Sample records for contaminated surface waters

  1. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface

    DTIC Science & Technology

    2008-08-01

    seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  2. Microbial and chemical contamination during and after flooding in the Ohio River-Kentucky, 2011.

    PubMed

    Yard, Ellen E; Murphy, Matthew W; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S; Hill, Vincent R

    2014-09-19

    Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2-4, 2011; n = 15) and after (July 25-26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water.

  3. Microbial and chemical contamination during and after flooding in the Ohio River—Kentucky, 2011

    PubMed Central

    Yard, Ellen E.; Murphy, Matthew W.; Schneeberger, Chandra; Narayanan, Jothikumar; Hoo, Elizabeth; Freiman, Alexander; Lewis, Lauren S.; Hill, Vincent R.

    2017-01-01

    Surface water contaminants in Kentucky during and after 2011 flooding were characterized. Surface water samples were collected during flood stage (May 2–4, 2011; n = 15) and after (July 25–26, 2011; n = 8) from four different cities along the Ohio River and were analyzed for the presence of microbial indicators, pathogens, metals, and chemical contaminants. Contaminant concentrations during and after flooding were compared using linear and logistic regression. Surface water samples collected during flooding had higher levels of E. coli, enterococci, Salmonella, Campylobacter, E. coli O157:H7, adenovirus, arsenic, copper, iron, lead, and zinc compared to surface water samples collected 3-months post-flood (P < 0.05). These results suggest that flooding increases microbial and chemical loads in surface water. These findings reinforce commonly recommended guidelines to limit exposure to flood water and to appropriately sanitize contaminated surfaces and drinking wells after contamination by flood water. PMID:24967556

  4. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  5. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    PubMed

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  6. Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite

    USGS Publications Warehouse

    Sherrill, Marvin G.

    1977-01-01

    Door County, a recreational and fruit-growing area bordering Lake Michigan in northeastern Wisconsin, has had a long history of ground-water contamination from surface and near-surface sources. Contamination is most severe in late summer when fruit-canning operations and the influx of tourists create additional wastes. Silurian dolomite is the upper bedrock unit in the county and yields generally adequate supplies of very hard water with locally objectionable concentrations of iron and nitrate. Thin soil cover and well-fractured dolomitic bedrock give easy entry to ground-water contaminants throughout large parts of Door County. Many contaminants enter the dolomite by surface or near-surface seepage. There is little attenuation of contamination concentrations in the well-jointed dolomite, and contaminants may travel long distances underground in a relatively short time. The major source of ground-water contamination is bacteria, from individual waste-disposal systems, agricultural, industrial, and municipal wastes. Areas of the county underlain by contaminated zones include only a small percentage of the total ground-water system and are separated by large volumes of ground water free of contamination. (Woodard-USGS)

  7. ARSENIC SORUCE IDENTIFICATION AT THE GROUND WATER-SURFACE WATER INTERACTION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    One of the challenges in assessing the current impact of the discharge of arsenic contaminated ground water into a surface water body is differentiating the arsenic ground-water flux versus dissolution of in-place contaminated sediments. A field investigation has been carried ou...

  8. Assessment of volatile organic compounds in surface water at West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 1999

    USGS Publications Warehouse

    Olsen, Lisa D.; Spencer, Tracey A.

    2000-01-01

    The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.

  9. Immediate Repair Bond Strength of Fiber-reinforced Composite after Saliva or Water Contamination.

    PubMed

    Bijelic-Donova, Jasmina; Flett, Andrew; Lassila, Lippo V J; Vallittu, Pekka K

    2018-05-31

    This in vitro study aimed to evaluate the shear bond strength (SBS) of particulate filler composite (PFC) to saliva- or water-contaminated fiber-reinforced composite (FRC). One type of FRC substrate with semi-interpenetrating polymer matrix (semi-IPN) (everStick C&B) was used in this investigation. A microhybrid PFC (Filtek Z250) substrate served as control. Freshly cured PFC and FRC substrates were first subjected to different contamination and surface cleaning treatments, then the microhybrid PFC restorative material (Filtek Z250) was built up on the substrates in 2-mm increments and light cured. Uncontaminated and saliva- or water-contaminated substrate surfaces were either left untreated or were cleaned via phosphoric acid etching or water spray accompanied with or without adhesive composite application prior applying the adherent PFC material. SBS was evaluated after thermocycling the specimens (6000 cycles, 5°C and 55°C). Three-way ANOVA showed that both the surface contamination and the surface treatment signficantly affected the bond strength (p < 0.05). Saliva contamination reduced the SBS more than did the water contamination. SBS loss after saliva contamination was 73.7% and 31.3% for PFC and FRC, respectively. After water contamination, SBS loss was 17.2% and 13.3% for PFC and FRC, respectively. The type of surface treatment was significant for PFC (p < 0.05), but not for FRC (p = 0.572). Upon contamination of freshly cured PFC or semi-IPN FRC, surfaces should be re-prepared via phosphoric acid etching, water cleaning, drying, and application of adhesive composite in order to recover optimal bond strength.

  10. Occurrence of Surface Water Contaminations: An Overview

    NASA Astrophysics Data System (ADS)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  11. Feasibility Study of Contamination Remediation at Naval Weapons Station, Concord, California. Volume 1. Remedial Action Alternatives.

    DTIC Science & Technology

    1988-09-01

    laboratory contaminants. The surface water sampling program was augmented by clam bioaccumulation 0 studies. In these studies, clams were placed in...water and clam bioaccumulation data indicate that several of the metals found in the contaminated surface soils are also ele- vated in the surface...waters and are potentially bioavailable to aquatic organ- isms and may currently impair water quality in these areas. However, clam bioaccumulation data

  12. Occurrence and potential health risk of Cryptosporidium and Giardia in different water catchments in Belgium.

    PubMed

    Ehsan, Amimul; Geurden, Thomas; Casaert, Stijn; Paulussen, Jef; De Coster, Lut; Schoemaker, Toon; Chalmers, Rachel; Grit, Grietje; Vercruysse, Jozef; Claerebout, Edwin

    2015-02-01

    Human wastewater and livestock can contribute to contamination of surface water with Cryptosporidium and Giardia. In countries where a substantial proportion of drinking water is produced from surface water, e.g., Belgium, this poses a constant threat on drinking water safety. Our objective was to monitor the presence of Cryptosporidium and Giardia in different water catchment sites in Belgium and to discriminate between (oo)cysts from human or animal origin using genotyping. Monthly samples were collected from raw water and purified drinking water at four catchment sites. Cryptosporidium and Giardia were detected using USEPA method 1623 and positive samples were genotyped. No contamination was found in purified water at any site. In three catchments, only low numbers of (oo)cysts were recovered from raw water samples (<1/liter), but raw water samples from one catchment site were frequently contaminated with Giardia (92 %) and Cryptosporidium (96 %), especially in winter and spring. Genotyping of Giardia in 38 water samples identified the presence of Giardia duodenalis assemblage AI, AII, BIV, BIV-like, and E. Cryptosporidium andersoni, Cryptosporidium suis, Cryptosporidium horse genotype, Cryptosporidium parvum, and Cryptosporidium hominis were detected. The genotyping results suggest that agriculture may be a more important source of surface water contamination than human waste in this catchment. In catchment sites with contaminated surface water, such as the Blankaart, continuous monitoring of treated water for the presence of Cryptosporidium and Giardia would be justified and (point) sources of surface water contamination should be identified.

  13. Estimating the susceptibility of surface water in Texas to nonpoint-source contamination by use of logistic regression modeling

    USGS Publications Warehouse

    Battaglin, William A.; Ulery, Randy L.; Winterstein, Thomas; Welborn, Toby

    2003-01-01

    In the State of Texas, surface water (streams, canals, and reservoirs) and ground water are used as sources of public water supply. Surface-water sources of public water supply are susceptible to contamination from point and nonpoint sources. To help protect sources of drinking water and to aid water managers in designing protective yet cost-effective and risk-mitigated monitoring strategies, the Texas Commission on Environmental Quality and the U.S. Geological Survey developed procedures to assess the susceptibility of public water-supply source waters in Texas to the occurrence of 227 contaminants. One component of the assessments is the determination of susceptibility of surface-water sources to nonpoint-source contamination. To accomplish this, water-quality data at 323 monitoring sites were matched with geographic information system-derived watershed- characteristic data for the watersheds upstream from the sites. Logistic regression models then were developed to estimate the probability that a particular contaminant will exceed a threshold concentration specified by the Texas Commission on Environmental Quality. Logistic regression models were developed for 63 of the 227 contaminants. Of the remaining contaminants, 106 were not modeled because monitoring data were available at less than 10 percent of the monitoring sites; 29 were not modeled because there were less than 15 percent detections of the contaminant in the monitoring data; 27 were not modeled because of the lack of any monitoring data; and 2 were not modeled because threshold values were not specified.

  14. Sampling procedure for lake or stream surface water chemistry

    Treesearch

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  15. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate

    PubMed Central

    Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua

    2013-01-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  16. Bioinspired Surface Treatments for Improved Decontamination: Silicate-Based Slippery Liquid-Infused Porous Surfaces (SLIPS)

    DTIC Science & Technology

    2017-07-20

    methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a soapy water solution...and diisopropyl fluorophosphate following treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on...SURFACES (SLIPS) INTRODUCTION The DoD Chemical and Biological Defense Program (CBDP) seeks to provide protection of forces in a contaminated

  17. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater samples. The results demonstrate the importance of effluent discharge as a driver of local hydrologic conditions in an effluent-impacted stream and thus as a fundamental control on surface-water to groundwater transport of effluent-derived pharmaceutical contaminants.

  18. Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination.

    PubMed

    Yang, Yuan-Yuan; Zhao, Jian-Liang; Liu, You-Sheng; Liu, Wang-Rong; Zhang, Qian-Qian; Yao, Li; Hu, Li-Xin; Zhang, Jin-Na; Jiang, Yu-Xia; Ying, Guang-Guo

    2018-03-01

    We systematically investigated the occurrence and distribution of 93 pharmaceuticals and personal care products (PPCPs) and 5 artificial sweeteners (ASs) in surface water and groundwater of Dongjiang River basin in south China. In surface water, 52 compounds were detected with median concentrations ranging from 0.06ng/L to 504ng/L, while in groundwater, 33 compounds were detected with concentrations up to 4580ng/L for acesulfame. PPCPs and ASs were widely detected in the surface water and groundwater samples, which indicated contamination by domestic wastewater in the surface water and groundwater of Dongjiang River basin. Temporal and spatial variations of the detected chemicals were observed in surface water. Acesulfame, sucralose and cyclamate can be used as wastewater indicators to imply contamination in groundwater caused by domestic wastewater due to their hydrophilicity, anthropogenic sources and ubiquity in groundwater. Moreover, the detection of the readily degradable ASs, cyclamate, was a strong indication of untreated wastewater in groundwater. Sucralose was found to be a suitable wastewater indicator to reflect domestic wastewater contamination in surface water and groundwater qualitatively and quantitatively, and it can be used to evaluate wastewater burden in surface water and groundwater of Dongjiang River basin. The wastewater burden data from this survey implied serious contamination in surface water and groundwater by domestic wastewater at Shima River, a tributary of the Dongjiang River. The findings from this study suggest that the selected labile and conservative chemicals can be used as indication of wastewater contamination for aquatic environments qualitatively and quantitatively. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    EPA Science Inventory

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  20. Metagenomes of Microbial Communities in Arsenic- and Pathogen-Contaminated Well and Surface Water from Bangladesh

    PubMed Central

    Layton, Alice C.; Chauhan, Archana; Williams, Daniel E.; Mailloux, Brian; Knappett, Peter S. K.; Ferguson, Andrew S.; McKay, Larry D.; Alam, M. Jahangir; Matin Ahmed, Kazi; van Geen, Alexander

    2014-01-01

    The contamination of drinking water from both arsenic and microbial pathogens occurs in Bangladesh. A general metagenomic survey of well water and surface water provided information on the types of pathogens present and may help elucidate arsenic metabolic pathways and potential assay targets for monitoring surface-to-ground water pathogen transport. PMID:25414497

  1. Natural attenuation of chlorinated-hydrocarbon contamination at Fort Wainwright, Alaska; a hydrogeochemical and microbiological investigation workplan

    USGS Publications Warehouse

    McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.

    1998-01-01

    Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight into ground-water/surface-water interactions in the subsurface. Characterization of the unsaturated zone will improve our understanding of interactions among ground water, the unsaturated zone, and the atmosphere. The interactions likely of importance to this study include the migration of water, dissolved contaminants, nutrients, and gases (oxygen, carbon dioxide, and methane) between the saturated and unsaturated zones. We will use the results of ground-water chemical analyses to determine the spatial and temporal distribution of (1) chlorinated-hydrocarbon contaminants and their degradation products, (2) oxidation-reduction indicators, (3) nutrients, and (4) major ground-water ions. These water-quality data will provide insight into ground-water flow directions, interactions between ground water and surface water, attenuation of contaminant concentrations caused by dispersion, and intrinsic microbiological processes. Microbiological analyses will indicate whether microorganisms at the site are capable of degrading the contaminants of interest, and will allow us to estimate their potential to attenuate existing contamination. Physical and chemical data interpreted as part of the analysis of ground water and surface water mixing will improve our understanding of the relationship between water quality and contaminant source mixing.

  2. Assessment of Surface Water Contamination from Coalbed Methane Fracturing-Derived Volatile Contaminants in Sullivan County, Indiana, USA.

    PubMed

    Meszaros, Nicholas; Subedi, Bikram; Stamets, Tristan; Shifa, Naima

    2017-09-01

    There is a growing concern over the contamination of surface water and the associated environmental and public health consequences from the recent proliferation of hydraulic fracturing in the USA. Petroleum hydrocarbon-derived contaminants of concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)] and various dissolved cations and anions were spatially determined in surface waters around 15 coalbed methane fracking wells in Sullivan County, IN, USA. At least one BTEX compound was detected in 69% of sampling sites (n = 13) and 23% of sampling sites were found to be contaminated with all of the BTEX compounds. Toluene was the most common BTEX compound detected across all sampling sites, both upstream and downstream from coalbed methane fracking wells. The average concentration of toluene at a reservoir and its outlet nearby the fracking wells was ~2× higher than other downstream sites. However, one of the upstream sites was found to be contaminated with BTEX at similar concentrations as in a reservoir site nearby the fracking well. Calcium (~60 ppm) and sulfates (~175 ppm) were the dominant cations and anions, respectively, in surface water around the fracking sites. This study represents the first report of BTEX contamination in surface water from coalbed methane hydraulic fracturing wells.

  3. Probing Contaminant Transport to and from Clay Surfaces in Organic Solvents and Water Using Solution Calorimetry.

    PubMed

    Pourmohammadbagher, Amin; Shaw, John M

    2015-09-15

    Clays, in tailings, are a significant ongoing environmental concern in the mining and oilsands production industries, and clay rehabilitation following contamination poses challenges episodically. Understanding the fundamentals of clay behavior can lead to better environmental impact mitigation strategies. Systematic calorimetric measurements are shown to provide a framework for parsing the synergistic and antagonistic impacts of trace (i.e., parts per million level) components on the surface compositions of clays. The enthalpy of solution of as-received and "contaminated" clays, in as-received and "contaminated" organic solvents and water, at 60 °C and atmospheric pressure, provides important illustrative examples. Clay contamination included pre-saturation of clays with water and organic liquids. Solvent contamination included the addition of trace water to organic solvents and trace organic liquids to water. Enthalpy of solution outcomes are interpreted using a quantitative mass and energy balance modeling framework that isolates terms for solvent and trace contaminant sorption/desorption and surface energy effects. Underlying surface energies are shown to dominate the energetics of the solvent-clay interaction, and organic liquids as solvents or as trace contaminants are shown to displace water from as-received clay surfaces. This approach can be readily extended to include pH, salts, or other effects and is expected to provide mechanistic and quantitative insights underlying the stability of clays in tailings ponds and the behaviors of clays in diverse industrial and natural environments.

  4. Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-09-15

    It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake.

    PubMed

    Dessouki, Tarik C E; Hudson, Jeff J; Neal, Brian R; Bogard, Matthew J

    2005-08-01

    We investigated the usefulness of phytoplankton for the removal of surface water contaminants. Nine large mesocosms (92.2m(3)) were suspended in the flooded DJX uranium pit at Cluff Lake (Saskatchewan, Canada), and filled with highly contaminated mine water. Each mesocosm was fertilized with a different amount of phosphorus throughout the 35 day experiment to stimulate phytoplankton growth, and to create a range in phosphorus load (g) to examine how contaminants may be affected by different nutrient regimes. Algal growth was rapid in fertilized mesocosms (as demonstrated by chlorophyll a profiles). As phosphorus loads increased there were significant declines (p<0.05) in the surface water concentrations of As, Co, Cu, Mn, Ni, and Zn. This decline was near significant for uranium (p=0.065). The surface water concentrations of Ra-226, Mo, and Se showed no relationship to phosphorus load. Contaminant concentrations in sediment traps suspended at the bottom of each mesocosm generally showed the opposite trend to that observed in the surface water, with most contaminants (As, Co, Cu, Mn, Ni, Ra-226, U, and Zn) exhibiting a significant positive relationship (p<0.05) with phosphorus load. Selenium and Mo did not respond to nutrient treatments. Our results suggest that phytoremediation has the potential to lower many surface water contaminants through the sedimentation of phytoplankton. Based on our results, we estimate that the Saskatchewan Surface Water Quality Objectives (SSWQO) for DJX pit would be met in approximately 45 weeks for Co, 65 weeks for Ni, 15 weeks for U, and 5 weeks for Zn.

  6. Pharmaceuticals, hormones, anthropogenic waste indicators, and total estrogenicity in liquid and solid samples from municipal sludge stabilization and dewatering

    USGS Publications Warehouse

    Furlong, Edward T.; Gray, James L.; Quanrud, David M.; Teske, Sondra S.; Werner, Stephen L.; Esposito, Kathleen; Marine, Jeremy; Ela, Wendell P.; Zaugg, Steven D.; Phillips, Patrick J.; Stinson, Beverley

    2012-01-01

    The ubiquitous presence of pharmaceuticals and other emerging contaminants, or trace organic compounds, in surface water has resulted in research and monitoring efforts to identify contaminant sources to surface waters and to better understand loadings from these sources. Wastewater treatment plant discharges have been identified as an important point source of trace organic compounds to surface water and understanding the transport and transformation of these contaminants through wastewater treatment process is essential to controlling their introduction to receiving waters.

  7. Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters

    EPA Science Inventory

    Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...

  8. USING A HEAT PULSE TO MEASURE THE FLUX BETWEEN GROUNDWATER AND SURFACE WATER

    EPA Science Inventory

    EPA estimates that 10 percent of the sediments under the surface waters of the United States are contaminated and approximately 20 percent of the superfund sites include contaminated sediments. The risk associated with these contaminated sediments is directly related to the flux...

  9. Susceptibility of ground water to surface and shallow sources of contamination, Orange County, North Carolina

    USGS Publications Warehouse

    Terziotti, Silvia; Eimers, J.L.

    1999-01-01

    In 1998, the relative susceptibility of ground water in Orange County, North Carolina,to contamination from surface and shallow sources was evaluated. A geographic information system was used to build three county-wide layers--soil permeability, land use/land cover, and land-surface slope. The harmonic mean permeability of soil layers was used to estimate a location's capacity to transmit water through the soil. Values for each of these three factors were categorized and ranked from 1 to 10 according to relative potential for contamination. Each factor was weighted to reflect its relative potential contribution to ground-water contamination, then the factors were combined to create a relative susceptibility index. The relative susceptibility index was categorized to reflect lowest, low, moderate, high, and highest potential for ground-water contamination. The relative susceptibility index for about 12 percent of the area in Orange County was categorized as high or highest. The high and highest range areas have highly permeable soils, land cover or land-use activities that have a high contamination potential, and low to moderate slopes. Most of the county is within the moderate category of relative susceptibility to ground-water contamination. About 21 percent of the county is ranked as low or lowest relative susceptibility to ground-water contamination.

  10. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  11. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  12. Optimized co-extraction and quantification of DNA from enteric pathogens in surface water samples near produce fields in California

    USDA-ARS?s Scientific Manuscript database

    Pathogen contamination of surface water is a health hazard in agricultural environments primarily due to the potential for contamination of crops. Furthermore, pathogen levels in surface water are often unreported or under reported due to difficulty with culture of the bacteria. The pathogens are of...

  13. Bioinspired Surface Treatments for Improved Decontamination: Commercial Products

    DTIC Science & Technology

    2017-07-28

    simulants paraoxon, methyl salicylate, dimethyl methylphosphate, and diisopropyl fluorophosphates following treatment of contaminated surfaces with a...treatment of contaminated surfaces with a soapy water solution is reported along with droplet diffusion on the surfaces and wetting angles...Defense Program (CBDP) seeks to provide protection of forces in a contaminated environment including contamination avoidance, individual protection

  14. The effect of contaminant on skid resistance of pavement surface

    NASA Astrophysics Data System (ADS)

    Lubis, A. S.; Muis, Z. A.; Gultom, E. M.

    2018-03-01

    Skid resistance of the pavement surface is the force generated by the movement of the wheels of the vehicle on the surface of the pavement. Contaminants are materials that cover the surface of the pavement affecting the skid resistance of the pavement surface. The contaminant acts as a coating interface or direct contact of the pavement surface with the wheels of the vehicle which can cause adverse effects, such as the decreasing value of skid resistance of the pavement surface. This study aims to analyze the effect of some types of contaminants on skid resistance of pavement surfaces. The contaminants that used in this study were water, sand, salt, and lubricating oil. The study was conducted by direct testing on two types of pavement: flexible pavement and rigid pavement. The measurements of the skid resistance were made using the British Pendulum Tester with British Pendulum Number for two conditions: before and after the pavement surface was covered with contaminants. The results showed that there was a contaminant effect on skid resistance of pavement surface. Skid resistance of pavement surfaces decreased after the contaminants were covered in water, sand, salt, and lubricant by 20.1%, 22.8%, 37.1% and 50.5% respectively.

  15. Effects of electrolyzed oxidizing water on reducing Listeria monocytogenes contamination on seafood processing surfaces.

    PubMed

    Liu, Chengchu; Duan, Jingyun; Su, Yi-Cheng

    2006-02-15

    The effects of electrolyzed oxidizing (EO) water on reducing Listeria monocytogenes contamination on seafood processing surfaces were studied. Chips (5 x 5 cm(2)) of stainless steel sheet (SS), ceramic tile (CT), and floor tile (FT) with and without crabmeat residue on the surface were inoculated with L. monocytogenes and soaked in tap or EO water for 5 min. Viable cells of L. monocytogenes were detected on all chip surfaces with or without crabmeat residue after being held at room temperature for 1 h. Soaking contaminated chips in tap water resulted in small-degree reductions of the organism (0.40-0.66 log cfu/chip on clean surfaces and 0.78-1.33 log cfu/chip on dirty surfaces). Treatments of EO water significantly (p<0.05) reduced L. monocytogenes on clean surfaces (3.73 log on SS, 4.24 log on CT, and 5.12 log on FT). Presence of crabmeat residue on chip surfaces reduced the effectiveness of EO water on inactivating Listeria cells. However, treatments of EO water also resulted in significant reductions of L. monocytogenes on dirty surfaces (2.33 log on SS and CT and 1.52 log on FT) when compared with tap water treatments. The antimicrobial activity of EO water was positively correlated with its chlorine content. High oxidation-reduction potential (ORP) of EO water also contributed significantly to its antimicrobial activity against L. monocytogenes. EO water was more effective than chlorine water on inactivating L. monocytogenes on surfaces and could be used as a chlorine alternative for sanitation purpose. Application of EO water following a thorough cleaning process could greatly reduce L. monocytogenes contamination in seafood processing environments.

  16. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  17. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    NASA Astrophysics Data System (ADS)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  18. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power of the Water Resources Commission to control pollution of ground water, in effect has introduced the doctrine of reasonable use into the law of the State. Excluding controls administered by the Department of Conservation on activities of the oil and gas industry, however, legal controls have not been used abate intrusion of natural saline waters into fresh-water aquifers in response to pumping and other manmade changes in the hydrologic regimen.

  19. Purification system

    NASA Technical Reports Server (NTRS)

    Flanagan, David T. (Inventor); Gibbons, Randall E. (Inventor)

    1992-01-01

    A system for prolonging the life of a granulated activated charcoal (GAC) water treatment device is disclosed in which an ultraviolet light transparent material is used to constrain water to flow over carbon surfaces. It is configured to receive maximum flux from a UV radiation source for the purpose of preventing microbial proliferation on the carbon surfaces; oxidizing organic contaminants adsorbed from the water onto the carbon surfaces and from biodegradation of adsorbed microbial forms; disinfecting water; and oxidizing organic contaminants in the water.

  20. Surface wastewater in Samara and their impact on water basins as water supply sources

    NASA Astrophysics Data System (ADS)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Projectmore » at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.« less

  2. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    NASA Astrophysics Data System (ADS)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    SummaryA reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well contamination from surface water. This study suggests that it is unlikely that glyphosate in streams can pose a threat to drinking water wells, while MCPP in surface water can represent a risk: MCPP concentration at the drinking water well can be up to 7% of surface water concentration in confined aquifers and up to 10% in unconfined aquifers. Thus, the presence of confining clay aquitards may not prevent contamination of drinking water wells by persistent compounds in surface water. Results are consistent with data on pesticide occurrence in Denmark where pesticides are found at higher concentrations at shallow depths and close to streams.

  3. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi

    DTIC Science & Technology

    2013-09-01

    area. DOD took actions to ensure that radioactively contaminated food and bottled water did not reach the DOD-affiliated population. Military commands...material from contaminated surfaces of ships or aircraft or in water, food , or soil and dust each day while on shore. These doses were calculated for...22 2.4.4. Exposure related to Surface Contamination on Ships.......................... 22 2.4.5. Exposure from Skin Contamination

  4. Simulating Mobility of Chemical Contaminants from Unconventional Gas Development for Protection of Water Resources

    NASA Astrophysics Data System (ADS)

    Kanno, C.; Edlin, D.; Borrillo-Hutter, T.; McCray, J. E.

    2014-12-01

    Potential contamination of ground water and surface water supplies from chemical contaminants in hydraulic fracturing fluids or in natural gas is of high public concern. However, quantitative assessments have rarely been conducted at specific energy-producing locations so that the true risk of contamination can be evaluated. The most likely pathways for contamination are surface spills and faulty well bores that leak production fluids directly into an aquifer. This study conducts fate and transport simulations of the most mobile chemical contaminants, based on reactivity to subsurface soils, degradation potential, and source concentration, to better understand which chemicals are most likely to contaminate water resources, and to provide information to planners who wish to be prepared for accidental releases. The simulations are intended to be most relevant to the Niobrara shale formation.

  5. Treatment of Chlorinated Aliphatic Contamination of Groundwater by Horizontal Recirculation Wells and by Constructed Vertical Flow Wetlands

    DTIC Science & Technology

    2002-03-01

    groundwater laden with contaminants. Once the contaminated water is at the surface, it must be treated for contaminant destruction, generally by...treatment walls only work under very specific hydrogeologic conditions (relatively shallow water table, no seasonal fluctuations in groundwater flow...GCWs Elevation Schematic Water Table Contaminated Groundwater Contaminated Groundwater Treated Groundwater Treated Groundwater Reactive Porous Medium

  6. Linking otolith microchemistry and surface water contamination from natural gas mining.

    PubMed

    Keller, David H; Zelanko, Paula M; Gagnon, Joel E; Horwitz, Richard J; Galbraith, Heather S; Velinsky, David J

    2018-09-01

    Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01-1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p < 0.05) relationship of increasing Sr and Ba concentrations in all but one treatment. Analyses indicate lesser concentrations than used in this experiment could be detectable in surface waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Aquifer susceptibility to perchlorate contamination in a highly urbanized environment

    USGS Publications Warehouse

    Woolfenden, Linda R.; Trefly, Michael G.

    2007-01-01

    Perchlorate contamination from anthropogenic sources has been released into the Rialto-Colton, California, USA, groundwater flow system since the 1940s during its production, distribution, storage, and use. Preliminary analysis of lithological, geophysical, and water-chemistry data provided new understanding of the pathways of perchlorate migration that aid in assessing the susceptibility of drinking-water supplies to contamination within the Rialto-Colton basin. Vertical migration of perchlorate into the main water-producing aquifers is restricted by an areally extensive old soil surface; however, perchlorate data indicate contamination below this soil surface. Possible pathways for the downward migration of the contaminated water include wellbore flow and discontinuities in the old soil surface. Horizontal migration of perchlorate is influenced by lithology and faults within the basin. The basin fill is a heterogeneous mixture of boulders, gravel, sand, silt, and clay, and internal faults may restrict perchlorate migration in some areas.

  8. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    EPA Pesticide Factsheets

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  9. Transport and transformation of pharmaceuticals and other contaminants of emerging concern from wastewater discharge through surface water to drinking water intake and treatment

    EPA Science Inventory

    The ubiquitous presence of pharmaceuticals, hormones, and other contaminants of emerging concern (CECs) in surface-water resources have necessitated research that better elucidates pathways of transport and transformation for these compounds from their discharged wastewater, thro...

  10. Shear bond strength of orthodontic brackets and disinclusion buttons: effect of water and saliva contamination.

    PubMed

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola; Scribante, Andrea

    2013-01-01

    The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.

  11. THE TREATMENT OF CONTAMINATED WATER AT REMEDIAL WOOD PRESERVING SITES

    EPA Science Inventory

    Contaminated groundwater and surface water have posed a great challenge in restoring wood preserving sites to beneficial use. Often contaminated groundwater plumes extend far beyond the legal property limits, adversely impacting drinking water supplies and crop lands. To contain,...

  12. Assessment of the Unintentional Reuse of Municipal Wastewater

    NASA Astrophysics Data System (ADS)

    Okasaki, S.; Fono, L.; Sedlak, D. L.; Dracup, J. A.

    2002-12-01

    Many surface waters that receive wastewater effluent also serve as source waters for drinking water treatment plants. Recent research has shown that a number of previously undiscovered wastewater-derived contaminants are present in these surface waters, including pharmaceuticals and human hormones, several of which are suspected carcinogens or endocrine disrupters and are, as of yet, unregulated through drinking water standards. This research has been designed to determine the extent of contamination of specific wastewater-derived contaminants in surface water bodies that both receive wastewater effluent and serve as a source of drinking water to a sizeable population. We are testing the hypothesis that surface water supplies during low flow are potentially of worse quality than carefully monitored reclaimed water. The first phase of our research involves: (1) the selection of sites for study; (2) a hydrologic analysis of the selected sites to determine average flow of the source water during median- and low-flow conditions; and (3) the development and testing of chemical analyses, including both conservative and reactive tracers that have been studied in microcosms and wetlands for attenuation rates. The second phase involves the development and use of the hydrologic model QUAL2E to simulate each of the selected watersheds in order to estimate potential stream water quality impairments at the drinking water intake at each site. The results of the model are verified with field sampling at designated locations at each site. We expect to identify several critical river basins where surface water at the drinking water intake contains sufficient wastewater-derived contaminants to warrant concern. If wastewater-derived contaminants are detected, we will estimate the average annual exposure of consumers of this water. We will compare these expected and actual concentrations with typical constituent concentrations found in wastewater that has undergone advanced treatment for reclamation. We may demonstrate that the surface water supplies during low flow are actually of worse quality than carefully monitored reclaimed water.

  13. SPATIAL AND TEMPORAL DYNAMICS IN ARSENIC SPECIATION ACROSS THE GROUND WATER-SURFACE WATER TRANSITION ZONE AT A CONTAMINATED SITE

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into a small lake. The ground-water plume contains elevated levels of arsenic and hydrocarbon contaminants derived from historical disposal of process wastes ...

  14. A monitoring of chemical contaminants in waters used for field irrigation and livestock watering in the Veneto region (Italy), using bioassays as a screening tool.

    PubMed

    De Liguoro, Marco; Bona, Mirco Dalla; Gallina, Guglielmo; Capolongo, Francesca; Gallocchio, Federica; Binato, Giovanni; Di Leva, Vincenzo

    2014-03-01

    In this study, 50 livestock watering sources (ground water) and 50 field irrigation sources (surface water) from various industrialised areas of the Veneto region were monitored for chemical contaminants. From each site, four water samples (one in each season) were collected during the period from summer 2009 through to spring 2010. Surface water samples and ground water samples were first screened for toxicity using the growth inhibition test on Pseudokirchneriella subcapitata and the immobilisation test on Daphnia magna, respectively. Then, based on the results of these toxicity tests, 28 ground water samples and 26 surface water samples were submitted to chemical analysis for various contaminants (insecticides/acaricides, fungicides, herbicides, metals and anions) by means of UPLC-MS(n) HPLC-MS(n), AAS and IEC. With the exception of one surface water sample where the total pesticides concentration was greater than 4 μg L(-1), positive samples (51.9 %) showed only traces (nanograms per liter) of pesticides. Metals were generally under the detection limit. High concentrations of chlorines (up to 692 mg L(-1)) were found in some ground water samples while some surface water samples showed an excess of nitrites (up to 336 mg L(-1)). Detected levels of contamination were generally too low to justify the toxicity recorded in bioassays, especially in the case of surface water samples, and analytical results painted quite a reassuring picture, while tests on P. subcapitata showed a strong growth inhibition activity. It was concluded that, from an ecotoxicological point of view, surface waters used for field irrigation in the Veneto region cannot be considered safe.

  15. Determining the Most Efficient and Cost-Effective Pumping Schemes for Treating Contaminated Aquifers

    DTIC Science & Technology

    1993-08-01

    of both surface water and groundwater, while some base-operated water-supply systems receive water from off-site municipal sources. To the extent...well field for municipal water supply, or a surface-water supply reservoir that is recharged by groundwater flow. As with plume stabilization, flow...waters is not addressed. In addition, the public rarely condones this method if the contaminated well supplies municipal or private drinking water. Natural

  16. Food and water security issues in Russia II: water security in general population of Russian Arctic, Siberia and Far East, 2000-2011.

    PubMed

    Dudarev, Alexey A; Dushkina, Eugenia V; Sladkova, Yuliya N; Alloyarov, Pavel R; Chupakhin, Valery S; Dorofeyev, Vitaliy M; Kolesnikova, Tatjana A; Fridman, Kirill B; Evengard, Birgitta; Nilsson, Lena M

    2013-01-01

    Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Uniform water security indicators collected from Russian official statistical sources for the period 2000-2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized--underground and surface, and non-centralized) and of drinking water. Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40-80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32-90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5-12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages--0.2-2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus--up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized--underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions.

  17. Assessment of Soil-Gas, Surface-Water, and Soil Contamination at the Installation Railhead, Fort Gordon, Georgia, 2008-2009

    USGS Publications Warehouse

    Landmeyer, James E.; Harrelson, Larry G.; Ratliff, W. Hagan; Wellborn, John B.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, assessed soil gas, surface water, and soil for contaminants at the Installation Railhead (IR) at Fort Gordon, Georgia, from October 2008 to September 2009. The assessment included delineation of organic contaminants present in soil-gas samples beneath the IR, and in a surface-water sample collected from an unnamed tributary to Marcum Branch in the western part of the IR. Inorganic contaminants were determined in a surface-water sample and in soil samples. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samples collected within a localized area on the western part of the IR contained total petroleum hydrocarbons; benzene, toluene, ethylbenzene, and total xylenes (referred to as BTEX); and naphthalene above the method detection level. These soil-gas samples were collected where buildings had previously stood. Soil-gas samples collected within a localized area contained perchloroethylene (PCE). These samples were collected where buildings 2410 and 2405 had been. Chloroform and toluene were detected in a surface-water sample collected from an unnamed tributary to Marcum Branch but at concentrations below the National Primary Drinking Water Standard maximum contaminant level (MCL) for each compound. Iron was detected in the surface-water sample at 686 micrograms per liter (ug/L) and exceeded the National Secondary Drinking Water Standard MCL for iron. Metal concentrations in composite soil samples collected at three locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for industrial soil.

  18. Public health assessment for Petro-Chemical, Inc. (Turtle Bayou) Liberty, Liberty County, Texas, Region 6. CERCLIS No. TXD980873350. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-30

    The Petro-Chemical Systems, Inc. site, located near Liberty, Texas, is a site where unauthorized disposal of petroleum-based oils has taken place. Although there is evidence of past exposure to site contaminants, the best available evidence does not indicate that humans are currently being exposed to site contaminants at levels that could cause adverse health effects. Contaminated ground water, surface water, soils, and surface water sediments have been found on the site. Although sampling was done for 144 priority pollutants, the primary contaminants of concern are benzene, ethylbenzene, xylene, naphthalene, polycyclic aromatic hydrocarbons, and lead. Because the greatest threat to publicmore » health would be contamination of drinking water, the Agency for Toxic Substances and Disease Registry (ATSDR) has recommended that necessary actions are taken to insure that private wells do not become contaminated with site contaminants.« less

  19. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants.

    PubMed

    Blaak, Hetty; de Kruijf, Patrick; Hamidjaja, Raditijo A; van Hoek, Angela H A M; de Roda Husman, Ana Maria; Schets, Franciska M

    2014-07-16

    Outside health care settings, people may acquire ESBL-producing bacteria through different exposure routes, including contact with human or animal carriers or consumption of contaminated food. However, contact with faecally contaminated surface water may also represent a possible exposure route. The current study investigated the prevalence and characteristics of ESBL-producing Escherichia coli in four Dutch recreational waters and the possible role of nearby waste water treatment plants (WWTP) as contamination source. Isolates from recreational waters were compared with isolates from WWTP effluents, from surface water upstream of the WWTPs, at WWTP discharge points, and in connecting water bodies not influenced by the studied WWTPs. ESBL-producing E. coli were detected in all four recreational waters, with an average concentration of 1.3 colony forming units/100ml, and in 62% of all samples. In surface waters not influenced by the studied WWTPs, ESBL-producing E. coli were detected in similar concentrations, indicating the existence of additional ESBL-E. coli contamination sources. Isolates with identical ESBL-genes, phylogenetic background, antibiotic resistance profiles, and sequence type, were obtained from effluent and different surface water sites in the same watershed, on the same day; occasionally this included isolates from recreational waters. Recreational waters were identified as a potential exposure source of ESBL-producing E. coli. WWTPs were shown to contribute to the presence of these bacteria in surface waters, but other (yet unidentified) sources likely co-contribute. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. U. S. drinking-water regulations: Treatment technologies and cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykins, B.W. Jr.; Clark, R.M.

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the US drinking-water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of these regulations is an Information Collection Rule and an Enhanced Surface Water Treatment Rule. These rules will require monitoring for microorganisms such as Giardia, Cryptosporidium, and viruses. Certain surface-water systems may be required to remove microbiological contaminants above levels currently required by the Surface Water Treatment Rule. Also included in these rules will be monitoring requirements for disinfection by-products andmore » evaluation of precursor removal technologies. As various regulations are promulgated, regulators and those associated with the drinking-water industry need to be cognizant of the potential impact of treatment to control one contaminant or group of contaminants on control of other contaminants. Compliance with drinking-water regulations mandated under the Safe Drinking Water Act and its amendments has been estimated to cost about $1.6 billion.« less

  1. Potential of coconut shell activated carbon (CSAC) in removing contaminants for water quality improvement: A critical review

    NASA Astrophysics Data System (ADS)

    Akhir, Muhammad Fitri Mohd; Saad, Noor Aida; Zakaria, Nor Azazi

    2017-10-01

    Commonly, water contaminations occur due to human-induced conditions such as industrial discharge and urban activities. The widely identified contaminants are heavy metal. The toxicity of those heavy metal elements is high and very poisonous to humans' health and environment even at lower dose or concentration of exposure. Chronic poisoning can cause fatal or defect to one's body or environment. Organic contaminants such as oil and microbial are also found due to decomposition of organic matter. The excellent quality adsorption of contaminants is highly related to surface area, pore size, pore volume, and amount plus type of functional group on surface of CSAC. The higher the surface area and pore volume, the higher adsorption that CSAC have towards contaminants. In comparison to meso-pore and macro-pore, micro-pore is better for trapping and adsorbing water contaminants. The purpose of this article is to critically review the potential of CSAC in increasing adsorption to remove contaminants for water quality improvement. A critical review is implemented using search engine like Science Direct. Alkali-modification is shown to have good adsorption in anion elements and organic matter due to improvement of hydrophobic organic compound (HOC) while acid-modification is good in cation elements adsorption. Strong alkali impregnated solution makes CSAC more hydrophobic and positively charge especially after increasing the impregnation dosage. Strong acid of adsorbate affects the quality of adsorption by reducing the surface area, pore volume and it also breaks the Van der Waals forces between adsorbent and adsorbate. However, the formation of oxygen helps the activated carbon surface to become more hydrophilic and negative charge is produced. It helps the effectiveness of metal adsorption. Therefore, by controlling dosage and types of functional groups on surface of CSAC and the pH of adsorbate, it can contribute to high adsorption of organic and inorganic contaminants in the water.

  2. Monitoring for Pesticides in Groundwater and Surface Water in Nevada, 2008

    USGS Publications Warehouse

    Thodal, Carl E.; Carpenter, Jon; Moses, Charles W.

    2009-01-01

    Commercial pesticide applicators, farmers, and homeowners apply about 1 billion pounds of pesticides annually to agricultural land, non-crop land, and urban areas throughout the United States (Gilliom and others, 2006, p. 1). The U.S. Environmental Protection Agency (USEPA) defines a pesticide as any substance used to kill or control insects, weeds, plant diseases, and other pest organisms. Although there are important benefits from the proper use of pesticides, like crop protection and prevention of human disease outbreaks, there are also risks. One risk is the contamination of groundwater and surface-water resources. Data collected during 1992-2001 from 51 major hydrologic systems across the United States indicate that one or more pesticide or pesticide breakdown product was detected in more than 50 percent of 5,057 shallow (less than 20 feet below land surface) wells and in all of the 186 stream sites that were sampled in agricultural and urban areas (Gilliom and others, 2006, p. 2-4). Pesticides can contaminate surface water and groundwater from both point sources and non-point sources. Point sources are from specific locations such as spill sites, disposal sites, pesticide drift during application, and application of pesticides to control aquatic pests. Non-point sources represent the dominant source of surface water and groundwater contamination and may include agricultural and urban runoff, erosion, leaching from application sites, and precipitation that has become contaminated by upwind applications. Pesticides typically enter surface water when rainfall or irrigation exceeds the infiltration capacity of soil and resulting runoff then transports pesticides to streams, rivers, and other surface-water bodies. Contamination of groundwater may result directly from spills near poorly sealed well heads and from pesticide applications through improperly designed or malfunctioning irrigation systems that also are used to apply pesticides (chemigation; Carpenter and Johnson, 1997). Groundwater contamination also may come indirectly by the percolation of agricultural and urban irrigation water through soil layers and into groundwater and from pesticide residue in surface water, such as drainage ditches, streams, and municipal wastewater. To protect surface water and groundwater from pesticide contamination, the USEPA requires that all states establish a pesticide management plan. The Nevada Department of Agriculture (NDOA), with assistance from the USEPA, developed a management program of education (Hefner and Donaldson, 2006), regulation (Johnson and others, 2006), and monitoring (Pennington and others, 2001) to protect Nevada's water resources from pesticide contaminants. Sampling sites are located in areas where urban or agricultural pesticide use may affect groundwater, water bodies, endangered species, and other aquatic life. Information gathered from these sites is used by NDOA to help make regulatory decisions that will protect human and environmental health by reducing and eliminating the occurrence of pesticide contamination. This fact sheet describes current (2008) pesticide monitoring of groundwater and streams by the NDOA in Nevada and supersedes Pennington and others (2001).

  3. Apparatus for removing oil and other floating contaminants from a moving body of water

    DOEpatents

    Strohecker, J.W.

    1973-12-18

    The patent describes a process in which floating contaminants such as oil and solid debris are removed from a moving body of water by employing a skimming system which uses the natural gravitational flow of the water. A boom diagonally positioned across the body of water diverts the floating contaminants over a floating weir and into a retention pond where an underflow weir is used to return contaminant-free water to the moving body of water. The floating weir is ballasted to maintain the contaminant-receiving opening therein slightly below the surface of the water during fluctuations in the water level for skimming the contaminants with minimal water removal.

  4. A review of diazinon use, contamination in surface waters, and regulatory actions in California across water years 1992-2014.

    PubMed

    Wang, Dan; Singhasemanon, Nan; Goh, Kean S

    2017-07-01

    Diazinon is an organophosphorus insecticide that has been widely used in the USA and in California resulting in contamination of surface waters. Several federal and state regulations have been implemented with the aim of reducing its impact to human health and the environment, e.g., the cancellation of residential use products by the USEPA and dormant spray regulations by the California Department of Pesticide Regulation. This study reviewed the change in diazinon use and surface water contamination in accordance with the regulatory actions implemented in California over water years 1992-2014. We observed that use amounts began declining when agencies announced the intention to regulate certain use patterns and continued to decline after the implementation of those programs and regulations. The reduction in use amounts led to a downward trend in concentration data and exceedance frequencies in surface waters. Moreover, we concluded that diazinon concentrations in California's surface waters in recent years (i.e., water years 2012-2014) posed a de minimis risk to aquatic organisms.

  5. Assessing the biological impact of exposure to environmental surface waters with cell-based lipidomics

    EPA Science Inventory

    Environmental surface waters often contain a variety of chemical contaminants from different sources including wastewater treatment plants, concentrated animal feeding operations, agricultural runoff and other human-related activities. Exposure to these contaminants may pose a th...

  6. Overview of Chemicals of Emerging Concern

    EPA Science Inventory

    Contaminants of emerging concern or environmental emerging contaminants, are chemicals, products and materials that are detected with increasing frequency in all environmental media including surface, ground water and drinking water. Examples of these contaminants include pharmac...

  7. Delineating Landfill Leachate Discharge To An Arsenic Contaminated Waterway

    EPA Science Inventory

    Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arseni...

  8. Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination

    PubMed Central

    Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola

    2013-01-01

    Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons. PMID:23762825

  9. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mechanisms for surface contamination of soils and bottom sediments in the Shagan River zone within former Semipalatinsk Nuclear Test Site.

    PubMed

    Aidarkhanov, A O; Lukashenko, S N; Lyakhova, O N; Subbotin, S B; Yakovenko, Yu Yu; Genova, S V; Aidarkhanova, A K

    2013-10-01

    The Shagan River is the only surface watercourse within the former Semipalatinsk Test Site (STS). Research in the valley of the Shagan River was carried out to study the possible migration of artificial radionuclides with surface waters over considerable distances, with the possibility these radionuclides may have entered the Irtysh River. The investigations revealed that radioactive contamination of soil was primarily caused by the first underground nuclear test with soil outburst conducted at the "Balapan" site in Borehole 1004. The surface nuclear tests carried out at the "Experimental Field" site and global fallout made insignificant contributions to contamination. The most polluted is the area in the immediate vicinity of the "Atomic" Lake crater. Contamination at the site is spatial. The total area of contamination is limited to 10-12 km from the crater piles. The ratio of plutonium isotopes was useful to determine the source of soil contamination. There was virtual absence of artificial radionuclide migration with surface waters, and possible cross-border transfer of radionuclides with the waters of Shagan and Irtysh rivers was not confirmed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Influence of multi-industrial activities on trace metal contamination: an approach towards surface water body in the vicinity of Dhaka Export Processing Zone (DEPZ).

    PubMed

    Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U

    2012-07-01

    Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.

  12. Hazard-Specific Vulnerability Mapping for Water Security in a Shale Gas Context

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Holding, S.; McKoen, Z.

    2015-12-01

    Northeast British Columbia (NEBC) is estimated to hold large reserves of unconventional natural gas and has experienced rapid growth in shale gas development activities over recent decades. Shale gas development has the potential to impact the quality and quantity of surface and ground water. Robust policies and sound water management are required to protect water security in relation to the water-energy nexus surrounding shale gas development. In this study, hazard-specific vulnerability mapping was conducted across NEBC to identify areas most vulnerable to water quality and quantity deterioration due to shale gas development. Vulnerability represents the combination of a specific hazard threat and the susceptibility of the water system to that threat. Hazard threats (i.e. potential contamination sources and water abstraction) were mapped spatially across the region. The shallow aquifer susceptibility to contamination was characterised using the DRASTIC aquifer vulnerability approach, while the aquifer susceptibility to abstraction was mapped according to aquifer productivity. Surface water susceptibility to contamination was characterised on a watershed basis to describe the propensity for overland flow (i.e. contaminant transport), while watershed discharge estimates were used to assess surface water susceptibility to water abstractions. The spatial distribution of hazard threats and susceptibility were combined to form hazard-specific vulnerability maps for groundwater quality, groundwater quantity, surface water quality and surface water quantity. The vulnerability maps identify priority areas for further research, monitoring and policy development. Priority areas regarding water quality occur where hazard threat (contamination potential) coincide with high aquifer susceptibility or high overland flow potential. Priority areas regarding water quantity occur where demand is estimated to represent a significant proportion of estimated supply. The identification of priority areas allows for characterization of the vulnerability of water security in the region. This vulnerability mapping approach, using the hazard threat and susceptibility indicators, can be applied to other shale gas areas to assess vulnerability to shale gas activities and support water security.

  13. Toxicological relevance of emerging contaminants for drinking water quality.

    PubMed

    Schriks, Merijn; Heringa, Minne B; van der Kooi, Margaretha M E; de Voogt, Pim; van Wezel, Annemarie P

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health. (c) 2009 Elsevier Ltd. All rights reserved.

  14. PERCHLORATE ENVIRONMENTAL CONTAMINATION: TOXICOLOGICAL REVIEW AND RISK CHARACTERIZATION (EXTERNAL REVIEW DRAFT) 2002

    EPA Science Inventory

    Perchlorate (ClO4-) is an anion that originates as a contaminant in ground water and surface waters when the salts of ammonium, potassium, magnesium, or sodium dissolve in water. One major source of contamination is the manufacture or improper disposal of ammonium perchlorate th...

  15. Emerging contaminants in surface waters in China—a short review

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Fan, Maohong; Zhang, Guangming

    2014-07-01

    Emerging contaminants (ECs) have drawn attention to many countries due to their persistent input and potential threat to human health and the environment. This article reviews the current contamination sources and their status for surface waters in China. The contamination levels of ECs in surface waters are in the range ng L-1 to μg L-1 in China, apparently about the same as the situation in other countries. ECs enter surface water via runoff, drainage, rainfall, and wastewater treatment effluent. The frequency of occurrence of ECs increased rapidly from 2006 to 2011; a significant reason is the production and consumption of pharmaceuticals and personal care products. As for the distribution of EC pollution in China, the frequency of occurrence of ECs in eastern regions is higher than in western regions. A majority of EC studies have focused on surface waters of the Haihe River and Pearl River watersheds due to their highly developed industries and intense human activity. Legislative and administrative regulation of ECs is lacking in China. To remove ECs, a number of technologies, such as absorption by activated carbon, membrane filtration technology, and advanced oxidation processes, have been researched.

  16. Rainfall-runoff model for prediction of waterborne viral contamination in a small river catchment

    NASA Astrophysics Data System (ADS)

    Gelati, E.; Dommar, C.; Lowe, R.; Polcher, J.; Rodó, X.

