Sample records for contamination relating sub-cellular

  1. The sub-cellular fate of mercury in the liver of wild mullets (Liza aurata)--Contribution to the understanding of metal-induced cellular toxicity.

    PubMed

    Araújo, Olinda; Pereira, Patrícia; Cesário, Rute; Pacheco, Mário; Raimundo, Joana

    2015-06-15

    Mercury is a recognized harmful pollutant in aquatic systems but still little is known about its sub-cellular partitioning in wild fish. Mercury concentrations in liver homogenate (whole organ load) and in six sub-cellular compartments were determined in wild Liza aurata from two areas - contaminated (LAR) and reference. Water and sediment contamination was also assessed. Fish from LAR displayed higher total mercury (tHg) organ load as well as in sub-cellular compartments than those from the reference area, reflecting environmental differences. However, spatial differences in percentage of tHg were only observed for mitochondria (Mit) and lysosomes plus microsomes (Lys+Mic). At LAR, Lys+Mic exhibited higher levels of tHg than the other fractions. Interestingly, tHg in Mit, granules (Gran) and heat-denaturable proteins was linearly correlated with the whole organ. Low tHg concentrations in heat stable proteins and Gran suggests that accumulated levels might be below the physiological threshold to activate those detoxification fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  3. Plasma cleaning of beamline optical components: Contamination and gas composition effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, R.A.; Smith, J.A.; Wallace, D.J.

    1992-01-01

    We have initiated a program to study the impact of gas composition on the carbon removal rate during plasma cleaning of optical components, and of possible contamination due to the plasma processing. The measurements were performed in a test chamber designed to simulate the geometry of the grating/Codling mirror section of a Grasshopper monochromator. Removal rates were determined for a direct-current (dc) (Al electrode) discharge using a quartz crystal microbalance coated with polymethylmethacrylate, located at the position of the grating. Auger electron spectroscopy analysis of strateg- ically located, gold-coated stainless steel samples was employed to determine contamination. The relative removalmore » rates of the gases studied were 3% C{sub 2}F{sub 6}/O{sub 2}{much gt} O{sub 2}+H{sub 2}O{gt}O{sub 2}{similar to}N{sub 2}O{gt}H{sub 2}{gt}N{sub 2}. Although the C{sub 2}F{sub 6}/O{sub 2} gas mixture showed a 20 times greater removal rate than its nearest competitor, it also caused significant contamination to occur. Contamination studies were performed for both dc and radio-frequency (rf) discharges. For the dc discharge we found that great care must be taken in order to avoid Al contamination; for the rf discharge, significant Fe contamination was observed.« less

  4. Biological effects of anthropogenic contaminants in the San Francisco Estuary

    USGS Publications Warehouse

    Thompson, B.; Adelsbach, T.; Brown, C.; Hunt, J.; Kuwabara, J.; Neale, J.; Ohlendorf, H.; Schwarzbach, S.; Spies, R.; Taberski, K.

    2007-01-01

    Concentrations of many anthropogenic contaminants in the San Francisco Estuary exist at levels that have been associated with biological effects elsewhere, so there is a potential for them to cause biological effects in the Estuary. The purpose of this paper is to summarize information about biological effects on the Estuary's plankton, benthos, fish, birds, and mammals, gathered since the early 1990s, focusing on key accomplishments. These studies have been conducted at all levels of biological organization (sub-cellular through communities), but have included only a small fraction of the organisms and contaminants of concern in the region. The studies summarized provide a body of evidence that some contaminants are causing biological impacts in some biological resources in the Estuary. However, no general patterns of effects were apparent in space and time, and no single contaminant was consistently related to effects among the biota considered. These conclusions reflect the difficulty in demonstrating biological effects due specifically to contamination because there is a wide range of sensitivity to contaminants among the Estuary's many organisms. Additionally, the spatial and temporal distribution of contamination in the Estuary is highly variable, and levels of contamination covary with other environmental factors, such as freshwater inflow or sediment-type. Federal and State regulatory agencies desire to develop biological criteria to protect the Estuary's biological resources. Future studies of biological effects in San Francisco Estuary should focus on the development of meaningful indicators of biological effects, and on key organism and contaminants of concern in long-term, multifaceted studies that include laboratory and field experiments to determine cause and effect to adequately inform management and regulatory decisions. ?? 2006 Elsevier Inc. All rights reserved.

  5. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF/sub 6/. [ClF/sub 3/

    DOEpatents

    Jones, R.L.; Otey, M.G.; Perkins, R.W.

    1980-11-24

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.

  6. Industrial grade 2D molybdenum disulphide (MoS2): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation

    NASA Astrophysics Data System (ADS)

    Moore, Caroline; Movia, Dania; Smith, Ronan J.; Hanlon, Damien; Lebre, Filipa; Lavelle, Ed C.; Byrne, Hugh J.; Coleman, Jonathan N.; Volkov, Yuri; McIntyre, Jennifer

    2017-06-01

    The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than research grade materials. The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory responses in established cell-lines that mimic different potential exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using high content screening (HCS) and Live/Dead assays, it was established that 1 µg ml-1 (for the three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal microscopy images revealed a normal cellular morphology in all cases. Transmission electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, inflammatory responses are observed, however, associated, at least partially, with the presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow derived dendritic cells confirmed that the inflammatory responses result from a combination of endotoxin contamination, the MoS2 nanomaterials themselves, and the stabilizing surfactant.

  7. Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6

    DOEpatents

    Jones, Robert L.; Otey, Milton G.; Perkins, Roy W.

    1982-01-01

    This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.

  8. [The surgical treatment of gastric and duodenal peptic ulcers in patients living in a radionuclide-contaminated area].

    PubMed

    Vorob'eva, A M; Sosiura, T V; Pustovit, A A; Markulan, L Iu; Kuzovkova, S D; Balannik, Z T

    1993-01-01

    The state of cellular and humoral immunity in patients with gastric and duodenal ulcer disease residing at the territory contaminated with radionuclides (35 patients) and at relatively clean (42) territory, as well as in 47 virtually healthy subjects was studied. It was established that in patients residing at contaminated territory, the ulcer diseases aggravated rapidly, the complications often occurred, and the immunologic indices didn't differ from those in patients residing at relatively clean territory.

  9. Scaling of cell size in cellular instabilities of nonpremixed jet flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Jacono, D.; Monkewitz, P.A.

    2007-10-15

    Systematic experiments have been undertaken to study the parameter dependence of cellular instability and in particular the scaling of the resulting cell size in CO{sub 2}-diluted H{sub 2}-O{sub 2} jet diffusion flames. Cellular flames are known to arise near the extinction limit when reactant Lewis numbers are relatively low. The Lewis numbers of the investigated near-extinction mixtures, based on the initial mixture strength {phi}{sub m} and ambient conditions, varied in the ranges [1.1-1.3] for oxygen and [0.25-0.29] for hydrogen ({phi}{sub m} is defined here as the fuel-to-oxygen mass ratio, normalized by the stoichiometric ratio). The experiments were carried out bothmore » in an axisymmetric jet (AJ) burner and in a two-dimensional slot burner known as a Wolfhard-Parker (WP) burner with an oxidizer co-flow (mostly 100% O{sub 2}) of fixed low velocity. First, the region of cellular flames adjacent to the extinction limit was characterized in terms of initial H{sub 2} concentration and fuel jet velocity, with all other parameters fixed. Then, the wavelength of the cellular instability, i.e., the cell size, was determined as a function of the fuel jet velocity and the initial mixture strength {phi}{sub m}. For conditions not too close to extinction, this wavelength is found to increase with the square root of the vorticity thickness of the jet shear layer and roughly the 1/5 power of {phi}{sub m}. Very close to extinction, this scaling breaks down and will likely switch to a scaling with the flame thickness, i.e., involving the Damkoehler number. (author)« less

  10. Environmental effects of dredging: Methods for the assessment of the genotoxic effects of environmental contaminants. Glossary and references. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honeycutt, M.E.; Jarvis, A.S.; McFarland, V.A.

    1995-07-01

    This technical note is the third in a series of three that outline and describe the principal methods that have been developed to test the potential of environmental contaminants to cause mutagenic, carcinogenic, and teratogenic effects. The first in this series (EEDP-04-24) describes methods used to discern genotoxic effects at the sub cellular level, while the second (EEDP-04-25) describes methods used to discern genotoxic effects at the cellular and organ/organism level. Recent literature citations for each topic referenced in this series of technical notes are provided in this technical note, in addition to a glossary of terms. The information inmore » these technical notes is intended to provide Corps of Engineers personnel with a working knowledge of the terminology and conceptual basis of genotoxicity testing. To develop an improved understanding of the concepts of genotoxicity, readers are encouraged to review A Primer in Genotoxicity (Jarvis, Reilly, and Lutz 1993), presented in Volume D-93-3 of the Environmental Effects of Dredging information exchange bulletin.« less

  11. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    PubMed

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.

  12. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  13. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Yongkoo; Javandel, Iraj

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varyingmore » H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.« less

  14. Prevalent Glucocorticoid and Androgen Activity in US Water Sources

    PubMed Central

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki S.; Iwanowicz, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations. PMID:23226835

  15. Prevalent glucocorticoid and androgen activity in US water sources.

    PubMed

    Stavreva, Diana A; George, Anuja A; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C; Schiltz, R Louis; Blazer, Vicki S; Iwanowicz, Luke R; Hager, Gordon L

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  16. Prevalent flucocorticoid and androgen activity in US water sources

    USGS Publications Warehouse

    Stavreva, Diana A.; George, Anuja A.; Klausmeyer, Paul; Varticovski, Lyuba; Sack, Daniel; Voss, Ty C.; Schiltz, R. Louis; Blazer, Vicki; Iwanowiczl, Luke R.; Hager, Gordon L.

    2012-01-01

    Contamination of the environment with endocrine disrupting chemicals (EDCs) is a major health concern. The presence of estrogenic compounds in water and their deleterious effect are well documented. However, detection and monitoring of other classes of EDCs is limited. Here we utilize a high-throughput live cell assay based on sub-cellular relocalization of GFP-tagged glucocorticoid and androgen receptors (GFP-GR and GFP-AR), in combination with gene transcription analysis, to screen for glucocorticoid and androgen activity in water samples. We report previously unrecognized glucocorticoid activity in 27%, and androgen activity in 35% of tested water sources from 14 states in the US. Steroids of both classes impact body development, metabolism, and interfere with reproductive, endocrine, and immune systems. This prevalent contamination could negatively affect wildlife and human populations.

  17. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the 'L-arginine paradox'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Soyoung; Mohan, Srinidi; Fung, Ho-Leung, E-mail: hlfung@buffalo.edu

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Our findings provide a possible solution to the 'L-arginine paradox'. Black-Right-Pointing-Pointer Extracellular L-arginine concentration is the major determinant of NO production. Black-Right-Pointing-Pointer Cellular L-arginine action is limited by cellular ARG transport, not the K{sub m} of NOS. Black-Right-Pointing-Pointer We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of {sup 15}N{sub 4}-ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h.more » To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, {sup 15}N{sub 4}-ARG, dimethylarginines, and L-citrulline by an LC-MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by{sup 15}N-nitrite or estimated {sup 15}N{sub 3}-citrulline concentrations when {sup 15}N{sub 4}-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced {sup 15}N{sub 4}-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by {sup 15}N-nitrite, total nitrite and {sup 15}N{sub 3}-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell, ARG can no longer gain access to the membrane-bound eNOS. These observations indicate that the 'L-arginine paradox' should not consider intracellular ARG concentration as a reference point.« less

  18. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    PubMed

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  19. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  20. Male germplasm in relation to environmental conditions: synoptic focus on DNA

    USGS Publications Warehouse

    Jenkins, Jill A.; Tiersch, Terrence R.; Green, Christopher C.

