; Naïtali, M
2010-11-01
To evaluate the impact of the mode of contamination in relation with the nature of solid substrates on the resistance of spores of Bacillus atrophaeus -selected as surrogates of Bacillus anthracis- to a disinfectant, peracetic acid. Six materials confronted in urban and military environments were selected for their different structural and physicochemical properties. In parallel, two modes of contamination were examined, i.e. deposition and immersion. Deposition was used to simulate contamination by an aerosol and immersion by an extended contact with liquids. A pronounced difference in the biocontamination levels and spatial organization of spores was observed depending on the mode of contamination and the nature of the solid substrate considered, with consequences on decontamination. Contamination by immersion led to lower efficiency of peracetic acid decontamination than contamination by deposition. Infiltration of spores into porous materials after immersion is one reason. In contrast, the deposition mode aggregates cells at the surface of materials, explaining the similar disinfecting behaviour of porous and nonporous substrates when considering this inoculation route. The inoculation route was shown to be as influential a parameter as material characteristics (porosity and wettability) for decontamination efficacy. These results provide comparative information for the decontamination of B. atrophaeus spores in function of the mode of contamination and the nature of solid substrates. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology. No claim to French government works.
Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation.
Rich, Joseph O; Leathers, Timothy D; Bischoff, Kenneth M; Anderson, Amber M; Nunnally, Melinda S
2015-11-01
Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grind corn fuel ethanol facility. Among eight sites sampled in the facility, the combined liquefaction stream and yeast propagation tank were consistently contaminated, leading to contamination of early fermentation tanks. Among 768 contaminants isolated, 92% were identified as Lactobacillus sp., with the most abundant species being Lactobacillus plantarum, Lactobacillus casei, Lactobacillus mucosae, and Lactobacillus fermentum. Seven percent of total isolates showed the ability to form biofilms in pure cultures, and 22% showed the capacity to significantly inhibit ethanol production. However, these traits were not correlated. Ethanol inhibition appeared to be related to acetic acid production by contaminants, particularly by obligately heterofermentative species such as L. fermentum and L. mucosae. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof
2013-11-01
Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Rodda, E.D.; Steinberg, M.P.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas-chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.8%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 gram of carbonmore » dioxide per gram of dry substrate starch within 72 hours. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41 degrees C had no apparent detrimental effects on theoretical ethanol yield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Rodda, E.D.; Steinberg, M.P.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas-chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.8%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 gram of carbonmore » dioxide per gram of dry substrate starch within 72 hours. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41/sup 0/C had no apparent detrimental effects on theoretical ethanol yield.« less
Evaluation of alkali treatment for biodegradation of corn cobs by Aspergillus niger.
Singh, A; Abidi, A B; Agrawal, A K; Darmwal, N S
1989-01-01
Effect of NaOH pretreatment on the biodegradation of corn cobs for the production of cellulase and protein was studied using Aspergillus niger. Delignification of cobs with NaOH remarkably increased the production of cellulase and protein. Treatment of cobs with 2% NaOH was found to be the best with respect to their susceptibility to biodegradation for maximum production of cellulose 1,4-beta-cellobiosidase, cellulase, beta-glucosidase soluble protein and crude protein; this also led to the highest protein recovery, maximum cellulose utilization and also for the maximum degradation of substrate.
Demand impact and policy implications from taxing nitrogen fertilizer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, J.C.
1992-12-01
Recent concern has focused on nitrogen fertilizer as a potential contaminant of groundwater. A demand function for fertilizer was developed using the quantity of fertilizer purchased, corn yield, real price of nitrogen fertilizer, lagged fertilizer purchases, a land value variable and the real price of corn as explanatory variables. Short and long-run price elasticities of demand were estimated to be inelastic. Support was found for the hypothesis that demand for nitrogen fertilizer has become more price inelastic over time. From a policy standpoint, a tax on nitrogen fertilizer may not be the most effective method to reduce consumption.
NASA Astrophysics Data System (ADS)
Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.
Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.
Jean-Gilles Beaubrun, Junia; Flamer, Marie-Laure; Addy, Nicole; Ewing, Laura; Gopinath, Gopal; Jarvis, Karen; Grim, Chris; Hanes, Darcy E
2016-08-01
Phenolic compounds associated with essential oils of spices and herbs possess a variety of antioxidant and antimicrobial properties that interfere with Salmonella detection from fresh and dried products. Finding a compound to neutralize the effect of these antimicrobial compounds, while allowing Salmonella growth during pre-enrichment, is a crucial step in both traditional pathogen isolation and molecular detection from these foods. This study evaluated the effectiveness of corn oil as a component of the pre-enrichment broth to counteract antimicrobial compounds properties and increase the recovery of Salmonella from spices. Oregano samples artificially contaminated with Salmonella enterica were pre-enriched in modified Buffered Peptone Water (mBPW) supplemented with and without 2% (vol/vol) corn oil respectively. Samples were incubated overnight at 37 °C. The results showed that recovery of Salmonella from oregano samples was increased by ≥50% when pre-enriched with corn oil. Serovars were confirmed using a PCR serotyping method. In addition, shot-gun metagenomics analyses demonstrated bacterial diversity and the effect of corn oil on the relative prevalence of Salmonella in the oregano samples. Modifying pre-enrichment broths with corn oil improved the detection and isolation of Salmonella from oregano, and may provide an alternative method for pathogen detection in dried food matrices such as spices. Published by Elsevier Ltd.
REMOVAL OF ALACHLOR FROM DRINKING WATER
Alachlor (Lasso) is a pre-emergent herbicide used in the production of corn and soybeans. U.S. EPA has studied control of alachlor in drinking water treatment processes to define treatability before setting maximum contaminant levels and to assist water utilities in selecting con...
Blocking aflatoxins in corn by using non-toxigenic strains of Aspergillus flavus
USDA-ARS?s Scientific Manuscript database
There are over 500 previously reported mycotoxins. However, only a few have been identified as important for food safety, including aflatoxins, fumonisins, cyclopiazonic acid (CPA), trichothecenes, zearalenone, ochratoxins, and patulin. Mycotoxins contaminate plant materials, causing acute and ch...
Fusarium verticillioides: The very model of a modern mycotoxigenic phytopathogen
USDA-ARS?s Scientific Manuscript database
The importance of understanding Fusarium verticillioides and its ecological, physiological, and phytopathological functions cannot be understated due to its threat to corn, one of the most valuable food crops worldwide. Indeed, disease outbreaks and subsequent grain contamination with mycotoxins adv...
Aflatoxin Toxicity Reduction in Feed by Enhanced Binding to Surface-Modified Clay Additives
Jaynes, William F.; Zartman, Richard E.
2011-01-01
Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (Kd = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (Kd = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (Kd = 13,800) and carnitine (Kd = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (Kd = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (Kd = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (Kd = 1340) or the untreated montmorillonite (Kd = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity. PMID:22069725
Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives.
Jaynes, William F; Zartman, Richard E
2011-06-01
Animal feeding studies have demonstrated that clay additives, such as bentonites, can bind aflatoxins in ingested feed and reduce or eliminate the toxicity. Bentonite deposits are found throughout the world and mostly consist of expandable smectite minerals, such as montmorillonite. The surfaces of smectite minerals can be treated with organic compounds to create surface-modified clays that more readily bind some contaminants than the untreated clay. Montmorillonites treated with organic cations, such as hexadecyltrimethylammonium (HDTMA) and phenyltrimethylammonium (PTMA), more effectively remove organic contaminants, such as benzene and toluene, from water than untreated clay. Similarly, montmorillonite treated with PTMA (K(d) = 24,100) retained more aflatoxin B1 (AfB1) from aqueous corn flour than untreated montmorillonite (K(d) = 944). Feed additives that reduced aflatoxin toxicity in animal feeding studies adsorbed more AfB1 from aqueous corn flour than feed additives that were less effective. The organic cations HDTMA and PTMA are considered toxic and would not be suitable for clay additives used in feed or food, but other non-toxic or nutrient compounds can be used to prepare surface-modified clays. Montmorillonite (SWy) treated with choline (K(d) = 13,800) and carnitine (K(d) = 3960) adsorbed much more AfB1 from aqueous corn flour than the untreated clay (K(d) = 944). A choline-treated clay prepared from a reduced-charge, high-charge montmorillonite (K(d) = 20,100) adsorbed more AfB1 than the choline-treated high-charge montmorillonite (K(d) = 1340) or the untreated montmorillonite (K(d) = 293). Surface-modified clay additives prepared using low-charge smectites and nutrient or non-toxic organic compounds might be used to more effectively bind aflatoxins in contaminated feed or food and prevent toxicity.
Gudiña, Eduardo J; Rodrigues, Ana I; Alves, Eliana; Domingues, M Rosário; Teixeira, José A; Rodrigues, Lígia R
2015-02-01
In this work, biosurfactant production by a Pseudomonas aeruginosa strain was optimized using low-cost substrates. The highest biosurfactant production (3.2 g/l) was obtained using a culture medium containing corn steep liquor (10% (v/v)) and molasses (10% (w/v)). The biosurfactant reduced the surface tension of water up to 30 mN/m, and exhibited a high emulsifying activity (E24=60%), with a critical micelle concentration as low as 50 mg/l. The biosurfactant produced in this alternative medium was characterized as a mixture of eight different rhamnolipid congeners, being the most abundant the mono-rhamnolipid Rha-C10-C10. However, using LB medium, nine different rhamnolipid congeners were identified, being the most abundant the di-rhamnolipid Rha-Rha-C10-C10. The rhamnolipid mixture produced in the alternative medium exhibited a better performance in removing oil from contaminated sand when compared with two chemical surfactants, suggesting its potential use as an alternative to traditional chemical surfactants in enhanced oil recovery or bioremediation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Epidemics of mold poisoning past and present.
Meggs, William J
2009-01-01
Molds are ubiquitous throughout the biosphere of planet earth and cause infectious, allergic, and toxic diseases. Toxic diseases arise from exposure to mycotoxins produced by molds. Throughout history, there have been a number of toxic epidemics associated with exposure to mycotoxins. Acute epidemics of ergotism are caused by consumption of grain infested by fungi of the genus Claviceps, which produce the bioactive amine ergotamine that mimics the neurotransmitters norepinephrine, serotonin, and dopamine. Acute aflatoxin outbreaks have occurred from ingestion of corn stored in damp conditions that potentiate growth of the molds of the species Aspergillus. Contemporary construction methods that use cellulose substrates such as fiber board and indoor moisture have caused an outbreak of contaminated buildings with Stachybotrys chartarum, with the extent of health effects still a subject of debate and ongoing research. This article reviews several of the more prominent epidemics and discusses the nature of the toxins. Two diseases that were leading causes of childhood mortality in England in the 1970s and vanished with changing dietary habits, putrid malignant fever, and slow nervous fever were most likely toxic mold epidemics.
Kirkey, Fallon M; Matthews, Jennifer; Ryser, Peter
2012-05-01
Metal resistance in populations of Acer rubrum and Betula papyrifera in the industrially contaminated region of Sudbury, Ontario, was compared with resistance in populations from neighbouring uncontaminated regions. In two one-season experiments, seedlings were grown outdoors on contaminated (mainly Cu, Ni) and uncontaminated substrates. Sudbury populations of both species responded less to contamination than populations from uncontaminated regions. In A. rubrum this difference was small. For both species, Sudbury plants were smaller when grown on uncontaminated substrate. B. papyrifera from Sudbury grew better on contaminated substrate than the other populations. There is indication of variation in metal resistance within the populations from the non-contaminated regions. The data shows that trees may develop adaptive resistance to heavy metals, but the low degree of resistance indicates that the development of such resistances are slower than observed for herbaceous species with shorter generation times. Copyright © 2012 Elsevier Ltd. All rights reserved.
Selwet, Marek
2011-01-01
The objective of the performed investigations was to isolate pathogenic fungi from contaminated maize cobs, to assess the appearance of maize cob fusariosis and to determine grain contamination with deoxynivalenol in the cultivation of genetically modified maize containing a gene resistance against European corn borer (Ostrinia nubilalis Hbn) as well as selected non-modified cultivars. The plant material comprised the following genetically modified maize cultivar: DKC 3421 YG (MON 810) and non-modified cultivars obtained from Smolice Plant Breeding Ltd., IHAR Group: Junak (FAO 210-220), Prosna (FAO 220), SMH (FAO 230), Baca (FAO 220). Prior to harvesting, the occurrence of maize cob fusariosis was determined in the 89 (BBCH) developmental ripening stage. Microbiological assessment was carried out on grains selected from cobs characterized by various pathological symptoms. In 2008, a total of 133 isolates was obtained from the examined samples of infected maize plants, of which 51 isolates were species-identified, while in 2009, the total of 123 isolates were determined, of which 63 were species-identified. In both experimental years, the majority of isolates contained fungi from the Fusarium genus. The performed analysis of mean levels of cob contamination by fusarioses revealed that DKC 3421 YG (MON 810) and SMH (FAO 230) cultivars showed the smallest levels of contamination as well as the lowest percent of cob contamination per plant, while Junak (FAO 210-220) and Baca (FAO 220) cultivars were characterized by the highest degree of contamination. The lowest deoxynivalenol concentrations were determined in years 2008 and 2009 in the case of the DKC 3421 YG (MON 810) cultivar, whereas Prosna (FAO 220) cultivar was characterized by the highest deoxynivalenol concentration.
Souza, Adriana Ferreira; Rodriguez, Dayana M.; Ribeaux, Daylin R.; Luna, Marcos A. C.; Lima e Silva, Thayse A.; Andrade, Rosileide F. Silva; Gusmão, Norma B.; Campos-Takaki, Galba M.
2016-01-01
Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. PMID:27669227
Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst
2009-01-01
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (Ki = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (Km = 0.1 mm). The crystal structure at 1.7-Å resolution revealed that the dual mutation causes a shift of residue Gly96 toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile97 points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr97 and Pro101 induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS. PMID:19211556
Funke, Todd; Yang, Yan; Han, Huijong; Healy-Fried, Martha; Olesen, Sanne; Becker, Andreas; Schönbrunn, Ernst
2009-04-10
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the target of the broad spectrum herbicide glyphosate. The genetic engineering of EPSPS led to the introduction of glyphosate-resistant crops worldwide. The genetically engineered corn lines NK603 and GA21 carry distinct EPSPS enzymes. CP4 EPSPS, expressed in NK603 corn and transgenic soybean, cotton, and canola, belongs to class II EPSPS, glyphosate-insensitive variants of this enzyme isolated from certain Gram-positive bacteria. GA21 corn, on the other hand, was created by point mutations of class I EPSPS, such as the enzymes from Zea mays or Escherichia coli, which are sensitive to low glyphosate concentrations. The structural basis of the glyphosate resistance resulting from these point mutations has remained obscure. We studied the kinetic and structural effects of the T97I/P101S double mutation, the molecular basis for GA21 corn, using EPSPS from E. coli. The T97I/P101S enzyme is essentially insensitive to glyphosate (K(i) = 2.4 mm) but maintains high affinity for the substrate phosphoenolpyruvate (PEP) (K(m) = 0.1 mm). The crystal structure at 1.7-A resolution revealed that the dual mutation causes a shift of residue Gly(96) toward the glyphosate binding site, impairing efficient binding of glyphosate, while the side chain of Ile(97) points away from the substrate binding site, facilitating PEP utilization. The single site T97I mutation renders the enzyme sensitive to glyphosate and causes a substantial decrease in the affinity for PEP. Thus, only the concomitant mutations of Thr(97) and Pro(101) induce the conformational changes necessary to produce catalytically efficient, glyphosate-resistant class I EPSPS.
Calcium-Dependent Protein Kinase Genes in Corn Roots
NASA Technical Reports Server (NTRS)
Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.
1996-01-01
Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.
Testing of Co-Fermentation of Poultry Manure and Corn Silage
NASA Astrophysics Data System (ADS)
Jędrczak, Andrzej; Królik, Dariusz; Sądecka, Zofia; Myszograj, Sylwia; Suchowska-Kisielewicz, Monika; Bojarski, Jacek
2014-12-01
The development of the production of poultry meat is connected with an increase in the quantity of the manure. The chemical characteristics predisposes this waste to processing by methane fermentation method. This study investigated the influence of ammonia and volatile fat acids on mesophilic anaerobic digestion of poultry manure. The aim of the studies was: to determine the degree of biodegradation of the poultry manure as well as manure and corn silage mixed in various proportions in the process of mesophilic fermentation, to evaluate the impact of mineral nitrogen and volatile fat acids on the course of fermentation, and to establish optimum proportions of these types of waste. The tests confirmed the positive effect of co-fermentation of poultry manure with corn silage. The most favourable ratio for mixing the substrates is the equal percentage of their dry matter in the mixture. With such waste mixing proportions, the degree of degradation of organic substances contained in the manure amounted to 61.8% and was higher than in the mono-digestion of manure and corn silage.
de Andrade, Jucimara Kulek; de Andrade, Camila Kulek; Komatsu, Emy; Perreault, Hélène; Torres, Yohandra Reyes; da Rosa, Marcos Roberto; Felsner, Maria Lurdes
2017-08-01
Corn syrups, important ingredients used in food and beverage industries, often contain high levels of 5-hydroxymethyl-2-furfural (HMF), a toxic contaminant. In this work, an in house validation of a difference spectrophotometric method for HMF analysis in corn syrups was developed using sophisticated statistical tools by the first time. The methodology showed excellent analytical performance with good selectivity, linearity (R 2 =99.9%, r>0.99), accuracy and low limits (LOD=0.10mgL -1 and LOQ=0.34mgL -1 ). An excellent precision was confirmed by repeatability (RSD (%)=0.30) and intermediate precision (RSD (%)=0.36) estimates and by Horrat value (0.07). A detailed study of method precision using a nested design demonstrated that variation sources such as instruments, operators and time did not interfere in the variability of results within laboratory and consequently in its intermediate precision. The developed method is environmentally friendly, fast, cheap and easy to implement resulting in an attractive alternative for corn syrups quality control in industries and official laboratories. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gaspardo, B; Del Zotto, S; Torelli, E; Cividino, S R; Firrao, G; Della Riccia, G; Stefanon, B
2012-12-01
Fourier transform near infrared (FT-NIR) spectroscopy is an analytical procedure generally used to detect organic compounds in food. In this work the ability to predict fumonisin B(1)+B(2) contents in corn meal using an FT-NIR spectrophotometer, equipped with an integration sphere, was assessed. A total of 143 corn meal samples were collected in Friuli Venezia Giulia Region (Italy) and used to define a 15 principal components regression model, applying partial least square regression algorithm with full cross validation as internal validation. External validation was performed to 25 unknown samples. Coefficients of correlation, root mean square error and standard error of calibration were 0.964, 0.630 and 0.632, respectively and the external validation confirmed a fair potential of the model in predicting FB(1)+FB(2) concentration. Results suggest that FT-NIR analysis is a suitable method to detect FB(1)+FB(2) in corn meal and to discriminate safe meals from those contaminated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Abouzied, M M; Azcona, J I; Braselton, W E; Pestka, J J
1991-01-01
To assess the potential for mycotoxin contamination of the human food supply following the 1988 U.S. drought, 92 grain food samples were purchased from retail outlets in the summer of 1989 and surveyed for aflatoxin B1, zearalenone, and deoxynivalenol (DON [vomitoxin]) by monoclonal antibody-based competitive enzyme-linked immunosorbent assay (ELISA). Only one sample (buckwheat flour) was found to contain aflatoxin B1 (12 ng/g), whereas zearalenone was found in 26% of the samples at a mean concentration of 19 ng/g. In contrast, the DON ELISA was positive in 50% of the samples at a detection level of 1.0 micrograms/g. Between 63 and 88% of corn cereals, wheat flour/muffin mixes, rice cereals, and corn meal/muffin mixes yielded positive results for DON, whereas 25 to 50% of oat cereals, wheat- and oat-based cookies/crackers, corn chips, popcorn, and mixed-grain cereals were positive for DON. The mean DON content of the positive samples was 4.0 micrograms/g, and the minimum and maximum levels were 1.2 and 19 micrograms/g, respectively. When positive ELISA samples were also analyzed by high-performance liquid chromatography, a strong correlation between the two methods was found. The presence of DON in the two highest samples, corn meal and mixed-grain cereal, which contained 19 and 16 micrograms/g, respectively, was quantitatively confirmed by gas chromatography-mass spectrometry. The results indicated that DON was present in 1989 retail food products at concentrations that exceeded those found in previous market surveys and that have been experimentally associated with impaired animal health. Images PMID:1828138
Area-wide programs for aflatoxin mitigation: treatment to cotton can be cost effective
USDA-ARS?s Scientific Manuscript database
Biological control of aflatoxin contamination with atoxigenic genotypes of Aspergillus flavus is currently used commercially on several crops including corn, peanut, and pistachio. However, biopesticides utilizing this technology were first developed and registered for use in preventing aflatoxin co...
Heritability study of eGFP-transformed Aspergillus flavus strains
USDA-ARS?s Scientific Manuscript database
Pre-harvest prevention of aflatoxin contamination of corn, cottonseed, and peanut through field inoculation with non-aflatoxigenic Aspergillus flavus appears to be the only method for biocontrol currently being used. Until recently, evidence for out-crossing in A. flavus was observed in agar slants...
Li, Bo; Yang, Junxing; Wei, Dongpu; Chen, Shibao; Li, Jumei; Ma, Yibing
2014-01-01
To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg-1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils.
NASA TEERM Project: Corn Based Blast Media
NASA Technical Reports Server (NTRS)
Griffin, Chuck
2009-01-01
Coatings removal is a necessary part of the maintenance, repair, and overhaul activities at many NASA centers and contractor support sites. Sensitive substrates, such as composites and thin aluminum alloys require special handling such as the use of chemical stripping, pneumatic hand sanding, or softer blast media. Type V, acrylic based PMB is commonly used to de-coat, strip, or de-paint the delicate substrates of the Solid Rocket Boosters (SRBs) currently used in support of the Shuttle and slated to be used in support of CxP.
Cano, Amanda M; Kohl, Kristina; Deleon, Sabrina; Payton, Paxton; Irin, Fahmida; Saed, Mohammad; Shah, Smit Alkesh; Green, Micah J; Cañas-Carrell, Jaclyn E
2016-06-01
Single-wall carbon nanotubes (SWNTs) are projected to increase in usage across many industries. Two studies were conducted using Zea L. (corn) seeds exposed to SWNT spiked soil for 40 d. In Study 1, corn was exposed to various SWNT concentrations (0, 10, and 100 mg/kg) with different functionalities (non-functionalized, OH-functionalized, or surfactant stabilized). A microwave induced heating method was used to determine SWNTs accumulated mostly in roots (0-24 μg/g), with minimal accumulation in stems and leaves (2-10 μg/g) with a limit of detection at 0.1 μg/g. Uptake was not functional group dependent. In Study 2, corn was exposed to 10 mg/kg SWNTs (non-functionalized or COOH-functionalized) under optimally grown or water deficit conditions. Plant physiological stress was determined by the measurement of photosynthetic rate throughout Study 2. No significant differences were seen between control and SWNT treatments. Considering the amount of SWNTs accumulated in corn roots, further studies are needed to address the potential for SWNTs to enter root crop species (i.e., carrots), which could present a significant pathway for human dietary exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yu, Heng; Ren, Jiwei; Liu, Lei; Zheng, Zhaojuan; Zhu, Junjun; Yong, Qiang; Ouyang, Jia
2016-01-01
This study established a new more neutral magnesium bisulfate pretreatment (MBSP) using magnesium bisulfate as sulfonating agent for improving the enzymatic hydrolysis efficiency of corn stover. Using the MBSP with 5.21% magnesium bisulfate, 170°C and pH 5.2 for 60 min, about 90% of lignin and 80% of hemicellulose were removed from biomass and more than 90% cellulose conversion of substrate was achieved after 48 h hydrolysis. About 6.19 kg raw corn stover could produce 1 kg ethanol by Saccharomyces cerevisiae. Meanwhile, MBSP also could protect sugars from excessive degradation, prevent fermentation inhibition formation and directly convert the hemicelluloses into xylooligosaccharides as higher-value products. These results suggested that the MBSP method offers an alternative approach to the efficient conversion of nonwoody lignocellulosic biomass to ethanol and had broad space for development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fuel ethanol from raw corn by Aspergilli hydrolysis with concurrent yeast fermentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Steinberg, M.P.; Rodda, E.D.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.9%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 g ofmore » carbon dioxide per gram of dry substrate starch within 72 h. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41/sup 0/C had no apparent detrimental effects on theoretical ethanol yield. 41 references, 1 figure, 2 tables.« less
Present status of the aflatoxin situation in the Philippines.
Arim, R H
1995-01-01
Aflatoxin research in the Philippines started at the FNRI in 1967 with a survey on the aflatoxin content of various foods. Local researchers from government institutions and academe also conducted studies on the aflatoxin contamination of agricultural crops and their products/by-products. The data indicated that corn and peanuts are the two commodities that contain toxic levels of aflatoxin. Past and current research in the country is documented. Problems and research needs for the surveillance and/or control of aflatoxin contamination are discussed.
Mossoba, M M; Adams, S; Roach, J A; Trucksess, M W
1996-01-01
Gas chromatography/matrix isolation/Fourier transform infrared (GC/MI/FTIR) spectroscopy and GC/mass spectrometry (MS) were used to confirm the identities of trimethylsilyl (TMS) derivatives of trichothecene mycotoxins in naturally contaminated grains. Infrared spectral bands observed in the fingerprint region were unique for 10 trichothecene standards. Characteristic absorption bands were observed for the ester (near 1750 cm-1) and ketone (near 1700 cm-1) carbonyl stretching vibrations, the acetate CH3 symmetric bend (1370 cm-1), the epoxide ring (1262 cm-1), the trimethylsilyl CH3 in-plane deformation (1253 cm-1), the ester (O)C-O asymmetric stretching vibration (near 1244 cm-1), and several other bands including intense features due to the TMS function. Infrared bands observed under cryogenic matrix isolation conditions were compared with those found at room temperature in a potassium bromide matrix for 5 of these standards. Identities of deoxynivalenol (DON) from barley and mixed feed, nivalenol from wheat and barley, and DON and fusarenon-x from sweet corn were confirmed by comparison of their infrared spectral bands with those of standards. The identity of DON in the same test samples of sweet corn was confirmed further by GC/MS. GC/MS was also used to quantitate the levels of DON (67-455 ppm) in sweet corn test samples.
NASA Astrophysics Data System (ADS)
Glennie, E.; Anyamba, A.; Eastman, R.
2016-12-01
A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) images was compared to National Agricultural Statistics Service (NASS) corn yield data in the Corn Belt of the United States from 1982 to 2014. The relationship between NDVI and crop yields under El Nino, neutral, and La Nina conditions was used to assess 1) the reliability of using NDVI as an indicator of crop productivity, and 2) the response of the Corn Belt to El Nino/ Southern Oscillation (ENSO) teleconnection effects. First, bi-monthly NDVI data were combined into monthly data using the maximum value compositing technique to reduce cloud contamination and other effects. The most representative seasonal curve of NDVI values over the course of the study period was extracted to define the growing season in the region - May to October. Standardized NDVI anomalies were calculated and averaged to produce a growing season NDVI metrics to represent each Agricultural Statistics Division (ASD) for each year in the study period. The corn yields were detrended in order to remove effects of technological advancements on crop productivity (use of genetically modified seeds, fertilizer, herbicides). Correlation (R) values between the NDVI anomalies and detrended corn yields varied across the Corn Belt, with a maximum of 0.81 and mean of 0.49. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be accounted for by an increase in soy yield for a given year due to crop rotation practices. The 10 El Nino events and 9 La Nina events that occurred between 1982 and 2014 are not reflected in a consistent manner in NDVI or corn yield data. However, composites of NDVI and crop yields for all El Nino events indicate there is a tendency for higher than normal NDVI and increased corn yields. Conversely, the composite crop yield image for La Nina events shows a slight decrease in productivity.
Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas.