    2013-12-01

    We present a lumped rainfall-runoff model aimed at providing useful information for the prediction of waterborne viral contamination in small rivers. Viral contamination of water bodies may occur because of the discharge of sewage effluents and of surface runoff over areas affected by animal waste loads. Surface runoff is caused by precipitation that cannot infiltrate due to its intensity and to antecedent soil water content. It may transport animal feces to adjacent water bodies and cause viral contamination. We model streamflow by separating it into two components: subsurface flow, which is produced by infiltrated precipitation; and surface runoff. The model estimates infiltrated and non-infiltrated precipitation and uses impulse-response functions to compute the corresponding fractions of streamflow. The developed methodologies are applied to the Glafkos river, whose catchment extends for 102 km2 and includes the city of Patra. Streamflow and precipitation observations are available at a daily time resolution. Waterborne virus concentration measurements were performed approximately every second week from the beginning of 2011 to mid 2012. Samples were taken at several locations: in river water upstream of Patras and in the urban area; in sea water at the river outlet and approximately 2 km south-west of Patras; in sewage effluents before and after treatment. The rainfall-runoff model was calibrated and validated using observed streamflow and precipitation data. The model contribution to waterborne viral contamination prediction was benchmarked by analyzing the virus concentration measurements together with the estimated surface runoff values. The presented methodology may be a first step towards the development of waterborne viral contamination alert systems. Predicting viral contamination of water bodies would benefit sectors such as water supply and tourism.

  17. Food and water security issues in Russia II: Water security in general population of Russian Arctic, Siberia and Far East, 2000–2011

    PubMed Central

    Dudarev, Alexey A.; Dushkina, Eugenia V.; Sladkova, Yuliya N.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Dorofeyev, Vitaliy M.; Kolesnikova, Tatjana A.; Fridman, Kirill B.; Evengard, Birgitta; Nilsson, Lena M.

    2013-01-01

    Background Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Study design and methods Uniform water security indicators collected from Russian official statistical sources for the period 2000–2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized – underground and surface, and non-centralized) and of drinking water. Results Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40–80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32–90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5–12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages – 0.2–2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus – up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). Conclusion In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized – underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions. PMID:24350065

  18. [ASSESSMENT OF POTENTIAL RISK FOR CONTAMINATION OF SURFACE WATER RESERVOIRS BY PATHOGENS OF HUMAN PARASITIC DISEASES].

    PubMed

    Khromenkova, E P; Dimidova, L L; Dumbadze, O S; Aidinov, G T; Shendo, G L; Agirov, A Kh; Batchaev, Kh Kh

    2015-01-01

    Sanitary and parasitological studies of the waste effluents and surface reservoir waters were conducted in the south of Russia. The efficiency of purification of waste effluents from the pathogens of parasitic diseases was investigated in the region's sewage-purification facilities. The water of the surface water reservoirs was found to contain helminthic eggs and larvae and intestinal protozoan cysts because of the poor purification and disinfection of service fecal sewage waters. The poor purification and disinvasion of waste effluents in the region determine the potential risk of contamination of the surface water reservoirs and infection of the population with the pathogens of human parasitic diseases.

  19. Radiation Dose Assessments for Fleet-Based Individuals in Operation Tomodachi, Revision 1

    DTIC Science & Technology

    2014-04-01

    U.S. agencies were also deployed to the area. DOD took actions to ensure that radioactively contaminated food and bottled water did not reach the...material from contaminated surfaces of ships or aircraft or in water, food , or soil and dust each day while on shore. These doses were calculated for...Exposure below Deck on Ships .......................................................... 22 2.4.4. Exposure related to Radioactive Surface Contamination

  20. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula [Livermore, CA; Zalk, David [San Jose, CA; Hoffman, D Mark [Livermore, CA

    2011-04-12

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  1. Hazardous particle binder, coagulant and re-aerosolization inhibitor

    DOEpatents

    Krauter, Paula; Zalk, David; Hoffman, D. Mark

    2012-07-10

    A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

  2. Identification and management of microbial contaminations in a surface drinking water source.

    PubMed

    Aström, J; Pettersson, T J R; Stenström, T A

    2007-01-01

    Microbial contamination of surface waters constitutes a health risk for drinking water consumers which may be lowered by closing the raw water intake. We have evaluated microbial discharge events reported in the river Göta älv, which is used for raw water supply to the city of Göteborg. Elevated levels of faecal indicator bacteria were observed during periods of closed raw water intake. High bacteria levels were, however, also occasionally detected during periods of open intake, probably as a result of microbial discharge far upstream in the river which may be difficult to predict and manage by closing the intake. Accumulated upstream precipitations, resulting in surface runoff and wastewater contaminations in the catchment, correlated positively with the levels of total coliforms, E. coli, intestinal enterococci and sulfite-reducing clostridia. Levels of faecal indicator organisms were negatively correlated to the water temperature due to enhanced survival at lower temperatures. Wastewater discharges from a municipality located just upstream of the water intake resulted in elevated E. coli concentrations downstream at the raw water intake for Göteborg. To improve the prediction of microbial contaminations within the river Göta älv, monitoring data on turbidity and upstream precipitation are of particular importance.

  3. Multiple modes of water quality impairment by fecal contamination in a rapidly developing coastal area: southwest Brunswick County, North Carolina.

    PubMed

    Cahoon, Lawrence B; Hales, Jason C; Carey, Erin S; Loucaides, Socratis; Rowland, Kevin R; Toothman, Byron R

    2016-02-01

    Fecal contamination of surface waters is a significant problem, particularly in rapidly developing coastal watersheds. Data from a water quality monitoring program in southwest Brunswick County, North Carolina, gathered in support of a regional wastewater and stormwater management program were used to examine likely modes and sources of fecal contamination. Sampling was conducted at 42 locations at 3-4-week intervals between 1996 and 2003, including streams, ponds, and estuarine waters in a variety of land use settings. Expected fecal sources included human wastewater systems (on-site and central), stormwater runoff, and direct deposition by animals. Fecal coliform levels were positively associated with rainfall measures, but frequent high fecal coliform concentrations at times of no rain indicated other modes of contamination as well. Fecal coliform levels were also positively associated with silicate levels, a groundwater source signal, indicating that flux of fecal-contaminated groundwater was a mode of contamination, potentially elevating FC levels in impacted waters independent of stormwater runoff. Fecal contamination by failing septic or sewer systems at many locations was significant and in addition to effects of stormwater runoff. Rainfall was also linked to fecal contamination by central sewage treatment system failures. These results highlight the importance of considering multiple modes of water pollution and different ways in which human activities cause water quality degradation. Management of water quality in coastal regions must therefore recognize diverse drivers of fecal contamination to surface waters.

  4. Contaminant profiles for surface water, sediment, flora and fauna associated with the mangrove fringe along middle and lower East Tampa Bay

    EPA Science Inventory

    Contaminant concentrations are reported for surface water, sediment, seagrass, mangroves, Florida Crown conch, blue crabs and fish collected during 2010-2011 from the mangrove fringe along eastern Tampa Bay. Concentrations of trace metals, chlorinated pesticides, atrazine, total ...

  5. Public-health assessment for Mottolo Pig Farm, Raymond, Rockingham County, New Hampshire, Region 1. CERCLIS NO. NHD980503361. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-20

    The Mottolo Pig Farm National Priorities List (NPL) Site is located east of Blueberry Hill Road, in Rockingham County, approximately three miles west of the center of Raymond, New Hampshire. Contamination at the Mottolo Pig Farm Site includes contaminated groundwater, soil, surface water, and sediments. Site contaminants consist primarily of various volatile organic compounds (VOCs). Acid and base/neutral extractable compounds (ABNs) and metals have also been identified at the site. The site was initially discovered in April of 1979 and the U.S. Environmental Protection Agency (EPA) began an emergency action to remove buried drums and pails at the site inmore » September of 1980. There are no known documented completed exposure pathways for contaminated media present at the Mottolo Pig Farm Site. Exposure pathways of potential concern include direct contact with contaminated on-site soils and surface waters; inhalation of contaminated on-site soils as fugitive dust; and incidental ingestion of contaminated on-site soils and surface waters.« less

  6. Drinking water contamination by chromium and lead in industrial lands of Karachi.

    PubMed

    Nadeem-ul-Haq; Arain, Mubashir Aslam; Haque, Zeba; Badar, Nasira; Mughal, Noman

    2009-05-01

    To identify and quantify chromium and lead as contaminant in water sources of Karachi. This water assessment survey was conducted from June 2007 to February 2008 in all the 18 towns of Karachi. In total 216 water samples were collected from ground (n=108) and surface water sources (n = 108). Water samples were collected in a liter polyethylene acid resistant bottle with extreme care to prevent contamination and concentrations of heavy metals (chromium and lead). Metallic ion contents were estimated by Atomic Absorption Spectrophotometer. Statistical analysis was done by applying T-test and chi-square for continuous and categorical variables respectively at 95% confidence level; Pearson correlation was also determined between chromium and lead concentrations. A total of 187 water samples had lead concentration higher than the maximum acceptable concentration (MAC) in drinking water, established by WHO (10 PPB) and lead contaminated sources were in significantly higher proportion than chromium contaminated water samples (n = 49) [chi2 = 128; P- < 0.001]. Mean chromium concentration in ground water was (micro = 49; SE = 3.8) was significantly higher than mean chromium concentration (micro = 33, SE = 3.5) in surface water (P = 0.003). There was a significant and positive correlation between chromium and lead concentrations in ground water (P = 0.04) however Pearson correlation was not significant for surface water (P = 0.6). Industrial towns (Korangi, Landhi and SITE) had significantly higher concentration of chromium (micro = 82.4; SE = 8.9) in their ground and tap water as compared to the mean chromium concentration (micro = 33; SE = 2.2) in the water samples of rest of the towns of Karachi (P < 0.001). Chromium and Lead levels are high in almost all ground water sources, however extremely high concentrations were found in industrial areas. Presence of any one of the heavy metal contamination necessitate the need for the estimation of other heavy metals as significant positive correlation was found between chromium and lead concentration, indicating the possibility of similar contamination sources in Karachi.

  7. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... both community water systems and non-community water systems using surface water sources in whole or in...

  8. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... both community water systems and non-community water systems using surface water sources in whole or in...

  9. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... both community water systems and non-community water systems using surface water sources in whole or in...

  10. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... both community water systems and non-community water systems using surface water sources in whole or in...

  11. THE IMPACT OF GROUND WATER-SURFACE WATER INTERACTIONS ON CONTAMINANT TRANSPORT AT CONTAMINATED SITES

    EPA Science Inventory

    The purpose of this document is to provide an overview of the dynamics of chemical processes that govern contaminant transport and speciation during water exchange across the GW/SW transition zone. A conceptual model of the GW/SW transition zone is defined to serve as a starting...

  12. Health assessment for Lang Property National Priorities List (NPL) site, Pemberton Township, Burlington County, New Jersey, Region 2. CERCLIS No. NJD980505382. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-17

    The Lang Property National Priorities List Site is located in Pemberton Township, Burlington County, New Jersey. Unauthorized disposal of hazardous wastes occurred on approximately two acres of the 40-acre site. The contaminant classes that were identified on the site are volatile organic compounds (VOCs), semi-volatile organic compounds (semi-VOCs), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and metals. The contaminant classes of concern are PCBs, VOCs, and semi-VOCs for on-site ground water. VOCs is the contaminant class of concern for sediments and surface water. The on-site ground water is highly contaminated; at the maximum chemical concentrations detected, use of thismore » water without treatment would pose a human health concern. The potential does exist for human exposure to ground water contaminants by ingestion, inhalation of volatilized VOCs from ground water, and dermal absorption. The surface soils are also highly contaminated and represent a current possible as well as future human health concern for trespassers, blueberry farm workers and harvesters, and construction and remedial workers.« less

  13. PERCHLORATE CROP INTERACTIONS VIA CONTAMINATED IRRIGATION WATER

    EPA Science Inventory

    Perchlorate has contaminated water and sods at several locations in the United States. Perchlorate is water soluble, exceedingly mobile in aqueous systems, and can persist for many decades under typical ground- and surface water conditions. Perchlorate is of concern because of un...

  14. Temporal changes in VOC discharge to surface water from a fractured rock aquifer during well installation and operation, Greenville, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Robertson, J.F.

    1996-01-01

    Analysis of the vapor in passive vapor samplers retrieved from a streambed in fractured rock terrain implied that volatile organic carbon (VOC) discharge from ground water to surface water substantially increased following installation of a contaminant recovery well using air rotary drilling. The air rotary technique forced air into the aquifer near the stream. The injection produced an upward hydraulic gradient that appears to have transported water and contaminants from deeper parts of the aquifer through fractures into shallow parts of the aquifer. Once in the shallow flow regime, the contamination was transported to the stream, where it discharged during the next several weeks following well installation. After the recovery well was activated and began continuously pumping contaminated ground water to a treatment facility, the VOC concentrations in the stream bottom passive vapor samplers decreased to below detectable concentrations, suggesting that the withdrawal had captured the contaminated ground water that previously had discharged to the stream.

  15. Can We Control Contaminant Transport In Hydrologic Networks? Application Of Control Theory Concepts To Watershed Management

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.; Riasi, M. S.

    2016-12-01

    Although controlling the level of contamination everywhere in the surface water network may not be feasible, it is vital to maintain safe water quality levels in specific areas, e.g. recreational waters. The question then is "what is the most efficient way to fully/partially control water quality in surface water networks?". This can be posed as a control problem where the goal is to efficiently drive the system to a desired state by manipulating few input variables. Such problems reduce to (1) finding the best control locations in the network to influence the state of the system; and (2) choosing the time-variant inputs at the control locations to achieve the desired state of the system with minimum effort. We demonstrate that the optimal solution to control the level of contamination in the network can be found through application of control theory concepts to transport in dendritic surface water networks.

  16. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA.

    PubMed

    Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W

    2014-10-01

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.

  17. Investigating uranium distribution in surface sediments and waters: a case study of contamination from the Juniper Uranium Mine, Stanislaus National Forest, CA

    DOE PAGES

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...

    2014-06-07

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  18. Possible Extent and Depth of Salt Contamination in Ground Water Using Geophysical Techniques, Red River Aluminum Site, Stamps, Arkansas, April 2003

    USGS Publications Warehouse

    Stanton, Gregory P.; Kress, Wade; Hobza, Christopher M.; Czarnecki, John B.

    2003-01-01

    A surface-geophysical investigation of the Red River Aluminum site at Stamps, Arkansas, was conducted in cooperation with the Arkansas Department of Environmental Quality to determine the possible extent and depth of saltwater contamination. Water-level measurements indicate the distance to water level below land surface ranges from about 1.2 to 3.9 feet (0.37 to 1.19 meters) in shallow monitor wells and about 10.5 to 17.1 feet (3.20 to 5.21 meters) in deeper monitoring wells. The two-dimensional, direct-current resistivity method identified resistivities less than 5 ohm-meters which indicated possible areas of salt contamination occurring in near-surface or deep subsurface ground water along four resistivity lines within the site. One line located east of the site yielded data that demonstrated no effect of salt contamination. Sections from two of the five data sets were modeled. The input model grids were created on the basis of the known geology and the results and interpretations of borehole geophysical data. The clay-rich Cook Mountain Formation is modeled as 25 ohm-meters and extends from 21 meters (68.9 feet) below land surface to the bottom of the model (about 52 meters (170.6 feet)). The models were used to refine interpretation of the resistivity data and to determine extent of saltwater contamination and depth to the Cook Mountain Formation. Data from the resistivity lines indicate both near-surface and subsurface saltwater contamination. The near-surface contamination appears as low resistivity (less than 5 ohm-meters) on four of the five resistivity lines, extending up to 775 meters (2,542.8 feet) horizontally in a line that traverses the entire site south to north. Model resistivity data indicate that the total depth of saltwater contamination is about 18 meters (59 feet) below land surface. Data from four resistivity lines identified areas containing low resistivity anomalies interpreted as possible salt contamination. A fifth line located just east of the site showed no saltwater contamination.

  19. Hydrogeologic Characteristics of the St. Croix River Basin, Minnesota and Wisconsin: Implications for the Susceptibility of Ground Water to Potential Contamination

    USGS Publications Warehouse

    Juckem, Paul F.

    2007-01-01

    Population growth in the St. Croix River Basin in Minnesota and Wisconsin has intensified concerns of county resource managers and the National Park Service, which is charged with protecting the St. Croix National Scenic Riverway, about the potential for ground-water contamination in the basin. This report describes a previously developed method that was adapted to illustrate potential ground-water-contamination susceptibility in the St. Croix River Basin. The report also gives an estimate of ground-water-residence time and surface-water/ground-water interaction as related to natural attenuation and movement of contaminants in five tributary basins. A ground-water-contamination-susceptibility map was adapted from a state-wide map of Wisconsin to the St. Croix River Basin by use of well-driller construction records and regional maps of aquifer properties in Minnesota and Wisconsin. Measures of various subsurface properties were combined to generate a spatial index of susceptibility. The subjective index method developed for the State of Wisconsin by Schmidt (1987) was not derived from analyses of water-quality data or physical processes. Nonetheless, it was adapted for this report to furnish a seamless map across state boundaries that would be familiar to many resource managers. Following this method, areas most susceptible to contamination appear to have coarse-grained sediments (sands or gravels) and shallow water tables or are underlain by carbonate-bedrock aquifers. The least susceptible areas appear to have fine-grained sediments and deep water tables. If an aquifer becomes contaminated, the ground-water-residence time can affect potential natural attenuation along the ground-water-flow path. Mean basin ground-water-residence times were computed for the Apple, Kettle, Kinnickinnic, Snake and Sunrise River Basins, which are tributary basins to the St. Croix Basin, by use of average aquifer properties of saturated thickness, porosity, and recharge rates. The Apple River Basin had the shortest mean ground-water-residence times (20-120 years), owing largely to the moderate saturated thickness and high recharge rate in the basin. The Kinnickinnic and Sunrise River Basins had the longest mean residence times (60-350 and 70-390 years, respectively) chiefly because of the relatively large saturated thickness of the basins. Owing to limitations of the residence-time calculations, actual ground-water-residence times will vary around the mean values within each basin and may range from days or weeks in karst carbonate aquifers to millennia in deep confined sandstone aquifers. Areas of relatively short residence time (less than the median residence time in each basin) were identified by use of ground-water-flow models for each of the five tributary basins. Results of simulations show that these areas, in which contaminants may have relatively less time for natural attenuation along the short flow paths, generally occur near streams and rivers where ground water discharges to the surface. Finally, the ground-water-flow models were used to simulate ground-water/surface-water interaction in the five tributary basins. Results of simulations show that some lakes and reservoirs leak surface water into the ground-water-flow system on their downgradient side, where the surface-water outflow has been restricted by a dam or a naturally constricted outlet. These locations are noteworthy because contaminated surface waters could potentially enter the ground-water-flow system at these locations.

  20. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed-Influences from paper, textile, and leather industries.

    PubMed

    Lu, Guo-Hui; Gai, Nan; Zhang, Peng; Piao, Hai-Tao; Chen, Shu; Wang, Xiao-Chun; Jiao, Xing-Chun; Yin, Xiao-Cai; Tan, Ke-Yan; Yang, Yong-Liang

    2017-10-01

    Perfluoroalkyl acids (PFAAs) are widely used as multi-purpose surfactants or water/oil repellents. In order to understand the contamination level and compositional profiles of PFAAs in aqueous environment in textile, leather, and paper making industrial areas, surface waters and tap waters were collected along the watershed of the Qiantang River where China's largest textile, leather, and paper making industrial bases are located. For comparison, surface water and tapwater samples were also collected in Hangzhou and its adjacent areas. 17 PFAAs were analyzed by solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. The results show that the total concentrations of PFAAs (ΣPFAAs) in the Qiantang River waters ranged from 106.1 to 322.9 ng/L, averaging 164.2 ng/L. The contamination levels have been found to be extremely high, comparable to the levels of the most serious PFAA contamination in surface waters of China. The PFAA composition profiles were characterized by the dominant PFOA (average 58.1% of the total PFAAs), and PFHxA (average 18.8%). The ΣPFAAs in tap water ranged from 9.5 to 174.8 ng/L, showing PFAA compositional pattern similar to the surface waters. Good correlations between PFAA composition profiles in tap waters and the surface waters were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    NASA Astrophysics Data System (ADS)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings, roads, and so on) during the Site closure efforts resulted in major changes to surface and shallow groundwater flow. Consistent with previous documentation of uranium operations and contamination, only very small amounts of highly enriched uranium are found in a small number of water samples, generally from the former Solar Ponds complex and central Industrial Area. Depleted uranium is more widely distributed at the site, and water samples exhibit the full range of depleted plus natural uranium mixtures. However, one third of the samples are found to contain only natural uranium, and three quarters of the samples are found to contain more than 90% natural uranium - substantial fractions given that the focus of these analyses was on evaluating potentially contaminated waters. Following site closure, uranium concentrations have increased at some locations, particularly for surface water samples. Overall, isotopic ratios at individual locations have been relatively consistent, indicating that the increases in concentrations are due to decreases in dilution flow following removal of impermeable surfaces and buildings.

  2. Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface (ER200422)

    DTIC Science & Technology

    2008-01-01

    discharge to surface water associated with groundwater leachate from coastal landfills, and (3) assessment of remedy effectiveness for treatment of...reduce contaminant concentrations to levels where natural attenuation (NA) and the phytoremediation plantation can effectively control the... phytoremediation plantation was established in March 2002. The in situ chemical oxidation (ISCO) system, which operated from March 2003 to October 2003, was

  3. Salt water and its relation to fresh ground water in Harris County, Texas

    USGS Publications Warehouse

    Winslow, Allen G.; Doyel, William Watson; Wood, L.A.

    1957-01-01

    Other less probable potential sources of salt-water contamination which are discussed include upward movement of salt water from below, vertical movement around salt domes or along faults, downward seepage from surface sources, and contamination through leaking wells.

  4. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  5. Water Remedial Investigation Report, Version 2.2. Volume 1

    DTIC Science & Technology

    1989-03-01

    Bedrock Aquifer Monitor Well Construction (Denver Fm Well Completed in Second Sandstone, Alluvium Saturated, Shale at the Aluvial - Bedrock Contact) C...sorption of contaminants onto channel sediments . The addit;on of rain water and snow melt may also dilute contaminant concentrations. Contaminant...surface water and potentially contaminated sediments are transported from South Plants north into Basin A, W RI -4 03/14/89 4-28 southeast into Lower Derby

  6. Effect of airborne contaminants on the wettability of supported graphene and graphite

    NASA Astrophysics Data System (ADS)

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P.; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  7. Effect of airborne contaminants on the wettability of supported graphene and graphite.

    PubMed

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  8. 40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water pressure in all parts of the distribution system; (4) Filtration and/or disinfection of surface water, as described in subpart H, or disinfection of ground water using strong oxidants such as chlorine... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking...

  9. Water-Quality Assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas--Surface-Water Quality, Shallow Ground-Water Quality, and Factors Affecting Water Quality in the Rincon Valley, South-Central New Mexico, 1994-95

    USGS Publications Warehouse

    Anderholm, Scott K.

    2002-01-01

    As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th

  10. PERCHLORATE-CROP INTERACTIONS FROM CONTAMINATED IRRIGATION WATER AND FERTILIZER APPLICATIONS

    EPA Science Inventory

    Perchlorate has contaminated water and soils at several locations in the United States. Perchlorate is water soluble, exceedingly mobile in aqueous systems, and can persist for many decades under typical ground and surface water conditions. Perchlorate is of concern because of un...

  11. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    PubMed

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  12. Health assessment for Ninth Avenue Dump National Priorities List (NPL) Site, Gary, Indiana, Region 5. CERCLIS No. IND980794432. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-18

    The Ninth Avenue Dump is a 17-acre National Priorities List Site located in an industrialized area within the city limits of Gary, Indiana. A number of contaminants were detected in on-site and off-site ground water, surface water, sediments, and soil samples. Contaminants of concern at the Ninth Avenue Dump Site include: chromium, lead, benzene, polychlorinated biphenyls, 2-butanone, ethylbenzene, toluene, trichloroethylene, vinyl chloride, and xylenes. The pathways for human exposure to site contaminants is through the dermal absorption, ingestion, or inhalation of contaminants from ground water, surface water, soil, air, or contaminated food-chain entities. There is currently no documented exposure tomore » site contaminants. However, the site is considered to be of potential public health concern because of the potential risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.« less

  13. Arsenic Removal from Water by Adsorption on Iron-Contaminated Cryptocrystalline Graphite

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Yang, Lang; Song, Shaoxian; Xia, Ling

    This work aimed to study the feasibility of using iron-contaminated graphite as an adsorbent for As(V) removal from water. The adsorbent was prepared by grinding graphite concentrate with steel ball. The study was performed through the measurements of adsorption capacity, BET surface area and XPS analysis. The experimental results showed that the iron-contaminated graphite exhibited significantly high adsorption capacity of As(V). The higher the iron contaminated on the graphite surface, the higher the adsorption capacity of As(V) on the material obtained. It was suggested that the ion-contaminated graphite was a good adsorbent for As(V) removal.

  14. Drinking water: a major source of lead exposure in Karachi, Pakistan.

    PubMed

    Ul-Haq, N; Arain, M A; Badar, N; Rasheed, M; Haque, Z

    2011-11-01

    Excess lead in drinking water is a neglected source of lead toxicity in Pakistan. A cross-sectional survey in 2007/08 was made of water samples from drinking water sources in Karachi, a large industrial city. This study aimed to compare lead levels between untreated ground water and treated surface (tap) water in 18 different districts. Of 216 ground and surface water samples collected, 86% had lead levels higher than the World Health Organization maximum acceptable concentration of l0 ppb. Mean lead concentration in ground water [146 (SD 119) ppb] was significantly higher than in surface water [77.1 (SD 54) ppb]. None of the 18 districts had a mean lead level of ground or surface water below the WHO cut-off and ground water sources in 9 districts had a severe level of contamination (>150 ppb). Urgent action is needed to eliminate sources of contamination.

  15. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    NASA Astrophysics Data System (ADS)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  16. Modelling Urban diffuse pollution in groundwater

    NASA Astrophysics Data System (ADS)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  17. Trench 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site.

    PubMed

    Payne, Timothy E; Harrison, Jennifer J; Hughes, Catherine E; Johansen, Mathew P; Thiruvoth, Sangeeth; Wilsher, Kerry L; Cendón, Dioni I; Hankin, Stuart I; Rowling, Brett; Zawadzki, Atun

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.

  18. Mitigation of radiation induced surface contamination

    DOEpatents

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  19. Ground Water Discharges (EPA's Underground Injection ...

    EPA Pesticide Factsheets

    2017-07-06

    Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.

  20. Organochlorine insecticide residues are found in surface, irrigated water samples from several districts in Bangladesh.

    PubMed

    Chowdhury, Alamgir Zaman; Islam, Mohammad Nazrul; Moniruzzaman, Mohammed; Gan, Siew Hua; Alam, Md Khorshed

    2013-02-01

    The purpose of this study was to investigate the occurrence and distribution of organochlorines such as aldrin, dieldrin, dichlorodiphenyldichloroethylene (DDE), dichlorodiphenyldichloroethane (DDD), dichlorodiphenyltrichloroethane (DDT), endrin, lindane and heptachlor insecticide residues in irrigated surface water samples collected from 22 districts in Bangladesh. The concentrations of the pesticides were determined using gas chromatography mass spectrophotometry. Water samples from five locations (Feni, Nawabganj, Putia, Burichang and Chatak) were contaminated with DDT; the highest DDT concentration detected was 8.29 μg/L, and its metabolite, DDE, was detected at 4.06 μg/L. Water samples from four other locations (Natore, Sikderpara, Chatak and Rajoir) were contaminated with heptachlor residues, and the highest level detected was 5.24 μg/L, which is the above the maximum contaminant level recommended by the World Health Organisation. A water sample collected from Chatak, Sunamganj, was contaminated with both DDT and heptachlor pesticide residues. None of the water samples were contaminated with aldrin, DDD, dieldrin, endrin or lindane. It is concluded that continuous, long-term monitoring and essential steps to limit the use of the pesticides in Bangladesh are needed.

  1. Health assessment for Love's Container Landfill, Buckingham, Virginia, Region 3. CERCLIS No. VAD089027973. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-05

    Love's Container Service Landfill covers eight acres in a rural area near the town of Buckingham, Virginia. Sampling indicated that on-site groundwater and off-site residential well water are contaminated by chromium and beryllium. There does not appear to be any indication of contamination in the surface soil, the surface water, nor the private wells. The monitoring wells indicate only trace levels of contamination. The site does not appear to present any threat to human health.

  2. Phosphate Treatment of Lead-Contaminated Soil: Effects on Water Quality, Plant Uptake, and Lead Speciation

    EPA Science Inventory

    Water quality threats associated with using phosphate-based amendments to remediate Pb-contaminated soils are a concern, particularly in riparian areas. This study investigated the effects of P application rates to a Pb-contaminated alluvial soil on Pb and P loss via surface wat...

  3. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOEpatents

    McNab, Jr., Walt W.; Reinhard, Martin

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  4. Insect contamination protection for laminar flow surfaces

    NASA Technical Reports Server (NTRS)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  5. Phyt'Eaux Cités: application and validation of a programme to reduce surface water contamination with urban pesticides.

    PubMed

    Botta, Fabrizio; Fauchon, Nils; Blanchoud, Hélène; Chevreuil, Marc; Guery, Bénédicte

    2012-01-01

    This paper presents first results of Phyt'Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d'Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km(2)). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt'Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L(-1). They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular, glyphosate showed a decrease of the load above 60% in 2008, partly related to the Phyt'Eaux Cités action. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A dual layer hair array of the brown lacewing: repelling water at different length scales.

    PubMed

    Watson, Jolanta A; Cribb, Bronwen W; Hu, Hsuan-Ming; Watson, Gregory S

    2011-02-16

    Additional weight due to contamination (water and/or contaminating particles) can potentially have a detrimental effect on the flight capabilities of large winged insects such as butterflies and dragonflies. Insects where the wing surface area-body mass ratio is very high will be even more susceptible to these effects. Water droplets tend to move spontaneously off the wing surface of these insects. In the case of the brown lacewing, the drops effectively encounter a dual bed of hair springs with a topographical structure which aids in the hairs resisting penetration into water bodies. In this article, we demonstrate experimentally how this protective defense system employed by the brown lacewing (Micromus tasmaniae) aids in resisting contamination from water and how the micro- and nanostructures found on these hairs are responsible for quickly shedding water from the wing which demonstrates an active liquid-repelling surface. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of surface water and groundwater contamination in a MSW landfill area using hydrochemical analysis and electrical resistivity tomography: a case study in Sichuan province, Southwest China.

    PubMed

    Ling, Chengpeng; Zhang, Qiang

    2017-04-01

    As a primary disposal mean of municipal solid waste in China, the landfill has been recognized as one of the major threats to the surrounding surface water and groundwater environment due to the emission of leachate. The aim of this study was to determine the impact of leachate on the surface water and groundwater environment of the region of the Chang'an landfill, which is located in Sichuan province, China. The surface water and groundwater were sampled for hydrochemical analysis. Three electrical resistivity tomography profiles were conducted to evaluate the impact of leachate on the groundwater environment, and several laboratory tests were carried out to build the relationship between the soil bulk resistivity and the void fluid resistivity. The results showed that a seasonal creek named Longfeng creek, which crosses the landfill site, was contaminated by the leachate. The concentrations of COD, BOD5, and chlorides (Cl) of surface water samples increased by 12.3-105.7 times. The groundwater quality in the surface loose sediments along the valley deteriorated obviously from the landfill to 500 m downstream area. The laboratory tests of soil samples indicated that the resistivity value of 13 Ωm is a critical value whether the groundwater in the loose sediments is polluted. The groundwater at the site adjacent to the spillway in the landfill was partially contaminated by the emission of leachate. The groundwater contamination zones at 580 m downstream of the landfill were recognized at the shallow zones from 60 m left bank to 30 m right bank of Longfeng creek. The improved understanding of groundwater contamination around the landfill is beneficial for the landfill operation and groundwater environment remediation.

  8. Long-term PAH monitoring results from the Anacostia River active capping demonstration using polydimethylsiloxane (PDMS) fibers.

    PubMed

    Lampert, David J; Lu, Xiaoxia; Reible, Danny D

    2013-03-01

    In this paper, the long-term monitoring results for hydrophobic organic compounds, specifically polycyclic aromatic hydrocarbons (PAHs), from a field demonstration of capping contaminated sediments at the Anacostia River in Washington DC are presented and analyzed. In situ pore water concentrations in field-contaminated sediments in the demonstration caps were quantified using a polydimethylsiloxane (PDMS)-based passive sampling device. High resolution vertical pore water concentration profiles were measured using the device and were used to infer fate and transport of polycyclic aromatics hydrocarbons (PAHs) at the site. The derived pore water concentrations were compared with observed bioaccumulation and solid-phase concentration profiles to infer contaminant migration rates and mechanisms. Observed pore water concentrations were found to be a better predictor of bioaccumulation than solid-phase concentrations. Solid-phase concentrations were low in cores which implied containment of contamination; however pore water profiles showed that contaminant migration had occurred in the first few years after cap placement. The discrepancy is the result of the low sorption capacity of the sand. Because of surface re-contamination, low sorption capacity in the demonstration caps and strong tidal pumping effects, steady state contaminant profiles were reached in the caps several years after placement. Despite re-contamination at the surface, steady state concentrations in the capped areas showed decreased contamination levels relative to the control area.

  9. HEALTH RISK ISSUES RELATED TO MTBE IN DRINKING WATER

    EPA Science Inventory

    Despite the attention given to methyl tertiary butyl ether (MTBE) as a contaminant in ground water and surface water, the implications of such contamination for human health have not been clearly established to date. Limitations in the databases for both exposure and health effe...

  10. Arsenic Concentration in the Surface Water of a Former Mining Area: The La Junta Creek, Baja California Sur, Mexico

    PubMed Central

    Imaz Lamadrid, Miguel; Acosta Vargas, Baudilio

    2018-01-01

    The mining activity in the San Antonio-El Triunfo district, located in a mountainous region at 60 km southeast of La Paz, occured for more than 250 years and left behind severe contamination of soils and riverbed sediments which led to elevated concentrations of arsenic and other trace elements in the surface- and groundwater of the region. Although the main mining activity ended around 1911, contamination is still beeing distributed, especially from left behind tailings and mine waste piles. The contamination levels in the groundwater have been reported in several studies, but there is little information available on the surface water quality, and especially the temporal variation. In this study, we analyzed the surface water of the La Junta creek, in the southern part of the San Antonio-El Triunfo mining district. The working hypothesis was that by means of a spatial analysis of surface water and shallow groundwater, in combination with the temporal observation of the concentrations in runoff water, the effects of different sources of arsenic (natural geogene anomalies, due to historic mining activity, and hydrothermal related impact) in the La Junta creek can be recognized. This present study revealed that historic mining activity caused a mojor impact of arsenic but less contamination was observed than in the northern part of the district and elevated arsenic concentrations in stream water generally occurred during times of low streamflow. PMID:29498700

  11. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    PubMed

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model. This information can be used to model degradation prior to water treatment.

  12. Outbreak of giardiasis associated with a community drinking-water source.

    PubMed

    Daly, E R; Roy, S J; Blaney, D D; Manning, J S; Hill, V R; Xiao, L; Stull, J W

    2010-04-01

    Giardiasis is a common waterborne gastrointestinal illness. In 2007, a community giardiasis outbreak occurred in New Hampshire, USA. We conducted a cohort study to identify risk factors for giardiasis, and stool and environmental samples were analysed. Consuming tap water was significantly associated with illness (risk ratio 4.7, 95% confidence interval 1.5-14.4). Drinking-water samples were coliform-contaminated and a suspect Giardia cyst was identified in a home water filter. One well was coliform-contaminated, and testing indicated that it was potentially under the influence of surface water. The well was located 12.5 m from a Giardia-contaminated brook, although the genotype differed from clinical specimens. Local water regulations require well placement at least 15 m from surface water. This outbreak, which caused illness in 31 persons, represents the largest community drinking-water-associated giardiasis outbreak in the USA in 10 years. Adherence to well placement regulations might have prevented this outbreak.

  13. Aerobic biodegradation potential of endocrine disrupting chemicals in surface-water sediment at Rocky Mountains National Park, USA

    USGS Publications Warehouse

    Bradley, Paul M.; Battaglin, William A.; Iwanowicz, Luke R.; Clark, Jimmy M.; Journey, Celeste A.

    2016-01-01

    Endocrine disrupting chemicals (EDC) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDC, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountains National Park (ROMO). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 14C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. ROMO bed sediment microbial communities also effectively degraded the xenoestrogens, bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The current results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged.

  14. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July-September 2013.

    PubMed

    Aktas, Dilber; Celebi, Bekir; Isik, Mehmet Emirhan; Tutus, Celal; Ozturk, Huseyin; Temel, Fehminaz; Kizilaslan, Mecit; Zhu, Bao-Ping

    2015-12-01

    In 2013, an oropharyngeal tularemia outbreak in Turkey affected 55 persons. Drinking tap water during the likely exposure period was significantly associated with illness (attack rate 27% vs. 11% among non-tap water drinkers). Findings showed the tap water source had been contaminated by surface water, and the chlorination device malfunctioned.

  15. Screening for Groundwater Contaminants Discharging to Urban Streams

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Bickerton, G.; Voralek, J.

    2009-05-01

    Groundwater contaminated with urban pollutants can adversely affect freshwater aquatic ecosystems where it discharges to streams, lakes or wetlands. Generally such occurrences have been revealed following the discovery of contaminated groundwater plumes at a particular site or from wells in the area. Thus, this contaminant pathway tends to be dealt with on a site-specific and aquifer-focused basis. In contrast, surface water contaminant monitoring typically relies on bulk water concentrations from one or a small set of locations, thus ignoring the spatial variation in contaminant loading, potential losses to sediment or the atmosphere, and the full range of benthic components of the aquatic ecosystem. There are few studies outlining the extent of this contamination from the perspective of the surface water body's deeper benthic community, which might be expected to experience the greatest contaminant concentrations, on more than a local-scale. In this study, we report on an approach to stream-reach-screening for urban contaminants in discharging groundwater, with the focus on detection rather than accurate quantification. The methodology consists of a drive-point technique for sampling groundwater from below the stream bed (e.g. typically 50 cm) along a chosen reach at intervals of about 10 m. Groundwater samples were then analyzed for a wide range of common urban contaminants and general chemistry. This screening method was performed in three urban settings in Canada with known groundwater contamination, covering sections of about 140 to >500 m. The known contaminant plumes at each site were detected and roughly delineated. In addition, potential areas of previously-unknown groundwater contamination were also identified at each site. Contaminants included BTEX and other petroleum hydrocarbons, various chlorinated solvent compounds, nitrate, 1,4-dioxane, MTBE and elevated chloride (likely indicating road salt). These preliminary findings suggest that this approach may be useful for quickly assessing the cumulative threat to aquatic ecosystems of potentially multiple groundwater contaminant sources discharging to surface water bodies in urban settings.

  16. Tracing sources of sulfur in the Florida everglades

    USGS Publications Warehouse

    Bates, A.L.; Orem, W.H.; Harvey, J.W.; Spiker, E. C.

    2002-01-01

    We examined concentrations and sulfur isotopic ratios (34S/32S, expressed as ??34S in parts per thousand [???] units) of sulfate in surface water, ground water, and rain water from sites throughout the northern Everglades to establish the sources of sulfur to the ecosystem. The geochemistry of sulfur is of particular interest in the Everglades because of its link, through processes mediated by sulfate -reducing bacteria, to the production of toxic methylmercury in this wetland ecosystem. Methylmercury, a neurotoxin that is bioaccumulated, has been found in high concentrations in freshwater fish from the Everglades, and poses a potential threat to fish-eating wildlife and to human health through fish consumption. Results show that surface water in large portions of the Everglades is heavily contaminated with sulfate, with the highest concentrations observed in canals and marsh areas receiving canal discharge. Spatial patterns in the range of concentrations and ??34S values of sulfate in surface water indicate that the major source of sulfate in sulfur-contaminated marshes is water from canals draining the Everglades Agricultural Area. Shallow ground water underlying the Everglades and rain water samples had much lower sulfate concentrations and ??34S values distinct from those found in surface water. The ??34S results implicate agricultural fertilizer as a major contributor to the sulfate contaminating the Everglades, but ground water under the Everglades Agricultural Area (EAA) may also be a contributing source. The contamination of the northern Everglades with sulfate from canal discharge may be a key factor in controlling the distribution and extent of methylmercury production in the Everglades.

  17. Characteristics of Chernobyl-derived radionuclides in particulate form in surface waters in the exclusion zone around the Chernobyl Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Matsunaga, Takeshi; Ueno, Takashi; Amano, Hikaru; Tkatchenko, Y.; Kovalyov, A.; Watanabe, Miki; Onuma, Yoshikazu

    1998-12-01

    The distribution of Chernobyl-derived radionuclides in river and lake water bodies at 6-40 km from the Chernobyl Nuclear Power Plant was studied. Current levels of radionuclides (Cesium-137, Strontium-90, Plutonium, Americium and Curium isotopes) in water bodies and their relation to the ground contamination are presented. The investigation of the radionuclide composition of aqueous and ground contamination revealed that radionuclides on suspended solids (particulate form) originate mainly from the erosion of the contaminated surface soil layer in the zone. Apparent distribution ratios between particulate and dissolved forms are compared to known distribution coefficients.

  18. 40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parts of the distribution system; (4) Filtration and/or disinfection of surface water, as described in subparts H, P, T, and W of this part, or disinfection of ground water, as described in subpart S of this... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking...

  19. 40 CFR 141.63 - Maximum contaminant levels (MCLs) for microbiological contaminants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parts of the distribution system; (4) Filtration and/or disinfection of surface water, as described in subparts H, P, T, and W of this part, or disinfection of ground water, as described in subpart S of this... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking...

  20. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  1. Installation Restoration Program for Richards-Gebaur AFB. Phase 2. Field Evaluation

    DTIC Science & Technology

    1983-12-01

    of the Phase I--Records Search. "ýThe specific task was to determine whether environmental contamination of groundwater or surface water had resulted...concentrations (4 and 5 ug/L, respectively) which exceeded the Missouri Water Quality Standards for groundwater (I ug/L). A limited followup study was...contamination of groundwater and surface water had resulted from waste handling and disposal at two ’and- fills on Richards-Gebaur Air Force Base (AFB

  2. Trench ‘Bathtubbing’ and Surface Plutonium Contamination at a Legacy Radioactive Waste Site

    PubMed Central

    2013-01-01

    Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (∼12 Bq/L of 239+240Pu in 0.45 μm-filtered water), and there is an associated contamination of Pu in surface soils. The highest 239+240Pu soil activity was 829 Bq/kg in a shallow sample (0–1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the ‘bathtub’ effect. PMID:24256473

  3. 76 FR 44585 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... resources affecting the human food chain, contamination of surface water used for recreation or potable water consumption, and contamination of ambient air. EPA Regional offices work with States to determine... population at risk, the hazard potential of the substances, as well as the potential for contamination of...

  4. Genetic diversity of Escherichia coli isolates from surface water and groundwater in a rural environment.

    PubMed

    Gambero, Maria Laura; Blarasin, Monica; Bettera, Susana; Giuliano Albo, Jesica

    2017-10-01

    The genetic characteristics among Escherichia coli strains can be grouped by origin of isolation. Then, it is possible to use the genotypes as a tool to determine the source of water contamination. The aim of this study was to define water aptitude for human consumption in a rural basin and to assess the diversity of E. coli water populations. Thus, it was possible to identify the main sources of fecal contamination and to explore linkages with the hydrogeological environment and land uses. The bacteriological analysis showed that more than 50% of samples were unfit for human consumption. DNA fingerprinting analysis by BOX-PCR indicated low genotypic diversity of E. coli isolates taken from surface water and groundwater. The results suggested the presence of a dominant source of fecal contamination. The relationship between low genotypic diversity and land use would prove that water contamination comes from livestock. The genetic diversity of E. coli isolated from surface water was less than that identified in groundwater because of the different hydraulic features of both environments. Furthermore, each one of the two big strain groups identified in this basin is located in different sub-basins, showing that hydrological dynamics exerts selective pressure on bacteria DNA.

  5. Do Contaminants Originating from State-of-the-Art Treated Wastewater Impact the Ecological Quality of Surface Waters?

    PubMed Central

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0–100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive. PMID:23593263

  6. Do contaminants originating from state-of-the-art treated wastewater impact the ecological quality of surface waters?

    PubMed

    Stalter, Daniel; Magdeburg, Axel; Quednow, Kristin; Botzat, Alexandra; Oehlmann, Jörg

    2013-01-01

    Since the 1980s, advances in wastewater treatment technology have led to considerably improved surface water quality in the urban areas of many high income countries. However, trace concentrations of organic wastewater-associated contaminants may still pose a key environmental hazard impairing the ecological quality of surface waters. To identify key impact factors, we analyzed the effects of a wide range of anthropogenic and environmental variables on the aquatic macroinvertebrate community. We assessed ecological water quality at 26 sampling sites in four urban German lowland river systems with a 0-100% load of state-of-the-art biological activated sludge treated wastewater. The chemical analysis suite comprised 12 organic contaminants (five phosphor organic flame retardants, two musk fragrances, bisphenol A, nonylphenol, octylphenol, diethyltoluamide, terbutryn), 16 polycyclic aromatic hydrocarbons, and 12 heavy metals. Non-metric multidimensional scaling identified organic contaminants that are mainly wastewater-associated (i.e., phosphor organic flame retardants, musk fragrances, and diethyltoluamide) as a major impact variable on macroinvertebrate species composition. The structural degradation of streams was also identified as a significant factor. Multiple linear regression models revealed a significant impact of organic contaminants on invertebrate populations, in particular on Ephemeroptera, Plecoptera, and Trichoptera species. Spearman rank correlation analyses confirmed wastewater-associated organic contaminants as the most significant variable negatively impacting the biodiversity of sensitive macroinvertebrate species. In addition to increased aquatic pollution with organic contaminants, a greater wastewater fraction was accompanied by a slight decrease in oxygen concentration and an increase in salinity. This study highlights the importance of reducing the wastewater-associated impact on surface waters. For aquatic ecosystems in urban areas this would lead to: (i) improvement of the ecological integrity, (ii) reduction of biodiversity loss, and (iii) faster achievement of objectives of legislative requirements, e.g., the European Water Framework Directive.

  7. Microbial environmental contamination in Italian dental clinics: A multicenter study yielding recommendations for standardized sampling methods and threshold values.

    PubMed

    Pasquarella, Cesira; Veronesi, Licia; Napoli, Christian; Castiglia, Paolo; Liguori, Giorgio; Rizzetto, Rolando; Torre, Ida; Righi, Elena; Farruggia, Patrizia; Tesauro, Marina; Torregrossa, Maria V; Montagna, Maria T; Colucci, Maria E; Gallè, Francesca; Masia, Maria D; Strohmenger, Laura; Bergomi, Margherita; Tinteri, Carola; Panico, Manuela; Pennino, Francesca; Cannova, Lucia; Tanzi, Marialuisa

    2012-03-15

    A microbiological environmental investigation was carried out in ten dental clinics in Italy. Microbial contamination of water, air and surfaces was assessed in each clinic during the five working days, for one week per month, for a three-month period. Water and surfaces were sampled before and after clinical activity; air was sampled before, after, and during clinical activity. A wide variation was found in microbial environmental contamination, both within the participating clinics and for the different sampling times. Before clinical activity, microbial water contamination in tap water reached 51,200cfu/mL (colony forming units per milliliter), and that in Dental Unit Water Systems (DUWSs) reached 872,000cfu/mL. After clinical activity, there was a significant decrease in the Total Viable Count (TVC) in tap water and in DUWSs. Pseudomonas aeruginosa was found in 2.38% (7/294) of tap water samples and in 20.06% (59/294) of DUWS samples; Legionella spp. was found in 29.96% (89/297) of tap water samples and 15.82% (47/297) of DUWS samples, with no significant difference between pre- and post-clinical activity. Microbial air contamination was highest during dental treatments, and decreased significantly at the end of the working activity (p<0.05). The microbial buildup on surfaces increased significantly during the working hours. This study provides data for the establishment of standardized sampling methods, and threshold values for contamination monitoring in dentistry. Some very critical situations have been observed which require urgent intervention. Furthermore, the study emphasizes the need for research aimed at defining effective managing strategies for dental clinics. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Contaminants of emerging concern in surface waters in Barbados, West Indies.

    PubMed

    Edwards, Quincy A; Kulikov, Sergei M; Garner-O'Neale, Leah D; Metcalfe, Chris D; Sultana, Tamanna

    2017-11-14

    Contaminants of emerging concern (CECs), including pharmaceuticals, artificial sweeteners, steroid hormones, and current-use pesticides have been detected in surface waters around the world, but to date, there have been no reports in the peer-reviewed literature on the levels of these classes of contaminants in freshwater resources in the Caribbean region. In the present study, multi-residue solid phase extraction (SPE) and liquid chromatography with tandem mass spectroscopy (LC-MS/MS) were used to analyze grab samples of surface waters collected from five different watersheds in Barbados, West Indies. The artificial sweeteners (AS), acesulfame, cyclamate, saccharin, and sucralose were widely detected in the watersheds, indicating contamination from domestic wastewater, and the concentrations of these chemical tracers in water were correlated with the concentrations of the non-prescription pharmaceutical, ibuprofen (R 2 values of 0.4-0.6). Surprisingly, the concentrations of another chemical tracer of domestic wastewater, caffeine were not correlated with ibuprofen or AS concentrations. Several other prescription pharmaceuticals and the steroid hormones, estrone and androstenedione, were detected in selected watersheds at low ng/L concentrations. The fungicide, chlorothalonil was widely detected in surface waters at low (< 10 ng/L) concentrations, but the levels of this pesticide were not correlated with the concentrations of the other target analytes, indicating that the source of this pesticide is not domestic wastewater. An informal survey of disposal practices for out of date or unused drugs by pharmacies in Barbados indicated that disposal into trash destined for the landfill and flushing down the sink might be significant sources of contamination of water resources by pharmaceuticals.

  9. Contamination risk and drinking water protection for a large-scale managed aquifer recharge site in a semi-arid karst region, Jordan

    NASA Astrophysics Data System (ADS)

    Xanke, Julian; Liesch, Tanja; Goeppert, Nadine; Klinger, Jochen; Gassen, Niklas; Goldscheider, Nico

    2017-09-01

    Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.

  10. A study of the effectiveness of particulate cleaning protocols on intentionally contaminated niobium surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Charles E.; Ciancio, Elizabeth J.; Keyes, Katharine A.