    2011-01-01

    Wild animals are generally more sensitive than humans to environmental stressors, thus they act as sentinels for resource degradation. Sublethal stress is generally manifested first at the sub-organismal level, where immune systems are compromised, reproductive success is reduced, and genetic integrity is altered. Biomarkers - variables quantifiably responsive to changes in the environment - provide useful information to resource managers and regulatory agencies. Biomarkers of sperm quality are proving useful in this capacity, as well as in artificial breeding. Cellular and molecular bioassays can help to determine mechanisms of action of deleterious agents, predict fertility and reproductive potential, and model population-wide and community level effects. A sequence of biomarker assays can be tailored to fit species of concern, to study physiological effects responsive to known contamination events, and can be selectively applied to fresh, thawed, and fixed samples, as well as those shipped to the laboratory from field sites.

  1. Sub-cellular force microscopy in single normal and cancer cells.

    PubMed

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh.

    PubMed

    Castro, Rita; Pereira, Sofia; Lima, Ana; Corticeiro, Sofia; Válega, Mónica; Pereira, Eduarda; Duarte, Armando; Figueira, Etelvina

    2009-09-01

    This work evaluates the role of a plant community in mercury (Hg) stabilization and mobility in a contaminated Portuguese salt marsh. With this aim, the distribution of Hg in below and aboveground tissues, as well as the metal partitioning between cellular fractions (soluble and insoluble) in four different species (Triglochin maritima L., Juncus maritimus Lam, Sarcocornia perennis (Miller) A.J. Scott, and Halimione portulacoides (L.) Aellen) was assessed. Mercury accumulation, translocation and compartmentation between organs and cellular fractions were related to the plant species. Results showed that the degree of Hg absorption and retention was influenced both by environmental parameters and metal translocation/partitioning strategies. Different plant species presented different allocation patterns, with marked differences between monocots (T. maritima and J. maritimus) and dicots (S. perennis, H. portulacoides). Overall, the two monocots, in particular T. maritima showed higher Hg retention in the belowground organs whereas the dicots, particularly S. perennis presented a more pronounced translocation to the aboveground tissues. Considering cellular Hg partitioning, all species showed a higher Hg binding to cell walls and membranes rather than in the soluble fractions. This strategy can be related to the high degree of tolerance observed in the studied species. These results indicate that the composition of salt marsh plant communities can be very important in dictating the Hg mobility within the marsh ecosystem and in the rest of the aquatic system as well as providing important insights to future phytoremediation approaches in Hg contaminated salt marshes.

  3. Temporary vs. Permanent Sub-slab Ports: A Comparative ...

    EPA Pesticide Factsheets

    Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated groundwater, to indoor air-exposure points. Therefore, contaminated matrices may include groundwater, soil, soil gas, and indoor air. VOC contaminants of concern typically include halogenated solvents such as trichloroethene, tetrachloroethene, and chloroform, as well as petroleum hydrocarbons, such as the aromatic VOCs benzene, toluene, and xylenes. Radon is a colorless radioactive gas that is released by radioactive decay of radionuclides in rock and soil that migrate into homes through VI in a similar fashion to VOCs. This project focused on the performance of permanent versus temporary sub-slab sampling ports for the determination of VI of halogenated VOCs and radon into an unoccupied house. VOC and radon concentrations measured simultaneously in soil gas using collocated temporary and permanent ports appeared to be independent of the type of port. The variability between collocated temporary and permanent ports was much less than the spatial variability between different locations within a single residential duplex. The agreement of the majority of VOC and radon concentrations, 0–36% relative percent difference, and 2–19% relative standard deviation respectively, of each sub-sl

  4. ENVIRONMENTAL IMPACTS AND MONITORING: A HISTORICAL PERSPECTIVE ON THE USE OF NATURAL ATTENUATION FOR SUBSURFACE REMEDIATION

    EPA Science Inventory

    The collective processes that constitute the broadly used term Anatural attenuation,@ as it relates to subsurface remediation of contaminants, refer to the physical, chemical, and biological interactions that, without human intervention, reduce or contain contaminants in the sub...

  5. Correlation of gene expression and contaminat concentrations in wild largescale suckers: a field-based study

    USGS Publications Warehouse

    Christiansen, Helena E.; Mehinto, Alvine C.; Yu, Fahong; Perry, Russell W.; Denslow, Nancy D.; Maule, Alec G.; Mesa, Matthew G.

    2014-01-01

    Toxic compounds such as organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ether flame retardants (PBDEs) have been detected in fish, birds, and aquatic mammals that live in the Columbia River or use food resources from within the river. We developed a custom microarray for largescale suckers (Catostomus macrocheilus) and used it to investigate the molecular effects of contaminant exposure on wild fish in the Columbia River. Using Significance Analysis of Microarrays (SAM) we identified 72 probes representing 69 unique genes with expression patterns that correlated with hepatic tissue levels of OCs, PCBs, or PBDEs. These genes were involved in many biological processes previously shown to respond to contaminant exposure, including drug and lipid metabolism, apoptosis, cellular transport, oxidative stress, and cellular chaperone function. The relation between gene expression and contaminant concentration suggests that these genes may respond to environmental contaminant exposure and are promising candidates for further field and laboratory studies to develop biomarkers for monitoring exposure of wild fish to contaminant mixtures found in the Columbia River Basin. The array developed in this study could also be a useful tool for studies involving endangered sucker species and other sucker species used in contaminant research.

  6. Sub-cellular force microscopy in single normal and cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer andmore » significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.« less

  7. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS

    EPA Science Inventory

    Environmental contaminants have been reported to function as hormone mimics in various wildlife species. To investigate a potential mechanism for the interaction of contaminants with the endocrine system, we evaluated the cellular bioavailability of numerous chemicals. Hormone bi...

  8. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs.more » Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.« less

  9. INFLUENCE OF EQUINE FECAL CONTAMINATION ON MICROBIAL COMMUNITY STRUCTURE IN A SUB-WATERSHED

    EPA Science Inventory

    As monitoring of watershed water quality is directly related to proposed uses, it is important for our Naton's water systems that the d4etemrination of and distinction between fecal contamination source is made. The most common water quality monitoring approach is to screen for f...

  10. Fluorescent and cathodoluminescent phophors structurally related to sodalite

    DOEpatents

    Phillips, Mark L. F.; Shea, Lauren E.

    1998-01-01

    Blue, quantum-confined phosphors for field-emission displays made by reducing metal (M) sulfoaluminates at high temperature. This yields phases of the type M.sub.4 (AlO.sub.2).sub.6 S. Bulk sulfide contaminant mixed with the reduced sulfoaluminate phase is removed by treating it with a chelating agent in nonaqueous solution. A photometric cathodoluminescence efficiency of 9 lumen/watt at 1000 V for Sr.sub.3 PbS(AlO.sub.2).sub.6 is observed. Undoped Sr.sub.4 S(AlO).sub.6 displays 5 lumen/watt at 1000 V, with excellent blue chromatic saturation.

  11. Exposure of Daphnia magna to trichloroethylene (TCE) and vinyl chloride (VC): evaluation of gene transcription, cellular activity, and life-history parameters.

    PubMed

    Houde, Magali; Douville, Mélanie; Gagnon, Pierre; Sproull, Jim; Cloutier, François

    2015-06-01

    Trichloroethylene (TCE) is a ubiquitous contaminant classified as a human carcinogen. Vinyl chloride (VC) is primarily used to manufacture polyvinyl chloride and can also be a degradation product of TCE. Very few data exist on the toxicity of TCE and VC in aquatic organisms particularly at environmentally relevant concentrations. The aim of this study was to evaluate the sub-lethal effects (10 day exposure; 0.1; 1; 10 µg/L) of TCE and VC in Daphnia magna at the gene, cellular, and life-history levels. Results indicated impacts of VC on the regulation of genes related to glutathione-S-transferase (GST), juvenile hormone esterase (JHE), and the vitelline outer layer membrane protein (VMO1). On the cellular level, exposure to 0.1, 1, and 10 µg/L of VC significantly increased the activity of JHE in D. magna and TCE increased the activity of chitinase (at 1 and 10 µg/L). Results for life-history parameters indicated a possible tendency of TCE to affect the number of molts at the individual level in D. magna (p=0.051). Measurement of VG-like proteins using the alkali-labile phosphates (ALP) assay did not show differences between TCE treated organisms and controls. However, semi-quantitative measurement using gradient gel electrophoresis (213-218 kDa) indicated significant decrease in VG-like protein levels following exposure to TCE at all three concentrations. Overall, results indicate effects of TCE and VC on genes and proteins related to metabolism, reproduction, and growth in D. magna. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  12. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1999-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  13. Method for treating waste containing stainless steel

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1999-03-02

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  14. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, Stephan T.; Battleson, Daniel M.; Rademacher, Jr., Edward L.; Cashell, Patrick V.; Filius, Krag D.; Flannery, Philip A.; Whitworth, Clarence G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe.sub.3 O.sub.4. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe.sub.2 O.sub.3. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater.

  15. Method of operating a centrifugal plasma arc furnace

    DOEpatents

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-03-24

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe{sub 3}O{sub 4}. Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe{sub 2}O{sub 3}. Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs.

  16. The ECM moves during primitive streak formation--computation of ECM versus cellular motion.

    PubMed

    Zamir, Evan A; Rongish, Brenda J; Little, Charles D

    2008-10-14

    Galileo described the concept of motion relativity--motion with respect to a reference frame--in 1632. He noted that a person below deck would be unable to discern whether the boat was moving. Embryologists, while recognizing that embryonic tissues undergo large-scale deformations, have failed to account for relative motion when analyzing cell motility data. A century of scientific articles has advanced the concept that embryonic cells move ("migrate") in an autonomous fashion such that, as time progresses, the cells and their progeny assemble an embryo. In sharp contrast, the motion of the surrounding extracellular matrix scaffold has been largely ignored/overlooked. We developed computational/optical methods that measure the extent embryonic cells move relative to the extracellular matrix. Our time-lapse data show that epiblastic cells largely move in concert with a sub-epiblastic extracellular matrix during stages 2 and 3 in primitive streak quail embryos. In other words, there is little cellular motion relative to the extracellular matrix scaffold--both components move together as a tissue. The extracellular matrix displacements exhibit bilateral vortical motion, convergence to the midline, and extension along the presumptive vertebral axis--all patterns previously attributed solely to cellular "migration." Our time-resolved data pose new challenges for understanding how extracellular chemical (morphogen) gradients, widely hypothesized to guide cellular trajectories at early gastrulation stages, are maintained in this dynamic extracellular environment. We conclude that models describing primitive streak cellular guidance mechanisms must be able to account for sub-epiblastic extracellular matrix displacements.

  17. IN SITU LEAD IMMOBILIZATION BY APATITE

    EPA Science Inventory

    Lead contamination is of environmental concern due to its effect on human health. The purpose of this study was to develop a technology to immobilize Pb in situ in contaminated soils and wastes using apatite. Hydroxyapatite [Ca10(PO4)6(O...

  18. Detecting the Extent of Cellular Decomposition after Sub-Eutectoid Annealing in Rolled UMo Foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, Elizabeth J.; Jana, Saumyadeep; Devaraj, Arun

    2017-07-31

    This report presents an automated image processing approach to quantifying microstructure image data, specifically the extent of eutectoid (cellular) decomposition in rolled U-10Mo foils. An image processing approach is used here to be able to quantitatively describe microstructure image data in order to relate microstructure to processing parameters (time, temperature, deformation).

  19. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  20. Fluorescent and cathodoluminescent phosphors structurally related to sodalite

    DOEpatents

    Phillips, M.L.F.; Shea, L.E.