Gamba, Raúl Ricardo; Caro, Carlos Andrés; Martínez, Olga Lucía; Moretti, Ana Florencia; Giannuzzi, Leda; De Antoni, Graciela Liliana; León Peláez, Angela
2016-10-17
Fungal contamination negatively affects the production of cereal foods such as arepa loaf, an ancient corn bread consumed daily in several countries of Latin-America. Chemical preservatives such as potassium sorbate are applied in order to improve the arepa's shelf life and to reduce the health risks. The use of natural preservatives such as natural fermented products in food commodities is a common demand among the consumers. Kefir is a milk fermented beverage obtained by fermentation of kefir grains. Its antibacterial and probiotic activity has been exhaustively demonstrated. Our objectives were to determine the antifungal effect of kefir fermented milk on Aspergillus flavus AFUNL5 in vitro and to study if the addition of kefir fermented milk to arepas could produce shelf life improvement. We determined the antifungal effect on solid medium of kefir cell-free supernatants (CFS) obtained under different fermentation conditions. Additionally, we compared the antifungal effect of kefir CFS with that obtained with unfermented milk artificially acidified with lactic plus acetic acids (lactic and acetic acids at the same concentration determined in kefir CFS) or with hydrochloric acid. Finally, kefir was added to the corn products either in the loaf recipe (kefir-baked arepas) or sprayed onto the baked-loaf surface (kefir-sprayed arepas). The loaves' resistance to natural and artificial fungal contamination and their organoleptic profiles were studied. The highest fungal inhibition on solid medium was achieved with kefir CFS produced by kefir grains CIDCA AGK1 at 100 g/L, incubated at 30 °C and fermented until pH 3.3. Other CFS obtained from different fermentation conditions achieved less antifungal activity than that mentioned above. However, CFS of milk fermented with kefir grains, until pH 4.5 caused an increase of growth rates. Additionally, CFS produced by kefir grains CIDCA AGK1 at 100 g/L, incubated at 30 °C and fermented until pH 3.3 achieved higher antifungal activity than CFS from artificially acidified milk with organic acids (CFS L + A) at the same concentration of kefir CFS. Besides, CFS from milk acidified with hydrochloric acid (CFS HCl) showed no fungal inhibition. On the other hand, kefir-baked arepas exhibited significant resistance to natural and artificial fungal contamination. Finally, both kefir-baked and kefir-sprayed arepas retained the organoleptic characteristics of the traditional corn product, but with certain tastes imparted by the kefir fermentation. This work constitutes the first study on fungal inhibition by kefir-fermented milk extending to the protection of corn products of mass-consumption and the possible application as a food preservative.
Method of transferring strained semiconductor structure
Nastasi, Michael A [Santa Fe, NM; Shao, Lin [College Station, TX
2009-12-29
The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.
Photolysis of Cyclopiazonic Acid to Fluorescent Products
USDA-ARS?s Scientific Manuscript database
Cyclopiazonic acid (CPA), which is produced by certain species of Aspergillus and Penicillium, can co-occur with aflatoxins under certain conditions. A large proportion of A. flavus strains can produce CPA and it has been found as a natural contaminant in cheeses, corn, rice, peanuts, millet and fe...
Testing the efficacy of eGFP-transformed Aspergillus flavus as biocontrol strains
USDA-ARS?s Scientific Manuscript database
Current biological control methods to prevent pre-harvest aflatoxin contamination of corn, cottonseed, and ground and tree nuts involve field inoculation of non-aflatoxigenic Aspergillus flavus. To date, the efficacy of this approach requires annual reapplication of the biocontrol agent. The reason ...
Genetic population structure of Fusarium graminearum species complex in Korean cereals
USDA-ARS?s Scientific Manuscript database
Small grain cereals are frequently contaminated with toxigenic Fusarium species. Members of the Fusarium graminearum species complex (FGSC) are known as a head blight pathogens and mycotoxin producers. In order to characterize the FGSC populations associated with cereals in Korea, barley, corn, maiz...
Graves, Tara; Narendranath, Neelakantam V; Dawson, Karl; Power, Ronan
2007-01-01
The combined effects of lactic acid and acetic acid on ethanol production by S. cerevisiae in corn mash, as influenced by temperature, were examined. Duplicate full factorial experiments (three lactic acid concentrations x three acetic acid concentrations) were performed to evaluate the interaction between lactic and acetic acids on the ethanol production of yeast at each of the three temperatures, 30, 34, and 37 degrees C. Corn mash at 30% dry solids adjusted to pH 4 after lactic and acetic acid addition was used as the substrate. Ethanol production rates and final ethanol concentrations decreased (P<0.001) progressively as the concentration of combined lactic and acetic acids in the corn mash increased and the temperature was raised from 30 to 37 degrees C. At 30 degrees C, essentially no ethanol was produced after 96 h when 0.5% w/v acetic acid was present in the mash (with 0.5, 2, and 4% w/v lactic acid). At 34 and 37 degrees C, the final concentrations of ethanol produced by the yeast were noticeably reduced by the presence of 0.3% w/v acetic acid and >or=2% w/v lactic acid. It can be concluded that, as in previous studies with defined media, lactic acid and acetic acid act synergistically to reduce ethanol production by yeast in corn mash. In addition, the inhibitory effects of combined lactic and acetic acid in corn mash were more apparent at elevated temperatures.
Banerjee, Goutami; Car, Suzana; Scott-Craig, John S; Borrusch, Melissa S; Walton, Jonathan D
2010-10-12
Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase) were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar) subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]). A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP) at the same protein loadings. When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3) and a lower proportion of endo-β1,4-glucanase (EG1) compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase, α-arabinosidase, and Cel12A to the core set) was determined for AFEX-pretreated corn stover, DDGS, and AP-pretreated corn stover. The optimized mixture for AP-corn stover contained more exo-β1,4-glucanase (i.e., the sum of CBH1 + CBH2) and less endo-β1,4-glucanase (EG1 + Cel5A) than the optimal mixture for AFEX-corn stover. Amyloglucosidase and β-mannanase were the two most important enzymes for release of Glc from DDGS but were not required (i.e., 0% optimum) for corn stover subjected to AP or AFEX. As a function of enzyme loading over the range 0 to 30 mg/g glucan, Glc release from AP-corn stover reached a plateau of 60-70% Glc yield at a lower enzyme loading (5-10 mg/g glucan) than AFEX-corn stover. Accellerase 1000 was superior to Spezyme CP, the core set or the 16-component mixture for Glc yield at 12 h, but the 16-component set was as effective as the commercial enzyme mixtures at 48 h. The results in this paper demonstrate that GENPLAT can be used to rapidly produce enzyme cocktails for specific pretreatment/biomass combinations. Pretreatment conditions and feedstock source both influence the Glc and Xyl yields as well as optimal enzyme proportions. It is predicted that it will be possible to improve synthetic enzyme mixtures further by the addition of additional accessory enzymes.
Production of Cyclodextrins by CGTase from Bacillus clausii Using Different Starches as Substrates
NASA Astrophysics Data System (ADS)
Alves-Prado, H. F.; Carneiro, A. A. J.; Pavezzi, F. C.; Gomes, E.; Boscolo, M.; Franco, C. M. L.; da Silva, R.
Cyclodextrins (CDs) are cyclic oligasaccharides composed by d-glucose monomers joined by α-1,4-d glicosidic linkages. The main types of CDs are α-, β- and γ-CDs consisting of cycles of six, seven, and eight glucose monomers, respectively. Their ability to form inclusion complexes is the most important characteristic, allowing their wide industrial application. The physical property of the CD-complexed compound can be altered to improve stability, volatility, solubility, or bio-availability. The cyclomaltodextrin glucanotransferase (CGTase, EC 2.4.1.19) is an enzyme capable of converting starch into CD molecules. In this work, the CGTase produced by Bacillus clausii strain E16 was used to produce CD from maltodextrin and different starches (commercial soluble starch, corn, cassava, sweet potato, and waxy corn starches) as substrates. It was observed that the substrate sources influence the kind of CD obtained and that this CGTase displays a β-CGTase action, presenting a better conversion of soluble starch at 1.0%, of which 80% was converted in CDs. The ratio of total CD produced was 0:0.89:0.11 for α/β/γ. It was also observed that root and tuber starches were more accessible to CGTase action than seed starch under the studied conditions.
Yang, Qian; Wei, Liang-Huan; Li, Wei-Zun; Chen, Yu; Ju, Mei-Ting
2017-11-01
Different inoculum sources and acclimatization methods result in different substrate adaptation and biodegradability. To increase straw degradation rate, shorten the digester start-up time, and enhance the biogas production, we domesticated anaerobic sludge by adding microcrystalline cellulose (MCC). During acclimatization, the start-up strategies and reactor performance were investigated to analyze changes in feedstock adaption, biodegradability, and methanogen activity. The effect of the domesticated inoculum was evaluated by testing batch un-pretreated corn stover with a dewatered sludge (DS)-domesticated inoculum as a control. The results showed that (1) using MCC as a substrate rapidly improved microorganism biodegradability and adaptation. (2) MCC as domesticated substrate has relatively stable system and high mass conversion, but with low buffer capacity. (3) Macro- and micronutrients should be added for improving the activity of methanogenic and system's buffer capacity. (4) Using the domesticated inoculums and batch tests to anaerobically digest untreated corn stover yielded rapid biogas production of 292 mL, with an early peak value on the first day. The results indicated that cultivating directional inoculum can efficiently and quickly start-up digester. These investigated results to promote anaerobic digestion of straw for producing biogas speed up the transformation of achievements of biomass solid waste utilization have a positive promoting significance.
Kortei, N. K.; Dzogbefia, V. P.; Obodai, M.
2014-01-01
Cassava peel based substrate formulations as an alternative substrate were used to grow mushrooms. The effect of two compost heights, three composting periods on the mycelia growth, physical characteristics, yield, and nutritional qualities of Pleurotus ostreatus (Jacq. ex Fr.) Kummer was studied. Mean mycelia growth of 16.2 cm after a period of seven (7) weeks was the best for 1.5 m compost height. Cap diameter and stipe length differed significantly (P < 0.05) with the compost heights (0.8 m and 1.5 m). The yield on compost height of 1.5 m, composted for 5 days, differed significantly (P < 0.05) from that of 0.8 m and gave increasing yields as follows: cassava peels and manure, cassava peels only, cassava peels and corn cobs (1 : 1 ratio), and cassava peels and corn cobs (1 : 1 ratio) with chicken manure. Composting periods (3 and 7 days) gave varying yields depending on the compost height. Based on the findings an interaction of 1.5 m compost height and 5 days composting period on cassava peels and corncobs (1 : 1 ratio) with chicken manure produced the best results. The nutritional quality of the mushrooms also differed significantly (P < 0.05), indicating that cassava peels could be used as a possible substrate in cultivation of mushroom. PMID:25580299
Varadharajan, Venkatramanan; Vadivel, Sudhan Shanmuga; Ramaswamy, Arulvel; Sundharamurthy, Venkatesaprabhu; Chandrasekar, Priyadharshini
2017-01-01
Tannase production by Aspergillus oryzae using various agro-wastes as substrates by submerged fermentation was studied in this research. The microbe was isolated from degrading corn kernel obtained from the corn fields at Tiruchengode, India. The microbial identification was done using 18S rRNA gene analysis. The agro-wastes chosen for the study were pomegranate rind, Cassia auriculata flower, black gram husk, and tea dust. The process parameters chosen for optimization study were substrate concentration, pH, temperature, and incubation period. During one variable at a time optimization, the pomegranate rind extract produced maximum tannase activity of 138.12 IU/mL and it was chosen as the best substrate for further experiments. The quadratic model was found to be the effective model for prediction of tannase production by A. oryzae. The optimized conditions predicted by response surface methodology (RSM) with genetic algorithm (GA) were 1.996% substrate concentration, pH of 4.89, temperature of 34.91 °C, and an incubation time of 70.65 H with maximum tannase activity of 138.363 IU/mL. The confirmatory experiment under optimized conditions showed tannase activity of 139.22 IU/mL. Hence, RSM-GA pair was successfully used in this study to optimize the process parameters required for the production of tannase using pomegranate rind. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.
Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter
2011-03-01
Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.
The unintended energy impacts of increased nitrate contamination from biofuels production.
Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E
2010-01-01
Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.
Zhuang, Zhenhong; Lohmar, Jessica M; Satterlee, Timothy; Cary, Jeffrey W; Calvo, Ana M
2016-01-20
Aspergillus flavus produces a variety of toxic secondary metabolites; among them, the aflatoxins (AFs) are the most well known. These compounds are highly mutagenic and carcinogenic, particularly AFB₁. A. flavus is capable of colonizing a number of economically-important crops, such as corn, cotton, peanut and tree nuts, and contaminating them with AFs. Molecular genetic studies in A. flavus could identify novel gene targets for use in strategies to reduce AF contamination and its adverse impact on food and feed supplies worldwide. In the current study, we investigated the role of the master transcription factor gene mtfA in A. flavus. Our results revealed that forced overexpression of mtfA results in a drastic decrease or elimination of several secondary metabolites, among them AFB₁. The reduction in AFB₁ was accompanied by a decrease in aflR expression. Furthermore, mtfA also regulates development; conidiation was influenced differently by this gene depending on the type of colonized substrate. In addition to its effect on conidiation, mtfA is necessary for the normal maturation of sclerotia. Importantly, mtfA positively affects the pathogenicity of A. flavus when colonizing peanut seeds. AF production in colonized seeds was decreased in the deletion mtfA strain and particularly in the overexpression strain, where only trace amounts were detected. Interestingly, a more rapid colonization of the seed tissue occurred when mtfA was overexpressed, coinciding with an increase in lipase activity and faster maceration of the oily part of the seed.
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus is found colonizing numerous oil seed crops such as corn, peanuts, sorghum, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been de...
StuA is a key regulator of fumonisin production and virulence in Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is one of the most important pathogens of maize, producing fumonisin mycotoxins during infection. Ingestion of fumonisin-contaminated corn causes fatal toxicity in livestock and is associated with neural tube birth defects and growth stunting in children. It is also a potent...
Characterization of stuA mutants in the mycotoxigenic maize pathogen Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a major pathogen of maize, causing root, stalk and ear rots and seedling blight. It also produces fumonisin mycotoxins. Ingestion of fumonisin-contaminated corn causes acute toxicity in livestock and is a potential carcinogen to humans. StuA, an APSES protein class transc...
USDA-ARS?s Scientific Manuscript database
Non-toxigenic strains of Aspergillus flavus offer the potential to control aflatoxin contamination by competitive displacement of indigenous populations of A. flavus colonizing corn grain. Two sets of experiments were conducted to assess the competitiveness of strain K49 when challenged against two...
USDA-ARS?s Scientific Manuscript database
Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...
This study is part of a long-term cooperative national research project among the US EPA and the USGS to collect comparable water-quality data from small streams and to develop regional predicitive models that use landscape characteristics to estimate pesticide and nutrient conce...
Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol
NASA Astrophysics Data System (ADS)
Deenik, J. L.; Cooney, M. J.; Antal, M. J., Jr.
2013-12-01
Disposal of sewage sludge and other agricultural waste materials has become increasingly difficult in urban environments with limited land space. Carbonization of the hazardous waste produces biochar as a soil amendment with potential to improve soil quality and productivity. A series of greenhouse pot experiments were conducted to assess the agrnomic value of two biochars made from domestic wastewater sludge and corn cob waste. The ash component of the sewage sludge biochar was very high (65.5%) and high for the corn cob (11.4%) biochars. Both biochars contained low concentrations of heavy metals and met EPA land application criteria. The sewage sludge biochar was a better liming material and source of mineral nutrients than the corn cob biochar, but the corn cob biochar showed the greatest increase in soil carbon and total nitrogen. Both biochar materials increased soil pH compared with soils not receiving biochar, but the sewage sludge biochar was a more effective liming material maintaining elevated soil pH throughout the 3 planting cycles. The sewage sludge biochar also showed the greatest increase in extractable soil P and base cations. In the first planting cycle, both biochars in combination with conventional fertilizers produced significantly higher corn seedling growth than the fertilized control. However, the sewage sludge biochar maintained beneficial effects corn seedling growth through the third planting cycle showing 3-fold increases in biomass production compared with the control in the third planting. The high ash content and associated liming properties and mineral nutrient contributions in the sewage sludge biochar explain benefits to plant growth. Conversion of sewage sludge waste into biochar has the potential to effectively address several environmental issues: 1) convert a hazardous waste into a valuable soil amendment, 2) reduce land and water contamination, and 3) improve soil quality and productivity.
Faberi, Angelo; Foglia, Patrizia; Pastorini, Elisabetta; Samperi, Roberto; Laganà, Aldo
2005-01-01
A sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for determining the type B fumonisin mycotoxins in corn-based foodstuffs is described. Fumonisins FB1 and FB2 were extracted from a 1 g sample by homogenization with acetonitrile/water (75:25, v/v, 50 mmol/L formic acid, 25 mL final volume) and the extract was defatted on C18 phase. Volumes of 5 mL of crude extracts were cleaned up on Carbograph-4 cartridges. The final solution was analyzed by HPLC with electrospray ionization mass spectrometry in positive ion mode using multiple reaction monitoring with a QqQ linear ion trap mass spectrometer. Recoveries for spiked corn-based foodstuffs ranged from 91-105% (RSD% < or =8%), and method detection limits were < or =2 ng/g for FB1 and < or =1 ng/g for FB2. Two different spiking levels were tested (5000 and 100 ng/g for FB1, 1000 and 20 ng/g for FB2). Quantitation was achieved by an external calibration procedure using matrix-matched standards, with diclofenac added post-cleanup as internal standard for the LC/MS/MS analyses. Calibration curves showed linearity in the concentration range 0.005-5 ng/microL of final extract (0.992 < or = R2< or =0.995). Two other fumonisins, FB3 and FB4, were identified in naturally contaminated samples of corn meal using an information-dependent acquisition protocol that looped three experiments, including neutral loss scan, enhanced resolution scan, and enhanced product ion scan. FB3 and FB4 quantitation was estimated as peak area ratios relative to the FB2 response in view of the lack of both standards. This work also includes an application of the present LC/MS/MS method to some maize and maize-based product samples (corn meal, cornflakes and popcorn) collected from Italian stores. FB1 and FB2 contamination levels exceeding the European Union recommendation were found in 8 out of 15 corn meal samples.
Sewsynker-Sukai, Yeshona; Gueguim Kana, E B
2017-11-01
This study presents a sequential sodium phosphate dodecahydrate (Na 3 PO 4 ·12H 2 O) and zinc chloride (ZnCl 2 ) pretreatment to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of Na 3 PO 4 ·12H 2 O concentration (5-15%), ZnCl 2 concentration (1-5%) and solid to liquid ratio (5-15%) on reducing sugar yield from corn cobs were investigated. The sequential pretreatment model was developed and optimized with a high coefficient of determination value (0.94). Maximum reducing sugar yield of 1.10±0.01g/g was obtained with 14.02% Na 3 PO 4 ·12H 2 O, 3.65% ZnCl 2 and 5% solid to liquid ratio. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major lignocellulosic structural changes after the optimized sequential pretreatment with 63.61% delignification. In addition, a 10-fold increase in the sugar yield was observed compared to previous reports on the same substrate. This sequential pretreatment strategy was efficient for enhancing enzymatic saccharification of corn cobs. Copyright © 2017 Elsevier Ltd. All rights reserved.
España-Gamboa, Elda; Domínguez-Maldonado, Jorge Arturo; Tapia-Tussell, Raul; Chale-Canul, Jose Silvano; Alzate-Gaviria, Liliana
2018-01-01
In Mexico, the corn tortilla is a food of great economic importance. Corn tortilla production generates about 1500-2000 m 3 of wastewater per 600 tons of processed corn. Although this wastewater (also known as nejayote) has a high organic matter content, few studies in Mexico have analyzed its treatment. This study presents fresh data on the potential methane production capacity of nejayote in a two-phase anaerobic digestion system using an Anaerobic-Packed Column Reactor (APCR) to optimize the acidogenic phase and an up-flow anaerobic sludge blanket (UASB) reactor to enhance the methanogenic process. Results indicate that day 8 was ideal to couple the APCR to the UASB reactor. This allowed for a 19-day treatment that yielded 96% COD removal and generated a biogas containing 84% methane. The methane yield was 282 L kg -1 of COD removed . Thus, two-phase anaerobic digestion is an efficient process to treat nejayote; furthermore, this study demonstrated the possibility of using an industrial application by coupling the APCR to the UASB reactor system, in order to assess its feasibility for biomethane generation as a sustainable bioenergy source.
Occurrence of mycotoxins and yeasts and moulds identification in corn silages in tropical climate.
Carvalho, B F; Ávila, C L S; Krempser, P M; Batista, L R; Pereira, M N; Schwan, R F
2016-05-01
This study was aimed to identify yeasts and moulds as well as to detect mycotoxin in corn silages in southern Minas Gerais, Brazil. Corn silages from 36 farms were sampled to analyse dry matter, crude protein, ether extract, ash, neutral detergent fibre, nonfibre carbohydrates and mycotoxins contents, yeasts and moulds population, pH and temperature values. The mycotoxins found in high frequency were aflatoxin in 77·7% of analysed samples, ochratoxin (33·3%) and zearalenone (22·2%). There was no significant correlation between the mycotoxin concentration and the presence of moulds. The pH was negatively correlated with ochratoxin concentration. Aspergillus fumigatus was identified in all silages that presented growth of moulds. Ten different yeast species were identified using the culture-dependent method: Candida diversa, Candida ethanolica, Candida rugosa, Issatchenkia orientalis, Kluyveromyces marxianus, Pichia manshurica, Pichia membranifaciens, Saccharomyces cerevisiae, Trichosporon asahii and Trichosporon japonicum. Another six different yeast species were identified using the culture-independent method. A high mycotoxin contamination rate (91·6% of the analysed silages) was observed. The results indicated that conventional culturing and PCR-DGGE should be combined to optimally describe the microbiota associated with corn silage. This study provides information about the corn silage fermentation dynamics and our findings are relevant to optimization of this silage fermentation. © 2016 The Society for Applied Microbiology.
Beaubrun, Junia Jean-Gilles; Addy, Nicole; Keltner, Zachary; Farris, Samantha; Ewing, Laura; Gopinath, Gopal; Hanes, Darcy E
2018-06-01
Phenolic compounds, like carvacrol, in oregano interfere with the detection of foodborne pathogens such as Salmonella enterica. Carvacrol concentration varies based on plant cultivars and growth region. Six oregano cultivars were used to compare the impact of carvacrol concentration on Salmonella and to evaluate the effectiveness of corn oil to help increase Salmonella survival for detection. The results of Agilent 1200 series high-performance liquid chromatography analysis showed that carvacrol concentration in the six oregano cultivars ranged from 64 to 11,200 ppm. Oregano samples were artificially contaminated with S. enterica and were preenriched in Trypticase soy broth with or without 2% (v/v) corn oil. After 18 to 24 h at 37°C, aliquots were transferred to selective enrichment broths. Salmonella was recovered onto xylose lysine Tergitol 4 agar. Six Salmonella serovars were compared, and recovery varied based on carvacrol concentration and serovar. Samples with higher concentrations of carvacrol showed Salmonella recovery only when they were preenriched with corn oil. Based on metagenomic analysis, the microflora associated with the oregano also varied per cultivar. The results show that, as carvacrol levels increased, Salmonella survival decreased. However, the addition of corn oil to the preenrichment broth can minimize the antimicrobial effects of the phenolic compounds, thus allowing for increased detection of Salmonella from oregano cultivars.
2002-12-01
OF ORGANIC SUBSTRATES USED FOR ANAEROBIC DECHLORINATION Substrate Bulk Price per Pound (dollars) Advantages Disadvantages Sugar ( Corn Syrup ...that have been added to stimulate dechlorination reactions in the subsurface include: lactate, butyrate, acetate, molasses, refined sugars ( fructose ...1 11 3 Butyrate 3 3 1 3 2 3 3 0 Molasses 19 15 7 9 5 0 9 9 Fructose 1 1 0 1 0 0 1 0 Lactose 1 1 1 1 1 0 0 1 Acetate 3 3 1 2 1 0 3 0 Methanol/Acetate
Aflatoxin contamination in foods and foodstuffs in Tokyo: 1986-1990.
Tabata, S; Kamimura, H; Ibe, A; Hashimoto, H; Iida, M; Tamura, Y; Nishima, T
1993-01-01
Aflatoxins were determined in 3054 samples of foods or foodstuffs, including cereals, nuts, beans, spices, dairy products, dry fruits, and edible oil. Samples were collected in Tokyo from 1986 to 1990. Aflatoxins were found in rice products, adlay, corn, crude sugar, peanut products, pistachio nuts, brazil nuts, sesame products, butter beans, white pepper, red pepper, paprika, nutmeg, and mixed spices. The highest incidence of aflatoxin contamination was observed in nutmeg (80%), and the highest level of aflatoxin B1 was observed in pistachio nuts (1382 ppb).
Colavolpe, María Belén; Mejía, Santiago Jaramillo; Albertó, Edgardo
2014-01-01
Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (10(5) conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species.
Colavolpe, María Belén; Mejía, Santiago Jaramillo; Albertó, Edgardo
2014-01-01
Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (105 conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species. PMID:25763030
USDA-ARS?s Scientific Manuscript database
Butanol is the major product of acetone-butanol-ethanol (ABE; ratio 3:6:1) fermentation. It can be produced from various carbohydrates such as glucose, corn, molasses, and whey permeate (a by-product of the dairy industry) using microbial strains such as Clostridium beijerinckii and/or C. acetobuty...
USDA-ARS?s Scientific Manuscript database
One of the most critical stages of conversion of agricultural waste biomass into biofuels employs hydrolysis reactions between highly specific enzymes and matching substrates (e.g. corn stover cellulose with cellulase) that produce soluble sugars, which then could be converted into ethanol. Despite ...
Nitrous Oxide Production in an Eastern Corn Belt Soil: Sources and Redox Range
USDA-ARS?s Scientific Manuscript database
Nitrous oxide (N2O) derived from soils is a main contributor to the greenhouse gas effect and a precursor to ozone-depleting substrates; however, the source processes and interacting controls are not well established. This study was conducted to estimate magnitude and source (nitrification vs. denit...
Lai, Chenhuan; Tang, Shuo; Yang, Bo; Gao, Ziqi; Li, Xin; Yong, Qiang
2017-11-01
A novel pretreatment process of corn stover was established in this study by in situ modification of lignin with poly (ethylene glycol) diglycidyl ether (PEGDE) during low temperature alkali pretreatment. The addition of PEGDE obviously improved the enzymatic hydrolysis by covalently modifying the residual lignins in substrates. Under the optimized conditions (pretreated with 10% (w/w) NaOH and 10% (w/w) PEGDE at 70°C for 2.5h), the total fermentable sugar yield was increased by 46.4%, from 23.7g to 34.7g per 100g raw materials. Additionally, the remaining activities of exo-glucanase and β-glucosidase in supernatant were increased by 58.6% and 40.6% respectively, demonstrating that the enhancement of enzymatic hydrolysis was mainly due to the alleviation of enzyme non-productive binding. Although the isolated lignin modified with PEGDE enhanced the enzymatic hydrolysis of substrates as well, this in situ lignin modification provided an efficient but simple way to improve enzymatic saccharification. Copyright © 2017. Published by Elsevier Ltd.
Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans.
Zheng, Zhaojuan; Cai, Cong; Jiang, Ting; Zhao, Mingyue; Ouyang, Jia
2014-08-01
Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient L-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for L-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett-Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l(-1) L-lactic acid was obtained from 100 g l(-1) xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l(-1) L-lactic acid was obtained in 36 h and the yield was 83.09 %.
Abrasion resistant low friction and ultra-hard magnetron sputtered AlMgB14 coatings
NASA Astrophysics Data System (ADS)
Grishin, A. M.
2016-04-01
Hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric AlMgB14 ceramic target. X-ray amorphous AlMgB14 films are very smooth. Their roughness does not exceed the roughness of Si wafer and Corning glass used as the substrates. Dispersion of refractive index and extinction coefficient were determined within 300 to 2500 nm range for the film deposited onto Corning glass. Stoichiometric in-depth compositionally homogeneous 2 μm thick films on the Si(100) wafer possess the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth. Friction coefficient was found to be 0.06. The coating scratch adhesion strength of 14 N was obtained as the first chipping of the coating whereas its spallation failure happened at 21 N. These critical loads and the work of adhesion, estimated as high as 18.4 J m-2, surpass characteristics of diamond like carbon films deposited onto tungsten carbide-cobalt (WC-Co) substrates.
Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water
USDA-ARS?s Scientific Manuscript database
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or “tiles”. Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concent...
Mycobacterium avium subsp paratuberculosis cells are surprisingly resistant to ensiling process.
USDA-ARS?s Scientific Manuscript database
Silage is a valuable source of nutrients for dairy and beef cattle in non-forage months. The most commonly ensiled crops include corn and grass forage, both of which are often fertilized with livestock manure spread by broadcasting onto the soil or by spray irrigation. Pathogen contamination may res...
Evaluation of the atoxigenic Aspergillus flavus strain AF36 in pistachio orchards
USDA-ARS?s Scientific Manuscript database
The atoxigenic strain Aspergillus flavus AF36, which has been extensively used as a biocontrol agent in commercial corn and cotton fields to reduce aflatoxin contamination, was applied in research pistachio orchards from 2002 to 2005 and in commercial pistachio orchards from 2008 to 2011. AF36 was a...
USDA-ARS?s Scientific Manuscript database
Coffee is a high-value commodity that is a target for adulteration, especially after the beans have been roasted and ground. Countries such as Brazil, the second largest coffee producer, have set limits on the allowable amount of coffee contamination and adulteration. Therefore, there is significant...