    2009-11-01

    Particulate contamination on the surface of SRF cavities limits their performance via the enhanced generation of field-emitted electrons. Considerable efforts are expended to actively clean and avoid such contamination on niobium surfaces. The protocols in active use have been developed via feedback from cavity testing. This approach has the risk of over-conservatively ratcheting an ever increasing complexity of methods tied to particular circumstances. A complementary and perhaps helpful approach is to quantitatively assess the effectiveness of candidate methods at removing intentional representative particulate contamination. Toward this end, we developed a standardized contamination protocol using water suspensions of Nb{sub 2}O{sub 5}more » and SS 316 powders applied to BCP’d surfaces of standardized niobium samples yielding particle densities of order 200 particles/mm{sup 2}. From these starting conditions, controlled application of high pressure water rinse, ultrasonic cleaning, or CO{sub 2} snow jet cleaning was applied and the resulting surfaces examined via SEM/scanning EDS with particle recognition software. Results of initial parametric variations of each will be reported.« less

  11. Effect of rapidly changing river stage on uranium flux through the hyporheic zone.

    PubMed

    Fritz, Brad G; Arntzen, Evan V

    2007-01-01

    Measurement of ground water/surface water interaction within the hyporheic zone is increasingly recognized as an important aspect of subsurface contaminant fate and transport. Understanding the interaction between ground water and surface water is critical in developing a complete conceptual model of contaminant transport through the hyporheic zone. At the Hanford Site near Richland, Washington, ground water contaminated with uranium discharges to the Columbia River through the hyporheic zone. Ground water flux varies according to changes in hydraulic gradient caused by fluctuating river stage, which changes in response to operation of dams on the Columbia River. Piezometers and continuous water quality monitoring probes were installed in the hyporheic zone to provide long-term, high-frequency measurement of hydraulic gradient and estimated uranium concentrations. Subsequently, the flux of water and uranium was calculated for each half-hour time period over a 15-month study period. In addition, measurement of water levels in the near-shore unconfined aquifer enhanced the understanding of the relationship between river stage, aquifer elevation, and uranium flux. Changing river stage resulted in fluctuating hydraulic gradient within the hyporheic zone. Further, influx of river water caused lower uranium concentrations as a result of dilution. The methods employed in this study provide a better understanding of the interaction between surface and ground water in a situation with a dynamically varying vertical hydraulic gradient and illustrate how the combination of relatively standard methods can be used to derive an accurate estimation of water and contaminant flux through the hyporheic zone.

  12. USEPA CAPSTONE REPORT: DISINFECTION

    EPA Science Inventory

    Wet-weather flow (WWF), including combined-sewer overflow (CSO), sanitary-sewer overflow, and stormwater (SW) is a significant contributor of microbial contamination to surface water and ground water. Contamination with human-origin fecal coliform (FC) is of great concern for san...

  13. Community-based risk assessment of water contamination from high-volume horizontal hydraulic fracturing.

    PubMed

    Penningroth, Stephen M; Yarrow, Matthew M; Figueroa, Abner X; Bowen, Rebecca J; Delgado, Soraya

    2013-01-01

    The risk of contaminating surface and groundwater as a result of shale gas extraction using high-volume horizontal hydraulic fracturing (fracking) has not been assessed using conventional risk assessment methodologies. Baseline (pre-fracking) data on relevant water quality indicators, needed for meaningful risk assessment, are largely lacking. To fill this gap, the nonprofit Community Science Institute (CSI) partners with community volunteers who perform regular sampling of more than 50 streams in the Marcellus and Utica Shale regions of upstate New York; samples are analyzed for parameters associated with HVHHF. Similar baseline data on regional groundwater comes from CSI's testing of private drinking water wells. Analytic results for groundwater (with permission) and surface water are made publicly available in an interactive, searchable database. Baseline concentrations of potential contaminants from shale gas operations are found to be low, suggesting that early community-based monitoring is an effective foundation for assessing later contamination due to fracking.

  14. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana.

    PubMed

    Preston, Todd M; Chesley-Preston, Tara L; Thamke, Joanna N

    2014-02-15

    Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values >0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km(2) Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R(2)=0.78) than surface water samples (R(2)=0.53). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana

    USGS Publications Warehouse

    Preston, Todd M.; Chesley-Preston, Tara L.; Thamke, Joanna N.

    2014-01-01

    Water (brine) co-produced with oil in the Williston Basin is some of the most saline in the nation. The Prairie Pothole Region (PPR), characterized by glacial sediments and numerous wetlands, covers the northern and eastern portion of the Williston Basin. Sheridan County, Montana, lies within the PPR and has a documented history of brine contamination. Surface water and shallow groundwater in the PPR are saline and sulfate dominated while the deeper brines are much more saline and chloride dominated. A Contamination Index (CI), defined as the ratio of chloride concentration to specific conductance in a water sample, was developed by the Montana Bureau of Mines and Geology to delineate the magnitude of brine contamination in Sheridan County. Values > 0.035 indicate contamination. Recently, the U.S. Geological Survey completed a county level geographic information system (GIS)-based vulnerability assessment of brine contamination to aquatic resources in the PPR of the Williston Basin based on the age and density of oil wells, number of wetlands, and stream length per county. To validate and better define this assessment, a similar approach was applied in eastern Sheridan County at a greater level of detail (the 2.59 km2 Public Land Survey System section grid) and included surficial geology. Vulnerability assessment scores were calculated for the 780 modeled sections and these scores were divided into ten equal interval bins representing similar probabilities of contamination. Two surface water and two groundwater samples were collected from the section with the greatest acreage of Federal land in each bin. Nineteen of the forty water samples, and at least one water sample from seven of the ten selected sections, had CI values indicating contamination. Additionally, CI values generally increased with increasing vulnerability assessment score, with a stronger correlation for groundwater samples (R2 = 0.78) than surface water samples (R2 = 0.53).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.

    The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less

  17. Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.

    2006-01-01

    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.

  18. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.

    PubMed

    Chang, Jin-Soo

    2015-11-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dissolved organic matter fluorescence at wavelength 275/342 nm as a key indicator for detection of point-source contamination in a large Chinese drinking water lake.

    PubMed

    Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei

    2016-02-01

    Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p < 0.0001). Both the field campaigns and the laboratory contamination experiment revealed that CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    EPA Science Inventory

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  1. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern.

    PubMed

    Kassotis, Christopher D; Alvarez, David A; Taylor, Julia A; vom Saal, Frederick S; Nagel, Susan C; Tillitt, Donald E

    2015-08-15

    Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities. Published by Elsevier B.V.

  2. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern

    USGS Publications Warehouse

    Kassotis, Christopher D.; Alvarez, David A.; Taylor, Julia A.; vom Saal, Frederick S.; Nagel, Susan C.; Tillitt, Donald E.

    2015-01-01

    Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrationspresent in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.

  3. Occurrence of pesticides and contaminants of emerging concern in surface waters: Influence of surrounding land use and evaluation of sampling methods

    USDA-ARS?s Scientific Manuscript database

    Biologically active compounds originating from agricultural, residential, and industrial sources have been detected in surface waters, which have invoked concern of their potential ecological and human health effects. Automated and grab surface water samples, passive water samples - Polar Organic Co...

  4. Influence of Land Use and Watershed Characteristics on Protozoa Contamination in a Potential Drinking Water Resources Reservoir

    EPA Science Inventory

    Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The waters...

  5. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources

    EPA Science Inventory

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of ...

  6. Environmental monitoring of water resources around a municipal landfill of the Rio Grande do Sul state, Brazil.

    PubMed

    de Medeiros Engelmann, Pâmela; Dos Santos, Victor Hugo Jacks Mendes; Moser, Letícia Isabela; do Canto Bruzza, Eduardo; Barbieri, Cristina Barazzetti; Barela, Pâmela Susin; de Moraes, Diogo Pompéu; Augustin, Adolpho Herbert; Goudinho, Flávio Soares; Melo, Clarissa Lovato; Ketzer, João Marcelo Medina; Rodrigues, Luiz Frederico

    2017-09-01

    In Brazil, landfills are commonly used as a method for the final disposal of waste that is compliant with the legislation. This technique, however, presents a risk to surface water and groundwater resources, owing to the leakage of metals, anions, and organic compounds. The geochemical monitoring of water resources is therefore extremely important, since the leachate can compromise the quality and use of surface water and groundwater close to landfills. In this paper, the results of analyses of metals, anions, ammonia, and physicochemical parameters were used to identify possible contamination of surface water and groundwater in a landfill area. A statistical multivariate approach was used. The values found for alkali metals, nitrate, and chloride indicate contamination in the regional groundwater and, moreover, surface waters also show variation when compared to the other background points, mainly for ammonia. Thus, the results of this study evidence the landfill leachate influence on the quality of groundwater and surface water in the study area.

  7. Impact Of Groundwater Discharge On Contaminant Behavior In Sediments

    EPA Science Inventory

    The discharge of groundwater into surface water may influence the concentrations and availability of contaminants in sediments. There are three predominant pathways by which groundwater may affect the characteristics of contaminated sediments: 1) direct contribution of contamin...

  8. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Contaminated landslide runout deposits in rivers - Method for estimating long-term ecological risks.

    PubMed

    Göransson, G; Norrman, J; Larson, M

    2018-06-14

    The potential catastrophic event of a landslide bringing contaminants to surface waters has been highlighted in public media, but there are still few scientific studies analyzing the risk of landslides with contaminated soil. The aim of this study is to present a method to estimate the risk of potential long-term ecological effects on water bodies due to contaminated soil released into a river through a landslide. The study constitutes further development of previous work focusing on the instantaneous (short-term) release of contaminants and associated effects. Risk is here defined as the probability of surface water failing to comply with environmental quality standards (EQS). The transport model formulation is kept simple enough to allow for a probabilistic analysis as a first assessment of the impact on the river water quality from a landslide runout deposit containing contaminated soil. The model is applied at a contaminated site located adjacent to the Göta Älv River that discharges into the Gothenburg estuary, in southwest Sweden. The results from the case study show that a contaminated runout deposit will likely cause contamination levels above EQSs in the near area for a long time and that it will take several years for the deposit to erode, with the greatest erosion at the beginning when water velocities are their highest above the deposit. A contaminated landslide runout deposit will thus act as a source of contamination to the downstream water system until all the contaminated deposit has been eroded away and the contaminants have been transported from the deposit to the river, and further to the river mouth - diluted but not necessarily negligible. Therefore, it is important to prevent landslides of contaminated soil or waste, and if such events were to occur, to remove the contaminated runout deposit as soon as possible. Copyright © 2018. Published by Elsevier B.V.

  10. Engineering and Environmental Study of DDT Contamination of Huntsville Spring Branch, Indian Creek, and Adjacent Lands and Waters, Wheeler Reservoir, Alabama. Volume 3. Appendices IV-VI.

    DTIC Science & Technology

    1980-11-01

    levels in fish exceed the 5 ppm limit set by the FDA for edible portions of fish. Evidence of human DDT contamination has been found in persons...Contamination of aquatic organisms, results from low levels of DDTR that now exist in water and/or sediment. 5 . Contamination of aquatic organisms also...SOIL, WATER AND OTHER SURFACES 1- 5 3.4 PERSISTENCE IN SOIL 1-7 3.5 WATER SOLUBILITY 1-7 4.0 DDT DEGRADATION IN THE ENVIRONMENT 1-7 4.1 DEGRADATION IN

  11. CMI Remedy Selection for HE- and Barium-Contaminated Vadose Zone and Alluvium at LANL

    NASA Astrophysics Data System (ADS)

    Hickmott, D.; Reid, K.; Pietz, J.; Ware, D.

    2008-12-01

    A high explosives (HE) machining building outfall at Los Alamos National Laboratory's Technical Area 16 discharged millions of gallons of HE- and barium-contaminated water into the Canon de Valle watershed. The effluent contaminated surface soils, the alluvial aquifer, vadose zone waters, and deep-perched and regional groundwaters with HE and barium, frequently at levels greater than regulatory standards. Site characterization studies began in 1995 and included extensive monitoring of surface water, groundwater, soils, and subsurface solid media. Hydrogeologic and geophysical studies were conducted to help understand contaminant transport mechanisms and pathways. Results from the characterization studies were used to develop a site conceptual model. In 2000 the principal source area was removed. The ongoing Corrective Measure Study (CMS) and Corrective Measure Implementation (CMI) focus on residual vadose zone contamination and on the contaminated alluvial system. Regulators recently selected a CMI remedy that combined: 1) augmented source removal; 2) grouting of an HE- contaminated surge bed; 3) deployment of Stormwater Management System (SMS) stormfilters in contaminated springs; and 4) permeable reactive barriers (PRBs) in contaminated alluvium. The hydrogeologic conceptual model for the vadose zone and alluvial system as well as the status of the canyon as habitat for the Mexican Spotted Owl were key factors in selection of these minimal-environmental-impact remedies. The heterogeneous vadose zone, characterized by flow and contaminant transport in fractures and in surge beds, requires contaminant treatment at a point of discharge. The canyon PRB is being installed to capture water and contaminants prior to infiltration into the vadose zone. Pilot-scale testing of the SMS and lab-scale batch and column tests of a range of media suggest that granular activated carbon, zeolite, and gypsum may be effective media for removal of HE and/or barium from contaminated waters.

  12. Groundwater, surface-water, and water-chemistry data from C-aquifer monitoring program, northeastern Arizona, 2005-11

    USGS Publications Warehouse

    Brown, Christopher R.; Macy, Jamie P.

    2012-01-01

    Water-chemistry data for selected wells and baseflow investigations sites are presented. No well samples analyzed exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level standards for drinking water, but several samples exceeded Secondary Maximum Contaminant Level standards for chloride, fluoride, sulfate, iron, and total dissolved solids.

  13. Water contamination in urban south India: household storage practices and their implications for water safety and enteric infections.

    PubMed

    Brick, Thomas; Primrose, Beryl; Chandrasekhar, R; Roy, Sheela; Muliyil, Jayaprakash; Kang, Gagandeep

    2004-10-01

    Water contamination, at source and during household storage, is a major cause of enterically transmitted infections in developing countries. This study assessed contamination of the municipal water in a south Indian town, which obtains its water intermittently from a surface lake and by pumping subsurface water from a dry river bed, and monitored microbial contamination during household storage. All samples of the 'treated' municipal water were contaminated when freshly pumped, and on household storage, 25/37 (67%) showed increased contamination during storage periods from 1 to 9 days. Household storage in brass, but not in containers of other materials significantly decreased contamination of water (p = 0.04). This was confirmed in the laboratory by testing water seeded with 10(3) to 10(5) Escherichia coli per 100 ml stored in containers of different materials (p < 0.01). Despite the requirements for provision of safe drinking water in municipal areas, in practice the water supplied in Vellore is contaminated and current household storage practices increase the level of contamination in at least two-thirds of households. The implementation of locally appropriate point-of-use disinfection and safe household storage practices in developing countries is an urgent need to ensure a safe, reliable year-round supply in areas where clean water is not available.

  14. Determination of dominant sources of nitrate contamination in transboundary (Russian Federation/Ukraine) catchment with heterogeneous land use.

    PubMed

    Vystavna, Y; Diadin, D; Grynenko, V; Yakovlev, V; Vergeles, Y; Huneau, F; Rossi, P M; Hejzlar, J; Knöller, K

    2017-09-18

    Nitrate contamination of surface water and shallow groundwater was studied in transboundary (Russia/Ukraine) catchment with heterogeneous land use. Dominant sources of nitrate contamination were determined by applying a dual δ 15 N-NO 3 and δ 18 O-NO 3 isotope approach, multivariate statistics, and land use analysis. Nitrate concentration was highly variable from 0.25 to 22 mg L -1 in surface water and from 0.5 to 100 mg L -1 in groundwater. The applied method indicated that sewage to surface water and sewage and manure to groundwater were dominant sources of nitrate contamination. Nitrate/chloride molar ratio was added to support the dual isotope signature and indicated the contribution of fertilizers to the nitrate content in groundwater. Groundwater temperature was found to be an additional indicator of manure and sewerage leaks in the shallow aquifer which has limited protection and is vulnerable to groundwater pollution.

  15. Quantifying discharge uncertainty from remotely sensed precipitation data products in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Weerasinghe, H.; Raoufi, R.; Yoon, Y.; Beighley, E., II; Alshawabkeh, A.

    2014-12-01

    Preterm birth is a serious health issue in the United States that contributes to over one-third of all infant deaths. Puerto Rico being one of the hot spots, preliminary research found that the high preterm birth rate can be associated with exposure to some contaminants in water used on daily basis. Puerto Rico has more than 200 contaminated sites including 16 active Superfund sites. Risk of exposure to contaminants is aggravated by unlined landfills lying over the karst regions, highly mobile and dynamic nature of the karst aquifers, and direct contact with surface water through sinkholes and springs. Much of the population in the island is getting water from natural springs or artesian wells that are connected with many of these potentially contaminated karst aquifers. Mobility of contaminants through surface water flows and reservoirs are largely known and are highly correlated with the variations in hydrologic events and conditions. In this study, we quantify the spatial and temporal distribution of Puerto Rico's surface water stores and fluxes to better understand potential impacts on the distribution of groundwater contamination. To quantify and characterize Puerto Rico's surface waters, hydrologic modeling, remote sensing and field measurements are combined. Streamflow measurements are available from 27 U.S. Geological Survey (USGS) gauging stations with drainage areas ranging from 2 to 510 km2. Hillslope River Routing (HRR) model is used to simulate hourly streamflow from watersheds larger than 1 km2 that discharge to ocean. HRR model simulates vertical water balance, lateral surface and subsurface runoff and river discharge. The model consists of 4418 sub-catchments with a mean model unit area (i.e., sub-catchment) of 1.8 km2. Using gauged streamflow measurements for validation, we first assess model results for simulated discharge using three precipitation products: TRMM-3B42 (3 hour temporal resolution, 0.25 degree spatial resolution); NWS stage-III radar rainfall (~ 5 min temporal resolution and 4 km spatial resolution); and gauge measurements from 37 rainfall stations for the period 2000-2012. We then explore methods for combining each product to improve overall model performance. Effects of varied spatial and temporal rainfall resolutions on simulated discharge are also investigated.

  16. Corrosive microenvironments at lead solder surfaces arising from galvanic corrosion with copper pipe.

    PubMed

    Nguyen, Caroline K; Stone, Kendall R; Dudi, Abhijeet; Edwards, Marc A

    2010-09-15

    As stagnant water contacts copper pipe and lead solder (simulated soldered joints), a corrosion cell is formed between the metals in solder (Pb, Sn) and the copper. If the resulting galvanic current exceeds about 2 μA/cm(2), a highly corrosive microenvironment can form at the solder surface, with pH < 2.5 and chloride concentrations at least 11 times higher than bulk water levels. Waters with relatively high chloride tend to sustain high galvanic currents, preventing passivation of the solder surface, and contributing to lead contamination of potable water supplies. The total mass of lead corroded was consistent with predictions based on the galvanic current, and lead leaching to water was correlated with galvanic current. If the concentration of sulfate in the water increased relative to chloride, galvanic currents and associated lead contamination could be greatly reduced, and solder surfaces were readily passivated.

  17. Issues of the presence of parasitic protozoa in surface waters

    NASA Astrophysics Data System (ADS)

    Hawrylik, Eliza

    2018-02-01

    Parasitic protozoa are very numerous organisms in the environment that play an important role in the spread of water-borne diseases. Water-borne epidemics caused by parasitic protozoa are noted throughout the world. Within these organisms, intestinal protozoa of the genera Cryptosporidium and Giardia are ones of the most serious health hazards for humans. This paper focuses on the problem of the presence of parasitic protozoa in surface waters. Characteristics of the most frequently recognized pathogens responsible for water-borne outbreaks were described, as well as sources of contamination and surface waters contamination due to protozoa of the genus Cryptosporidium and Giardia were presented. The methods of destroying the cysts and oocysts of parasitic protozoa used nowadays in the world were also presented in a review.

  18. Arsenic and metallic trace elements cycling in the surface water-groundwater-soil continuum down-gradient from a reclaimed mine area: Isotopic imprints

    NASA Astrophysics Data System (ADS)

    Khaska, Mahmoud; Le Gal La Salle, Corinne; Sassine, Lara; Cary, Lise; Bruguier, Olivier; Verdoux, Patrick

    2018-03-01

    One decade after closure of the Salsigne mine (SW France), As contamination persisted in surface water, groundwater and soil near and down-gradient from the reclaimed ore processing site (OPS). We assess the fate of As and other associated chalcophilic MTEs, and their transport in the surface-water/groundwater/soil continuum down-gradient from the reclaimed OPS, using Sr-isotopic fingerprinting. The Sr-isotope ratio was used as a tracer of transfer processes in this hydro-geosystem and was combined to sequential extraction of soil samples to evaluate the impact of contaminated soil on the underlying phreatic groundwater. The contrast in Sr isotope compositions of the different soil fractions reflects several Sr sources in the soil. In the complex hydro-geosystem around the OPS, the transport of As and MTEs is affected by a succession of factors, such as (1) Existence of a reducing zone in the aquifer below the reclaimed OPS, where groundwater shows relatively high As and MTEs contents, (2) Groundwater discharge into the stream near the reclaimed OPS causing an increase in As and MTE concentrations in surface water; (3) Partial co-precipitation of As with Fe-oxyhydroxides, contributing to some attenuation of As contents in surface water; (4) Infiltration of contaminated stream water into the unconfined aquifer down-gradient from the reclaimed OPS; (5) Accumulation of As and MTEs in soil irrigated with contaminated stream- and groundwater; (6) Release of As and MTEs from labile soil fractions to underlying the groundwater.

  19. Safe drinking water and waterborne outbreaks.

    PubMed

    Moreira, N A; Bondelind, M

    2017-02-01

    The present work compiles a review on drinking waterborne outbreaks, with the perspective of production and distribution of microbiologically safe water, during 2000-2014. The outbreaks are categorised in raw water contamination, treatment deficiencies and distribution network failure. The main causes for contamination were: for groundwater, intrusion of animal faeces or wastewater due to heavy rain; in surface water, discharge of wastewater into the water source and increased turbidity and colour; at treatment plants, malfunctioning of the disinfection equipment; and for distribution systems, cross-connections, pipe breaks and wastewater intrusion into the network. Pathogens causing the largest number of affected consumers were Cryptosporidium, norovirus, Giardia, Campylobacter, and rotavirus. The largest number of different pathogens was found for the treatment works and the distribution network. The largest number of affected consumers with gastrointestinal illness was for contamination events from a surface water source, while the largest number of individual events occurred for the distribution network.

  20. Tracking persistent pharmaceutical residues from municipal sewage to drinking water

    NASA Astrophysics Data System (ADS)

    Heberer, Thomas

    2002-09-01

    In urban areas such as Berlin (Germany) with high municipal sewage water discharges and low surface water flows there is a potential risk of drinking water contamination by polar organic compounds when groundwater recharge is used in drinking water production. Thus, some pharmaceutically active compounds (PhACs) are not eliminated completely in the municipal sewage treatment plants (STPs) and they are discharged as contaminants into the receiving waters. In terms of several monitoring studies carried out in Berlin between 1996 and 2000, PhACs such as clofibric acid, diclofenac, ibuprofen, propyphenazone, primidone and carbamazepine were detected at individual concentrations up to the μg/l-level in influent and effluent samples from STPs and in all surface water samples collected downstream from the STPs. Under recharge conditions, several compounds were also found at individual concentrations up to 7.3 μg/l in samples collected from groundwater aquifers near to contaminated water courses. A few of the PhACs were also identified at the ng/l-level in Berlin tap water samples.

  1. Ground-water contamination near a uranium tailings disposal site in Colorado

    USGS Publications Warehouse

    Goode, Daniel J.; Wilder, Russell J.

    1987-01-01

    Contaminants from uranium tailings disposed of at an active mill in Colorado have seeped into the shallow ground water onsite. This ground water discharges into the Arkansas River Valley through a superposed stream channel cut in the resistant sandstone ridge at the edge of a synclinal basin. In the river valley, seasonal surface-water irrigation has a significant impact on hydrodynamics. Water levels in residential wells fluctuate up to 20 ft and concentrations of uranium, molybdenum, and other contaminants also vary seasonally, with highest concentrations in the Spring, prior to irrigation, and lowest concentrations in the Fall. Results of a simple transient mixing cell model support the hypothesis that lateral ground-water inflow, and not irrigation recharge, is the source of ground-water contamination.

  2. Streaks Of Colored Water Indicate Surface Airflows

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1994-01-01

    Response faster and contamination less than in oil-flow technique. Flowing colored water provides accurate and clean way to reveal flows of air on surfaces of models in wind tunnels. Colored water flows from small orifices in model, forming streak lines under influence of air streaming over surface of model.

  3. Strippable containment and decontamination coating composition and method of use

    DOEpatents

    Moore, Robert C [Edgewood, NM; Tucker, Mark D [Albuquerque, NM; Jones, Joseph A [Albuquerque, NM

    2009-04-07

    A method for containing at least a portion of radioisotopes, radionuclides, heavy metal or combination thereof contaminating a substrate wherein a containment composition is applied to the substrate. The ingredients within the containment composition interact with the contaminants on the surface of the substrate until the containment composition has polymerized to a water insoluble form containing at least a portion of the contaminates enmeshed therein. The dried composition is removed from the contaminated surface removing with the composition at least a portion of the contaminate.

  4. Emerging Contaminants in the Drinking Water Cycle

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-µg/L) in surface, ground and drinking water. The most common...

  5. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface waters and porous waters by absorbing d...

  6. SITE TECHNOLOGY CAPSULE: DYNAPHORE, INC., FORAGER™ SPONGE TECHNOLOGY

    EPA Science Inventory

    The Forager™ Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. The technology treats contaminated groundwater, surface waters, and process waters by absorbi...

  7. Arsenic Treatment Technologies for Soil, Waste, and Water

    DTIC Science & Technology

    2002-09-01

    and Contaminants Treated Phytoremediation has been applied to contaminants from soil, surface water, groundwater, leachate , and municipal and...ELECTROKINETIC TREATMENT OF ARSENIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 - 1 15.0 PHYTOREMEDIATION ...14 - 5 15.1 Phytoremediation Treatment Performance Data for Arsenic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 - 5 16.1

  8. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1992-93

    USGS Publications Warehouse

    Tadayon, Saeid

    1995-01-01

    Physical and chemical data were collected from four surface-water sites, six ground-water sites, and two bottom-sediment sites during 1992-93. Specific conductance, hardness, alkalinity, and dissolved- solids concentrations generally were higher in ground water than in surface water. The median concentrations of dissolved major ions, with the exception of potassium, were higher in ground water than in surface water. In surface water and ground water, calcium was the dominant cation, and bicarbonate was the dominant anion. Concentrations of dissolved nitrite and nitrite plus nitrate in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels of 1 and 10 milligrams per liter for drinking water, respectively. Ammonium plus organic nitrogen in bottom sediment was detected at the highest concentration of any nitrogen species. Median values for most of the dissolved trace elements in surface water and ground water were below the detection levels. Dissolved trace elements in surface water and ground water did not exceed the U.S. Environmental Protection Agency maximum contaminant levels for drinking water. Trace-element concentrations in bottom sediment were similar to trace-element concentrations reported for soils of the western conterminous United States. Several organochlorine pesticides and priority pollutants were detected in surface-water and bottom-sediment samples; however, they did not exceed water-quality standards. Pesticides or priority pollutants were not detected in ground-water samples.

  9. Assessing Groundwater Contamination Vulnerability at Public Water Supply Wells in California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Hudson, B.; Dooher, B. P.; Leif, R.; Eaton, G. F.; Davisson, L.

    2001-12-01

    The California Aquifer Susceptibility project, sponsored by the California State Water Resources Control Board, uses a probabilistic approach to assess the vulnerability of public water supply wells to contamination by anthropogenic compounds. Sources of contamination to groundwater occur near the earth's surface, and have been present mostly since WWII. Therefore, wells that receive water that has recharged in the recent past are more likely to intercept contaminants transported by advection. The parameters that the study uses to rank wells according to vulnerability are groundwater age dates (using the tritium/helium method), stable isotopes of the water molecule (for water source determination), and analysis of low level Volatile Organic Compounds (VOCs). Results of a pilot project in which 300 public water supply wells were tested for vulnerability will be presented. Basins sampled for the study include the Livermore Valley, Santa Clara Valley, and the Sacramento Basin. Methyl-tertiary-Butyl Ether (MTBE) may be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Low-level detections of other VOCs such as TCE and PCE can give an early warning of a contaminant plume. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and associated contaminants. Examination of these parameters also helps identify 'short circuits', whereby e.g., loss of integrity in well casing allows near surface contamination to reach 'old' (recharged >50 years ago) water. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

  10. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  11. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater.

    PubMed

    Tran, Ngoc Han; Hu, Jiangyong; Li, Jinhua; Ong, Say Leong

    2014-01-01

    There is no quantitative data on the occurrence of artificial sweeteners in the aquatic environment in Southeast Asian countries, particularly no information on their suitability as indicators of raw wastewater contamination on surface water and groundwater. This study provided the first quantitative information on the occurrence of artificial sweeteners in raw wastewater, surface water and groundwater in the urban catchment area in Singapore. Acesulfame, cyclamate, saccharin, and sucralose were ubiquitous in raw wastewater samples at concentrations in the range of ng/L-μg/L, while other sweeteners were not found or found only in a few of the raw wastewater samples. Residential and commercial effluents were demonstrated to be the two main sources of artificial sweeteners entering the municipal sewer systems. Relatively higher concentrations of the detected sweeteners were frequently found in surface waters at the sampling sites located in the residential/commercial areas. No significant difference in the concentrations of the detected sweeteners in surface water or groundwater was noted between wet and dry weather conditions (unpaired T-test, p> 0.05). Relatively higher concentrations and detection frequencies of acesulfame, cyclamate and saccharin in surface water samples were observed at the potentially impacted sampling sites, while these sweeteners were absent in most of the background surface water samples. Similarly, acesulfame, cyclamate, and saccharin were found in most groundwater samples at the monitoring well (GW6), which is located close to known leaking sewer segment; whereas these were absent in the background monitoring well, which is located in the catchment with no known wastewater sources. Taken together, the results suggest that acesulfame, cyclamate, and saccharin can be used as potential indicators of raw wastewater contamination in surface water and groundwater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. FIELD STUDY OF THE FATE OF ARSENIC, LEAD, AND ZINC AT THE GROUND-WATER/SURFACE-WATER INTERFACE

    EPA Science Inventory

    It is recognized that physical and chemical interactions between adjacent ground water and surface water bodies are an important factor impacting water budget and nutrient/contaminant transport within a watershed. This observation is also of importance for hazardous waste site c...

  13. Section 11: Surface Water Pathway - Likelihood of Release

    EPA Pesticide Factsheets

    Surface water releases can include the threat to targets from overland flow of hazardous substances and from flooding or the threat from the release of hazardous substances to ground water and the subsequent discharge of contaminated ground w

  14. Summary and evaluation of pesticides in field blanks collected for the National Water-Quality Assessment Program, 1992-95

    USGS Publications Warehouse

    Martin, Jeffrey D.; Gilliom, Robert J.; Schertz, Terry L.

    1999-01-01

    Field blanks did show evidence of contamination by some pesticides. Most of the pesticides detected in field blanks, however, were detected more frequently and at higher concentrations in environmental water samples. Two criteria were used to evaluate the need to consider contamination in water-quality assessments: (1) a ratio of the frequency of pesticide detection in environmental water samples to the frequency of detection in field blanks of 5.0 or less and (2) a ratio of the median concentration detected in environmental water samples to the maximum concentration detected in field blanks of 2.0 or less. These criteria indicate that contamination, for the majority of the pesticide data collected for the NAWQA Program, probably does not need to be considered in the analysis and interpretation of (1) the frequency of pesticide detection or (2) the median concentration of pesticides detected. Contamination must be considered, however, in detection frequency for cispermethrin, pronamide, p,p' -DDE, pebulate, propargite, ethalfluralin, and triallate in surface water and fenuron, benfluralin, pronamide, cis-permethrin, triallate, chlorpyrifos, trifluralin, propanil, p,p' -DDE, bromacil, dacthal, diazinon, and diuron in ground water. Contamination also must be considered in median concentrations detected for pronamide, p,p' -DDE, propargite, napropamide, and triallate in surface water and benfluralin, cis-permethrin, triallate, chlorpyrifos, trifluralin, p,p' -DDE, dacthal, and diazinon in ground water.

  15. Bioswales reduce contaminants associated with toxicity in urban storm water.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Siegler, Katie; Tjeerdema, Ronald

    2016-12-01

    Contamination and toxicity associated with urban storm water runoff are a growing concern because of the potential impacts on receiving systems. California water regulators are mandating implementation of green infrastructure as part of new urban development projects to treat storm water and increase infiltration. Parking lot bioswales are low impact development practices that promote filtering of runoff through plants and soil. Studies have demonstrated that bioswales reduce concentrations of suspended sediments, metals, and hydrocarbons. There have been no published studies evaluating how well these structures treat current-use pesticides, and studies have largely ignored whether bioswales reduce toxicity in surface water. Three storms were monitored at 3 commercial and residential sites, and reductions of contaminants and associated toxicity were quantified. Toxicity testing showed that the majority of untreated storm water samples were toxic to amphipods (Hyalella azteca) and midges (Chironomus dilutus), and toxicity was reduced by the bioswales. No samples were toxic to daphnids (Ceriodaphnia dubia) or fish (Pimephales promelas). Contaminants were significantly reduced by the bioswales, including suspended solids (81% reduction), metals (81% reduction), hydrocarbons (82% reduction), and pyrethroid pesticides (74% reduction). The single exception was the phenypyrazole pesticide fipronil, which showed inconsistent treatment. The results demonstrate these systems effectively treat contaminated storm water associated with surface water toxicity but suggest that modifications of their construction may be required to treat some contaminant classes. Environ Toxicol Chem 2016;35:3124-3134. © 2016 SETAC. © 2016 SETAC.

  16. Mapping the environmental risk potential on surface water of pesticide contamination in the Prosecco's vineyard terraced landscape

    NASA Astrophysics Data System (ADS)

    Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro

    2016-04-01

    Intensive cropping systems today represent a paramount issue in terms of environmental impacts, since agricultural pollutants can constitute a potential threat to surface water, non-target organisms and aquatic ecosystems. Levels of pesticide concentrations in surface waters are indeed unquestionably correlated to crop and soil management practices at field-scale. Due to the numerous applications of pesticides required, orchards and vineyards can represent relevant non-point sources for pesticide contamination of water bodies, mainly prompted by soil erosion, surface runoff and spray drift. To reduce risks of pesticide contamination of surface water, the Directive 2009/128/CET imposed the local implementation of agricultural good practices and mitigation actions such as the use of vegetative buffer filter strips and hedgerows along river and pond banks. However, implementation of mitigation actions is often difficult, especially in extremely fragmented agricultural landscapes characterized by a complex territorial matrix set up on urban sprawling, frequent surface water bodies, important geomorphological processes and protected natural areas. Typically, such landscape matrix is well represented by the, Prosecco-DOCG vineyards area (NE of Italy, Province of Treviso) which lays on hogback hills of conglomerate, marls and sandstone that ranges between 50 and 500 m asl. Moreover such vineyards landscape is characterized by traditional and non-traditional agricultural terraces The general aim of this paper is to identify areas of surface water bodies with high potential risk of pesticide contamination from surrounding vineyards in the 735 ha of Lierza river basin (Refrontolo, TV), one of the most representative terraced landscape of the Prosecco-DOCG area. Specific aims are i) mapping terraced Prosecco-DOCG vineyards, ii) classifying potential risk from pesticide of the different areas. Remote sensing technologies such as four bands aerial photos (RGB+NIR) and Light Detection and Ranging (LiDAR) have been used to map vineyards and to evaluate slope and drainage systems. All the data and statistics analyses have been performed in GIS environment. The areas of surface water located within a buffer zone of 20 linear meters from vineyard perimeter were considered at risk of pesticide contamination, according to European guidelines and on-site experimental results about the pesticide drift effect. Preliminary results show that 26 ha of the total vineyards within the river basin can potentially affect surface water bodies, highlighting that 19,410 m of perimeter is within 20 m from water courses. Moreover, vineyard classification based on proximity analysis indicates that 6.8 ha are at very high potential risk (<1m from water courses), 8.6 ha are at high risk level (from 1 to 5 m); 4.3 ha are at medium level (from 5 to 10 m), while 8.6 ha are at low level (>10 m).

  17. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama, area 7

    USGS Publications Warehouse

    Mooty, W.S.

    1987-01-01

    The geohydrology and susceptibility of the seven major aquifers to surface contamination in Area 7 - Bibb, Dallas, Hale, Perry, and Wilcox Counties, are described. Aquifers in the northern part of the study area are in Paleozoic limestones and dolomite formations. Deposits in the central part of the study area are predominately of Cretaceous age and contain the Coker, Gordo, and Eutaw aquifers. Although the southern part of the study area has many deposits of Tertiary age, the Ripley Formation of Cretaceous age is the major aquifer. Contamination of any of the major aquifers is improbable because the majority of the recharge area for the primary aquifers is woodland, pasture, or farmland. Downdip from their outcrops, the major aquifers in the study area are protected from land surface contamination by relatively impermeable layers of clay and chalk. The aquifers that are highly susceptible to contamination are the ones in the limestone and dolomite formations in northern Bibb County. Sinkholes exist in the recharge area of these formations and could provide a direct link for contaminates from the land surface to the water table. An area northeast of the Selma well field is also highly susceptible to contamination. The Eutaw Formation in this area is overlain by alluvial deposits that could increase recharge to the aquifer by slowing the runoff rate of surface water. (USGS)

  18. Sensing of contaminants in potable water using TiO{sub 2} functional film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akshatha, N.; Poonia, Monika; Gupta, R. K., E-mail: raj@pilani.bits-pilani.ac.in

    2016-04-13

    The piezoelectric based quartz crystal microbalance is employed for sensing contaminants in potable water. A spin coated thin layer of TiO{sub 2} nanoparticles was formed at the sensing area of a 5 MHz AT-cut quartz wafer. The thin film of TiO{sub 2} nanoparticles forms a mesoporous functional layer for the trapping of water borne contaminants. The morphology of the thin film of TiO{sub 2} nanoparticles was studied using field emission scanning electron microscope (FESEM). The surface morphology of the TiO{sub 2} nanoparticles reveals the mesoporous structures indicating large number of defects and porous sites. Such film was employed for the detectionmore » of water borne contaminants by detecting the piezoelectric response from a quartz crystal microbalance. We found the film to be very sensitive to the contaminants. The minimum detection limit was found to be 330 ppb. The effect of surface recharging was also studied by altering the physical conditions so that the film can be used for repetitive usage.« less

  19. Emerging Contaminants in the Drinking Water Cycle.

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  20. Contaminant transport in two central Missouri karst recharge areas

    USDA-ARS?s Scientific Manuscript database

    Karst watersheds with significant losing streams represent a particularly vulnerable setting for ground water contamination because of the direct connection to surface water. Because of the existing agricultural land-use and future likelihood of urbanization, two losing stream karst basins were chos...

  1. EMERGING CONTAMINANTS IN THE WATER CYCLE: FATE AND TRANSPORT

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations in surface, ground and drinking water. The most common pathway for...

  2. Emerging Contaminants in the Drinking Water Cycle - MCEARD

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  3. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of variousmore » water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.« less

  4. Pilot Plant Testing of Hot Gas Building Decontamination Process

    DTIC Science & Technology

    1987-10-30

    last hours of the cooldown (after water traps in the line were installed) showed no detectable contamination from this station. 1 60 CwC -So 0) 0 o j...Since we will not require refrigeration, additional generators probably 0 qlill not be required. Water is trucked to the site. Agent contaminated water ...surface. The gauze was handled by forceps during all of the sampling steps to prevent contamination after the solvent extraction clean-up of the gauze pads

  5. Cell-based metabolomics for assessing chemical exposure and toxicity of environmental surface waters (presentation)

    EPA Science Inventory

    Introduction: Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals (e.g. fish) to monitor/as...

  6. [Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study].

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Napoli, Christian; Cannova, Lucia; Cristina, Maria Luisa; Deriu, Maria Grazia; Delia, Santi Antonino; Giuliano, Ada; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Mura, Ida; Pennino, Francesca; Rossini, Angelo; Tardivo, Stefano; Torre, Ida; Torregrossa, Maria Valeria; Villafrate, Maria Rosaria; Albertini, Roberto; Pasquarella, Cesira

    2014-01-01

    To propose a standardized protocol for the evaluation of Legionella contamination in air. A bathroom having a Legionella contamination in water >1,000 cfu/l was selected in 10 different healthcare facilities. Air contamination was assessed by active (Surface Air System, SAS) and passive (Index of Microbial Air, IMA) sampling for 8 hours, about 1 m away from the floor and 50 cm from the tap water. Two hundred liters of air were sampled by SAS every 12 min, after flushing water for 2 min. The IMA value was calculated as the mean value of colony forming units/16 plates exposed during sampling (2 plates/hour). Water contamination was evaluated at T0, after 4 and 8 hours, according to the standard methods. Air contamination by Legionella was found in three healthcare facilities (one with active and two with passive sampling), showing a concomitant tap water contamination (median=40,000; range 1,100-43,000 cfu/l). The remaining seven hospitals isolated Legionella spp. exclusively from water samples (median=8,000; range 1,200-70,000 cfu/l). Our data suggest that environmental Legionella contamination cannot be assessed only through the air sampling, even in the presence of an important water contamination.

  7. Armored Enzyme Nanoparticles for Remediation of Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.

    2005-09-01

    The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides;more » or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation.« less

  8. Groundwater-soil-crop relationship with respect to arsenic contamination in farming villages of Bangladesh--a preliminary study.

    PubMed

    Kurosawa, Kiyoshi; Egashira, Kazuhiko; Tani, Masakazu; Jahiruddin, M; Moslehuddin, Abu Zofar Md; Rahman, Zulfikar Md

    2008-11-01

    To clarify the groundwater-soil-crop relationship with respect to arsenic (As) contamination, As concentration was measured in tubewell (TW) water, surface soil from farmyards and paddy fields, and fresh taro (Colocasia esculenta) leaves from farmyards in the farming villages of Bangladesh. The As concentration in TW water from farmyards was at least four times higher than the Bangladesh drinking water standard, and the concentration in fresh taro leaves was equal to or higher than those reported previously for leafy vegetables in Bangladesh. As concentration of surface soils in both farmyards and paddy fields was positively correlated with that of the TW water. Further, the concentration in surface soil was positively correlated with levels in fresh taro leaves in the farmyard. This study, therefore, clarified the groundwater-soil-crop relationship in farmyards and the relationship between groundwater-soil in paddy fields to assess the extent of As contamination in Bangladeshi villages.

  9. A Simplified Method for Sampling and Analysis of High Volume Surface Water for Organic Contaminants Using XAD-2

    USGS Publications Warehouse

    Datta, S.; Do, L.V.; Young, T.M.

    2004-01-01

    A simple compressed-gas driven system for field processing and extracting water for subsequent analyses of hydrophobic organic compounds is presented. The pumping device is a pneumatically driven pump and filtration system that can easily clarify at 4L/min. The extraction device uses compressed gas to drive filtered water through two parallel XAD-2 resin columns, at about 200 mL/min. No batteries or inverters are required for water collection or processing. Solvent extractions were performed directly in the XAD-2 glass columns. Final extracts are cleaned-up on Florisil cartridges without fractionation and contaminants analyzed by GC-MS. Method detection limits (MDLs) and recoveries for dissolved organic contaminants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides are reported along with results of surface water analysis for the San Francisco Bay, CA.

  10. Baseline aquatic contamination and endocrine status in a resident fish of Biscayne National Park

    USGS Publications Warehouse

    Bargar, Timothy A.; Whelan, Kevin R.T.; Alvarez, David; Echols, Kathy R.; Peterman, Paul H.

    2017-01-01

    Surface water, sediment, and fish from Biscayne Bay, coastal wetlands adjacent to the Bay, and canals discharging into the Bay were sampled for determination of baseline contamination in Biscayne National Park. While the number of contaminants detected in canal waters was greater during the wet season than the dry season, no seasonal difference was evident for Biscayne Bay or coastal wetland waters. Estrogen equivalency (as 17β-estradiol equivalents), as predicted by the Yeast Estrogen Screen, for extracts of passive water samplers deployed in canals and wetlands was elevated during the wet relative to the dry season. Generally, contamination in water, sediments, and fish was greater in the canals than in Biscayne Bay and the wetlands. Guideline levels for sediment contaminant were exceeded most frequently in canals relative to the coastal wetlands and the Bay. Further investigation is necessary to better understand the impact of contaminants in Biscayne National Park.

  11. Adsorption and mineralization of REE-lanthanum onto bacterial cell surface.

    PubMed

    Cheng, Yangjian; Zhang, Li; Bian, Xiaojing; Zuo, Hongyang; Dong, Hailiang

    2017-07-11

    A large number of rare earth element mining and application resulted in a series of problems of soil and water pollution. Environmental remediation of these REE-contaminated sites has become a top priority. This paper explores the use of Bacillus licheniformis to adsorb lanthanum and subsequent mineralization process in contaminated water. The maximum adsorption capacity of lanthanum on bacteria was 113.98 mg/g (dry weight) biomass. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated that adsorbed lanthanum on bacterial cell surface occurred in an amorphous form at the initial stage. Scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/EDS) results indicated that lanthanum adsorption was correlated with phosphate. The amorphous material was converted into scorpion-like monazite (LaPO 4 nanoparticles) in a month. The above results provide a method of using bacterial surface as adsorption and nucleation sites to treat REE-contaminated water.

  12. Effect of Surface Properties on Colloid Retention on Natural and Surrogate Produce Surfaces.

    PubMed

    Lazouskaya, Volha; Sun, Taozhu; Liu, Li; Wang, Gang; Jin, Yan

    2016-12-01

    Bacterial contamination of fresh produce is a growing concern in food industry. Pathogenic bacteria can attach to and colonize the surfaces of fresh produce and cause disease outbreaks among consumers. Surface properties of both bacteria and produce affect bacterial contamination; however, the effects of produce roughness, topography, and hydrophobicity on bacterial retention are still poorly understood. In this work, we used spherical polystyrene colloids as bacterial surrogates to investigate colloid retention on and removal (by rinsing) from fresh produce surfaces including tomato, orange, apple, lettuce, spinach, and cantaloupe, and from surrogate produce surface Sharklet (a micro-patterned polymer). All investigated surfaces were characterized in terms of surface roughness and hydrophobicity (including contact angle and water retention area measurements). The results showed that there was no single parameter that dominated colloid retention on fresh produce, yet strong connection was found between colloid retention and water retention and distribution on all the surfaces investigated except apple. Rinsing was generally not efficient in removing colloids from produce surfaces, which suggests the need to modify current cleaning procedures and to develop novel contamination prevention strategies. This work offers a physicochemical approach to a food safety problem and improves understanding of mechanisms leading to produce contamination. © 2016 Institute of Food Technologists®.

  13. The Risk of Cyanobacterial Toxins in Dialysate, What do we Know?

    EPA Science Inventory

    Surface waters are increasingly contaminated by cyanobacteria, which may produce potent cyanotoxins harmful to animals and humans. Hemodialysis patients are at high risk of injury from waterborne contaminants in the water used to prepare dialysate. Episodes of acute illness and d...

  14. Contaminant transport in two central Missouri karst recharge areas

    USDA-ARS?s Scientific Manuscript database

    Karst watersheds with significant losing streams represent a particularly vulnerable setting for ground water contamination because of the direct connection to surface water. Because of the existing agricultural land-use and future threat of heavy urbanization, two losing stream karst basins were ch...

  15. Contaminant Transport in Two Central Missouri Karst Recharge Areas

    USDA-ARS?s Scientific Manuscript database

    Karst watersheds with significant losing streams represent a particularly vulnerable setting for ground water contamination because of the direct connection to surface water. Because of the existing agricultural land-use and future threat of heavy urbanization, two losing stream karst basins were ch...

  16. Modeled Watershed Runoff Associated with Variations in Precipitation Data with Implications for Contaminant Fluxes

    EPA Science Inventory

    Watershed-scale fate and transport models are important tools for estimating the sources, transformation, and transport of contaminants to surface water systems. Precipitation is one of the primary inputs to watershed biogeochemical models, influencing changes in the water budge...

  17. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE PAGES

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  18. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  19. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  20. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  1. Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary

    NASA Astrophysics Data System (ADS)

    Westbrook, S. J.; Rayner, J. L.; Davis, G. B.; Clement, T. P.; Bjerg, P. L.; Fisher, S. J.

    2005-02-01

    This paper presents findings from a 2-year field investigation of a dissolved hydrocarbon groundwater plume flowing towards a tidally and seasonally forced estuarine river system in Perth, Western Australia. Samples collected from transects of multiport wells along the riverbank and into the river, enabled mapping of the fine scale (0.5 m) vertical definition of the hydrocarbon plume and its longitudinal extent. Spear probing beneath the river sediments and water table, and transient monitoring of multiport wells (electrical conductivity) was also carried out to define the zone of mixing between river water and groundwater (the hyporheic zone) and its variability. The results showed that groundwater seepage into the estuarine surface sediments occurred in a zone less than 10 m from the high tide mark, and that this distance and the hyporheic transition zone were influenced by tidal fluctuations and infiltration of river water into the sediments. The dissolved BTEXN (benzene, toluene, ethylbenzene, the xylene isomers and naphthalene) distributions indicated the behaviour of the hydrocarbon plume at the groundwater/surface water transition zone to be strongly influenced by edge-focussed discharge. Monitoring programs and risk assessment studies at similar contaminated sites should therefore focus efforts within the intertidal zone where contaminants are likely to impact the surface water and shallow sediment environments.

  2. Diverse Land Use and the Impact on (Irrigation) Water Quality and Need for Measures — A Case Study of a Norwegian River

    PubMed Central

    Johannessen, Gro S.; Wennberg, Aina C.; Nesheim, Ingrid; Tryland, Ingun

    2015-01-01

    Surface water is used for irrigation of food plants all over the World. Such water can be of variable hygienic quality, and can be contaminated from many different sources. The association of contaminated irrigation water with contamination of fresh produce is well established, and many outbreaks of foodborne disease associated with fresh produce consumption have been reported. The objective of the present study was to summarize the data on fecal indicators and selected bacterial pathogens to assess the level of fecal contamination of a Norwegian river used for irrigation in an area which has a high production level of various types of food commodities. Sources for fecal pollution of the river were identified. Measures implemented to reduce discharges from the wastewater sector and agriculture, and potential measures identified for future implementation are presented and discussed in relation to potential benefits and costs. It is important that the users of the water, independent of intended use, are aware of the hygienic quality and the potential interventions that may be applied. Our results suggest that contamination of surface water is a complex web of many factors and that several measures and interventions on different levels are needed to achieve a sound river and safe irrigation. PMID:26090611

  3. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    PubMed

    Brown, Philip S; Bhushan, Bharat

    2016-08-06

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  4. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands National Park, St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Bargar, Timothy A.; Alvarez, David; Garrison, Virginia H.

    2015-01-01

    Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r2 = 0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.

  5. Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

  6. Catalytic transformation of persistent contaminants using a new composite material based on nanosized zero-valent iron.

    PubMed

    Dror, Ishai; Jacov, Osnat Merom; Cortis, Andrea; Berkowitz, Brian

    2012-07-25

    A new composite material based on deposition of nanosized zerovalent iron (nZVI) particles and cyanocobalamine (vitamin B12) on a diatomite matrix is presented, for catalytic transformation of organic contaminants in water. Cyanocobalamine is known to be an effective electron mediator, having strong synergistic effects with nZVI for reductive dehalogenation reactions. This composite material also improves the reducing capacity of nZVI by preventing agglomeration of iron nanoparticles, thus increasing their active surface area. The porous structure of the diatomite matrix allows high hydraulic conductivity, which favors channeling of contaminated water to the reactive surface of the composite material resulting in faster rates of remediation. The composite material rapidly degrades or transforms completely a large spectrum of water contaminants, including halogenated solvents like TCE, PCE, and cis-DCE, pesticides like alachlor, atrazine and bromacyl, and common ions like nitrate, within minutes to hours. A field experiment where contaminated groundwater containing a mixture of industrial and agricultural persistent pollutants was conducted together with a set of laboratory experiments using individual contaminant solutions to analyze chemical transformations under controlled conditions.