    1998-09-29

    Blue, quantum-confined phosphors are disclosed for field-emission displays made by reducing metal (M) sulfoaluminates at high temperature. This yields phases of the type M{sub 4}(AlO{sub 2}){sub 6}S. Bulk sulfide contaminant mixed with the reduced sulfoaluminate phase is removed by treating it with a chelating agent in nonaqueous solution. A photometric cathodoluminescence efficiency of 9 lumen/watt at 1,000 V for Sr{sub 3}PbS(AlO{sub 2}){sub 6} is observed. Undoped Sr{sub 4}S(AlO){sub 6} displays 5 lumen/watt at 1,000 V, with excellent blue chromatic saturation. 2 figs.

  1. Flow cytometric analysis of BDE 47 mediated injury to rainbow trout gill epithelial cells

    PubMed Central

    Shao, Jing; Dabrowski, Michael J.; White, Collin C.; Kavanagh, Terrance J.; Gallagher, Evan P.

    2012-01-01

    The polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental contaminants whose residues are increasing in fish, wildlife and human tissues. However, relatively little is known regarding the mechanisms of cell injury caused by PBDE congeners in fish. In the present study, we employed flow cytometry-based analyses to understand the onset and mechanisms of cell injury in rainbow trout gill cells (RTgill-W1 cells) exposed to 2,2′,4,4′-tetrabromodiphenyl ether (BDE 47). Substantial optimization and validation for flow cytometry protocols were required during assay development for the trout gill cell line. Exposure to micromolar concentrations of BDE 47 elicited a significant loss in RTgill-W1 cell viability that was accompanied by a decrease in NAD(P)H autofluorescence, a marker associated with disruption of cellular redox status. This loss in NAD(P)H content was accompanied by a decrease in nonylacridine orange fluorescence, indicating mitochondrial membrane lipid peroxidation. Furthermore, low doses of BDE 47 altered cellular forward angle light scatter (FS, a measure of cell diameter or size) and side light scatter properties (SS, a measure of cellular internal complexity), consistent with the early stages of apoptosis. These changes were more pronounced at higher BDE 47 concentrations, which lead to an increase in the percentage of cells undergoing frank apoptosis as evidenced by sub-G1 DNA content. Apoptosis was also observed at a relatively low dose (3.2 μM) of BDE 47 if cells were exposed for an extended period of time (24 hr). Collectively, the results of these studies indicate that exposure of rainbow trout gill cells to BDE47 is associated with the induction of apoptosis likely originating from disruption of cellular redox status and mitochondrial oxidative injury. The current report extends observations in other species demonstrating that oxidative stress is an important mechanism of BDE 47 mediated cellular toxicity, and supports the use of oxidative stress-associated biomarkers in assessing the sublethal effects of PBDEs and their replacements in fish. The application of flow cytometry endpoints using fish cell lines should facilitate study of the mechanisms of chemical injury in aquatic species. PMID:20053465

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbücher, C.; Hildebrandt, E.; Sharath, S. U.

    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO{sub 2−x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC{sub x}) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfC{sub x} surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO{sub 2} thin films prepared and measured under identical conditions, the formation of HfC{sub x} was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films providesmore » a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.« less

  3. Standardised survey method for identifying catchment risks to water quality.

    PubMed

    Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A

    2016-06-01

    This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking.

  4. FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.

    PubMed

    Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad

    2015-10-01

    Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.

  5. Cellular and inflammatory responses in bronchoalveolar lavage and lungs in rats after intratracheal instillation of Libby amphibole or amosite asbestos

    EPA Science Inventory

    The high incidence of asbestos-related disease in residents of Libby, Montana, is associated with the mining of asbestos-contaminated vermiculite, but the etiology of disease related to Libby amphibole asbestos (LA) exposure is unclear. In this study, water elutriation was used t...

  6. Induction of sister chromatid exchanges and inhibition of cellular proliferation in vitro. I. Caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guglielmi, G.E.; Vogt, T.F.; Tice, R.R.

    1982-01-01

    While many agents have been examined for their ability to induce SCE's, complete dose-response information has often been lacking. We have reexamined the ability of one such compound - caffeine - to induce SCEs and also to inhibit cellular proliferation in human peripheral lymphocytes in vitro. An acute exposure to caffeine prior to the DNA synthetic period did not affect either SCE frequency or the rate of cellular proliferation. Chronic exposure to caffeine throughout the culture period lead to both a dose-dependent increase in SCEs (SCE/sub d/ or doubling dose = 2.4 mM; SCE/sub 10/ or the dose capable ofmore » inducing 10 SCE = 1.4 mM) and a dose-dependent inhibition of cellular proliferation (IC/sub 50/ or the 50% inhibition concentration = 2.6 mM). The relative proportion of first generation metaphase cells, an assessment of proliferative inhibiton, increased linearly with increasing caffeine concentrations. However, SCE frequency increased nonlinearly over the same range of caffeine concentrations. Examination of the ratio of nonsymmetrical to symmetrical SCEs in third generation metaphase cells indicated that caffeine induced SCEs in equal frequency in each of three successive generations. The dependency of SCE induction and cellular proliferative inhibition on caffeine's presence during the DNA synthetic period suggests that caffeine may act as an antimetabolite in normal human cells.« less

  7. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recentlymore » developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique. Nearly 100% of the sorbed ClO{sub 4}{sup -} was displaced or recovered after elution with only {approx} 2-5 bed volumes of the FeCl{sub 3}-HCl regenerant solution. On the basis of both the laboratory and field pilot-scale studies, they therefore anticipate that a combination of the selective ion exchange and the FeCl{sub 3}-regeneration technologies may offer a cost-effective means to remove ClO{sub 4}{sup -} from contaminated groundwater with significantly reduced waste generation and operational cost.« less

  8. Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool.

    PubMed

    Tserevelakis, George J; Psycharakis, Stylianos; Resan, Bojan; Brunner, Felix; Gavgiotaki, Evagelia; Weingarten, Kurt; Filippidis, George

    2012-02-01

    Femtosecond laser assisted nanosurgery of microscopic biological specimens is a relatively new technique which allows the selective disruption of sub-cellular structures without causing any undesirable damage to the surrounding regions. The targeted structures have to be stained in order to be clearly visualized for the nanosurgery procedure. However, the validation of the final nanosurgery result is difficult, since the targeted structure could be simply photobleached rather than selectively destroyed. This fact comprises a main drawback of this technique. In our study we employed a multimodal system which integrates non-linear imaging modalities with nanosurgery capabilities, for the selective disruption of sub-cellular structures in HeLa cancer cells. Third Harmonic Generation (THG) imaging modality was used as a tool for the identification of structures that were subjected to nanosurgery experiments. No staining of the biological samples was required, since THG is an intrinsic property of matter. Furthermore, cells' viability after nanosurgery processing was verified via Two Photon Excitation Fluorescence (TPEF) measurements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Imaging of single cells and tissue using MeV ions

    NASA Astrophysics Data System (ADS)

    Watt, F.; Bettiol, A. A.; van Kan, J. A.; Ynsa, M. D.; Minqin, Ren; Rajendran, R.; Huifang, Cui; Fwu-Shen, Sheu; Jenner, A. M.

    2009-06-01

    With the attainment of sub-100 nm high energy (MeV) ion beams, comes the opportunity to image cells and tissue at nano-dimensions. The advantage of MeV ion imaging is that the ions will penetrate whole cells, or relatively thick tissue sections, without any significant loss of resolution. In this paper, we demonstrate that whole cells (cultured N2A neuroblastoma cells ATCC) and tissue sections (rabbit pancreas tissue) can be imaged at sub-100 nm resolutions using scanning transmission ion microscopy (STIM), and that sub-cellular structural details can be identified. In addition to STIM imaging we have also demonstrated for the first time, that sub-cellular proton induced fluorescence imaging (on cultured N2A neuroblastoma cells ATCC) can also be carried out at resolutions of 200 nm, compared with 300-400 nm resolutions achieved by conventional optical fluorescence imaging. The combination of both techniques offers a potentially powerful tool in the quest for elucidating cell function, particularly when it should be possible in the near future to image down to sub-50 nm.

  10. Differential swimming performance of two natricine snakes exposed to a cholinesterase-inhibiting pesticide.

    PubMed

    Hopkins, W A; Winne, C T; DuRant, S E

    2005-02-01

    Environmental contaminants have direct effects on organisms at the molecular, cellular, and tissue levels, but the net results of these sub-organismal effects are only consequential to exposed populations if they alter organism-level traits that ultimately influence fitness (e.g., growth, locomotor performance, reproduction, and survival). Here, we explore the possibility that the swimming performance of neonate black swamp snakes (Seminatrix pygaea) and diamondback water snakes (Nerodia rhombifer) may be affected by exposure to carbaryl (2.5 and 5.0 mg/L). The highest concentration of carbaryl caused greater reductions in swim velocity in S. pygaea than in N. rhombifer. Most individuals recovered from the effects of carbaryl on swimming performance within 96 h, but recovery was significantly slower in S. pygaea than in N. rhombifer. We hypothesize that the sensitivity of S. pygaea may arise from its highly permeable integument compared to other natricines. Our findings suggest that performance can serve as an ecologically relevant response to contaminant exposure in reptiles and warrants further study.

  11. POLYNUCLEAR AROMATIC HYDROCARBON (PAH) RELEASE FROM SOIL DURING TREATMENT WITH FENTON'S REAGENT

    EPA Science Inventory

    Fenton's Reagent was used to treat soil from a wood-treating site in southeastern Ohio which had been contaminated with creosote. Slurries, consisting of 10 µg of contaminated soil and 30 mL water were treated with 40 mL of Fenton's Reagent (1:1 of 30% H2O2 ...

  12. ATR-FTIR spectroscopy reveals polycyclic aromatic hydrocarbon contamination despite relatively pristine site characteristics: Results of a field study in the Niger Delta.

    PubMed

    Obinaju, Blessing E; Martin, Francis L

    2016-01-01

    Fourier-transform infrared (FTIR) spectroscopy is an emerging technique to detect biochemical alterations in biological tissues, particularly changes due to sub-lethal exposures to environmental contaminants. We have previously shown the potential of attenuated total reflection FTIR (ATR-FTIR) spectroscopy to detect real-time exposure to contaminants in sentinel organisms as well as the potential to relate spectral alterations to the presence of specific environmental agents. In this study based in the Niger Delta (Nigeria), changes occurring in fish tissues as a result of polycyclic aromatic hydrocarbon (PAH) exposure at contaminated sites are compared to the infrared (IR) spectra of the tissues obtained from a relatively pristine site. Multivariate analysis revealed that PAH contamination could be occurring at the pristine site, based on the IR spectra and significant (P<0.0001) differences between sites. The study provides evidence of the IR spectroscopy techniques' sensitivity and supports their potential application in environmental biomonitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Optimized alumina coagulants for water treatment

    DOEpatents

    Nyman, May D [Albuquerque, NM; Stewart, Thomas A [Albuquerque, NM

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  14. Optimization of contaminated oxide inversion layer solar cell. [considering silicon oxide coating

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1976-01-01

    Contaminated oxide cells have been fabricated with efficiencies of 8.6% with values of I sub sc = 120 ma, V sub oc = .54 volts, and curve factor of .73. Attempts to optimize the fabrication step to yield a higher output have not been successful. The fundamental limitation is the inadequate antireflection coating afforded by the silicon dioxide coating used to hold the contaminating ions. Coatings of SiO, therefore, were used to obtain a good antireflection coating, but the thinness of the coatings prevented a large concentration of the contaminating ions, and the cells was weak. Data of the best cell were .52 volts V sub oc, 110 ma I sub sc, .66 CFF and 6.7% efficiency.