USDA-ARS?s Scientific Manuscript database
The soil-inhabitant fungus Aspergillus flavus is consistently associated with agronomical fields, where it promptly colonizes important crops such as corn (Zea mays) and peanuts (Arachis hypogaea). The consumption of A. flavus-contaminated of food grains poses a potential threat for human and animal...
Li, Bo; Yang, Junxing; Wei, Dongpu; Chen, Shibao; Li, Jumei; Ma, Yibing
2014-01-01
To reduce Cd phytoavailability in calcareous soils, the effects of soil amendments of red mud, rape straw, and corn straw in combination with zinc fertilization on Cd extractability and phytoavailability to spinach, tomato, Chinese cabbage and radish were investigated in a calcareous soil with added Cd at 1.5 mg kg−1. The results showed that water soluble and exchangeable Cd in soils was significantly decreased by the amendments themselves from 26% to 70%, which resulted in marked decrease by approximately from 34% to 77% in Cd concentration in vegetables. The amendments plus Zn fertilization further decreased the Cd concentration in vegetables. Also cruciferous rape straw was more effective than gramineous corn straw. In all treatments, rape straw plus red mud combined with Zn fertilization was most effective in decreasing Cd phytoavailability in soils, and it is potential to be an efficient and cost-effective measure to ensure food safety for vegetable production in mildly Cd-contaminated calcareous soils. PMID:25303439
RF plasma cleaning of silicon substrates with high-density polyethylene contamination
NASA Astrophysics Data System (ADS)
Cagomoc, Charisse Marie D.; De Leon, Mark Jeffry D.; Ebuen, Anna Sophia M.; Gilos, Marlo Nicole R.; Vasquez, Magdaleno R., Jr.
2018-01-01
Upon contact with a polymeric material, microparticles from the polymer may adhere to a silicon (Si) substrate during device processing. The adhesion contaminates the surface and, in turn, leads to defects in the fabricated Si-based microelectronic devices. In this study, Si substrates with artificially induced high-density polyethylene (HDPE) contamination was exposed to 13.56 MHz radio frequency (RF) plasma utilizing argon and oxygen gas admixtures at a power density of 5.6 W/cm2 and a working pressure of 110 Pa for up to 6 min of treatment. Optical microscopy studies revealed the removal of up to 74% of the polymer contamination upon plasma exposure. Surface free energy (SFE) increased owing to the removal of contaminants as well as the formation of polar groups on the Si surface after plasma treatment. Atomic force microscopy scans showed a decrease in surface roughness from 12.25 nm for contaminated samples to 0.77 nm after plasma cleaning. The smoothening effect can be attributed to the removal of HDPE particles from the surface. In addition, scanning electron microscope images showed that there was a decrease in the amount of HDPE contaminants adhering onto the surface after plasma exposure.
Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants.
Alkan-Ozkaynak, A; Karthikeyan, K G
2011-11-01
Recycling of anaerobically-digested thin stillage within a corn-ethanol plant may result in the accumulation of nutrients of environmental concern in animal feed coproducts and inhibitory organic materials in the fermentation tank. Our focus is on anaerobic digestion of treated (centrifugation and lime addition) thin stillage. Suitability of digestate from anaerobic treatment for reuse as process water was also investigated. Experiments conducted at various inoculum-to-substrate ratios (ISRs) revealed that alkalinity is a critical parameter limiting digestibility of thin stillage. An ISR level of 2 appeared optimal based on high biogas production level (763 mL biogas/g volatile solids added) and organic matter removal (80.6% COD removal). The digester supernatant at this ISR level was found to contain both organic and inorganic constituents at levels that would cause no inhibition to ethanol fermentation. Anaerobic digestion of treated-thin stillage can be expected to improve the water and energy efficiencies of dry grind corn-ethanol plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong, Hee Je; Choi, Seungmok
2015-10-09
This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWCmore » functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.« less
Biological abatement of cellulase inhibitors.
Cao, Guangli; Ximenes, Eduardo; Nichols, Nancy N; Zhang, Leyu; Ladisch, Michael
2013-10-01
Removal of enzyme inhibitors released during lignocellulose pretreatment is essential for economically feasible biofuel production. We tested bio-abatement to mitigate enzyme inhibitor effects observed in corn stover liquors after pretreatment with either dilute acid or liquid hot water at 10% (w/v) solids. Bio-abatement of liquors was followed by enzymatic hydrolysis of cellulose. To distinguish between inhibitor effects on enzymes and recalcitrance of the substrate, pretreated corn stover solids were removed and replaced with 1% (w/v) Solka Floc. Cellulose conversion in the presence of bio-abated liquors from dilute acid pretreatment was 8.6% (0.1x enzyme) and 16% (1x enzyme) higher than control (non-abated) samples. In the presence of bio-abated liquor from liquid hot water pretreated corn stover, 10% (0.1x enzyme) and 13% (1x enzyme) higher cellulose conversion was obtained compared to control. Bio-abatement yielded improved enzyme hydrolysis in the same range as that obtained using a chemical (overliming) method for mitigating inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for in-situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2006-12-12
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.
Uematsu, Y; Hirata, K; Suzuki, K; Iida, K; Saito, K
2001-02-01
BADGE.2HCl and BFDGE.2HCl were determined in 28 samples of ready-to-drink canned coffee and 18 samples of canned vegetables (10 corn, 5 tomatoes and 3 others), all from the Japanese market. HPLC was used as the principal analytical method and GC-MS for confirmation of relevant LC fractions. BADGE.2HCl was found to be present in one canned coffee and five samples of corn, BFDGE.2HCl in four samples of canned tomatoes and in one canned corn. No sample was found which exceeded the 1 mg/kg limit of the EU for the BADGE chlorohydrins. However the highest concentration was found for the sum of BFDGE.2HCl anti BFDGE.HCl.H2O at a level of 1.5 mg/kg. A Beilstein test confirmed that all cans containing foods contaminated with BADGE.2HCl or BFDGE.2HCl had at lest one part coated with a PVC organosol.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.
2008-01-01
Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system, Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various meta! (steel, inconel, and aluminum), phenolic (carbon cloth phenolic and glass cloth phenolic), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber, silica-filled ethylene propylenediene monomer, and carbon-filled ethylene propylenediene monomer) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.
Kakuk, Balázs; Kovács, Kornél L; Szuhaj, Márk; Rákhely, Gábor; Bagi, Zoltán
2017-08-01
Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the <10 mm fraction of the grinded and sieved CS was amenable for biogasification, but it required 10% more time to produce 90% of the total biomethane yield than the <2 mm sized fraction, although in the total yields there was no significant difference between the two size ranges. We also observed that increasing amount of substrate added to the fermentation lowered the specific methane yield. In the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 g vs /L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH 4 /g vs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Meng, F; Ma, L; Ji, S; Yang, W; Cao, B
2014-09-01
Bioconversion of biomass, particularly crop wastes, into biofuels is being developed as an alternative approach in meeting the high energy demand. In this study, a thermophilic bacterial strain BY-3 that exhibits cellulolytic potential was isolated from faecal samples of Tibetan pigs; this strain was identified as Bacillus subtilis. The strain can produce cellulase when grown on various substrates, including carboxymethyl cellulose, rice straw, corn stover, soluble starch and wheat bran. The maximum cellulase activity of the strain was up to 4·323 ± 0·065 U ml(-1) when cultivated in the medium containing corn stover (30 g l(-1) ) for 24 h. The results demonstrated that corn stover is the most suitable substrate for cellulase production by the strain BY-3. The crude cellulase of strain BY-3 was most active at pH 5·5 and 60°C, and the enzyme in acetate buffer (50 mmol l(-1) ) demonstrated a good stability at 60°C for at least 1 h. The crude cellulase exhibited a strong antibacterial activity against Staphylococcus aureus. The strain can be used in cost-efficient cellulase production for bioconversion of agricultural residual biomass into biofuels. The increased consumption of fossil fuels has caused serious energy crisis and environmental problem. Thus, an alternative energy source is necessary. Bioconversion of biomass, particularly agricultural residuals, into value-added bioproducts, such as biofuels and chemical solvents, has received considerable attention. In this study, the newly isolated thermophilic Bacillus subtilis strain BY-3 produces cellulase efficiently with the use of untreated corn stover as a sole carbon source. This strain possesses the thermostable cellulase that is active with diverse crop wastes with a broad pH range and is a highly promising candidate for agricultural waste management. © 2014 The Society for Applied Microbiology.
Study of Wastewaters Contaminated with Heavy Metals in Bioethanol Production
NASA Astrophysics Data System (ADS)
Bartošová, Alica; Blinová, Lenka
2017-06-01
Bioethanol as a substitute for traditional sources of energy, especially oil transport, is currently one of the most researched alternative motor fuels. Normally, bioethanol is produced from agricultural crops such as sugar cane or corn. However, this is counter-productive, because agriculture is primarily serving to ensure enough food for the people. It is therefore necessary to look for new production of appropriate non-food crops or find an added value to this process. Utilisation of contaminated water from metal industry could be one of them. Based on the hypothesis of reduction of some toxic metals with higher oxidation number is opening the possibility of using this wastewater in alcohol fermentation of any kind of biomass. In this study, hexavalent chromium Cr(VI) was used as a model contaminant in the process of aerobic fermentation of corn to bioethanol. To determine the reduction potential of glucose to Cr(VI), and to quantitatively determinate the glucose content after saccharification, UV/VIS spectrophotometry was used. As a method of qualitative determination of fermentation product, gas chromatography with mass detection was used. Infrared spectrometry was used for qualitative analyses of produced ethanol. Based on the established results shown in this paper, we can conclude that the presence of hexavalent chromium in the fermentation process does not have a significant negative impact, while offering the opportunity of using the industrial wastewaters for the production of bioethanol fuel.
Delgadillo, Víctor; Verdejo, José; Mondaca, Pedro; Verdugo, Gabriela; Gaete, Hernán; Hodson, Mark E; Neaman, Alexander
2017-06-01
Use of avoidance tests is a quick and cost-effective method of assessing contaminants in soils. One option for assessing earthworm avoidance behavior is a two-section test, which consists of earthworms being given the choice to move between a test soil and a control substrate. For ecological relevance, tested soils should be field-contaminated soils. For practical reasons, artificial soils are commonly used as the control substrate. Interpretation of the test results compromised when the test soil and the artificial substrate differ in their physico-chemical properties other than just contaminants. In this study we identified the physico-chemical properties that influence avoidance response and evaluated the usefulness of adjusting these in the control substrate in order to isolate metal-driven avoidance of field soils by earthworms. A standardized two-section avoidance test with Eisenia fetida was performed on 52 uncontaminated and contaminated (Cu >155mgkg -1 , As >19mgkg -1 ) agricultural soils from the Aconcagua River basin and the Puchuncaví Valley in Chile. Regression analysis indicated that the avoidance response was determined by soil organic matter (OM), electrical conductivity (EC) and total soil Cu. Organic matter content of the artificial substrate was altered by peat additions and EC by NaCl so that these properties matched those of the field soils. The resultant EC 80 for avoidance (indicative of soils of "limited habitat") was 433mg Cu kg -1 (339 - 528mgkg -1 95% confidence intervals). The earthworm avoidance test can be used to assess metal toxicity in field-contaminated soils by adjusting physico-chemical properties (OM and EC) of the artificial control substrate in order to mimic those of the field-collected soil. Copyright © 2017 Elsevier Inc. All rights reserved.
Mountaintop removal and valley filling is a method of coal mining that buries Central Appalachian headwater streams. A 2007 federal court ruling highlighted the need for measurement of both ecosystem structure and function when assessing streams for mitigaton. Rapid functional as...
NASA Astrophysics Data System (ADS)
Lafane, S.; Kerdja, T.; Abdelli-Messaci, S.; Khereddine, Y.; Kechouane, M.; Nemraoui, O.
2013-07-01
Vanadium dioxide thin films have been deposited on Corning glass substrates by a KrF laser ablation of V2O5 target at the laser fluence of 2 J cm-2. The substrate temperature and the target-substrate distance were set to 500 ∘C and 4 cm, respectively. X-ray diffraction analysis showed that pure VO2 is only obtained at an oxygen pressure range of 4×10-3-2×10-2 mbar. A higher optical switching contrast was obtained for the VO2 films deposited at 4×10-3-10-2 mbar. The films properties were correlated to the plume-oxygen gas interaction monitored by fast imaging of the plume.
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus infects several food and feed crops such as corn, cotton, peanuts and tree nut crops and contaminates the seed with carcinogenic aflatoxins. These susceptible crops contain rich reserves of lipids and fatty acids. The nature of relationship between lipids and the ability of the f...
USDA-ARS?s Scientific Manuscript database
Fusarium graminearum, a fungal pathogen of wheat, barley, and corn, produces a variety of trichothecene mycotoxins that are important as aggressiveness factors and as seed contaminants reducing grain quality. A previous survey of the pathogen in New York State identified variation in genes indicativ...
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus is a saprophytic fungus that infects corn, peanuts, tree nuts and other agriculturally important crops. Once the crop is infected the fungus has the potential to secrete one or more mycotoxins, the most carcinogenic of which is aflatoxin. Aflatoxin contaminated crops are deemed un...
USDA-ARS?s Scientific Manuscript database
Evaluation of resistance or susceptibility of corn inbreds to infection by Aspergillus flavus was evaluated by a kernel screening assay. A GFP-expressing strain of A. flavus was used to accomplish this study to measure fungal spread and aflatoxin levels in real time. Among the four inbreds tested, ...
Treatment and prevention systems for acid mine drainage and halogenated contaminants
Jin, Song [Fort Collins, CO; Fallgren, Paul H [Laramie, WY; Morris, Jeffrey M [Laramie, WY
2012-01-31
Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.
2008-01-01
Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system. Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing, attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various metal (steel, Inconel, and aluminum), phenolic (carbon-cloth phenolic [CCP] and glass-cloth phenolic [GCP]), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber [ASNBR]; silica-filled ethylene propylenediene monomer [SFEPDM], and carbon-filled ethylene propylenediene monomer [CFEPDM]) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.
An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes.
Aureli, P; Fiorucci, G C; Caroli, D; Marchiaro, G; Novara, O; Leone, L; Salmaso, S
2000-04-27
On May 21, 1997, numerous cases of febrile gastrointestinal illness were reported among the students and staff of two primary schools in northern Italy, all of whom had eaten at cafeterias served by the same caterer. We interviewed people who ate at the cafeterias about symptoms and foods consumed on May 20. There were no samples of foods left at the cafeterias, but we tested routine samples taken on May 20 by the caterer and environmental specimens at the catering plant. The hospitalized patients were tested for common enteropathogens and toxins. Of the 2189 persons interviewed (82 percent of those exposed), 1566 (72 percent) reported symptoms; of these, 292 (19 percent) were hospitalized. Among samples obtained from hospitalized patients, all but two of the stool specimens and all blood specimens were negative for common enteropathogens. Listeria monocytogenes was isolated from one blood specimen and from 123 of the 141 stool specimens. Consumption of a cold salad of corn and tuna was associated with the development of symptoms (relative risk, 6.19; 95 percent confidence interval, 4.81 to 7.98; P<0.001). L. monocytogenes was isolated from the caterer's sample of the salad and from environmental specimens collected from the catering plant. All listeria isolates were serotype 4b and were found to be identical on DNA analysis. Experimental contamination of sterile samples of the implicated foods showed that L. monocytogenes grew on corn when kept for at least 10 hours at 25 degrees C. Food-borne infection with L. monocytogenes can cause febrile illness with gastroenteritis in immunocompetent persons.
Wauchope, R Don; Estes, Tammara L; Allen, Richard; Baker, James L; Hornsby, Arthur G; Jones, Russell L; Richards, R Peter; Gustafson, David I
2002-02-01
In the intensely farmed corn-growing regions of the mid-western USA, surface waters have often been contaminated by herbicides, principally as a result of rainfall runoff occurring shortly after application of these to corn and other crops. In some vulnerable watersheds, water quality criteria for chronic human exposure through drinking water are occasionally exceeded. We selected three settings representative of vulnerable corn-region watersheds, and used the PRZM-EXAMS model with the Index Reservoir scenario to predict corn herbicide concentrations in the reservoirs as a function of herbicide properties and use pattern, site characteristics and weather in the watersheds. We compared herbicide application scenarios, including broadcast surface pre-plant atrazine and alachlor applications with a glyphosate pre-plant application, scenarios in which losses of herbicides were mitigated by incorporation or banding, and scenarios in which only glyphosate or glufosinate post-emergent herbicides were used with corn genetically modified to be resistant to them. In the absence of drift, in almost all years a single runoff event dominates the input into the reservoir. As a result, annual average pesticide concentrations are highly correlated with annual maximum daily values. The modeled concentrations were generally higher than those derived from monitoring data, even for no-drift model scenarios. Because of their lower post-emergent application rates and greater soil sorptivity, glyphosate and glufosinate loads in runoff were generally one-fifth to one-tenth those of atrazine and alachlor. These model results indicate that the replacement of pre-emergent corn herbicides with the post-emergent herbicides allowed by genetic modification of crops would dramatically reduce herbicide concentrations in vulnerable watersheds. Given the significantly lower chronic mammalian toxicity of these compounds, and their vulnerability to breakdown in the drinking water treatment process, risks to human populations through drinking water would also be reduced.
Evaluation of corn germplasm lines for multiple ear-colonizing insect and disease resistance.
Ni, Xinzhi; Xu, Wenwei; Blanco, Michael H; Wilson, Jeffrey P
2012-08-01
Ear-colonizing insects and diseases that reduce yield and impose health threats by mycotoxin contaminations in the grain, are critical impediments for corn (Zea mays L.) production in the southern United States. Ten germplasm lines from the Germplasm Enhancement of Maize (GEM) Program in Ames, IA, and Raleigh, NC, and 10 lines (derived from GEM germplasm) from the Texas Agricultural Experiment Station in Lubbock, TX, were examined in 2007 and 2008 with local resistant and susceptible controls. Four types of insect damage and smut disease (Ustilago maydis) infection, as well as gene X environment (G X E) interaction, was assessed on corn ears under field conditions. Insect damage on corn ears was further separated as cob and kernel damage. Cob penetration rating was used to assess corn earworm [Helicoverpa zea (Boddie)] and fall armyworm [Spodoptera frugiperda (J.E. Smith)] feeding on corn cobs, whereas kernel damage was assessed using three parameters: 1) percentage of kernels discolored by stink bugs (i.e., brown stink bug [Euschistus serous (Say)], southern green stink bug [Nezara viridula (L.)], and green stink bug [Chinavia (Acrosternum) hilare (Say)]; 2) percentage of maize weevil (Sitophilus zeamais Motschulsky)-damaged kernels; and 3) percentage of kernels damaged by sap beetle (Carpophilus spp.), "chocolate milkworm" (Moodna spp.), and pink scavenger caterpillar [Pyroderces (Anatrachyntis) rileyi (Walsingham)]. The smut infection rates on ears, tassels, and nodes also were assessed. Ear protection traits (i.e., husk tightness and extension) in relation to insect damage and smut infection also were examined. Significant differences in insect damage, smut infection, and husk protection traits were detected among the germplasm lines. Three of the 20 germplasm lines were identified as being multiple insect and smut resistant. Of the three lines, entries 5 and 7 were derived from DKXL370, which was developed using corn germplasm from Brazil, whereas entry 14 was derived from CUBA117.
NASA Astrophysics Data System (ADS)
Prussin, Aaron Justin, II
Fusarium head blight (FHB), caused by Fusarium graminearum , is a serious disease of wheat and barley that has caused several billion dollars in crop losses over the last decade in the United States. Spores of F. graminearum are released from corn and small grain residues left-over from the previous growing season and are transported long distances in the atmosphere before being deposited. Current risk assessment tools consider environmental conditions favorable for disease development, but do not include spore transport. Long distance transport models have been proposed for a number of plant pathogens, but many of these models have not been experimentally validated. In order to predict the atmospheric transport of F. graminearum, the potential source strength ( Qpot) of inoculum must be known. We conducted a series of laboratory and field experiments to estimate Qpot from a field-scale source of inoculum of F. graminearum. Perithecia were generated on artificial (carrot agar) and natural (corn stalk) substrates. Artificial substrate (carrot agar) produced 15+/-0.4 perithecia cm-2, and natural substrate (corn stalk) produced 44+/-2 perithecia cm-2. Individual perithecia were excised from both substrate types and allowed to release ascospores every 24 hours. Perithecia generated from artificial (carrot agar) and natural (corn stalk) substrates released a mean of 104+/-5 and 276+/-16 ascospores, respectively. A volumetric spore trap was placed inside a 3,716 m2 clonal source of inoculum in 2011 and 2012. Results indicated that ascospores were released under field conditions predominantly (>90%) during the night (1900 to 0700 hours). Estimates of Qpot for our field-scale sources of inoculum were approximately 4 billion ascospores per 3,716 m 2. Release-recapture studies were conducted from a clonal field-scale source of F. graminearum in 2011 and 2012. Microsatellites were used to identify the released clone of F. graminearum at distances up to 1 km from the source. Dispersal kernels for field observations were compared to results predicted by a Gaussian dispersal-based spore transport model. In 2011 and 2012, dispersal kernel shape coefficients were similar for both results observed in the field and predicted by the model, with both being dictated by a power law function, indicating that turbulence was the dominant transport factor on the scale we studied (˜ 1 km). Model predictions had a stronger correlation with the number of spores being released when using a time varying q0 emission rate (r= 0.92 in 2011 and r= 0.84 in 2012) than an identical daily pattern q0 emission rate (r= 0.35 in 2011 and r= 0.32 in 2012). The actual numbers of spores deposited were 3 and 2000 times lower than predicted if Qpot were equal to the actual number of spores released in 2011 and 2012, respectively. Future work should address estimating the actual number of spore released from an inoculated field during any given season, to improve prediction accuracy of the model. This work should assist in improving current risk assessment tools for FHB and contribute to the development of early warning systems for the spread of F. graminearum.
Meot-Duros, Laetitia; Le Floch, Gaëtan; Meot, Benoit; Letousey, Patricia; Jacob, Bruno; Barbier, Georges
2011-10-26
Composed of a marine plant, Zostera sp., eelgrass slabs are a novel organic substrate for soilless cultures used in tomato production. The benefit of using eelgrass slabs for growing tomatoes was assessed by comparing it with coconut fiber slabs in regard to contamination by Pythium spp. and to the antioxidant properties of tomato fruits. First, tomato root contamination by Pythium spp. was studied by direct plate counting, and a molecular comparison of fungal and oomycete communities was conducted using PCR-DHPLC. Second, the antioxidant properties of tomato fruits were analyzed by measuring total phenol and carotenoid contents and by evaluating radical scavenging activity. Compared to plants grown on coconut fiber slabs, those on eelgrass slabs presented a lower rate of Pythium spp. root contamination. Moreover, culture on eelgrass slabs produced fruits with better radical scavenging activity and higher total phenol content compared to controls. Carotenoid content was not affected by the type of substrate. This study highlights the value of detrital leaves of Zostera sp. as a substrate for soilless culture that reduces root contamination and also promotes the production of tomato fruits with better nutritional value.
Collings, G F; Yokoyama, M T
1980-03-01
Two predominant rumen cellulolytic bacteria, Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85, were incubated with ground filter paper (Whatman no. 1), cattle manure fiber, wheat straw, Kentucky bluegrass, alfalfa, and corn silage as substrates. Analyses of the initial substrate and the recovered residue after 48 h of static incubation showed that R. flavefaciens C94 was quantitatively more effective than B. succinogenes S85 in degrading total dry matter (32.3% versus 16.1%). However, B. succinogenes S85 demonstrated a qualitative advantage in degrading the hemicellulose and hemicellulosic sugars of particular substrates. R. flavefaciens degraded a mean 29.7% of the cellulose and 35.6% of the hemicellulose in the various substrates, whereas B. succinogenes degraded a mean 17.9 and 31.6% of these fractions, respectively. Gas-liquid chromatography was an important aid in characterizing the polysaccharide-degrading capabilities of these rumen species.
Pyrolysis of Plants After Phytoremediation of Contaminated Soil with Lead, Cadmium and Zinc.
Özkan, Aysun; Günkaya, Zerrin; Banar, Müfide
2016-03-01
The aim of this study was to remediate lead (Pb), cadmium (Cd) and zinc (Zn) from contaminated soil and stabilize to pyrolysis solid product. To accomplish this, phytoremediation of soil contaminated with Pb, Cd and Zn by different plants (sunflower, corn and rape) was performed with and without ethylenediaminetetraacetic acid (EDTA). According to phytoremediation results, rape was the most effective plant with 72 %, 76 % and 77 % removal efficiency for Pb, Cd and Zn, respectively. Also, EDTA addition had no significant effect on translocation of the metals from roots to stems. According to pyrolysis results, Pb, Cd and Zn in the contaminated plants were stabilized in the ash/char fraction. In addition, the solid product can be safely landfilled as inert waste since its toxicity leaching value is lower than the limit values given in the Turkish Regulation on Landfilling of Wastes.
Occurrence of aflatoxins in human foodstuffs in South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loetter, L.H.; Kroehm, H.J.
1988-02-01
Aflatoxins are toxic metabolites of Aspergillus spp and have been reported as contaminants in a number of foodstuffs, namely corn, rice, peanuts, and cereals. In the Republic of South Africa, aflatoxin levels in human foodstuffs are limited to a maximum of 10 ..mu..g/kg for the total and 5 ..mu..g/kg for aflatoxin B/sub 1/. During 1985 and 1986, samples of sorghum beer, sorghum cereal, peanuts, peanut butter and maize meal were purchased from supermarkets in Johannesburg and analyzed for aflatoxins. A total of 414 samples were analyzed during the survey. In 1985, roughly a third of the samples were contaminated withmore » aflatoxins, with no levels in excess of the legal limit. In 1986 the percentage of contaminated samples rose significantly, but the levels of contamination remained low, with only one sample exceeding the legal maximum.« less
NASA Astrophysics Data System (ADS)
Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.
2002-01-01
Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.
Absence of plant uptake and translocation of polybrominated biphenyls (PBBs).
Chou, S F; Jacobs, L W; Penner, D; Tiedje, J M
1978-04-01
Studies of polybrominated biphenyl (PBB) uptake by plants have been conducted in hydroponic solutions and in greenhouse experiments with soil. Autoradiograms of corn and soybean seedlings grown in hydroponic solutions showed no translocation of 14C-PBB from 14C-PBB-treated solutions to plant tops or within the leaf from 14C-PBB-treated spots on the upper leaf surface. A significant portion of the 14C-PBB associated with the roots was removed when the roots were dipped in acetone. Three root crops (radishes, carrots, and onions) were grown in two soils, each treated with a mixture of FireMaster BP-6 (PBB) and 14C-PBB to achieve final concentrations of 100 ppm and 100 ppb. All roots showed more PBB when grown in the soil with the lower clay and organic matter content than they did when grown in the soil with more clay and organic matter. In the latter soil (clay loam) no PBB was detected in any roots from the 100 ppb treatment. More PBB was associated with roots of carrot than of radish or onion. Corn leaf whorls containing dust from a PBB contamination soil and washed radishes from a heavily contaminated garden showed no PBB.
Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Lee, Kang N.
1999-01-01
Plasma-sprayed mullite (3Al2O3 central dot 2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon-based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface, Thus modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.
Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Lee, Kang N.
2000-01-01
Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.
[Limiting factors of waste land revegetation in indigenous zinc smelting areas of western Guizhou].
Lin, Wen-Jie; Xiao, Tang-Fu; Ao, Zi-Qiang; Xing, Jun; Ma, Huan-Cheng; Hu, Ting-Xing
2007-03-01
With indigenous zinc smelting waste residue, contaminated soil and background soil as test substrates, a pot experiment was conducted to study the growth characteristics of Lolium perenne and Trifolium pretense on these substrates. The results showed that the major limiting factors of waste land revegetation in indigenous zinc smelting areas of western Guizhou were the salt-alkali stress and the lower contents of organic matter, total N, available N and total K. The heavy metals in waste residue had a high concentration, but their available forms only occupied a small proportion, with low toxicity to plant but having potential harmful risk. Contaminated soil had lower concentrations of heavy metals than waste residue, but its contained heavy metals were more in available form. The constraints of revegetation on contaminated soil were the toxicity of heavy metals and the low contents of available P and K. Mixing contaminated soil with zinc smelting waste residue could be one of the effective approaches for the substrate amendment in indigenous zinc smelting areas.
Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei
2016-07-01
To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neonicotinoid-Contaminated Puddles of Water Represent a Risk of Intoxication for Honey Bees
Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie
2014-01-01
In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted. PMID:25438051
Neonicotinoid-contaminated puddles of water represent a risk of intoxication for honey bees.
Samson-Robert, Olivier; Labrie, Geneviève; Chagnon, Madeleine; Fournier, Valérie
2014-01-01
In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted.