  7. Monitoring Ecological Impacts of Environmental Surface ...

    EPA Pesticide Factsheets

    Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cell-based metabolomics is used to investigate the impacts of contaminants in surface waters on biological pathways in human and ecologically relevant cell lines. Water samples were collected from stream sites nationwide, where significant impacts have been estimated from the most potentially contaminated sources (i.e. waste water treatment plants, concentrated animal feeding operations, mining operations, and plant-based agricultural operations that use intensive chemical applications). Zebrafish liver cells (ZFL) were used to study exposure impacts on in vitro metabolomes. In addition, a small number of water samples were studied using two human cell lines (liver cells, HepG2 and brain cells, LN229). The cellular metabolites were profiled by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Detailed methods and results will be reported. Presented at SETAC North America 37th Annual Meeting

  8. [Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in Karst underground river catchment].

    PubMed

    Lan, Jia-Cheng; Sun, Yu-Chuan; Tian, Ping; Lu, Bing-Qing; Shi, Yang; Xu, Xin; Liang Zuo-Bing; Yang, Ping-Heng

    2014-10-01

    Water samples in Laolongdong underground river catchment were collected to determine the concentration, compositional profiles, and evaluate ecological risk of 16 priority polycyclic aromatic hydrocarbons (PAHs). PAHs were measured by GC/MS. The total concentrations of 16 PAH ranged from 81.5-8019 ng · L(-1) in underground river, 288.7-15,200 ng · L(-1) in karst springs, and 128.4-2,442 ng · L(-1) in surface water. Affected by waste water from Huangjueya town, concentrations of PAHs in underground river were higher than those in surface water and waste water from sinkhole. The PAHs profiles were dominated by 3 ring PAHs. There were differences of monthly variations of PAHs contents in the water, due to waste water, season and different characteristics of PAH. Surface water and waste water from sinkhole played an important role on contamination in the river. The levels of ecological risk were generally moderately polluted and heavily polluted according to all detected PAH compounds in the water.

  9. Health assessment for Harvey and Knott Drum National Priorities List (NPL) Site, New Castle County, Delaware, Region 3. CERCLIS No. DED980713093. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Harvey Knott Drum National Priorities List site, located near Kirkwood in New Castle County, Delaware, is an inactive landfill that had received sanitary, municipal and industrial wastes. Contaminants released from the site include heavy metals and organic compounds and have entered groundwater, soils, sediments, and surface waters. The principal concern is that contaminated groundwater may migrate to off-site domestic, public, and agricultural water supply wells. Also, contaminants in off-site surface water and sediments pose some concern for recreational use and consumption of fish. Off-site contaminated soils near the west property line may be a threat to persons that trespassmore » into that area. The site is of potential health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.« less

  10. Integration of models of various types of aquifers for water quality management in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy).

    PubMed

    Vižintin, Goran; Ravbar, Nataša; Janež, Jože; Koren, Eva; Janež, Naško; Zini, Luca; Treu, Francesco; Petrič, Metka

    2018-04-01

    Due to intrinsic characteristics of aquifers groundwater frequently passes between various types of aquifers without hindrance. The complex connection of underground water paths enables flow regardless of administrative boundaries. This can cause problems in water resources management. Numerical modelling is an important tool for the understanding, interpretation and management of aquifers. Useful and reliable methods of numerical modelling differ with regard to the type of aquifer, but their connections in a single hydrodynamic model are rare. The purpose of this study was to connect different models into an integrated system that enables determination of water travel time from the point of contamination to water sources. The worst-case scenario is considered. The system was applied in the Soča/Isonzo basin, a transboundary river in Slovenia and Italy, where there is a complex contact of karst and intergranular aquifers and surface flows over bedrock with low permeability. Time cell models were first elaborated separately for individual hydrogeological units. These were the result of numerical hydrological modelling (intergranular aquifer and surface flow) or complex GIS analysis taking into account the vulnerability map and tracer tests results (karst aquifer). The obtained cellular models present the basis of a contamination early-warning system, since it allows an estimation when contaminants can be expected to appear, and in which water sources. The system proves that the contaminants spread rapidly through karst aquifers and via surface flows, and more slowly through intergranular aquifers. For this reason, karst water sources are more at risk from one-off contamination incidents, while water sources in intergranular aquifers are more at risk in cases of long-term contamination. The system that has been developed is the basis for a single system of protection, action and quality monitoring in the areas of complex aquifer systems within or on the borders of administrative units. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions.

    PubMed

    Borchardt, Mark A; Haas, Nathaniel L; Hunt, Randall J

    2004-10-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. (18)O/(16)O and (2)H/(1)H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.

  12. Vulnerability of Drinking-Water Wells in La Crosse, Wisconsin, to Enteric-Virus Contamination from Surface Water Contributions

    PubMed Central

    Borchardt, Mark A.; Haas, Nathaniel L.; Hunt, Randall J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination. PMID:15466536

  13. Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions

    USGS Publications Warehouse

    Borchardt, M. A.; Haas, N.L.; Hunt, R.J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/ 16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.

  14. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana

    PubMed Central

    Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A.; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard

    2016-01-01

    There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012−2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p < 0.001), whilst packaged (sachet or bottled) water use had the greatest protective effect (RRR = 0.06, p < 0.001), compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision. PMID:27005650

  15. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana.

    PubMed

    Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard

    2016-03-09

    There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012-2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p < 0.001), whilst packaged (sachet or bottled) water use had the greatest protective effect (RRR = 0.06, p < 0.001), compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision.

  16. Indirect latex glove contamination and its inhibitory effect on vinyl polysiloxane polymerization.

    PubMed

    Kimoto, Katsuhiko; Tanaka, Kinya; Toyoda, Minoru; Ochiai, Kent T

    2005-05-01

    The inhibitory effect of indirect latex contamination on the polymerization of vinyl polysiloxane (VPS) impression material has been previously reported. However, the transfer of specific elements that cause inhibition has not been confirmed, nor has the removal of such contaminants been reported. This study examined the surfaces of materials commonly used in restorative procedures that were contaminated by indirect latex glove contact and then evaluated for inhibition of polymerization of VPS. The effect of selected cleansing procedures was then studied. Four experimental groups (n = 8) were prepared: (1) clean vinyl gloves (control), (2) clean gingival retraction cords (control), (3) contaminated vinyl gloves, and (4) contaminated gingival retraction cord. Microscopic evaluation of the appearance and the characterization of surface particulate contamination were performed for each. Three cleansing protocols were then evaluated for efficacy in cleaning vinyl glove surfaces contaminated by latex contact (n = 10): (1) brushing with water, (2) brushing with soap/rinsing with water, (3) cleansing with rubbing alcohol. The subsequent degree of VPS polymerization inhibition was evaluated subjectively. A chi-square test was used for data analysis (alpha=.05). Particulate sulfur elements and sulfur-chloride compounds were present on the contaminated substrates. None of the 3 cleansing procedures eliminated polymerization inhibition (P =.33). Residual elemental sulfur remained on all tested surfaces. Particulate sulfur and sulfur-chloride compounds were identified as the particulate contamination that resulted in polymerization inhibition of the tested VPS dental impression material. Removal of these contaminants from the tested vinyl gloves and gingival retraction cord was not possible with the 3 cleansing protocols tested in this study.

  17. Method of removing arsenic and other anionic contaminants from contaminated water using enhanced coagulation

    DOEpatents

    Teter, David M.; Brady, Patrick V.; Krumhansl, James L.; Khandaker, Nadim R.

    2006-11-21

    An improved water decontamination process comprising contacting water containing anionic contaminants with an enhanced coagulant to form an enhanced floc, which more efficiently binds anionic species (e.g., arsenate, arsenite, chromate, fluoride, selenate, and borate, and combinations thereof) predominantly through the formation of surface complexes. The enhanced coagulant comprises a trivalent metal cation coagulant (e.g., ferric chloride or aluminum sulfate) mixed with a divalent metal cation modifier (e.g., copper sulfate or zinc sulfate).

  18. Preliminary Assessment/Site Investigation: Tooele Army Depot, Utah. Volume 1. North Area and Facilities at Hill Air Force Base

    DTIC Science & Technology

    1988-12-12

    groundwater , and/or surface water to determine existance af contamination, if any, and to evaluate potential for offsite migration; and (5) identify off... water source, was found to be contaminated with explosives. A shallow perched groundwater zone, created by effluent sdepage through the base was also...Evidence of groundwater contamination from past activities at the OB/OD Grounds was not indicated as a result of sampling and analysis of two water

  19. A review of surface-water sediment fractions and their interactions with persistent manmade organic compounds

    USGS Publications Warehouse

    Witkowski, P.J.; Smith, J.A.; Fusillo, T.V.; Chiou, C.T.

    1987-01-01

    This paper reviews the suspended and surficial sediment fractions and their interactions with manmade organic compounds. The objective of this review is to isolate and describe those contaminant and sediment properties that contribute to the persistence of organic compounds in surface-water systems. Most persistent, nonionic organic contaminants, such as the chlorinated insecticides and polychlorinated biphenyls (PCBs), are characterized by low water solubilities and high octanol-water partition coefficients. Consequently, sorptive interactions are the primary transformation processes that control their environmental behavior. For nonionic organic compounds, sorption is primarily attributed to the partitioning of an organic contaminant between a water phase and an organic phase. Partitioning processes play a central role in the uptake and release of contaminants by sediment organic matter and in the bioconcentration of contaminants by aquatic organisms. Chemically isolated sediment fractions show that organic matter is the primary determinant of the sorptive capacity exhibited by sediment. Humic substances, as dissolved organic matter, contribute a number of functions to the processes cycling organic contaminants. They alter the rate of transformation of contaminants, enhance apparent water solubility, and increase the carrying capacity of the water column beyond the solubility limits of the contaminant. As a component of sediment particles, humic substances, through sorptive interactions, serve as vectors for the hydrodynamic transport of organic contaminants. The capabilities of the humic substances stem in part from their polyfunctional chemical composition and also from their ability to exist in solution as dissolved species, flocculated aggregates, surface coatings, and colloidal organomineral and organometal complexes. The transport properties of manmade organic compounds have been investigated by field studies and laboratory experiments that examine the sorption of contaminants by different sediment size fractions. Field studies indicate that organic contaminants tend to sorb more to fine-grained sediment, and this correlates significantly with sediment organic matter content. Laboratory experiments have extended the field studies to a wider spectrum of natural particulates and anthropogenic compounds. Quantitation of isotherm results allows the comparison of different sediment sorbents as well as the estimation of field partition coefficients from laboratory-measured sediment and contaminant properties. Detailed analyses made on the basis of particle-size classes show that all sediment fractions need to be considered in evaluating the fate and distribution of manmade organic compounds. This conclusion is based on observations from field studies and on the variety of natural organic sorbents that demonstrate sorptive capabilities in laboratory isotherm experiments.

  20. A Stochastic Multi-Media Model of Microbial Transport in Watersheds

    NASA Astrophysics Data System (ADS)

    Yeghiazarian, L.; Safwat, A.; Whiteaker, T.; Teklitz, A.; Nietch, C.; Maidment, D. R.; Best, E. P.

    2012-12-01

    Fecal contamination is the leading cause of surface-water impairment in the US, and fecal pathogens are capable of triggering massive outbreaks of gastrointestinal disease. The difficulty in prediction of water contamination has its roots in the stochastic variability of fecal pathogens in the environment, and in the complexity of microbial dynamics and interactions on the soil surface and in water. To address these challenges, we have developed a stochastic model whereby the transport of microorganisms in watersheds is considered in two broad categories: microorganisms that are attached to mineral or organic substrates in suspended sediment; and unattached microorganisms suspended in overland flow. The interactions of microorganisms with soil particles on the soil surface and in the overland flow lead to transitions of microorganisms between solid and aqueous media. The strength of attachment of microorganisms to soil particles is determined by the chemical characteristics of soils which are highly correlated with the particle size. The particle size class distribution in the suspended sediment is predicted by the Water Erosion Prediction Project (WEPP). The model is integrated with ArcGIS, resulting in a general transport-modeling framework applicable to a variety of biological and chemical surface water contaminants. Simulations are carried out for a case study of contaminant transport in the East Fork Little Miami River Watershed in Ohio. Model results include the spatial probability distribution of microbes in the watershed and can be used for assessment of (1) mechanisms dominating microbial transport, and (2) time and location of highest likelihood of microbial occurrence, thus yielding information on best water sampling strategies.

  1. Overview of the Texas Source Water Assessment Project

    USGS Publications Warehouse

    Ulery, Randy L.

    2000-01-01

    The 1996 Amendments to the Safe Drinking Water Act require, for the first time, that each state prepare a source water assessment for all PWS. Previously, Federal regulations focused on sampling and enforcement with emphasis on the quality of delivered water. These Amendments emphasize the importance of protecting the source water. States are required to determine the drinking-water source, the origin of contaminants monitored or the potential contaminants to be monitored, and the intrinsic susceptibility of the source water. Under the amendments to the Act, States must create SWAP Programs. The programs must include an individual source water assessment for each public water system regulated by the State. These assessments will determine whether an individual drinking water source is susceptible to contamination. During 1997?99, TNRCC and USGS staff met as subject-matter working groups to develop an approach to conducting Source Water Susceptibility Assessments (SWSA) and a draft workplan. The draft workplan was then presented to and reviewed by various stakeholder and technical advisory groups. Comments and suggestions from these groups were considered, and a final workplan was produced and presented to the EPA. After EPA approval, work formally began on the Texas SWAP Project. The project has an expected completion date of September 2002. At that time, initial SWSA of all Texas public water supplies should be complete. Ground-water supplies can be considered susceptible if a possible source of contamination (PSOC) exists in the contributing area for the public-supply well field or spring, the contaminant travel time to the well field or spring is short, and the soil zone, vadose zone, and aquifer-matrix materials are unlikely to adequately attenuate the contaminants associated with the PSOC. In addition, particular types of land use/cover within the contributing area may cause the supply to be deemed more susceptible to contamination. Finally, detection of various classes of constituents in water from wells in the vicinity of a public supply well may indicate susceptibility of the public-supply well even though there may be no identifiable PSOC or land use activity. Surface-water supplies are by nature susceptible to contamination from both point and non-point sources. The degree of susceptibility of a PWS to contamination can vary and is a function of the environmental setting, water and wastewater management practices, and land use/cover within a water supply's contributing watershed area. For example, a PWS intake downstream from extensive urban development may be more susceptible to non-point source contamination than a PWS intake downstream from a forested, relatively undeveloped watershed. Surface-water supplies are also susceptible to contamination from point sources, which may include permitted discharges, as well as accidental spills or other introduction of contaminants.

  2. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.

    PubMed

    Bradley, Paul M; Battaglin, William A; Iwanowicz, Luke R; Clark, Jimmy M; Journey, Celeste A

    2016-05-01

    Endocrine-disrupting chemicals (EDCs) in surface water and bed sediment threaten the structure and function of aquatic ecosystems. In natural, remote, and protected surface-water environments where contaminant releases are sporadic, contaminant biodegradation is a fundamental driver of exposure concentration, timing, duration, and, thus, EDC ecological risk. Anthropogenic contaminants, including known and suspected EDCs, were detected in surface water and sediment collected from 2 streams and 2 lakes in Rocky Mountain National Park (Colorado, USA). The potential for aerobic EDC biodegradation was assessed in collected sediments using 6 (14) C-radiolabeled model compounds. Aerobic microbial mineralization of natural (estrone and 17β-estradiol) and synthetic (17α-ethinylestradiol) estrogen was significant at all sites. Bed sediment microbial communities in Rocky Mountain National Park also effectively degraded the xenoestrogens bisphenol-A and 4-nonylphenol. The same sediment samples exhibited little potential for aerobic biodegradation of triclocarban, however, illustrating the need to assess a wider range of contaminant compounds. The present study's results support recent concerns over the widespread environmental occurrence of carbanalide antibacterials, like triclocarban and triclosan, and suggest that backcountry use of products containing these compounds should be discouraged. Published 2015 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  3. Development of Guidelines for Contaminated Soil and Groundwater at US army Installations

    DTIC Science & Technology

    1978-01-01

    potential for a contaminant to ml- and DCPD than laboratory animals. DCPD is about 10 grate to off-post surface waters . Aquatic tests are times more... water 0.5 1.3 Water : for recreation 5 13 Water : to protect aquatic life 12.5 0.5 Water : for irrigation 20 20 static bioassays, with 96-hour LC50’s...temporary guidelines for food, drinking water , and water for irrigation, recreation and aquatic life. Ultimately, guidelines will be developed for soil and

  4. Riverbank filtration for the treatment of highly turbid Colombian rivers

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Juan Pablo; van Halem, Doris; Rietveld, Luuk

    2017-05-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using riverbank filtration (RBF) for the highly turbid and contaminated waters in Colombia, emphasizing water quality improvement and the influence of clogging by suspended solids. The suspended sediments may be favorable for the improvement of the water quality, but they may also reduce the production yield capacity. The cake layer must be balanced by scouring in order for an RBF system to be sustainable. The infiltration rate must remain high enough throughout the river-aquifer interface to provide the water quantity needed, and the residence time of the contaminants must be sufficient to ensure adequate water quality. In general, RBF seems to be a technology appropriate for use in highly turbid and contaminated surface rivers in Colombia, where improvements are expected due to the removal of turbidity, pathogens and to a lesser extent inorganics, organic matter and micro-pollutants. RBF has the potential to mitigate shock loads, thus leading to the prevention of shutdowns of surface water treatment plants. In addition, RBF, as an alternative pretreatment step, may provide an important reduction in chemical consumption, considerably simplifying the operation of the existing treatment processes. However, clogging and self-cleansing issues must be studied deeper in the context of these highly turbid waters to evaluate the potential loss of abstraction capacity yield as well as the development of different redox zones for efficient contaminant removal.

  5. Natural attenuation in a surface water channel and a coastal aquifer by monitoring presence and removal of indicator bacteria, pathogens and antibiotic resistance gene: model development

    NASA Astrophysics Data System (ADS)

    Masciopinto, Costantino; Visino, Fabrizio; Luprano, Maria Laura; Levantesi, Caterina; Tandoi, Valter

    2015-04-01

    The spreading of microbial contamination into the environment, represents a very relevant problem, which leads to an increasing health concern. For this reason, it is important to identify and characterize the extent of natural depuration in water environmental particularly for reducing the presence of faecal contamination indicator bacteria, pathogens and antibiotic resistance genes (ARG). In this study, the presence of the above reported microbial parameters was analyzed in a surface water channel and in a coastal aquifer in southern Italy (Ostuni) southern Italy, both affected by Ostuni municipal treatment plant effluents and by local run-off. Several samples were collected from surface water, flowing in channels, and from wells in our study area. In particular, the water samples were analyzed to detect 7 fecal contamination indicators (E. coli, total coliforms, Clostridium p. spores, somatic coliphages, Enterococci and heterotrophic bacteria), Salmonella spp and the presence of ARGs. The water samples were also tested for chemical constituents. Finally a mathematical model has been developed in order to simulate pathogen migration pathways in the fractured groundwater and corresponding possible mitigation of pathogens in pumping wells.

  6. Intensive exploitation of a karst aquifer leads to Cryptosporidium water supply contamination.

    PubMed

    Khaldi, S; Ratajczak, M; Gargala, G; Fournier, M; Berthe, T; Favennec, L; Dupont, J P

    2011-04-01

    Groundwater from karst aquifers is an important source of drinking water worldwide. Outbreaks of cryptosporidiosis linked to surface water and treated public water are regularly reported. Cryptosporidium oocysts are resistant to conventional drinking water disinfectants and are a major concern for the water industry. Here, we examined conditions associated with oocyst transport along a karstic hydrosystem, and the impact of intensive exploitation on Cryptosporidium oocyst contamination of the water supply. We studied a well-characterized karstic hydrosystem composed of a sinkhole, a spring and a wellbore. Thirty-six surface water and groundwater samples were analyzed for suspended particulate matter, turbidity, electrical conductivity, and Cryptosporidium and Giardia (oo)cyst concentrations. (Oo)cysts were identified and counted by means of solid-phase cytometry (ChemScan RDI(®)), a highly sensitive method. Cryptosporidium oocysts were detected in 78% of both surface water and groundwater samples, while Giardia cysts were found in respectively 22% and 8% of surface water and groundwater samples. Mean Cryptosporidium oocyst concentrations were 29, 13 and 4/100 L at the sinkhole, spring and wellbore, respectively. Cryptosporidium oocysts were transported from the sinkhole to the spring and the wellbore, with respective release rates of 45% and 14%, suggesting that oocysts are subject to storage and remobilization in karst conduits. Principal components analysis showed that Cryptosporidium oocyst concentrations depended on variations in hydrological forcing factors. All water samples collected during intensive exploitation contained oocysts. Control of Cryptosporidium oocyst contamination during intensive exploitation is therefore necessary to ensure drinking water quality. Copyright © 2011. Published by Elsevier Ltd.

  7. Transport and transformations of chlorinated-solvent contamination in a saprolite and fractured rock aquifer near a former wastewater-treatment plant, Greenville, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Bradley, P.M.; Lane, J.W.; Robertson, J.F.

    1997-01-01

    The transport and fate of chlorinated-ethene contamination was investigated in a fractured-rock aquifer downgradient from a wastewater-treatment plant at a gas-turbine manufacturing facility in Greenville, South Carolina. A vapor-diffusion-sampler technique, developed for this investigation, located fracture zones that discharged contaminated ground water to surface water. The distribution of chlorinated compounds and sulfate, comparison of borehole geophysical data, driller's logs, and the aquifer response to pumpage allowed subsurface contaminant-transport pathways to be delineated.The probable contaminant-transport pathway from the former aeration lagoon was southward. The probable pathway of contaminant transport from the former sludge lagoon was southward to and beneath Little Rocky Creek. South of the creek, the major pathway of contaminant transport appeared to be at a depth of approximately 80 to 107 feet below land surface. The contaminant-transport pathway from the former industrial lagoon was not readily discernible from existing data. A laboratory investigation, as well as examination of ground- water-chemistry data collected during this investigation and concentrations of chlorinated compounds collected during previous investigations,indicates that higher chlorinated compounds are being degraded to lower-chlorinated compounds in the contaminated aquifer. The approaches used in this investigation, as well as the findings, have potential application to other fractured-rock aquifers contaminated by chlorinated ethenes.

  8. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  9. Drinking Water Research Division's research activities in support of EPA's regulatory agenda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.M.; Feige, W.A.

    1991-01-01

    The Safe Drinking Water Act and its Amendments will have a dramatic impact on the way in which one views the treatment and distribution of water in the U.S. The paper discusses the regulatory agenda, including proposed and promulgated regulations for volatile and synthetic organic contaminants, pesticides, lead, copper, inorganic contaminants, and radionuclides. In addition, the Surface Water Treatment and Coliform Rules are discussed in some detail. Tables are presented that list the Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs), as well as Best Available Technology (BAT) for reducing many of these contaminants to acceptable levels. Finally,more » a discussion of expected disinfection requirements and the regulation of disinfection by-products (DBP) is made. Treatment techniques for controlling DBPs are briefly described.« less

  10. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems.

    PubMed

    Arredondo-Hernandez, Luis Jose Rene; Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed.

  11. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems

    PubMed Central

    Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed. PMID:28114378

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Adrian Municipal Well Field site is in Adrian, Nobles County, Minnesota, a city which relies solely on ground water for its municipal water supply. In 1983 the State detected VOC contamination in two of the six wells at the site, and by 1985 the city had replaced the VOC-contaminated wells with two new wells. Subsequent ground water sampling indicated that petroleum releases from underground storage tanks (UST) are sources for soil and ground water contamination. Although ground water contaminant concentrations exceed Federal and State drinking water and surface water standards, no further action will be taken by the Superfundmore » program because the program does not have the authority to address clean up of petroleum releases. EPA will, however, formally transfer the site to its UST program in October 1989 for further action. There are no costs associated with this remedial action.« less

  13. Metal contamination in environmental media in residential areas around Romanian mining sites

    EPA Science Inventory

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary co...

  14. Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff

    USDA-ARS?s Scientific Manuscript database

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...

  15. PCE/TCE DEGRADATION USING MULCH BIOWALLS

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  16. The incorporation of toxicity testing into the assessment and management of effluents and contaminated sediments

    EPA Science Inventory

    Following the initial push during the 1970’s to develop numerical water quality criteria for many environmental contaminants, it became clear that the protection of surface waters from chemicals in municipal and industrial effluents would require more than just criteria for...

  17. Detecting contaminating microorganism in human food and water from Raman mapping through biofilms

    USDA-ARS?s Scientific Manuscript database

    Detecting microbial growth can help experts determine how to prevent the outbreaks especially if human food or water has been contaminated. Biofilms are a group of microbial cells that can either grow on living surfaces or surrounding themselves as they progress. Biofilms are not necessarily uniform...

  18. Diminished Metal Accumulation in Riverine Fishes Exposed to Acid Mine Drainage over Five Decades

    PubMed Central

    Jeffree, Ross A.; Markich, Scott J.; Twining, John R.

    2014-01-01

    Bony bream (Nematalosa erebi) and black catfish (Neosilurus ater) were sampled from the fresh surface waters of the Finniss River in tropical northern Australia, along a metal pollution gradient draining the Rum Jungle copper/uranium mine, a contaminant source for over five decades. Paradoxically, populations of both fish species exposed to the highest concentrations of mine-related metals (cobalt, copper, lead, manganese, nickel, uranium and zinc) in surface water and sediment had the lowest tissue (bone, liver and muscle) concentrations of these metals. The degree of reduction in tissue concentrations of exposed populations was also specific to each metal and inversely related to its degree of environmental increase above background. Several explanations for diminished metal bioaccumulation in fishes from the contaminated region were evaluated. Geochemical speciation modeling of metal bioavailability in surface water showed no differences between the contaminated region and the control sites. Also, the macro-nutrient (calcium, magnesium and sodium) water concentrations, that may competitively inhibit metal uptake, were not elevated with trace metal contamination. Reduced exposure to contaminants due to avoidance behavior was unlikely due to the absence of refugial water bodies with the requisite metal concentrations lower than the control sites and very reduced connectivity at time of sampling. The most plausible interpretation of these results is that populations of both fish species have modified kinetics within their metal bioaccumulation physiology, via adaptation or tolerance responses, to reduce their body burdens of metals. This hypothesis is consistent with (i) reduced tissue concentrations of calcium, magnesium and sodium (macro-nutrients), in exposed populations of both species, (ii) experimental findings for other fish species from the Finniss River and other contaminated regions, and (iii) the number of generations exposed to likely selection pressure over 50 years. PMID:24663964

  19. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a possible indication of contamination from wastewater. Age of the alluvial ground water ranged from 10 to 30 years; therefore, results of land-management practices to improve water quality may not be apparent for many years.Surface-water-quality data for the Fraser River watershed are sparse. The surface-water-quality data show that elevated concentrations of selected constituents generally are related to specific land uses in the watershed. For one sample (about 2 percent; 1 of 53), dissolved manganese concentration exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Two samples from two surface-water sites in the watershed exceeded the un-ionized ammonia chronic criterion. Spatial distribution of nutrient species (ammonia, nitrite, nitrate, and total phosphorus) shows that elevated concentrations occur primarily downstream from urban areas. Sites with five or more years of record were analyzed for temporal trends in concentration of nutrient species. Downward trends were identified for ammonia and nitrite for three surface-water sites. For nitrate, no trends were observed at two sites and a downward trend was observed at one site. Total phosphorus showed no trend for the site near the mouth of the Fraser River. Downward trends in the nutrient species may reflect changes in the wastewater-treatment facilities in the watershed. Bacteria sampling completed in the watershed indicates that more bacteria are present in the water near urban settings.The limited ground-water and surface-water data for the Fraser River watershed provide a general assessment of the quantity and quality of these resources. Concentrations of most water-quality constituents generally are less than ground- and surface-water-quality standards, but the presence of bacteria, some volatile organic compounds, methylene blue active substances, and increased nutrients in the water may indicate that land use is affecting the water quality..

  20. Quality of water and chemistry of bottom sediment in the Rillito Creek basin, Tucson, Arizona, 1986-92

    USGS Publications Warehouse

    Tadayon, Saeid; Smith, C.F.

    1994-01-01

    Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.

  1. Contamination and Surface Preparation Effects on Composite Bonding

    NASA Technical Reports Server (NTRS)

    Kutscha, Eileen O.; Vahey, Paul G.; Belcher, Marcus A.; VanVoast, Peter J.; Grace, William B.; Blohowiak, Kay Y.; Palmieri, Frank L.; Connell, John W.

    2017-01-01

    Results presented here demonstrate the effect of several prebond surface contaminants (hydrocarbon, machining fluid, latex, silicone, peel ply residue, release film) on bond quality, as measured by fracture toughness and failure modes of carbon fiber reinforced epoxy substrates bonded in secondary and co-bond configurations with paste and film adhesives. Additionally, the capability of various prebond surface property measurement tools to detect contaminants and potentially predict subsequent bond performance of three different adhesives is also shown. Surface measurement methods included water contact angle, Dyne solution wettability, optically stimulated electron emission spectroscopy, surface free energy, inverse gas chromatography, and Fourier transform infrared spectroscopy with chemometrics analysis. Information will also be provided on the effectiveness of mechanical and energetic surface treatments to recover a bondable surface after contamination. The benefits and drawbacks of the various surface analysis tools to detect contaminants and evaluate prebond surfaces after surface treatment were assessed as well as their ability to correlate to bond performance. Surface analysis tools were also evaluated for their potential use as in-line quality control of adhesive bonding parameters in the manufacturing environment.

  2. Water management practices in rural and urban homes: a case study from Bangladesh on ingestion of polluted water.

    PubMed

    Ahmed, S A; Hoque, B A; Mahmud, A

    1998-09-01

    Although Bangladesh has achieved remarkable success in extending the availability of hand pumped and piped water, unsafe water is still ingested. This brief study attempted to assess water management practices in rural and urban homes in Bangladesh so as to establish the routes by which unsafe water is ingested, to examine methods of collection and storage, and determine why unsafe water sources are used when unsafe supplies are available. Forty-eight rural and forty-five urban slum households were studied. Observations, interviews and water quality investigations were conducted. The results show that the respondents were aware that hand pump/tap water is safe and took care to use these safe sources for drinking purposes. However, they continued to use surface water for non-drinking activities such as bathing, washing and rinsing their mouths. Reasons were given that it was a traditional practice to bathe in surface water and was more enjoyable. One of the reasons given for not using hand pumped water to wash clothing and food was that such groundwater caused staining. Bacteriological results from such ingested water showed the quality, especially in rural areas, to be poor. Results also showed the internal surfaces of the base of storage containers to be heavily contaminated with bacteria. This showed that water that was safe when it was first drawn would became contaminated during storage. This study had a limited scope; much further research is needed to find what determines and how water becomes contaminated in containers. These factors include how to reduce contamination of water, in particular the relationship between growth of bacteria in stored water and the material from which the container is made and how to improve the overall quality of water. On the management side, studies could be conducted as to how to improve people's understanding of the use of water for domestic purposes and its safe management.

  3. Self-cleaning of superhydrophobic surfaces by spontaneously jumping condensate drops

    NASA Astrophysics Data System (ADS)

    Wisdom, Katrina; Watson, Jolanta; Watson, Gregory; Chen, Chuan-Hua

    2012-11-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a new self-cleaning mechanism, whereby condensate drops spontaneously jump upon coalescence on a superhydrophobic surface, and the merged drop self-propels away from the surface along with the contaminants. The jumping-condensate mechanism is shown to autonomously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by external wind flow. Our findings offer new insights for the development of self-cleaning materials.

  4. Canine scent detection and microbial source tracking of human waste contamination in storm drains.

    PubMed

    Van De Werfhorst, Laurie C; Murray, Jill L S; Reynolds, Scott; Reynolds, Karen; Holden, Patricia A

    2014-06-01

    Human fecal contamination of surface waters and drains is difficult to diagnose. DNA-based and chemical analyses of water samples can be used to specifically quantify human waste contamination, but their expense precludes routine use. We evaluated canine scent tracking, using two dogs trained to respond to the scent of municipal wastewater, as a field approach for surveying human fecal contamination. Fecal indicator bacteria, as well as DNA-based and chemical markers of human waste, were analyzed in waters sampled from canine scent-evaluated sites (urban storm drains and creeks). In the field, the dogs responded positively (70% and 100%) at sites for which sampled waters were then confirmed as contaminated with human waste. When both dogs indicated a negative response, human waste markers were absent. Overall, canine scent tracking appears useful for prioritizing sampling sites for which DNA-based and similarly expensive assays can confirm and quantify human waste contamination.

  5. Development, description, and application of a geographic information system data base for water resources in karst terrane in Greene County, Missouri

    USGS Publications Warehouse

    Waite, L.A.; Thomson, Kenneth C.

    1993-01-01

    A geographic information system data base was developed for Greene County, Missouri, to provide data for use in the protection of water resources. The geographic information system data base contains the following map layers: geology, cave entrances and passages, county and quadrangle boundary, dye traces, faults, geographic names, hypsography, hydrography, lineaments, Ozark aquifer potentio- metric surface, public land survey system, sink- holes, soils, springs, and transportation. Several serious incidents of ground-water contamination have been reported in the karst terrane developed in soluble carbonate rocks in Greene County. Karst terranes are environmentally sensitive because any contaminant carried by surface runoff has the potential for rapid transport through solution enlarged fractures to the ground-water system. In the karst terrane in Greene County, about 2,500 sinkholes have been located; these sinkholes are potential access points for contamination to the ground-water system. Recent examples of ground-water contamination by sewage, fertilizers, and hydrocarbon chemicals have demonstrated the sensitivity of ground water in the Greene County karst terrane to degradation. The ground-water system is a major source of drinking water for Greene County. The population in Greene County, which includes Springfield, the third largest city in Missouri, is rapidly increasing and the protection of the water resources of Greene County is an increasing concern.

  6. Assessment of hyporheic zone, flood-plain, soil-gas, soil, and surface-water contamination at the Old Incinerator Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface-water for contaminants at the Old Incinerator Area at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Total petroleum hydrocarbons were detected above the method detection level in all 13 samplers deployed in the hyporheic zone and flood plain of an unnamed tributary to Spirit Creek. The combined concentrations of benzene, toluene, ethylbenzene, and total xylene were detected at 3 of the 13 samplers. Other organic compounds detected in one sampler included octane and trichloroethylene. In the passive soil-gas survey, 28 of the 60 samplers detected total petroleum hydrocarbons above the method detection level. Additionally, 11 of the 60 samplers detected the combined masses of benzene, toluene, ethylbenzene, and total xylene above the method detection level. Other compounds detected above the method detection level in the passive soil-gas survey included octane, trimethylbenzene, perchlorethylene, and chloroform. Subsequent to the passive soil-gas survey, six areas determined to have relatively high contaminant mass were selected, and soil-gas samplers were deployed, collected, and analyzed for explosives and chemical agents. No explosives or chemical agents were detected above their method detection levels, but those that were detected were above the nondetection level. The same six locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. No metals that exceeded the Regional Screening Levels for Industrial Soils as classified by the U.S. Environmental Protection Agency were detected at any of the six Old Incinerator Area locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina. Because South Carolina is adjacent to Georgia and the soils in the coastal plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The only metal detected above the ambient background levels for South Carolina was barium. A surface-water sample collected from a tributary west and north of the Old Incinerator Area was analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). The only volatile organic and (or) semivolatile organic compound that was detected above the laboratory reporting level was toluene. The compounds 4-isopropyl-1-methylbenzene and isophorone were detected above the nondetection level but below the laboratory reporting level and were estimated. These compounds were detected at levels below the maximum contaminant levels set by the U.S. Environmental Protection Agency National Primary Drinking Water Standard. Iron was the only inorganic compound detected in the surface-water sample that exceeded the maximum contaminant level set by the U.S. Environmental Protection Agency National Secondary Drinking Water Standard. No other inorganic compounds exceeded the maximum contaminant levels for the U.S. Environmental Protection Agency National Primary Drinking Water Standard, National Secondary Drinking Water Standard, or the Georgia In-Stream Water Quality Standard.

  7. The effect of water storage, elapsed time and contaminants on the bond strength and interfacial polymerization of a nanohybrid composite.

    PubMed

    Perriard, Jean; Lorente, Maria Cattani; Scherrer, Susanne; Belser, Urs C; Wiskott, H W Anselm

    2009-12-01

    To systematically characterize the effect of time lapse, water storage, and selected contaminants on the bond strength of a nanofilled dental composite. Half-dumbbell-shaped samples were fabricated out of light-polymerizing composite resin. To function as substrates they were aged for 30 days in water. Prior to bonding, the substrates' surfaces were subjected to the following treatments: 1) Removing a 0.2- to 0.4-mm layer using a fluted carbide bur; 2) grit blasting with 50 microm alumina particles; 3) etching with phosphoric acid gel; 4) grit blasting followed by etching; 5) blasting with tribochemical particles followed by silane application; 6) sanding with 400-grit paper, air aging of the adherent half-sample before bonding; 7) surface contamination with saliva; 8) surface contamination with blood. In each group (n = 30), freshly polymerized (except in group 6) adherent half-samples were bonded to the substrate half-samples by a layer of unfilled adhesive resin. Fifteen full dumbbell-shaped specimens were subjected to tensile testing after 1 h and 15 after 7 days water storage. In a positive control group, freshly cured half-samples were bonded shortly after fabrication. The tensile strength was analyzed using Weibull statistics and presented in terms of the material's characteristic strength and shape parameter. Fractographs of the two weakest and strongest samples of each group were produced. The surfaces were searched to locate hackle, wake hackle and the origin of the fracture. Surface roughness and time lapse increased the bond strength of the repaired specimens. All groups in which surface roughness was produced before bonding increased in repair strength. Post-bonding aging improved strength. Fractographs yielded interpretable data whenever larger surfaces of single phase bonding resin were present. 1) Roughening and etching an aged composite's surface prior to applying a coat of unfilled resin and the filled material increases repair bond strength by up to 100%. 2) The repair bond strength of a roughened aged composite is 25% to 30% inferior to the tensile strength of solid specimens. 3) After 7 days' storage in water, no detrimental effect could be seen from saliva or blood contamination if the surfaces were properly rinsed.

  8. Norovirus: U.S. Trends and Outbreaks

    MedlinePlus

    ... Norovirus outbreaks can also occur from fecal (stool) contamination of certain foods at their source. For example, oysters harvested from ... norovirus can be brought on board in contaminated food or water or by passengers who ... contamination. This is because norovirus can persist on surfaces ...

  9. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States.

    PubMed

    Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel; Darrah, Thomas H; Kondash, Andrew

    2014-01-01

    The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has triggered an intense public debate regarding the potential environmental and human health effects from hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations pose to water resources, with an emphasis on case studies mostly from the U.S. Four potential risks for water resources are identified: (1) the contamination of shallow aquifers with fugitive hydrocarbon gases (i.e., stray gas contamination), which can also potentially lead to the salinization of shallow groundwater through leaking natural gas wells and subsurface flow; (2) the contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater; (3) the accumulation of toxic and radioactive elements in soil or stream sediments near disposal or spill sites; and (4) the overextraction of water resources for high-volume hydraulic fracturing that could induce water shortages or conflicts with other water users, particularly in water-scarce areas. Analysis of published data (through January 2014) reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites. The direct contamination of shallow groundwater from hydraulic fracturing fluids and deep formation waters by hydraulic fracturing itself, however, remains controversial.

  10. Quality of volatile organic compound data from groundwater and surface water for the National Water-Quality Assessment Program, October 1996–December 2008

    USGS Publications Warehouse

    Bender, David A.; Zogorski, John S.; Mueller, David K.; Rose, Donna L.; Martin, Jeffrey D.; Brenner, Cassandra K.

    2011-01-01

    This report describes the quality of volatile organic compound (VOC) data collected from October 1996 to December 2008 from groundwater and surface-water sites for the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. The VOC data described were collected for three NAWQA site types: (1) domestic and public-supply wells, (2) monitoring wells, and (3) surface-water sites. Contamination bias, based on the 90-percent upper confidence limit (UCL) for the 90th percentile of concentrations in field blanks, was determined for VOC samples from the three site types. A way to express this bias is that there is 90-percent confidence that this amount of contamination would be exceeded in no more than 10 percent of all samples (including environmental samples) that were collected, processed, shipped, and analyzed in the same manner as the blank samples. This report also describes how important native water rinsing may be in decreasing carryover contamination, which could be affecting field blanks. The VOCs can be classified into four contamination categories on the basis of the 90-percent upper confidence limit (90-percent UCL) concentration distribution in field blanks. Contamination category 1 includes compounds that were not detected in any field blanks. Contamination category 2 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is about an order of magnitude lower than the concentration distribution of the environmental samples. Contamination category 3 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is within an order of magnitude of the distribution in environmental samples. Contamination category 4 includes VOCs that have a 90-percent UCL concentration distribution in field blanks that is at least an order of magnitude larger than the concentration distribution of the environmental samples. Fifty-four of the 87 VOCs analyzed in samples from domestic and public-supply wells were not detected in field blanks (contamination category 1), and 33 VOC were detected in field blanks. Ten of the 33 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than the concentration distribution in environmental samples (contamination category 2). These 10 VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative of the sources of contamination bias affecting the environmental samples for these 10 VOCs. Seven VOCs had a 90-percent UCL concentration distribution of the field blanks that was within an order of magnitude of the concentration distribution of the environmental samples (contamination category 3). Sixteen VOCs had a 90-percent UCL concentration distribution in the field blanks that was at least an order of magnitude greater than the concentration distribution of the environmental samples (contamination category 4). Field blanks for these 16 VOCs appear to be nonrepresentative of the sources of contamination bias affecting the environmental samples because of the larger concentration distributions (and sometimes higher frequency of detection) in field blanks than in environmental samples. Forty-three of the 87 VOCs analyzed in samples from monitoring wells were not detected in field blanks (contamination category 1), and 44 VOCs were detected in field blanks. Eight of the 44 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than concentrations in environmental samples (contamination category 2). These eight VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative. Seven VOCs had a 90-percent UCL concentration distribution in field blanks that was of the same order of magnitude as the concentration distribution of the environmental samples (contamination category 3). Twenty-nine VOCs had a 90-percent UCL concentration distribution in the field blanks that was an order of magnitude greater than the distribution of the environmental samples (contamination category 4). Field blanks for these 29 VOCs appear to be nonrepresentative of the sources of contamination bias to the environmental samples. Fifty-four of the 87 VOCs analyzed in surface-water samples were not detected in field blanks (category 1), and 33 VOC were detected in field blanks. Sixteen of the 33 VOCs had a 90-percent UCL concentration distribution in field blanks that was at least an order of magnitude lower than the concentration distribution in environmental samples (contamination category 2). These 16 VOCs may have had some contamination bias associated with the environmental samples, but the potential contamination bias was negligible in comparison to the environmental data; therefore, the field blanks were assumed to be representative. Ten VOCs had a 90-percent UCL concentration distribution in field blanks that was similar to the concentration distribution of environmental samples (contamination category 3). Seven VOCs had a 90-percent UCL concentration distribution in the field blanks that was greater than the concentration distribution in environmental samples (contamination category 4). Field-blank samples for these seven VOCs appear to be nonrepresentative of the sources of contamination bias to the environmental samples. The relation between the detection of a compound in field blanks and the detection in subsequent environmental samples appears to be minimal. The median minimum percent effectiveness of native water rinsing is about 79 percent for the 19 VOCs detected in more than 5 percent of field blanks from all three site types. The minimum percent effectiveness of native water rinsing (10 percent) was for toluene in surface-water samples, likely because of the large detection frequency of toluene in surface-water samples (about 79 percent) and in the associated field-blank samples (46.5 percent). The VOCs that were not detected in field blanks (contamination category 1) from the three site types can be considered free of contamination bias, and various interpretations for environmental samples, such as VOC detection frequency at multiple assessment levels and comparisons of concentrations to benchmarks, are not limited for these VOCs. A censoring level for making comparisons at different assessment levels among environmental samples could be applied to concentrations of 9 VOCs in samples from domestic and public-supply wells, 16 VOCs in samples from monitoring wells, and 9 VOCs in surface-water samples to account for potential low-level contamination bias associated with these selected VOCs. Bracketing the potential contamination by comparing the detection and concentration statistics with no censoring applied to the potential for contamination bias on the basis of the 90-percent UCL for the 90th-percentile concentrations in field blanks may be useful when comparisons to benchmarks are done in a study. The VOCs that were not detected in field blanks (contamination category 1) from the three site types can be considered free of contamination bias, and various interpretations for environmental samples, such as VOC detection frequency at multiple assessment levels and comparisons of concentrations to benchmarks, are not limited for these VOCs. A censoring level for making comparisons at different assessment levels among environmental samples could be applied to concentrations of 9 VOCs in samples from domestic and public-supply wells, 16 VOCs in samples from monitoring wells, and 9 VOCs in surface-water samples to account for potential low-level contamination bias associated with these selected VOCs. Bracketing the potential contamination by comparing the detection and concentration statistics with no censoring applied to the potential for contamination bias on the basis of the 90-percent UCL for the 90th-percentile concentrations in field blanks may be useful when comparisons to benchmarks are done in a study.

  11. Analysis of the contaminants released from municipal solid waste landfill site: A case study.

    PubMed

    Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S

    2017-02-15

    Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Surface speciation and interactions between adsorbed chloride and water on cerium dioxide

    NASA Astrophysics Data System (ADS)

    Sutherland-Harper, Sophie; Taylor, Robin; Hobbs, Jeff; Pimblott, Simon; Pattrick, Richard; Sarsfield, Mark; Denecke, Melissa; Livens, Francis; Kaltsoyannis, Nikolas; Arey, Bruce; Kovarik, Libor; Engelhard, Mark; Waters, John; Pearce, Carolyn

    2018-06-01

    Ceria particles with different specific surface areas (SSA) were contaminated with chloride and water, then heat treated at 500 and 900 °C to investigate sorption behaviour of these species on metal oxides. Results from x-ray photoelectron spectroscopy and infrared spectroscopy showed chloride and water adsorption onto particles increased with surface area and that these species were mostly removed on heat treatment (from 6.3 to 0.8 at% Cl- on high SSA and from 1.4 to 0.4 at% on low SSA particles). X-ray diffraction revealed that chloride was not incorporated into the bulk ceria structure, but crystal size increased upon contamination. Ce LIII-edge x-ray absorption spectroscopy confirmed that chloride was not present in the first co-ordination sphere around Ce(IV) ions, so was not bonded to Ce as chloride in the bulk structure. Sintering of contaminated high SSA particles occurred with heat treatment at 900 °C, and they resembled low SSA particles synthesised at this temperature. Physical chloride-particle interactions were investigated using electron microscopy and energy dispersive x-ray analysis, showing that chloride was homogeneously distributed on ceria and that reduction of porosity did not trap surface-sorbed chloride inside the particles as surface area was reduced during sintering. This has implications for stabilisation of chloride-contaminated PuO2 for long term storage.

  13. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  14. From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas.

    PubMed

    Heberer, Th; Reddersen, K; Mechlinski, A

    2002-01-01

    Recently, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment was recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Residues of PhACs have been found as contaminants in sewage, surface, and ground- and drinking water samples. Since June 2000, a new long-term monitoring program of sewage, surface, ground- and drinking water has been carried out in Berlin, Germany. Samples, collected periodically from selected sites in the Berlin area, are investigated for residues of PhACs and related contaminants. The purpose of this monitoring is to investigate these compounds over a long time period to get more reliable data on their occurrence and fate in the different aquatic compartments. Moreover, the surface water investigations allow the calculation of season-dependent contaminant loads in the Berlin waters. In the course of the monitoring program, PhACs and some other polar compounds were detected at concentrations up to the microg/L-level in all compartments of the Berlin water cycle. The monitoring is accompanied and supported by several other investigations such as laboratory column experiments and studies on bank filtration and drinking water treatment using conventional or membrane filtration techniques.

  15. Surface Spills at Unconventional Oil and Gas Sites: a Contaminant Transport Modeling Study for the South Platte Alluvial Aquifer

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Kanno, C.; McLaughlin, M.; Blotevogel, J.; Borch, T.

    2016-12-01

    Hydraulic fracturing has revolutionized the U.S.'s energy portfolio by making shale reservoirs productive and commercially viable. However, the public is concerned that the chemical constituents in hydraulic fracturing fluid, produced water, or natural gas itself could potentially impact groundwater. Here, we present fate and transport simulations of aqueous fluid surface spills. Surface spills are the most likely contamination pathway to occur during oil and gas production operations. We have three primary goals: 1) evaluate whether or not these spills pose risks to groundwater quality in the South Platte aquifer system, 2) develop a screening level methodology that could be applied at other sites and for various pollutants, and 3) demonstrate the potential importance of co-contaminant interactions using selected chemicals. We considered two types of fluid that can be accidentally released at oil and gas sites: produced water and hydraulic fracturing fluid. Benzene was taken to be a representative contaminant of interest for produced water. Glutaraldehyde, polyethylene glycol, and polyacrylamide were the chemical additives considered for spills of hydraulic fracturing fluid. We focused on the South Platte Alluvial Aquifer, which is located in the greater Denver metro area and overlaps a zone of high-density oil and gas development. Risk of groundwater pollution was based on predicted concentration at the groundwater table. In general, results showed groundwater contamination due to produced water and hydraulic fracturing fluid spills is low in most areas of the South Platte system for the contaminants and spill conditions investigated. Substantial risk may exist in certain areas where the groundwater table is shallow (less than 10 ft below ground surface) and when large spills and large post-spill storms occur. Co-chemical interactions are an important consideration in certain cases when modeling hydraulic fracturing fluid spills. By helping to identify locations in the Front Range of Colorado that are at low or high risk for groundwater contamination due to a surface spill, this work will aid in improving prevention and mitigation practices so that decision-makers can be better prepared to address accidental releases in Colorado.

  16. Assessment of indicator bacteria and Aeromonas spp. in surface and nontraditional irrigation water: a conserve study

    USDA-ARS?s Scientific Manuscript database

    Introduction: The use of surface and nontraditional irrigation water (SNIW) (pond, tidal and non-tidal river water, reclaimed wastewater) is one way to conserve groundwater. However, SNIW may serve as reservoirs and vehicles for under-recognized enteric pathogens, spreading localized contamination d...

  17. 75 FR 34405 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... future actions under Superfund. This partial deletion pertains to the surface media (soil, surface water... in contamination of structures, soil, surface water, and groundwater. As a result of this... Superfund Site located upgradient (south) of RMA (1990). OU 03: On-Post--Addresses soil and groundwater...

  18. Hot water surface pasteurization for inactivating Salmonella on surfaces of mature green tomatoes

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of salmonellosis have been associated with the consumption of tomatoes contaminated with Salmonella. Commercial washing processes for tomatoes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop a hot water surface pasteurization pro...

  19. Bayesian Maximum Entropy space/time estimation of surface water chloride in Maryland using river distances.

    PubMed

    Jat, Prahlad; Serre, Marc L

    2016-12-01

    Widespread contamination of surface water chloride is an emerging environmental concern. Consequently accurate and cost-effective methods are needed to estimate chloride along all river miles of potentially contaminated watersheds. Here we introduce a Bayesian Maximum Entropy (BME) space/time geostatistical estimation framework that uses river distances, and we compare it with Euclidean BME to estimate surface water chloride from 2005 to 2014 in the Gunpowder-Patapsco, Severn, and Patuxent subbasins in Maryland. River BME improves the cross-validation R 2 by 23.67% over Euclidean BME, and river BME maps are significantly different than Euclidean BME maps, indicating that it is important to use river BME maps to assess water quality impairment. The river BME maps of chloride concentration show wide contamination throughout Baltimore and Columbia-Ellicott cities, the disappearance of a clean buffer separating these two large urban areas, and the emergence of multiple localized pockets of contamination in surrounding areas. The number of impaired river miles increased by 0.55% per year in 2005-2009 and by 1.23% per year in 2011-2014, corresponding to a marked acceleration of the rate of impairment. Our results support the need for control measures and increased monitoring of unassessed river miles. Copyright © 2016. Published by Elsevier Ltd.