  15. Cellular reflectarray antenna and method of making same

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R (Inventor)

    2011-01-01

    A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n.

  16. Cellular reflectarray antenna and method of making same

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R (Inventor)

    2010-01-01

    A method of manufacturing a cellular reflectarray antenna arranged in an m by n matrix of radiating elements for communication with a satellite includes steps of determining a delay .phi.m,n for each of said m by n matrix of elements of said cellular reflectarray antenna using sub-steps of: determining the longitude and latitude of operation, determining elevation and azimuth angles of the reflectarray with respect to the satellite and converting theta.sub.0 (.theta..sub.0) and phi.sub.0 (.phi..sub.0), determining .DELTA..beta..sub.m,n, the pointing vector correction, for a given inter-element spacing and wavelength, determining .DELTA..phi..sub.m,n, the spherical wave front correction factor, for a given radius from the central element and/or from measured data from the feed horn; and, determining a delay .phi.m,n for each of said m by n matrix of elements as a function of .DELTA..beta..sub.m,n and .DELTA..phi..sub.m,n..

  17. Lysophosphatidic acid signaling via LPA{sub 1} and LPA{sub 3} regulates cellular functions during tumor progression in pancreatic cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA{sub 1} and LPA{sub 3} in cellular functions during tumor progression in pancreatic cancer cells. LPA{sub 1} and LPA{sub 3} knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA{sub 1} and LPA{sub 3} knockdown. In gelatin zymography, LPA{sub 1} and LPA{sub 3} knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence ofmore » LPA. Next, to assess whether LPA{sub 1} and LPA{sub 3} regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA{sub 1} and LPA{sub 3} knockdown as well as colony formation. These results suggest that LPA signaling via LPA{sub 1} and LPA{sub 3} play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA{sub 1} and LPA{sub 3}. • LPA{sub 1} and LPA{sub 3} enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA{sub 1} and LPA{sub 3} knockdown. • LPA{sub 1} and LPA{sub 3} are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.« less

  18. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    ABSTRACT. Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770  nm/830  nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  19. Reactions of thiocarbamate, triazine and urea herbicides, RDX and benzenes on EPA Contaminant Candidate List with ozone and with hydroxyl radicals

    EPA Science Inventory

    Second-order rate constants of the direct ozone reactions (kO3,M) and the indirect OH radical reactions (kOH,M) for nine chemicals on the US EPA’s Drinking Water Contaminant Candidate List (CCL) were studied during the ozonation and ozone/hydrogen peroxide a...

  20. Evaluating the skill of seasonal weather forecasts in predicting aflatoxin contamination of groundnut in Senegal

    NASA Astrophysics Data System (ADS)

    Brak, B.; Challinor, A.

    2011-12-01

    Aflatoxins, a group of toxic secondary metabolites produced by some strains of a number of species within Aspergillus section Flavi, contaminate a range of crops grown at latitudes between 40N° and 40S° of the equator. Digestion of food products derived from aflatoxin-contaminated crops may result in acute and chronic health problems in human beings. Countries in sub-Saharan Africa in particular have seen large percentages of the human population exposed to aflatoxin. A recent study showed that over 98% of subjects in West Africa tested positive for aflatoxin biomarkers. According to other research, every year 250,000 people die from hepato-cellular carcinoma related causes due to aflatoxin ingestion in parts of West Africa. Strict aflatoxin levels set by importing countries in accordance with the WTO Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement) also impair the value of agricultural trade. Over the last thirty years this has led to a reduction of African exports of groundnut by 19% despite the consumption of groundnut derived food products going up by 209%. The occurrence of aflatoxin on crops is strongly influenced by weather. Empirical studies in the US have shown that pre-harvest, aflatoxin contamination of groundnuts is induced by conditions of drought stress in combination with soil temperatures between 25°C and 31°C. Post-harvest, aflatoxin production of stored, Aspergillus-contaminated groundnuts is exacerbated in conditions where relative humidity is above 83%. The GLAM crop model was extended to include a soil temperature subroutine and subroutines containing pre- and post-harvest aflatoxin algorithms. The algorithms used to estimate aflatoxin contamination indices are based on findings from multiple empirical studies and the pre-harvest aflatoxin model has been validated for Australian conditions. Hence, there was sufficient scope to use GLAM with these algorithms to answer the foremost research question: Is the skill in seasonal weather forecasting in West Africa (Senegal) sufficient to predict the occurrence of high (median) aflatoxin concentrations in groundnut at harvest and after some period of storage? For multiple locations in Senegal, aflatoxin contamination (AC) indices estimated using observed weather data from 1999-2010 were compared with AC indices based on gridded seasonal weather forecasts for the same location and year. Pearson correlation coefficients for ACobs and ACpred indices were calculated using all locations combined and, if sufficient weather years without missing values were available, for individual locations to test for regional differences in skill.

  1. Crustal contamination processes traced by helium isotopes: Examples from the Sunda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Gasparon, M.; Hilton, D. R.; Varne, R.

    1994-08-01

    Helium isotope data have been obtained on well-characterised olivine and clinopyroxene phenocrysts and xenocrysts from thirteen volcanic centres located between central Sumatra and Sumbawa in the Sunda arc of Indonesia. Olivine crystals in mantle xenoliths (Iherzolite) from Bukit Telor basalts are primitive (Mg# = 90), and their He-3/He-4 value (R/R(sub A) = 8.8) indicates that the Sumatran mantle wedge is MORB-like in helium isotope composition. All other samples have lower He-3/He-4 ratios ranging from 8.5R(sub A) to 4.5R(sub A), with most (thirteen out of eighteen) following a trend of more radiogenic He-3/He-4 values with decreasing Mg#. The only exceptions to this trend are phenocrysts from Batur, Agung and Kerinci, which have MORB-like He-3/He-4 values but relatively low Mg# (Mg# = 70-71), and two highly inclusion-rich clinopyroxenes which have He-3/He-4 values lower than other samples of similar Mg#. The results indicate that crustal contamination unrelated to subduction in the Sunda arc is clearly recorded in the He-3/He-4 characteristics of mafic phenocrysts of subaerial volcanics, and that addition of radiogenic helium is related to low-pressure differentiation processes affecting the melts prior to eruption. These conclusions may have widespread applicability and indicate that helium isotope variations can act as an extremely sensitive tracer of upper crustal contamination.

  2. Sensing of contaminants in potable water using TiO{sub 2} functional film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akshatha, N.; Poonia, Monika; Gupta, R. K., E-mail: raj@pilani.bits-pilani.ac.in

    2016-04-13

    The piezoelectric based quartz crystal microbalance is employed for sensing contaminants in potable water. A spin coated thin layer of TiO{sub 2} nanoparticles was formed at the sensing area of a 5 MHz AT-cut quartz wafer. The thin film of TiO{sub 2} nanoparticles forms a mesoporous functional layer for the trapping of water borne contaminants. The morphology of the thin film of TiO{sub 2} nanoparticles was studied using field emission scanning electron microscope (FESEM). The surface morphology of the TiO{sub 2} nanoparticles reveals the mesoporous structures indicating large number of defects and porous sites. Such film was employed for the detectionmore » of water borne contaminants by detecting the piezoelectric response from a quartz crystal microbalance. We found the film to be very sensitive to the contaminants. The minimum detection limit was found to be 330 ppb. The effect of surface recharging was also studied by altering the physical conditions so that the film can be used for repetitive usage.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulsen, Sarah S., E-mail: spo@nrcwe.dk; Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde; Saber, Anne T., E-mail: ats@nrcwe.dk

    Multi-walled carbon nanotubes (MWCNTs) are an inhomogeneous group of nanomaterials that vary in lengths, shapes and types of metal contamination, which makes hazard evaluation difficult. Here we present a toxicogenomic analysis of female C57BL/6 mouse lungs following a single intratracheal instillation of 0, 18, 54 or 162 μg/mouse of a small, curled (CNT{sub Small}, 0.8 ± 0.1 μm in length) or large, thick MWCNT (CNT{sub Large}, 4 ± 0.4 μm in length). The two MWCNTs were extensively characterized by SEM and TEM imaging, thermogravimetric analysis, and Brunauer–Emmett–Teller surface area analysis. Lung tissues were harvested 24 h, 3 days and 28more » days post-exposure. DNA microarrays were used to analyze gene expression, in parallel with analysis of bronchoalveolar lavage fluid, lung histology, DNA damage (comet assay) and the presence of reactive oxygen species (dichlorodihydrofluorescein assay), to profile and characterize related pulmonary endpoints. Overall changes in global transcription following exposure to CNT{sub Small} or CNT{sub Large} were similar. Both MWCNTs elicited strong acute phase and inflammatory responses that peaked at day 3, persisted up to 28 days, and were characterized by increased cellular influx in bronchoalveolar lavage fluid, interstitial pneumonia and gene expression changes. However, CNT{sub Large} elicited an earlier onset of inflammation and DNA damage, and induced more fibrosis and a unique fibrotic gene expression signature at day 28, compared to CNT{sub Small}. The results indicate that the extent of change at the molecular level during early response phases following an acute exposure is greater in mice exposed to CNT{sub Large}, which may eventually lead to the different responses observed at day 28. - Highlights: • We evaluate the toxicogenomic response in mice following MWCNT instillation. • Two MWCNTs of different properties were examined and thoroughly characterized. • MWCNT exposure leads to increased pulmonary inflammation and acute phase response. • The thick and straight MWCNT induced transcriptional and histological pulmonary fibrotic changes. • This was not observed following exposure to the thinner and curled MWCNT.« less

  4. Rise and fall of ferromagnetism in O-irradiated Al{sub 2}O{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiang; China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803; Xu, Juping

    2015-06-21

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al{sub 2}O{sub 3} single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al{sub 2}O{sub 3} crystal and form stable V{sub Al}-V{sub Al} ferromagnetic coupling at roommore » temperature.« less

  5. Method for removing oxide contamination from titanium diboride powder

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB/sub 2/ powders with a gaseous boron halide, such as BCl/sub 3/, at temperatures in the range of 500 to 800/sup 0/C. The BCl/sub 3/ reacts with the oxides to form volatile species which are removed by the BCl/sub 3/ exit stream.

  6. Method for removing oxide contamination from titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1984-01-01

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  7. Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Eriko; Harada, Kouji; Research Fellow of the Japan Society for the Promotion of Science, Tokyo 1028472

    2006-01-13

    PFOS and PFOA are ubiquitous contaminants in the environment. We investigated the effects of fluorochemicals on calcium currents in Paramecium caudatum using its behavioral changes. Negatively charged amphiphiles prolonged backward swimming (BWS) of Paramecium. PFOS significantly prolonged BWS, while PFOA was less potent (EC{sub 5}: 29.8 {+-} 4.1 and 424.1 {+-} 124.0 {mu}M, respectively). The BWS prolongation was blocked by cadmium, indicating that the cellular calcium conductance had been modified. The positively charged amphiphile FOSAPrTMA shortened BWS (EC{sub 5}: 19.1 {+-} 17.3). Nonionic amphiphiles did not affect BWS. The longer-chain perfluorinated carboxylates PFNA and PFDA were more potent than PFOAmore » (EC{sub 5}: 98.7 {+-} 20.1 and 60.4 {+-} 10.1 {mu}M, respectively). However, 1,8-perfluorooctanedioic acid and 1,10-perfluorodecanedioic acid did not prolong BWS. The critical micelle concentration (CMC) and BWS prolongation for negatively charged amphiphiles showed a clear correlation (r {sup 2} = 0.8008, p < 0.001). In summary, several perfluorochemicals and PFOS and PFOA had similar effects in Paramecium, while chain length, CMC, and electric charge were major determinants of BWS duration.« less

  8. Theoretical aspects of cellular decision-making and information-processing.

    PubMed

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2012-01-01

    Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.