Electron Beam "Writes" Silicon On Sapphire
NASA Technical Reports Server (NTRS)
Heinemann, Klaus
1988-01-01
Method of growing silicon on sapphire substrate uses beam of electrons to aid growth of semiconductor material. Silicon forms as epitaxial film in precisely localized areas in micron-wide lines. Promising fabrication method for fast, densely-packed integrated circuits. Silicon deposited preferentially in contaminated substrate zones and in clean zone irradiated by electron beam. Electron beam, like surface contamination, appears to stimulate decomposition of silane atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortright, Randy
The purpose of this project was to demonstrate the technical and commercial feasibility of producing liquid fuels, particularly jet fuel, from lignocellulosic materials, such as corn stover. This project was led by Virent, Inc. (Virent) which has developed a novel chemical catalytic process (the BioForming ® platform) capable of producing “direct replacement” liquid fuels from biomass-derived feedstocks. Virent has shown it is possible to produce an advantaged jet fuel from biomass that meets or exceeds specifications for commercial and military jet fuel through Fuel Readiness Level (FRL) 5, Process Validation. This project leveraged The National Renewable Energy Lab’s (NREL) expertisemore » in converting corn stover to sugars via dilute acid pretreatment and enzymatic hydrolysis. NREL had previously developed this deconstruction technology for the conversion of corn stover to ethanol. In this project, Virent and NREL worked together to condition the NREL generated hydrolysate for use in Virent’s catalytic process through solids removal, contaminant reduction, and concentration steps. The Idaho National Laboratory (INL) was contracted in this project for the procurement, formatting, storage and analysis of corn stover and Northwestern University developed fundamental knowledge of lignin deconstruction that can help improve overall carbon recovery of the combined technologies. Virent conducted fundamental catalytic studies to improve the performance of the catalytic process and NREL provided catalyst characterization support. A technoeconomic analysis (TEA) was conducted at each stage of the project, with results from these analyses used to inform the direction of the project.« less
Zhang, Jishi; Zhang, Junjie; Zang, Lihua
2015-12-01
This study investigated the use of calcined-lime mud from papermaking process (CLMP) pretreatment to improve fermentative hydrogen yields from corn-bran residue (CBR). CBR samples were pretreated with different concentrations (0-15 g/L) of CLMP at 55°C for 48 h, prior to the thermophilic fermentation with heat-treated anaerobic sludge inoculum. The maximum hydrogen yield (MHY) of 338.91 ml/g-VS was produced from the CBR pretreated with 10 g/L CLMP, with the corresponding lag-phase time of 8.24h. Hydrogen yield increments increased from 27.76% to 48.07%, compared to the control. The CLMP hydrolyzed more cellulose, which provided adequate substrates for hydrogen production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis
NASA Astrophysics Data System (ADS)
Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.
2006-09-01
Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.
Min, Ji Young; Lee, Eun Yeol
2011-09-01
Biodiesel [fatty acid methyl esters (FAMEs)] and glycerol carbonate were synthesized from corn oil and dimethyl carbonate (DMC) via transesterification using lipase (Novozyme 435) in solvent-free reaction in which excess DMC was used as the substrate and reaction medium. Glycerol carbonate was also simultaneously formed from DMC and glycerol. Conversions of FAMEs and glycerol carbonate were examined in batch reactions. The FAMEs and glycerol carbonate reached 94 and 62.5% from oil and DMC (molar ratio of 1:10) with 0.2% (v/v) water and 10% (w/w) Novozyme 435 (based on oil weight) at 60 °C. When Novozyme 435 was washed with acetone after each reaction, more than 80% activity still remained after seven recycling. © Springer Science+Business Media B.V. 2011
Extreme ultraviolet reflectivity studies of gold on glass and metal substrates
NASA Technical Reports Server (NTRS)
Jelinsky, Sharon R.; Malina, Roger F.; Jelinsky, Patrick
1988-01-01
The paper reports measurements of the extreme ultraviolet reflectivity of gold from 44 to 920 A at grazing incidence. Gold was deposited using vacuum evaporation and electroplating on substrates of glass and polished nickel, respectively. Measurements are also presented of the extreme ultraviolet reflectivity of electroless nickel in the same wavelength region, where one of the polished nickel substrates was used as a sample. Derived optical constants for evaporated and electroplated gold and electroless nickel are presented. Additional studies of the effects of various contaminants on the EUV reflectivity are also reported. The variations of the optical constants are discussed in terms of density variations, surface roughness and contamination effects. These results ae reported as part of studies for the Extreme Ultraviolet Explorer satellite program to determine acceptance criteria for the EUV optics, contamination budgets and calibration plans.
Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap
2016-01-01
Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.
Bucić-Kojić, Ana; Šelo, Gordana; Zelić, Bruno; Planinić, Mirela; Tišma, Marina
2017-03-01
Corn silage is used as high-energy forage for dairy cows and more recently for biogas production in a process of anaerobic co-digestion with cow manure. In this work, fresh corn silage after the harvest was used as a substrate in solid-state fermentations with T. versicolor with the aim of phenolic acid recovery and enzyme (laccase and manganese peroxidase) production. During 20 days of fermentation, 10.4-, 3.4-, 3.0-, and 1.8-fold increments in extraction yield of syringic acid, vanillic acid, p-hydroxybenzoic acid, and caffeic acid, respectively, were reached when compared to biologically untreated corn silage. Maximal laccase activity was gained on the 4th day of fermentation (V.A. = 180.2 U/dm 3 ), and manganese peroxidase activity was obtained after the 3rd day of fermentation (V.A. = 30.1 U/dm 3 ). The addition of copper(II) sulfate as inducer during solid state fermentation resulted in 8.5- and 7-fold enhancement of laccase and manganese peroxidase activities, respectively. Furthermore, the influence of pH and temperature on enzyme activities was investigated. Maximal activity of laccase was obtained at T = 50 °C and pH = 3.0, while manganese peroxidase is active at temperature range T = 45-70 °C with the maximal activity at pH = 4.5.
Smith, Benjamin T; Knutsen, Jeffrey S; Davis, Robert H
2010-05-01
The cellulose hydrolysis kinetics during batch enzymatic saccharification are typified by a rapid initial rate that subsequently decays, resulting in incomplete conversion. Previous studies suggest that changes associated with the solution, substrate, or enzymes may be responsible. In this work, kinetic experiments were conducted to determine the relative magnitude of these effects. Pretreated corn stover (PCS) was used as a lignocellulosic substrate likely to be found in a commercial saccharification process, while Avicel and Kraft lignin were used to create model substrates. Glucose inhibition was observed by spiking the reaction slurry with glucose during initial-rate experiments. Increasing the glucose concentration from 7 to 48 g/L reduced the cellulose conversion rate by 94%. When product sugars were removed using ultrafiltration with a 10 kDa membrane, the glucose-based conversion increased by 9.5%. Reductions in substrate reactivity with conversion were compared directly by saccharifying PCS and Avicel substrates that had been pre-reacted to different conversions. Reaction of substrate with a pre-conversion of 40% resulted in about 40% reduction in the initial rate of saccharification, relative to fresh substrate with identical cellulose concentration. Overall, glucose inhibition and reduced substrate reactivity appear to be dominant factors, whereas minimal reductions of enzyme activity were observed.
Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi
2007-09-01
The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents.
Mehta, Sheetal; Jandaik, Savita; Gupta, Dharmesh
2014-01-01
To find a cost-effective alternative substrate, the medicinal mushroom Ganoderma lucidum was grown on sawdusts of sheesham, mango, and poplar. Optimum spawn level was determined by spawning in substrates at various levels (1, 2, 3, and 4%). To determine the effect of supplementation, substrates were supplemented with wheat bran, rice bran and corn flour at different concentrations (10, 20, and 30%). Duration of growth cycle, mushroom yield, and biological efficiency data were recorded. Among substrates, mango sawdust was superior, with 1.5-fold higher yields than poplar sawdust, which was the least suitable. However with respect to fructification, mango sawdust produced the first primordia earlier (21±1 days) compared with the other investigated substrates. 3% spawn level was found to be optimal irrespective of the substrate. Yield and biological efficiency (BE) were maximally enhanced by supplementation with wheat bran, whereas rice bran was the least suitable supplement among those tested. Growth cycle shortened and mushroom yield increased to a maximum at the 20% level of supplements. Mango sawdust in combination with 20% wheat bran, if spawned at the 3% level, resulted in a high yield (BE = 58.57%).
Hong, Chang Oh; Gutierrez, Jessie; Yun, Sung Wook; Lee, Yong Bok; Yu, Chan; Kim, Pil Joo
2009-02-01
The heavy metal contamination in soils and cultivated corn plants affected by zinc smelting activities in the vicinity of a zinc smelting factory in Korea was studied. Soils and corn plants were sampled at the harvesting stage and analyzed for cadmium (Cd) and zinc (Zn) concentration, as well as Cd and Zn fraction and other chemical properties of soils. Cd and Zn were highly accumulated in the surface soils (0-20 cm), at levels higher than the Korean warning criteria (Cd, 1.5; Zn, 300 mg kg(-1)), with corresponding mean values of 1.7 and 407 mg kg(-1), respectively, but these metals decreased significantly with increasing soil depth and distance from the factory, implying that contaminants may come from the factory through aerosol dynamics (Hong et al., Kor J Environ Agr 26(3):204-209, 2007a; Environ Contam Toxicol 52:496-502, 2007b) and not from geological sources. The leaf part had higher Cd and Zn concentrations, with values of 9.5 and 1733 mg kg(-1), compared to the stem (1.6 and 547 mg kg(-1)) and grain (0.18 and 61 mg kg(-1)) parts, respectively. Cd and Zn were higher in the oxidizable fraction, at 38.5% and 46.9% of the total Cd (2.6 mg kg(-1)) and Zn (407 mg kg(-1)), but the exchangeable + acidic fraction of Cd and Zn as the bioavailable phases was low, 0.2 and 50 mg kg(-1), respectively. To study the reduction of plant Cd and Zn uptake by liming, radish (Raphanus sativa L.) was cultivated in one representative field among the sites investigated, and Ca(OH)(2) was applied at rates of 0, 2, 4, and 8 mg ha(-1). Plant Cd and Zn concentrations and NH(4)OAc extractable Cd and Zn concentrations of soil decreased significantly with increasing Ca(OH)(2) rate, since it markedly increases the cation exchange capacity of soil induced by increased pH. As a result, liming in this kind of soil could be an effective countermeasure in reducing the phytoextractability of Cd and Zn.
Madden, U A; Stahr, H M; Stino, F K
1999-08-01
The effects of silty clay loam soil on the performance and biochemical parameters of chicks were investigated when the soil was added to aflatoxin B1 (AFB1)-contaminated diets. One hundred 14-d-old White Leghorn chicks were fed a control ration (clean corn), a low aflatoxin-contaminated ration (120 ng AFB1/g), a high aflatoxin-contaminated ration (700 ng AFB1/g), or high aflatoxin-contaminated rations (700 ng AFB1/g) +10% or 25% soil. Body weight, feed consumption and blood samples were monitored weekly. Decreased feed consumption, body weight gain and efficiency of feed utilization, increased SGOT and LDH activities, and cholesterol and triglyceride concentrations, and decreased uric acid concentrations and ALP activity were observed in the chicks fed the high aflatoxin-contaminated ration without soil. Hepatomegaly was prominent in chicks fed the high aflatoxin-contaminated ration without soil, and some livers had extensive hepatocyte vacuolation, hepatocellular swelling, fatty change and hydropic degeneration, and stained positive for fat accumulation. Addition of soil reduced the detrimental effects of AFB1 for some parameters, although the reduction was less when 10% soil was fed compared with the 25% soil feeding.
Silva, Elias J; Rocha e Silva, Nathália Maria P; Rufino, Raquel D; Luna, Juliana M; Silva, Ricardo O; Sarubbo, Leonie A
2014-05-01
The bacterium Pseudomonas cepacia CCT6659 cultivated with 2% soybean waste frying oil and 2% corn steep liquor as substrates produced a biosurfactant with potential application in the bioremediation of soils. The biosurfactant was classified as an anionic biomolecule composed of 75% lipids and 25% carbohydrates. Characterization by proton nuclear magnetic resonance ((1)H and (13)C NMR) revealed the presence of carbonyl, olefinic and aliphatic groups, with typical spectra of lipids. Four sets of biodegradation experiments were carried out with soil contaminated by hydrophobic organic compounds amended with molasses in the presence of an indigenous consortium, as follows: Set 1-soil+bacterial cells; Set 2-soil+biosurfactant; Set 3-soil+bacterial cells+biosurfactant; and Set 4-soil without bacterial cells or biosurfactant (control). Significant oil biodegradation activity (83%) occurred in the first 10 days of the experiments when the biosurfactant and bacterial cells were used together (Set 3), while maximum degradation of the organic compounds (above 95%) was found in Sets 1-3 between 35 and 60 days. It is evident from the results that the biosurfactant alone and its producer species are both capable of promoting biodegradation to a large extent. Copyright © 2014 Elsevier B.V. All rights reserved.
Morphology and topography study of graphene synthesized from plant oil
NASA Astrophysics Data System (ADS)
Robaiah, M.; Rusop, M.; Abdullah, S.; Khusaimi, Z.; Azhan, H.; Laila, M. O.; Salifairus, M. J.; Asli, N. A.
2018-05-01
The graphene is material consists of bonded atom carbon atoms in sheet form one atom thick. The different types of carbon sources which are refined corn oil, palm oil and waste cooking palm oil were used as carbon feedstock to supply carbon atom for synthesizing graphene on the nickel substrate by thermal chemical vapour deposition. The substrate and carbon sources were placed in double zone furnaces. The carbon sources and the substrate were heated at 300 °C and 900 °C respectively. The both furnaces were switched off after synthesis time for cooling process finish. The formation of the graphene on the Ni surface appears due to segregation and precipitation of a high amount of carbon from the source material during the cooling process. FESEM, AFM, UV-VIS Spectroscopy and Raman Spectroscopy were used to characterize and synthesized graphene.
[Study on rapid analysis method of pesticide contamination in processed foods by GC-MS and GC-FPD].
Kobayashi, Maki; Otsuka, Kenji; Tamura, Yasuhiro; Tomizawa, Sanae; Kamijo, Kyoko; Iwakoshi, Keiko; Sato, Chizuko; Nagayama, Toshihiro; Takano, Ichiro
2011-01-01
A simple and rapid method using GC-MS and GC-FPD for the determination of pesticide contamination in processed food has been developed. Pesticides were extracted from a sample with ethyl acetate in the presence of anhydrous sodium sulfate, then cleaned up with a combination of mini-columns, such as macroporous diatomaceous earth, C18, GCB (graphite carbon black) and PSA. Recovery tests of 57 pesticides (known to be toxic or harmful) from ten kinds of processed foods (butter, cheese, corned beef, dried shrimp, frozen Chinese dumplings, grilled eels, instant noodles, kimchi, retort-packed curry and wine) were performed, and the recovery rates were mostly between 70% and 120%. This method can be used to judge whether or not processed foods are contaminated with pesticides at potentially harmful levels.
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Tatara, J. D.
2005-01-01
Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.
Xiao, Zhiping; Cheng, Chu; Bao, Teng; Liu, Lujie; Wang, Bin; Tao, Wenjing; Pei, Xun; Yang, Shang-Tian; Wang, Minqi
2018-01-01
Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. Hydrolysis of corn husk (10% solid loading) with 0.4 M H 2 SO 4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L -1 butyric acid with a yield of 0.38 ± 0.02 g g -1 and productivity of 0.34 ± 0.03 g L -1 h -1 . Batch fermentation with corn husk hydrolysate produced 21.80 g L -1 butyric acid with a yield of 0.39 g g -1 , comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L -1 butyric acid with an average yield of 0.39 ± 0.02 g g -1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.
NASA Astrophysics Data System (ADS)
Miller, C. J.; Yoder, T. S.
2010-06-01
Explosive trace detection equipment has been deployed to airports for more than a decade. During this time, the need for standardized procedures and calibrated trace amounts for ensuring that the systems are operating properly and detecting the correct explosive has been apparent but a standard representative of a fingerprint has been elusive. Standards are also necessary to evaluate instrumentation in the laboratories during development and prior to deployment to determine sample throughput, probability of detection, false positive/negative rates, ease of use by operator, mechanical and/or software problems that may be encountered, and other pertinent parameters that would result in the equipment being unusable during field operations. Since many laboratories do not have access to nor are allowed to handle explosives, the equipment is tested using techniques aimed at simulating the actual explosives fingerprint. This laboratory study focused on examining the similarities and differences in three different surface contamination techniques that are used to performance test explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples and to offer scenarios where each contamination technique is applicable. The three techniques used were dry transfer deposition of standard solutions using the Transportation Security Laboratory’s (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards onto substrates, and fingerprinting of actual explosives onto substrates. RDX was deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each substrate type using each contamination technique. The substrate types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and painted metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination deposition techniques. Some samples were analyzed using scanning electron microscopy (SEM) and some were extracted and analyzed with high performance liquid chromatography (HPLC) or gas chromatography with an electron capture detector (GC-ECD) to quantify the data.
Shipitalo, Martin J; Malone, Robert W; Owens, Lloyd B
2008-01-01
Residual herbicides used in the production of soybean [Glycine max (L.) Merr] and corn (Zea mays L.) are often detected in surface runoff at concentrations exceeding their maximum contaminant levels (MCL) or health advisory levels (HAL). With the advent of transgenic, glyphosate-tolerant soybean and glufosinate-tolerant corn this concern might be reduced by replacing some of the residual herbicides with short half-life, strongly sorbed, contact herbicides. We applied both herbicide types to two chiseled and two no-till watersheds in a 2-yr corn-soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat (Triticum aestivum L.)-red clover (Trifolium pratense L.) rotation and monitored herbicide losses in runoff water for four crop years. In soybean years, average glyphosate loss (0.07%) was approximately 1/7 that of metribuzin (0.48%) and about one-half that of alachlor (0.12%), residual herbicides it can replace. Maximum, annual, flow-weighted concentration of glyphosate (9.2 microg L(-1)) was well below its 700 microg L(-1) MCL and metribuzin (9.5 microg L(-1)) was well below its 200 microg L(-1) HAL, whereas alachlor (44.5 microg L(-1)) was well above its 2 microg L(-1) MCL. In corn years, average glufosinate loss (0.10%) was similar to losses of alachlor (0.07%) and linuron (0.15%), but about one-fourth that of atrazine (0.37%). Maximum, annual, flow-weighted concentration of glufosinate (no MCL) was 3.5 microg L(-1), whereas atrazine (31.5 microg L(-1)) and alachlor (9.8 microg L(-1)) substantially exceeded their MCLs of 3 and 2 microg L(-1), respectively. Regardless of tillage system, flow-weighted atrazine and alachlor concentrations exceeded their MCLs in at least one crop year. Replacing these herbicides with glyphosate and glufosinate can reduce the occurrence of dissolved herbicide concentrations in runoff exceeding drinking water standards.
De Girolamo, A; Pascale, M; Visconti, A
2011-05-01
A comparison study of different extraction and clean-up procedures for the liquid chromatographic analysis of fumonisins B(1) (FB(1)) and B(2) (FB(2)) in corn masa flour was performed. The procedures included extraction (heat or room temperature) with acidic conditions or EDTA-containing solvents, and clean-up by immunoaffinity or C18 solid-phase extraction columns. Thereafter an analytical method was optimised using extraction with an acidic mixture of methanol-acetonitrile-citrate/phosphate buffer, clean-up through the immunoaffinity column and determination of fumonisins by liquid chromatography with automated pre-column derivatisation with o-phthaldialdehyde reagent. Recovery experiments performed on yellow, white and blue masa flours at spiking levels of 400, 800 and 1200 µg kg(-1) FB(1) and of 100, 200 and 300 µg kg(-1) FB(2) gave overall mean recoveries of 99% (±6%) for FB(1) and 88% (±6%) for FB(2). Good recoveries (higher than 90% for both FB(1) and FB(2)) were also obtained with corn tortilla chips. The limits of quantification of the method (signal-to-noise ratio of 10) were 25 µg kg(-1) for FB(1) and 17 µg kg(-1) for FB(2). The method was tested on different commercial corn masa flours as well as on white and yellow corn tortilla chips, showing fumonisin contamination levels (FB(1) + FB(2)) up to 1800 µg kg(-1) (FB(1) + FB(2)) in masa flour and 960 µg kg(-1) in tortilla chips. Over 30% of masa flours originating from Mexico exceeded the European Union maximum permitted level.
Islam, M Robiul; Mao, Sishuai; Xue, Xuzhang; Eneji, A Egrinya; Zhao, Xingbao; Hu, Yuegao
2011-08-30
Nitrate leaching and the resulting groundwater contamination from intensive cereal production has become a major concern for long-term farmland efficiency and environmental sustainability in northern China. The aim of this study was to evaluate a water-saving super-absorbent polymer (SAP) for minimising NO(3)(-) leaching from soil and optimising corn growth and yield. Thirty-six undisturbed soil lysimeters were installed in a field lysimeter facility in drought-affected northern China to study the growth and yield characteristics of summer corn (Zea mays L.) as well as the amount of NO(3)-leaching losses under different fertiliser (standard, medium or 75% and low, or 50% of conventional fertilisation rate) and SAP (control, 0; level-1, 15 kg ha(-1) and level-2, 30 kg ha(-1)) treatments. Corn yield fell by 19.7% under medium and 37.7% under low fertilisation; the application of SAP increased yield significantly by 44.4% on level-1 and 80.3% on level-2. Similarly, plant height, leaf area, number of grains as well as protein, soluble sugar and starch contents in the grain also increased with SAP treatment. Application of SAP at 30 kg ha(-1) plus half of conventional fertilisation can reduce maximum (64.1%) nitrate leaching losses from soil. Application of SAP at 30 kg ha(-1) plus only half the amount of conventional fertiliser rate (150 kg urea, and 50 kg each of superphosphate and potassium sulfate) would be a more appropriate practice both for minimising nitrate leaching and sustainable corn production under the arid and semiarid conditions of northern China. Copyright © 2011 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resch, M.
Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover frommore » Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.« less
Choi, David; Poudel, Nirakar; Park, Saungeun; Akinwande, Deji; Cronin, Stephen B; Watanabe, Kenji; Taniguchi, Takashi; Yao, Zhen; Shi, Li
2018-04-04
Scanning thermal microscopy measurements reveal a significant thermal benefit of including a high thermal conductivity hexagonal boron nitride (h-BN) heat-spreading layer between graphene and either a SiO 2 /Si substrate or a 100 μm thick Corning flexible Willow glass (WG) substrate. At the same power density, an 80 nm thick h-BN layer on the silicon substrate can yield a factor of 2.2 reduction of the hot spot temperature, whereas a 35 nm thick h-BN layer on the WG substrate is sufficient to obtain a factor of 4.1 reduction. The larger effect of the h-BN heat spreader on WG than on SiO 2 /Si is attributed to a smaller effective heat transfer coefficient per unit area for three-dimensional heat conduction into the thick, low-thermal conductivity WG substrate than for one-dimensional heat conduction through the thin oxide layer on silicon. Consequently, the h-BN lateral heat-spreading length is much larger on WG than on SiO 2 /Si, resulting in a larger degree of temperature reduction.
Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer
Coelho, Ieda R; Pedone-Bonfim, Maria VL; Silva, Fábio SB; Maia, Leonor C
2014-01-01
The system for production of inoculum of arbuscular mycorrhizal fungi (AMF) using sand and vermiculite irrigated with nutrient solution is promising. However, organic amendments added to the substrate can stimulate sporulation of AMF and replace the nutrient solution. The aim of this study was to maximize the production of AMF (Acaulospora longula, Claroideoglomus etunicatum, Dentiscutata heterogama and Gigaspora albida) using selected organic substrates (vermicompost, coir dust and Tropstrato) together with sand and vermiculite. The production of spores varied among the tested AMF and according to the organic source added to the substrate. The vermicompost promoted higher sporulation of A. longula in relation to the other AMF and substrates. The Tropstrato® inhibited the sporulation of D. heterogama while the reproduction of C. etunicatum was not affected by the organic compounds. The inoculum of A. longula also showed a high number of infective propagules and promoted biomass accumulation in maize plants. The system of inoculum production using sand and vermiculite + 10% vermicompost favors the production of infective inoculum of A. longula with the fungus benefiting growth of corn plants. PMID:25763020
Stability of mycotoxins during food processing.
Bullerman, Lloyd B; Bianchini, Andreia
2007-10-20
The mycotoxins that commonly occur in cereal grains and other products are not completely destroyed during food processing operations and can contaminate finished processed foods. The mycotoxins most commonly associated with cereal grains are aflatoxins, ochratoxin A, fumonisins, deoxynivalenol and zearalenone. The various food processes that may have effects on mycotoxins include sorting, trimming, cleaning, milling, brewing, cooking, baking, frying, roasting, canning, flaking, alkaline cooking, nixtamalization, and extrusion. Most of the food processes have variable effects on mycotoxins, with those that utilize the highest temperatures having greatest effects. In general the processes reduce mycotoxin concentrations significantly, but do not eliminate them completely. However, roasting and extrusion processing show promise for lowering mycotoxin concentrations, though very high temperatures are needed to bring about much of a reduction in mycotoxin concentrations. Extrusion processing at temperatures greater than 150 degrees C are needed to give good reduction of zearalenone, moderate reduction of alfatoxins, variable to low reduction of deoxynivalenol and good reduction of fumonisins. The greatest reductions of fumonisins occur at extrusion temperatures of 160 degrees C or higher and in the presence of glucose. Extrusion of fumonisin contaminated corn grits with 10% added glucose resulted in 75-85% reduction in Fumonisin B(1) levels. Some fumonisin degredation products are formed during extrusion, including small amounts of hydrolyzed Fumonisin B(1) and N-(Carboxymethyl) - Fumonisin B(1) and somewhat higher amounts of N-(1-deoxy-d-fructos-1-yl) Fumonisin B(1) in extruded grits containing added glucose. Feeding trial toxicity tests in rats with extruded fumonisin contaminated corn grits show some reduction in toxicity of grits extruded with glucose.
[Survey of aflatoxins contamination of foodstuffs and edible oil in Shenzhen].
Li, Ke; Qiu, Fen; Yang, Mei; Liang, Zhaohai; Zhou, Haitao
2013-07-01
To identify the aflatoxins contamination of foodstuffs and edible oil sold in Shenzhen. As research subjects stratified random sampling of 238 foodstuffs and edible oil, and applied with immuno-affinity column clean-up plus UPLC to determine the content of aflatoxin B1, B2, G1, and G2. Positive ratio of aflatoxin in rice, rice products, wheat flour, corn flour, edible oil were 35.3%, 33.8%, 13.9%, 46.7% and 24.5%,respectively. There were statistical differences between the positive ratio of aflatoxin in stereotypes packaged rice (26.5%) and bulk rice (56.3%) (chi2 = 11.6, P < 0.05). There were statistical differences between the positive ratio of aflatoxin in the rice produced in the area north of the Yangtze River (27.3%) and in the rice (41.4%) produced in the area south of the Yangtze River (chi2 = 7.257, P < 0.05). Aflatoxin B1 and B2 were detected in rice products, wheat flour, corn flour. Positive ratio of aflatoxin B1, B2, G1, and G2 were 24.5%, 24.5%, 11.3% and 3.8% in the edible oil,respectively. The over standard rate of aflatoxin B1 was 5.66%, excessive samples were producted bulk and self-pressed peanut oil from unlicensed workshop. All the four kinds of aflatoxin were detected, while subtype B1 and B2 dominated aflatoxin contamination in the rice and edible oil samples. There are differences between in the northern and southern rice, and the same as in the stereotypes packaged and bulk rice sold at Shenzhen.
Eskicioglu, Cigdem; Monlau, Florian; Barakat, Abdellatif; Ferrer, Ivet; Kaparaju, Prasad; Trably, Eric; Carrère, Hélène
2017-09-01
Hydrothermal pretreatment of five lignocellulosic substrates (i.e. wheat straw, rice straw, biomass sorghum, corn stover and Douglas fir bark) were conducted in the presence of CO 2 as a catalyst. To maximize disintegration and conversion into bioenergy (methane and hydrogen), pretreatment temperatures and subsequent pressures varied with a range of 26-175 °C, and 25-102 bars, respectively. Among lignin, cellulose and hemicelluloses, hydrothermal pretreatment caused the highest reduction (23-42%) in hemicelluloses while delignification was limited to only 0-12%. These reductions in structural integrity resulted in 20-30% faster hydrolysis rates during anaerobic digestion for the pretreated substrates of straws, sorghum, and corn stover while Douglas fir bark yielded 172% faster hydrolysis/digestion due to its highly refractory nature in the control. Furans and phenolic compounds formed in the pretreated hydrolyzates were below the inhibitory levels for methane and hydrogen production which had a range of 98-340 ml CH 4 /g volatile solids (VS) and 5-26 ml H 2 /g VS, respectively. Results indicated that hydrothermal pretreatment is able to accelerate the rate of biodegradation without generating high levels of inhibitory compounds while showing no discernible effect on ultimate biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization and optimization of schizophyllan production from date syrup.