  20. Water resources of the Prairie Island Indian Reservation, Minnesota, 1994-97

    USGS Publications Warehouse

    Cowdery, Timothy K.

    1999-01-01

    The only surface-water constituents exceeding U.S. Environmental Protection Agency drinking water standards was coliform or fecal streptococci bacteria, which was exceeded in all samples. Thirteen percent of ground-water samples exceeded the nitrate maximum contaminant level (MCL), but this is probably higher than the percentage of the aquifer exceeding the nitrate MCL because most of the wells sampled were shallow. Surface-water recharge to and ground-water discharge from the surficial aquifer influence the water quality in both the aquifer and the surrounding surface water. However, surface water probably influences ground-water quality more because of the greater amount of surface water flowing through the study area.

  1. Occurrence of Diatoms in Lakeside Wells in Northern New Jersey as an Indicator of the Effect of Surface Water on Ground-Water Quality

    USGS Publications Warehouse

    Reilly, Timothy J.; Walker, Christopher E.; Baehr, Arthur L.; Schrock, Robin M.; Reinfelder, John R.

    2006-01-01

    In a novel approach for detecting ground-water/surface-water interaction, diatoms were used as an indicator that surface water affects ground-water quality in lakeside communities in northern New Jersey. The presence of diatoms, which are abundant in lakes, in adjacent domestic wells demonstrated that ground water in these lakeside communities was under the direct influence of surface water. Entire diatom frustules were present in 17 of 18 water samples collected in August 1999 from domestic wells in communities surrounding Cranberry Lake and Lake Lackawanna. Diatoms in water from the wells were of the same genus as those found in the lakes. The presence of diatoms in the wells, together with the fact that most static and stressed water levels in wells were below the elevation of the lake surfaces, indicates that ground-water/surface-water interaction is likely. Ground-water/surface-water interaction also probably accounts for the previously documented near-ubiquitous presence of methyl tertiary-butyl ether in the ground-water samples. Recreational use of lakes for motor boating and swimming, the application of herbicides for aquatic weed control, runoff from septic systems and roadways, and the presence of waterfowl all introduce contaminants to the lake. Samples from 4 of the 18 wells contained Navicula spp., a documented significant predictor of Giardia and Cryptosporidium. Because private well owners in New Jersey generally are not required to regularly monitor their wells, and tests conducted by public-water suppliers may not be sensitive to indicators of ground-water/surface-water interaction, these contaminants may remain undetected. The presence of diatoms in wells in similar settings can warn of lake/well interactions in the absence of other indicators.

  2. Distribution of Archaeal Communities along the Coast of the Gulf of Finland and Their Response to Oil Contamination

    PubMed Central

    Yan, Lijuan; Yu, Dan; Hui, Nan; Naanuri, Eve; Viggor, Signe; Gafarov, Arslan; Sokolov, Sergei L.; Heinaru, Ain; Romantschuk, Martin

    2018-01-01

    The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments. However, the distribution and the response of archaeal communities to oil contamination have rarely been investigated in brackish habitats. Hence, we conducted a survey to investigate the distribution, diversity, composition, and species interactions of indigenous archaeal communities at oil-contaminated sites along the coast of the Gulf of Finland (GoF) using high-throughput sequencing. Surface water and littoral sediment samples were collected at presumably oil-contaminated (oil distribution facilities) and clean sites along the coastline of the GoF in the winter 2015 and the summer 2016. Another three samples of open sea surface water were taken as offshore references. Of Archaea, Euryarchaeota dominated in the surface water and the littoral sediment of the coast of the GoF, followed by Crenarchaeota (including Thaumarchaeota, Thermoprotei, and Korarchaeota based on the Greengenes database used). The unclassified sequences accounted for 5.62% of the total archaeal sequences. Our study revealed a strong dependence of the archaeal community composition on environmental variables (e.g., salinity, pH, oil concentration, TOM, electrical conductivity, and total DNA concentration) in both littoral sediment and coastal water in the GoF. The composition of archaeal communities was season and ecosystem dependent. Archaea was highly diverse in the three ecosystems (littoral sediment, coastal water, and open sea water). Littoral sediment harbored the highest diversity of archaea. Oil was often detected in the littoral sediment but rarely detected in water at those presumably contaminated sites. Although the composition of archaeal community in the littoral sediment was sensitive to low-input oil contamination, the unchanged putative functional profiles and increased interconnectivity of the archaeal core species network plausibly revealed resilience and the potential for oil degradation. Halobacteriaceae and putative cytochrome P450 pathways were significantly enriched in the oil-contaminated littoral sediment. The archaeal taxa formed highly interconnected and interactive networks, in which Halobacteriaceae, Thermococcus, and methanogens were the main components, implying a potential relevant trophic connection between hydrocarbon degradation, methanogenesis, sulfate reduction, and/or fermentative growth. PMID:29410652

  3. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    USGS Publications Warehouse

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  4. Aeolian contamination of Se and Ag in the North Pacific from Asian fossil fuel combustion.

    PubMed

    Ranville, Mara A; Cutter, Gregory A; Buck, Clifton S; Landing, William M; Cutter, Lynda S; Resing, Joseph A; Flegal, A Russell

    2010-03-01

    Energy production from fossil fuels, and in particular the burning of coal in China, creates atmospheric contamination that is transported across the remote North Pacific with prevailing westerly winds. In recent years this pollution from within Asia has increased dramatically, as a consequence of vigorous economic growth and corresponding energy consumption. During the fourth Intergovernmental Oceanographic Commission baseline contaminant survey in the western Pacific Ocean from May to June, 2002, surface waters and aerosol samples were measured to investigate whether atmospheric deposition of trace elements to the surface North Pacific was altering trace element biogeochemical cycling. Results show a presumably anthropogenic enrichment of Ag and of Se, which is a known tracer of coal combustion, in the North Pacific atmosphere and surface waters. Additionally, a strong correlation was seen between dissolved Ag and Se concentrations in surface waters. This suggests that Ag should now also be considered a geochemical tracer for coal combustion, and provides further evidence that Ag exhibits a disturbed biogeochemical cycle as the result of atmospheric deposition to the North Pacific.

  5. Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington

    USGS Publications Warehouse

    Dougherty, Jennifer A.; Swarzenski, Peter W.; Dinicola, Richard S.; Reinhard, Martin

    2010-01-01

    Organic contaminants, such as pharmaceuticals and personal care products (PPCPs), pose a risk to water quality and the health of ecosystems. This study was designed to determine if a coastal community lacking point sources, such as waste water treatment plant effluent, could release PPCPs, herbicides, and plasticizers at detectable levels to their surface water and groundwater. Research was conducted in Liberty Bay, an embayment within Puget Sound, where 70% of the population (∼10,000) uses septic systems. Sampling included collection of groundwater and surface water with grab samples and the use of polar organic chemical integrative samplers (POCIS). We analyzed for a broad spectrum of 25 commonly used compounds, including PPCPs, herbicides, and a flame retardant. Twelve contaminants were detected at least once; only N,N-diethyl-meta-toluamide, caffeine, and mecoprop, a herbicide not attributed to septic systems, were detected in more than one grab sample. The use of POCIS was essential because contaminants were present at very low levels (nanograms), which is common for PPCPs in general, but particularly so in such a small community. The use of POCIS allowed the detection of five compounds that were not present in grab samples. Data suggest that the community is contaminating local water with PPCPs; this effect is likely to increase as the population and product usage increase. The results presented here are a first step toward assessing the transport of herbicides and PPCPs into this coastal system.

  6. Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around Liberty Bay, Puget Sound, Washington.

    PubMed

    Dougherty, Jennifer A; Swarzenski, Peter W; Dinicola, Richard S; Reinhard, Martin

    2010-01-01

    Organic contaminants, such as pharmaceuticals and personal care products (PPCPs), pose a risk to water quality and the health of ecosystems. This study was designed to determine if a coastal community lacking point sources, such as waste water treatment plant effluent, could release PPCPs, herbicides, and plasticizers at detectable levels to their surface water and groundwater. Research was conducted in Liberty Bay, an embayment within Puget Sound, where 70% of the population (-10,000) uses septic systems. Sampling included collection of groundwater and surface water with grab samples and the use of polar organic chemical integrative samplers (POCIS). We analyzed for a broad spectrum of 25 commonly used compounds, including PPCPs, herbicides, and a flame retardant. Twelve contaminants were detected at least once; only N,N-diethyl-meta-toluamide, caffeine, and mecoprop, a herbicide not attributed to septic systems, were detected in more than one grab sample. The use of POCIS was essential because contaminants were present at very low levels (nanograms), which is common for PPCPs in general, but particularly so in such a small community. The use of POCIS allowed the detection of five compounds that were not present in grab samples. Data suggest that the community is contaminating local water with PPCPs; this effect is likely to increase as the population and product usage increase. The results presented here are a first step toward assessing the transport of herbicides and PPCPs into this coastal system.

  7. 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule.

    PubMed

    Adamson, David T; Piña, Elizabeth A; Cartwright, Abigail E; Rauch, Sharon R; Hunter Anderson, R; Mohr, Thomas; Connor, John A

    2017-10-15

    This study examined data collected from U.S. public drinking water supplies in support of the recently-completed third round of the Unregulated Contaminant Monitoring Rule (UCMR3) to better understand the nature and occurrence of 1,4-dioxane and the basis for establishing drinking water standards. The purpose was to evaluate whether the occurrence data for this emerging but federally-unregulated contaminant fit with common conceptual models, including its persistence and the importance of groundwater contamination for potential exposure. 1,4-Dioxane was detected in samples from 21% of 4864 PWSs, and was in exceedance of the health-based reference concentration (0.35μg/L) at 6.9% of these systems. In both measures, it ranked second among the 28 UCMR3 contaminants. Although much of the focus on 1,4-dioxane has been its role as a groundwater contaminant, the detection frequency for 1,4-dioxane in surface water was only marginally lower than in groundwater (by a factor of 1.25; p<0.0001). However, groundwater concentrations were higher than those in surface water (p<0.0001) and contributed to a higher frequency of exceeding the reference concentration (by a factor of 1.8, p<0.0001), indicating that surface water sources tend to be more dilute. Sampling from large systems increased the likelihood that 1,4-dioxane was detected by a factor of 2.18 times relative to small systems (p<0.0001). 1,4-Dioxane detections in drinking water were highly associated with detections of other chlorinated compounds particularly 1,1-dichlorethane (odds ratio=47; p<0.0001), which is associated with the release of 1,4-dioxane as a chlorinated solvent stabilizer. Based on aggregated nationwide data, 1,4-dioxane showed evidence of a decreasing trend in concentration and detection frequency over time. These data suggest that the loading to drinking water supplies may be decreasing. However, in the interim, some water supply systems may need to consider improving their treatment capabilities in response to further regulatory review of this compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effectiveness of disinfectant wipes for decontamination of bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital.

    PubMed

    Seenama, Chakkraphong; Tachasirinugune, Peenithi; Jintanothaitavorn, Duangporn; Kachintorn, Kanchana; Thamlikitkul, Visanu

    2013-02-01

    To determine the effectiveness of Virusolve+ disinfectant wipes and PAL disinfectant wipes for decontamination of inoculated bacteria on patients' environmental and medical equipment surfaces at Siriraj Hospital. Tryptic soy broths containing MRSA and XDR A. baumannii were painted onto the surfaces of patient's stainless steel bed rail, patient's fiber footboard, control panel of infusion pump machine and control panel of respirator. The contaminated surfaces were cleaned by either tap water, tap water containing detergent, Virusolve+ disinfectant wipes or PAL disinfectant wipes. The surfaces without any cleaning procedures served as the control surface. The contaminated surfaces cleaned with the aforementioned procedures and control surfaces were swabbed with cotton swabs. The swabs were streaked on agar plates to determine the presence of MRSA and XDR A. baumannii. MRSA and XDR A. baumannii were recovered from all control surfaces. All surfaces cleaned with tap water or tap water containing detergent revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with tap water containing detergent were less than those cleaned with tap water alone. All surfaces cleaned with PAL disinfectant wipes also revealed presence of both MRSA and XDR A. baumannii. However the amounts of bacteria on the surfaces cleaned with PAL disinfectant wipes were less than those cleaned with tap water containing detergent. No bacteria were recovered from all surfaces cleaned with Virusolve+ disinfectant wipes. Virusolve+ disinfectant wipes were more effective than tap water; tap water containing detergent and PAL disinfectant wipes for decontamination of bacteria inoculated on patients environmental and medical equipment surfaces at Siriraj Hospital.

  9. Do contamination of and exposure to chicken meat and water drive the temporal dynamics of Campylobacter cases?

    PubMed

    David, J M; Pollari, F; Pintar, K D M; Nesbitt, A; Butler, A J; Ravel, A

    2017-11-01

    Campylobacteriosis, the most frequent bacterial enteric disease, shows a clear yet unexplained seasonality. The study purpose was to explore the influence of seasonal fluctuation in the contamination of and in the behaviour exposures to two important sources of Campylobacter on the seasonality of campylobacteriosis. Time series analyses were applied to data collected through an integrated surveillance system in Canada in 2005-2010. Data included sporadic, domestically-acquired cases of Campylobacter jejuni infection, contamination of retail chicken meat and of surface water by C. jejuni, and exposure to each source through barbequing and swimming in natural waters. Seasonal patterns were evident for all variables with a peak in summer for human cases and for both exposures, in fall for chicken meat contamination, and in late fall for water contamination. Time series analyses showed that the observed campylobacteriosis summer peak could only be significantly linked to behaviour exposures rather than sources contamination (swimming rather than water contamination and barbequing rather than chicken meat contamination). The results indicate that the observed summer increase in human cases may be more the result of amplification through more frequent risky exposures rather than the result of an increase of the Campylobacter source contamination.

  10. Review of Selected References and Data sets on Ambient Ground- and Surface-Water Quality in the Metedeconk River, Toms River, and Kettle Creek Basins, New Jersey, 1980-2001

    USGS Publications Warehouse

    Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.

    2003-01-01

    Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to leach trace elements and release asbestos fibers from plumbing materials. Reported concentrations of nitrate, volatile organic compounds, trace elements, and pesticides in samples from the monitored mainstem and tributary streams within the study area generally are below maximum contaminant levels for drinking water or below detection limits. Results of studies in other areas indicate that pesticide concentrations in surface water could be considerably higher during high flows soon after the application of pesticides to crops than during low flows. Fecal coliform bacteria counts in streams vary considerably. Concentrations or counts of these classes of surface-water-quality constituents likely are functions of the intensity and type of upstream development. Results of limited monitoring for radionuclide concentrations reported by the Brick Township Municipal Utilities Authority of the Metedeconk River indicate that radionuclide concentrations or activities do not exceed maximum contaminant levels for drinking water. As a consequence of organic matter in surface water, the formati ultraviolet absorbance in samples from the Metedeconk River and the Toms River exceeded the alternative compliance criteria for source water (2.0 milligrams per liter for total organic carbon and 0.02 absorbance units-liters per milligram-centimeter for specific ultraviolet absorbance) with respect to treatment requirements for preventing elevated concentrations of disinfection by-products in treated water. Water-quality and treatment issues associated with use of ground and surface water for potable supply in the study area are related to human activities and naturally occurring factors. Additional monitoring and analysis of ground and surface water would be needed to determine conclusively the occurrence and distribution of some contaminants and the relative importance of various potential contaminant sources, transport and attenuation mechanisms, and transport pathways.

  11. Hydrologic and water-quality data for U.S. Coast Guard Support Center Kodiak, Alaska, 1987-89

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    Hydrologic and water-quality data were collected at the U.S. Coast Guard Support Center Kodiak on Kodiak Island, Alaska, to determine regional ground-water conditions and if contamination of soils, ground water, or surface water has occurred. Eighteen areas of possible contamination were identified. Ground-water levels, surface- water stages, surface-water discharges, and results of field and laboratory analyses of soil and water samples are presented in tabular form. Many quality-assurance samples had detectable concentrations of methylene chloride and 1,2-dichloroethane, which may be due to sampling or laboratory contamination. Concentrations were as great as 5.9 micrograms per liter for methylene chloride and 2.6 micrograms per liter for 1,2-dichloroethane. Excluding 1,2-dichloroethane, most soil, ground-water, and surface-water samples contained no detectable concentrations of the organic constituents that were analyzed. Chemical analyses were performed on two lake-bed-material samples and more than 100 soil samples. The median lead concentration was 9.8 milligrams per kilogram. Concentrations of tetrachloroethene were as great as 1.1 milligram per kilogram in soils near a laundry. Water samples were collected from 101 wells. The maximum benzene concentration detected in ground water was 78 micrograms per liter from a well at the air station near a site where aviation fuel was spilled. Wells near a laundry yielded water having concentrations of tetrachloroethene as great as 3,000 micrograms per liter, and vinyl chloride as great as 440 micrograms per liter. A well in a former aviation gasoline storage area yielded water with a concentration of trichloroethene as great as 66 micrograms per liter. Water samples were collected from 59 sites on streams, lakes, or ponds. Surface-water samples had much lower concen- trations of organic compounds; the highest concentration of benzene was 2.2 micrograms per liter in a stream near a former aviation-fuel storage area and the maximum vinyl chloride concentration was 15 micrograms per liter in a stream near a former landfill. Tetrachloroethene and trichloroethene were not detected in any surface-water samples.

  12. Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi Estuary, China.

    PubMed

    Shao, Mihua; Ding, Guanghui; Zhang, Jing; Wei, Lie; Xue, Huanhuan; Zhang, Nannan; Li, Yang; Chen, Guanqun; Sun, Yeqing

    2016-09-01

    Perfluoroalkyl substances (PFASs) have been recognized as emerging environmental pollutants. However, there is limited information on the contamination level and spatial distribution of PFASs in the Shuangtaizi Estuary, where the Shuangtaizi Hekou Nature Reserve is located. In the present study, the contamination level and spatial distribution of PFASs in surface water (approximately 0.5 m below the surface) and bottom water (about 0.5 m above the bottom) of the Shuangtaizi Estuary were investigated. The data indicated that the Shuangtaizi Estuary was commonly contaminated by PFASs. The total concentration of PFASs in surface and bottom water of the Shuangtaizi Estuary ranged from 66.2 to 185 ng L(-1) and from 44.8 to 209 ng L(-1), respectively. The predominant PFASs were perfluorobutanoic acid (PFBA), perfluoropentanoic acid, perfluorooctanoic acid, perfluorohexanoic acid and perfluorobutane sulfonate (PFBS). In general, PFAS concentrations in surface water samples were lower than those in bottom water samples. The spatial distribution of PFASs in the Shuangtaizi Estuary was mainly affected by particular landform, tide and residual currents in Liaodong Bay. The total mass flux of 15 PFASs from the Shuangtaizi River to Liaodong Bay was estimated to be 352 kg year(-1), which was lower than the total flux from the Daling River and the Daliao River. As short-chain PFASs, such as PFBS and PFBA, have been the prevalent compounds in some places and are continuously produced and used, long-term monitoring and effective pollution controls are suggested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Occurrence and behavior of emerging contaminants in surface water and a restored wetland.

    PubMed

    Matamoros, Víctor; Arias, Carlos A; Nguyen, Loc Xuan; Salvadó, Victòria; Brix, Hans

    2012-08-01

    Pollution mitigation is an important target for restored wetlands, and although there is much information in relation to nutrient removal, little attention has been paid to emerging contaminants. This paper reports on the occurrence and attenuation capacity of 17 emerging contaminants in a restored wetland and two rivers in North-East Denmark. The compounds belong to the groups of pharmaceuticals, fragrances, antiseptics, fire retardants, pesticides, and plasticizers. Concentrations in surface waters ranged from 2 to 1476 ng L(-1). The compounds with the highest concentrations were diclofenac, 2-methyl-4-chlorophenoxyacetic acid (MCPA), caffeine, and tris(2-chloroethyl) phosphate (TCEP). The herbicide concentrations increased after a rain-fall event, demonstrating the agricultural run-off origin of these compounds, whereas the concentration of the other emerging contaminants was rather conservative. The mitigation capacity of the restored wetland for the compounds ranged from no attenuation to 84% attenuation (19% on average). Hence, restored wetlands may be considered as a feasible alternative for mitigating emerging contaminants from river waters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Study of contaminant transport at an open-tipping waste disposal site.

    PubMed

    Ashraf, Muhammad Aqeel; Yusoff, Ismail; Yusof, Mohamad; Alias, Yatimah

    2013-07-01

    Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.

  15. Occurrence of fecal indicator bacteria in surface waters and the subsurface aquifer in Key Largo, Florida.

    PubMed Central

    Paul, J H; Rose, J B; Jiang, S; Kellogg, C; Shinn, E A

    1995-01-01

    Sewage waste disposal facilities in the Florida Keys include septic tanks and individual package plants in place of municipal collection facilities in most locations. In Key Largo, both facilities discharge into the extremely porous Key Largo limestone. To determine whether there was potential contamination of the subsurface aquifer and nearby coastal surface waters by such waste disposal practices, we examined the presence of microbial indicators commonly found in sewage (fecal coliforms, Clostridium perfringens, and enterococci) and aquatic microbial parameters (viral direct counts, bacterial direct counts, chlorophyll a, and marine vibriophage) in injection well effluent, monitoring wells that followed a transect from onshore to offshore, and surface waters above these wells in two separate locations in Key Largo in August 1993 and March 1994. Effluent and waters from onshore shallow monitoring wells (1.8- to 3.7-m depth) contained two or all three of the fecal indicators in all three samples taken, whereas deeper wells (10.7- to 12.2-m depth) at these same sites contained few or none. The presence of fecal indicators was found in two of five nearshore wells (i.e., those that were < or = 1.8 miles [< or = 2.9 km] from shore), whereas offshore wells (> or = 2.1 to 5.7 miles [< or = 3.4 to 9.2 km] from shore) showed little sign of contamination. Indicators were also found in surface waters in a canal in Key Largo and in offshore surface waters in March but not in August. Collectively, these results suggest that fecal contamination of the shallow onshore aquifer, parts of the nearshore aquifer, and certain surface waters has occurred.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793943

  16. Effect of blood contamination with 1-step self-etching adhesives on microtensile bond strength to dentin.

    PubMed

    Yoo, H M; Pereira, P N R

    2006-01-01

    This study evaluated the effect of blood contamination and decontamination methods on the microtensile bond strength of 1-step self-etching adhesive systems to dentin contaminated after adhesive application and light curing. Three commercially available "all-in-one" adhesives (One Up Bond F, Xeno III and Adper Prompt L-Pop) and 1 resin composite (Clearfil AP-X) were used. Third molars that had been stored in distilled water with 0.5% thymol at 4 degrees C were ground with #600 SiC paper under running water to produce a standardized smear layer. The specimens were randomly divided into groups according to the 3 adhesive systems. The adhesive systems were used under 3 conditions: no contamination, which was the control (C); contamination of the light-cured adhesive surface with blood and reapplication of adhesive (Contamination 1) and contamination of the light-cured adhesive surface with blood, then washing, drying and reapplication of the adhesive (Contamination 2). Following light curing of the adhesive, the resin composite was placed in 3 increments up to a 5-mm-thick layer on the bonded surface. All specimens were stored in distilled water at 37 degrees C for 24 hours. The microtensile bond strength was measured using a universal testing machine (EZ test), and data were analyzed by 1-way ANOVA followed by the Duncan test to make comparisons among the groups (p=0.05). After debonding, 5 specimens were selected from each group and examined in a scanning electron microscope to evaluate the modes of fracture. For all adhesives, contamination groups showed lower bond strength than the control (p<0.05). There was no statistically significant difference among the control groups (p>0.05). For Xeno III and Adper Prompt L-Pop, contamination group #2 showed the lowest bond strength among the groups (p<0.05). For One Up Bond F, contamination group #2 showed higher bond strength than contamination group #1 but showed no statistical significance between them (p>0.05).

  17. RATE OF TCE DEGRADATION IN A PLANT MULCH PASSIVE REACTIVE BARRIER (BIOWALL)

    EPA Science Inventory

    A passive reactive barrier was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contaminated groun...

  18. Metabolomics for in situ environmental monitoring of surface waters impacted by contaminants from both point and non-point sources

    EPA Science Inventory

    We investigated the efficacy of metabolomics for field-monitoring of fish exposed to waste water treatment plant (WWTP) effluents and non-point sources of chemical contamination. Lab-reared male fathead minnows (Pimephales promelas, FHM) were held in mobile monitoring units and e...

  19. MOLECULAR EVALUATION OF CHANGES IN PLANKTONIC BACTERIAL POPULATION RESULTING FROM EQUINE FECAL CONTAMINATION IN A SUB-WATERSHED

    EPA Science Inventory

    Contamination of watersheds by fecal bacteria is a frequent cause for surface waters to be placed on the national impaired waters list. However, since the presence of fecal bacteria does not always indicate human fecal input, it is necessary to distinguish between fecal sources. ...

  20. Effects of agricultural management, land use, and watershed scale on E. coli concentrations in runoff and streamflow

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of surface waters is a critical water quality concern with serious human health implications. Many states use Escherichia coli (E. coli) as an indicator organism for fecal contamination and apply watershed models to develop and support bacterial Total Maximum Daily Loads; howeve...

  1. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  2. Modeling E. Coli release and transport in a creek during artificial high-flow events

    USDA-ARS?s Scientific Manuscript database

    In-stream fate and transport of E. Coli, is a leading indicator of microbial contamination of natural waters, and so needs to be understood to eventually minimize surface water contamination by microbial organisms. The objective of this work was to simulate E. Coli release and transport from soil se...

  3. PERCHLORATE ENVIRONMENTAL CONTAMINATION: TOXICOLOGICAL REVIEW AND RISK CHARACTERIZATION BASED ON EMERGING INFORMATION (EXTERNAL REVIEW DRAFT) 1998

    EPA Science Inventory

    Perchlorate (ClO4-) is an anion that originates as a contaminant in ground water and surface waters from the dissolution of ammonium, potassium, magnesium, or sodium salts. Because perchlorate is nonlabile kinetically (i.e., the reduction of the central chlorine atom occurs extre...

  4. PRP: The Proven Solution for Cleaning Up Oil Spills

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The basic technology behind PRP is thousands of microcapsules, tiny balls of beeswax with hollow centers. Water cannot penetrate the microcapsule s cell, but oil is absorbed right into the beeswax spheres as they float on the water s surface. This way, the contaminants, chemical compounds that originally come from crude oil such as fuels, motor oils, or petroleum hydrocarbons, are caught before they settle. PRP works well as a loose powder for cleaning up contaminants in lakes and other ecologically fragile areas. The powder can be spread over a contaminated body of water or soil, and it will absorb contaminants, contain them in isolation, and dispose of them safely. In water, it is important that PRP floats and keeps the oil on the surface, because, even if oil exposure is not immediately lethal, it can cause long-term harm if allowed to settle. Bottom-dwelling fish exposed to compounds released after oil spills may develop liver disease, in addition to reproductive and growth problems. This use of PRP is especially effective for environmental cleanup in sensitive areas like coral reefs and mangroves.

  5. Viral Tracer Studies Indicate Contamination of Marine Waters by Sewage Disposal Practices in Key Largo, Florida

    PubMed Central

    Paul, J. H.; Rose, J. B.; Brown, J.; Shinn, E. A.; Miller, S.; Farrah, S. R.

    1995-01-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys. PMID:16535046

  6. Viral tracer studies indicate contamination of marine waters by sewage disposal practices in key largo, Florida.

    PubMed

    Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R

    1995-06-01

    Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.

  7. Ground Water Modeling Research

    EPA Pesticide Factsheets

    EPA is supporting region, state, and tribal partners at Superfund sites and brownfields to develop new methods to better characterize, monitor, and treat ground water contamination; in order to protect drinking water, surface water, and indoor air.

  8. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland.

    PubMed

    O'Neill, A; Phillips, D H; Bowen, J; Sen Gupta, B

    2015-04-15

    A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO3-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Influence of soil structure on contaminant leaching from injected slurry

    USDA-ARS?s Scientific Manuscript database

    Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persi...

  10. Contaminants Of Emerging Concern Within The Ohio River And Its Tributaries

    EPA Science Inventory

    Contaminants of emerging concern such as PPCPs, alkylphenols, EDCs, and PFCs in waterways have been increasing public concern. The extent and persistence of their occurrence in surface waters remains unclear. Though ther are many sources of these contaminants, research has focu...

  11. MTBE, TBA, and TAME attenuation in diverse hyporheic zones.

    PubMed

    Landmeyer, James E; Bradley, Paul M; Trego, Donald A; Hale, Kevin G; Haas, Joseph E

    2010-01-01

    Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- (14)C-MTBE and U-(14)C-TBA to (14)CO(2) and the novel biodegradation of U- (14)C-TAME to (14)CO(2) under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation.

  12. Water-Related Infrastructure in a Region of Post-Earthquake Haiti: High Levels of Fecal Contamination and Need for Ongoing Monitoring

    PubMed Central

    Widmer, Jocelyn M.; Weppelmann, Thomas A.; Alam, Meer T.; Morrissey, B. David; Redden, Edsel; Rashid, Mohammed H.; Diamond, Ulrica; Ali, Afsar; De Rochars, Madsen Beau; Blackburn, Jason K.; Johnson, Judith A.; Morris, J. Glenn

    2014-01-01

    We inventoried non-surface water sources in the Leogane and Gressier region of Haiti (approximately 270 km2) in 2012 and 2013 and screened water from 345 sites for fecal coliforms and Vibrio cholerae. An international organization/non-governmental organization responsible for construction could be identified for only 56% of water points evaluated. Sixteen percent of water points were non-functional at any given time; 37% had evidence of fecal contamination, with spatial clustering of contaminated sites. Among improved water sources (76% of sites), 24.6% had fecal coliforms versus 80.9% in unimproved sources. Fecal contamination levels increased significantly from 36% to 51% immediately after the passage of Tropical Storm Sandy in October of 2012, with a return to 34% contamination in March of 2013. Long-term sustainability of potable water delivery at a regional scale requires ongoing assessment of water quality, functionality, and development of community-based management schemes supported by a national plan for the management of potable water. PMID:25071005

  13. Water-related infrastructure in a region of post-earthquake Haiti: high levels of fecal contamination and need for ongoing monitoring.

    PubMed

    Widmer, Jocelyn M; Weppelmann, Thomas A; Alam, Meer T; Morrissey, B David; Redden, Edsel; Rashid, Mohammed H; Diamond, Ulrica; Ali, Afsar; De Rochars, Madsen Beau; Blackburn, Jason K; Johnson, Judith A; Morris, J Glenn

    2014-10-01

    We inventoried non-surface water sources in the Leogane and Gressier region of Haiti (approximately 270 km(2)) in 2012 and 2013 and screened water from 345 sites for fecal coliforms and Vibrio cholerae. An international organization/non-governmental organization responsible for construction could be identified for only 56% of water points evaluated. Sixteen percent of water points were non-functional at any given time; 37% had evidence of fecal contamination, with spatial clustering of contaminated sites. Among improved water sources (76% of sites), 24.6% had fecal coliforms versus 80.9% in unimproved sources. Fecal contamination levels increased significantly from 36% to 51% immediately after the passage of Tropical Storm Sandy in October of 2012, with a return to 34% contamination in March of 2013. Long-term sustainability of potable water delivery at a regional scale requires ongoing assessment of water quality, functionality, and development of community-based management schemes supported by a national plan for the management of potable water. © The American Society of Tropical Medicine and Hygiene.

  14. MTBE, TBA, and TAME attenuation in diverse hyporheic zones

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Trego, D.A.; Hale, K.G.; Haas, J.E.

    2010-01-01

    Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U- 14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation. ?? 2009 National Ground Water Association.

  15. The unintended energy impacts of increased nitrate contamination from biofuels production.

    PubMed

    Twomey, Kelly M; Stillwell, Ashlynn S; Webber, Michael E

    2010-01-01

    Increases in corn cultivation for biofuels production, due to the Energy Independence and Security Act of 2007, are likely to lead to increases in nitrate concentrations in both surface and groundwater resources in the United States. These increases might trigger the requirement for additional energy consumption for water treatment to remove the nitrates. While these increasing concentrations of nitrate might pose a human health concern, most water resources were found to be within current maximum contaminant level (MCL) limits of 10 mg L(-1) NO(3)-N. When water resources exceed this MCL, energy-intensive drinking water treatment is required to reduce nitrate levels below 10 mg L(-1). Based on prior estimates of water supplies currently exceeding the nitrate MCL, we calculate that advanced drinking water treatment might require an additional 2360 million kWh annually (for nitrate affected areas only)--a 2100% increase in energy requirements for water treatment in those same areas--to mitigate nitrate contamination and meet the MCL requirement. We predict that projected increases in nitrate contamination in water may impact the energy consumed in the water treatment sector, because of the convergence of several related trends: (1) increasing cornstarch-based ethanol production, (2) increasing nutrient loading in surface water and groundwater resources as a consequence of increased corn-based ethanol production, (3) additional drinking water sources that exceed the MCL for nitrate, and (4) potentially more stringent drinking water standards for nitrate.

  16. A framework for modeling contaminant impacts on reservoir water quality

    NASA Astrophysics Data System (ADS)

    Jeznach, Lillian C.; Jones, Christina; Matthews, Thomas; Tobiason, John E.; Ahlfeld, David P.

    2016-06-01

    This study presents a framework for using hydrodynamic and water quality models to understand the fate and transport of potential contaminants in a reservoir and to develop appropriate emergency response and remedial actions. In the event of an emergency situation, prior detailed modeling efforts and scenario evaluations allow for an understanding of contaminant plume behavior, including maximum concentrations that could occur at the drinking water intake and contaminant travel time to the intake. A case study assessment of the Wachusett Reservoir, a major drinking water supply for metropolitan Boston, MA, provides an example of an application of the framework and how hydrodynamic and water quality models can be used to quantitatively and scientifically guide management in response to varieties of contaminant scenarios. The model CE-QUAL-W2 was used to investigate the water quality impacts of several hypothetical contaminant scenarios, including hypothetical fecal coliform input from a sewage overflow as well as an accidental railway spill of ammonium nitrate. Scenarios investigated the impacts of decay rates, season, and inter-reservoir transfers on contaminant arrival times and concentrations at the drinking water intake. The modeling study highlights the importance of a rapid operational response by managers to contain a contaminant spill in order to minimize the mass of contaminant that enters the water column, based on modeled reservoir hydrodynamics. The development and use of hydrodynamic and water quality models for surface drinking water sources subject to the potential for contaminant entry can provide valuable guidance for making decisions about emergency response and remediation actions.

  17. Source Water Assessment for the Las Vegas Valley Surface Waters

    NASA Astrophysics Data System (ADS)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality data (prior to treatment), the proximity of Las Vegas Wash to the intake, and the results of the vulnerability analysis of potential contaminating activities, it is determined that the drinking water intake is at a Moderate level of risk for VOC, SOC, and microbiological contaminants. The drinking water intake is at a High level of risk for IOC contaminants. Vulnerability to radiological contamination is Moderate. Source water protection in the Las Vegas Valley is strongly encouraged because of the documented influence of the Las Vegas Wash on the quality of the water at the intake.

  18. Cell-based Metabolomics for Monitoring Ecological Impacts of Environmental Surface Waters

    EPA Science Inventory

    Numerous surface waters are adversely impacted by contaminants released from sources such as WWfPs, CAFOs, mining activities, and agricultural operations. Ideally, an assessment strategy for these applications would include both chemical identification and effects-based monitorin...

  19. Assessments of aquifer sensitivity on Navajo Nation and adjacent lands and ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project, Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Blanchard, Paul J.

    2002-01-01

    The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential or intermediate potential for contamination. About 6 percent of the study area was assessed to have the least potential for contamination, mostly in areas where the slope of the land surface is more than 12 percent. Nearly all fields on the Navajo Indian Irrigation Project were assessed to have the most potential for contamination. The assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project was based on pesticide application to various crops on part of the Navajo Indian Irrigation Project during 1997-99. The assessment indicated that ground water underlying fields of beans, wheat, barley, and alfalfa was most vulnerable to pesticide contamination; ground water underlying fields of corn and potatoes was intermediately vulnerable to pesticide contamination; and ground water underlying fields of hay was least vulnerable to pesticide contamination.

  20. Sources, interactions, and ecological impacts of organic contaminants in water, soil, and sediment: an introduction to the special series.

    PubMed

    Pignatello, Joseph J; Katz, Brian G; Li, Hui

    2010-01-01

    Agricultural and urban activities result in the release of a large number of organic compounds that are suspected of impacting human health and ecosystems: herbicides, insecticides, human and veterinary pharmaceuticals, natural and synthetic hormones, personal care products, surfactants, plasticizers, fire retardants, and others. Sorbed reservoirs of these compounds in soil represent a potentially chronic source of water contamination. This article is an introduction to a series of technical papers stemming from a symposium at the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America 2008 Annual Meeting, which was held jointly with The Geological Society of America, The Gulf Coast Association of Geological Scientists, and the Houston Geological Society, under one of the Joint Meeting's overarching themes: Emerging Trace Contaminants in Surface and Ground Water Generated from Waste Water and Solid Waste Application. The symposium emphasized the role of soils as sources, sinks, and reaction catalysts for these contaminants and the occurrence and fate of these contaminants in surface and underground water supplies. Topics covered included novel advances in analytical techniques, transport of infectious agents, occurrence and fate of veterinary pharmaceuticals, characterization of sorption mechanism, biotic and abiotic transformation reactions, the role of soil components, occurrence and fate in wastewater treatment systems, transport of engineered nanoparticles, groundwater contamination resulting from urban runoff, and issues in water reuse. Overviews of the reports, trends, gaps in our knowledge, and topics for further research are presented in this special series of papers. The technical papers in this special series reflect current gains in knowledge and simultaneously underscore how poorly we are able to predict the fate and, hence, the associated risk to ecological and human receptors of these contaminants.

  1. Efficacy of home washing methods in controlling surface microbial contamination on fresh produce.

    PubMed

    Kilonzo-Nthenge, Agnes; Chen, Fur-Chi; Godwin, Sandria L

    2006-02-01

    Much effort has been focused on sanitation of fresh produce at the commercial level; however, few options are available to the consumer. The purpose of this study was to determine the efficacy of different cleaning methods in reducing bacterial contamination on fresh produce in a home setting. Lettuce, broccoli, apples, and tomatoes were inoculated with Listeria innocua and then subjected to combinations of the following cleaning procedures: (i) soak for 2 min in tap water, Veggie Wash solution, 5% vinegar solution, or 13% lemon solution and (ii) rinse under running tap water, rinse and rub under running tap water, brush under running tap water, or wipe with wet/dry paper towel. Presoaking in water before rinsing significantly reduced bacteria in apples, tomatoes, and lettuce, but not in broccoli. Wiping apples and tomatoes with wet or dry paper towel showed lower bacterial reductions compared with soaking and rinsing procedures. Blossom ends of apples were more contaminated than the surface after soaking and rinsing; similar results were observed between flower section and stem of broccoli. Reductions of L. innocua in both tomatoes and apples (2.01 to 2.89 log CFU/g) were more than in lettuce and broccoli (1.41 to 1.88 log CFU/g) when subjected to same washing procedures. Reductions of surface contamination of lettuce after soaking in lemon or vinegar solutions were not significantly different (P > 0.05) from lettuce soaking in cold tap water. Therefore, educators and extension workers might consider it appropriate to instruct consumers to rub or brush fresh produce under cold running tap water before consumption.

  2. Influence of seasonal and inter-annual hydro-meteorological variability on surface water fecal coliform concentration under varying land-use composition.

    PubMed

    St Laurent, Jacques; Mazumder, Asit

    2014-01-01

    Quantifying the influence of hydro-meteorological variability on surface source water fecal contamination is critical to the maintenance of safe drinking water. Historically, this has not been possible due to the scarcity of data on fecal indicator bacteria (FIB). We examined the relationship between hydro-meteorological variability and the most commonly measured FIB, fecal coliform (FC), concentration for 43 surface water sites within the hydro-climatologically complex region of British Columbia. The strength of relationship was highly variable among sites, but tended to be stronger in catchments with nival (snowmelt-dominated) hydro-meteorological regimes and greater land-use impacts. We observed positive relationships between inter-annual FC concentration and hydro-meteorological variability for around 50% of the 19 sites examined. These sites are likely to experience increased fecal contamination due to the projected intensification of the hydrological cycle. Seasonal FC concentration variability appeared to be driven by snowmelt and rainfall-induced runoff for around 30% of the 43 sites examined. Earlier snowmelt in nival catchments may advance the timing of peak contamination, and the projected decrease in annual snow-to-precipitation ratio is likely to increase fecal contamination levels during summer, fall, and winter among these sites. Safeguarding drinking water quality in the face of such impacts will require increased monitoring of FIB and waterborne pathogens, especially during periods of high hydro-meteorological variability. This data can then be used to develop predictive models, inform source water protection measures, and improve drinking water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Modeling interactions of agriculture and groundwater nitrate contaminants: application of The STICS-Eau-Dyssée coupled models over the Seine River Basin

    NASA Astrophysics Data System (ADS)

    Tavakoly, A. A.; Habets, F.; Saleh, F.; Yang, Z. L.

    2017-12-01

    Human activities such as the cultivation of N-fixing crops, burning of fossil fuels, discharging of industrial and domestic effluents, and extensive usage of fertilizers have recently accelerated the nitrogen loading to watersheds worldwide. Increasing nitrate concentration in surface water and groundwater is a major concern in watersheds with extensive agricultural activities. Nutrient enrichment is one of the major environmental problems in the French coastal zone. To understand and predict interactions between agriculture, surface water and groundwater nitrate contaminants, this study presents a modeling framework that couples the agronomic STICS model with Eau-Dyssée, a distributed hydrologic modeling system to simulate groundwater-surface water interaction. The coupled system is implemented on the Seine River Basin with an area of 88,000 km2 to compute daily nitrate contaminants. Representing a sophisticated hydrosystem with several aquifers and including the megalopolis of Paris, the Seine River Basin is well-known as one of the most productive agricultural areas in France. The STICS-EauDyssée framework is evaluated for a long-term simulation covering 39 years (1971-2010). Model results show that the simulated nitrate highly depends on the inflow produced by surface and subsurface waters. Daily simulation shows that the model captures the seasonal variation of observations and that the overall long-term simulation of nitrate contaminant is satisfactory at the regional scale.

  4. Contamination of water due to major industries and open refuse dumping in the steel city of Orissa--a case study.

    PubMed

    Mishra, P C; Behera, P C; Patel, R K

    2005-04-01

    Contamination of ground water is common in the areas surrounded by industrial refuse dumping sites and the probability of contamination is more where dumping is done in low lying areas and the rate of percolation through the soil is high. In order to assess the ground water pollution by leachate around the refuse dumping site, eighteen wells were selected for study. Few wells are nearer to the dumps, few are far away and others are in between. Also an attempt has been made to evaluate the effect of industrial effluents on the ground and surface water due to Integrated Rourkela Steel Plant and other major industries. From the analytical data of physico-chemical parameters, it is indicated that the river water is contaminated mainly due to the industrial and municipal effluents and the ground water of some of the analyzed areas is contaminated due to municipal and industrial solid waste dumping.

  5. Comparison of two filtration-elution procedures to improve the standard methods ISO 10705-1 & 2 for bacteriophage detection in groundwater, surface water and finished water samples.

    PubMed

    Helmi, K; Jacob, P; Charni-Ben-Tabassi, N; Delabre, K; Arnal, C

    2011-09-01

    To select a reliable method for bacteriophage concentration prior detection by culture from surface water, groundwater and drinking water to enhance the sensitivity of the standard methods ISO 10705-1 & 2. Artificially contaminated (groundwater and drinking water) and naturally contaminated (surface water) 1-litre samples were processed for bacteriophages detection. The spiked samples were inoculated with about 150 PFU of F-specific RNA bacteriophages and somatic coliphages using wastewater. Bacteriophage detection in the water samples was achieved using the standard method without and with a concentration step (electropositive Anodisc membrane or a pretreated electronegative Micro Filtration membrane, MF). For artificially contaminated matrices (drinking and ground waters), recovery rates using the concentration step were superior to 70% whilst analyses without concentration step mainly led to false negative results. Besides, the MF membrane presented higher performances compared with the Anodisc membrane. The concentration of a large volume of water (up to one litre) on a filter membrane avoids false negative results obtained by direct analysis as it allows detecting low number of bacteriophages in water samples. The addition of concentration step before applying the standard method could be useful to enhance the reliability of bacteriophages monitoring in water samples as bio-indicators to highlight faecal pollution. © No claim to French Government works. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  6. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia.

    PubMed

    Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja

    2011-09-01

    Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Streambed-material characteristics and surface-water quality, Green Pond Brook and tributaries, Picatinny Arsenal, New Jersey, 1983-90

    USGS Publications Warehouse

    Storck, D.A.; Lacombe, Pierre

    1996-01-01

    This report presents the results of a study designed to determine whether Green Pond Brook and its tributaries contain contaminated streambed sediments and to characterize the quaity of water in the brook. Results of previous investigations at Picatinny Arsenal, Morris County, New Jersey, indicate that significant contamination of ground water, surface water, and soil is present at the arsenal. Forty-five streambed-material samples were collected for analysis to determine whether contaminants have migrated to the brook from the surrounding area. Samples were analyzed for trace elements, base/neutral- and acid-etractable compounds, insecticides, and other constituents. Results of an electromagnetic-conductivity and natural-gamma-ray survey were used to describe the distribution of particle sizes in streambed and substreambed sediments. Historical results of analyses of streambed-material and surface-water samples also are presented. Samples of streambed material from three areas in Green Pond Brook and its tributaries contained organic and (or) inorganic constituents in concentrations greater than those typically found at the arsenal. These areas are Green Pond Brook, from the area near the outflow of Picatinny Lake downstream to Farley Avenue; Bear Swamp Brook, from the area near building 241 downstream to the confluence with Green Pond Brook; and Green Pond Brook, from the open burning area downstream to the dam near building 1178. Contaminants identified include trace elements, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine insecticides. Surface water in Green Pond Brook contained several volatile organic compounds, including trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene, at maximum concen- trations of 3.8, 4.6, and 11 micrograms per liter, respectively. Volatilization is expected to remove volatile organic compounds in the steep, fast- flowing reaches of the brook. No organic or inorganic constituents were detected in surface- water samples in concentrations greater than the U.S. Environmental Protection Agency primary drinking-water regulations. Only two constituents, iron and manganese, were detected in concen- trations greater than the U.S. Environmental Protection Agency secondary drinking-water regulations.

  8. Contamination assessments of surface water in coastal lagoon (Maluan Bay, China) incorporating biomarker responses and bioaccumulation in hepatopancreas of exposed shrimp (Litopenaeus vannamei)--an integrative approach.

    PubMed

    Wang, Zaosheng; Dong, Xiaoxia; Zhou, Shilei; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2014-01-01

    Maluan Bay, characterized by various degrees of anthropogenic contamination, is considered as one of the most industrialized and urbanized coastal lagoon in China, where large amounts of metal contaminants in surface water and biota were detected in previous studies. However, no clear discriminating power among sampling sites could be made only through comparisons between contaminant levels and Environmental Quality Standards and especially biological-based monitoring integrating biomarkers and bioaccumulation of exposure are scarce. For this purpose, antioxidants enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and glutathione-S-transferase were assessed using the hepatopancreas of shrimp Litopenaeus vannamei after 7 days laboratory exposure under controlled conditions to characterize the effects of polluted waters to shrimps. The metal concentrations of sampled water and bioaccumulation in hepatopancreatic tissues were also analyzed, and data were linked to biomarkers' responses by multivariate (principal component analysis-factor) analysis. A representation of estimated factor scores was performed to confirm the factor descriptions classifying the pollution status and characterizing the studied sites, which pointed out the impact of multiple sources of contaminants to the water quality and provided further evidences to the existence of clear pollution and toxicological gradients in critical areas. The results of the present investigation underlined that the integrated approach could be a powerful tool for the identification of causal toxic contaminants in complex mixtures and the assessment of human-induced environmental quality of the system in coastal zones.

  9. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater-facility-impacted stream reach.

    PubMed

    Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W

    2016-10-15

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.

  10. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    USGS Publications Warehouse

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  11. Health assessment for Neal's Dump, Spencer, Owen County, Indiana, Region 5. CERCLIS No. IND980794549. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Neal's Dump (the site) is located four miles south of Spencer, Indiana, on Pottersville Road. The site is 1/2 acre in size and 20 feet deep. Neal's Dump served as a waste disposal site from approximately 1958 to the early seventies. The Westinghouse Electric Corporation, Bloomington, Indiana, disposed of an unknown amount of capacitors, rage, and sawdust contaminated with polychlorinated biphenyls (PCBs). The contaminated soil on-site has been found to contain very high levels of PCBs. In November 1980, the Environmental Protection Agency (EPA) collected soil samples at Neal's Dump. Results indicated a high concentration of PCBs. Several other organicmore » contaminants have been found on-site. There are several environmental pathways of concern. The migration of PCBs off-site via contaminated groundwater potentially contaminate private residential wells. Also of concern is potential surface water contamination. Additional pathways include contamination of fish and other wildlife from surface water run-off or direct contact with contaminated sediments and soils and wind-driven contaminated soil. This site is of public health concern because a risk to human health exists from exposure to hazardous substances at concentrations that may result in adverse human health effects.« less

  12. The effect of cleaning on blood contamination in the dental surgery following periodontal procedures.

    PubMed

    Edmunds, L M; Rawlinson, A

    1998-10-01

    Blood contamination of 16 surfaces in the dental surgery was investigated using the Kastle-Meyer test for haemoglobin, after three types of periodontal procedures had been performed on a total of 30 patients. The effect of cleaning surfaces contaminated by blood was investigated using the same test. Cleaning materials used in the dental surgery were tested to rule out the possibility of false positive outcomes and the sensitivity of the test was determined prior to the study. The results show a marked variation in the degree of contamination and efficacy of cleaning following treatment. Overall, root planing was associated with the most widespread and frequent blood contamination and gingival surgery the least. The surgery work surface, edge of the spittoon, aspirator tube and ultrasonic scaler handpiece into which the ultrasonic insert fits, were the most frequently contaminated surfaces. The work surface, dentist's pen, light switch and handle were cleaned most effectively. The least effectively cleaned surfaces were the water dispenser switch, aspirator tube, bracket table and ultrasonic scaler handpiece. Methods for reducing this potential source of cross-infection are discussed.

  13. Contaminants Of Emerging Concern Within The Mainstem Of The Ohio River And its Tributaries

    EPA Science Inventory

    Contaminants of emerging concern such as PPCPs, alkylphenols, EDCs, and PFCs in waterways have been of increasing public concern. The extent and persistence of their occurrence in surface waters remains unclear. Though there are many sources of these contaminants, research has ...

  14. Flux Meter Assesses the Effects of Groundwater, Surface Water, and Contaminated Sediment Interactions on Ecosystems

    EPA Science Inventory

    The slow flow of water between groundwater (GW) and surface water (SW) is often referred to as seepage, or in scientific terms, advective flux. This slow flow at the GW/SW interface presents measurement difficulties. This project was conducted to develop a durable advective flux ...

  15. Transfer of Salmonella enterica Serovar Typhimurium from Beef to Tomato through Kitchen Equipment and the Efficacy of Intermediate Decontamination Procedures.