  9. Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity.

    PubMed

    Wu, Judy Y; Anelli, Carol M; Sheppard, Walter S

    2011-02-23

    Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment) or in relatively uncontaminated brood comb (control). Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8) of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor mites. The impact of delayed development in bees on Varroa mite fecundity should be examined further.

  10. Vitamin B12 deficiency

    USDA-ARS?s Scientific Manuscript database

    Vitamin B12 (B12; also known as cobalamin) is a B vitamin that has an important role in cellular metabolism, especially in DNA synthesis, methylation and mitochondrial metabolism. Clinical B12 deficiency with classic haematological and neurological manifestations is relatively uncommon. However, sub...

  11. Concentration and removal of tritium and/or deuterium from water contaminated with tritium and/or deuterium

    DOEpatents

    Meyer, Thomas J.; Narula, Poonam M.

    2001-01-01

    Concentration of tritium and/or deuterium that is a contaminant in H.sub.2 O, followed by separation of the concentrate from the H.sub.2 O. Employed are certain metal oxo complexes, preferably with a metal from Group VIII. For instance, [Ru.sup.IV (2,2',6',2"-terpyridine)(2,2'-bipyridine)(O)](ClO.sub.4).sub.2 is very suitable.

  12. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    PubMed Central

    Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel

    2012-01-01

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540

  13. Plutonium Decontamination of Uranium using CO2 Cleaning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, M

    A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pitsmore » for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.« less

  14. Resistance of fallow deer (dama dama) to chronic wasting disease under natural exposure in a heavily contaminated environment

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease or CWD is a transmissible spongiform encephalopathy or prion disorder of cervid ruminants in several regions of the US and Canada. The prion disorders are characterized by misfolding of the host cellular prion protein into a relatively protease resistant and potentially neur...

  15. Anticancer Activity of Chloroform Extract and Sub-fractions of Nepeta deflersiana on Human Breast and Lung Cancer Cells: An In vitro Cytotoxicity Assessment.

    PubMed

    Al-Oqail, Mai M; Al-Sheddi, Ebtesam S; Siddiqui, Maqsood A; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Farshori, Nida N

    2015-10-01

    Cancer is one of the major causes of death worldwide. The plant-derived natural products have received considerable attention in recent years due to their diverse pharmacological properties including anticancer effects. Nepeta deflersiana (ND) is used in the folk medicine as antiseptic, carminative, antimicrobial, antioxidant, and for treating rheumatic disorders. However, the anticancer activity of ND chloroform extract has not been explored so far. The present study was aimed to investigate the anticancer activities of chloroform Nepeta deflersiana extract and various sub-fractions (ND-1-ND-15) of ND against human breast cancer cells (MCF-7) and human lung cancer cells (A-549). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays, and cellular morphological alterations using phase contrast light microscope were studied. Cells were exposed with 10-1000 μg/ml of sub-fractions of ND for 24 h. Results showed that selected sub-fractions of the chloroform extract significantly reduced the cell viability of MCF-7 and A-549 cells, and altered the cellular morphology in a concentration-dependent manner. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity compared to other fractions whereas, ND-1 did not cause any cytotoxicity even at higher concentrations. The A-549 cells were found to be more sensitive to growth inhibition by all the extracts as compared to the MCF-7 cells. The present study provides preliminary screening of anticancer activities of chloroform extract and sub-fractions of ND, which can be further used for the development of a potential therapeutic anticancer agent. Nepeta deflersiana extract exhibit cytotoxicity and altered the cellular morphology. Sub-fractions of the chloroform extract of Nepeta deflersiana reduced the cell viability of MCF-7 and A-549 cells. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity. The A-549 cells were found to be more sensitive as compared to the MCF-7 cells. Abbreviations used: MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NRU: Neutral red uptake; DMEM: Dulbecco's modified eagle medium; FBS: Fetal bovine serum; PBS: Phosphate buffer saline; DMSO: Dimethyl sulfoxide.

  16. Method for mercury refinement

    DOEpatents

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  17. Apparatus for mercury refinement

    DOEpatents

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  18. Apparatus for mercury refinement

    DOEpatents

    Grossman, Mark W.; Speer, Richard; George, William A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  19. Method for mercury refinement

    DOEpatents

    Grossman, Mark W.; Speer, Richard; George, William A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  20. Combined and Relative Effect Levels of Perceived Risk, Knowledge, Optimism, Pessimism, and Social Trust on Anxiety among Inhabitants Concerning Living on Heavy Metal Contaminated Soil

    PubMed Central

    Tang, Zhongjun; Guo, Zengli; Zhou, Li; Xue, Shengguo; Zhu, Qinfeng; Zhu, Huike

    2016-01-01

    This research aims at combined and relative effect levels on anxiety of: (1) perceived risk, knowledge, optimism, pessimism, and social trust; and (2) four sub-variables of social trust among inhabitants concerning living on heavy metal contaminated soil. On the basis of survey data from 499 Chinese respondents, results suggest that perceived risk, pessimism, optimism, and social trust have individual, significant, and direct effects on anxiety, while knowledge does not. Knowledge has significant, combined, and interactive effects on anxiety together with social trust and pessimism, respectively, but does not with perceived risk and optimism. Social trust, perceived risk, pessimism, knowledge, and optimism have significantly combined effects on anxiety; the five variables as a whole have stronger predictive values than each one individually. Anxiety is influenced firstly by social trust and secondly by perceived risk, pessimism, knowledge, and optimism. Each of four sub-variables of social trust has an individual, significant, and negative effect on anxiety. When introducing four sub-variables into one model, trust in social organizations and in the government have significantly combined effects on anxiety, while trust in experts and in friends and relatives do not; anxiety is influenced firstly by trust in social organization, and secondly by trust in the government. PMID:27827866

  1. Combined and Relative Effect Levels of Perceived Risk, Knowledge, Optimism, Pessimism, and Social Trust on Anxiety among Inhabitants Concerning Living on Heavy Metal Contaminated Soil.

    PubMed

    Tang, Zhongjun; Guo, Zengli; Zhou, Li; Xue, Shengguo; Zhu, Qinfeng; Zhu, Huike

    2016-11-02

    This research aims at combined and relative effect levels on anxiety of: (1) perceived risk, knowledge, optimism, pessimism, and social trust; and (2) four sub-variables of social trust among inhabitants concerning living on heavy metal contaminated soil. On the basis of survey data from 499 Chinese respondents, results suggest that perceived risk, pessimism, optimism, and social trust have individual, significant, and direct effects on anxiety, while knowledge does not. Knowledge has significant, combined, and interactive effects on anxiety together with social trust and pessimism, respectively, but does not with perceived risk and optimism. Social trust, perceived risk, pessimism, knowledge, and optimism have significantly combined effects on anxiety; the five variables as a whole have stronger predictive values than each one individually. Anxiety is influenced firstly by social trust and secondly by perceived risk, pessimism, knowledge, and optimism. Each of four sub-variables of social trust has an individual, significant, and negative effect on anxiety. When introducing four sub-variables into one model, trust in social organizations and in the government have significantly combined effects on anxiety, while trust in experts and in friends and relatives do not; anxiety is influenced firstly by trust in social organization, and secondly by trust in the government.

  2. Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietsch, Constanze, E-mail: constanze.pietsch@unibas.ch; Bucheli, Thomas D.; Wettstein, Felix E.

    Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability inmore » fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.« less

  3. Two-photon excited autofluorescence imaging of freshly isolated frog retinas.

    PubMed

    Lu, Rong-Wen; Li, Yi-Chao; Ye, Tong; Strang, Christianne; Keyser, Kent; Curcio, Christine A; Yao, Xin-Cheng

    2011-06-01

    The purpose of this study was to investigate cellular sources of autofluorescence signals in freshly isolated frog (Rana pipiens) retinas. Equipped with an ultrafast laser, a laser scanning two-photon excitation fluorescence microscope was employed for sub-cellular resolution examination of both sliced and flat-mounted retinas. Two-photon imaging of retinal slices revealed autofluorescence signals over multiple functional layers, including the photoreceptor layer (PRL), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), and ganglion cell layer (GCL). Using flat-mounted retinas, depth-resolved imaging of individual retinal layers further confirmed multiple sources of autofluorescence signals. Cellular structures were clearly observed at the PRL, ONL, INL, and GCL. At the PRL, the autofluorescence was dominantly recorded from the intracellular compartment of the photoreceptors; while mixed intracellular and extracellular autofluorescence signals were observed at the ONL, INL, and GCL. High resolution autofluorescence imaging clearly revealed mosaic organization of rod and cone photoreceptors; and sub-cellular bright autofluorescence spots, which might relate to connecting cilium, was observed in the cone photoreceptors only. Moreover, single-cone and double-cone outer segments could be directly differentiated.

  4. Optical monitoring of thermal effects in RPE during heating

    NASA Astrophysics Data System (ADS)

    Schuele, G.; Huie, Ph.; Yellachich, D.; Molnar, F. E.; O'Conell-Rodwell, C.; Vitkin, E.; Perelman, L. T.; Palanker, D.

    2005-04-01

    Fast and non-invasive detection of cellular stress is useful for fundamental research and practical applications in medicine and biology. Using Light Scattering Spectroscopy we extract information about changes in refractive index and size of the cellular organelles. Particle sizes down to 50nm in diameter can be detected using light within the spectral range of 450-850 nm. We monitor the heat-induced sub-cellular structural changes in human RPE cells and, for comparison, in transfected NIH-3T3 cells which express luciferase linked to the heat shock protein (HSP). Using inverse light scattering fitting algorithm, we reconstruct the size distribution of the sub-micron organelles from the light scattering spectrum. The most significant (up to 70%) and rapid (20sec) temperature-related changes can be linked to an increase of refractive index of the 160nm sized mitochondria. The start of this effect coincides with the onset of HSP expression. This technique provides an insight into metabolic processes within organelles larger than 50nm without exogenous staining and opens doors for non-invasive real-time assessment of cellular stress, which can be used for monitoring of retinal laser treatments like transpupillary thermo therapy or PDT.

  5. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porowska, Dorota, E-mail: dorotap@uw.edu.pl

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC)more » in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the aquifer. P CO{sub 2} values in the aquifer in Otwock were always one to two orders of magnitude above the atmospheric P CO{sub 2}, and thus CO{sub 2} escaped directly into the vadose zone.« less

  6. INFLUENCE OF PROTOZOAN GRAZING ON CONTAMINANT BIODEGRADATION. (R825418)

    EPA Science Inventory

    The influence of protozoan grazing on biodegradation rates in samples from contaminated aquifer sediment was evaluated under aerobic and anaerobic conditions. Predator¯prey biomass ratios suggested that protozoan grazing might be influencing bacterial populations....

  7. Quantitative Assessment of Heterogeneity in Tumor Metabolism Using FDG-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriens, Dennis, E-mail: d.vriens@nucmed.umcn.nl; Disselhorst, Jonathan A.; Oyen, Wim J.G.