Jamshidian, Hajar; Shojaosadati, Seyed Abbas; Vilaplana, Francisco; Mousavi, Seyed Mohammad; Soudi, Mohammad Reza
2016-11-01
This study demonstrates the efficient utilization of low-cost agricultural substrates, particularly date syrup, by Schizophyllum commune ATCC 38548 for schizophyllan production. Initially, one factor-at-a-time method was used to find the best carbon and nitrogen sources for schizophyllan production. Subsequently, response surface methodology was employed to optimize the level of culture medium components to maximize substrate conversion yield and schizophyllan production in submerged culture. Maximum product yield (0.12g schizophyllan/g date syrup) and schizophyllan production (8.5g/l) were obtained at concentrations of date syrup and corn steep liquor, inoculum size and agitation rate at 7.02%w/v, 0.10%w/v, 7.68%v/v and 181rpm, respectively. Sugar composition analysis, FTIR, NMR and molar mass determination revealed the purity and molecular properties of recovered schizophyllan produced from date syrup as glycosidic linkage analysis showed three main schizophyllan characteristic peaks arising from the 3-linked, 3,6-linked and terminal glucose residues. Finally, process economic analysis suggested that use of date syrup and corn steep liquor as nutrients would result in approximately 6-fold reduction in cost of raw materials for schizophyllan production as compared to conventional carbon and nitrogen sources such as sucrose and malt extract. Copyright © 2016 Elsevier B.V. All rights reserved.
Chandra, Richard P; Arantes, Valdeir; Saddler, Jack
2015-06-01
The origins of lignocellulosic biomass and the pretreatment used to enhance enzyme accessibility to the cellulosic component are known to be strongly influenced by various substrate characteristics. To assess the impact that fibre properties might have on enzymatic hydrolysis, seven agricultural residues were characterised before and after steam pretreatment using a single pretreatment condition (190°C, 5min, 3% SO2) previously shown to enhance fractionation and hydrolysis of the cellulosic component of corn stover. When the fibre length, width and coarseness, viscosity, water retention value and cellulose crystallinity were monitored, no clear correlation was observed between any single substrate characteristic and the substrate's ease of enzymatic hydrolysis. However, the amount of hemicellulose that was solubilised during pretreatment correlated (r(2)=0.98) with the effectiveness of enzyme hydrolysis of each pretreated substrate. Simons's staining, to measure the cellulose accessibility, showed good correlation (r(2)=0.83) with hemicellulose removal and the extent of enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Emergency and Continuous Exposure Limits for Selected Airborne Contaminants. Volume 1
1984-04-01
fuels, corn remover, drawing inks, fuel-system deicer, glue, nail-polish remover, paint-brush cleaners, paint and varnish removers, and china ,• ~ ~film...and fire hazards of butanone and acetone. Ind. Bull. (N.Y. State Dept. Labor) 23:173-176. Societa Italiana di Medicina del Lavoro. 1975. Associazione...Italiana di Medicina del Lavoro 1975. Associazione Italiana - -degli Igienisti Industriali. Valori Limite Ponderati degli Inquinanti Chimici e
Space Chambers for Crop Treatment
NASA Technical Reports Server (NTRS)
1985-01-01
Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.
Loffredo, Elisabetta; Castellana, Giancarlo
2015-01-01
In this study, two widely available low-cost adsorbents, almond shells and a green compost, and two ligninolytic fungi, Pleurotus ostreatus and Stereum hirsutum, were used to remove organic contaminants from a landfill leachate (LLe) and abate its phytotoxicity. The methodology adopted was based on the occurrence of two simultaneous processes, such as adsorption and bioremoval. The leachate was artificially contaminated with a mixture of the xenoestrogens bisphenol A (BPA), ethynilestadiol (EE2) and 4-n-nonylphenol (NP), the herbicide linuron and the insecticide dimethoate at concentrations of 10, 1, 1, 10 and 10 mg L(-1), respectively. Three adsorption substrates were prepared: potato dextrose agar alone or the same incorporating each adsorbent. The substrates were either not inoculated or inoculated with each fungus, separately, before to be superimposed on LLe. After 2 months, the residual amount of each contaminant, the electrical conductivity, the pH and the content of total phenols were measured in treated LLe. Germination assays using lettuce, ryegrass and radish were performed to evaluate LLe phytotoxicity. The combination substrate+P. ostreatus showed the best results with average removals of 88, 96, 99, 58 and 46% for BPA, EE2, NP, linuron and dimethoate, respectively. The same treatment considerably reduced the phenol content in LLe compared to no treatment. The combination substrate+S. hirsutum produced average removals of 39, 71, 100, 61 and 32% for BPA, EE2, NP, linuron and dimethoate, respectively. Also uninoculated substrates showed relevant adsorption capacities towards the five contaminants. Most treatments significantly reduced LLe phytotoxicity, especially on lettuce. The best results were obtained with the treatment compost+S. hirsutum, which produced root and shoot lengths and seedling biomass of lettuce, respectively, 2.3, 3.3, and 1.9 times those measured in untreated LLe. In general, germination results were negatively correlated with LLe properties like the residual amount of the contaminants, the electrical conductivity and the pH. These results show that the methodology adopted in the study, i.e., combined adsorption/biodegradation, is suitable not only to remove xenobiotic contaminants from the leachate but also to reduce considerably its inhibition on seed germination.
Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips
2015-01-01
Low-cost diagnostics for drinking water contamination have the potential to save millions of lives. We report a method that uses inkjet printing to copattern an enzyme–nanoparticle sensor and substrate on a paper-based test strip for rapid detection of bacteria. A colorimetric response is generated on the paper substrate that allows visual detection of contamination without the need for expensive instrumentation. These strips demonstrate a viable nanomanufacturing strategy for low-cost bacterial detection. PMID:25318086
NASA Astrophysics Data System (ADS)
Sinha, Sumona; Wang, C.-H.; Mukherjee, M.
2017-07-01
This paper addresses the impact of electrode contaminations on the interfacial energy level alignment, the molecular conformation, orientation and surface morphology deposited organic film at organic semiconductor/noble metal interfaces by varying of film thickness from sub-monolayer to multilayer, which currently draws significant attention with regard to its application in organic electronics. The UHV clean Ag and unclean Ag were employed as substrate whereas rubrene was used as an organic semiconducting material. The photoelectron spectroscopy (XPS and UPS) was engaged to investigate the evolution of interfacial energetics; polarization dependent near edge x-ray absorption fine structure spectroscopy (NEXAFS) was employed to understand the molecular conformation as well as orientation whereas atomic force microscopy (AFM) was used to investigate the surface morphologies of the films. The adventitious contamination layer was acted as a spacer layer between clean Ag substrate surface and rubrene molecular layer. As a consequence, hole injection barrier height, interface dipole as well as molecular-conformation, molecular-orientation and surface morphology of rubrene thin films were found to depend on the cleanliness of Ag substrate. The results have important inferences about the understanding of the impact of substrate contamination on the energy level alignment, the molecular conformation as well as orientation and surface morphology of deposited rubrene thin film at rubrene/Ag interfaces and are beneficial for the improvement of the device performance.
NASA Technical Reports Server (NTRS)
Roychoudhury, Subir (Inventor); Perry, Jay (Inventor); Walsh, Dennis (Inventor)
2006-01-01
A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent.
Gharasoo, Mehdi; Centler, Florian; Van Cappellen, Philippe; Wick, Lukas Y; Thullner, Martin
2015-05-05
Microbial degradation is an important process in many environments controlling for instance the cycling of nutrients or the biodegradation of contaminants. At high substrate concentrations toxic effects may inhibit the degradation process. Bioavailability limitations of a degradable substrate can therefore either improve the overall dynamics of degradation by softening the contaminant toxicity effects to microorganisms, or slow down the biodegradation by reducing the microbial access to the substrate. Many studies on biodegradation kinetics of a self-inhibitive substrate have mainly focused on physiological responses of the bacteria to substrate concentration levels without considering the substrate bioavailability limitations rising from different geophysical and geochemical dynamics at pore-scale. In this regard, the role of bioavailability effects on the kinetics of self-inhibiting substrates is poorly understood. In this study, we theoretically analyze this role and assess the interactions between self-inhibition and mass transfer-limitations using analytical/numerical solutions, and show the findings practical relevance for a simple model scenario. Although individually self-inhibition and mass-transfer limitations negatively impact biodegradation, their combined effect may enhance biodegradation rates above a concentration threshold. To our knowledge, this is the first theoretical study describing the cumulative effects of the two mechanisms together.
Select corn coproducts from the ethanol industry and their potential as ingredients in pet foods.
de Godoy, M R C; Bauer, L L; Parsons, C M; Fahey, G C
2009-01-01
The objectives of this study were to determine the chemical composition and nutritive value of corn protein product 1 (CPP 1), corn protein product 2 (CPP 2), and corn fiber (CF), novel coproducts of the ethanol industry, and compare these feed ingredients with standard plant protein ingredients [soybean meal (SBM), distillers dried grains with solubles (DDGS), corn gluten meal (CGlM), and corn germ meal (CGeM)], and to compare CF sources (CF control 1 and control 2) with standard fiber sources (peanut hulls, Solka-Floc, and beet pulp) commonly used in pet foods. Corn fiber, CPP 1, and CPP 2 were produced at a pilot-scale modified dry-grind plant, with CPP 2 having a greater degree of purification than CPP 1. Crude protein values for CPP 2 and CPP 1 were 57.3 and 49.7%, respectively. Total dietary fiber concentration was 29% for CPP 2 and 23.5% for CPP 1. Acid-hydrolyzed fat and GE concentrations were similar for these ingredients. In a protein efficiency ratio assay, no differences (P > 0.05) in feed intake, BW gain, or CP intake were noted for CPP 2, CPP 1, or CGlM. However, feeding CPP 2 resulted in a greater (P < 0.05) G:F ratio and protein efficiency ratio than CPP 1 and CGlM. In a cecectomized rooster assay, CGlM had numerically the greatest standardized total AA, total essential AA, and total nonessential AA digestibilities, but they were not different (P > 0.05) from CPP 1 or SBM values. Corn germ meal resulted in the least values, but they were not different from those for DDGS and CPP 1. The greatest values for true nitrogen-corrected ME were obtained with CGlM, followed by CPP 2, DDGS, CPP 1, SBM, and CGeM. Distillers dried grains with solubles and CPP 1 had similar true nitrogen-corrected ME values, and they were not different from values for CPP 2 and SBM. In vitro CP disappearance was greatest (P < 0.05) for CGlM (94.1%), intermediate for DDGS (76.8%) and CPP 1 (77.5%), and least for CPP 2 (74.1%) and CGeM (67.7%). Corn fibers contained predominantly insoluble dietary fiber (1% or less of soluble dietary fiber), with a moderate CP concentration. In vitro OM disappearance for the fiber sources, when using inoculum from dog feces, revealed that with the exception of beet pulp, which had a moderate disappearance value after 16 h of fermentation (17.7%), all fiber substrates had a nonsignificant extent of fermentation. In conclusion, novel corn coproducts had properties comparable with the standard protein and fiber sources used in animal nutrition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rick Demmer; John Drake; Ryan James, PhD
Over the last 50 years, the study of radiological contamination and decontamination has expanded significantly. This paper addresses the mechanisms of radiological contamination that have been reported and then discusses which methods have recently been used during performance testing of several different decontamination technologies. About twenty years ago the Idaho Nuclear Technology Engineering Center (INTEC) at the INL began a search for decontamination processes which could minimize secondary waste. In order to test the effectiveness of these decontamination technologies, a new simulated contamination, termed SIMCON, was developed. SIMCON was designed to replicate the types of contamination found on stainless steel,more » spent fuel processing equipment. Ten years later, the INL began research into methods for simulating urban contamination resulting from a radiological dispersal device (RDD). This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and included the initial development an aqueous application of contaminant to substrate. Since 2007, research sponsored by the US Environmental Protection Agency (EPA) has advanced that effort and led to the development of a contamination method that simulates particulate fallout from an Improvised Nuclear Device (IND). The IND method diverges from previous efforts to create tenacious contamination by simulating a reproducible “loose” contamination. Examining these different types of contamination (and subsequent decontamination processes), which have included several different radionuclides and substrates, sheds light on contamination processes that occur throughout the nuclear industry and in the urban environment.« less
López, M C; Fernández, C
2013-07-01
The aim of this experiment was to study the effect of substituting corn grain by soy hulls and corn gluten feed blend on energy partitioning, substrate oxidation, and milk performance in dairy goats during mid lactation. Ten multiparous Murciano-Granadina goats in mid lactation were fed 2 isoenergetic and isoproteic diets [19.08MJ/kg of dry matter (DM) and 18.7% of CP, DM basis] in a crossover design. One group of 5 goats was fed a mixed ration with 373g of corn grain/kg of DM (CRN diet) and the other diet replaced corn grain with 373g/kg DM of fibrous by-products [soy hulls and gluten feed (SHGF) diet]: 227g of soy hulls/kg of DM and 146g of gluten feed blend/kg DM. Fat was added to the SHGF diet to make it isoenergetic. After 10d of adaptation, the feed intake, refusal, total fecal and urine output, and milk yield were recorded daily over a 5-d period. Then, gas exchange measurements were recorded by a mobile open-circuit respirometry system using a head box for 10d. Dry matter intake was similar for both diets (2.07kg/d, on average). Greater and significant values were found in the SHGF diet for ammonia N, energy in urine, and oxidation of protein. Values were significantly lower for heat production of fermentation, indicating a decrease in rumen fermentation with this diet, probably due to an excess of crude protein in the diet and lack of synchronization of the nonfiber carbohydrates with rumen-degraded protein. The metabolizable energy intake was no different between CRN and SHGF treatments, with an average value of 1,444kJ/kg of BW(0.75). Due to the positive energy balance during mid lactation in this trial, most of the heat production from oxidation of nutrients derived from carbohydrate oxidation (55%, on average), followed by oxidation of fat (29%, on average). No significant differences were observed for milk production, although milk fat was significantly greater for the SHGF diet than the CRN diet (7.0 vs. 5.4%, respectively). Despite the different starch levels and fibrous content used in these mixed diets, no significant differences for the efficiency of use of metabolizable energy for late lactation were observed (0.63, on average). An average nutritive value of 7.52MJ of net energy of lactation/kg of DM was obtained. This fibrous by-product was utilized by lactating goats without detrimental effect on energy metabolism and resulted in similar performance to grain bases diet. The economic advantages and sustainability of this choice should be evaluated. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Shen, Naikun; Wang, Qingyan; Zhu, Jing; Qin, Yan; Liao, Siming; Li, Yi; Zhu, Qixia; Jin, Yanling; Du, Liqin; Huang, Ribo
2016-07-01
Duckweed is potentially an ideal succinic acid (SA) feedstock due to its high proportion of starch and low lignin content. Pretreatment methods, substrate content and nitrogen source were investigated to enhance the bioconversion of duckweed to SA and to reduce the costs of production. Results showed that acid hydrolysis was an effective pretreatment method because of its high SA yield. The optimum substrate concentration was 140g/L. The optimum substrate concentration was 140g/L. Corn steep liquor powder could be considered a feasible and inexpensive alternative to yeast extract as a nitrogen source. Approximately 57.85g/L of SA was produced when batch fermentation was conducted in a 1.3L stirred bioreactor. Therefore, inexpensive duckweed can be a promising feedstock for the economical and efficient production of SA through fermentation by Actinobacillus succinogenes GXAS137. Copyright © 2016. Published by Elsevier Ltd.
Jandaik, Savita; Singh, Rajender; Sharma, Mamta
2013-01-01
The present study investigated the effects of four forestry byproducts (sawdust of oak, mango, khair, and tuni) and three agricultural residues (paddy straw, wheat straw, and soybean waste) along with four supplements (wheat bran, rice bran, corn flour, and gram powder) on growth characteristics (spawn run and primordial formation) and yield of Ganoderma lucidum. There were significant differences (P=0.05) in yield regardless of substrates and supplements used in experimentation. Among substrates, agriculture residues supported better yield and biological efficiency of G. lucidum compared to forestry byproducts irrespective of the supplements. The highest yield (82.5 g) and biological efficiency (27.5%) were recorded from paddy straw supplemented with wheat bran, which invariably resulted in significantly higher yield compared to the unsupplemented check(s) or other supplements used in this study.
Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang
2012-11-01
An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Multisubstrate biodegradation kinetics of naphthalene, phenanthrene, and pyrene mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S.; Peters, C.A.; Jaffe, P.R.
Biodegradation kinetics of naphthalene, phenanthrene and pyrene were studied in sole-substrate systems, and in binary and ternary mixtures to examine substrate interactions. The experiments were conducted in aerobic batch aqueous systems inoculated with a mixed culture that had been isolated from soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Monod kinetic parameters and yield coefficients for the individual parameters and yield coefficients for the individual compounds were estimated from substrate depletion and CO{sub 2} evolution rate data in sole-substrate experiments. In all three binary mixture experiments, biodegradation kinetics were comparable to the sole-substrate kinetics. In the ternary mixture, biodegradation of naphthalenemore » was inhibited and the biodegradation rates of phenanthrene and pyrene were enhanced. A multisubstrate form of the Monod kinetic model was found to adequately predict substrate interactions in the binary and ternary mixtures using only the parameters derived from sole-substrate experiments. Numerical simulations of biomass growth kinetics explain the observed range of behaviors in PAH mixtures. In general, the biodegradation rates of the more degradable and abundant compounds are reduced due to competitive inhibition, but enhanced biodegradation of the more recalcitrant PAHs occurs due to simultaneous biomass growth on multiple substrates. In PAH-contaminated environments, substrate interactions may be very large due to additive effects from the large number of compounds present.« less
Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar
2012-07-01
Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuźniar, Agnieszka; Banach, Artur; Stępniewska, Zofia; Frąc, Magdalena; Oszust, Karolina; Gryta, Agata; Kłos, Marta; Wolińska, Agnieszka
2018-01-01
The aim of the study was to assess the differences in the bacterial community physiological profiles in soils contaminated with heavy metals versus soils without metal contaminations. The study's contaminated soil originated from the surrounding area of the Szopienice non-ferrous metal smelter (Silesia Region, Poland). The control was soil unexposed to heavy metals. Metal concentration was appraised by flame atomic absorption spectrometry, whereas the the community-level physiological profile was determined with the Biolog EcoPlatesTM system. The soil microbiological activity in both sites was also assessed via dehydrogenase activity. The mean concentrations of metals (Cd and Zn) in contaminated soil samples were in a range from 147.27 to 12265.42 mg kg-1, and the heavy metal contamination brought about a situation where dehydrogenase activity inhibition was observed mostly in the soil surface layers. Our results demonstrated that there is diversity in the physiological profiles of microorganisms inhabiting contaminated and colntrol soils; therefore, for assessment purposes, these were treated as two clusters. Cluster I included colntrol soil samples in which microbial communities utilised most of the available substrates. Cluster II incorporated contaminated soil samples in which a smaller number of the tested substrates was utilised by the contained microorganisms. The physiological profiles of micro-organisms inhabiting the contaminated and the colntrol soils are distinctly different.
NASA Astrophysics Data System (ADS)
Scafutto, Rebecca Del'Papa Moreira; Souza Filho, Carlos Roberto de
2016-08-01
The near and shortwave infrared spectral reflectance properties of several mineral substrates impregnated with crude oils (°APIs 19.2, 27.5 and 43.2), diesel, gasoline and ethanol were measured and assembled in a spectral library. These data were examined using Principal Component Analysis (PCA) and Partial Least Squares (PLS) Regression. Unique and characteristic absorption features were identified in the mixtures, besides variations of the spectral signatures related to the compositional difference of the crude oils and fuels. These features were used for qualitative and quantitative determination of the contaminant impregnated in the substrates. Specific wavelengths, where key absorption bands occur, were used for the individual characterization of oils and fuels. The intensity of these features can be correlated to the abundance of the contaminant in the mixtures. Grain size and composition of the impregnated substrate directly influence the variation of the spectral signatures. PCA models applied to the spectral library proved able to differentiate the type and density of the hydrocarbons. The calibration models generated by PLS are robust, of high quality and can also be used to predict the concentration of oils and fuels in mixtures with mineral substrates. Such data and models are employable as a reference for classifying unknown samples of contaminated substrates. The results of this study have important implications for onshore exploration and environmental monitoring of oil and fuels leaks using proximal and far range multispectral, hyperspectral and ultraespectral remote sensing.
Heavy metals and essential elements in Italian cereals.
Brizio, P; Benedetto, A; Squadrone, S; Curcio, A; Pellegrino, M; Ferrero, M; Abete, M C
2016-12-01
Crops intended for human nutrition and food production containing different essential trace elements, such as copper and zinc, could be contaminated by toxic metals like cadmium and lead. The interrelationship between micronutrients and contaminant trace elements in different cereals was investigated in North-western Italy, where both agricultural and industrial activities are present. Elemental concentrations in sampled cereals were assessed by inductively coupled plasma mass spectrometry (ICP-MS). Rice, oats and barley reached the highest median levels for Al, Cd and Pb content, while corn samples were less contaminated by toxic metals. Regarding essential elements highest median values of Cu and Zn were both found in barley, while Ni median content was higher in oats. Rice had the lowest median levels of essential elements. The correlation study between toxic and essential elements seemed to demonstrate fixed trends in analysed samples, corroborating the importance of a different diet to limit potential adverse effects caused by toxic elements.
Fate of mycotoxins during beer brewing and fermentation.
Inoue, Tomonori; Nagatomi, Yasushi; Uyama, Atsuo; Mochizuki, Naoki
2013-01-01
Mycotoxins are frequent contaminants of grains, and breweries need, therefore, to pay close attention to the risk of contamination in beer made from such grains as barley and corn. The fate of 14 types of mycotoxin (aflatoxins, fumonisins, ochratoxin A, patulin, trichothecenes, and zearalenone) during beer brewing was investigated in this study. Malt artificially spiked with each mycotoxin was put through the mashing, filtration, boiling and fermentation processes involved in brewing. After brewing, the levels of aflatoxins, ochratoxin A, patulin, and zearalenone were found to have decreased to less than 20% of their initial concentration. They had been adsorbed mainly to the spent grain and removed from the unhopped wort. Additionally, as zearalenone was known, patulin was metabolized to the less toxic compound during the fermentation process. The risk of carry-over to beer was therefore reduced for half of the mycotoxins studied. However, attention still needs to be paid to the risk of trichothecene contamination.
Feng, Yujie; Yu, Yanling; Wang, Xin; Qu, Youpeng; Li, Dongmei; He, Weihua; Kim, Byung Hong
2011-01-01
A microbial consortium with a high cellulolytic activity was enriched to degrade raw corn stover powder (RCSP). This consortium degraded more than 51% of non-sterilized RCSP or 81% of non-sterilized filter paper within 8 days at 40°C under facultative anoxic conditions. Cellulosome-like structures were observed in scanning electron micrographs (SEM) of RCSP degradation residue. The high cellulolytic activity was maintained during 40 subcultures in a medium containing cellulosic substrate. Small ribosomal gene sequence analyses showed the consortium contains uncultured and cultured bacteria with or without cellulolytic activities. Among these bacteria, some are anaerobic others aerobic. Analyses of the culture filtrate showed a typical anoxic polysaccharide fermentation during the culturing process. Reducing sugar concentration increased at early stage followed by various fermentation products that were consumed at the late stage. Copyright © 2010 Elsevier Ltd. All rights reserved.
Madhyastha, M S; Bhat, R V
1984-01-01
Aspergillus parasiticus Speare NRRL 2999 growth and aflatoxin production in black and white pepper and the penetration of the fungus in black pepper corn over various incubation periods were studied. Also, the effects of piperine and pepper oil on growth and aflatoxin production were studied. Under laboratory conditions, black and white pepper supported aflatoxin production (62.5 and 44 ppb (ng/g), respectively) over 30 days of incubation. Fungal growth measured in terms of chitin was considerably less in white pepper than in black pepper. A histological study of black pepper corn showed the fungus penetrating up to the inner mesocarp and establishing itself in the middle mesocarp. Piperine and pepper oil were found to inhibit fungal growth and toxin production in a dose-dependent manner. Thus, both black and white pepper could be considered as poor substrates for fungal growth and aflatoxin production. Images PMID:6435523
Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei
2016-09-01
Biorefinery process of corn cob bagasse was investigated by integrating microbial lipid and ABE fermentation. The effects of NaOH concentration on the fermentations performance were evaluated. The black liquor after pretreatment was used as substrate for microbial lipid fermentation, while the enzymatic hydrolysates of the bagasse were used for ABE fermentation. The results demonstrated that under the optimized condition, the cellulose and hemicellulose in raw material could be effectively utilized. Approximate 87.7% of the polysaccharides were converted into valuable biobased products (∼175.7g/kg of ABE along with ∼36.6g/kg of lipid). At the same time, almost half of the initial COD (∼48.9%) in the black liquor could be degraded. The environmentally friendly biorefinery process showed promising in maximizing the utilization of biomass for future biofuels production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Extent and Persistence of Secondary Water Quality Impacts after Enhanced Reductive Bioremediation
2015-09-01
7 2.3.5 Substrate Fermentation ...Conceptual Model of SWQI Production and Attenuation During ERB, large amounts of easily fermented organic substrates are added to the target treatment...area to degrade or immobilize the contaminants of concern (CoC). These substrates are fermented to hydrogen (H2), acetate, and other volatile
Venkata Mohan, S; Ramakrishna, M; Shailaja, S; Sarma, P N
2007-09-01
The influence of soil-water ratio was studied on the performance of the slurry phase bioreactor operated in sequencing batch mode (anoxic-aerobic-anoxic microenvironments) during the bioremediation of soil contaminated with pendimethalin. The performance of the reactors was evaluated at different soil-water ratios (1:5-1:25; at soil loading rate (60 kg of soil/cum-day to 12 kg of soil/cum-day)) keeping the loading rate of pendimethalin constant (133.2 g/kg of soil-day) in six reactors and variable (66.6 g/kg of soil-day to 166.6 g/kg of soil-day) in other four reactors. At 1:20 soil-water ratio, the slurry phase system showed enhanced degradation of substrate (629 microg pendimethalin/g soil). The removal efficiency of pendimethalin in the reactors was dependent on the mass-transfer rates of the substrate from the soil to the aqueous phase. Soil-water ratio and substrate loading rates showed significant influence on the substrate portioning, substrate degradation efficiency and substrate desorption rate.
Cybulska, Iwona; Brudecki, Grzegorz; Rosentrater, Kurt; Julson, James L; Lei, Hanwu
2012-08-01
Lignin extracted from prairie cordgrass, switchgrass, and corn stover (using ethyl acetate-ethanol-water organosolv pretreatment) was analyzed and characterized using several methods. These methods included analysis of purity (by determination of Klason lignin, carbohydrate, and ash contents), solubility (with several organic solvents), phenolic group analysis (ultraviolet ionization difference spectra, and nitrobenzene oxidation), and general functional group analysis (by (1)H NMR). Results showed that all the examined lignin samples were relatively pure (contained over 50% Klason lignin, less than 5% carbohydrate contamination, and less than 3% ash), but switchgrass-derived lignin was observed to be the purest. All the lignins were found to contain high amounts of phenolic groups, while switchgrass-derived lignin was the most phenolic, according to the ionization difference spectra. Nitrobenzene oxidation revealed that all the lignin samples contained available guaiacyl units in high amounts. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew
2014-03-01
A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.
Cleaning techniques for applied-B ion diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, M.E.; Menge, P.R.; Hanson, D.L.
Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaningmore » techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.« less
Levasseur, Anthony; Navarro, David; Punt, Peter J.; Belaïch, Jean-Pierre; Asther, Marcel; Record, Eric
2005-01-01
Two chimeric enzymes, FLX and FLXLC, were designed and successfully overproduced in Aspergillus niger. FLX construct is composed of the sequences encoding the feruloyl esterase A (FAEA) fused to the endoxylanase B (XYNB) of A. niger. A C-terminal carbohydrate-binding module (CBM family 1) was grafted to FLX, generating the second hybrid enzyme, FLXLC. Between each partner, a hyperglycosylated linker was included to stabilize the constructs. Hybrid proteins were purified to homogeneity, and molecular masses were estimated to be 72 and 97 kDa for FLX and FLXLC, respectively. Integrity of hybrid enzymes was checked by immunodetection that showed a single form by using antibodies raised against FAEA and polyhistidine tag. Physicochemical properties of each catalytic module of the bifunctional enzymes corresponded to those of the free enzymes. In addition, we verified that FLXLC exhibited an affinity for microcrystalline cellulose (Avicel) with binding parameters corresponding to a Kd of 9.9 × 10−8 M for the dissociation constant and 0.98 μmol/g Avicel for the binding capacity. Both bifunctional enzymes were investigated for their capacity to release ferulic acid from natural substrates: corn and wheat brans. Compared to free enzymes FAEA and XYNB, a higher synergistic effect was obtained by using FLX and FLXLC for both substrates. Moreover, the release of ferulic acid from corn bran was increased by using FLXLC rather than FLX. This result confirms a positive role of the CBM. In conclusion, these results demonstrated that the fusion of naturally free cell wall hydrolases and an A. niger-derived CBM onto bifunctional enzymes enables the increase of the synergistic effect on the degradation of complex substrates. PMID:16332795
Bown, David P; Gatehouse, John A
2004-05-01
Carboxypeptidases were purified from guts of larvae of corn earworm (Helicoverpa armigera), a lepidopteran crop pest, by affinity chromatography on immobilized potato carboxypeptidase inhibitor, and characterized by N-terminal sequencing. A larval gut cDNA library was screened using probes based on these protein sequences. cDNA HaCA42 encoded a carboxypeptidase with sequence similarity to enzymes of clan MC [Barrett, A. J., Rawlings, N. D. & Woessner, J. F. (1998) Handbook of Proteolytic Enzymes. Academic Press, London.], but with a novel predicted specificity towards C-terminal acidic residues. This carboxypeptidase was expressed as a recombinant proprotein in the yeast Pichia pastoris. The expressed protein could be activated by treatment with bovine trypsin; degradation of bound pro-region, rather than cleavage of pro-region from mature protein, was the rate-limiting step in activation. Activated HaCA42 carboxypeptidase hydrolysed a synthetic substrate for glutamate carboxypeptidases (FAEE, C-terminal Glu), but did not hydrolyse substrates for carboxypeptidase A or B (FAPP or FAAK, C-terminal Phe or Lys) or methotrexate, cleaved by clan MH glutamate carboxypeptidases. The enzyme was highly specific for C-terminal glutamate in peptide substrates, with slow hydrolysis of C-terminal aspartate also observed. Glutamate carboxypeptidase activity was present in larval gut extract from H. armigera. The HaCA42 protein is the first glutamate-specific metallocarboxypeptidase from clan MC to be identified and characterized. The genome of Drosophila melanogaster contains genes encoding enzymes with similar sequences and predicted specificity, and a cDNA encoding a similar enzyme has been isolated from gut tissue in tsetse fly. We suggest that digestive carboxypeptidases with sequence similarity to the classical mammalian enzymes, but with specificity towards C-terminal glutamate, are widely distributed in insects.
Aerobic biodegradation of trichloroethene without auxiliary substrates.
Schmidt, Kathrin R; Gaza, Sarah; Voropaev, Andrey; Ertl, Siegmund; Tiehm, Andreas
2014-08-01
Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effective cleaning of hexagonal boron nitride for graphene devices.
Garcia, Andrei G F; Neumann, Michael; Amet, François; Williams, James R; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David
2012-09-12
Hexagonal boron nitride (h-BN) films have attracted considerable interest as substrates for graphene. ( Dean, C. R. et al. Nat. Nanotechnol. 2010 , 5 , 722 - 6 ; Wang, H. et al. Electron Device Lett. 2011 , 32 , 1209 - 1211 ; Sanchez-Yamagishi, J. et al. Phys. Rev. Lett. 2012 , 108 , 1 - 5 .) We study the presence of organic contaminants introduced by standard lithography and substrate transfer processing on h-BN films exfoliated on silicon oxide substrates. Exposure to photoresist processing adds a large broad luminescence peak to the Raman spectrum of the h-BN flake. This signal persists through typical furnace annealing recipes (Ar/H(2)). A recipe that successfully removes organic contaminants and results in clean h-BN flakes involves treatment in Ar/O(2) at 500 °C.
Apparatus for in situ cleaning of carbon contaminated surfaces
Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel
2004-08-10
Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled.
1993-12-31
substrates. 2-17,19- 24-17-34 These films possess corn- temperature. It is the complexity of both the structural and plec two-dimensional magnetic...free energy differences, diffusion lengths,were taken to ensure that these measurements represent su~ rt tepraue and deposition rates. At room tern...Arnion, G. Jennings, and Rt F. Willis, Surface taneous multilayered growth made due to the lack of Science 192, LS43 (1987). breaks in the normalized MWV
Xu, Zhenshang; He, Huiying; Zhang, Susu; Guo, Tingting; Kong, Jian
2017-01-01
Lactic acid bacteria (LAB) play important roles in silage fermentation, which depends on the production of sufficient organic acids to inhibit the growth of undesirable microorganisms. However, LAB are not able to degrade cellulose and hemicellulose. Bacteria and fibrolytic enzymes are usually used as inoculants to improve the silage quality and digestibility. In the present study, we isolated four Lactobacillus strains ( L. amylovorus CGMCC 11056, L. acidophilus CCTCC AB2010208, L. farciminis CCTCC AB2016237 and L. fermentum CCTCC AB2010204) with feruloyl esterase (FAE) activities from ensiled corn stover (CS) by a plate screening assay. The genes encoding FAEs were cloned and hetero-expressed in Escherichia coli . The optimal temperature and pH of these purified enzymes ranged from 45 to 50°C and from 7.0 to 8.0, respectively. They could hydrolyze hydroxycinnamoyl esters in a substrate-specific manner when methyl ferulate, methyl caffeate, methyl ρ-coumarate and methyl sinapinate were used as substrates. Moreover, these four FAEs were able to hydrolyze CS to release hydroxycinnamic acids. Furthermore, these strains could degrade hydroxycinnamic esters, and L. amylovorus CGMCC 11056 was the most efficient strain among these four isolates. These results provided a new target for the development of inoculants to improve silage quality and digestibility.
Xu, Zhenshang; He, Huiying; Zhang, Susu; Guo, Tingting; Kong, Jian
2017-01-01
Lactic acid bacteria (LAB) play important roles in silage fermentation, which depends on the production of sufficient organic acids to inhibit the growth of undesirable microorganisms. However, LAB are not able to degrade cellulose and hemicellulose. Bacteria and fibrolytic enzymes are usually used as inoculants to improve the silage quality and digestibility. In the present study, we isolated four Lactobacillus strains (L. amylovorus CGMCC 11056, L. acidophilus CCTCC AB2010208, L. farciminis CCTCC AB2016237 and L. fermentum CCTCC AB2010204) with feruloyl esterase (FAE) activities from ensiled corn stover (CS) by a plate screening assay. The genes encoding FAEs were cloned and hetero-expressed in Escherichia coli. The optimal temperature and pH of these purified enzymes ranged from 45 to 50°C and from 7.0 to 8.0, respectively. They could hydrolyze hydroxycinnamoyl esters in a substrate-specific manner when methyl ferulate, methyl caffeate, methyl ρ-coumarate and methyl sinapinate were used as substrates. Moreover, these four FAEs were able to hydrolyze CS to release hydroxycinnamic acids. Furthermore, these strains could degrade hydroxycinnamic esters, and L. amylovorus CGMCC 11056 was the most efficient strain among these four isolates. These results provided a new target for the development of inoculants to improve silage quality and digestibility. PMID:28626449
Shen, N; Qin, Y; Wang, Q; Liao, S; Zhu, J; Zhu, Q; Mi, H; Adhikari, B; Wei, Y; Huang, R
2015-06-01
The potential of using corn steep liquor powder (CSLP), peanut meal (PM), soybean meal (SM), cotton meal (CM) and urea as the substitute of yeast extract (YE) as the nitrogen source was investigated for producing succinic acid (SA). Actinobacillus succinogenes GXAS137 was used as the fermenting bacterium and sugarcane molasses was used as the main substrate. None of these materials were able to produce SA as high as YE did. The CSLP could still be considered as a feasible and inexpensive alternate for YE as the yield of SA produced using CSLP was second only to the yield of SA obtained by YE. The use of CSLP-PM mixed formulation (CSLP to PM ratio = 2·6) as nitrogen source produced SA up to 59·2 g l(-1) with a productivity of 1·2 g l(-1) h(-1). A batch fermentation using a stirred bioreactor produced up to 60·7 g l(-1) of SA at the same formulation. Fed-batch fermentation that minimized the substrate inhibition produced 64·7 g l(-1) SA. These results suggest that sugarcane molasses supplemented with a mixture of CSLP and PM as the nitrogen source could be used to produce SA more economically using A. succinogenes. Significance and impact of the study: Succinic acid (SA) is commonly used as a platform chemical to produce a number of high value derivatives. Yeast extract (YE) is used as a nitrogen source to produce SA. The high cost of YE is currently the limiting factor for industrial production of SA. This study reports the use of a mixture of corn steep liquor powder (CSLP) and peanut meal (PM) as an inexpensive nitrogen source to substitute YE. The results showed that this CSLP-PM mixed formulation can be used as an effective and economic nitrogen source for the production of SA. © 2015 The Society for Applied Microbiology.
2014-01-01
Background There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Results Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave® (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons’ staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Conclusions Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased enzyme accessibility. Pretreatment reactors using physical force to disrupt cell walls increase the effectiveness of the pretreatment process. PMID:24713111
NASA Astrophysics Data System (ADS)
Garcia, V.; Cooter, E. J.
2013-12-01
The Renewable Fuel Standard (RFS) requires oil refiners to reach a target of 15 billion gallons of corn-based ethanol by 2022. However, there are concerns that the broad-scale use of corn as a source of ethanol may lead to unintended economic and environmental consequences. This study applies the geophysical relationships captured with linked meteorological, air quality and agriculture models to examine the impact of corn production before enactment of the RFS in 2002 and at the height of the RFS targets in 2022. In particular, we investigate the probability of high-levels of nitrate in groundwater resulting from increased corn production and then relate this vulnerability to the potential for infants to acquire Methemoglobinemia, or 'Blue Baby Syndrome'. Blue Baby Syndrome (BBS) is a potentially fatal condition that occurs when the hemoglobin (Fe2+) in an infant's red blood cells is oxidized to methemoglobin (Fe3+), preventing the uptake of oxygen from the baby's blood. Exposure to high levels of nitrate in groundwater occur near the intersection of areas where surface water can more readily leach into shallow aquifers, wells are the main source of drinking water, and high nitrogen inputs exist. We use a coupled meteorological, agricultural and air quality model to identify areas vulnerable to increased nitrate contamination and associated risk to acquiring BBS. We first verify the relationship between predictive variables (e.g., nitrogen deposition and fertilization rates, landcover, soils and aquifer type) and nitrate groundwater levels by applying a regression model to over 800 nitrate measurements taken from wells located throughout the US (Figure 1). We then apply the regression coefficients to the coupled model output to identify areas that are at an increased risk for high nitrate groundwater levels in 2022. Finally, we examine the potential change in risk for acquiring BBS resulting from increased corn production by applying an Oral Reference Dose (RfD) factor from the US EPA Integrated Risk Information System.
Zhang, Guixiang; Guo, Xiaofang; Zhu, Yuen; Han, Zhiwang; He, Qiusheng; Zhang, Fengsong
2017-12-01
Little is known regarding how biochars' feedstock and pyrolysis temperature affect soil function and plant growth. To address this gap in knowledge, 12 biochars (walnut shells, corn cobs, corn straws, and rice straws were separately pyrolyzed at 250, 400, and 600°C for 4h) were applied to soil from an indigenous coking site with application rate of 2.5% (w/w) in a pot experiment to determine the impact of biochar types on macro-nutrients (total and available N, P, and K) and ryegrass growth in the soil from an indigenous coking site. Generally, the total N, P, and K in the soil was not significantly different from that of the control group. However, biochars decreased the available N from 21.76mg·kg -1 for the control to 14.96mg·kg -1 . Corn straw and rice straw biochars increased the available P from 2.14mg·kg -1 for the control to 28.35mg·kg -1 , specifically at higher pyrolysis temperature, while walnut shell and corn cob biochars had little influence on it regardless of pyrolysis temperature. Biochars increased the available K from 173.58mg·kg -1 for the control to 355.64mg·kg -1 , varying as their feedstocks of corn cob>rice straw>corn straw>walnut shell and increasing with the increase of pyrolysis temperature. Correlation analysis suggests that it is responsible for the competition of soluble cations from biochars with K for adsorption sites on the soil surface. Biochars increased the ryegrass biomass from 0.07g·pot -1 for the control to 0.16g·pot -1 , with the generally most effective stimulation by biochars produced at 400°C. Ryegrass biomass had obviously positive correlation with available K, indicating its essential role in the growth of ryegrass in the studied soil. Copyright © 2017. Published by Elsevier B.V.
Mateyka, Christian; Schnarrenberger, Claus
1988-01-01
Two major α-glucan phosphorylases (I and II) from leaves of the C4 plant corn (Zea mays L.) were previously shown to be compartmented in mesophyll and bundle sheath cells, respectively (C Mateyka, C Schnarrenberger 1984 Plant Sci Lett 36: 119-123). The two enzymes were separated by chromatography on DEAE-cellulose and purified to homogeneity by affinity chromatography on immobilized starch, according to published procedures, as developed for the cytosol and chloroplast phosphorylase from the C3 plant spinach. The two α-glucan phosphorylases have their pH optimum at pH 7. The specificity for polyglucans was similar for soluble starch and amylopectin, however, differed for glycogen (Km = 16 micrograms per milliliter for the mesophyll cell and 250 micrograms per milliliter for the bundle sheath cell phosphorylase). Maltose, maltotriose, and maltotetraose were not cleaved by either phosphorylase. If maltopentaose was used as substrate, the rate was about twice as high with the bundle sheath cell phosphorylase, than with the mesophyll cell phosphorylase. The phosphorylase I showed a molecular mass of 174 kilodaltons and the phosphorylase II of 195 kilodaltons for the native enzyme and of 87 and of 53 kilodaltons for the SDS-treated proteins, respectively. Specific antisera raised against mesophyll cell phosphorylase from corn leaves and against chloroplast phosphorylase from spinach leaves implied high similarity for the cytosol phosphorylase of the C3 plant spinach with mesophyll cell phosphorylase of the C4 plant corn and of chloroplast phosphorylase of spinach with the bundle sheath cell phosphorylase of corn. Images Fig. 2 Fig. 7 PMID:16665923
Nezami, Sareh; Malakouti, Mohammad Jafar; Bahrami Samani, Ali; Ghannadi Maragheh, Mohammad
2016-11-01
To study the benefit of including citric and oxalic acid treatments for phytoremediation of 226 Ra contaminated soils a greenhouse experiment with corn was conducted. A soil was sampled from a region of high natural 226 Ra radioactivity in Ramsar, Iran. After cultivation of corn seed and using organic acid treatments at 1, 10 and 100 mM concentrations, plants (shoots and roots) were harvested, digested and prepared to measure 226 Ra activity. Simultaneously, sequential selective extraction were performed to estimate the partitioning of 226 Ra among geochemical extraction. Results showed that the maximum uptake of 226 Ra in plants was observed in citric acid (6.3%) and then oxalic acid (6%) at 100 mM concentration. These treatments increased radium uptake by a factor of 1.5 than the control. Enhancement of radium uptake by plants was related to soil pH reduction of organic acids in comparison to control. Also, the maximum uptake of this radionuclide in all treatments was obtained in roots compared to shoots. 226 Ra fractionations results revealed that 91.8% of radium was in the residual phase of the soil and the available fractions were less than 2%. As the main percent of 226 Ra was in the residual phase of the soil in this region, it seems that organic acids had not significant effect on the uptake of 226 Ra for phytoremediation by corn in this condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Viaro, Helena Paula; da Silva, Josué José; de Souza Ferranti, Larissa; Bordini, Jaqueline Gozzi; Massi, Fernanda Pelisson; Fungaro, Maria Helena Pelegrinelli
2017-02-21
Maize is one of the most important commercial crops cultivated throughout the world, mostly in tropical and subtropical countries. It is highly susceptible to mycotoxins, toxic secondary metabolites produced by fungi. In this study, we assessed freshly harvested corn produced in Brazil for aflatoxin contamination and the presence of Aspergillus. B type aflatoxins (AFB 1 +AFB 2 ) were detected in 56% of 16 grain samples, while G type aflatoxins (AFG 1 +AFG 2 ) were detected in 25%. Of the total number of grains (n=1920) evaluated for the presence of fungi species, 4.7% were infected with Aspergillus species, 74.5% and 16.7% respectively with Fusarium and Penicillium species and 4.1% with other fungi genera. In total, 89 Aspergillus isolates were identified, most (86 isolates) characterized as belonging to Aspergillus section Flavi, and the remainder to Aspergillus section Cremei (2 isolates) and Aspergillus section Terrei (1 isolate). All the isolates of section Flavi were subjected to molecular analysis. They were found to belong to six species, including Aspergillus novoparasiticus, Aspergillus arachidicola and Aspergillus pseudocaelatus, all aflatoxins B and G producing species, which are herein described for the first time infecting corn kernels. Copyright © 2016 Elsevier B.V. All rights reserved.
Kurniati, Evi; Arfarita, Novi; Imai, Tsuyoshi; Higuchi, Takaya; Kanno, Ariyo; Yamamoto, Koichi; Sekine, Masahiko
2014-06-01
The use of filamentous fungi in bioremediation of heavy metal contamination has been developed recently. This research aims to observe the capability of filamentous fungi isolated from forest soil for bioremediation of mercury contamination in a substrate. Six fungal strains were selected based on their capability to grow in 25 mg/L Hg(2+)-contaminated potato dextrose agar plates. Fungal strain KRP1 showed the highest ratio of growth diameter, 0.831, thus was chosen for further observation. Identification based on colony and cell morphology carried out by 18S rRNA analysis gave a 98% match to Aspergillus flavus strain KRP1. The fungal characteristics in mercury(II) contamination such as range of optimum pH, optimum temperature and tolerance level were 5.5-7 and 25-35°C and 100 mg/L respectively. The concentration of mercury in the media affected fungal growth during lag phases. The capability of the fungal strain to remove the mercury(II) contaminant was evaluated in 100 mL sterile 10 mg/L Hg(2+)-contaminated potato dextrose broth media in 250 mL Erlenmeyer flasks inoculated with 10(8) spore/mL fungal spore suspension and incubation at 30°C for 7 days. The mercury(II) utilization was observed for flasks shaken in a 130 r/min orbital shaker (shaken) and non-shaken flasks (static) treatments. Flasks containing contaminated media with no fungal spores were also provided as control. All treatments were done in triplicate. The strain was able to remove 97.50% and 98.73% mercury from shaken and static systems respectively. A. flavus strain KRP1 seems to have potential use in bioremediation of aqueous substrates containing mercury(II) through a biosorption mechanism. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Liu, Tongzhou; Zhang, Zhen; Dong, Wenyi; Wu, Xiaojing; Wang, Hongjie
2017-11-01
In this study, the feasibility of employing an integrated bioremediation approach in contaminated river sediment was evaluated. Sequential addition of co-substrate (acetate) and electron acceptor (NO 3 - ) in a two-phase treatment was capable of effectively removing polycyclic aromatic hydrocarbons (PAHs) in river sediment. The residual concentration of total PAHs decreased to far below effect range low (ERL) value within 91 days of incubation, at which concentration it could rarely pose biological impairment. The biodegradation of high molecular weight PAHs were found to be mainly occurred in the sediment treated with co-substrates (i.e. acetate or methanol), in which acetate was found to be more suitable for PAHs degradation. The role of co-substrates in influencing PAHs biodegradation was tentatively discussed herein. Additionally, the sediment odorous problem and blackish appearance were intensively addressed by NO 3 - injection. The results of this study demonstrated that integrating two or more approaches/processes would be a helpful option in sediment remediation. It can lead to a more effective remediation performance, handle multiple contamination issues, as well as mitigate environmental risks caused by one of the single methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C
2015-12-01
In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.
Preparation of Mica and Silicon Substrates for DNA Origami Analysis and Experimentation
Pillers, Michelle A.; Shute, Rebecca; Farchone, Adam; Linder, Keenan P.; Doerfler, Rose; Gavin, Corey; Goss, Valerie; Lieberman, Marya
2015-01-01
The designed nature and controlled, one-pot synthesis of DNA origami provides exciting opportunities in many fields, particularly nanoelectronics. Many of these applications require interaction with and adhesion of DNA nanostructures to a substrate. Due to its atomically flat and easily cleaned nature, mica has been the substrate of choice for DNA origami experiments. However, the practical applications of mica are relatively limited compared to those of semiconductor substrates. For this reason, a straightforward, stable, and repeatable process for DNA origami adhesion on derivatized silicon oxide is presented here. To promote the adhesion of DNA nanostructures to silicon oxide surface, a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) is deposited from an aqueous solution that is compatible with many photoresists. The substrate must be cleaned of all organic and metal contaminants using Radio Corporation of America (RCA) cleaning processes and the native oxide layer must be etched to ensure a flat, functionalizable surface. Cleanrooms are equipped with facilities for silicon cleaning, however many components of DNA origami buffers and solutions are often not allowed in them due to contamination concerns. This manuscript describes the set-up and protocol for in-lab, small-scale silicon cleaning for researchers who do not have access to a cleanroom or would like to incorporate processes that could cause contamination of a cleanroom CMOS clean bench. Additionally, variables for regulating coverage are discussed and how to recognize and avoid common sample preparation problems is described. PMID:26274888
Kaur, Jasmeen; Adamchuk, Viacheslav I.; Whalen, Joann K.; Ismail, Ashraf A.
2015-01-01
The eco-toxicological indicators used to evaluate soil quality complement the physico-chemical criteria employed in contaminated site remediation, but their cost, time, sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapidly detect and map the extent of soil contamination. This paper describes a sensor-based approach for measuring potential (substrate-induced) microbial respiration in diesel-contaminated and non-contaminated soil and hence, indirectly evaluates their microbial activity. A simple CO2 sensing system was developed using an inexpensive non-dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. Also, the sensor system distinguished glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-induced CO2 emission were also found. The developed sensing system can provide in-situ evaluation of soil microbial activity, an indicator of soil quality. The system can be a promising tool for the initial screening of contaminated environmental sites to create high spatial density maps at a relatively low cost. PMID:25730479
Khani, Rouhollah; Moudi, Maryam; Khojeh, Vahid
2017-02-01
There are great concentrations of toxic metallic and metalloid elements such as lead, arsenic, mercury, cadmium or silver in many species of mushrooms comparative to other fruits and vegetables. In this study, contamination with heavy and toxic metallic and metalloid elements in the cultivated mushroom of (Pleurotus florida (Mont.) Singer) is investigated. P. florida was cultivated on different substrates; wheat straw (as blank), wheat straw + pine cone, wheat straw + soybean straw and wheat straw + urea and the effects of these substrates on contamination levels of Mn, Fe, Cu, Zn, As, Cd, and Pb were analyzed. The results showed that the concentrations of essential elements (Mn, Fe, Cu, and Zn) in the target mushroom are at the typical levels. The estimated daily intakes of studied metallic and metalloid elements were below their oral reference dosage mentioned by the international regulatory bodies. Health risk index (HRI) was calculated to evaluate the consumer's health risk assessment from the metal intake that contaminated in the cultivated mushroom of P. florida on the different nutrient sources. In this study, the individual HRIs were less than 1, which indicates insignificant potential health risk associated with the consumption of target mushroom from the studied substrates. Based on the HRIs values among the toxic metallic and metalloid elements, As in the target mushroom in the substrate of the wheat straw + pine cone is the main sources of risk, and it may cause severe health problems. Thus, this study suggests that the concentrations of heavy and toxic elements should be periodically monitored in cultivated mushrooms.
Golinski, P; Vesonder, R F; Latus-Zietkiewicz, D; Perkowski, J
1988-01-01
Fusarium crookwellense KF748 (NRRL A-28100) (isolated from dry rotted potato tubers in Central Poland) produced six mycotoxins on both rice and corn substrates at 25 degrees C. The metabolites detected were zearalenone, alpha-trans-zearalenol, beta-trans-zearalenol, fusarin C, and the trichothecenes fusarenone X and nivalenol. This is the first report of formation of alpha-trans-zearalenol, beta-trans-zearalenol, fusarenone X, and nivalenol by F. crookwellense. PMID:2972254
Anti-scratch AlMgB14 Gorilla® Glass coating
NASA Astrophysics Data System (ADS)
Putrolaynen, V. V.; Grishin, A. M.; Rigoev, I. V.
2017-10-01
Hard aluminum-magnesium boride (BAM) films were fabricated onto Corning® Gorilla® Glass by radio-frequency magnetron sputtering of a single stoichiometric AlMgB14 target. BAM films exhibit a Vickers hardness from 10 to 30 GPa and a Young's modulus from 80 to 160 GPa depending on applied loading forces. Deposited hard coating increases the critical load at which glass substrate cracks. The adhesion energy of BAM films on Gorilla® Glass is 6.4 J/m2.
Enzyme Analysis to Determine Glucose Content
NASA Astrophysics Data System (ADS)
Carpenter, Charles; Ward, Robert E.
Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.
Effects of feedborne fusarium mycotoxins on brain regional neurochemistry of turkeys.
Girish, C K; MacDonald, E J; Scheinin, M; Smith, T K
2008-07-01
An experiment was conducted to investigate the effects of feeding grains naturally contaminated with Fusarium mycotoxins on brain regional neurochemistry of turkeys. The possible preventative effect of a poly-meric glucomannan mycotoxin adsorbent (GMA) was also determined. Forty-five 1-d-old male turkey poults were fed wheat-, corn-, and soybean meal-based diets up to wk 6, formulated with control grains, contaminated grains, or contaminated grains + 0.2% GMA. Deoxynivalenol was the major contaminant, and the concentrations were 2.2 and 3.3 mg/kg of feed during starter and grower phases, respectively. Concentrations of brain monoamine neurotransmitters and metabolites were measured in discrete regions of the brain including the pons, hypothalamus, and cortex by HPLC with electrochemical detection. Neurotransmitters and metabolites analyzed included norepinephrine, dopamine, 3,4-dihydroxyphenylacetic acid, serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). The concentration of 5-HIAA and the 5-HIAA:5-HT-ratio were significantly decreased in pons after feeding contaminated grains. Dietary supplementation with GMA prevented these effects. In the pons, a significant positive correlation (r = 0.52, P < 0.05) was observed between the concentration of 5-HT and BW gain after feeding contaminated diets. The feeding of contaminated diet had no significant effects on the concentrations of neurotransmitters and metabolites in hypothalamus and cortex. It was concluded that consumption of grains naturally contaminated with Fusarium mycotoxins adversely altered the pons serotonergic system of turkeys. Supplementation with GMA partially inhibited these effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.J. Miller; T.S. Yoder
The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, andmore » fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.« less
Production of single cell protein from agro-waste using Rhodococcus opacus.
Mahan, Kristina M; Le, Rosemary K; Wells, Tyrone; Anderson, Seth; Yuan, Joshua S; Stoklosa, Ryan J; Bhalla, Aditya; Hodge, David B; Ragauskas, Arthur J
2018-06-18
Livestock and fish farming are rapidly growing industries facing the simultaneous pressure of increasing production demands and limited protein required to produce feed. Bacteria that can convert low-value non-food waste streams into singe cell protein (SCP) present an intriguing route for rapid protein production. The oleaginous bacterium Rhodococcus opacus serves as a model organism for understanding microbial lipid production. SCP production has not been explored using an organism from this genus. In the present research, R. opacus strains DSM 1069 and PD630 were fed three agro-waste streams: (1) orange pulp, juice, and peel; (2) lemon pulp, juice, and peel; and (3) corn stover effluent, to determine if these low-cost substrates would be suitable for producing a value-added product, SCP for aquafarming or livestock feed. Both strains used agro-waste carbon sources as a growth substrate to produce protein-rich cell biomass suggesting that that R. opacus can be used to produce SCP using agro-wastes as low-cost substrates.
Zhang, Bo-Bo; Xing, Hong-Bo; Jiang, Bing-Jie; Chen, Lei; Xu, Gan-Rong; Jiang, Yun; Zhang, Da-Yong
2018-03-01
In this study, various grains such as rice, millet, corn, barley and wheat were used as raw materials for monacolin K production by solid-state fermentation of Monascus ruber. Among these substrates, millet was found to be the best one for monacolin K production, by which the yield reached 7.12 mg/g. For enhanced monacolin K production, the effects of fermentation time, charge amount, initial moisture content and inoculum volume were systematically investigated in the solid-state fermentation of M. ruber. Moreover, complementary carbon source and nitrogen source were added for further improving the production of monacolin K. Results showed that the maximum production of monacolin K (19.81 mg/g) could be obtained at the optimal conditions. Compared with the traditional red mold rice, using millet as substrate is promising for high production of monacolin K in the solid-state fermentation of M. ruber. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Deng, Lin; Li, Zhu; Wang, Jie; Liu, Hongyan; Li, Na; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter
2016-01-01
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment "S. plumbizincicola intercropped with maize" was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha(-1) gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.
Classification of explosives transformation products in plant tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, S.L.; Jones, R.P.; Escalon, L.