    PubMed

    Gkana, E; Lianou, A; Nychas, G-J E

    2016-07-01

    It is well established that a high percentage of foodborne illness is caused by failure of consumers to prepare food in a hygienic manner. Indeed, a common practice in households is to use the same kitchen equipment for both raw meat and fresh produce. Such a practice may lead to cross-contamination of fruits and vegetables, which are mainly consumed without further processing, with pathogenic microorganisms originating from raw meat. The present study was performed to examine the transfer of the pathogenic bacterium Salmonella enterica serovar Typhimurium from inoculated beef fillets to tomatoes via contact with high-density polyethylene (PE), stainless steel (SS), and wooden (WD) surfaces and through cutting with SS knives. Furthermore, the following decontamination procedures were applied: (i) rinsing with tap water, (ii) scrubbing with tap water and liquid dish detergent, and (iii) using a commercial antibacterial spray. When surfaces and knives that came into contact with contaminated beef fillets were not cleaned prior to handling tomatoes, the lowest level of pathogen transfer to tomatoes was observed through PE surfaces. All of the decontamination procedures applied were more effective on knives than on surfaces, while among the surface materials tested, WD surfaces were the most difficult to decontaminate, followed by PE and SS surfaces. Mechanical cleaning with tap water and detergent was more efficient in decontaminating WD surfaces than using commercial disinfectant spray, followed by rinsing only with water. Specifically, reductions of 2.07 and 1.09 log CFU/cm(2) were achieved by washing the WD surfaces with water and detergent and spraying the surfaces with an antibacterial product, respectively. Although the pathogen's populations on SS and PE surfaces, as well as on tomatoes, after both aforementioned treatments were under the detection limit, the surfaces were all positive after enrichment, and thus, the potential risk of cross-contamination cannot be overlooked. As demonstrated by the results of this study, washing or disinfection of kitchen equipment may not be sufficient to avoid cross-contamination of ready-to-eat foods with foodborne pathogens, depending on the decontamination treatment applied and the material of the surfaces treated. Therefore, separate cutting boards and knives should be used for processing raw meat and preparing ready-to-eat foods in order to enhance food safety.

  16. Assessment of hydrogeologic terrains, well-construction characteristics, groundwater hydraulics, and water-quality and microbial data for determination of surface-water-influenced groundwater supplies in West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Paybins, Katherine S.

    2016-08-30

    Groundwater public-supply systems in areas of high intrinsic susceptibility and with a large number of potential contaminant sources within the recharge or source-water-protection area of individual wells or well fields are potentially vulnerable to contamination and probably warrant further evaluation as potential SWIGS. However, measures can be taken to educate the local population and initiate safety protocols and protective strategies to appropriately manage contaminant sources to prevent release of contaminants to the aquifer, therefore, reducing vulnerability of these systems to contamination. However, each public groundwater supply source needs to be assessed on an individual basis. Data presented in this report can be used to categorize and prioritize wells and springs that have a high potential for intrinsic susceptibility or vulnerability to contamination.

  17. Arsenic contamination in the Kanker district of central-east India: geology and health effects.

    PubMed

    Pandey, P K; Sharma, R; Roy, M; Roy, S; Pandey, M

    2006-10-01

    This paper identifies newer areas of arsenic contamination in the District Kanker, which adjoins the District Rajnandgaon where high contamination has been reported earlier. A correlation with the mobile phase episodes of arsenic contamination has been identified, which further hinges on the complex geology of the area. Arsenic concentrations in both surface and groundwater, aquatic organisms (snail and water weeds) soil and vegetation of Kanker district and its adjoining area have been reported here. The region has been found to contain an elevated level of arsenic. All segments of the ecoysystem are contaminated with arsenic at varying degrees. The levels of arsenic vary constantly depending on the season and location. An analysis of groundwater from 89 locations in the Kanker district has shown high values of arsenic, iron and manganese (mean: 144, 914 and 371 microg L(-1), respectively). The surface water of the region shows elevated levels of arsenic, which is influenced by the geological mineralised zonation. The most prevalent species in the groundwater is As(III), whereas the surface water of the rivers shows a significant contamination with the As(V) species. The analysis shows a bio-concentration of the toxic metals arsenic, nickel, copper and chromium. Higher arsenic concentrations (groundwater concentrations greater than 50 microg L(-1)) are associated with sedimentary deposits derived from volcanic rocks, hence mineral leaching appears to be the source of arsenic contamination. Higher levels of arsenic and manganese in the Kanker district have been found to cause impacts on the flora and fauna. A case study of episodic arsenical diarrhoea is presented.

  18. Effect of oil pollution on fresh groundwater in Kuwait

    NASA Astrophysics Data System (ADS)

    Al-Sulaimi, J.; Viswanathan, M. N.; Székely, F.

    1993-11-01

    Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one.

  19. Natural water purification and water management by artificial groundwater recharge

    PubMed Central

    Balke, Klaus-Dieter; Zhu, Yan

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624

  20. Natural water purification and water management by artificial groundwater recharge.

    PubMed

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  1. Using Contaminant Transport Simulations to Optimize Electrical Resistivity Tomography Survey Design for Improved Contaminant Detection at Lined Ponds

    NASA Astrophysics Data System (ADS)

    Herring, T.; Pidlisecky, A.

    2015-12-01

    The saline flowback water produced during hydraulic fracturing is often stored in lined surface ponds. Leakage from these ponds poses a significant environmental threat and there is a need for a reliable and economical long term monitoring strategy. Electrical resistivity tomography (ERT), being sensitive to changes in groundwater salinity, is therefore well suited to such a problem. The goal of this work is to compare the leak detection capabilities of a surface ERT array and a downhole ERT array. In this study several plausible 3D electrical conductivity models were created that simulated a contaminant plume evolving over time, using realistic contaminant concentrations, plume geometries, water saturation profiles, and seasonal temperature profiles. The forward modeled data were used to identify the advantages and drawbacks of using each ERT array orientation.

  2. GEOPHYSICAL CHARACTERIZATION, REDOX ZONATION, AND CONTAMINANT DISTRIBUTION AT A GROUNDWATER/SURFACE WATER INTERFACE

    EPA Science Inventory

    Three transects along a groundwater/surface water interface were characterized for spatial distributions of chlorinated aliphatic hydrocarbons and geochemical conditions to evaluate the natural bioremediation potential of this environmental system. Partly on the basis of ground p...

  3. Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan

    NASA Astrophysics Data System (ADS)

    Malik, Riffat Naseem; Hashmi, Muhammad Zaffar

    2017-10-01

    Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.

  4. Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.

    PubMed

    Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M

    2017-08-01

    This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sustainable microbial water quality monitoring programme design using phage-lysis and multivariate techniques.

    PubMed

    Nnane, Daniel Ekane

    2011-11-15

    Contamination of surface waters is a pervasive threat to human health, hence, the need to better understand the sources and spatio-temporal variations of contaminants within river catchments. River catchment managers are required to sustainably monitor and manage the quality of surface waters. Catchment managers therefore need cost-effective low-cost long-term sustainable water quality monitoring and management designs to proactively protect public health and aquatic ecosystems. Multivariate and phage-lysis techniques were used to investigate spatio-temporal variations of water quality, main polluting chemophysical and microbial parameters, faecal micro-organisms sources, and to establish 'sentry' sampling sites in the Ouse River catchment, southeast England, UK. 350 river water samples were analysed for fourteen chemophysical and microbial water quality parameters in conjunction with the novel human-specific phages of Bacteroides GB-124 (Bacteroides GB-124). Annual, autumn, spring, summer, and winter principal components (PCs) explained approximately 54%, 75%, 62%, 48%, and 60%, respectively, of the total variance present in the datasets. Significant loadings of Escherichia coli, intestinal enterococci, turbidity, and human-specific Bacteroides GB-124 were observed in all datasets. Cluster analysis successfully grouped sampling sites into five clusters. Importantly, multivariate and phage-lysis techniques were useful in determining the sources and spatial extent of water contamination in the catchment. Though human faecal contamination was significant during dry periods, the main source of contamination was non-human. Bacteroides GB-124 could potentially be used for catchment routine microbial water quality monitoring. For a cost-effective low-cost long-term sustainable water quality monitoring design, E. coli or intestinal enterococci, turbidity, and Bacteroides GB-124 should be monitored all-year round in this river catchment. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Campagne, Antoine; Hassaini, Roumaissa; Redor, Ivan; Sommeria, Joël; Valran, Thomas; Viboud, Samuel; Mordant, Nicolas

    2018-04-01

    We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility, which is a 13-m-diam wave tank. We took care of cleaning surface contamination as well as possible, considering that the surface of water exceeds 100 m2. We observe that for the cleanest condition the frequency energy spectrum shows a power-law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the weak turbulence theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

  7. Evaluation Of The Physical Stability, Ground Water Seepage Control, And Faunal Changes Associated With An AquaBlok® Sediment Cap

    EPA Science Inventory

    Active sediment caps are being considered for addressing contaminated sediment areas in surface-water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study a...

  8. FIELD SCALE EVALUATION OF TREATMENT OF TCE IN A BIOWALL AT THE OU-1 SITE

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  9. Adsorption of Eu(III) onto roots of water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, C.; Mielke, R.E.; Dimaquibo, D.

    1999-05-01

    The water hyacinth (Eichhornia crassipes) has drawn attention as a plant capable of removing pollutants, including toxic metals, from water. The authors are interested in the capacity of the water hyacinth to remediate aquatic environments that have been contaminated with the lanthanide metal, europium Eu(III). Using scanning electron microscopy (SEM) they have been able to determine that Eu(III) is adsorbed onto the surface of the roots from water and that the highest concentration of Eu(III) is on the root hairs. X-ray absorption spectroscopy (XAS) techniques were used to speciate the Eu(III) adsorbed onto the surface of the roots. The XASmore » data for Eu-contaminated water hyacinth roots provides evidence of a Eu-oxygen environment and establishes that Eu(III) is coordinated to 10--11 oxygen atoms at a distance of 2.44 {angstrom}. This likely involves binding of Eu(III) to the root via carboxylate groups and hydration of Eu(III) at the root surface.« less

  10. Seasonal variation and potential sources of Cryptosporidium contamination in surface waters of Chao Phraya River and Bang Pu Nature Reserve pier, Thailand.

    PubMed

    Koompapong, Khuanchai; Sukthana, Yaowalark

    2012-07-01

    Using molecular techniques, a longitudinal study was conducted with the aims at identifying the seasonal difference of Cryptosporidium contamination in surface water as well as analyzing the potential sources based on species information. One hundred forty-four water samples were collected, 72 samples from the Chao Phraya River, Thailand, collected in the summer, rainy and cool seasons and 72 samples from sea water at Bang Pu Nature Reserve pier, collected before, during and after the presence of migratory seagulls. Total prevalence of Cryptosporidium contamination in river and sea water locations was 11% and 6%, respectively. The highest prevalence was observed at the end of rainy season continuing into the cool season in river water (29%) and in sea water (12%). During the rainy season, prevalence of Cryptosporidium was 4% in river and sea water samples, but none in summer season. All positive samples from the river was C. parvum, while C. meleagridis (1), and C. serpentis (1) were obtained from sea water. To the best of our knowledge, this is the first genetic study in Thailand of Cryptosporidium spp contamination in river and sea water locations and the first report of C. serpentis, suggesting that humans, household pets, farm animals, wildlife and migratory birds may be the potential sources of the parasites. The findings are of use for implementing preventive measures to reduce the transmission of cryptosporidiosis to both humans and animals.

  11. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas.

    PubMed

    Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T

    2010-02-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests.

  12. A comparative study on laser induced shock cleaning of radioactive contaminants in air and water

    NASA Astrophysics Data System (ADS)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.

    2018-03-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.

  13. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources.

    PubMed

    Goss, Michael; Richards, Charlene

    2008-06-01

    Source water protection planning (SWPP) is an approach to prevent contamination of ground and surface water in watersheds where these resources may be abstracted for drinking or used for recreation. For SWPP the hazards within a watershed that could contribute to water contamination are identified together with the pathways that link them to the water resource. In rural areas, farms are significant potential sources of pathogens. A risk-based index can be used to support the assessment of the potential for contamination following guidelines on safety and operational efficacy of processes and practices developed as beneficial approaches to agricultural land management. Evaluation of the health risk for a target population requires knowledge of the strength of the hazard with respect to the pathogen load (massxconcentration). Manure handling and on-site wastewater treatment systems form the most important hazards, and both can comprise confined and unconfined source elements. There is also a need to understand the modification of pathogen numbers (attenuation) together with characteristics of the established pathways (surface or subsurface), which allow the movement of the contaminant species from a source to a receptor (water source). Many practices for manure management have not been fully evaluated for their impact on pathogen survival and transport in the environment. A key component is the identification of potential pathways of contaminant transport. This requires the development of a suitable digital elevation model of the watershed for surface movement and information on local groundwater aquifer systems for subsurface flows. Both require detailed soils and geological information. The pathways to surface and groundwater resources can then be identified. Details of land management, farm management practices (including animal and manure management) and agronomic practices have to be obtained, possibly from questionnaires completed by each producer within the watershed. To confirm that potential pathways are active requires some microbial source tracking. One possibility is to identify the molecular types of Escherichia coli present in each hazard on a farm. An essential part of any such index is the identification of mitigation strategies and practices that can reduce the magnitude of the hazard or block open pathways.

  14. Hydrogeologic framework of the shallow ground-water system in the Cox Hall Creek basin, Cape May County, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre J.; Zapecza, Otto S.

    2006-01-01

    Cape May County is investigating the feasibility of restoring the lowermost reach of Cox Hall Creek to its former state as a tidal saltwater wetland; however, the potential for contamination of the shallow ground-water system, which provides water to hundreds of nearby privately owned domestic wells, with saltwater from the restored wetland is of particular concern. To evaluate the potential effectiveness and risks of restoring the saltwater wetlands, the County needs information about the hydrogeologic framework in the area, and about the potential vulnerability of the domestic wells to contamination. The shallow ground-water system in the Cox Hall Creek area consists of unconsolidated Holocene and Pleistocene deposits. The Holly Beach water-bearing zone, the unconfined (water-table) aquifer, is about 35 feet thick and contains a 2- to 4-foot-thick clay lens about 10 feet below land surface; a lower, more discontinuous clay lens about 30 to 35 feet below land surface ranges up to 5 feet in thickness. A 75-foot-thick confining unit separates the Holly Beach water-bearing zone from the underlying estuarine sand aquifer. The clay lenses in the Holly Beach water-bearing zone likely retard the movement of contaminants from septic tanks, lawns, and other surficial sources, protecting wells that tap the lower, sandy part of the aquifer. The clay lenses also may protect these wells from salty surface water if withdrawals from the Holly Beach water-bearing zone are not increased substantially. Deeper wells that tap the estuarine sand aquifer are more effectively protected from saltwater from surface sources because of the presence of the overlying confining unit.

  15. Environmental Education: Where Does Your Water Come From?

    EPA Pesticide Factsheets

    This document contains instructions for a taste test will illustrate the differences between groundwater and surface water, highlight some of the common contaminants in natural water and encourage student thought on the sources of drinking water.

  16. Dynamics of organochlorine contaminants in surface water and in Myriophyllum aquaticum plants of the River Xanaes in central Argentina during the annual dry season.

    PubMed

    Schreiber, René; Harguinteguy, Carlos A; Manetti, Martin D

    2013-10-01

    The dynamics of organochlorine pesticides (OCPs) and their major metabolites were studied in surface waters and plants of the River Xanaes (province of Córdoba, Argentina) during the annual dry season. The results of the 5-month monitoring study (April to August 2010) showed similar low contamination levels in nonagricultural mountain and agricultural areas in both water and plants. The concentrations of compounds detected in the surface water were <4.5 ng L(-1), whereas concentrations of these substances in Myriophyllum aquaticum plants were <5 μg kg(-1) (dry weight) with the exception of trans-permethrin (17.6 μg kg(-1), dry weight). Because no notable differences in the contamination level between samples from the mountain and the agricultural area were observed, it was assumed that OCPs may not play an important role in today's pesticide use in this area. Furthermore, the concentration-time trends for OCPs in the submerged plants showed a generally similar elimination behaviour independent of compound and sampling site, thus indicating an integral rather then a substance-specific process, such as partitioning between the plant and the ambient water. As known, rooted macrophytes can take up contaminants by way of roots, so sediments may be the principal source. To understand the dynamics of these compounds in the river area more deeply, thus further research should include study of the river sediment.

  17. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D

    2012-01-01

    Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required for modelling contaminant loads from impermeable surfaces.

  18. Susceptibility of major aquifers to surface contamination - Holmes, Humphreys, Issaquena, Sharkey, Washington, and Yazoo Counties, Mississippi

    USGS Publications Warehouse

    Moreland, Richard S.; O'Hara, Charles G.

    1994-01-01

    A geographic information system was used to integrate digital spatial data sets describing geology, slope of the land surface, depth to water table, soil permeability, and land use/land cover to rate the relative susceptibility of unconfined parts of the Mississippi River alluvial, Cockfield, and Sparta aquifers in west-central Mississippi to contamination from surface sources. Areas were rated as having a very low, low, moderate, high, or very high susceptibility to contamination from surface sources. Less than 1 percent of the Mississippi River alluvial aquifer has a very high susceptibility to surface contamination, 35 percent has a high susceptibility, 62 percent has a moderate susceptibility, and 2 percent has a low suscepti- bility. About 43 percent of the Cockfield aquifer has a high susceptibility to surface contamination, 57 percent has a moderate susceptibility, and less than 1 percent has a low susceptibility. About 41 percent of the Sparta aquifer has a high suscepti- bility, and less than 1 percent has a low suscepti- bility, and 1 percent has a low susceptibility. For all three aquifers, less than 1 percent has a very low susceptibility to surface contamination.

  19. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutton, Rick

    2012-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outsidemore » the site boundaries have not been affected by project-related contaminants.« less

  20. Influence of land use and watershed characteristics on protozoa contamination in a potential drinking water resources reservoir.

    PubMed

    Keeley, Ann; Faulkner, Barton R

    2008-05-01

    Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The watershed serves rural agricultural communities active in cattle ranching, recreation, and is a potential drinking water source. A total of 193 surface water samples were tested over a 27-month period to determine levels of parasite contamination. The overall occurrence of Cryptosporidium oocysts was higher in both frequency and concentration than Giardia cysts. Cryptosporidium oocysts were found in 99% and Giardia cysts in 87% of the samples. Although Cryptosporidium and Giardia occurrence were significantly but not strongly correlated, all other correlation coefficients including turbidity and total dissolved solids were non-significant. Statistically supportable seasonal variations were found suggesting that Cryptosporidium and Giardia were higher in summer and fall than in other seasons of the year. While Cryptosporidium levels were correlated with rainfall, this was not the case with Giardia. The maximum numbers for both protozoan parasites were detected from a site impacted by cattle ranching during calving season. Restriction fragment length polymorphism analysis was used for confirmation of Cryptosporidium in surface waters influenced by agricultural discharges. As we had expected, oocysts were of the bovine type indicating that the Cryptosporidium parvum detected in surface waters perhaps came from cattle living in the watershed.

  1. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXTmore » Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.« less

  2. HIGH PERFORMANCE SIDE-STREAM NITRIFICATION OF MUNICIPAL BIOSOLIDS TREATMENT DECANTS

    EPA Science Inventory

    Nutrient (i.e. nitrogen) contamination of surface waters constitutes one of the most pervasive problems facing wastewater treatment works across the country. Nitrogen discharge to surface water occurs mostly in the form of ammonia which is identified as the most toxic nitrogen sp...

  3. Municipal Wastewater Treatment Plant Biosludge Applications and Perfluoroalkyl Acid Surface Water Contamination in North Carolina

    EPA Science Inventory

    Implications and Questions- Perfluorinated compounds at high concentrations in sludges, on fields, in surface water in areas receiving sludge applications-Urban and suburban sludges typically disposed of in rural locations, usually marketed as “free fertilizer” becaus...

  4. Methanogenic biodegradation of creosote contaminants in natural and simulated ground-water ecosystems

    USGS Publications Warehouse

    Godsy, E. Michael; Goerlitz, Donald; Grbic-Galic, Dunja

    1992-01-01

    Wastes from a wood preserving plant in Pensacola, Florida have contaminated the near-surface sand-and-gravel aquifer with creosote-derived compounds and pentachlorophenol. Contamination resulted from the discharge of plant waste waters to and subsequent seepage from unlined surface impoundments that were in direct hydraulic contact with the ground water. Two distinct phases resulted when the creosote and water mixed: a denser than water hydrocarbon phase that moved vertically downward, and an organic-rich aqueous phase that moved laterally with the ground-water flow. The aqueous phase is enriched in organic acids, phenolic compounds, single- and double-ring nitrogen, sulfur, and oxygen containing compounds, and single- and double-ring aromatic hydrocarbons. The ground water is devoid of dissolved O2, is 60-70% saturated with CH4 and contains H2S. Field analyses document a greater decrease in concentration of organic fatty acids, benzoic acid, phenol, 2-, 3-, 4-methylphenol, quinoline, isoquinoline, 1(2H)-quinolinone, and 2(1H)-isoquinolinone during downgradient movement in the aquifer than could be explained by dilution and/or dispersion. Laboratory microcosm studies have shown that within the study region, this effect can be attributed to microbial degradation to CH4 and CO2. A small but active methanogenic population was found on sediment materials taken from highly contaminated parts of the aquifer.

  5. Overview of environmental and hydrogeologic conditions at Fort Yukon, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The village of Fort Yukon along the Yukon River in east-central Alaska has long cold winters and short summers. The Federal Aviation Administration operates and supports some airport facilities in Fort Yukon and is evaluating the severity of environmental contamination and options for remediation of such contamination at their facilites. Fort Yukon is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available from local surface-water bodies or from presently unidentified confined aquifers.

  6. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.

    PubMed

    Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D

    2017-09-06

    Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.

  7. Microbial contamination of vegetable crop and soil profile in arid regions under controlled application of domestic wastewater

    PubMed Central

    Balkhair, Khaled S.

    2015-01-01

    Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571

  8. Characterization and identification of Na-Cl sources in ground water

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O'Kelly, D. J.

    2006-01-01

    Elevated concentrations of sodium (Na+) and chloride (Cl -) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br-), and iodide (I-) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I- and Br-; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources. Copyright ?? 2005 National Ground Water Association.

  9. Health assessment for Louisiana Army Ammunition Plant, Shreveport, Webster County, Louisiana, Region 6. CERCLIS No. LA0213820533. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-10

    The Louisiana Army Ammunition Plant (LAAP) is listed on the National Priorities List. The site is a 15,000-acre Federal facility located in Shreveport (Webster Parish), Louisiana. On-site ground water beneath 16 unlined surface impoundments near the southern boundary is contaminated. Access to LAAP is restricted and under 24-hour security. Contaminants include 2,4,6-trinitrotoluene (TNT), cyclonite (RDX), trinitrobenzene (TNB), and homocyclonite (HMX). Preliminary on-site sampling results have identified TNT (493,133 ppm in sediment/subsoil, 483,556 ppm in sludge, 1,033 ppm in surface soil, 7 ppm in surface water, and 18 ppm in ground water), RDX (60,224 ppm in sediment/subsoil, 602 ppm in surfacemore » soil, 60,224 ppm in sludge, and 14 ppm in ground water), TNB (2 ppm in surface water and 8 ppm in ground water), and HMX (4 ppm in ground water). Based on available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of human exposure to hazardous substances.« less

  10. Reduction of point contamination sources of pesticide from a vineyard farm.

    PubMed

    Fait, Gabriella; Nicelli, Marco; Fragoulis, George; Trevisan, Marco; Capri, Ettore

    2007-05-01

    Although plant protection products are already regulated in Europe under Directive 91/414/EEC, there is increasing concern about the pollution of ground and surface water caused by point sources of pesticides, such as tank filling, spillages, faulty equipment, washing, waste disposal, and direct contamination. One tool for the reduction of pesticide point source contamination is a biological system where chemicals are bound and biologically degraded. This paper presents an offset lined system where wastewaters containing pesticide residues leach through a biomix. A pump system is provided to pump the water onto the surface of the biomix and allow it to drain under gravity, keeping the biomix wet. The analysis of residues of nine pesticides in the water, biomix, and sediment inside the tank showed the biobed to function well, with a water decontamination greater than 90%. The use of this system mitigated the potential for pollution (pesticide concentrations higher than 0.1 microg/L) of 1 km of the river system surrounding the farm.

  11. International Space Station External Contamination Status

    NASA Technical Reports Server (NTRS)

    Mikatarian, Ron; Soares, Carlos

    2000-01-01

    PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.

  12. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    EPA Science Inventory

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  13. Groundwater Quality, Age, and Probability of Contamination, Eagle River Watershed Valley-Fill Aquifer, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, Niel

    2009-01-01

    The Eagle River watershed is located near the destination resort town of Vail, Colorado. The area has a fastgrowing permanent population, and the resort industry is rapidly expanding. A large percentage of the land undergoing development to support that growth overlies the Eagle River watershed valley-fill aquifer (ERWVFA), which likely has a high predisposition to groundwater contamination. As development continues, local organizations need tools to evaluate potential land-development effects on ground- and surface-water resources so that informed land-use and water management decisions can be made. To help develop these tools, the U.S. Geological Survey (USGS), in cooperation with Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority, conducted a study in 2006-2007 of the groundwater quality, age, and probability of contamination in the ERWVFA, north-central Colorado. Ground- and surface-water quality samples were analyzed for major ions, nutrients, stable isotopes of hydrogen and oxygen in water, tritium, dissolved gases, chlorofluorocarbons (CFCs), and volatile organic compounds (VOCs) determined with very low-level laboratory methods. The major-ion data indicate that groundwaters in the ERWVFA can be classified into two major groups: groundwater that was recharged by infiltration of surface water, and groundwater that had less immediate recharge from surface water and had elevated sulfate concentrations. Sulfate concentrations exceeded the USEPA National Secondary Drinking Water Regulations (250 milligrams per liter) in many wells near Eagle, Gypsum, and Dotsero. The predominant source of sulfate to groundwater in the Eagle River watershed is the Eagle Valley Evaporite, which is a gypsum deposit of Pennsylvanian age located predominantly in the western one-half of Eagle County.

  14. Assessment of ground-water contamination near Lantana landfill, Southeast Florida

    USGS Publications Warehouse

    Russell, G.M.; Higer, A.L.

    1988-01-01

    The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.The Lantana landfill located in Palm Beach County rises 40 to 50 feet above normal ground level and consists of about 250 acres of compacted garbage and trash, some below the water table. Surface-resistivity measurements and water-quality analyses indicate a contaminant plume along the eastern perimeter of the landfill that has migrated about 300 feet eastward toward an adjacent lake. Concentrations of chloride, ammonia, and nitrate were elevated within the plume. The surficial aquifer consists primarily of sand from 0 to about 68 feet, and sand interbedded with sandstone and limestone from 68 to 220 feet. A slight hydraulic gradient exists, indicating ground-water movement from the landfill toward a lake to the east. Analyses of geoelectric, lithologic, and water-quality data indicate that surface geophysical techniques were successful in determining the areal and vertical extent of leachate migration at this location.

  15. Contamination of surface, ground, and drinking water from pharmaceutical production.

    PubMed

    Fick, Jerker; Söderström, Hanna; Lindberg, Richard H; Phan, Chau; Tysklind, Mats; Larsson, D G Joakim

    2009-12-01

    Low levels of pharmaceuticals are detected in surface, ground, and drinking water worldwide. Usage and incorrect disposal have been considered the major environmental sources of these microcontaminants. Recent publications, however, suggest that wastewater from drug production can potentially be a source of much higher concentrations in certain locations. The present study investigated the environmental fate of active pharmaceutical ingredients in a major production area for the global bulk drug market. Water samples were taken from a common effluent treatment plant near Hyderabad, India, which receives process water from approximately 90 bulk drug manufacturers. Surface water was analyzed from the recipient stream and from two lakes that are not contaminated by the treatment plant. Water samples were also taken from wells in six nearby villages. The samples were analyzed for the presence of 12 pharmaceuticals with liquid chromatography-mass spectrometry. All wells were determined to be contaminated with drugs. Ciprofloxacin, enoxacin, cetirizine, terbinafine, and citalopram were detected at more than 1 microg/L in several wells. Very high concentrations of ciprofloxacin (14 mg/L) and cetirizine (2.1 mg/L) were found in the effluent of the treatment plant, together with high concentrations of seven additional pharmaceuticals. Very high concentrations of ciprofloxacin (up to 6.5 mg/L), cetirizine (up to 1.2 mg/L), norfloxacin (up to 0.52 mg/L), and enoxacin (up to 0.16 mg/L) were also detected in the two lakes, which clearly shows that the investigated area has additional environmental sources of insufficiently treated industrial waste. Thus, insufficient wastewater management in one of the world's largest centers for bulk drug production leads to unprecedented drug contamination of surface, ground, and drinking water. This raises serious concerns regarding the development of antibiotic resistance, and it creates a major challenge for producers and regulatory agencies to improve the situation.

  16. Water Adsorption and Dissociation on Polycrystalline Copper Oxides: Effects of Environmental Contamination and Experimental Protocol

    DOE PAGES

    Trotochaud, Lena; Head, Ashley R.; Pletincx, Sven; ...

    2017-11-02

    We use ambient-pressure X-ray photoelectron spectroscopy (APXPS) to study chemical changes, including hydroxylation and water adsorption, at copper oxide surfaces from ultrahigh vacuum to ambient relative humidities of ~5%. Polycrystalline CuO and Cu 2O surfaces were prepared by selective oxidation of metallic copper foils. For both oxides, hydroxylation occurs readily, even at high-vacuum conditions. Hydroxylation on both oxides plateaus near ~0.01% relative humidity (RH) at a coverage of ~1 monolayer. In contrast to previous studies, neither oxide shows significant accumulation of molecular water; rather, both surfaces show a high affinity for adventitious carbon contaminants. Results of isobaric and isothermic experimentsmore » are compared, and the strengths and potential drawbacks of each method are discussed. We also provide critical evaluations of the effects of the hot filament of the ion pressure gauge on the reactivity of gas-phase species, the peak fitting procedure on the quantitative analysis of spectra, and rigorous accounting of carbon contamination on data analysis and interpretation. Lastly, this work underscores the importance of considering experimental design and data analysis protocols during APXPS experiments with water vapor in order to minimize misinterpretations arising from these factors.« less

  17. Quadrant III RFI draft report: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The purpose of the RCRA Facility Investigation (RFI) at The Portsmouth Gaseous Diffusion Plant (PORTS) is to acquire, analyze and interpret data that will: characterize the environmental setting, including ground water, surface water and sediment, soil and air; define and characterize sources of contamination; characterize the vertical and horizontal extent and degree of contamination of the environment; assess the risk to human health and the environment resulting from possible exposure to contaminants; and support the Corrective Measures Study (CMS), which will follow the RFI, if required. A total of 18 Solid Waste Management Units (SWMU's) were investigated. All surficial soilmore » samples (0--2 ft), sediment samples and surface-water samples proposed in the approved Quadrant III RFI Work Plan were collected as specified in the approved work plan and RFI Sampling Plan. All soil, sediment and surface-water samples were analyzed for parameters specified from the Target Compound List and Target Analyte List (TCL/TAL) as listed in the US EPA Statement of Work for Inorganic (7/88a) and Organic (2/88b) analyses for Soil and Sediment, and analyses for fluoride, Freon-113 and radiological parameters (total uranium, gross alpha, gross beta and technetium).« less

  18. Quadrant III RFI draft report: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-01

    The purpose of the RCRA Facility Investigation (RFI) at The Portsmouth Gaseous Diffusion Plant (PORTS) is to acquire, analyze and interpret data that will: characterize the environmental setting, including ground water, surface water and sediment, soil and air; define and characterize sources of contamination; characterize the vertical and horizontal extent and degree of contamination of the environment; assess the risk to human health and the environment resulting from possible exposure to contaminants; and support the Corrective Measures Study (CMS), which will follow the RFI, if required. A total of 18 Solid Waste Management Units (SWMU`s) were investigated. All surficial soilmore » samples (0--2 ft), sediment samples and surface-water samples proposed in the approved Quadrant III RFI Work Plan were collected as specified in the approved work plan and RFI Sampling Plan. All soil, sediment and surface-water samples were analyzed for parameters specified from the Target Compound List and Target Analyte List (TCL/TAL) as listed in the US EPA Statement of Work for Inorganic (7/88a) and Organic (2/88b) analyses for Soil and Sediment, and analyses for fluoride, Freon-113 and radiological parameters (total uranium, gross alpha, gross beta and technetium).« less

  19. Water Adsorption and Dissociation on Polycrystalline Copper Oxides: Effects of Environmental Contamination and Experimental Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trotochaud, Lena; Head, Ashley R.; Pletincx, Sven

    We use ambient-pressure X-ray photoelectron spectroscopy (APXPS) to study chemical changes, including hydroxylation and water adsorption, at copper oxide surfaces from ultrahigh vacuum to ambient relative humidities of ~5%. Polycrystalline CuO and Cu 2O surfaces were prepared by selective oxidation of metallic copper foils. For both oxides, hydroxylation occurs readily, even at high-vacuum conditions. Hydroxylation on both oxides plateaus near ~0.01% relative humidity (RH) at a coverage of ~1 monolayer. In contrast to previous studies, neither oxide shows significant accumulation of molecular water; rather, both surfaces show a high affinity for adventitious carbon contaminants. Results of isobaric and isothermic experimentsmore » are compared, and the strengths and potential drawbacks of each method are discussed. We also provide critical evaluations of the effects of the hot filament of the ion pressure gauge on the reactivity of gas-phase species, the peak fitting procedure on the quantitative analysis of spectra, and rigorous accounting of carbon contamination on data analysis and interpretation. Lastly, this work underscores the importance of considering experimental design and data analysis protocols during APXPS experiments with water vapor in order to minimize misinterpretations arising from these factors.« less

  20. The importance of waterborne disease outbreak surveillance in the United States.

    PubMed

    Craun, Gunther Franz

    2012-01-01

    Analyses of the causes of disease outbreaks associated with contaminated drinking water in the United States have helped inform prevention efforts at the national, state, and local levels. This article describes the changing nature of disease outbreaks in public water systems during 1971-2008 and discusses the importance of a collaborative waterborne outbreak surveillance system established in 1971. Increasing reports of outbreaks throughout the early 1980s emphasized that microbial contaminants remained a health-risk challenge for suppliers of drinking water. Outbreak investigations identified the responsible etiologic agents and deficiencies in the treatment and distribution of drinking water, especially the high risk associated with unfiltered surface water systems. Surveillance information was important in establishing an effective research program that guided government regulations and industry actions to improve drinking water quality. Recent surveillance statistics suggest that prevention efforts based on these research findings have been effective in reducing outbreak risks especially for surface water systems.

  1. Seasonality of Cryptosporidium oocyst detection in surface waters of Meru, Kenya as determined by two isolation methods followed by PCR

    PubMed Central

    Muchiri, John M.; Ascolillo, Luke; Mugambi, Mutuma; Mutwiri, Titus; Ward, Honorine D.; Naumova, Elena N.; Egorov, Andrey I.; Cohen, Seth; Else, James G.; Griffiths, Jeffrey K.

    2009-01-01

    Meru, Kenya has watersheds which are shared by wildlife, humans and domesticated animals. These surface waters can be contaminated by the waterborne pathogen Cryptosporidium. To quantify the seasonality and prevalence of Cryptosporidium in Meru regional surface waters, we used a calcium carbonate flocculation (CCF) and sucrose floatation method, and a filtration and immunomagnetic bead separation method, each of which used PCR for Cryptosporidium detection and genotyping. Monthly water samples were collected from January through June in 2003 and 2004, bracketing two April-May rainy seasons. We detected significant seasonality with 8 of 9 positive samples from May and June (p < 0.0014), which followed peak rainy season precipitation and includes some of the subsequent dry season. Six of 9 positive samples revealed C. parvum, and 3 contained C. andersoni. None contained C. hominis. Our results indicate that Meru surface waters are Cryptosporidium-contaminated at the end of rainy seasons, consistent with the timing of human infections reported by others from East Africa and contrasting with the onset of rainy season peak incidence reported from West Africa. PMID:18957776

  2. Geohydrology and susceptibility of major aquifers to surface contamination in Alabama; area 12

    USGS Publications Warehouse

    Scott, J.C.; Cobb, R.H.

    1988-01-01

    This report delineates and describes the geohydrology and susceptibility of major aquifers to contamination in Coffee, Dale, Henry, Houston, and Geneva Counties, Alabama. The major aquifers are the Upper Floridan, Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers. Estimated groundwater withdrawals for public water supplies are about 42 million gal/day. Maximum withdrawals for irrigation are 15 to 20 million gal/day. Withdrawals for self-supplied industrial and domestic uses are estimated to be 3 and 2.5 million gal/day, respectively. Long-term withdrawals of water from the Nanafalia-Clayton aquifer have resulted in significant declines in the potentiometric surface in Coffee, Dale, and Houston Counties. Significant declines in the potentiometric surfaces of the other major aquifers are not apparent. Recharge areas for all major aquifers are susceptible to contamination, but the probability of contamination of the Lisbon, Nanafalia-Clayton, and Providence-Ripley aquifers is low because the recharge areas are remote from areas of withdrawal. The recharge area for the Floridan aquifer, which consists largely of flat, sandy farmland , coincides with the area of use. This area is highly susceptible to contamination from insecticides and herbicides. (USGS)

  3. Beaver Fever: Whole-Genome Characterization of Waterborne Outbreak and Sporadic Isolates To Study the Zoonotic Transmission of Giardiasis.

    PubMed

    Tsui, Clement K-M; Miller, Ruth; Uyaguari-Diaz, Miguel; Tang, Patrick; Chauve, Cedric; Hsiao, William; Isaac-Renton, Judith; Prystajecky, Natalie

    2018-04-25

    Giardia causes the diarrheal disease known as giardiasis; transmission through contaminated surface water is common. The protozoan parasite's genetic diversity has major implications for human health and epidemiology. To determine the extent of transmission from wildlife through surface water, we performed whole-genome sequencing (WGS) to characterize 89 Giardia duodenalis isolates from both outbreak and sporadic infections: 29 isolates from raw surface water, 38 from humans, and 22 from veterinary sources. Using single nucleotide variants (SNVs), combined with epidemiological data, relationships contributing to zoonotic transmission were described. Two assemblages, A and B, were identified in surface water, human, and veterinary isolates. Mixes of zoonotic assemblages A and B were seen in all the community waterborne outbreaks in British Columbia (BC), Canada, studied. Assemblage A was further subdivided into assemblages A1 and A2 based on the genetic variation observed. The A1 assemblage was highly clonal; isolates of surface water, human, and veterinary origins from Canada, United States, and New Zealand clustered together with minor variation, consistent with this being a panglobal zoonotic lineage. In contrast, assemblage B isolates were variable and consisted of several clonal lineages relating to waterborne outbreaks and geographic locations. Most human infection isolates in waterborne outbreaks clustered with isolates from surface water and beavers implicated to be outbreak sources by public health. In-depth outbreak analysis demonstrated that beavers can act as amplification hosts for human infections and can act as sources of surface water contamination. It is also known that other wild and domesticated animals, as well as humans, can be sources of waterborne giardiasis. This study demonstrates the utility of WGS in furthering our understanding of Giardia transmission dynamics at the water-human-animal interface. IMPORTANCE Giardia duodenalis causes large numbers of gastrointestinal illness in humans. Its transmission through the contaminated surface water/wildlife intersect is significant, and the water-dwelling rodents beavers have been implicated as one important reservoir. To trace human infections to their source, we used genome techniques to characterize genetic relationships among 89 Giardia isolates from surface water, humans, and animals. Our study showed the presence of two previously described genetic assemblages, A and B, with mixed infections detected from isolates collected during outbreaks. Study findings also showed that while assemblage A could be divided into A1 and A2, A1 showed little genetic variation among animal and human hosts in isolates collected from across the globe. Assemblage B, the most common type found in the study surface water samples, was shown to be highly variable. Our study demonstrates that the beaver is a possible source of human infections from contaminated surface water, while acknowledging that theirs is only one role in the complex cycle of zoonotic spread. Mixes of parasite groups have been detected in waterborne outbreaks. More information on Giardia diversity and its evolution using genomics will further the understanding of the epidemiology of spread of this disease-causing protozoan. © Crown copyright 2018.

  4. Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications.

    PubMed

    Pisarenko, Aleksey N; Stanford, Benjamin D; Yan, Dongxu; Gerrity, Daniel; Snyder, Shane A

    2012-02-01

    An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV(254) absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan.

    PubMed

    Rehman, Inayat Ur; Ishaq, Muhammad; Ali, Liaqat; Khan, Sardar; Ahmad, Imtiaz; Din, Imran Ud; Ullah, Hameed

    2018-06-15

    This study focuses on enrichment, spatial distribution, potential ecological risk index (PERI) and human health risk of various toxic metals taken via soil and surface water in the vicinity of Sewakht mines, Pakistan. The samples of soils (n = 54) of different fields and surface water (n = 38) were analyzed for toxic metals including cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), nickel (Ni), zinc (Zn) and molybdenum (Mo). Soil pollution level was evaluated using pollution indices including geo-accumulation index (Igeo), contamination factor (CF), degree of contamination (CD), enrichment factor (EF) and PERI. CF showed moderate contamination of soil with Cd, Co, Fe and Mo, while Igeo values indicated moderate accumulation of Cu. For Cd, EF> 1.5 was found in agricultural soils of the study area. PERI findings presented a very high ecological risk (PERI > 380) at two sites (4%), considerable ecological risk at four sites (7.4%). Non-carcinogenic risk from exposure to Fe in soil was higher than limit (HI > 1) for both children and adults. Moreover, carcinogenic risk postured by soil contaminants i.e. Cd, Cr, Co and Ni in children was higher than their limits (except Pb), while in adults only Co posed higher risk of cancer than the limit (10 -4 ) through soil exposure. Non-carcinogenic risks in children due to Cd, Co, Mo via surface water intake were higher than their safe limits (HQ > 1), while in adults the risk order was Cr > Cd > Cu > Pb > Co > Mo. Moreover, carcinogenic risk exposure due to Co > Cd > Cr > Ni from surface water (except Pb) was higher than the tolerable limit (1 × 10 -4 ) both for children and adults. However, Pb concentrations in both soil and surface water exposure were not likely to cause cancer risk in the local population. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  7. Sorbent materials for rapid remediation of wash water during radiological event relief

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolin, William C.; Kaminski, Michael

    2016-11-01

    Procedures for removing harmful radiation from interior and exterior surfaces of homes and businesses after a nuclear or radiological disaster may generate large volumes of radiologically contaminated waste water. Rather than releasing this waste water to potentially contaminate surrounding areas, it is preferable to treat it onsite. Retention barrels are a viable option because of their simplicity in preparation and availability of possible sorbent materials. This study investigated the use of aluminosilicate clay minerals as sorbent materials to retain 137Cs, 85Sr, and 152Eu. Vermiculite strongly retained 137Cs, though other radionuclides displayed diminished affinity for the surface. Montmorillonite exhibited increased affinitymore » to sorb 85Sr and 152Eu in the presence of higher concentrations of 137Cs. To simulate flow within retention barrels, vermiculite was mixed with sand and used in small-scale column experiments. The GoldSim contaminate fate module was used to model breakthrough and assess the feasibility of using clay minerals as sorbent materials in retention barrels. The modeled radionuclide breakthrough profiles suggest that vermiculite-sand and montmorillonite-sand filled barrels could be used for treatment of contaminated water generated from field operations.« less

  8. Field-based Metabolomics for Assessing Contaminated Surface Waters

    EPA Science Inventory

    Metabolomics is becoming well-established for studying chemical contaminant-induced alterations to normal biological function. For example, the literature contains a wealth of laboratory-based studies involving analysis of samples from organisms exposed to individual chemical tox...

  9. Recommended Practices to Improve Nurse Tank Safety: Phase II

    DOT National Transportation Integrated Search

    2013-12-01

    This project addressed four topics: Pinhole leaks in nurse tanks were studied by radiography, serial milling, and side-angle ultrasound. These measurements indicated that welding surfaces contaminated by water, mill scale, rust, or other contamin...

  10. Sublethal microcystin exposure and biochemical outcomes among hemodialysis patients

    EPA Science Inventory

    Cyanobacteria are commonly-occurring contaminants of surface waters worldwide. Microcystins, potent hepatotoxins, are among the best characterized cyanotoxins. During November, 2001, a group of 44 hemodialysis patients were exposed to microcystins via contaminated dialysate. Seru...

  11. Effects of surface contamination on the infrared emissivity and visible-light scattering of highly reflective surfaces at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.

    1972-01-01

    A technique is described for the simultaneous in situ measurement of film thickness, refractive index, total normal emissivity, visible-light scattering, and reflectance of contaminant films on a highly reflective liquid-nitrogen cooled, stainless steel substrate. Emissivities and scattering data are obtained for films of water, carbon dioxide, silicone oil, and a number of aromatic and aliphatic hydrocarbons as a function of film thickness between zero and 20 microns. Of the contaminants investigated, water has by far the greatest effect on emissivity, followed by silicone oil, aliphatic hydrocarbons, aromatic hydrocarbons, and carbon dioxide. The emissivity increases more rapidly with film thickness between zero and 2.5 microns than at thicknesses greater than 2.5 microns. Scattering of visible light changes very little below 2 microns thickness but increases rapidly with thickness beyond 2 to 3 microns. The effect of contaminant films on passive radiation coolers is discussed.

  12. Metal contamination in environmental media in residential areas around Romanian mining sites.

    PubMed

    Neamtiu, Iulia A; Al-Abed, Souhail R; McKernan, John L; Baciu, Calin L; Gurzau, Eugen S; Pogacean, Anca O; Bessler, Scott M

    2017-03-01

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary concern, but human exposure to soil contaminants either directly, via inhalation of airborne dust particles, or indirectly, via food chain (ingestion of animal products and/or vegetables grown in contaminated areas), is also, significant. In this research, we analyzed data collected in 2007, as part of a larger environmental study performed in the Rosia Montana area in Transylvania, to provide the Romanian governmental authorities with data on the levels of metal contamination in environmental media from this historical mining area. The data were also considered in policy decision to address mining-related environmental concerns in the area. We examined soil and water data collected from residential areas near the mining sites to determine relationships among metals analyzed in these different environmental media, using the correlation procedure in the SAS statistical software. Results for residential soil and water analysis indicate that the average values for arsenic (As) (85 mg/kg), cadmium (Cd) (3.2 mg/kg), mercury (Hg) (2.3 mg/kg) and lead (Pb) (92 mg/kg) exceeded the Romanian regulatory exposure levels [the intervention thresholds for residential soil in case of As (25 mg/kg) and Hg (2 mg/kg), and the alert thresholds in case of Pb (50 mg/kg) and Cd (3 mg/kg)]. Average metal concentrations in drinking water did not exceed the maximum contaminant level (MCL) imposed by the Romanian legislation, but high metal concentrations were found in surface water from Rosia creek, downstream from the former mining area.

  13. A direct immunoassay for detecting diatoms in groundwater as an indicator of the direct influence of surface water

    USGS Publications Warehouse

    Walker, C.E.; Schrock, R.M.; Reilly, T.J.; Baehr, A.L.

    2005-01-01

    Groundwater under the direct influence of surface water (GWUDISW) is of concern in communities where growing public demand on groundwater resources has resulted in increased withdrawals and hydraulic stress near surface water bodies. Under these conditions, contaminants such as methyl-tert butyl ether (MTBE) and biological materials have been detected in domestic wells. Other contaminants and pathogens associated with surface water are not routinely tested for in groundwater-supplied systems. To address the need for methods to easily identify potentially vulnerable supplies, a direct immunoassay for the quantitative detection of diatoms in raw water samples was developed as a measure of surface water influence on groundwater. Cell wall preparations from Nitzschia palea Ku??tzing, a freshwater diatom found throughout North America, were used to produce a polyclonal antibody that was applied in a direct enzyme-linked immunosorbent assay (ELISA) developed to detect the presence of N. palea cell wall components. The direct immunoassay allows detection at 500 cells L-1, a level similar to diatom concentrations observed in samples of groundwater collected near the test site. This investigation was the first attempt to utilize an ELISA as an indicator of surface water influence on groundwater. Further research is needed to develop more specific diatom-based monoclonal antibodies, determine cross-reactivity, and optimize sample processing and ELISA procedures for development of a standardized method. ?? Springer 2005.

  14. A direct immunoassay for detecting diatoms in groundwater as an indicator of the direct influence of surface water

    USGS Publications Warehouse

    Walker, C.E.; Schrock, R.M.; Reilly, T.J.; Baehr, A.L.

    2005-01-01

    Groundwater under the direct influence of surface water (GWUDISW) is of concern in communities where growing public demand on groundwater resources has resulted in increased withdrawals and hydraulic stress near surface water bodies. Under these conditions, contaminants such as methyl-tert butyl ether (MTBE) and biological materials have been detected in domestic wells. Other contaminants and pathogens associated with surface water are not routinely tested for in groundwater-supplied systems. To address the need for methods to easily identify potentially vulnerable supplies, a direct immunoassay for the quantitative detection of diatoms in raw water samples was developed as a measure of surface water influence on groundwater. Cell wall preparations from Nitzschia palea Kützing, a freshwater diatom found throughout North America, were used to produce a polyclonal antibody that was applied in a direct enzyme-linked immunosorbent assay (ELISA) developed to detect the presence of N. palea cell wall components. The direct immunoassay allows detection at 500 cells L−1, a level similar to diatom concentrations observed in samples of groundwater collected near the test site. This investigation was the first attempt to utilize an ELISA as an indicator of surface water influence on groundwater. Further research is needed to develop more specific diatom-based monoclonal antibodies, determine cross-reactivity, and optimize sample processing and ELISA procedures for development of a standardized method.

  15. The background state leading to arsenic contamination of Bengal basin groundwater.

    PubMed

    Adel, Miah M

    2005-12-01

    The Bengal basin has the world's densest water diversion constructions on the natural courses of rivers. The most damaging water diversion construction is the Farakka Barrage upon the international River Ganges. The diversion of water through this barrage and other constructions upstream of it has reduced the Ganges flow rate by 2.5 times. The resulting downstream effects are the depletion of surface water resources, more withdrawal than recharge of groundwater, sinking groundwater table, spread in depth and extension of the vadose zone, changes in surface features, climatic changes, etc. An investigation was carried out to find the contributions of water diversion to the arsenic contamination of groundwater in the Bengal basin. The reasonable scenario for arsenic contamination is the oxygen deficiency in groundwater and aeration of arsenopyrites buried in the sediment that would remain under water prior to 1975. The mineral forms water-soluble compounds of arsenic when react with atmospheric oxygen. These soluble arsenic compounds infiltrates to the groundwater. This article summarizes the short-time and incomplete study-based quick conclusions reached by investigators that have totally avoided the vital issue of water diversion. It then shows the depleting condition of the water resources under continuing diversions, the generation of favorable condition for arsenic release, the reasons for low sulfur concentration, the reason for first contamination in the Hugly basin, and the hindrance to water's self-purification. The articles advocates that the restoration of the virgin wetland ecosystems in the Bengal basin following the stoppage of the inordinate amount of unilateral upstream water withdrawals can remove the catastrophe.

  16. Assessment of ground-water contamination in the alluvial aquifer near West Point, Kentucky

    USGS Publications Warehouse

    Lyverse, M.A.; Unthank, M.D.