    2012-04-01

    Purpose: [{sup 18}F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) images are usually quantitatively analyzed in 'whole-tumor' volumes of interest. Also parameters determined with dynamic PET acquisitions, such as the Patlak glucose metabolic rate (MR{sub glc}) and pharmacokinetic rate constants of two-tissue compartment modeling, are most often derived per lesion. We propose segmentation of tumors to determine tumor heterogeneity, potentially useful for dose-painting in radiotherapy and elucidating mechanisms of FDG uptake. Methods and Materials: In 41 patients with 104 lesions, dynamic FDG-PET was performed. On MR{sub glc} images, tumors were segmented in quartiles of background subtracted maximum MR{sub glc} (0%-25%, 25%-50%, 50%-75%, and 75%-100%).more » Pharmacokinetic analysis was performed using an irreversible two-tissue compartment model in the three segments with highest MR{sub glc} to determine the rate constants of FDG metabolism. Results: From the highest to the lowest quartile, significant decreases of uptake (K{sub 1}), washout (k{sub 2}), and phosphorylation (k{sub 3}) rate constants were seen with significant increases in tissue blood volume fraction (V{sub b}). Conclusions: Tumor regions with highest MR{sub glc} are characterized by high cellular uptake and phosphorylation rate constants with relatively low blood volume fractions. In regions with less metabolic activity, the blood volume fraction increases and cellular uptake, washout, and phosphorylation rate constants decrease. These results support the hypothesis that regional tumor glucose phosphorylation rate is not dependent on the transport of nutrients (i.e., FDG) to the tumor.« less

  8. Substance P receptor desensitization requires receptor activation but not phospholipase C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiya, Hiroshi; Putney, J.W. Jr.

    1988-08-01

    Previous studies have shown that exposure of parotid acinar cells to substance P at 37{degree}C results in activation of phospholipase C, formation of ({sup 3}H)inositol 1,4,5-trisphosphate (IP{sub 3}), and persistent desensitization of the substance P response. In cells treated with antimycin in medium containing glucose, ATP was decreased to {approximately}20% of control values, IP{sub 3} formation was completely inhibited, but desensitization was unaffected. When cells were treated with antimycin in the absence of glucose, cellular ATP was decreased to {approximately}5% of control values, and both IP{sub 3} formation and desensitization were blocked. A series of substance P-related peptides increased themore » formation of ({sup 3}H)IP{sub 3} and induced desensitization of the substance P response with a similar rank order of potencies. The substance P antagonist, (D-Pro{sup 2}, D-Try{sup 7,9})-substance P, inhibited substance P-induced IP{sub 3} formation and desensitization but did not induce desensitization. These results suggest that the desensitization of substance P-induced IP{sub 3} formation requires agonist activation of a P-type substance P receptor, and that one or more cellular ATP-dependent processes are required for this reaction. However, activation of phospholipase C and the generation of inositol phosphates does not seem to be a prerequisite for desensitization.« less

  9. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants

    NASA Technical Reports Server (NTRS)

    James, John T.

    2008-01-01

    The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at http://books.nap.edu/openbook.php?record_id=9786&page=3. Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).

  10. Identification of a new source of reticle contamination

    NASA Astrophysics Data System (ADS)

    Grenon, Brian J.; Brinkley, David

    2016-10-01

    Since the introduction of 248 and 193 nm lithography sub-pellicle contamination has been a significant problem and a major contributor to reticle costs and semiconductor yield losses. The most common contaminant identified has been ammonium sulfate commonly called haze, however there have been many other contaminants identified and grouped in the category as haze. In attempts to mitigate the cause of this problem various processes and manufacturing protocols have been put in place to either prevent the problem or identify the source of the problem before there is a negative impact in the wafer fab. In spite of efforts to manage the effects of sub-pellicle contamination in the wafer fab, the problem continues to exist. Over the years we have identified many of the compounds and their sources that exist on the sub-pellicle surface, however one has been elusive. This paper will provide both the identification of this compound and its source.

  11. Transmural heterogeneity of cellular level power output is reduced in human heart failure.

    PubMed

    Haynes, Premi; Nava, Kristofer E; Lawson, Benjamin A; Chung, Charles S; Mitov, Mihail I; Campbell, Stuart G; Stromberg, Arnold J; Sadayappan, Sakthivel; Bonnell, Mark R; Hoopes, Charles W; Campbell, Kenneth S

    2014-07-01

    Heart failure is associated with pump dysfunction and remodeling but it is not yet known if the condition affects different transmural regions of the heart in the same way. We tested the hypotheses that the left ventricles of non-failing human hearts exhibit transmural heterogeneity of cellular level contractile properties, and that heart failure produces transmural region-specific changes in contractile function. Permeabilized samples were prepared from the sub-epicardial, mid-myocardial, and sub-endocardial regions of the left ventricular free wall of non-failing (n=6) and failing (n=10) human hearts. Power, an in vitro index of systolic function, was higher in non-failing mid-myocardial samples (0.59±0.06μWmg(-1)) than in samples from the sub-epicardium (p=0.021) and the sub-endocardium (p=0.015). Non-failing mid-myocardial samples also produced more isometric force (14.3±1.33kNm(-2)) than samples from the sub-epicardium (p=0.008) and the sub-endocardium (p=0.026). Heart failure reduced power (p=0.009) and force (p=0.042) but affected the mid-myocardium more than the other transmural regions. Fibrosis increased with heart failure (p=0.021) and mid-myocardial tissue from failing hearts contained more collagen than matched sub-epicardial (p<0.001) and sub-endocardial (p=0.043) samples. Power output was correlated with the relative content of actin and troponin I, and was also statistically linked to the relative content and phosphorylation of desmin and myosin light chain-1. Non-failing human hearts exhibit transmural heterogeneity of contractile properties. In failing organs, region-specific fibrosis produces the greatest contractile deficits in the mid-myocardium. Targeting fibrosis and sarcomeric proteins in the mid-myocardium may be particularly effective therapies for heart failure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays

    PubMed Central

    2014-01-01

    Background Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain ‘normal’ sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or ‘stroma-filled-tubules’ emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes. Results Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation. Conclusion Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as ‘normal’ as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy. PMID:24886417

  13. Effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophil apoptosis, actin cytoskelton, and oxidative state

    USGS Publications Warehouse

    Sweet, L.I.; Passino-Reader, D. R.; Meier, P.G.; Omann, G.M.

    2006-01-01

    Apoptosis, or programmed cell death, has been proposed as a biomarker for environmental contaminant effects. In this work, we test the hypothesis that in vitro assays of apoptosis are sensitive indicators of immunological effects of polychlorinated biphenyls, hexachlorocyclohexanes, and mercury on human neutrophils. Apoptosis, necrosis, and viability as well as the related indicators F-actin levels, and active thiol state were measured in purified human neutrophils after treatment with contaminants. Effective concentrations observed were 0.3 μM (60 μg/L) mercury, 750 μg/L Aroclor 1254, and 50 μM (14,500 μg/L) hexachlorocylcohexanes. Concentrations of contaminants that induced apoptosis also decreased cellular F-actin levels. Active thiols were altered by mercury, but not organochlorines. Comparison of these data with levels of contaminants reported to be threats to human health indicate neutrophil apoptosis is a sensitive indicator of mercury toxicity.

  14. Indicators of immunotoxicity in populations of cotton rats (Sigmodon hispidus) inhabiting an abandoned oil refinery.

    PubMed

    McMurry, S T; Lochmiller, R L; McBee, K; Qualls, C W

    1999-03-01

    Wildlife species inhabiting contaminated sites are often exposed to complex mixtures of chemicals, many of which have known effects on physiological and biochemical function. Although sensitivity of the immune system to chemical exposure has been documented in laboratory animal and wildlife species, little work has been conducted on feral wildlife populations inhabiting contaminated sites. Immune function was measured in populations of wild cotton rats (Sigmodon hispidus) inhabiting replicated reference and contaminated study sites at an abandoned oil refinery in Oklahoma four times from 1991 to 1992. Several measures of immunocompetence were examined including immune organ mass and cellularity, hematology, in vivo hypersensitivity, macrophage function, killer cell activity, and lymphoproliferative responsiveness. In vitro proliferation of splenocytes, either spontaneous or induced with concanavalin A (Con A), was the most consistent and reliable indicator of immunotoxicity. Spontaneous proliferation of splenocytes was 48 and 24% higher for cotton rats collected from contaminated than reference sites in September 1991 and September 1992, respectively. Likewise, Con A-induced proliferation of splenocytes ranged form 20 to 53% higher in animals collected from contaminated than reference sites in three of four collection periods. The percentage of splenocytes (mean+/-SE) staining positive for Con A receptors was lower on contaminated sites (73.7+/-1.2%) than reference sites (77.0+/-1.4%) in September 1991. Other measures of immune function including macrophage metabolism, hypersensitivity, blood cellularity, and mass and cellularity of immune organs varied between contaminated and reference sites. Copyright 1999 Academic Press.

  15. Iron Mineralogy and Uranium-Binding Environment in the Rhizosphere of a Wetland Soil

    EPA Science Inventory

    Wetlands mitigate the migration of groundwater contaminants through a series of biogeochemical gradients that enhance multiple contaminant-binding processes. The hypothesis of this study was that wetland plant roots contribute organic carbon and release O2 within the ...

  16. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    EPA Science Inventory

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  17. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe{sub 3}O{sub 4}) nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriyaprabha, R., E-mail: sooriyarajendran@gmail.com; Khan, Samreen Heena; Pathak, Bhawana

    2016-04-13

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe{sub 3}O{sub 4}, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from themore » industrial effluent. Fe{sub 3}O{sub 4} is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe{sub 3}O{sub 4} nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe{sub 3}O{sub 4} nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe{sub 3}O{sub 4} proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe{sub 3}O{sub 4}.« less

  18. High-throughput microscopy must re-invent the microscope rather than speed up its functions

    PubMed Central

    Oheim, M

    2007-01-01

    Knowledge gained from the revolutions in genomics and proteomics has helped to identify many of the key molecules involved in cellular signalling. Researchers, both in academia and in the pharmaceutical industry, now screen, at a sub-cellular level, where and when these proteins interact. Fluorescence imaging and molecular labelling combine to provide a powerful tool for real-time functional biochemistry with molecular resolution. However, they traditionally have been work-intensive, required trained personnel, and suffered from low through-put due to sample preparation, loading and handling. The need for speeding up microscopy is apparent from the tremendous complexity of cellular signalling pathways, the inherent biological variability, as well as the possibility that the same molecule plays different roles in different sub-cellular compartments. Research institutes and companies have teamed up to develop imaging cytometers of ever-increasing complexity. However, to truly go high-speed, sub-cellular imaging must free itself from the rigid framework of current microscopes. PMID:17603553

  19. Direct synthesis of catalyzed hydride compounds

    DOEpatents

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  20. Direct synthesis of calcium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor [Dublin, CA; Majzoub, Eric H [Pleasanton, CA

    2009-10-27

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  1. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOEpatents

    Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  2. Neuronal and non-neuronal signals regulate Caernorhabditis elegans avoidance of contaminated food.

    PubMed

    Anderson, Alexandra; McMullan, Rachel

    2018-07-19

    One way in which animals minimize the risk of infection is to reduce their contact with contaminated food. Here, we establish a model of pathogen-contaminated food avoidance using the nematode worm Caernorhabditis elegans We find that avoidance of pathogen-contaminated food protects C. elegans from the deleterious effects of infection and, using genetic approaches, demonstrate that multiple sensory neurons are required for this avoidance behaviour. In addition, our results reveal that the avoidance of contaminated food requires bacterial adherence to non-neuronal cells in the tail of C. elegans that are also required for the cellular immune response. Previous studies in C. elegans have contributed significantly to our understanding of molecular and cellular basis of host-pathogen interactions and our model provides a unique opportunity to gain basic insights into how animals avoid contaminated food.This article is part of the Theo Murphy meeting issue 'Evolution of pathogen and parasite avoidance behaviours'. © 2018 The Authors.

  3. Phytoremediation of a radiocesium-contaminated soil: Field evaluation of {sup 137}Cs bioaccumulation in the shoots of three plant species. Quarterly technical progress report, October 1, 1996--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasat, M.M.; Ebbs, S.D.; Kochian, L.V.