Explosives contamination in surface or groundwater used for the irrigation of food crops and phytoremediation of explosives-contaminated soil or water using plant-assisted biodegradation have brought about concerns as to the fate of explosives in plants. Liquid scintillation counting, high-performance liquid chromatography, and gel permeation chromatography were utilized to characterize explosives (hexahydro-1,3,5-trinitro-1,3,5-triazine and trinitrotoluene) and their metabolites in plant tissues obtained from three separate studies. Analyzing tissues of yellow nutsedge (Cyperus esculentus), corn (Zea mays), lettuce (Lacuta sativa), tomato (Lyopersicum esculentum), radish (Raphanus sativus), and parrot feather (Myriophyllum aquaticum) from three studies where exposure to explosives at nontoxic levels occurred showedmore » that extensive transformation of the explosive contaminant occurred, variations were noted in uptake and transformation between terrestrial and aquatic plants, the products had significantly higher polarity and water solubility than the parent compounds, and the molecular sizes of the transformation products were significantly greater than those of the parent compounds.« less
Effects of PCB Substrate Surface Finish, Flux, and Phosphorus Content on Ionic Contamination
NASA Astrophysics Data System (ADS)
Bacior, M.; Sobczak, N.; Siewiorek, A.; Kudyba, A.; Homa, M.; Nowak, R.; Dziula, M.; Masłoń, S.
2015-02-01
The ionic contamination on printed circuit boards (PCB) having different surface finishes was examined using ionograph. The study was performed at the RT on three types of PCBs covered with: (i) hot air solder leveling (HASL LF), (ii) electroless nickel immersion gold (ENIG), and (iii) organic surface protectant (OSP), all on Cu substrates, as well as two types of fluxes, namely EF2202 and RF800. In the group of boards without soldered components, the lowest average value of contamination was for the ENIG 18 µm surface (0.01 μg NaCl/cm2). Boards with soldered components were more contaminated (from 0.29 μg NaCl/cm2 for the HASL LF 18 µm surface). After spraying boards with fluxing agents, the values of contaminants were the highest. The influence of phosphorus content in Ni-P layer of ENIG finish on ionic contamination was examined. In the group of PCBs with Au coating, the smallest amount of surface contaminants (0.32 μg NaCl/cm2) was for Ni-2-5%P layer. PCBs with Ni-11%P layer were higher contaminated (0.47 μg NaCl/cm2), and another with Ni-8%P layer had 0.81 μg NaCl/cm2. PCBs without Au coating, had the lowest contamination (0.48 μg NaCl/cm2) at phosphorous content equal 11%P. Higher contamination (0.67 μg NaCl/cm2) was at 2-5%P, up to 1.98 μg NaCl/cm2 for 8% of P. Boards with Au finish have lower value of contamination than identical boards without Au layer thus contributing to better reliability of electronic assemblies, since its failures due to current leakage and corrosion can be caused by contaminants.
The purification and properties of placental histaminase
Smith, J. K.
1967-01-01
1. Histaminase was extracted from desanguinated human placentae and purified by salt fractionation, ion-exchange chromatography and gel filtration. The purest preparation was still contaminated with haptoglobin–methaemoglobin. 2. Histaminase activity was measured by the o-aminobenzaldehyde method of Holmstedt & Tham (1959), Kapeller-Adler's (1951) test and a modified spectrophotometric indigodisulphonate test of greater sensitivity. 3. Unless contaminant metal ions were removed, enzymic activity on cadaverine, but not on histamine, fell during purification. When EDTA was added to the working buffers, a constant ratio between activities towards cadaverine and histamine was maintained throughout the later stages of purification, and activities towards the two substrates could not be separated by any of the highly resolving chromatographic analyses employed. 4. The purest preparation oxidized histamine, agmatine and benzylamine more slowly than the C4–C6 aliphatic diamines, but mixed-substrate experiments suggested that all these amines were substrates of histaminase. 5. The substrate and inhibitor specificities of placental histaminase were compared with those of related enzymes from other sources. PMID:4962162
Castelló, Ana; Francès, Francesc; Verdú, Fernando
2017-09-01
Presumptive tests for blood are very simple and sensitive tests used in the search for evidence. They also provide initial information on the nature of stains. A second test can confirm their nature. However, these tests can present false-negative results for different reasons. Some of those reasons have been studied, while others, those caused by the substrate material that contains the stain, are less well known. This work studies the effect of one component of a leather substrate-quebracho extract-on presumptive and human hemoglobin blood tests. Assays were performed using samples of blood dilutions contaminated with quebracho extract and others formed on a substrate containing the contaminant. Results show an undoubted interference that causes false negatives and even visible to the naked eye stains and also indicate that some tests (phenolphthalein) are more affected than others. Examiners should be taken into account when working on this kind of substrates. © 2017 American Academy of Forensic Sciences.
Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA
2009-12-08
The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.
Alford, Kentin L [Pasco, WA; Simmons, Kevin L [Kennewick, WA; Samuels, William D [Richland, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [Albuquerque, NM; Shin, Yongsoon [Richland, WA; Fryxell, Glen E [Kennewick, WA
2009-09-15
The invention pertains to methods of forming monolayers on various surfaces. The surfaces can be selected from a wide array of materials, including, for example, aluminum dioxide, silicon dioxide, carbon and SiC. The substrates can be planar or porous. The monolayer is formed under enhanced pressure conditions. The monolayer contains functionalized molecules, and accordingly functionalizes a surface of the substrate. The properties of the functionalized substrate can enhance the substrate's applicability for numerous purposes including, for example, utilization in extracting contaminants, or incorporation into a polymeric matrix.
Plutonium Decontamination of Uranium using CO2 Cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, M
A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pitsmore » for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.« less
Xu, Youjie; Zhang, Meng; Roozeboom, Kraig; Wang, Donghai
2018-02-01
Four integrated designs were proposed to boost cellulosic ethanol titer and yield. Results indicated co-fermentation of corn flour with hydrolysate liquor from saccharified corn stover was the best integration scheme and able to boost ethanol titers from 19.9 to 123.2 g/L with biomass loading of 8% and from 36.8 to 130.2 g/L with biomass loadings of 16%, respectively, while meeting the minimal ethanol distillation requirement of 40 g/L and achieving high ethanol yields of above 90%. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass is able to significantly enhance ethanol concentration to reduce energy cost for distillation without sacrificing ethanol yields. This novel method could be extended to any pretreatment of biomass from low to high pH pretreatment as demonstrated in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.
FvVE1 Regulates Biosynthesis of Fumonisins and Fusarins in Fusarium verticillioides
MYUNG, KYUNG; LI, SHAOJIE; BUTCHKO, ROBERT A.E.; BUSMAN, MARK; PROCTOR, ROBERT H; ABBAS, HAMED K.; CALVO, ANA M.
2009-01-01
The veA gene positively regulates sterigmatocystin production in Aspergillus nidulans and aflatoxin production in A. parasiticus and A. flavus. Whether veA homologs have a role in regulating secondary metabolism in other fungal genera is unknown. In this study, we examined the role of the veA homolog, FvVE1, on production of two mycotoxin families, fumonisins and fusarins, in the important corn pathogen F. verticillioides. We found that FvVE1 deletion completely suppressed fumonisin production on two natural substrates, corn and rice. Furthermore, our results revealed that FvVE1 is necessary for the expression of the pathway-specific regulatory gene FUM21 and structural genes in the fumonisin biosynthetic gene (FUM) cluster. FvVE1 deletion also blocked production of fusarins. The effects of FvVE1 deletion on the production of these toxins were found to be the same in two separate mating types. Our results strongly suggest that FvVE1 play an important role in regulating mycotoxin production in F. verticillioides. PMID:19382792
Assessment of the bifidogenic effect of substituted xylo-oligosaccharides obtained from corn straw.
Moniz, Patrícia; Ho, Ai Ling; Duarte, Luís C; Kolida, Sofia; Rastall, Robert A; Pereira, Helena; Carvalheiro, Florbela
2016-01-20
This work evaluates the bifidogenic potential of substituted xylo-oligosaccharides (XOS) obtained from a lignocellulosic feedstock (corn straw). Autohydrolysis was used to selectively hydrolyse the xylan-rich hemicellulosic fraction and the soluble oligosaccharides were purified by gel filtration chromatography. Selected oligosaccharides fractions within the target ranges of polymerization degree (4-6 and 9-21, samples S1 and S2, respectively) were characterized and their bifidogenic potential was investigated by in vitro fermentations using human fecal inocula. Bacterial growth was assessed by fluorescent in situ hybridization (FISH). XOS consumption and short-chain fatty acids (SCFA) production were evaluated and compared with commercial oligosaccharides. Under the tested conditions, all the substrates were utilized by the microbiota, and fermentation resulted in increased bifidobacteria populations. Samples S1 and S2 increased bifidobacteria populations and the production profile of SCFA was similar for XOS samples and commercial oligosaccharides although XOS samples displayed the highest concentration of SCFA on longer fermentation times. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.
Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A
2018-04-24
While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.
Chang, Zhen; Cai, Di; Wang, Yong; Chen, Changjing; Fu, Chaohui; Wang, Guoqing; Qin, Peiyong; Wang, Zheng; Tan, Tianwei
2016-04-01
In order to make full use of the fresh corn stalk, the sugar containing juice was used as the sole substrate for acetone-butanol-ethanol production without any nutrients supplement, and the bagasse after squeezing the juice was used as the immobilized carrier. A total 21.34g/L of ABE was produced in batch cells immobilization system with ABE yield of 0.35g/g. A continuous fermentation containing three stages with immobilized cells was conducted and the effect of dilution rate on fermentation was investigated. As a result, the productivity and ABE solvents concentration reached 0.80g/Lh and 19.93g/L, respectively, when the dilution rate in each stage was 0.12/h (corresponding to a dilution rate of 0.04/h in the whole system). And the long-term operation indicated the continuous multiple stages ABE fermentation process had good stability and showed the great potential in future industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reducing sugar loss in enzymatic hydrolysis of ethylenediamine pretreated corn stover.
Li, Wen-Chao; Li, Xia; Qin, Lei; Zhu, Jia-Qing; Han, Xiao; Li, Bing-Zhi; Yuan, Ying-Jin
2017-01-01
In this study, the effect of ethylenediamine (EDA) on enzymatic hydrolysis with different cellulosic substrates and the approaches to reduce sugar loss in enzymatic hydrolysis were investigated. During enzymatic hydrolysis, xylose yield reduced 21.2%, 18.1% and 13.0% with 7.5mL/L EDA for AFEX pretreated corn stover (CS), washed EDA pretreated CS and CS cellulose. FTIR and GPC analysis demonstrated EDA reacted with sugar and produced high molecular weight (MW) compounds. EDA was prone to react with xylose other than glucose. H 2 O 2 and Na 2 SO 3 cannot prevent sugar loss in glucose/xylose-EDA mixture, although they inhibited the browning and high MW compounds formation. By decreasing temperature to 30°C, the loss of xylose yield reduced to only 3.8%, 3.6% and 4.2% with 7.5mL/L EDA in the enzymatic hydrolysis of AFEX pretreated CS, washed EDA pretreated CS and CS cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.
Borgia, Lisa A; Valberg, Stephanie J; McCue, Molly E; Pagan, Joe D; Roe, Charles R
2010-03-01
To evaluate effects of fats with odd and even numbers of carbon atoms on muscle metabolism in exercising horses with polysaccharide storage myopathy (PSSM). 8 horses with PSSM (6 females and 2 males; mean +/- SD age, 6.3 +/- 3.9 years). Isocaloric diets (grain, triheptanoin, corn oil, and high-fat, low-starch [HFLS] feed) were fed for 3 weeks each; horses performed daily treadmill exercise. Grain was fed to establish an exercise target, and HFLS feed was fed as a negative control diet. Daily plasma samples were obtained. For each diet, a 15-minute exercise test was performed, and gluteus medius muscle specimens and blood samples were obtained before and after exercise. Feeding triheptanoin, compared with the corn oil diet, resulted in exercise intolerance; higher plasma creatine kinase (CK) activity and concentrations of C3:0- and C7:0-acylcarnitine and insulin; and lower concentrations of nonesterified fatty acids (NEFA) and C16:0-, C18:1-, and C18:2-acylcarnitine, without changes in concentrations of plasma glucose or resting muscle substrates and metabolites. Feeding grain induced higher CK activity and insulin concentrations and lower NEFA concentrations than did corn oil or HFLS feed. Feeding grain induced higher glucose concentrations than did triheptanoin and corn oil. In muscle, feeding grain resulted in lower glucose-6-phosphate, higher citrate, and higher postexercise lactate concentrations than did the other diets. Triheptanoin had detrimental effects, reflecting decreased availability of NEFA, increased insulin stimulation of glycogen synthesis, and potential inhibition of lipid oxidation. Long-chain fats are the best dietetic for PSSM.
Awad, Ghada E A; Helal, Mohamed M I; Danial, Enas N; Esawy, Mona A
2014-01-01
Phytase production by Penicillium purpurogenum GE1 isolated from soil around bean root nodules was investigated by solid state fermentation (SSF) using mixed substrates consisted of corn cob and corn bran. The SSF conditions were optimized by using one-variable-at-a-time strategy. The optimum conditions for phytase production were at 27 °C, pH 8 and 66% moisture content. The study of different carbon and nitrogen sources revealed that glucose and peptone registered the highest enzyme productivity (92 ± 5.6 U/g ds, 125 ± 4.9 U/g ds). Among different surfactants, maximum phytase productivity was observed with Tween 80 at 0.001 concentrations (170 ± 4.2 U/g ds). A Box-Behnken design was employed to investigate the optimization of the most significant variables affecting the enzyme production. Maximal phytase production was detected after the addition of (g/5 g ds): 0.75 glucose, 0.375 peptone and 0, 01 tween 80. This result represented an improvement in phytase production of 2.6 folds when compared to that previously obtained using the basal medium under the same cultivation conditions. The generated model was found to be very adequate for phytase production (90% accuracy) as the experimental value was 444 ± 3.5 U/g ds compared to 401 U/g ds for the predicted value. In brief, the production of phytase using corn cob and corn bran is a novel and cheap way for the production of this important enzyme and opens a new way for researchers to discover and explore this arena.
Esper, Renata H.; Gonçalez, Edlayne; Marques, Marcia O. M.; Felicio, Roberto C.; Felicio, Joana D.
2014-01-01
Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Inhibitory effects of essential oils of Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) on the mycelial growth and aflatoxin B1 production by Aspergillus flavus have been studied previously in culture medium. The aim of this study was to evaluate aflatoxin B1 production by Aspergillus flavus in real food systems (corn and soybean) treated with Ageratum conyzoides (mentrasto) and Origanum vulgare (oregano) essential oils. Samples with 60 g of the grains were treated with different volumes of essential oils, 200, 100, 50, and 10 μL for oregano and 50, 30, 15, and 10 μL for mentrasto. Fungal growth was evaluated by disk diffusion method. Aflatoxin B1 production was evaluated inoculating suspensions of A. flavus containing 1.3 × 105 spores/mL in 60 g of grains (corn and soybeans) after adjusting the water activity at 0.94. Aflatoxin was quantified by photodensitometry. Fungal growth and aflatoxin production were inhibited by essential oils, but the mentrasto oil was more effective in soybeans than that of oregano. On the other hand, in corn samples, the oregano essential oil was more effective than that of mentrasto. Chemical compositions of the essential oils were also investigated. The GC/MS oils analysis showed that the main component of mentrasto essential oil is precocene I and of the main component of oregano essential oil is 4-terpineol. The results indicate that both essential oils can become an alternative for the control of aflatoxins in corn and soybeans. PMID:24926289
Herbicide loading to shallow ground water beneath Nebraska's Management Systems Evaluation Area.
Spalding, Roy F; Watts, Darrell G; Snow, Daniel D; Cassada, David A; Exner, Mary E; Schepers, James S
2003-01-01
Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.
A vast majority of literature on bimetals deals with aqueous contaminants, very little being on organics strongly adsorbed on sediments and hence very challenging to remediate. Having previously reported materials, mechanistic and parametric aspects of PCB dechlorination with Pd...
Skylab program payload integration. TO27 sample array
NASA Technical Reports Server (NTRS)
Muscari, J. A.; Westcott, P. A.
1974-01-01
The objective of the TO27 sample array was to determine the change in optical properties of various transmissive windows, mirrors, and diffraction gratings caused by the deposition of contaminants found about the orbital assembly. The expected information to be obtained from the total TO27 sample array program is as follows: (1) effect of space contaminants on transmittance, reflectance, grating efficiency, and polarization; (2) variations in deposition of contaminants due to substrate, solar radiation, period of exposure, direction of exposure, and geometry effects; (3) identification of contaminants and source of evolution; (4) time of contaminant evolution and lingering time; and (5) guidelines for a model of spacecraft contamination.
NASA Astrophysics Data System (ADS)
Kana, J. B. Kana; Ndjaka, J. M.; Manyala, N.; Nemraoui, O.; Beye, A. C.; Maaza, M.
2008-09-01
We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO2) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 °C to 600 °C. The X-ray diffraction results demonstrated that the Au and VO2 were well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 °C to 100 °C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at ˜57 nm for substrate temperature higher than 500 °C.
Wireless hydrotherapy smart suit for monitoring handicapped people
NASA Astrophysics Data System (ADS)
Correia, Jose H.; Mendes, Paulo M.
2005-02-01
This paper presents a smart suit, water impermeable, containing sensors and electronics for monitoring handicapped people at hydrotherapy sessions in swimming-pools. For integration into textiles, electronic components should be designed in a functional, robust and inexpensive way. Therefore, small-size electronics microsystems are a promising approach. The smart suit allows the monitoring of individual biometric data, such as heart rate, temperature and movement of the body. Two solutions for transmitting the data wirelessly are presented: through a low-voltage (3.0 V), low-power, CMOS RF IC (1.6 mm x 1.5 mm size dimensions) operating at 433 MHz, with ASK modulation and a patch antenna built on lossy substrates compatible with integrated circuits fabrication. Two different substrates were used for antenna implementation: high-resistivity silicon (HRS) and Corning Pyrex #7740 glass. The antenna prototypes were built to operate close to the 5 GHz ISM band. They operate at a center frequency of 5.705 GHz (HRS) and 5.995 GHz (Pyrex). The studied parameters were: substrate thickness, substrate losses, oxide thickness, metal conductivity and thickness. The antenna on HRS uses an area of 8 mm2, providing a 90 MHz bandwidth and ~0.3 dBi of gain. On a glass substrate, the antenna uses 12 mm2, provides 100 MHz bandwidth and ~3 dBi of gain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarpellini, D.; Paoloni, S.; Medaglia, P.G.
Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate andmore » metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.« less
Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.
Wallenius, Kaisa; Lappi, Kaisa; Mikkonen, Anu; Wickström, Annika; Vaalama, Anu; Lehtinen, Taru; Suominen, Leena
2012-02-01
We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.
Hairy and Slippery Polyoxazoline-Based Copolymers on Model and Cartilage Surfaces.
Morgese, Giulia; Ramakrishna, Shivaprakash N; Simic, Rok; Zenobi-Wong, Marcy; Benetti, Edmondo M
2018-02-12
Comb-like polymers presenting a hydroxybenzaldehyde (HBA)-functionalized poly(glutamic acid) (PGA) backbone and poly(2-methyl-2-oxazoline) (PMOXA) side chains chemisorb on aminolized substrates, including cartilage surfaces, forming layers that reduce protein contamination and provide lubrication. The structure, physicochemical, biopassive, and tribological properties of PGA-PMOXA-HBA films are finely determined by the copolymer architecture, its reactivity toward the surface, i.e. PMOXA side-chain crowding and HBA density, and by the copolymer solution concentration during assembly. Highly reactive species with low PMOXA content form inhomogeneous layers due to the limited possibility of surface rearrangements by strongly anchored copolymers, just partially protecting the functionalized surface from protein contamination and providing a relatively weak lubrication on cartilage. Biopassivity and lubrication can be improved by increasing copolymer concentration during assembly, leading to a progressive saturation of surface defects across the films. In a different way, less reactive copolymers presenting high PMOXA side-chain densities form uniform, biopassive, and lubricious films, both on model aminolized silicon oxide surfaces, as well as on cartilage substrates. When assembled at low concentrations these copolymers adopt a "lying down" conformation, i.e. adhering via their backbones onto the substrates, while at high concentrations they undergo a conformational transition, assuming a more densely packed, "standing up" structure, where they stretch perpendicularly from the substrate. This specific arrangement reduces protein contamination and improves lubrication both on model as well as on cartilage surfaces.
Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food
Alshannaq, Ahmad; Yu, Jae-Hyuk
2017-01-01
Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi (molds). These low molecular weight compounds (usually less than 1000 Daltons) are naturally occurring and practically unavoidable. They can enter our food chain either directly from plant-based food components contaminated with mycotoxins or by indirect contamination from the growth of toxigenic fungi on food. Mycotoxins can accumulate in maturing corn, cereals, soybeans, sorghum, peanuts, and other food and feed crops in the field and in grain during transportation. Consumption of mycotoxin-contaminated food or feed can cause acute or chronic toxicity in human and animals. In addition to concerns over adverse effects from direct consumption of mycotoxin-contaminated foods and feeds, there is also public health concern over the potential ingestion of animal-derived food products, such as meat, milk, or eggs, containing residues or metabolites of mycotoxins. Members of three fungal genera, Aspergillus, Fusarium, and Penicillium, are the major mycotoxin producers. While over 300 mycotoxins have been identified, six (aflatoxins, trichothecenes, zearalenone, fumonisins, ochratoxins, and patulin) are regularly found in food, posing unpredictable and ongoing food safety problems worldwide. This review summarizes the toxicity of the six mycotoxins, foods commonly contaminated by one or more of them, and the current methods for detection and analysis of these mycotoxins. PMID:28608841
Tan, Xiangping; Liu, Yanju; Yan, Kaihong; Wang, Ziquan; Lu, Guannan; He, Yike; He, Wenxiang
2017-02-01
Dehydrogenase activity (DHA) is an important indicator of heavy metal toxicity in contaminated soils. Different instances of DHA were determined using various substrates and which could affect the description of heavy metal toxicity. Currently, too few investigations have been done on selecting appropriate substrates. This study employed indoor simulation to determine soil DHA and its response to external cadmium (Cd) using two substrates (TTC and INT). Hormesis for DHA obtained using the TTC method (DHA-TTC) in low Cd concentration was observed which was quickly inhibited in high Cd concentration. While DHA obtained using the INT method (DHA-INT) decreased slowly when Cd concentration increased. The DHA-TTC and DHA-INT in soils at Cd concentration of 500 mg kg -1 decreased 86% and 53%, respectively, compared to the control. The dose-response relationship of Cd to DHA can be well simulated using the logistic model (p < 0.01), which indicated DHA could be used to indicate soil Cd toxicity. Multiple stepwise regression analysis revealed that total organic matter (TOC) is the major factor influencing the toxicity of Cd to DHA-TTC, while TOC, pH and cation exchange capacity (CEC) are major factors influencing the toxicity of Cd to DHA-INT. The different responses of soil DHA-TTC and DHA-INT to Cd are due to the differences in electron transport chain characteristics between TTC and INT, as well as the influence of soil properties. Although both DHA-TTC and DHA-INT can monitor soil Cd contamination, DHA-INT is recommended as a superior bio-indicator to indicate and assess contamination of Cd in soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John
2015-11-01
The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides. Copyright © 2015 Elsevier B.V. All rights reserved.
2011-01-01
Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX) and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy. PMID:21702938
Method for forming metallic silicide films on silicon substrates by ion beam deposition
Zuhr, Raymond A.; Holland, Orin W.
1990-01-01
Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.
Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide.
Gupta, Rajesh; Lee, Y Y
2010-01-01
Sodium hydroxide and its derivatives are used as pulping reagents, wherein the spent NaOH is recovered in salt form and reused. In this study, use of low concentration NaOH (1-5%) in pretreatment of corn stover and hybrid poplar was investigated. It was done with the understanding that NaOH can be recovered. One of the main objectives in this study is to explore the potential of H(2)O(2) with NaOH for pretreatment of high lignin substrate such as hybrid poplar. Pretreatment time has not been optimized in this study but held constant at 24 h. Corn stover, after treatment with NaOH under moderate conditions, attains near quantitative glucan digestibility. On the other hand, hybrid poplar requires treatment at higher temperature and NaOH concentration to attain acceptable level of digestibility. Supplementation of hydrogen peroxide in the pretreatment significantly raises delignification and digestibility of hybrid poplar. It was also helpful in retaining the carbohydrates in the treated solids. Retention of hemicellulose after pretreatment provides a significant economic benefit as it eliminates the need for detoxifying hemicellulose sugars. As the residual xylan remaining after pretreatment is an impediment to enzymatic digestion of glucan, supplementation of xylanase has significantly increased the digestibility of glucan as well as xylan of the treated hybrid poplar. (c) 2010 American Institute of Chemical Engineers
Johnson, Deayne M; Deocampo, Daniel M; El-Mayas, Hanan; Greipsson, Sigurdur
2015-01-01
The effects of combined chemical application of benomyl, ethylenedianinetetraacetate (EDTA), and iron (Fe) (foliar and root) on lead (Pb) phytoextraction by switchgrass (Panicum virgatum) and corn (Zea mays) was examined. Switchgrass was grown in Pb-contaminated urban topsoil with the following treatments: (C) Control, (B) benomyl, (E) EDTA, (F) foliar-Fe, (BE) benomyl + EDTA, (BF) benomyl + foliar-Fe, (FE) foliar-Fe + EDTA, (BFE) benomyl + foliar-Fe + EDTA. Corn was grown in sand-culture supplemented with Pb (500 mg kg(-1)) with the following treatments: (C) control, (B) benomyl, (E) EDTA, (F) root-Fe, (BE) benomyl + EDTA, (BF) benomyl + root-Fe, (FE) root-iron + EDTA, and, (BFE) benomyl + root-Fe + EDTA. All treatments were replicated three times and pots were arranged in a completely randomized design. Plants were analyzed for element concentration (Fe, Zn, P, and Pb) using either inductively coupled plasma (argon) atomic emission spectroscopy (ICP-AES) or graphite furnace atomic absorption spectrometer. Iron supplementation (foliar and root) affected Pb-translocation in plants. Foliar-Fe treatment increased translocation ratio of Pb (TF-Pb) significantly compared to other treatments with the exception of plants treated with benomyl and BF. Root-Fe treatment in combination with EDTA (FE) increased TF-Pb significantly compared to other treatments. Phytoextraction was improved by the combined chemical application; plants treated with BFE treatment increased Pb-total-phytoextraction by 424% compared to Control plants.
Chang, Susane; Porto Carneiro-Leão, Mariele; Ferreira de Oliveira, Benny; Souza-Motta, Cristina; Lima, Nelson; Santos, Cledir; Tinti de Oliveira, Neiva
2016-01-01
Fusarium verticillioides is considered one of the most important global sources of fumonisins contamination in food and feed. Corn is one of the main commodities produced in the Northeastern Region of Brazil. The present study investigated potential mycotoxigenic fungal strains belonging to the F. verticillioides species isolated from corn kernels in 3 different Regions of the Brazilian State of Pernambuco. A polyphasic approach including classical taxonomy, molecular biology, MALDI-TOF MS and MALDI-TOF MS/MS for the identification and characterisation of the F. verticillioides strains was used. Sixty F. verticillioides strains were isolated and successfully identified by classical morphology, proteomic profiles of MALDI-TOF MS, and by molecular biology using the species-specific primers VERT-1 and VERT-2. FUM1 gene was further detected for all the 60 F. verticillioides by using the primers VERTF-1 and VERTF-2 and through the amplification profiles of the ISSR regions using the primers (GTG)5 and (GACA)4. Results obtained from molecular analysis shown a low genetic variability among these isolates from the different geographical regions. All of the 60 F. verticillioides isolates assessed by MALDI-TOF MS/MS presented ion peaks with the molecular mass of the fumonisin B1 (721.83 g/mol) and B2 (705.83 g/mol). PMID:26927172
Liu, Tongjun; Williams, Daniel L; Pattathil, Sivakumar; Li, Muyang; Hahn, Michael G; Hodge, David B
2014-04-03
A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. This work demonstrates that this two-stage pretreatment process is well suited for converting lignocellulose to fermentable sugars and biofuels, such as ethanol. This approach achieved high enzymatic sugars yields from pretreated corn stover using substantially lower oxidant loadings than have been reported previously in the literature. This pretreatment approach allows for many possible process configurations involving novel alkali recovery approaches and novel uses of alkaline pre-extraction liquors. Further work is required to identify the most economical configuration, including process designs using techno-economic analysis and investigating processing strategies that economize water use.
NASA Astrophysics Data System (ADS)
Astafurova, T.; Zotikova, A.; Morgalev, Yu; Verkhoturova, G.; Postovalova, V.; Kulizhskiy, S.; Mikhailova, S.