    1988-01-01

    Well inventories, water level measurements, groundwater quality samples, surface geophysical techniques (specifically, electromagnetic techniques), and test drilling were used to investigate the extent and sources of groundwater contamination in the alluvial aquifer near West Point, Kentucky. This aquifer serves as the principal source of drinking water for over 50,000 people. Groundwater flow in the alluvial aquifer is generally unconfined and moves in a northerly direction toward the Ohio River. Two large public supply well fields and numerous domestic wells are located in this natural flow path. High concentrations of chloride in groundwater have resulted in the abandonment of several public supply wells in the West Point areas. Chloride concentrations in water samples collected for this study were as high as 11,000 mg/L. Electromagnetic techniques indicated and test drilling later confirmed that the source of chloride in well waters was probably improperly plugged or unplugged, abandoned oil and gas exploration wells. The potential for chloride contamination of wells exists in the study area and is related to proximity to improperly abandoned oil and gas exploration wells and to gradients established by drawdowns associated with pumped wells. Periodic use of surface geophysical methods, in combination with added observation wells , could be used to monitor significant changes in groundwater quality related to chloride contamination. (USGS)

  17. Fact Sheet: Water Monitoring Reveals More Well Contamination

    EPA Pesticide Factsheets

    Wedron Resource Conservation and Recovery Act (RCRA) Corrective Action program to work with hazardous waste facilities to investigate and clean up any release of hazardous waste into the soil, ground water, surface water and air.

  18. Understanding Sources of Contaminants of Emerging Concern: An Evaluation of Land Use with Occurrence of Aquatic Contaminants

    USDA-ARS?s Scientific Manuscript database

    The occurrence of pharmaceuticals, antibiotics, hormones, and other contaminants of emerging concern (CEC) in surface waters, nationally and internationally, raises questions of their source, fate, and potential ecological and human health effects. A number of CECs have been shown to disrupt the nor...

  19. Design principles for contamination abatement in scientific satellites.

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1972-01-01

    It is shown that deposition of contamination films on satellite optics can be controlled by the following means: isolating critical optical surfaces from the rest of the spacecraft; avoiding or minimizing the use of nonmetallic material, particularly near or in line of sight of optical surfaces; avoiding materials with high vapor pressures; subjecting materials to vacuum baking prior to use, to drive off the volatile outgassing products; keeping the critical surfaces at temperatures above the ambient; avoiding elevated operational temperatures for nonmetallic materials; paying special attention to optics exposed to intense UV-, X-ray, or particular radiation; avoiding water-vapor sources; and directing RCS plumes away from critical surfaces. Methods of controlling particulate contaminants are also proposed.

  20. Fate and identification of oil-brine contamination in different hydrogeologic settings

    USGS Publications Warehouse

    Whittemore, Donald O.

    2007-01-01

    Past disposal of oil-field brine at the surface has caused substantial contamination of water resources in Kansas. Natural saline water occurs in and discharges from Permian bedrock in parts of the state, and other anthropogenic sources of saline water exist, requiring clear identification of different sources. Time-series analysis of Cl- concentration and streamflow relative to pre-contamination contents, and end-member mixing plots, especially for Br- and Cl-, are practical methods for source differentiation and quantification. Although regulations preventing escape of saltwater from oil wells were first passed in Kansas in 1935, much oil and gas brine was disposed on the surface through the 1940s. Hydrogeologic characteristics of the areas with past surface disposal of oil brine differ appreciably and result in large differences in the ratio of saltwater transported in streams or ground water. Much of the brine disposed during the 1910s to 1940s in an area of silty clay soils overlying shale and limestone bedrock in south-central Kansas soon ran off or was flushed from the surface by rain into streams. Chloride concentration in the rivers draining this area often exceeded 1000 mg/L after the start of oil production up to the 1950s. Chloride content in the rivers then generally declined to about 100 mg/L or less in recent low flows. Oil brine was also disposed in surface ponds overlying the unconsolidated High Plains aquifer in south-central Kansas from the latter 1920s into the 1940s. Most of the surface-disposed brine infiltrated to the underlying aquifer. Where the High Plains aquifer is thin, saltwater has migrated along the top of clay layers or the underlying shaly bedrock and either discharged into small streams or flowed into thicker parts of the aquifer. Where the aquifer is thick, surface-disposed oil brine moved downward until reaching clay lenses, migrated latterly to the edge of the clay, and again moved downward if still dense enough. Water-level declines from pumping have increased the lateral migration rate of the saltwater contamination in the aquifer towards water-supply wells. The period of flushing most of the surface-disposed saltwater from the area of shale and limestone bedrock is on the order of many decades but is at least many centuries for the deeper parts of the High Plains aquifer. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Monticello Mill Tailings Site, Operable Unit lll, Annual Groundwater Report, May 2015 Through April 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Jason; Smith, Fred

    This report provides the annual analysis of water quality restoration progress, cumulative through April 2016, for Operable Unit (OU) III, surface water and groundwater, of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Monticello Mill Tailings Site (MMTS). The MMTS is a Comprehensive Environmental Response, Compensation, and Liability Act National Priorities List site located in and near the city of Monticello, San Juan County, Utah. MMTS comprises the 110-acre site of a former uranium- and vanadium-ore-processing mill (mill site) and 1700 acres of surrounding private and municipal property. Milling operations generated 2.5 million cubic yards of wastemore » (tailings) from 1942 to 1960. The tailings were impounded at four locations on the mill site. Inorganic constituents in the tailings drained from the impoundments to contaminate local surface water (Montezuma Creek) and groundwater in the underlying alluvial aquifer. Mill tailings dispersed by wind and water also contaminated properties surrounding and downstream of the mill site. Remedial actions to remove and isolate radiologically contaminated soil, sediment, and debris from the former mill site, Operable Unit I (OU I), and surrounding properties (OU II) were completed in 1999 with the encapsulation of the wastes in an engineered repository located on DOE property 1 mile south of the former mill site. This effectively removed the primary source of groundwater contamination; however, contamination of groundwater and surface water remains within OU III at levels that exceed water quality protection standards. Uranium is the primary contaminant of concern (COC). LM implemented monitored natural attenuation with institutional controls as the OU III remedy in 2004. Because groundwater restoration proceeded more slowly than expected and did not meet performance criteria established in the OU III Record of Decision (June 2004), LM implemented a contingency action in 2009 by an Explanation of Significant Difference to include a pump-and­ treat system using a single extraction well and treatment by zero-valent iron (ex situ treatment system). The contingency action was optimized in 2015 with the installation of8 extraction wells and 16 monitoring wells in a focused area of the aquifer, the area of attainment (AOA). Contaminated water is treated by solar evaporation at an existing facility at the LM repository.« less

  2. Dispersion of inorganic contaminants in surface water in the vicinity of Potchefstroom

    NASA Astrophysics Data System (ADS)

    Manyatshe, A.; Fosso-Kankeu, E.; van der Berg, D.; Lemmer, N.; Waanders, F.; Tutu, H.

    2017-08-01

    Potchefstroom and the neighbouring cities rely mostly on the Mooi River and Vaal River for their water needs. These rivers flow through the gold mining areas and farms, and are therefore likely to be contaminated with substantial amounts of inorganic pollutants. Water was collected along the rivers network, streams, canals and dams in Potchefstroom and the vicinity. The samples were characterized for geochemical parameters, metals and anions concentrations. The results showed high concentrations of potentially toxic elements such as As (4.53 mg/L - 5.74 mg/L), Cd (0.25 mg/L - 0.7 mg/L), Pb (1.14 mg/L - 5.13 mg/L) and U (0.04 mg/L - 0.11 mg/L) which were predominantly found around the mining areas. Elevated concentrations of anions such SO42- and CN- were detected around mining areas while NO3- was dominant near farms. The relatively high levels of anions and metals in the surface water made it unfit for domestic or agricultural use. The study showed that contaminants in mining and agricultural facilities were potentially mobilised, thus impacting the nearby water systems.

  3. Study of energy parameters of machine parts of water-ice jet cleaning applications

    NASA Astrophysics Data System (ADS)

    Prezhbilov, A. N.; Burnashov, M. A.

    2018-03-01

    The reader will achieve a benchmark understanding of the essence of cleaning for the removal of contaminants from machine elements by means of cryo jet/water-ice jet with particles prepared beforehand. This paper represents the classification of the most common contaminants appearing on the surfaces of machine elements after a long-term service. The conceptual contribution of the paper is to represent a thermo-physical model of contaminant removal by means of a water ice jet. In conclusion, it is evident that this study has shown the dependencies between the friction force of an ice particle with an obstacle (contamination), a dimensional change of an ice particle in the cleaning process and the quantity of heat transmitted to an ice particle.

  4. Improving surface-subsurface water budgeting for Brownfield study sites using high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Dujardin, J.; Boel, S.; Anibas, C.; Batelaan, O.; Canters, F.

    2009-04-01

    Countries around the world have problems with contaminated brownfield sites as resulting from a relatively anarchic economical and industrial development during the 19th and 20th centuries. Since a few decades policy makers and stakeholders have become more aware of the risk posed by these sites because some of these sites present direct public hazards. Water is often the main vector of the mobility of contaminants. In order to propose remediation measures for the contaminated sites, it is required to describe and to quantify as accurately as possible the surface and subsurface water fluxes in the polluted site. In this research a modelling approach with integrated remote sensing analysis has been developed for accurately calculating water and contaminant fluxes on the polluted sites. Groundwater pollution in urban environments is linked to patterns of land use, so to identify the sources of contamination with great accuracy in urban environments it is essential to characterize the land cover in a detailed way. The use of high resolution spatial information is required because of the complexity of the urban land use. An object-oriented classification approach applied on high resolution satellite data has been adopted. Cluster separability analysis and visual interpretation of the image objects belonging to each cluster resulted in the selection of 8 land-cover categories (water, bare soil, meadow, mixed forest, grey urban surfaces, red roofs, bright roofs and shadow).To assign the image objects to one of the 8 selected classes a multiple layer perceptron (MLP) approach was adopted, using the NeuralWorks Predict software. After a post-classification shadow removal and a rule-based classification enhancement a kappa-value of 0.86 was obtained. Once the land cover was characterized, the groundwater recharge has been simulated using the spatially distributed WetSpass model and the subsurface water flow was simulated with GMS 6.0 in order to identify and budget the water fluxes on the brownfield. The obtained land use map shows to have a strong impact on the groundwater recharge, resulting in a high spatial variability. Simulated groundwater fluxes from brownfield to a receiving river where independently verified by measurements and simulation of groundwater-surface water interaction based on thermal gradients in the river bed. It is concluded that in order to better quantify total fluxes of contaminants from brownfields in the groundwater, remote sensing imagery can be operationally integrated in a modelling procedure. The developed methodology is applied to a case site in Vilvoorde, Brussels (Belgium).

  5. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  6. Promoting the management and protection of private water wells.

    PubMed

    Simpson, Hugh

    Rural families in Ontario depend almost entirely on groundwater from private wells for their potable water supply. In many cases, groundwater may be the only feasible water supply source and it requires management and protection. A significant potential source of ground water contamination is the movement of contaminated surface water through water wells that are improperly constructed, maintained, or should be decommissioned. Therefore, proper water well construction and maintenance, and eventual decommissioning, are critical for managing and protecting the quantity and quality of groundwater, as well as ensuring the integrity of rural drinking-water supplies. These actions are important for protecting private water supplies from both potential human and natural contamination. Individual well owners each have a personal interest and valuable role in ensuring the integrity of their water supplies. The following information is required to help well owners ensure the integrity of their water supply: different types of wells, why some wells are at greater risk of contamination than others, and sources of groundwater contaminants; groundwater contaminants, how they can move through soil and water, and potential risks to human health; benefits of ensuring that wells are properly maintained and operate efficiently; and importance of a regular well water quality testing program. This paper summarizes the technical information that should be provided to rural well owners concerning proper water well and groundwater management and protection, and provides an example of how this information can be promoted in an effective manner.

  7. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Single and multiple streamer DBD micro-discharges for testing inactivation of biologically contaminated surfaces

    NASA Astrophysics Data System (ADS)

    Prukner, Vaclav; Dolezalova, Eva; Simek, Milan

    2014-10-01

    Highly reactive environment produced by atmospheric-pressure, non-equilibrium plasmas generated by surface dielectric barrier discharges (SDBDs) may be used for inactivation of biologically contaminated surfaces. We investigated decontamination efficiency of reactive environment produced by single/multiple surface streamer micro-discharge driven by amplitude-modulated AC power in coplanar electrode geometry on biologically contaminated surface by Escherichia coli. The discharges were fed by synthetic air with water vapor admixtures at atmospheric pressure, time of treatment was set from 10 second to 10 minutes, diameters of used SDBD electrodes (single and multiple streamer) and homogeneously contaminated disc samples were equal (25 mm), the distance between the electrode and contaminated surface was 2 mm. Both a conventional cultivation and fluorescent method LIVE/DEAD Bacterial Viability kit were applied to estimate counts of bacteria after the plasma treatment. Inactivation was effective and bacteria partly lost ability to grow and became injured and viable/active but non-cultivable (VBNC/ABNC). Work was supported by the MEYS under Project LD13010, VES13 COST CZ (COST Action MP 1101).

  9. Hydrological modeling of fecal indicator bacteria in a tropical mountain catchment

    USDA-ARS?s Scientific Manuscript database

    The occurrence of pathogen bacteria in surface waters is a threat to public health worldwide. In particular, inadequate sanitation resulting in high contamination of surface water with pathogens of fecal origin is a serious issue in developing countries such as Lao P.D.R. Despite the health implicat...

  10. Monitoring Ecological Impacts of Environmental Surface Waters using Cell-based Metabolomics

    EPA Science Inventory

    Optimized cell-based metabolomics has been used to study the impacts of contaminants in surface waters on human and fish metabolomes. This method has proven to be resource- and time-effective, as well as sustainable for long term and large scale studies. In the current study, cel...

  11. Differences in staining intensities affect reported occurrences and concentrations of Giardia spp. in surface drinking water sources

    EPA Science Inventory

    Aim USEPA Method 1623, or its equivalent, is currently used to monitor for protozoan contamination of surface drinking water sources worldwide. At least three approved staining kits used for detecting Cryptosporidium and Giardia are commercially available. This study focuses on ...

  12. Impacts of Agriculture on Nitrates in Soil and Groundwater in the Southeastern Coastal Plain

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) contamination of surface and groundwater is a health concern for both humans and animals. Excess N in surface water bodies may contribute to eutrophication. Elevated nitrate (NO3-N) concentrations in drinking water have caused infant death from the disease methemoglobinemia. Nitrates...

  13. Effect of pH and Pressure on Uranium Removal from Drinking Water Using NF/RO Membranes.

    PubMed

    Schulte-Herbrüggen, Helfrid M A; Semião, Andrea J C; Chaurand, Perrine; Graham, Margaret C

    2016-06-07

    Groundwater is becoming an increasingly important drinking water source. However, the use of groundwater for potable purposes can lead to chronic human exposure to geogenic contaminants, for example, uranium. Nanofiltration (NF) and reverse osmosis (RO) processes are used for drinking water purification, and it is important to understand how contaminants interact with membranes since accumulation of contaminants to the membrane surface can lead to fouling, performance decline and possible breakthrough of contaminants. During the current study laboratory experiments were conducted using NF (TFC-SR2) and RO (BW30) membranes to establish the behavior of uranium across pH (3-10) and pressure (5-15 bar) ranges. The results showed that important determinants of uranium-membrane sorption interactions were (i) the uranium speciation (uranium species valence and size in relation to membrane surface charge and pore size) and (ii) concentration polarization, depending on the pH values. The results show that it is important to monitor sorption of uranium to membranes, which is controlled by pH and concentration polarization, and, if necessary, adjust those parameters controlling uranium sorption.

  14. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management.

    PubMed

    Han, Xiao-Qing; Xiao, Xi-Yuan; Guo, Zhao-Hui; Xie, Ye-Hua; Zhu, Hui-Wen; Peng, Chi; Liang, Yu-Qin

    2018-05-03

    Agricultural soils contaminated with cadmium (Cd) pose a risk to receiving surface water via drainage or runoff. A 90-day laboratory incubation experiment was conducted to investigate the release characteristics and transformation of Cd from contaminated paddy soil amended with agrochemical (NPK fertilizer) and lime (L) under water management regimes of continuous flooding (F) and drying-wetting cycles (DW). The result showed that the dissolved Cd concentrations in overlying water of the fertilizer treatment under flooding (NPK+F) and drying-wetting (NPK+DW) reached up to 81.0 μg/L and 276 μg/L, and were much higher than that from the corresponding controls without NPK fertilizer addition at the end of experiment. The Cd concentration showed significantly negative correlation with overlying water pH, but positive correlation with soil redox potential and concentrations of dissolved total nitrogen, sulfate and manganese in overlying water (P < 0.05), indicating that drying-wetting cycles and N fertilizer addition may enhance soil Cd release. The Cd concentrations in overlying water from all treatments except NPK+L+F treatment exceeded the Cd threshold limit of Chinese Environmental Quality Standards for Surface Water (10 μg/L Grade V) and poses potential risk to surface water quality. Meanwhile, the proportion of Cd in the acid-soluble fraction from all incubated soil except NPK+L+F treatment increased compared to before incubation. The results indicated that continuous flooding was a reasonable water management candidate coupled with lime addition for immobilizing soil Cd. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Abandoned Rayrock uranium mill tailings in the Northwest Territories: Environmental conditions and radiological impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veska, E.; Eaton, R.S.

    Field and laboratory investigations were undertaken of the environment surrounding abandoned U mill tailings at Rayrock, Northwest Territories, Canada, to examine the extent of 226Ra and U contamination. Samples of ground water, surface water, and unconsolidated geological material from the Rayrock area were collected for chemical and radiochemical analyses. Results indicated that the surface waters contained levels of 226Ra as high as 20 Bq L-1, 210Pb as high as 1.1 Bq L-1, and ground water U as high as 2800 micrograms L-1. Lower levels of 226Ra, 210Pb, and U, 3.6 Bq L-1, 0.5 Bq L-1, and 4 micrograms L-1, respectively,more » were found in a small lake adjacent to the tailings area. Analysis of tailings and soil in the immediate vicinity indicates that the radionuclides and U are mobilized and can move within the tailings. Some of the mobilized radionuclides will be bound by the surrounding peat. The remainder may move to Lake Alpha in ground water. Surface water flow also transports some contaminants both in the water of Alpha Creek and by washing tailings into Lake Alpha. The potential annual external and internal dose equivalents to a hypothetical resident were calculated based on exposure from the abandoned U mill tailings, drinking water, and fish caught in the lakes in the vicinity of the tailings. While Alpha Creek and Lake Alpha water showed evidence of contamination, the rest of the water system and the fish were at natural background levels of radioactivity.« less

  16. Testing antimicrobial paint efficacy on gypsum wallboard contaminated with Stachybotrys chartarum.

    PubMed

    Menetrez, M Y; Foarde, K K; Webber, T D; Dean, T R; Betancourt, D A

    2008-02-01

    The goal of this research was to reduce occupant exposure to indoor mold through the efficacy testing of antimicrobial paints. An accepted method for handling Stachybotrys chartarum-contaminated gypsum wallboard (GWB) is removal and replacement. This practice is also recommended for water-damaged or mold-contaminated GWB but is not always followed completely. The efficacy of antimicrobial paints to eliminate or control mold regrowth on surfaces can be tested easily on nonporous surfaces. The testing of antimicrobial efficacy on porous surfaces found in the indoor environment, such as gypsum wallboard, can be more complicated and prone to incorrect conclusions regarding residual organisms. The mold S. chartarum has been studied for toxin production and its occurrence in water-damaged buildings. Research to control its growth using seven different antimicrobial paints and two commonly used paints on contaminated, common gypsum wallboard was performed in laboratory testing at high relative humidity. The results indicate differences in antimicrobial efficacy for the period of testing, and that proper cleaning and resurfacing of GWB with an antimicrobial paint can be an option in those unique circumstances when removal may not be possible.

  17. Surface-enhanced Raman for monitoring toxins in water

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Clauson, Susan L.; Bertone, Jane F.; Christesen, Steven D.

    2004-02-01

    Protection of the drinking water supply from a terrorist attack is of critical importance. Since the water supply is vast, contamination prevention is difficult. Therefore, rapid detection of contaminants, whether a military chemical/biological threat, a hazardous chemical spill, naturally occurring toxins, or bacterial build-up is a priority. The development of rapid environmentally portable and stable monitors that allow continuous monitoring of the water supply is ideal. EIC Laboratories has been developing Surface-Enhanced Raman Spectroscopy (SERS) to detect chemical agents, toxic industrial chemicals (TICs), viruses, cyanotoxins and bacterial agents. SERS is an ideal technique for the Joint Service Agent Water Monitor (JSAWM). SERS uses the enhanced Raman signals observed when an analyte adsorbs to a roughened metal substrate to enable trace detection. Proper development of the metal substrate will optimize the sensitivity and selectivity towards the analytes of interest.

  18. Contaminants of Emerging Concerns

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-ug/L) in surface, ground and drinking water. The most common...

  19. Using the Sacramento soil moisture accounting model to provide short-term forecasts of surface runoff for daily decision making in nutrient management

    USDA-ARS?s Scientific Manuscript database

    Managing the timing of fertilizer and manure application is critical to protecting water quality in agricultural watersheds. When fertilizers and manures are applied at inopportune times (e.g., just prior to a rainfall event that produces surface runoff) the risk of surface water contamination is un...

  20. Natural attenuation of chlorinated volatile organic compounds in ground water at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington

    USGS Publications Warehouse

    Dinicola, Richard S.; Cox, S.E.; Landmeyer, J.E.; Bradley, P.M.

    2002-01-01

    The U.S. Geological Survey (USGS) evaluated the natural attenuation of chlorinated volatile organic compounds (CVOCs) in ground water beneath the former landfill at Operable Unit 1 (OU 1), Naval Undersea Warfare Center, Division Keyport, Washington. The predominant contaminants in ground water are trichloroethene (TCE) and its degradation byproducts cis-1,2-dichloroethene (cisDCE) and vinyl chloride (VC). The Navy planted two hybrid poplar plantations on the landfill in spring of 1999 to remove and control the migration of CVOCs in shallow ground water. Previous studies provided evidence that microbial degradation processes also reduce CVOC concentrations in ground water at OU 1, so monitored natural attenuation is a potential alternative remedy if phytoremediation is ineffective. This report describes the current (2000) understanding of natural attenuation of CVOCs in ground water at OU 1 and the impacts that phytoremediation activities to date have had on attenuation processes. The evaluation is based on ground-water and surface-water chemistry data and hydrogeologic data collected at the site by the USGS and Navy contractors between 1991 and 2000. Previously unpublished data collected by the USGS during 1996-2000 are presented. Natural attenuation of CVOCs in shallow ground water at OU 1 is substantial. For 1999-2000 conditions, approximately 70 percent of the mass of dissolved chlorinated ethenes that was available to migrate from the landfill was completely degraded in shallow ground water before it could migrate to the intermediate aquifer or discharge to surface water. Attenuation of CVOC concentrations appears also to be substantial in the intermediate aquifer, but biodegradation appears to be less significant; those conclusions are less certain because of the paucity of data downgradient of the landfill beneath the tide flats. Attenuation of CVOC concentrations is also substantial in surface water as it flows through the adjacent marsh and out to the tide flats. Attenuation processes other than dilution reduce the CVOC flux in marsh surface water by about 40 percent by the time the water discharges to the tide flats. Despite the importance of natural attenuation processes at reducing both the contaminant concentrations and the contaminant mass at OU 1, natural attenuation alone was not effective enough in the year 2000 to meet current numerical remediation goals for the site. That was in part due to the relatively short distance between the landfill and the adjacent marsh, and in part due to the extremely high CVOC concentrations directly beneath the landfill. Phytoremediation activities had some apparent effect on contaminant concentrations in ground water and surface water, but ground-water redox conditions to date (2000) were not affected by the February 1999 asphalt removal for tree planting. The poplar trees in the phytoremediation plantations were not yet mature in 2000, so the lack of discernible changes to date is understandable. Concentration changes of some redox-sensitive compounds suggest that increased recharge following asphalt removal diluted ambient landfill ground water. CVOC concentrations increased in some downgradient wells in both the northern and southern plantations after asphalt removal, whereas CVOC concentrations decreased in some upgradient wells in the southern plantation. A clear increase in CVOC concentrations in marsh surface water followed asphalt removal, apparently from increased contaminant discharge in ground water beneath the southern plantation. The results of the natural attenuation evaluation suggest than minor modifications to the current sampling plan may be beneficial to understanding the future impacts of phytoremediation and natural attenuation on the fate and distribution of CVOCs at OU 1.

  1. Salmon Site Remedial Investigation Report, Exhibit 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    USDOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less

  2. Salmon Site Remedial Investigation Report, Main Body

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    US DOE /NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less

  3. Salmon Site Remedial Investigation Report, Exhibit 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    USDOE NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less

  4. Spatiotemporal assessment of water chemistry in intermittently open/closed coastal lakes of Southern Baltic

    NASA Astrophysics Data System (ADS)

    Astel, Aleksander M.; Bigus, Katarzyna; Obolewski, Krystian; Glińska-Lewczuk, Katarzyna

    2016-12-01

    Ionic profile, pH, electrolytic conductivity, chemical oxygen demand and concentration of selected heavy metals (Ni, Cu, Zn, Fe and Mn) were determined in water of 11 intermittently closed and open lakes and lagoons (ICOLLs) located in Polish coastline. Multidimensional data set was explored by the use of the self-organizing map (SOM) technique to avoid supervised and predictable division for fully isolated, partially and fully connected lakes. Water quality assessment based on single parameter's mean value allowed classification of majority of lakes to first or second class of purity according to regulation presenting classification approach applicable to uniform parts of surface waters. The SOM-based grouping revealed seven clusters comprising water samples of similar physico-chemical profile. Fully connected lakes were characterized by the highest concentration of components characteristic for sea salts (NaCl, MgCl2, MgSO4, CaSO4, K2SO4 and MgBr2), however spring samples from Łebsko were shifted to another cluster suggesting that intensive surface run-off and fresh-water inflow through Łupawa river decreases an impact of sea water intrusions. Forecasted characteristic of water collected in Resko Przymorskie lake was disturbed by high contamination by nitrites indicating accidental and local contamination due to usage of sodium nitrite for the curing of meat. Some unexpected sources of contamination was discovered in intermittently open and closed lakes. Presumably Zn contamination is due to use of wood preservatives to protect small wooden playgrounds or camping places spread around one of the lake, while increased concentration of Ni could be connected with grass and vegetation burning. Waters of Jamno lake are under the strongest anthropogenic impact due to inefficient removal of phosphates by waste water treatment plant and contamination by Fe and Mn caused by backwashing of absorption filters. Generally, the quality of ICOLLs' water was diversified, while anthropogenic impact as well as sea water intrusions determine its quality in temporal and spatial scale.∖

  5. UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water

    PubMed Central

    Jones, Lisa A.; Worobo, Randy W.

    2014-01-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253

  6. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    PubMed

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.

  7. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.

    PubMed

    Ritter, Len; Solomon, Keith; Sibley, Paul; Hall, Ken; Keen, Patricia; Mattu, Gevan; Linton, Beth

    2002-01-11

    On a global scale, pathogenic contamination of drinking water poses the most significant health risk to humans, and there have been countless numbers of disease outbreaks and poisonings throughout history resulting from exposure to untreated or poorly treated drinking water. However, significant risks to human health may also result from exposure to nonpathogenic, toxic contaminants that are often globally ubiquitous in waters from which drinking water is derived. With this latter point in mind, the objective of this commission paper is to discuss the primary sources of toxic contaminants in surface waters and groundwater, the pathways through which they move in aquatic environments, factors that affect their concentration and structure along the many transport flow paths, and the relative risks that these contaminants pose to human and environmental health. In assessing the relative risk of toxic contaminants in drinking water to humans, we have organized our discussion to follow the classical risk assessment paradigm, with emphasis placed on risk characterization. In doing so, we have focused predominantly on toxic contaminants that have had a demonstrated or potential effect on human health via exposure through drinking water. In the risk assessment process, understanding the sources and pathways for contaminants in the environment is a crucial step in addressing (and reducing) uncertainty associated with estimating the likelihood of exposure to contaminants in drinking water. More importantly, understanding the sources and pathways of contaminants strengthens our ability to quantify effects through accurate measurement and testing, or to predict the likelihood of effects based on empirical models. Understanding the sources, fate, and concentrations of chemicals in water, in conjunction with assessment of effects, not only forms the basis of risk characterization, but also provides critical information required to render decisions regarding regulatory initiatives, remediation, monitoring, and management. Our discussion is divided into two primary themes. First we discuss the major sources of contaminants from anthropogenic activities to aquatic surface and groundwater and the pathways along which these contaminants move to become incorporated into drinking water supplies. Second, we assess the health significance of the contaminants reported and identify uncertainties associated with exposures and potential effects. Loading of contaminants to surface waters, groundwater, sediments, and drinking water occurs via two primary routes: (1) point-source pollution and (2) non-point-source pollution. Point-source pollution originates from discrete sources whose inputs into aquatic systems can often be defined in a spatially explicit manner. Examples of point-source pollution include industrial effluents (pulp and paper mills, steel plants, food processing plants), municipal sewage treatment plants and combined sewage-storm-water overflows, resource extraction (mining), and land disposal sites (landfill sites, industrial impoundments). Non-point-source pollution, in contrast, originates from poorly defined, diffuse sources that typically occur over broad geographical scales. Examples of non-point-source pollution include agricultural runoff (pesticides, pathogens, and fertilizers), storm-water and urban runoff, and atmospheric deposition (wet and dry deposition of persistent organic pollutants such as polychlorinated biphenyls [PCBs] and mercury). Within each source, we identify the most important contaminants that have either been demonstrated to pose significant risks to human health and/or aquatic ecosystem integrity, or which are suspected of posing such risks. Examples include nutrients, metals, pesticides, persistent organic pollutants (POPs), chlorination by-products, and pharmaceuticals. Due to the significant number of toxic contaminants in the environment, we have necessarily restricted our discussion to those chemicals that pose risks to human health via exposure through drinking water. A comprehensive and judicious consideration of the full range of contaminants that occur in surface waters, sediments, and drinking water would be a large undertaking and clearly beyond the scope of this article. However, where available, we have provided references to relevant literature to assist the reader in undertaking a detailed investigation of their own. The information collected on specific chemicals within major contaminant classes was used to determine their relative risk using the hazard quotient (HQ) approach. Hazard quotients are the most widely used method of assessing risk in which the exposure concentration of a stressor, either measured or estimated, is compared to an effect concentration (e.g., no-observed-effect concentration or NOEC). A key goal of this assessment was to develop a perspective on the relative risks associated with toxic contaminants that occur in drinking water. Data used in this assessment were collected from literature sources and from the Drinking Water Surveillance Program (DWSP) of Ontario. For many common contaminants, there was insufficient environmental exposure (concentration) information in Ontario drinking water and groundwater. Hence, our assessment was limited to specific compounds within major contaminant classes including metals, disinfection by-products, pesticides, and nitrates. For each contaminant, the HQ was estimated by expressing the maximum concentration recorded in drinking water as a function of the water quality guideline for that compound. There are limitations to using the hazard quotient approach of risk characterization. For example, HQs frequently make use of worst-case data and are thus designed to be protective of almost all possible situations that may occur. However, reduction of the probability of a type II error (false negative) through the use of very conservative application factors and assumptions can lead to the implementation of expensive measures of mitigation for stressors that may pose little threat to humans or the environment. It is important to realize that our goal was not to conduct a comprehensive, in-depth assessment of risk for each chemical; more comprehensive assessments of managing risks associated with drinking water are addressed in a separate issue paper by Krewski et al. (2001a). Rather, our goal was to provide the reader with an indication of the relative risk of major contaminant classes as a basis for understanding the risks associated with the myriad forms of toxic pollutants in aquatic systems and drinking water. For most compounds, the estimated HQs were < 1. This indicates that there is little risk associated with exposure from drinking water to the compounds tested. There were some exceptions. For example, nitrates were found to commonly yield HQ values well above 1 in- many rural areas. Further, lead, total trihalomethanes, and trichloroacetic acid yielded HQs > 1 in some treated distribution waters (water distributed to households). These latter compounds were further assessed using a probabilistic approach; these assessments indicated that the maximum allowable concentrations (MAC) or interim MACs for the respective compounds were exceeded <5% of the time. In other words, the probability of finding these compounds in drinking water at levels that pose risk to humans through ingestion of drinking water is low. Our review has been carried out in accordance with the conventional principles of risk assessment. Application of the risk assessment paradigm requires rigorous data on both exposure and toxicity in order to adequately characterize potential risks of contaminants to human health and ecological integrity. Weakness rendered by poor data, or lack of data, in either the exposure or effects stages of the risk assessment process significantly reduces the confidence that can be placed in the overall risk assessment. (ABSTRACT TRUNCATED)

  8. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    USGS Publications Warehouse

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also related to interspersion of pasture and woodland with cropland in agricultural areas. Elevated nitrate concentrations in areas of more homogeneous cropland probably were a result of intensive nitrogen fertilizer application on large tracts of land. Certain regions of the United States seemed more vulnerable to nitrate contamination of ground water in agricultural areas. Regions of greater vulnerability included parts of the Northeast, Midwest, and West Coast. The well-drained soils, typical in these regions, have little capacity to hold water and nutrients; therefore, these soils receive some of the largest applications of fertilizer and irrigation in the Nation. The agricultural land is intensively cultivated for row crops, with little interspersion of pasture and woodland. Nutrient concentrations in surface water also were generally related to land use. Nitrate concentrations were highest in samples from sites downstream from agricultural or urban areas. However, concentrations were not as high as in ground water and rarely exceeded the drinking-water standard. Elevated concentrations of nitrate in surface water of the Northeastern United States might be related to large amounts of atmospheric deposition (acid rain). High concentrations in parts of the Midwest might be related to tile drainage of agricultural fields. Ammonia and phosphorus concentrations were highest downstream from urban areas. These concentrations generally were high enough to warrant concerns about toxicity to fish and accelerated eutrophication. Recent improvements in wastewater treatment have decreased ammonia concentrations downstream from some urban areas, but the result has been an increase in nitrate concentrations. Information on environmental factors that affect water quality is useful to identify drainage basins throughout the Nation with the greatest vulnerability for nutrient contamination and to delineate areas where ground-water or surface-water contamination is most likely to oc

  9. Bovine Enteroviruses as Indicators of Fecal Contamination

    PubMed Central

    Ley, Victoria; Higgins, James; Fayer, Ronald

    2002-01-01

    Surface waters frequently have been contaminated with human enteric viruses, and it is likely that animal enteric viruses have contaminated surface waters also. Bovine enteroviruses (BEV), found in cattle worldwide, usually cause asymptomatic infections and are excreted in the feces of infected animals in large numbers. In this study, the prevalence and genotype of BEV in a closed herd of cattle were evaluated and compared with BEV found in animals in the immediate environment and in environmental specimens. BEV was found in feces from 76% of cattle, 38% of white-tailed deer, and one of three Canada geese sharing the same pastures, as well as the water obtained from animal watering tanks, from the pasture, from streams running from the pasture to an adjacent river, and from the river, which emptied into the Chesapeake Bay. Furthermore, BEV was found in oysters collected from that river downstream from the farm. These findings suggest that BEV could be used as an indicator of fecal pollution originating from animals (cattle and/or deer). Partial sequence analysis of the viral genomes indicates that different viral variants coexist in the same area. The possibility of identifying the viral strains found in the animals and in the contaminated areas by sequencing the RNA genome, could provide a tool to find the origin of the contamination and should be useful for epidemiological and viral molecular evolution studies. PMID:12089028

  10. Contamination of estuaries from failing septic tank systems: difficulties in scaling up from monitored individual systems to cumulative impact.

    PubMed

    Geary, Phillip; Lucas, Steven

    2018-02-03

    Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.

  11. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifermore » caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow.« less

  12. Purifying arsenic and fluoride-contaminated water by a novel graphene-based nanocomposite membrane of enhanced selectivity and sustained flux.

    PubMed

    Pal, Madhubonti; Mondal, Mrinal Kanti; Paine, Tapan Kanti; Pal, Parimal

    2018-06-01

    A novel graphene-based nanocomposite membrane was synthesized by interfacial polymerization (IP) through chemical bonding of the graphene oxide (GO) layer to polyethersulfone surface. Detailed characterization of the composite membrane through AFM, SEM, ATR-FTIR, XRD analysis, and Raman spectroscopy indicates strong potential of the membrane in highly selective removal of the toxic contaminants like arsenic and fluoride while permeating the essential minerals like calcium and magnesium. This makes the membrane suitable for production of safe drinking water from contaminated water. The membrane applied in a flat-sheet cross-flow module succeeded in removal of more than 98% arsenic and around 80% fluoride from contaminated water while selectively retaining the useful calcium and magnesium minerals in drinking water. A sustained pure water flux of around 150 LMH (liter per square meter per hour) during operation over long hours (> 150 h) with only 3-5% drop in flux indicates antifouling character of the membrane module.

  13. Nationwide reconnaissance of contaminants of emerging ...

    EPA Pesticide Factsheets

    When chemical or microbial contaminants are assessed for potential effect or possible regulation in ambient and drinking waters, a critical first step is determining if the contaminants occur and if they are at concentrations that may cause human or ecological health concerns. To this end, source and treated drinking water samples from 29 drinking water treatment plants (DWTPs) were analyzed as part of a two-phase study to determine whether chemical and microbial constituents, many of which are considered contaminants of emerging concern, were detectable in the waters. Of the 84 chemicals monitored in the 9 Phase I DWTPs, 27 were detected at least once in the source water, and 21 were detected at least once in treated drinking water. In Phase II, which was a broader and more comprehensive assessment, 247 chemical and microbial analytes were measured in 25 DWTPs, with 148 detected at least once in the source water, and 121 detected at least once in the treated drinking water. The frequency of detection was often related to the analyte's contaminant class, as pharmaceuticals and anthropogenic waste indicators tended to be infrequently detected and more easily removed during treatment, while per and polyfluoroalkyl substances and inorganic constituents were both more frequently detected and, overall, more resistant to treatment. The data collected as part of this project will be used to help inform evaluation of unregulated contaminants in surface water, groundwate

  14. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  15. A Survey of Environmental Microbial Flora During Closed Chamber Studies

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Groves, Theron O.; Bell-Robinson, Denetia; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Services, Inc. and NASA Johnson Space Center, Houston, TX As NASA prepares for long-term missions aboard the International Space Station and the eventual exploration of Mars, closed-environment chambers on Earth have become important test beds for systems evaluations. During 2 separate studies of a selfcontained ecosystem containing 4 crewmembers, microbial surveys of samples from 13 surface and 3 air sites were performed. Microbial concentration of samples from surface sites with frequent water contact (e.g., urinal, sink) did not indicate significantly higher levels of contamination than drier areas, though surface cleaning by the crew may have influenced this conclusion. Changes in bacterial diversity on surface sites implied that the number of transient species was high, suggesting movement by crew activities, aerosols, or both. A non-linear relationship between bacterial diversity and enumeration from surface samples indicated that a rapid increase occurred in the number of species as cell concentration increased to 5 CFU/sq cm. Above this concentration, the number of different bacterial species varied between 11 and 16. Airborne bacteria and fungi averaged only 160 and 1 CFU/m3, respectively. Microbial contamination of the potable water system primarily consisted of 3 species of Gram negative bacteria; however, after 60 days during one study, several species of Bacillus became the dominant flora. This study suggests that under these conditions, microbial contamination in the air and water was suppressed by the life-support systems, though contamination was possible. Conversely, the crew and their activities controlled microbial levels on surfaces. Understanding the factors that affect microbial control will improve the design of microbial testing both during space flight and in analogous Earth-based environments.

  16. Origin and spatial-temporal distribution of faecal bacteria in a bay of Lake Geneva, Switzerland.

    PubMed

    Poté, John; Goldscheider, Nico; Haller, Laurence; Zopfi, Jakob; Khajehnouri, Fereidoun; Wildi, Walter

    2009-07-01

    The origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet. Analyses included Escherichia coli, enterococci (ENT), total coliforms (TC), and heterotrophic plate counts (HPC). E. coli input flux rates from the WWTP can reach 2.5 x 10(10) CFU/s; those from the river are one to three orders of magnitude lower. Different pathogenic Salmonella serotypes were identified in water from these sources. FIB levels in the bay are highly variable. Results demonstrate that (1) the WWTP outlet at 30 m depth impacts near-surface water quality during holomixis in winter; (2) when the lake is stratified, the effluent water is generally trapped below the thermocline; (3) during major floods, upwelling across the thermocline may occur; (4) the river permanently contributes to contamination, mainly near the river mouth and during floods, when the storm water outlet contributes additionally; (5) the lowest FIB levels in the near-surface water occur during low-flow periods in the bathing season.

  17. Controls on Mixing-Dependent Denitrification in Hyporheic Zones

    NASA Astrophysics Data System (ADS)

    Hester, E. T.; Young, K. I.; Widdowson, M. A.

    2013-12-01

    Interaction of surface water and groundwater in hyporheic sediments of river systems is known to create unique biogeochemical conditions that can attenuate contaminants flowing downstream. Oxygen, carbon, and the contaminants themselves (e.g., excess nitrate) often advect together through the hyporheic zone from sources in surface water. However, the ability of the hyporheic zone to attenuate contaminants in upwelling groundwater plumes as they exit to rivers is less known. Such reactions may be more dependent on mixing of carbon and oxygen sources from surface water with contaminants from deeper groundwater. We simulated hyporheic flow cells and upwelling groundwater together with mixing-dependent denitrification of an upwelling nitrate plume in shallow riverbed sediments using MODFLOW and SEAM3D. For our first set of model scenarios, we set biogeochemical boundary conditions to be consistent with situations where only mixing-dependent denitrification occurred within the model domain. This occurred where dissolved organic carbon (DOC) advecting from surface water through hyporheic flow cells meets nitrate upwelling from deeper groundwater. This would be common where groundwater is affected by septic systems which contribute nitrate that upwells into streams that do not have significant nitrate sources from upstream. We conducted a sensitivity analysis that showed that mixing-dependent denitrification increased with parameters that increase mixing itself, such as the degree of heterogeneity of sediment hydraulic conductivity (K). Mixing-dependent denitrification also increased with certain biogeochemical boundary concentrations such as increasing DOC or decreasing dissolved oxygen (DO) advecting from surface water. For our second set of model scenarios, we set biogeochemical boundary conditions to be consistent with common situations where non-mixing-dependent denitrification also occurred within the model domain. For example, when nitrate concentrations are substantial in water advecting from surface water, non-mixing-dependent denitrification can occur within the hyporheic flow cells. This would be common where surface water and groundwater have high nitrate concentrations in agricultural areas. We conducted a sensitivity analysis for this set of model scenarios as well, to evaluate controls on the relative balance of mixing-dependent and non-mixing-dependent denitrification. We found that non-mixing-dependent denitrification often has higher potential to consume nitrate than mixing-dependent denitrification. This is because non-mixing-dependent denitrification is not confined to the relatively small mixing zone between upwelling groundwater and hyporheic flow cells, and hence often has longer residence times available for consumption of existing oxygen followed by consumption of nitrate. Nevertheless, the potential for hyporheic zones to attenuate upwelling nitrate plumes appears to be substantial, yet is variable depending on geomorphic, hydraulic, and biogeochemical conditions.

  18. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas

    USGS Publications Warehouse

    Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.

    2010-01-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics found in caves and surface-water sites included brominated flame retardants, organochlorine pesticides (chlordane and nonachlor), and polychlorinated biphenyls. The placement of samplers in the caves (near the cave mouth compared to farther in the system) might have influenced the number of halogenated organics detected due to possible aerial transport of residues. Guano from cave-dwelling bats also might have been a source of some of these chlorinated organics. Seven-day survival and growth bioassays with fathead minnows (Pimephales promelas) exposed to samples of cave water indicated initial toxicity in water from two of the caves, but these effects were transient, with no toxicity observed in follow-up tests. ??Springer Science+Business Media, LLC 2009.

  19. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was censored and, therefore, only 7 of the 71 samplers were reported as detecting TPH. In addition, benzene, toluene, ethylbenzene, and total xylene were detected above the method detection level in 22 samplers. Other compounds detected above the method detection level included naphthalene, octane, undecane, tridecane, 1,2,4-trimethylbenzene, trichloroethylene, perchloroethylene, chloroform, and 1,4-dichlorobenzene. Subsequent to the soil-gas survey, five locations with elevated contaminant mass were selected and a passive sampler was deployed at those locations to detect the presence of organic compounds classified as explosives or chemical agents. No explosives or chemical agents were detected above the method detection level, but some compounds were detected below the method detection level but above the nondetection level. Dimethyl disulfide, benzothiazole, chloroacetophenones, and para-chlorophenyl methyl sulfide were all detected below the method detection level but above the nondetection level. The compounds 2,4-dinitrotoluene, and para-chlorophenyl methyl sulfone were detected in samplers but also were detected in trip blanks and are not considered as present in the MCTA. The same five locations that were selected for sampling of explosives and chemical agents were selected for soil sampling. Metal concentrations in composite soil samples collected at five locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for Industrial Soil. Concentrations in some compounds were higher than the South Carolina Department of Health and Environmental Control background levels for nearby South Carolina, including aluminum, arsenic, barium, beryllium, chromium, copper, iron, lead, manganese, nickel, and potassium. A surface-water sample was collected from McCoys Creek and analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). No volatile organic compounds and (or) semivolatile organic compounds were detected at levels above the maximum contaminant level of the U.S. Environmental Protection Agency (USEPA) National Primary Drinking Water Standard, and no inorganic compounds exceeded the maximum contaminant level of the USEPA National Primary Drinking Water Standard or the Georgia In-Stream Water-Quality Standard. Iron was the only inorganic compound detected in the surface-water sample (578 micrograms per liter) that exceeded the USEPA National Secondary Drinking Water Standard of 300 micrograms per liter.

  20. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site.

    PubMed

    Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S

    2012-11-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Water contamination in fallout areas. Project No. 7806

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, G.G.; Woodward, R.L.; Muschler, W.K.

    1958-05-01

    An evaluation of the potential radiological hazard to Air Force personnel from drinking water contaminated with fission products is presented. Ground water supplies should be safe from fallout contamination and only surface supplies may need special treatment. Even in untreated water, the radioactivity in surface supplies is not likely to reduce significantly the military effectiveness of personnel using it except where the general level of contamination is greater than 1000 r/hr at H + 1. Dust samples were collected at the Priscilla shot of Operation Plumbbob 24 June 1957. In each of the samples, material containing approximately 10% of themore » activity was soluble; however, strontium was preferentially dissolved by a factor of 5. For the first 10 days after fallout, a supply of one gallon of water per person per day will suffice for drinking and culinary purposes. Ion-exchange, which is over 99% efficient, is the most practical and economical method of supplying decontaminated water. For immediate demand, small mixed-bed demineralizers, which are easily installed and maintained, are recommended; for long term demand, pressure cation-exchange beds operated on the sodium cycle are recommended. A shelter accommodating 100 people would require a small mixed-bed demineralizer with an initial cost of $81 and an operating cost of $9 per day. A pressure cation-exchange bed could be installed for $7,500 which would have an operating cost of 15 cents per 1,000 gallons. This could supply an average daily water requirement of 50,000 gallons.« less

  2. WATER CONTAMINATION IN FALLOUT AREAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, G.G.; Woodward, R.L.; Muschler, W.K.

    1958-05-01

    An evaluation of the potential radiological hazard to Air Force personnel from drinking water contaminated with fission products is presented. Ground water supplies should be safe from fall-out contamination and only surface supplies may need special treatment. Even in untreated water, the radioactivity in surface supplies is not likely to reduce significantly the military effectiveness of personnel using it except where the general level of contamination is greater than 1000 r/hr at H + 1. Dust samples were collected at the Priscilla shot of Operation Plumbbob 24 June 1957. In each of the samples, material containing approximately 10% of themore » activity was soluble; however, strontium was preferentially dissolved by a factor of 5. For the first 10 days after fall-out, a supply of one gallon of water per person per day will suffice for drinking and culinary purposes, Ion-exchange, which is over 99% efficient, is the most practical and economical method of supplying decontaminated water, For immediate demand, small mixed-bed demineralizers, which are easily installed and maintained, are recommended; for long term demand, pressure cation-exchange beds operated on the sodium cycle are recommended. A shelter accommodating 100 people would require a small mixed-bed demineralizer with an initial cost of and an operating cost of per day. A pressure cation-exchange bed could be installed for 500 which would have an operating cost of 15 cents per 1,000 gallons. This could supply an average daily water requirement of 50,000 gallons. (auth)« less

  3. Operation REDWING. Project 2.64. Fallout Location and Delineation by Aerial Surveys.

    DTIC Science & Technology

    Fallout, *Gamma rays, *Radioactive contamination, Ocean environments, Nuclear explosion testing, Surveys, Sampling, Airborne, Surface burst, Sea water, Dose rate, Ocean surface, Coral reefs, Marshall Islands

  4. IDENTIFICATION AND COMPILATION OF UNSATURATED/VADOSE ZONE MODELS

    EPA Science Inventory

    Many ground-water contamination problems are derived from sources at or near the soil surface. Consequently, the physical and (bio-)chemical behavior of contaminants in the shallow subsurface is of critical importance to the development of protection and remediation strategies. M...

  5. DYNAPHORE, INC., FORAGER SPONGE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The Forager Sponge is a volume reduction technology in which heavy metal contaminants from an aqueous medium are selectively concentrated into a smaller volume for facilitated disposal. he technology treats contaminated groundwater, surface voters and porous waters by absorbing d...

  6. Geology, geochemistry, and geophysics of the Fry Canyon uranium/copper project site, southeastern Utah - Indications of contaminant migration

    USGS Publications Warehouse

    Otton, James K.; Zielinski, Robert A.; Horton, Robert J.

    2010-01-01

    The Fry Canyon uranium/copper project site in San Juan County, southeastern Utah, was affected by the historical (1957-68) processing of uranium and copper-uranium ores. Relict uranium tailings and related ponds, and a large copper heap-leach pile at the site represent point sources of uranium and copper to local soils, surface water, and groundwater. This study was designed to establish the nature, extent, and pathways of contaminant dispersion. The methods used in this study are applicable at other sites of uranium mining, milling, or processing. The uranium tailings and associated ponds sit on a bench that is as much as 4.25 meters above the level of the adjacent modern channel of Fry Creek. The copper heap leach pile sits on bedrock just south of this bench. Contaminated groundwater from the ponds and other nearby sites moves downvalley and enters the modern alluvium of adjacent Fry Creek, its surface water, and also a broader, deeper paleochannel that underlies the modern creek channel and adjacent benches and stream terraces. The northern extent of contaminated groundwater is uncertain from geochemical data beyond an area of monitoring wells about 300 meters north of the site. Contaminated surface water extends to the State highway bridge. Some uranium-contaminated groundwater may also enter underlying bedrock of the Permian Cedar Mesa Sandstone along fracture zones. Four dc-resistivity surveys perpendicular to the valley trend were run across the channel and its adjacent stream terraces north of the heap-leach pile and ponds. Two surveys were done in a small field of monitoring wells and two in areas untested by borings to the north of the well field. Bedrock intercepts, salt distribution, and lithologic information from the wells and surface observations in the well field aided interpretation of the geophysical profiles there and allowed interpretation of the two profiles not tested by wells. The geophysical data for the two profiles to the north of the well field suggest that the paleochannel persists at least 900 m to the north of the heap leach and pond sites. Contamination of groundwater beneath the stream terraces may extend at least that far. Fry Creek surface water (six samples), seeps and springs (six samples), and wells (eight samples) were collected during a dry period of April 16-19, 2007. The most uranium-rich (18.7 milligrams per liter) well water on the site displays distinctive Ca-Mg-SO4-dominant chemistry indicating the legacy of heap leaching copper-uranium ores with sulfuric acid. This same water has strongly negative d34S of sulfate (-13.3 per mil) compared to most local waters of -2.4 to -5.4 per mil. Dissolved uranium species in all sampled waters are dominantly U(VI)-carbonate complexes. All waters are undersaturated with respect to U(VI) minerals. The average 234U/238U activity ratio (AR) in four well waters from the site (0.939 + or ? 0.011) is different from that of seven upstream waters (1.235 + or ? 0.069). This isotopic contrast permits quantitative estimates of mixing of site-derived uranium with natural uranium in waters collected downstream. At the time of sampling, uranium in downstream surface water was mostly (about 67 percent) site-derived and subject to further concentration by evaporation. Three monitoring wells located approximately 0.4 kilometer downstream contained dominantly (78-87 percent) site-derived uranium. Distinctive particles of chalcopyrite (CuFeS) and variably weathered pyrite (FeS2) are present in tailings at the stream edge on the site and are identified in stream sediments 1.3 kilometers downstream, based on inspection of polished grain mounts of magnetic mineral separates.