    1997-08-01

    A field study was conducted to investigate the potential of three plant species for phytoremediation of a {sup 137}Cs-contaminated site. From the contaminated soil, approximately 40-fold more radiocesium was removed in shoots of red root pigweed (Amaranthus retroflexus L.) compared with those of Indian mustard (Brassica juncea (L.) Czern) and tepary bean (Phaseolus acutifolius A. Gray). The greater potential for {sup 137}Cs removal from the soil by Amaranthus was associated with both high concentration of radiocesium in shoots and high shoot biomass production. Approximately 3% of the total {sup 137}Cs was removed from the top 15 cm of the soilmore » in shoots of three-month-old Amaranthus plants. Soil leaching tests conducted with 0.1 and 0.5 M NH{sub 4}NO{sub 3} solutions eluted as much as 15 and 19%, respectively, of the soil {sup 137}Cs. Addition of NH{sub 4}NO{sub 3} to the soil, however, had no positive effect on {sup 137}Cs accumulation in shoots in any of the species investigated. It is proposed that either NH{sub 4}NO{sub 3} solution quickly percolated through the soil before interacting at specific {sup 137}Cs binding sites or radiocesium mobilized by NH{sub 4}NO{sub 3} application moved below the rhizosphere becoming unavailable for root uptake. Further research is required to enhance the phytotransfer of the NH{sub 4}NO{sub 3}-mobilized {sup 137}Cs. With two croppings of Amaranthus per year and a sustained rate of extraction, phytoremediation of this {sup 137}Cs-contaminated soil appears feasible in less than 15 years.« less

  4. Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity

    PubMed Central

    Wu, Judy Y.; Anelli, Carol M.; Sheppard, Walter S.

    2011-01-01

    Background Numerous surveys reveal high levels of pesticide residue contamination in honey bee comb. We conducted studies to examine possible direct and indirect effects of pesticide exposure from contaminated brood comb on developing worker bees and adult worker lifespan. Methodology/Principal Findings Worker bees were reared in brood comb containing high levels of known pesticide residues (treatment) or in relatively uncontaminated brood comb (control). Delayed development was observed in bees reared in treatment combs containing high levels of pesticides particularly in the early stages (day 4 and 8) of worker bee development. Adult longevity was reduced by 4 days in bees exposed to pesticide residues in contaminated brood comb during development. Pesticide residue migration from comb containing high pesticide residues caused contamination of control comb after multiple brood cycles and provided insight on how quickly residues move through wax. Higher brood mortality and delayed adult emergence occurred after multiple brood cycles in contaminated control combs. In contrast, survivability increased in bees reared in treatment comb after multiple brood cycles when pesticide residues had been reduced in treatment combs due to residue migration into uncontaminated control combs, supporting comb replacement efforts. Chemical analysis after the experiment confirmed the migration of pesticide residues from treatment combs into previously uncontaminated control comb. Conclusions/Significance This study is the first to demonstrate sub-lethal effects on worker honey bees from pesticide residue exposure from contaminated brood comb. Sub-lethal effects, including delayed larval development and adult emergence or shortened adult longevity, can have indirect effects on the colony such as premature shifts in hive roles and foraging activity. In addition, longer development time for bees may provide a reproductive advantage for parasitic Varroa destructor mites. The impact of delayed development in bees on Varroa mite fecundity should be examined further. PMID:21373182

  5. Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms

    PubMed Central

    Fernandez, Jose-Jesus; Laugks, Ulrike; Schaffer, Miroslava; Bäuerlein, Felix J.B.; Khoshouei, Maryam; Baumeister, Wolfgang; Lucic, Vladan

    2016-01-01

    Imaging of fully hydrated, vitrified biological samples by electron tomography yields structural information about cellular protein complexes in situ. Here we present a computational procedure that removes artifacts of three-dimensional reconstruction caused by contamination present in samples during imaging by electron microscopy. Applying the procedure to phantom data and electron tomograms of cellular samples significantly improved the resolution and the interpretability of tomograms. Artifacts caused by surface contamination associated with thinning by focused ion beam, as well as those arising from gold fiducial markers and from common, lower contrast contamination, could be removed. Our procedure is widely applicable and is especially suited for applications that strive to reach a higher resolution and involve the use of recently developed, state-of-the-art instrumentation. PMID:26743046

  6. Smartphone-based imaging of the corneal endothelium at sub-cellular resolution

    NASA Astrophysics Data System (ADS)

    Toslak, Devrim; Thapa, Damber; Erol, Muhammet Kazim; Chen, Yanjun; Yao, Xincheng

    2017-07-01

    This aim of this study was to test the feasibility of smartphone-based specular microscopy of the corneal endothelium at a sub-cellular resolution. Quantitative examination of endothelial cells is essential for evaluating corneal disease such as determining a diagnosis, monitoring progression and assessing treatment. Smartphone-based technology promises a new opportunity to develop affordable devices to foster quantitative examination of endothelial cells in rural and underserved areas. In our study, we incorporated an iPhone 6 and a slit lamp to demonstrate the feasibility of smartphone-based microscopy of the corneal endothelium at a sub-cellular resolution. The sub-cellular resolution images allowed quantitative calculation of the endothelial cell density. Comparative measurements revealed a normal endothelial cell density of 2978 cells/mm2 in the healthy cornea, and a significantly reduced cell density of 1466 cells/mm2 in the diseased cornea with Fuchs' dystrophy. Our ultimate goal is to develop a smartphone-based telemedicine device for low-cost examination of the corneal endothelium, which can benefit patients in rural areas and underdeveloped countries to reduce health care disparities.

  7. Implementation of Geographical Information System for Bacteriological Contamination Analysis on Refill Drinking Water Depot (Study in Tembalang District)

    NASA Astrophysics Data System (ADS)

    Rahmitha, Amelia; Utami, Endang Sri; Sitohang, Marya Yenita

    2018-02-01

    People used refilled-drinking-water for household and food stall because its efficient and low cost. Based on Indonesian Health Ministry regulation, it should not have any coliform bacteria. This study aimed to describe the bacteriological contamination of refilled drinking water using geographical information system (GIS). In this research, it was used an analytic observational method. The samples were from all available (37) depots in Tembalang district, one form each depot took used a sterile bottle. Contamination of bacteria was identified by Most Probable Number (MPN) method lactose broth media, Mac Conkey media, and IMVIC media. The depot samples were then plotted on (GIS). This study showed 95% samples were not feasible to consume since they contamined coliform. All sub-district had one that contaminated by coliform, 75% sub-districts had depots that contaminated Escherichia coli, while 55% sub-districts had depots that contaminated with other bacteria. The internal risk factors of the contamination were the absence of hygiene-sanitation worthy certificate (95%), depots location near to pollution sources (5%), and the misused of UV light. The external risk factor was lack of quality control that was not as the sterilization from office health Semarang city. Policy reinforcement should be done to all of the depots.

  8. Seasonal differences in the physiology of Carcinus maenas (Crustacea: Decapoda) from estuaries with varying levels of anthropogenic contamination

    NASA Astrophysics Data System (ADS)

    Dissanayake, Awantha; Galloway, Tamara S.; Jones, Malcolm B.

    2011-07-01

    This study reports the seasonal variability in aspects of the physiology of the shore crab Carcinus maenas from three estuaries in South-west England, each with varying anthropogenic inputs: Avon Estuary ('relatively low' impact), Yealm Estuary ('intermediate' impact) and Plym Estuary ('relatively high' impact). Crabs collected over 12 months from the Avon had a significantly 'lower' physiological condition in winter and spring compared to summer and autumn; in particular, haemocyte phagocytic capability (a general indicator of immune function) was significantly higher in winter and spring compared to summer and autumn, and total haemolymph antioxidant status (an indicator of oxidative stress) was significantly lower in winter compared to the remainder of the year. Potentially, shore crabs may be more susceptible to the effects of contaminant exposure, such as increased immunotoxicity (thus, reduction of immune function) and/or oxyradicals (or reactive oxygen species) exposure) especially in seasons of increased susceptibility i.e. summer/autumn (lower phagocytic capability) and winter (lowest antioxidant function). As the Avon was taken to represent the 'reference' site, this pattern is considered to reflect the 'normal' seasonal variability in shore crab physiology. Shore crab physiological condition from the 'relatively high' impact estuary (Plym) revealed increased cellular viability and antioxidant status in autumn and winter compared with that of the 'standard' pattern (Avon) However, crabs from the intermediate impact estuary (Yealm) only demonstrated significant physiological differences in summer as shown by a lower cellular viability. All crabs had been exposed to PAHs (confirmed by the presence of PAH metabolites in their urine) which may account for the observed differences in shore crab physiology. In conclusion, to aid understanding of the potential contaminant impacts on biota it is imperative that the 'normal' seasonal variability of physiological condition be established. Biological effects-based monitoring studies should therefore be employed seasonally to potentially highlight 'windows of sensitivity' to contaminant impact.

  9. Distribution of Single-Wall Carbon Nanotubes in the Xenopus laevis Embryo after Microinjection

    PubMed Central

    Holt, Brian D.; Shawky, Joseph H.; Dahl, Kris Noel; Davidson, Lance A.; Islam, Mohammad F.

    2016-01-01

    Single-wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and largescale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts, and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 μg mL-1 SWCNT concentrations into the well-established embryogenesis model, Xenopus laevis, and determined embryo compatibility and sub-cellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but heterogeneously distributed throughout the target-injected tissue. Co-registering unique Raman spectral intensity of SWCNTs with images of fluorescently labelled sub-cellular compartments demonstrated that even at the regions of highest SWCNT concentration, there were no gross alterations to sub-cellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate or localize to the perinuclear sub-cellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications. PMID:26510384

  10. [Effects of sub-micro emulsion composition on cellular disposition of incorporated lipophilic drug].

    PubMed

    Sun, Xiao-Yi; Xiang, Zhi-Qiang; Wu, Shuo; Lv, Yuan-Yuan; Liang, Wen-Quan

    2013-09-01

    To investigate the effects of sub-micro emulsion composition on cellular uptake and disposition of incorporated lipophilic drug. Sub-micro emulsions containing 10 % oil, 1.2 % lecithin and 2.25 % glycerol were prepared, and the fluorescent agent coumarin 6 was used as a model drug. The effects of oil types, co-surfactants and cationic lipid on uptake and elimination kinetics of 6-coumarin in HeLa cells were studied. The uptake mechanism of sub-micro emulsions was further investigated. Oil type and Tweens had no influence on the cellular uptake. Modifications of surfactants with Span series increased the cellular influx, among which Span 20 with hydrophilic-lipophilic balance (HLB) value of 8.6 was the best enhancer. The intracellular drug level reached up to (46.09 ± 1.98)ng/μg protein which had significant difference with control group [(38.54 ± 0.34)ng/μg protein]. The positively charged emulsions significantly increased the uptake rate constant and elimination rate constant which were 4 times and 1.5 times of those in anionic groups, respectively. The uptake enhancement was also observed in cationic emulsions, cellular concentrations at plateau were (42.73 ± 0.84)ng/μg protein, which was about 3 times of that in anionic emulsions [(15.71 ± 0.74)ng/μg protein], when extracellular drug concentration kept at 100 ng/ml. Cationic emulsions delivered the payload mainly by direct drug transfer to contacted cells, while the negative ones depended on both drug passive diffusion and clathrin-mediated endocytosis of drug containing oil droplets which accounted for 20% of the intracellular drug. Interfacial characteristic of sub-micro emulsions such as co-surfactants HLB as well as zeta potentials can influence lipophilic drug both in cellular uptake and elimination.