2015-11-01
When wheat is cultivated in the media contaminated with platinum nanoparticles, the change in the morphological and physiological indexes of wheat seedlings depends on the physico-chemical parameters of the germination substrate. The changes become less pronounced with the decreasing bioaccessability of the nanomaterial in the following order: water suspension - luvisols - phaeozems. Contamination with nanoparticles affects the height parameters and activates the mechanisms protecting the plant from stress. When using wheat seedlings as test organisms for biotesting the environmental safety of NPs, it is advisable to use the following parameters: weight of roots, weight of aerial part, leaf area, and flavonoid content.
The growth of the metallic ZrNx thin films on P-GaN substrate by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Gu, Chengyan; Sui, Zhanpeng; Li, Yuxiong; Chu, Haoyu; Ding, Sunan; Zhao, Yanfei; Jiang, Chunping
2018-03-01
Although metal nitride thin films have attractive prospects in plasmonic applications due to its stable properties in harsh environments containing high temperatures, shock, and contaminants, the effect of deposition parameters on the properties of the metallic ZrN grown on III-N semiconductors by pulse laser deposition still lacks of detailed exploration. Here we have successfully prepared metallic ZrNx films on p-GaN substrate by pulsed laser deposition in N2 ambient of various pressures at a fixed substrate temperature (475 °C). It is found that the films exhibit quite smooth surfaces and (111) preferred orientation. The X-ray photoelectron spectroscopy measurements indicate that carbon contamination can be completely removed and oxygen contamination is significantly reduced on the film surfaces after cleaning using Ar+ sputtering. The N/Zr ratio increases from 0.64 to 0.75 when the N2 pressure increases from 0.5 Pa to 3 Pa. The optical reflectivity spectra measured by the UV-vis-NIR spectrophotometer show that the ZrNx is a typical and good metallic-like material and its metallic properties can be tuned with changing the film compositions.
NASA Astrophysics Data System (ADS)
Brusseau, Mark L.; Xie, Lily H.; Li, Li
1999-04-01
Interest in coupled biodegradation and transport of organic contaminants has expanded greatly in the past several years. In a system in which biodegradation is coupled with solute transport, the magnitude and rate of biodegradation is influenced not only by properties of the microbial population and the substrate, but also by hydrodynamic properties (e.g., residence time, dispersivity). By nondimensionalizing the coupled-process equations for transport and nonlinear biodegradation, we show that transport behavior is controlled by three characteristic parameters: the effective maximum specific growth rate, the relative half-saturation constant, and the relative substrate-utilization coefficient. The impact on biodegradation and transport of these parameters, which constitute various combinations of factors reflecting the influences of biotic and hydraulic properties of the system, are examined numerically. A type-curve diagram based on the three characteristic parameters is constructed to illustrate the conditions under which steady and non-steady transport is observed, and the conditions for which the linear, first-order approximation is valid for representing biodegradation. The influence of constraints to microbial growth and substrate utilization on contaminant transport is also briefly discussed. Additionally, the impact of biodegradation, with and without biomass growth, on spatial solute distribution and moments is examined.
Production of Ochratoxins in Different Cereal Products by Aspergillus ochraceus1
Trenk, Hugh L.; Butz, Mary E.; Chu, Fun Sun
1971-01-01
The effects of temperature and length of incubation on ochratoxin A production in various substrates were studied. The optimal temperature for toxin production by Aspergillus ochraceus NRRL-3174 was found to be around 28 C. Very low levels of ochratoxin A are produced in corn, rice, and wheat bran at 4 C. The optimal time for ochratoxin A production depends on the substrate, ranging from 7 to 14 days at 28 C. Ochratoxin B and dihydroisocoumaric acid, i.e., one of the hydrolysis products of ochratoxin A, were produced in rice but at levels considerably lower than ochratoxin A. No ochratoxin C was produced in rice at 28 C. When added to rice cereal or oatmeal, the toxin was found to be very stable over prolonged storage and even to autoclaving for 3 hr. PMID:5564676
Feng, Yinghua; Barr, William; Harper, W F
2013-05-15
Biosensing is emerging as an important element of water quality monitoring. This research demonstrated that microbial fuel cell (MFC)-based biosensing can be integrated with artificial neural networks (ANNs) to identify specific chemicals present in water samples. The non-fermentable substrates, acetate and butyrate, induced peak areas (PA) and peak heights (PH) that were generally larger than those caused by the injection of fermentable substrates, glucose and corn starch. The ANN successfully identified peaks associated with these four chemicals under a variety of experimental conditions and for two MFCs that had different levels of sensitivity. ANNs that employ the hyperbolic tangent sigmoid transfer function performed better than those using non-continuous transfer functions. ANNs should be integrated into water quality monitoring efforts for smart biosensing. Published by Elsevier Ltd.
Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua
2017-01-01
In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the “dipping and drying” process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning. PMID:28218285
Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua
2017-02-20
In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO 2 @polycarbonate (TiO 2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the "dipping and drying" process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO 2 (Ag)@PC (DA-TiO 2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO 2 (Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.
NASA Astrophysics Data System (ADS)
Li, Zhengjian; Sun, Zongzhao; Duan, Zhiqiang; Li, Rui; Yang, Yanli; Wang, Jingyi; Lv, Xiaoxia; Qi, Wei; Wang, Hua
2017-02-01
In the present work, a facile and efficient fabrication method has been developed for creating super-hydrophobic coatings of silver-doped TiO2@polycarbonate (TiO2 (Ag)@PC) on the substrates of different materials with photocatalytic self-cleaning performances simply by the “dipping and drying” process. The substrates were first patterned with glue and then deposited with the dopamine-capped TiO2 (Ag)@PC (DA-TiO2 (Ag)@PC) nanocomposites, followed by the further etching with dimethylbenzene. The so prepared super-hydrophobic E-DA-TiO2(Ag)@PC coatings could present the lotus leaf-like porous architectures, high adhesion stability, and especially the visible-light photocatalysis for organic contaminant degradation, thus promising the wide outdoor and indoor applications like water proofing, metal erosion protection, and surface self-cleaning.
Hettler, Simon; Dries, Manuel; Hermann, Peter; Obermair, Martin; Gerthsen, Dagmar; Malac, Marek
2017-05-01
We analyze electron-beam induced carbon contamination in a transmission electron microscope. The study is performed on thin films potentially suitable as phase plates for phase-contrast transmission electron microscopy. Electron energy-loss spectroscopy and phase-plate imaging is utilized to analyze the contamination. The deposited contamination layer is identified as a graphitic carbon layer which is not prone to electrostatic charging whereas a non-conductive underlying substrate charges. Several methods that inhibit contamination are evaluated and the impact of carbon contamination on phase-plate imaging is discussed. The findings are in general interesting for scanning transmission electron microscopy applications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Yoav, Shahar; Barak, Yoav; Shamshoum, Melina; Borovok, Ilya; Lamed, Raphael; Dassa, Bareket; Hadar, Yitzhak; Morag, Ely; Bayer, Edward A
2017-01-01
Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clostridium ( Ruminiclostridium ) thermocellum, the cellulosome, was studied here. C. thermocellum is known to assemble cellulosomes of various subunit (enzyme) compositions, in response to the available carbon source. In the current study, different carbon sources were used, and their influence on both cellulosomal composition and the resultant activity was investigated. Glucose, cellobiose, microcrystalline cellulose, alkaline-pretreated switchgrass, alkaline-pretreated corn stover, and dilute acid-pretreated corn stover were used as sole carbon sources in the growth media of C. thermocellum strain DSM 1313. The purified cellulosomes were compared for their activity on selected cellulosic substrates. Interestingly, cellulosomes derived from cells grown on lignocellulosic biomass showed no advantage in hydrolyzing the original carbon source used for their production. Instead, microcrystalline cellulose- and glucose-derived cellulosomes were equal or superior in their capacity to deconstruct lignocellulosic biomass. Mass spectrometry analysis revealed differential composition of catalytic and structural subunits (scaffoldins) in the different cellulosome samples. The most abundant catalytic subunits in all cellulosome types include Cel48S, Cel9K, Cel9Q, Cel9R, and Cel5G. Microcrystalline cellulose- and glucose-derived cellulosome samples showed higher endoglucanase-to-exoglucanase ratios and higher catalytic subunit-per-scaffoldin ratios compared to lignocellulose-derived cellulosome types. The results reported here highlight the finding that cellulosomes derived from cells grown on glucose and microcrystalline cellulose are more efficient in their action on cellulosic substrates than other cellulosome preparations. These results should be considered in the future development of C. thermocellum -based cellulolytic cocktails, designer cellulosomes, or engineering of improved strains for deconstruction of lignocellulosic biomass.
Colonization of plants by human pathogenic bacteria in the course of organic vegetable production.
Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael
2014-01-01
In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 10(5) CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases.
Colonization of plants by human pathogenic bacteria in the course of organic vegetable production
Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael
2014-01-01
In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 105 CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases. PMID:24829562
[Oil degradation by basidiomycetes in soil and peat at low temperatures].
Kulikova, N A; Klein, O I; Pivchenko, D V; Landesman, E O; Pozdnyakova, N N; Turkovskaya, O V; Zaichik, B Ts; Ruzhitskii, A O; Koroleva, O V
2016-01-01
A total of 17 basidiomycete strains causing white rot and growing on oil-contaminated substrates have been screened. Three strains with high (Steccherinum murashkinskyi), average (Trametes maxima), and low (Pleurotus ostreatus) capacities for the colonization of oil-contaminated substrates have been selected. The potential for degrading crude oil hydrocarbons has been assessed with the use of fungi grown on nonsterile soil and peat at low temperatures. Candida sp. and Rhodococcus sp. commercial strains have been used as reference organisms with oil-degrading ability. All microorganisms introduced in oil-contaminated soil have proved to be ineffective, whereas the inoculation of peat with basidiomycetes and oil-degrading microorganisms accelerated the destruction of oil hydrocarbons. The greatest degradation potential of oil-aliphatic hydrocarbons has been found in S. murashlinskyi. T. maxima turned out to be the most successful in degrading aromatic hydrocarbons. It has been suggested that aboriginal microflora contributes importantly to the effectiveness of oil-destructing microorganisms. T. maxima and S. murashkinskyi strains are promising for further study as oil-oxidizing agents during bioremediation of oil-contaminated peat soil under conditions of low temperatures.
Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng
2017-06-01
Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Screening and production study of microbial xylanase producers from Brazilian Cerrado.
Alves-Prado, Heloiza Ferreira; Pavezzi, Fabiana Carina; Leite, Rodrigo Simões Ribeiro; de Oliveira, Valéria Maia; Sette, Lara Durães; Dasilva, Roberto
2010-05-01
Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55 and 60 degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 degrees C.
Antonissen, Gunther; Devreese, Mathias; De Baere, Siegrid; Martel, An; Van Immerseel, Filip; Croubels, Siska
2017-03-01
Cytochrome P450 (CYP450) drug biotransformation enzymes and multidrug resistance (MDR) proteins may influence drug disposition processes. The first part of the study aimed to evaluate the effect of mycotoxins deoxynivalenol (DON) and/or fumonisins (FBs), at contamination levels approaching European Union guidance levels, on intestinal and hepatic CYP450 enzymes and MDR proteins gene expression in broiler chickens. mRNA expression of genes encoding CYP450 enzymes (CYP3A37, CYP1A4 and CYP1A5) and drug transporters (MDR1/ABCB1 and MRP2/ABCC2) was determined using qRT-PCR. A significant up-regulation of CYP1A4 (P = 0.037) and MDR1 (P = 0.036) was observed in the jejunum of chickens fed a diet contaminated with FBs. The second part of this study aimed to investigate the impact of feeding a FBs contaminated diet on the oral absorption of enrofloxacin (10 mg/kg BW), a MDR1 substrate. A significant (P = 0.045), however small, decreased area under the plasma concentration-time curve (AUC 0-48 h, mean ± SD) was observed for enrofloxacin in chickens fed the FBs contaminated diet compared to the control group, 16.28 ± 1.82 h μg/mL versus 18.27 ± 1.79 h μg/mL. These findings suggest that concurrent administration of drugs with FBs contaminated feed might alter the pharmacokinetic characteristics of CYP1A4 substrate drugs and MDR1 substrates, such as enrofloxacin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Empirical Measurement and Model Validation of Infrared Spectra of Contaminated Surfaces
NASA Astrophysics Data System (ADS)
Archer, Sean
The goal of this thesis was to validate predicted infrared spectra of liquid contaminated surfaces from a micro-scale bi-directional reflectance distribution function (BRDF) model through the use of empirical measurement. Liquid contaminated surfaces generally require more sophisticated radiometric modeling to numerically describe surface properties. The Digital Image and Remote Sensing Image Generation (DIRSIG) model utilizes radiative transfer modeling to generate synthetic imagery for a variety of applications. Aside from DIRSIG, a micro-scale model known as microDIRSIG has been developed as a rigorous ray tracing physics-based model that could predict the BRDF of geometric surfaces that are defined as micron to millimeter resolution facets. The model offers an extension from the conventional BRDF models by allowing contaminants to be added as geometric objects to a micro-facet surface. This model was validated through the use of Fourier transform infrared spectrometer measurements. A total of 18 different substrate and contaminant combinations were measured and compared against modeled outputs. The substrates used in this experiment were wood and aluminum that contained three different paint finishes. The paint finishes included no paint, Krylon ultra-flat black, and Krylon glossy black. A silicon based oil (SF96) was measured out and applied to each surface to create three different contamination cases for each surface. Radiance in the longwave infrared region of the electromagnetic spectrum was measured by a Design and Prototypes (D&P) Fourier transform infrared spectrometer and a Physical Sciences Inc. Adaptive Infrared Imaging Spectroradiometer (AIRIS). The model outputs were compared against the measurements quantitatively in both the emissivity and radiance domains. A temperature emissivity separation (TES) algorithm had to be applied to the measured radiance spectra for comparison with the microDIRSIG predicted emissivity spectra. The model predicted emissivity spectra was also forward modeled through a DIRSIG simulation for comparisons to the radiance measurements. The results showed a promising agreement for homogeneous surfaces with liquid contamination that could be well characterized geometrically. Limitations arose in substrates that were modeled as homogeneous surfaces, but had spatially varying artifacts due to uncertainties with contaminant and surface interactions. There is high desire for accurate physics based modeling of liquid contaminated surfaces and this validation framework may be extended to include a wider array of samples for more realistic natural surfaces that are often found in real world scenarios.
Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates
NASA Technical Reports Server (NTRS)
White, Gary L.
1997-01-01
CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.
Němeček, Jan; Steinová, Jana; Špánek, Roman; Pluhař, Tomáš; Pokorný, Petr; Najmanová, Petra; Knytl, Vladislav; Černík, Miroslav
2018-05-01
In situ bioremediation (ISB) using reductive dechlorination is a widely accepted but relatively slow approach compared to other technologies for the treatment of groundwater contaminated by chlorinated ethenes (CVOCs). Due to the known positive kinetic effect on microbial metabolism, thermal enhancement may be a viable means of accelerating ISB. We tested thermally enhanced ISB in aquifers situated in sandy saprolite and underlying fractured granite. The system comprised pumping, heating and subsequent injection of contaminated groundwater aiming at an aquifer temperature of 20-30°C. A fermentable substrate (whey) was injected in separate batches. The test was monitored using hydrochemical and molecular tools (qPCR and NGS). The addition of the substrate and increase in temperature resulted in a rapid increase in the abundance of reductive dechlorinators (e.g., Dehalococcoides mccartyi, Dehalobacter sp. and functional genes vcrA and bvcA) and a strong increase in CVOC degradation. On day 34, the CVOC concentrations decreased by 87% to 96% in groundwater from the wells most affected by the heating and substrate. On day 103, the CVOC concentrations were below the LOQ resulting in degradation half-lives of 5 to 6days. Neither an increase in biomarkers nor a distinct decrease in the CVOC concentrations was observed in a deep well affected by the heating but not by the substrate. NGS analysis detected Chloroflexi dechlorinating genera (Dehalogenimonas and GIF9 and MSBL5 clades) and other genera capable of anaerobic metabolic degradation of CVOCs. Of these, bacteria of the genera Acetobacterium, Desulfomonile, Geobacter, Sulfurospirillum, Methanosarcina and Methanobacterium were stimulated by the substrate and heating. In contrast, groundwater from the deep well (affected by heating only) hosted representatives of aerobic metabolic and aerobic cometabolic CVOC degraders. The test results document that heating of the treated aquifer significantly accelerated the treatment process but only in the case of an abundant substrate. Copyright © 2017. Published by Elsevier B.V.
Martinez, Robert J.; Wu, Cindy H.; Beazley, Melanie J.; Andersen, Gary L.; Conrad, Mark E.; Hazen, Terry C.; Taillefert, Martial; Sobecky, Patricia A.
2014-01-01
Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4 3−) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration. PMID:24950228
Tomei, M Concetta; Mosca Angelucci, Domenica; Daugulis, Andrew J
2017-02-01
A continuous two-phase partitioning bioreactor (C-TPPB), operated with coiled tubing made of the DuPont polymer Hytrel 8206, was tested for the bioremediation of 4-chlorophenol, as a model toxic compound. The tubing was immersed in the aqueous phase, with the contaminated water flowing tube-side, and an adapted microbial culture suspended in the bioreactor itself, with the metabolic demand of the cells creating a concentration gradient to cause the substrate to diffuse into the bioreactor for biodegradation. The system was operated over a range of loadings (tubing influent concentration 750-1500 mg L -1 ), with near-complete substrate removal in all cases. Distribution of the contaminant at the end of the tests (96 h) highlighted biological removal in the range of 87-95%, while the amount retained in the polymer ranged from ∼1 to 8%. Mass transfer of the substrate across the tubing wall was not limiting, and the polymer demonstrated the capacity to buffer the substrate loadings and to adapt to microbial metabolism. The impact of C-TPPB operation on biomass activity was also investigated by a kinetic characterization of the microbial culture, which showed better resistance to substrate inhibition after C-TPPB operation, thereby confirming the beneficial effect of sub-inhibitory controlled conditions, characteristic of TPPB systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.
Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less
Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.
2016-09-21
Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less
Enhanced chondrocyte culture and growth on biologically inspired nanofibrous cell culture dishes.
Bhardwaj, Garima; Webster, Thomas J
2016-01-01
Chondral and osteochondral defects affect a large number of people in which treatment options are currently limited. Due to its ability to mimic the natural nanofibrous structure of cartilage, this current in vitro study aimed at introducing a new scaffold, called XanoMatrix™, for cartilage regeneration. In addition, this same scaffold is introduced here as a new substrate onto which to study chondrocyte functions. Current studies on chondrocyte functions are limited due to nonbiologically inspired cell culture substrates. With its polyethylene terephthalate and cellulose acetate composition, good mechanical properties and nanofibrous structure resembling an extracellular matrix, XanoMatrix offers an ideal surface for chondrocyte growth and proliferation. This current study demonstrated that the XanoMatrix scaffolds promote chondrocyte growth and proliferation as compared with the Corning and Falcon surfaces normally used for chondrocyte cell culture. The XanoMatrix scaffolds also have greater hydrophobicity, three-dimensional surface area, and greater tensile strength, making them ideal candidates for alternative treatment options for chondral and osteochondral defects as well as cell culture substrates to study chondrocyte functions.
Sipos, Bálint; Szilágyi, Mátyás; Sebestyén, Zoltán; Perazzini, Raffaella; Dienes, Dóra; Jakab, Emma; Crestini, Claudia; Réczey, Kati
2011-11-01
The efficiency of enzymatic hydrolysis of lignocellulses can be increased by addition of surfactants and polymers, such as poly(ethylene glycol) (PEG). The effect of PEG addition on the cellulase adsorption was tested on various steam pretreated lignocellulose substrates (spruce, willow, hemp, corn stover, wheat straw, sweet sorghum bagasse). A positive effect of PEG addition was observed, as protein adsorption has decreased and free enzyme activities (FP, β-glucosidase) have increased due to the additive. However, the degree of enhancement differed among the substrates, being highest on steam pretreated spruce. Results of lignin analysis (pyrolysis-GC/MS, (31)P NMR) suggest that the effect of PEG addition is in connection with the amount of unsubstituted phenolic hydroxyl groups of lignin in the substrate. Adsorption experiments using two commercial enzyme preparations, Celluclast 1.5L (Trichoderma reesei cellulase) and Novozym 188 (Aspergillus niger β-glucosidase) suggested that enzyme origins affected on the adsorptivity of β-glucosidases. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Cao, Ana; Santiago, Rogelio; Ramos, Antonio J; Souto, Xosé C; Aguín, Olga; Malvar, Rosa Ana; Butrón, Ana
2014-05-02
In northwestern Spain, where weather is rainy and mild throughout the year, Fusarium verticillioides is the most prevalent fungus in kernels and a significant risk of fumonisin contamination has been exposed. In this study, detailed information about environmental and maize genotypic factors affecting F. verticillioides infection, fungal growth and fumonisin content in maize kernels was obtained in order to establish control points to reduce fumonisin contamination. Evaluations were conducted in a total of 36 environments and factorial regression analyses were performed to determine the contribution of each factor to variability among environments, genotypes, and genotype × environment interactions for F. verticillioides infection, fungal growth and fumonisin content. Flowering and kernel drying were the most critical periods throughout the growing season for F. verticillioides infection and fumonisin contamination. Around flowering, wetter and cooler conditions limited F. verticillioides infection and growth, and high temperatures increased fumonisin contents. During kernel drying, increased damaged kernels favored fungal growth, and higher ear damage by corn borers and hard rainfall favored fumonisin accumulation. Later planting dates and especially earlier harvest dates reduced the risk of fumonisin contamination, possibly due to reduced incidence of insects and accumulation of rainfall during the kernel drying period. The use of maize varieties resistant to Sitotroga cerealella, with good husk coverage and non-excessive pericarp thickness could also be useful to reduce fumonisin contamination of maize kernels. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kana, J. B. Kana; Department of physics, University of Yaounde I, P.O. Box 812 Yaounde; Ndjaka, J. M.
2008-09-23
We prepared gold/Vanadium dioxide nanocomposites thin films by the rf reactive inverted cylindrical magnetron sputtering (ICMS) for the first time and report their enhanced surface plasmon resonance (SPR) tunable shift reversibility. ICMS has been attracting much attention for its ability for uniform coating of three-dimensional objects and high-rate deposition of dielectric materials. To investigate the optical properties of gold nanoparticles embedded in an active matrix (VO{sub 2}) composite film was synthesized on corning glass substrates for several substrate temperatures ranging from 400 deg. C to 600 deg. C. The X-ray diffraction results demonstrated that the Au and VO{sub 2} weremore » well crystallized. The optical transmission properties were measured from 300nm to 1100nm and the absorption peak due to the surface plasmon resonance (SPR) of Au nanoparticles were observed. Under external temperature stimuli, the tunable reversibility of the SPR shift was observed when the nanocomposites temperature varies from 20 deg. C to 100 deg. C. The enhancement of this shift of SPR was observed as the substrate temperature increases and it was found that the shift of SPR increased rapidly with increasing substrate temperature but then remained constant at {approx}57 nm for substrate temperature higher than 500 deg. C.« less
The cleaning of burned and contaminated archaeological maize prior to 87Sr/86Sr analysis
Benson, Larry V.; Taylor, Howard E.; Plowman, Terry I.; Roth, David A.; Antweiler, Ronald C.
2010-01-01
Accurate trace-metal and strontium-isotope analyses of archaeological corn cobs require that metal contaminants be removed prior to chemical analysis. Archaeological cobs are often coated with construction debris, dust, or soil which contains mineral particles. In addition, most archaeological cobs are partially or completely burned and the burned parts incorporate mineral debris in their hardened residual structures. Unburned cobs are weak ion exchangers and most metals within a cob are not firmly bound to cob organic matter; therefore, immersing cobs in acids and rinsing them in deionized water to remove mineral contaminants may result in the undesirable loss of metals, including strontium, from the cob.In this paper we show that some cob metal-pair ratios are not substantially changed when the cob is “cleaned” with deionized water, if the water-cob contact time does not exceed five minutes. Additionally, we introduce a method for eliminating mineral contaminants in both burned and unburned cobs, thus rendering them acceptable for strontium-isotope analysis. However, the decontamination procedure results in the rapid non-stoichiometric leaching of trace metals from the unburned cobs and it is possible that most metals will be extracted from the cobs during the lengthy decontamination process. Trace metals, in particular Al and Ca, should be analyzed in order to determine the presence and level of mineral contamination after cleaning.
Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation.
Ogunade, I M; Martinez-Tuppia, C; Queiroz, O C M; Jiang, Y; Drouin, P; Wu, F; Vyas, D; Adesogan, A T
2018-05-01
Ensiled forage, particularly corn silage, is an important component of dairy cow diets worldwide. Forages can be contaminated with several mycotoxins in the field pre-harvest, during storage, or after ensiling during feed-out. Exposure to dietary mycotoxins adversely affects the performance and health of livestock and can compromise human health. Several studies and surveys indicate that ruminants are often exposed to mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins, zearalenone, and many other fungal secondary metabolites, via the silage they ingest. Problems associated with mycotoxins in silage can be minimized by preventing fungal growth before and after ensiling. Proper silage management is essential to reduce mycotoxin contamination of dairy cow feeds, and certain mold-inhibiting chemical additives or microbial inoculants can also reduce the contamination levels. Several sequestering agents also can be added to diets to reduce mycotoxin levels, but their efficacy varies with the type and level of mycotoxin contamination. This article gives an overview of the types, prevalence, and levels of mycotoxin contamination in ensiled forages in different countries, and describes their adverse effects on health of ruminants, and effective prevention and mitigation strategies for dairy cow diets. Future research priorities discussed include research efforts to develop silage additives or rumen microbial innocula that degrade mycotoxins. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Assisted phytoremediation of Cd-contaminated soil using poplar rooted cuttings
NASA Astrophysics Data System (ADS)
Alizadeh, S.; Zahedi-Amiri, G.; Savaghebi-Firoozabadi, G.; Etemad, V.; Shirvany, A.; Shirmardi, M.
2012-07-01
To investigate the effect of amended substrates on cadmium uptake by one-year old poplar rooted cuttings a pot culture was carried out. Pots were filled with three substrates. Four treatments of Cd supply including were organized. The results showed that higher biomass productions in substrates A and B compare to substrate C, led to an increase total Cd uptake two times more than that in substrate C, at 150 mg kg-1 concentration. Meanwhile maximum total uptake occurred in substrate B at 100 mg kg-1 concentration. Using synthetic chelators such as ethylenediaminetetraacetic acid in order to achieve high removal rate led to increased environmental impacts while they are not expected when such environmental friendly approaches are applied.
El Gabaly, Farid; Schmid, Andreas K.
2013-03-19
A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... or on the food and feed commodities of corn; corn, field, flour; corn, field, forage; corn, field, grain; corn, field, grits; corn, field, meal; corn, field, refined oil; corn, field, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husk removed; corn, sweet, stover; and corn, pop, grain and...
Lengowski, Melanie B.; Zuber, Karin H. R.; Witzig, Maren; Möhring, Jens; Boguhn, Jeannette; Rodehutscord, Markus
2016-01-01
This study examined ruminal microbial community composition alterations during initial adaption to and following incubation in a rumen simulation system (Rusitec) using grass or corn silage as substrates. Samples were collected from fermenter liquids at 0, 2, 4, 12, 24, and 48 h and from feed residues at 0, 24, and 48 h after initiation of incubation (period 1) and on day 13 (period 2). Microbial DNA was extracted and real-time qPCR was used to quantify differences in the abundance of protozoa, methanogens, total bacteria, Fibrobacter succinogenes, Ruminococcus albus, Ruminobacter amylophilus, Prevotella bryantii, Selenomonas ruminantium, and Clostridium aminophilum. We found that forage source and sampling time significantly influenced the ruminal microbial community. The gene copy numbers of most microbial species (except C. aminophilum) decreased in period 1; however, adaption continued through period 2 for several species. The addition of fresh substrate in period 2 led to increasing copy numbers of all microbial species during the first 2–4 h in the fermenter liquid except protozoa, which showed a postprandial decrease. Corn silage enhanced the growth of R. amylophilus and F. succinogenes, and grass silage enhanced R. albus, P. bryantii, and C. aminophilum. No effect of forage source was detected on total bacteria, protozoa, S. ruminantium, or methanogens or on total gas production, although grass silage enhanced methane production. This study showed that the Rusitec provides a stable system after an adaption phase that should last longer than 48 h, and that the forage source influenced several microbial species. PMID:26928330
NASA Technical Reports Server (NTRS)
Frank, A. M.
1974-01-01
Investigations are conducted into the optical properties of the glass and Kapton substrate materials, and three variables were chosen: deposition rate, sputter gas pressure, and film contamination time. Substrate tests have shown that fabrication of an dielectric broadband reflector would require an extremely complex and expensive filter design.