  7. Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.; Stansbery, E. K.

    2009-01-01

    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis.

  8. Salmonella pollution in ground and surface waters. (Latest citations from Pollution abstracts). Published Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-04-01

    The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  9. Storm water contamination and its effect on the quality of urban surface waters.

    PubMed

    Barałkiewicz, Danuta; Chudzińska, Maria; Szpakowska, Barbara; Świerk, Dariusz; Gołdyn, Ryszard; Dondajewska, Renata

    2014-10-01

    We studied the effect of storm water drained by the sewerage system and discharged into a river and a small reservoir, on the example of five catchments located within the boundaries of the city of Poznań (Poland). These catchments differed both in terms of their surface area and land use (single- and multi-family housing, industrial areas). The aim of the analyses was to explain to what extent pollutants found in storm water runoff from the studied catchments affected the quality of surface waters and whether it threatened the aquatic organisms. Only some of the 14 studied variables and 22 chemical elements were important for the water quality of the river, i.e., pH, TSS, rain intensity, temperature, conductivity, dissolved oxygen, organic matter content, Al, Cu, Pb, Zn, Fe, Cd, Ni, Se, and Tl. The most serious threat to biota in the receiver came from the copper contamination of storm water runoff. Of all samples below the sewerage outflow, 74% exceeded the mean acute value for Daphnia species. Some of them exceeded safe concentrations for other aquatic organisms. Only the outlet from the industrial area with the highest impervious surface had a substantial influence on the water quality of the river. A reservoir situated in the river course had an important influence on the elimination of storm water pollution, despite the very short residence time of its water.

  10. BREATH MEASUREMENT AND MODELS TO ASSESS VOC DERMAL ABSORPTION IN WATER

    EPA Science Inventory

    Dermal exposure to volatile organic compounds (VOCs) in water results from environmental contamination of surface, ground-, and drinking waters. This exposure occurs both in occupational and residential settings. Compartmental models incorporating body burden measurements have ...

  11. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States

    USGS Publications Warehouse

    Glassmeyer, Susan T.; Furlong, Edward T.; Kolpin, Dana W.; Batt, Angela L.; Benson, Robert; Boone, J. Scott; Conerly, Octavia D.; Donohue, Maura J.; King, Dawn N.; Kostich, Mitchell S.; Mash, Heath E.; Pfaller, Stacy; Schenck, Kathleen M.; Simmons, Jane Ellen; Varughese, Eunice A.; Vesper, Stephen J.; Villegas, Eric N.; Wilson, Vickie S.

    2017-01-01

    When chemical or microbial contaminants are assessed for potential effect or possible regulation in ambient and drinking waters, a critical first step is determining if the contaminants occur and if they are at concentrations that may cause human or ecological health concerns. To this end, source and treated drinking water samples from 29 drinking water treatment plants (DWTPs) were analyzed as part of a two-phase study to determine whether chemical and microbial constituents, many of which are considered contaminants of emerging concern, were detectable in the waters. Of the 84 chemicals monitored in the 9 Phase I DWTPs, 27 were detected at least once in the source water, and 21 were detected at least once in treated drinking water. In Phase II, which was a broader and more comprehensive assessment, 247 chemical and microbial analytes were measured in 25 DWTPs, with 148 detected at least once in the source water, and 121 detected at least once in the treated drinking water. The frequency of detection was often related to the analyte's contaminant class, as pharmaceuticals and anthropogenic waste indicators tended to be infrequently detected and more easily removed during treatment, while per and polyfluoroalkyl substances and inorganic constituents were both more frequently detected and, overall, more resistant to treatment. The data collected as part of this project will be used to help inform evaluation of unregulated contaminants in surface water, groundwater, and drinking water.

  12. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States.

    PubMed

    Glassmeyer, Susan T; Furlong, Edward T; Kolpin, Dana W; Batt, Angela L; Benson, Robert; Boone, J Scott; Conerly, Octavia; Donohue, Maura J; King, Dawn N; Kostich, Mitchell S; Mash, Heath E; Pfaller, Stacy L; Schenck, Kathleen M; Simmons, Jane Ellen; Varughese, Eunice A; Vesper, Stephen J; Villegas, Eric N; Wilson, Vickie S

    2017-03-01

    When chemical or microbial contaminants are assessed for potential effect or possible regulation in ambient and drinking waters, a critical first step is determining if the contaminants occur and if they are at concentrations that may cause human or ecological health concerns. To this end, source and treated drinking water samples from 29 drinking water treatment plants (DWTPs) were analyzed as part of a two-phase study to determine whether chemical and microbial constituents, many of which are considered contaminants of emerging concern, were detectable in the waters. Of the 84 chemicals monitored in the 9 Phase I DWTPs, 27 were detected at least once in the source water, and 21 were detected at least once in treated drinking water. In Phase II, which was a broader and more comprehensive assessment, 247 chemical and microbial analytes were measured in 25 DWTPs, with 148 detected at least once in the source water, and 121 detected at least once in the treated drinking water. The frequency of detection was often related to the analyte's contaminant class, as pharmaceuticals and anthropogenic waste indicators tended to be infrequently detected and more easily removed during treatment, while per and polyfluoroalkyl substances and inorganic constituents were both more frequently detected and, overall, more resistant to treatment. The data collected as part of this project will be used to help inform evaluation of unregulated contaminants in surface water, groundwater, and drinking water. Published by Elsevier B.V.

  13. Transport of free and particulate-associated bacteria in karst

    USGS Publications Warehouse

    Mahler, B.J.; Personne, J.-C.; Lods, G.F.; Drogue, C.

    2000-01-01

    Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface Stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended sediment at various times. The results of this investigation are evidence of the strong influence of surface water on ground water in karst terrain, including that of irrigation water. The large proportion of bacteria associated with particulates in the ground Water has important implications for public health, as bacteria associated with particulates may be more persistent and more difficult to inactivate. The high bacterial concentrations found in both wells, despite the difference in hydraulic conductivity, demonstrates the difficulty of predicting vulnerability of individual wells to bacterial contamination in karst. The extreme temporal variability in bacterial concentrations underscores the importance of event-based monitoring of the bacterial quality of public water supplies in karst. (C) 2000 Elsevier Science B.V.Karst aquifers, because of their unique hydrogeologic characteristics, are extremely susceptible to contamination by pathogens. Here we present the results of an investigation of contamination of a karst aquifer by fecal indicator bacteria. Two wells intercepting zones with contrasting effective hydraulic conductivities, as determined by pump test, were monitored both during the dry season and in response to a rain event. Samples were also collected from the adjacent ephemeral surface stream, which is known to be impacted by an upstream wastewater treatment plant after rainfall. Whole water and suspended sediment samples were analyzed for fecal coliforms and enterococci. During the dry season, pumping over a 2-day period resulted in increases in concentrations of fecal coliforms to greater than 10,000 CFU/100 ml in the high-conductivity well; enterococci and total suspended solids also increased, to a lesser degree. Toward the end of the pumping period, as much as 50% of the fecal coliforms were associated with suspended sediment. Irrigation of an up-gradient pine plantation with primary-treated wastewater is the probable source of the bacterial contamination. Sampling after a rain event revealed the strong influence of water quality of the adjacent Terrieu Creek on the ground water. Bacterial concentrations in the wells showed a rapid response to increased concentrations in the surface water, with fecal coliform concentrations in ground water ultimately reaching 60,000 CFU/100 ml. Up to 100% of the bacteria in the ground water was associated with suspended

  14. Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water.

    PubMed

    Motshekga, Sarah Constance; Sinha Ray, Suprakas; Maity, Arjun

    2018-02-15

    The use of polymer nanocomposites as novel materials for water remediation has emerged as a promising alternative for disinfection of bacteria contaminated water. Sodium alginate, a natural biopolymer has been investigated in this study by encapsulating antimicrobial zinc oxide nanoparticles supported bentonite. The confirmation of the alginate nanocomposites was done by use of TEM, SEM-EDS and XRD. The antimicrobial activity of the alginate nanocomposites was investigated by batch studies using surface water and synthetic bacteria contaminated water containing Staphylococcus aureus. The effect of nanocomposite amount and initial bacteria concentration has been studied. The inactivation results indicated that the nanocomposite effectively inactivated bacteria in both the synthetic and surface water. With an amount of 0.5 g of the nanocomposites, no bacteria was observed in the water after 70 min of contact time with initial bacteria concentration of 200 cfu/ml for synthetic water and within a min, no bacteria was observed in the water for surface water. It is worth noting that 200 cfu/ml is the bacteria concentration range in which environmental water is likely to contain. Therefore, the results of this study have indicated that the alginate nanocomposites can be deemed as a potential antimicrobial agent for water disinfection. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Occurrence of selected contaminants in water, fish tissue, and streambed sediments in central Nebraska, 1992-95

    USGS Publications Warehouse

    Frenzel, Steven A.

    1996-01-01

    Surface and ground water in Nebraska may contain contaminants resulting from human activities. For purposes of this publication, a contaminant is any element or compound whose presence may affect the water's suitability for certain uses. For example, herbicide concentrations may exceeed the U.S. Environmental Protection Agency's (USEPA) Health Advisory Levels (HAL) for drinking water or trace-element concentrations may exceed guidelines for the protection of aquatic life. In general, the contaminats discussed in this report enter the aquatic system through nonpoint-source runoff from agricultural lands that dominate the Nebraska landscape. However,because this assessment was conducted as part of a larger, national program, a screening for contaminants with non-agricultural origins was included.The measurement of water quality involves a variety of steps, each contributing unique information while also aggregating to an overall assessment. One aspect of water-quality assesment is to describe the occurrence and distribution of contaminants. Some contaminants may be hundreds or thousands of times more concentrated in the tissues of aquatic organisms or in fine sediments than they are in the water. As a result, fish tissue and streambed sediments are well suited for the detection of certain contaminants. For example, pesticides used in the United States prior to the early 1970's, such as DDT, may have degraded into more stable but still toxic compounds that are highly concentrated in fish tissues. Conversely, other contaminants are not concentrated in sediments or tissues but are readily detected in water samples. Organonitrogen herbicides (such as atrazine), the most commonly used herbicides in Nebraska, are examples of water-soluble contaminants.Several sampling strategies were used to address specific questions. Some sites were sampled repeatedly through time and during all hydrologic conditions, whereas others were sampled only once to determine presence of contaminants. Because a strong relation between concentration and streamflow often exists for contaminants originating from nonpoint sources, streams typically were sampled near gaging stations that monitor streamflow.

  16. Optimal Er:YAG laser irradiation parameters for debridement of microstructured fixture surfaces of titanium dental implants.

    PubMed

    Taniguchi, Yoichi; Aoki, Akira; Mizutani, Koji; Takeuchi, Yasuo; Ichinose, Shizuko; Takasaki, Aristeo Atsushi; Schwarz, Frank; Izumi, Yuichi

    2013-07-01

    Er:YAG laser (ErL) irradiation has been reported to be effective for treating peri-implant disease. The present study seeks to evaluate morphological and elemental changes induced on microstructured surfaces of dental endosseous implants by high-pulse-repetition-rate ErL irradiation and to determine the optimal irradiation conditions for debriding contaminated microstructured surfaces. In experiment 1, dual acid-etched microstructured implants were irradiated by ErL (pulse energy, 30-50 mJ/pulse; repetition rate, 30 Hz) with and without water spray and for used and unused contact tips. Experiment 2 compared the ErL treatment with conventional mechanical treatments (metal/plastic curettes and ultrasonic scalers). In experiment 3, five commercially available microstructures were irradiated by ErL light (pulse energy, 30-50 mJ/pulse; pulse repetition rate, 30 Hz) while spraying water. In experiment 4, contaminated microstructured surfaces of three failed implants were debrided by ErL irradiation. After the experiments, all treated surfaces were assessed by stereomicroscopy, scanning electron microscopy (SEM), and/or energy-dispersive X-ray spectroscopy (EDS). The stereomicroscopy, SEM, and EDS results demonstrate that, unlike mechanical treatments, ErL irradiation at 30 mJ/pulse and 30 Hz with water spray induced no color or morphological changes to the microstructures except for the anodized implant surface, which was easily damaged. The optimized irradiation parameters effectively removed calcified deposits from contaminated titanium microstructures without causing substantial thermal damage. ErL irradiation at pulse energies below 30 mJ/pulse (10.6 J/cm(2)/pulse) and 30 Hz with water spray in near-contact mode seems to cause no damage and to be effective for debriding microstructured surfaces (except for anodized microstructures).

  17. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    PubMed

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Differential exposure, duration, and sensitivity of unionoidean bivalve life stages to environmental contaminants

    USGS Publications Warehouse

    Cope, W.G.; Bringolf, R.B.; Buchwalter, D.B.; Newton, T.J.; Ingersoll, C.G.; Wang, N.; Augspurger, T.; Dwyer, F.J.; Barnhart, M.C.; Neves, R.J.; Hammer, E.

    2008-01-01

    Freshwater mussels (superfamily Unionoidea) are in serious global decline and in urgent need of protection and conservation. The declines have been attributed to a wide array of human activities resulting in pollution and water-quality degradation, and habitat destruction and alteration. Linkages among poor water quality, pollutant sources, and mussel decline in rivers and streams have been associated with results of laboratory-based tests of specific pollutants. However, uncertainties remain about the relationship of laboratory data to actual contaminant exposure routes for various mussel species, life stages, and in the habitats occupied during these exposures. We evaluated the pathways of exposure to environmental pollutants for all 4 life stages (free glochidia, encysted glochidia, juveniles, adults) of unionoidean mussels and found that each life stage has both common and unique characteristics that contribute to observed differences in exposure and sensitivity. Free glochidia typically are exposed only briefly (e.g., seconds to days) through surface water, whereas adults sustain exposure over years to decades through surface water, pore water, sediment, and diet. Juveniles live largely burrowed in the sediment for the first 0 to 4 y of life. Thus, sediment, pore water, and diet are the predominant exposure routes for this life stage, but surface water also might contribute to exposure during certain periods and environmental conditions. The obligate parasitic stage (encysted glochidia stage) on a host fish might be exposed from surface water while partially encysted or from toxicants in host-fish tissue while fully encysted. Laboratory methods for testing for acute and chronic exposures in water have advanced, and toxicant-specific information has increased in recent years. However, additional research is needed to understand interactions of life history, habitat, and long-term exposure to contaminants through water, pore water, sediment, and diet so that the risks of environmental exposures can be properly assessed and managed. ?? 2008 by The North American Benthological Society.

  19. Contamination of Canadian private drinking water sources with antimicrobial resistant Escherichia coli.

    PubMed

    Coleman, Brenda L; Louie, Marie; Salvadori, Marina I; McEwen, Scott A; Neumann, Norman; Sibley, Kristen; Irwin, Rebecca J; Jamieson, Frances B; Daignault, Danielle; Majury, Anna; Braithwaite, Shannon; Crago, Bryanne; McGeer, Allison J

    2013-06-01

    Surface and ground water across the world, including North America, is contaminated with bacteria resistant to antibiotics. The consumption of water contaminated with antimicrobial resistant Escherichia coli (E. coli) has been associated with the carriage of resistant E. coli in people who drink it. To describe the proportion of drinking water samples submitted from private sources for bacteriological testing that were contaminated with E. coli resistant to antibiotics and to determine risk factors for the contamination of these water sources with resistant and multi-class resistant E. coli. Water samples submitted for bacteriological testing in Ontario and Alberta Canada were tested for E. coli contamination, with a portion of the positive isolates tested for antimicrobial resistance. Households were invited to complete questionnaires to determine putative risk factors for well contamination. Using multinomial logistic regression, the risk of contamination with E. coli resistant to one or two classes of antibiotics compared to susceptible E. coli was higher for shore wells than drilled wells (odds ratio [OR] 2.8) and higher for farms housing chickens or turkeys (OR 3.0) than properties without poultry. The risk of contamination with multi-class resistant E. coli (3 or more classes) was higher if the properties housed swine (OR 5.5) or cattle (OR 2.2) than properties without these livestock and higher if the wells were located in gravel (OR 2.4) or clay (OR 2.1) than in loam. Housing livestock on the property, using a shore well, and having a well located in gravel or clay soil increases the risk of having antimicrobial resistant E. coli in E. coli contaminated wells. To reduce the incidence of water borne disease and the transmission of antimicrobial resistant bacteria, owners of private wells need to take measures to prevent contamination of their drinking water, routinely test their wells for contamination, and use treatments that eliminate bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Health assessment for Vogel Paint and Wax, Maurice, Sioux County, Iowa, Region 7. CERCLIS No. IAD980630487. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-29

    The Vogel Paint and Wax National Priority List site is situated in northwest Iowa in Sioux County. Contaminants found at the site consist of heavy metals (particularly cadmium, chromium, lead, and mercury) and volatile organic compounds (benzene, ethylbenzene, methyl ethyl ketone, toluene, and xylene). Two towns, Maurice and Struble, and the Southern Sioux County Rural Water System well field are located within three miles of the site, and two families live within 1600 feet of the waste-disposal site. Environmental pathways include contaminated soil and ground water, as well as potential surface water and air contamination. Although there does not appearmore » to be any immediate public health threat, the site is of potential health concern because of the possibility for further off-site migration of contaminants into the ground water aquifer and for direct on-site contact.« less

  1. EFFECTS OF BIOSOLIDS APPLICATION ON EROSION CONTROL AND ECOSYSTEM RECOVERY FOLLOWING THE BUFFALO CREEK FIRE - PART II

    EPA Science Inventory

    Nutrient (i.e. nitrogen) contamination of surface waters constitutes one of the most pervasive problems facing wastewater treatment works across the country. Nitrogen discharge to surface water occurs mostly in the form of ammonia which is identified as the most toxic nitrogen sp...

  2. Water Quality Analysis of Yosemite Creek Watershed, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Aquino, A.; Huang, C.; Thai, A.; Yuen, C.

    2003-12-01

    Surface water quality in urban settings can become contaminated by anthropogenic inputs. Yosemite Creek watershed is situated on the east side of San Francisco near Bayview Hunters Point and provides an ideal location for water quality investigations in urban environments. Accordingly, students from Philip and Sala Burton High School monitored water quality at three locations for their physicochemical and biological characteristics. Water was tested for pH, dissolved oxygen, conductivity, total dissolved solids, salinity, and oxidation reduction potential. In addition, a Hach DR 850 digital colorimeter was utilized to measure chlorine, fluorine, nitrogen, phosphorous, and sulfate. The biological component was assessed via monitoring benthic macro invertebrates. Specifically, the presence of caddisfly (Trichoptera) were used to indicate low levels of contaminants and good water quality. Our results indicate that water quality and macro invertebrate populations varied spatially within the watershed. Further investigation is needed to pinpoint the precise location of contaminant inputs.

  3. Ecological engineering alternatives for remediation and restoration of a drastically disturbed landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nairn, R.W.; Hare, L.; Mercer, M.

    As part of a Fall 1998 Environmental Science graduate seminar in Ecological Engineering at the University of Oklahoma, students were asked to submit a proposal for the holistic and sustainable restoration of the Tar Creek Superfund Site, Ottawa county, Oklahoma. the Tar Creek site is a portion of an abandoned lead and zinc mining area known as the Tri-State Mining District (OL, KS and MO) and includes approximately 104 square kilometers of disturbed land surface and contaminated water resources in extreme northeastern Oklahoma. Approximately 94 million cubic meters of contaminated water currently exist in the underground voids. In 1979, acidic,more » metal-rich waters began to discharge into Tar Creek from natural springs, bore holes and mine shafts. In addition, approximately 37 million cubic meters of processed mine waste materials (chat) litter their surface in large piles. Approximately 324 hectares of contaminated tailings settling ponds also exist on site. Student submitted proposals addressed the following four subject areas: passive treatment options for stream water quality improvement, surface reclamation and revegetation, stream habitat restoration and joint ecological and economic sustainability. Proposed designs for passive treatment of the contaminated mine drainage included unique constructed wetland designs that relief on a combination of biological and geochemical processes, use of microbial mats for luxury metal uptake, enhanced iron oxidation via windmill-based aeration and fly ash injection. proposed surface reclamation methods included minimal regrading following by biosolid, ash and other organic amendment applications and several phytoremediation techniques, especially the use of hyperaccumulators. The stream and riparian restoration portion of the proposals focused on chat removal, phytoremediation and species reintroduction. proposed joint ecological and economic sustainability ventures included development of recreational facilities, mining-based tourism and an Ecotechnology Research Park.« less

  4. Assessing environmental risk of pharmaceuticals in Portugal: An approach for the selection of the Portuguese monitoring stations in line with Directive 2013/39/EU.

    PubMed

    Pereira, André M P T; Silva, Liliana J G; Lino, Celeste M; Meisel, Leonor M; Pena, Angelina

    2016-02-01

    In line with the Directive 2013/39/EU the most representative surface waters, regarding pharmaceuticals contamination, were selected based on a Portuguese nationwide monitoring exercise. To meet this purpose, and given that wastewater treatment plants (WWTPs) are regarded as the major point sources of pharmaceuticals environmental contamination, the occurrence, fate and environmental risk assessment (ERA) of eleven of the most consumed pharmaceuticals, belonging to several therapeutic classes were assessed in 15 WWTPs (influents (WWIs) and effluents (WWEs)), from five different regions during one year (4 sampling campaigns). Results showed that all samples were contaminated with at least 1, and up to 8 from the 11 targeted pharmaceuticals. The highest concentrations observed were 150 and 33 μg L(-1) for WWI and WWE, respectively. Regarding temporal and spacial influence, winter, Alentejo, Algarve and Center regions presented higher mass loads. The ERA posed by 7 of the selected pharmaceuticals presented a risk quotient higher than 1 to the three trophic levels. Our findings highlighted that the rivers Mondego, Tagus, Ave, Trancão, Fervença and Xarrama should be selected as surface water monitoring stations. This study gives a good overview on pharmaceuticals contamination in WWTPs and its impact on surface waters in Portugal. Thus, a more integrative approach to rank and prioritize pharmaceuticals, based on an integrated assessment of ERA and exposure of surface water, was provided to support the future selection of the 6 most representative monitoring stations in Portugal, as required by the above mentioned directive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Detection of toxic industrial chemicals in water supplies using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Spencer, Kevin M.; Sylvia, James M.; Spencer, Sarah A.; Clauson, Susan L.

    2010-04-01

    An effective method to create fear in the populace is to endanger the water supply. Homeland Security places significant importance on ensuring drinking water integrity. Beyond terrorism, accidental supply contamination from a spill or chemical residual increases is a concern. A prominent class of toxic industrial chemicals (TICs) is pesticides, which are prevalent in agricultural use and can be very toxic in minute concentrations. Detection of TICs or warfare agents must be aggressive; the contaminant needs to be rapidly detected and identified to enable isolation and remediation of the contaminated water while continuing a clean water supply for the population. Awaiting laboratory analysis is unacceptable as delay in identification and remediation increases the likelihood of infection. Therefore, a portable or online water quality sensor is required that can produce rapid results. In this presentation, Surface-Enhanced Raman Spectroscopy (SERS) is discussed as a viable fieldable sensor that can be immersed directly into the water supply and can provide results in <5 minutes from the time the instrument is turned on until analysis is complete. The ability of SERS to detect several chemical warfare agent degradation products, simulants and toxic industrial chemicals in distilled water, tap water and untreated water will be shown. In addition, results for chemical warfare agent degradation products and simulants will be presented. Receiver operator characteristic (ROC) curves will also be presented.

  6. Overview of environmental and hydrogeologic conditions at Saint Marys, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The Federal Aviation Administration (FAA) owns or operates airway support facilities near Saint Marys along the Yukon River in west-central Alaska. The FAA is evaluating the severity of environmental contamination and options for remediation of environmental contamination at their facilities. Saint Marys is on a flood plain near the continence of the Yukon and Andreafsky Rivers and has long cold winters and short summers. Residents obtain their drinking water from an infiltration gallery fed by a creek near the village. Surface spills and disposal of hazardous materials combined with potential flooding may affect the quality of the surface and ground water. Alternative drinking-water sources are available, but would likely cost more than existing supplies to develop.

  7. Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, A.V.; Semenova, M.P.; Seregin, V.A.

    2013-07-01

    Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements inmore » groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also in excess. Possible ways to improve the situation are considered. (authors)« less

  8. Hydrogeology and water quality of areas with persistent ground- water contamination near Blackfoot, Bingham County, Idaho

    USGS Publications Warehouse

    Parliman, D.J.

    1987-01-01

    The Groveland-Collins area near Blackfoot, Idaho, has a history of either periodic or persistent localized groundwater contamination. Water users in the area report offensive smell, metallic taste, rust deposits, and bacteria in water supplies. During 1984 and 1985, data were collected to define regional and local geologic, hydrologic, and groundwater quality conditions, and to identify factors that may have affected local groundwater quality. Infiltration or leakage of irrigation water is the major source of groundwater recharge, and water levels may fluctuate 15 ft or more during the irrigation season. Groundwater movement is generally northwestward. Groundwater contains predominantly calcium, magnesium, and bicarbonate ions and characteristically has more than 200 mg/L hardness. Groundwater near the Groveland-Collins area may be contaminated from one or more sources, including infiltration of sewage effluent, gasoline or liquid fertilizer spillage, or land application of food processing wastewater. Subsurface basalt ridges impede lateral movement of water in localized areas. Groundwater pools temporarily behind these ridges and anomalously high water levels result. Maximum concentrations or values of constituents that indicate contamination were 1,450 microsiemens/cm specific conductance, 630 mg/L bicarbonate (as HCO3), 11 mg/L nitrite plus nitrate (as nitrogen), 7.3 mg/L ammonia (as nitrogen), 5.9 mg/L organic nitrogen, 4.4 mg/L dissolved organic carbon, 7,000 micrograms/L dissolved iron, 5 ,100 microgram/L dissolved manganese, and 320 microgram/L dissolved zinc. Dissolved oxygen concentrations ranged from 8.9 mg/L in uncontaminated areas to 0 mg/L in areas where food processing wastewater is applied to the land surface. Stable-isotope may be useful in differentiating between contamination from potato-processing wastewater and whey in areas where both are applied to the land surface. Development of a ground-water model to evaluate effects of land applications of organic wastewater and organic solute loading rates on subsurface water quality is not feasible at this time.

  9. Field application of passive SBSE for the monitoring of pesticides in surface waters.

    PubMed

    Assoumani, A; Coquery, M; Liger, L; Mazzella, N; Margoum, C

    2015-03-01

    Spot sampling lacks representativeness for monitoring organic contaminants in most surface waters. Passive sampling has emerged as a cost-effective complementary sampling technique. We recently developed passive stir bar sorptive extraction (passive SBSE), with Twister from Gerstel, for monitoring moderately hydrophilic to hydrophobic pesticides (2.18 < log K ow < 5.11) in surface water. The aims of the present study were to assess this new passive sampler for the determination of representative average concentrations and to evaluate the contamination levels of two French rivers. Passive SBSE was evaluated for the monitoring of 16 pesticides in two rivers located in a small vineyard watershed during two 1-month field campaigns in spring 2010 and spring 2011. Passive SBSE was applied for periods of 1 or 2 weeks during the field campaigns and compared with spot sampling and weekly average automated sampling. The results showed that passive SBSE could achieve better time-representativeness than spot sampling and lower limits of quantification than automated sampling coupled with analytical SBSE for the pesticides studied. Finally, passive SBSE proved useful for revealing spatial and temporal variations in pesticide contamination of both rivers and the impact of rainfall and runoff on the river water quality.

  10. US EPA'S SUPERSITES PROGRAM

    EPA Science Inventory

    Dermal exposure to volatile organic compounds (VOCs) in water results from environmental contamination of surface, ground-, and drinking waters. This exposure occurs both in occupational and residential settings. Compartmental models incorporating body burden measurements have ...

  11. *CYANOBACTERIA AND THEIR TOXINS

    EPA Science Inventory

    Cyanobacteria, or blue-green algae, are naturally-occurring contaminants of surface waters worldwide. These photosynthesizing prokaryotes thrive in warm, shallow, nutrient-rich waters. Many produce potent toxins as secondary metabolites. Cyanobacteria toxins have been document...

  12. Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams

    EPA Science Inventory

    Surface-water from 38 streams nation-wide was assessed using 14 target-organic methods (719 compounds). Designedbioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-org...

  13. Organic contaminants in Great Lakes tributaries: Identification of watersheds and chemicals of greatest concern

    EPA Science Inventory

    Trace organic contaminant concentrations in some Great Lakes tributaries indicate potential for adverse effects on aquatic organisms. Chemicals used in agriculture, industry, and households enter surface waters via variety of sources, including urban and agricultural runoff, sewa...

  14. U.S. Environmental Protection Agency and Emerging Contaminants

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-ug/L) in surface, ground and drinking water. The most common...

  15. Chemical composition of natural waters of contaminated area: The case for the Imandra Lake catchment (the Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Evtyugina, Z. A.; Guseva, N. V.; Kopylova, J. G.; A, Vorobeva D.

    2016-03-01

    The study of the current chemical composition of natural waters in the eastern and western parts of the Imandra Lake catchment was performed using ion chromatography, potentiometry and inductively coupled plasma mass spectrometry. It was found that the content of trace elements in the surface water is considerably higher than that in the groundwater. The nickel and copper concentrations exceed the background levels over 19 and 2 times respectively in groundwater, and 175 and 61 times in the surface waters. These data show that the Severonikel influences negatively air and surface water.

  16. Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection

    PubMed Central

    Tuladhar, Era; Hazeleger, Wilma C.; Koopmans, Marion; Zwietering, Marcel H.; Beumer, Rijkelt R.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested. PMID:22941071

  17. Residual viral and bacterial contamination of surfaces after cleaning and disinfection.

    PubMed

    Tuladhar, Era; Hazeleger, Wilma C; Koopmans, Marion; Zwietering, Marcel H; Beumer, Rijkelt R; Duizer, Erwin

    2012-11-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log(10) for poliovirus and close to 4 log(10) for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log(10) reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested.

  18. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOEpatents

    Googin, John M.; Simandl, Ronald F.; Thompson, Lisa M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140.degree. F. and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140.degree. F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  19. Nonhazardous solvent composition and method for cleaning metal surfaces

    DOEpatents

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-05-04

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.

  20. Uptake of Vibrio cholerae biotype eltor from contaminated water by water hyacinth (eichornia crassipes).

    PubMed

    Spira, W M; Huq, A; Ahmed, Q S; Saeed, Y A

    1981-09-01

    Vibrio cholerae biotype eltor appears to concentrate on the surface of the water hyacinth (Eichornia crassipes), thereby enhancing its survival and its potential for transmission through waterways of cholera-endemic regions such as Bangladesh.

  1. Cryptosporidiosis

    MedlinePlus

    Cryptosporidiosis (crypto) is an illness caused by a parasite. The parasite lives in soil, food, and water. It may also be on surfaces that have been contaminated with feces (poop). You can become infected by swallowing the parasite, if it is in your food, drinking water, or water ...

  2. Management and modeling: Tools to improve water quality

    USDA-ARS?s Scientific Manuscript database

    Agricultural, urban and suburban sources contribute to the contamination of surface waters, which has been observed by the detection of pesticides, excess nutrients, industrial pollutants, antibiotics, pharmaceuticals, and personal care products in both natural waters and treated wastewaters. The us...

  3. A new photocatalytic reactor for trace contaminant control: a water polishing system.

    PubMed

    Gonzalez-Martin, A; Kim, J; Van Hyfte, J; Rutherford, L A; Andrews, C

    2001-01-01

    In spacecraft water recovery systems there is a need to develop a postprocessor water polishing system to remove organic impurities to levels below 250 micrograms/L (ppb) with a minimum use of expendables. This article addresses the development of a photocatalytic process as a postprocessor water polishing system that is microgravity compatible, operates at room temperature, and requires only a minimal use of both oxygen gas (or air) and electrical power for low energy UV-A (315-400 nm) lamps. In the photocatalytic process, organic contaminants are degraded to benign end products on semiconductor surfaces, usually TiO2. Some challenging issues related to the use of TiO2 for the degradation of organic contaminants have been addressed. These include: i) efficient and stable catalytic material; ii) immobilization of the catalyst to produce a high surface area material that can be used in packed-bed reactors, iii) effective light penetration, iv) effective, microgravity-compatible, oxidant delivery; v) reduced pressure drop, and vi) minimum retention time. The research and development performed on this photocatalytic process is presented in detail. Grant numbers: NAS9-97182.

  4. In situ spectroscopic identification of neptunium(V) inner-sphere complexes on the hematite-water interface.

    PubMed

    Müller, Katharina; Gröschel, Annett; Rossberg, André; Bok, Frank; Franzen, Carola; Brendler, Vinzenz; Foerstendorf, Harald

    2015-02-17

    Hematite plays a decisive role in regulating the mobility of contaminants in rocks and soils. The Np(V) reactions at the hematite-water interface were comprehensively investigated by a combined approach of in situ vibrational spectroscopy, X-ray absorption spectroscopy and surface complexation modeling. A variety of sorption parameters such as Np(V) concentration, pH, ionic strength, and the presence of bicarbonate was considered. Time-resolved IR spectroscopic sorption experiments at the iron oxide-water interface evidenced the formation of a single monomer Np(V) inner-sphere sorption complex. EXAFS provided complementary information on bidentate edge-sharing coordination. In the presence of atmospherically derived bicarbonate the formation of the bis-carbonato inner-sphere complex was confirmed supporting previous EXAFS findings.1 The obtained molecular structure allows more reliable surface complexation modeling of recent and future macroscopic data. Such confident modeling is mandatory for evaluating water contamination and for predicting the fate and migration of radioactive contaminants in the subsurface environment as it might occur in the vicinity of a radioactive waste repository or a reprocessing plant.

  5. Simulated formation and flow of microemulsions during surfactant flushing of contaminated soil.

    PubMed

    Ouyan, Ying; Cho, Jong Soo; Mansell, Robert S

    2002-01-01

    Contamination of groundwater resources by non-aqueous phase liquids (NAPLs) has become an issue of increasing environmental concern. This study investigated the formation and flow of microemulsions during surfactant flushing of NAPL-contaminated soil using the finite difference model UTCHEM, which was verified with our laboratory experimental data. Simulation results showed that surfactant flushing of NAPLs (i.e., trichloroethylene and tetrachloroethylene) from the contaminated soils was an emulsion-driven process. Formation of NAPL-in-water microemulsions facilitated the removal of NAPLs from contaminated soils. Changes in soil saturation pressure were used to monitor the mobilization and entrapment of NAPLs during surface flushing process. In general, more NAPLs were clogged in soil pores when the soil saturation pressure increased. Effects of aquifer salinity on the formation and flow of NAPL-in-water microemulsions were significant. This study suggests that the formation and flow of NAPL-in-water microemulsions through aquifer systems are complex physical-chemical phenomena that are critical to effective surfactant flushing of contaminated soils.

  6. Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA

    USGS Publications Warehouse

    Bradley, Paul M.; Battaglin, William A.; Clark, Jimmy M.; Henning, Frank; Hladik, Michelle L.; Iwanowicz, Luke R.; Journey, Celeste A.; Riley, Jeffrey W.; Romanok, Kristin

    2017-01-01

    Organic contaminants with designed molecular bioactivity, such as pesticides and pharmaceuticals, originate from human and agricultural sources, occur frequently in surface waters, and threaten the structure and function of aquatic and terrestrial ecosystems. Congaree National Park in South Carolina (USA) is a vulnerable park unit due to its location downstream of multiple urban and agricultural contaminant sources and its hydrologic setting, being composed almost entirely of floodplain and aquatic environments. Seventy-two water and sediment samples were collected from 16 sites in Congaree National Park during 2013 to 2015, and analyzed for 199 and 81 targeted organic contaminants, respectively. More than half of these water and sediment analytes were not detected or potentially had natural sources. Pharmaceutical contaminants were detected (49 total) frequently in water throughout Congaree National Park, with higher detection frequencies and concentrations at Congaree and Wateree River sites, downstream from major urban areas. Forty-seven organic wastewater indicator chemicals were detected in water, and 36 were detected in sediment, of which approximately half are distinctly anthropogenic. Endogenous sterols and hormones, which may originate from humans or wildlife, were detected in water and sediment samples throughout Congaree National Park, but synthetic hormones were detected only once, suggesting a comparatively low risk of adverse impacts. Assessment of the biodegradation potentials of 8 14C-radiolabeled model contaminants indicated poor potentials for some contaminants, particularly under anaerobic sediments conditions.

  7. Vulnerability of public drinking water supplies in New Jersey to pesticides

    USGS Publications Warehouse

    Vowinkel, Eric F.; Clawges, R.M.; Buxton, D.E.; Stedfast, D.A.; Louis, J.B.

    1996-01-01

    The U.S. Geological Survey (USGS), in cooperation with NJDEP, determined the vulnerability of wells and surface-water intakes to pesticide contamination on the basis of hydrogeology and pesticide use. The NJDEP estimated that because many wells and intakes are not vulnerable to contamination by pesticides, monitoring waivers will save taxpayers at least $5.1 million annually for a one-time study cost of $1 million.

  8. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater.

    PubMed

    Ahmed, Mohammad Boshir; Zhou, John L; Ngo, Huu H; Guo, Wenshan; Chen, Mengfang

    2016-08-01

    Modified biochar (BC) is reviewed in its preparation, functionality, applications and regeneration. The nature of precursor materials, preparatory conditions and modification methods are key factors influencing BC properties. Steam activation is unsuitable for improving BC surface functionality compared with chemical modifications. Alkali-treated BC possesses the highest surface functionality. Both alkali modified BC and nanomaterial impregnated BC composites are highly favorable for enhancing the adsorption of different contaminants from wastewater. Acidic treatment provides more oxygenated functional groups on BC surfaces. The Langmuir isotherm model provides the best fit for sorption equilibria of heavy metals and anionic contaminants, while the Freundlich isotherm model is the best fit for emerging contaminants. The pseudo 2(nd) order is the most appropriate model of sorption kinetics for all contaminants. Future research should focus on industry-scale applications and hybrid systems for contaminant removal due to scarcity of data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan for Calendar Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvado Environmental LLC for the Environmental Compliance Department ES&H Division, Y-12 National Security Complex Oak Ridge, Tennessee

    2003-09-30

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2004 at the U.S. Department of Energy (DOE) Y-12 National Security Complex that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2004 will be in accordance with the following requirements of DOE Order 5400.1: (1) to maintain surveillance of existing and potential groundwater contamination sources; (2) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are mostmore » likely to migrate beyond the Oak Ridge Reservation property line; (3) to identify and characterize long-term trends in groundwater quality at Y-12; and (4) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2004 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2004 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan.« less

  10. GROUND WATER ISSUE - PERFORMANCE EVALUATIONS OF PUMP-AND-TREAT REMEDIATIONS

    EPA Science Inventory

    One of the most commonly used ground-water remediation technologies is to pump contaminated water to the surface for treatment. Evaluating the effectiveness of pump-and-treat remediations at Superfund sites is an issue identified by the Regional Superfund Ground Water Forum as a ...

  11. Italian multicentre study on microbial environmental contamination in dental clinics: a pilot study.

    PubMed

    Pasquarella, Cesira; Veronesi, Licia; Castiglia, Paolo; Liguori, Giorgio; Montagna, Maria Teresa; Napoli, Christian; Rizzetto, Rolando; Torre, Ida; Masia, Maria Dolores; Di Onofrio, Valeria; Colucci, Maria Eugenia; Tinteri, Carola; Tanzi, Marialuisa

    2010-09-01

    The dental practice is associated with a high risk of infections, both for patients and healthcare operators, and the environment may play an important role in the transmission of infectious diseases. A microbiological environmental investigation was carried out in six dental clinics as a pilot study for a larger multicentre study that will be performed by the Italian SItI (Society of Hygiene, Preventive Medicine and Public Health) working group "Hygiene in Dentistry". Microbial contamination of water, air and surfaces was assessed in each clinic during the five working days of the week, before and during treatments. Air and surfaces were also examined at the end of the daily activity. A wide variation was found in microbial environmental contamination, both within the participating clinics and relative to the different sampling times. Microbial water contamination in Dental Unit Water Systems (DUWS) reached values of up to 26x10(4)cfu/mL (colony forming units per millilitre). P. aeruginosa was found in 33% of the sampled DUWS and Legionella spp. in 50%. A significant decrease in the Total Viable Count (TVC) was recorded during the activity. Microbial air contamination showed the highest levels during dental treatments and tended to decrease at the end of the working activity (p<0.05). Microbial buildup on surfaces increased significantly during the working hours. As these findings point out, research on microbial environmental contamination and the related risk factors in dental clinics should be expanded and should also be based on larger collections of data, in order to provide the essential knowledge aimed at targeted preventive interventions. Copyright 2010 Elsevier B.V. All rights reserved.

  12. White HDPE bottles as source of serious contamination of water samples with Ba and Zn.

    PubMed

    Reimann, Clemens; Grimstvedt, Andreas; Frengstad, Bjørn; Finne, Tor Erik

    2007-03-15

    During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.

  13. Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects

    NASA Astrophysics Data System (ADS)

    Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.

    2013-09-01

    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.

  14. Effects of anthropogenic activities on chemical contamination within the Grand Canal, China.

    PubMed

    Wang, Xiaolong; Han, Jingyi; Xu, Ligang; Gao, Junfeng; Zhang, Qi

    2011-06-01

    Contamination of nutrients and heavy metals within aquatic system is of great concern due to its potential impact on human and animal health. The Grand Canal of China, the largest artificial river in the world, is of great importance in supplying water resource, transporting cargo, and recreating resident, as well as great historical heritage. This study assessed and examined the impact of human activities on characters of contamination distribution within the section of the Canal in Taihu watershed. Physicochemical parameters of surface water quality were determined monthly from the year 2004 to 2006 at 11 sites that were influenced by different anthropogenic activities along the Canal. Moreover, contaminations at surface sediments (20 cm) at the same locations were also analyzed in September 2006. Results showed that the Canal had been seriously polluted, which was characterized with high spatial variations in contaminations distribution. The sites influenced mainly by industry and urbanization showed higher contents of nutrients and lower levels of dissolve oxygen than other sites. Concentrations of nitrogen at all studied sites exceeded the worst level of surface water quality according to the National Criterion of Surface Water Quality, China, with the average values varying from 2.27 to 10.34 mg/L. Furthermore, the site influenced mainly by industry (i.e., Site 4) presented the highest contents of cadmium (3.453 mg/kg), chromium (196.87 mg/kg), nickel (87.12 mg/kg), zinc (381.8 mg/kg), and copper (357.32 mg/kg). While sites in vicinity to cities had presented relatively higher contents of metals, especially for the site located downstream of Changzhou City (Site 3) had presented the highest contents of mercury (1.64 mg/kg) and lead (197.62 mg/kg). Copper at Sites 2 to 6, Nickel at Sites 2 to 9 except for Site 7, chromium, lead, and zinc at Sites 3 to 6 had exceeded New York State Department of Environmental Conservation (NYSDEC) Severe Effect Level (SEL). By multivariate statistical, nutrient variables, companied with V-phen, had contributed the most variation of water quality, while nutrient and metals had explained the most part of total variance of contaminations in sediment. This study indicated that the canal had been polluted severely and urgently need to control.

  15. Production and characterization of carbonized sorbent products optimized for anionic contaminants

    NASA Astrophysics Data System (ADS)

    Viglasova, Eva; Fristak, Vladimir; Galambos, Michal; Hood-Nowotny, Rebecca; Soja, Gerhard

    2017-04-01

    Processing conditions, production methods and feedstock characteristics have been shown to affect the final sorption properties of biochar-based sorbents that have been produced in pyrolysis reactors. The content of O-containing carboxyl, phenolic and hydroxyl functional groups on the biochar surfaces plays a crucial role in sorption chemistry of hazardous materials. The sorption process can be affected by the presence of non-carbonized fractions in biochar matter as well. All these characteristics indicate that biochar shows good potential as a new tool in removal and separation technologies of various pollutants from waste water or contaminated soils. The sorption potential of wood-based biochars for cationic forms of heavy metals has been studied intensively and has already led to successful pilot applications in the field. However, anionic compounds (e.g. phosphate, nitrate, sulphate, As-, Cr-compounds) do not sorb well to unmodified biochar and need specific surface modification of biochar. Based on this fact, we try to obtain data about the sorptive separation of anionic forms of various contaminants from model aqueous solutions by different types of biochar-derived sorbents, or mineral-enriched biochar-derived sorbents. An important part of this research is the assesment of the effects of varying process parameters during biomass carbonisation, the role of biomass feedstock and pre-and/or post-treatment of the biochars onto sorption processes. We specify the most appropriate application strategies with biochar for remediation purposes of waste water or contaminated waters with elevated toxic metal concentrations that might compromise the quality of surface waters. The main aim of research is the preparation of modified biochar sorbent, the characterization of its surface and the investigation about new possibilities of modified biochar sorbent applications for sorption of various contaminants, mainly their anionic forms (e.g. phosphates, nitrates, arsenates). Modification of bamboo-based biochar with clay minerals, the preparation of its composites, could increase the surface area of bamboo-based biochar from 3 to 5 times. Other ways of modification e.g. by using FeCl3 ṡ 6H2O caused a significant increase of sorption ability for anionic forms

  16. Mapping human health risks from exposure to trace metal contamination of drinking water sources in Pakistan.

    PubMed

    Bhowmik, Avit Kumar; Alamdar, Ambreen; Katsoyiannis, Ioannis; Shen, Heqing; Ali, Nadeem; Ali, Syeda Maria; Bokhari, Habib; Schäfer, Ralf B; Eqani, Syed Ali Musstjab Akber Shah

    2015-12-15

    The consumption of contaminated drinking water is one of the major causes of mortality and many severe diseases in developing countries. The principal drinking water sources in Pakistan, i.e. ground and surface water, are subject to geogenic and anthropogenic trace metal contamination. However, water quality monitoring activities have been limited to a few administrative areas and a nationwide human health risk assessment from trace metal exposure is lacking. Using geographically weighted regression (GWR) and eight relevant spatial predictors, we calculated nationwide human health risk maps by predicting the concentration of 10 trace metals in the drinking water sources of Pakistan and comparing them to guideline values. GWR incorporated local variations of trace metal concentrations into prediction models and hence mitigated effects of large distances between sampled districts due to data scarcity. Predicted concentrations mostly exhibited high accuracy and low uncertainty, and were in good agreement with observed concentrations. Concentrations for Central Pakistan were predicted with higher accuracy than for the North and South. A maximum 150-200 fold exceedance of guideline values was observed for predicted cadmium concentrations in ground water and arsenic concentrations in surface water. In more than 53% (4 and 100% for the lower and upper boundaries of 95% confidence interval (CI)) of the total area of Pakistan, the drinking water was predicted to be at risk of contamination from arsenic, chromium, iron, nickel and lead. The area with elevated risks is inhabited by more than 74 million (8 and 172 million for the lower and upper boundaries of 95% CI) people. Although these predictions require further validation by field monitoring, the results can inform disease mitigation and water resources management regarding potential hot spots. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Benefit transfer protocol for long-term health risk valuation: A case of surface water contamination

    NASA Astrophysics Data System (ADS)

    Kask, Susan B.; Shogren, Jason F.

    1994-10-01

    In response to scarce financial resources, economists have promoted the concept of benefit transfer as a cost-effective alternative to new nonmarket valuation studies. Recent discussion on benefit transfer for improved water quality has focused on recreational benefits. While useful, the discussion must now be expanded to include another key benefit from improved water quality: the reduction in risk to public health. This paper develops a protocol for benefit transfer of long-term health risk reduction and presents a case study for surface water contamination. Challenges such as the multiple sources of risk, the mortality and morbidity effects indicated by a variety of symptoms, the long latency period between cause and effect, and an individual's ability to privately or collectively reduce the probability or severity of the risk are discussed.

  18. In situ bioremediation of an underground diesel fuel spill: A case history

    NASA Astrophysics Data System (ADS)

    Frankenberger, W. T.; Emerson, K. D.; Turner, D. W.

    1989-05-01

    In the winter months of 1983, approximately 1000 gallons of diesel fuel had flowed along an asphalt parking lot of a commercial establishment towards a surface drain near an open creek. Investigations led to the discovery of an underground storage tank leaking diesel fuel. Exploratory borings showed that contamination was near the surface horizon and the capillary zone of the water table. Hydrocarbon quantities ranged up to 1500 mg/kg of soil. The plume continued to move in an eastward direction toward the surface water of the creek. A laboratory study indicated relatively high numbers of hydrocarbon-oxidizing organisms relative to glucose-utilizing microorganisms in the unsaturated vadose zone. Bioreclamation was initiated in April 1984 by injecting nutrients (nitrogen and phosphorus) and hydrogen peroxide and terminated in October 1984 upon no detection (<1 mg/kg) of hydrocarbons. A verification boring within the vicinity of the contaminated plume confirmed that residual contamination had attained background levels. The monitoring program was terminated in January 1987.

  19. Titania nano-coated quartz wool for the photocatalytic mineralisation of emerging organic contaminants.

    PubMed

    Saracino, M; Pretali, L; Capobianco, M L; Emmi, S S; Navacchia, M L; Bezzi, F; Mingazzini, C; Burresi, E; Zanelli, A

    2018-01-01

    Many emerging contaminants pass through conventional wastewater treatment plants, contaminating surface and drinking water. The implementation of advanced oxidation processes in existing plants for emerging contaminant remediation is one of the challenges for the enhancement of water quality in the industrialised countries. This paper reports on the production of a TiO 2 nano-layer on quartz wool in a relevant amount, its characterisation by X-ray diffraction and scanning electron microscopy, and its use as a photocatalyst under ultraviolet radiation for the simultaneous mineralisation of five emerging organic contaminants (benzophenone-3, benzophenone-4, carbamazepine, diclofenac, and triton X-100) dissolved in deionised water and tap water. This treatment was compared with direct ultraviolet photolysis and with photocatalytic degradation on commercial TiO 2 micropearls. The disappearance of every pollutant was measured by high performance liquid chromatography and mineralisation was assessed by the determination of total organic carbon. After 4 hours of treatment with the TiO 2 nano-coated quartz wool, the mineralisation exceeds 90% in deionised water and is about 70% in tap water. This catalyst was reused for seven cycles without significant efficiency loss.

  20. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle.

    PubMed

    Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong

    2014-10-01

    The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top