  11. A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture

    PubMed Central

    Jaquinod, Michel; Villiers, Florent; Kieffer-Jaquinod, Sylvie; Hugouvieux, Véronique; Bruley, Christophe; Garin, Jérôme; Bourguignon, Jacques

    2007-01-01

    To better understand the mechanisms governing cellular traffic, storage of various metabolites and their ultimate degradation, Arabidopsis thaliana vacuoles proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker α-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42 fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomic study. Therefore, a proteomic approach was developed in order to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, (iii) a pre-fractionation of proteins by short migration on SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, 2/3 of which copurify with the membrane hydrophobic fraction and 1/3 with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were previously known to be associated with vacuolar activities. The proteins identified are involved in: ion and metabolite transport (26%), stress response (9%), signal transduction (7%), metabolism (6%) or have been described to be involved in typical vacuolar activities, such as protein- and sugar-hydrolysis. The sub-cellular localization of several putative vacuolar proteins was confirmed by transient expression of GFP-fusion constructs. PMID:17151019

  12. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer.

    PubMed

    Jia, Xu; Shanmugam, Chandrakumar; Paluri, Ravi K; Jhala, Nirag C; Behring, Michael P; Katkoori, Venkat R; Sugandha, Shajan P; Bae, Sejong; Samuel, Temesgen; Manne, Upender

    2017-03-21

    Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival.

  13. Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer

    PubMed Central

    Jia, Xu; Shanmugam, Chandrakumar; Paluri, Ravi K.; Jhala, Nirag C.; Behring, Michael P.; Katkoori, Venkat R.; Sugandha, Shajan P.; Bae, Sejong; Samuel, Temesgen; Manne, Upender

    2017-01-01

    Background Although loss of heterozygosity (LOH) at chromosome location 18q21 and decreased expression of SMAD4 in invasive colorectal cancers (CRCs) correlate with poor patient survival, the prognostic value of LOH at 18q21 and sub-cellular localization of SMAD4 have not been evaluated in relation to tumor stage. Methods Genomic DNA samples from 209 formalin-fixed, paraffin-embedded sporadic CRC tissues and their matching controls were analyzed for 18q21 LOH, and corresponding tissue sections were evaluated by immunohistochemistry for expression of SMAD4 and assessed for its sub-cellular localization (nuclear vs. cytoplasmic). In addition, 53 frozen CRCs and their matching control tissues were analyzed for their mutational status and mRNA expression of SMAD4. The phenotypic expression pattern and LOH status were evaluated for correlation with patient survival by the use of Kaplan-Meier and Cox regression models. Results LOH of 18q21 was detected in 61% of the informative cases. In 8% of the cases, missense point mutations were detected in Smad4. In CRCs, relative to controls, there was increased SMAD4 staining in the cytoplasm (74%) and decreased staining in the nuclei (37%). LOH of 18q21 and high cytoplasmic localization of SMAD4 were associated with shortened overall survival of Stage II patients, whereas low nuclear expression of SMAD4 was associated with worse survival, but only for patients with Stage III CRCs. Conclusions LOH of 18q21 and high cytoplasmic localization of SMAD4 in Stage II CRCs and low nuclear SMAD4 in Stage III CRCs are predictors of shortened patient survival. PMID:28423626

  14. Method for removing oxide contamination from silicon carbide powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    1984-08-01

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  15. Evaluation of Saltzman and phenoldisulfonic acid methods for determining NO/sub x/ in engine exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groth, R.H.; Calabro, D.S.

    1969-11-01

    The two methods normally used for the analysis of NO/sub x/ are the Saltzman and the phenoldisulfonic acid technique. This paper describes an evaluation of these wet chemical methods to determine their practical application to engine exhaust gas analysis. Parameters considered for the Saltzman method included bubbler collection efficiency, NO to NO/sub 2/ conversion efficiency, masking effect of other contaminants usually present in exhaust gases and the time-temperature effect of these contaminants on store developed solutions. Collection efficiency and the effects of contaminants were also considered for the phenoldisulfonic acid method. Test results indicated satisfactory collection and conversion efficiencies formore » the Saltzman method, but contaminants seriously affected the measurement accuracy particularly if the developed solution was stored for a number of hours at room temperature before analysis. Storage at 32/sup 0/F minimized effect. The standard procedure for the phenoldisulfonic acid method gave good results, but the process was found to be too time consuming for routine analysis and measured only total NO/sub x/. 3 references, 9 tables.« less

  16. Photo-oxidation method using MoS2 nanocluster materials

    DOEpatents

    Wilcoxon, Jess P.

    2001-01-01

    A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.

  17. Using solubility and Henry`s law constant data for ketones in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaws, C.L.; Sheth, S.D.; Han, M.

    When a chemical spill occurs in water, the extent of chemical contamination is determined by the chemical`s solubility in the water. If contaminated water comes into contact with air, such as in a pond or a storage vessel, the contaminant`s emissions into the air can be determined based upon Henry`s law constant for that particular constituent. A high Henry`s law constant value translates into a greater emissions level. The engineering design and operation of strippers to remove contaminants from water require data for both water solubility and Henry`s law constant. A new correlation developed by researchers at Lamar University providesmore » reliable values down to very, very low concentrations for the solubility of ketones in water. The correlation is based on the boiling point temperature of the ketone and can be used for engineering studies involving health, safety and environmental considerations. Results for water solubility and Henry`s law constant are provided here for a wide variety of ketones. Representative values are about 249,000 parts per million (ppm) per weight (wt) for methyl ethyl ketone (C{sub 4}H{sub 8}O) and 360 ppm/wt for 5-nonanone (C{sub 9}H{sub 18}O).« less

  18. YELLOW SUPERGIANTS IN THE ANDROMEDA GALAXY (M31)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drout, Maria R.; Massey, Philip; Meynet, Georges

    2009-09-20

    The yellow supergiant content of nearby galaxies can provide a critical test of stellar evolution theory, bridging the gap between the hot, massive stars and the cool red supergiants. But, this region of the color-magnitude diagram is dominated by foreground contamination, requiring membership to somehow be determined. Fortunately, the large negative systemic velocity of M31, coupled to its high rotation rate, provides the means for separating the contaminating foreground dwarfs from the bona fide yellow supergiants within M31. We obtained radial velocities of {approx}2900 individual targets within the correct color-magnitude range corresponding to masses of 12 M{sub sun} and higher.more » A comparison of these velocities to those expected from M31's rotation curve reveals 54 rank-1 (near certain) and 66 rank-2 (probable) yellow supergiant members, indicating a foreground contamination >= 96%. We expect some modest contamination from Milky Way halo giants among the remainder, particularly for the rank-2 candidates, and indeed follow-up spectroscopy of a small sample eliminates four rank 2's while confirming five others. We find excellent agreement between the location of yellow supergiants in the H-R diagram and that predicted by the latest Geneva evolutionary tracks that include rotation. However, the relative number of yellow supergiants seen as a function of mass varies from that predicted by the models by a factor of >10, in the sense that more high-mass yellow supergiants are predicted than those are actually observed. Comparing the total number (16) of >20 M{sub sun} yellow supergiants with the estimated number (24,800) of unevolved O stars indicates that the duration of the yellow supergiant phase is {approx}3000 years. This is consistent with what the 12 M{sub sun} and 15 M{sub sun} evolutionary tracks predict, but disagrees with the 20,000-80,000 year timescales predicted by the models for higher masses.« less

  19. Toxicity of sodium chromate and 3,4-dichloroaniline to crustaceans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Meer, C.; Teunissen, C.; Boog, T.F.M.

    1988-02-01

    Small adult and larval crustaceans are important components of a number of food webs. Therefore, it is important on the one hand to determine the sensitivity of these crustaceans to environmental contaminants and on the other hand to select the most sensitive species as test organisms to help establish the permissible contamination. In brackish water adults as well as larvae of the species Palaemonetes pugio and Uca pugilator have been most frequently investigated. These species can also be studied in sea water. The marine species Carcinus maenas, Crangon septemspinosa and Homarus americanus have also been studied relatively intensively. The presentmore » paper describes the toxicity, at different salinities, of Na/sub 2/, CrO/sub 4/, (chromate) and 3,4-dichloroaniline (3,4-DCA) to a number of relatively small adult and larval crustaceans. Chromate was chosen as a model of a heavy metal since, although its toxicity may be relatively low, it may under certain circumstance have considerable environmental effects. Moreover, bichromate has been recommended as a standard in Daphnia tests. 3,4-dichloroaniline was chosen as a model of a chlorinated hydrocarbon, the handling of which does not need special precautions.« less

  20. SPECTROSCOPIC SPECIATION AND QUANTIFICATION OF LEAD IN PHOSPHATE AMENDED SOILS

    EPA Science Inventory

    The immobilization of Pb in contaminated soils as pyromorphite [Pb5(PO4)3CI, OH, F] through the addition of various phosphate amendments has gained much attention in the remediation community. However, it is difficult to fully determine the specia...

  1. IDENTIFICATION OF SPECIES-ENVIRONMENT RELATIONSHIPS IN THE HUDSON-RARITAN ESTUARY AND RELATED SUB-BASINS

    EPA Science Inventory

    The US EP A's Regional Environmental Monitoring and Assessment Program (REMAP) conducted a study in 1993/94 to assess the effects of sediment contamination in the Hudson- Raritan area (Upper New York, Raritan Bay, Jamaica Bay, western Long Island Sound and the Bight Apex). This s...

  2. Bioaccessibility Of Lead Sequestered To Corundum and Ferrihydrite In A Simulated Gastrointestinal System

    EPA Science Inventory

    Lead (Pb) sorption onto oxide surfaces in soils may strongly influence the risk posed from incidental ingestion of Pb-contaminated soil. Lead was sorbed to model oxide minerals of corundum (α-Al2O3) and ferrihydrite (Fe5HO8•4H2

  3. In situ chemical degradation of DNAPLS in contaminated soils and sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, D.D.; Korte, N.E.; Siegrist, R.L.

    1996-08-01

    An emerging approach to in situ treatment of organic contaminants is chemical degradation. The specific processes discussed in this chapter are in situ chemical oxidation using either hydrogen peroxide (H{sub 2}O{sub 2}) or potassium permanganate (KMnO{sub 4}) and in situ dechlorination of halogenated hydrocarbons using zero-valence base metals such as iron. These technologies are primarily chemical treatment processes, where the treatment goal is to manipulate the chemistry of the subsurface environment in such a manner that the contaminants of interest are destroyed and/or rendered non-toxic. Chemical properties that can be altered include pH, ionic strength, oxidation and reduction potential, andmore » chemical equilibria. In situ contaminant destruction processes alter or destroy contaminants in place and are typically applied to compounds that can be either converted to innocuous species such as CO{sub 2} and water, or can be degraded to species that are non-toxic or amenable to other in situ processes (i.e., bioremediation). With in situ chemical oxidation, the delivery and distribution of chemical reagents are critical to process effectiveness. In contrast, published approaches for the use of zero valence base metals suggest passive approaches in which the metals are used in a permeable reaction wall installed in situ in the saturated zone. Both types of processes are receiving increasing attention and are being applied both in technology demonstration and as final solutions to subsurface contaminant problems. 43 refs., 9 figs., 1 tab.« less

  4. Does acute lead (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland?

    PubMed

    Thyrring, Jakob; Juhl, Bodil Klein; Holmstrup, Martin; Blicher, Martin E; Sejr, Mikael K

    2015-11-01

    In their natural habitats, organisms are exposed to multiple stressors. Heavy metal contamination stresses the cell membrane due to increased peroxidation of lipids. Likewise, sub-zero air temperatures potentially reduce membrane functionality in ectothermal animals. We tested if acute lead (Pb) exposure for 7 days would influence survival in intertidal blue mussels (Mytilus edulis) after exposure to realistic sub-zero air temperatures. A full factorial experiment with five tissue Pb concentrations between 0 and 3500 μg Pb/g and six sub-zero temperatures from 0 to -17 °C were used to test the hypothesis that sub-lethal effects of Pb may increase the lethality caused by freezing in blue mussels exposed to temperatures simulating Greenland winter conditions. We found a significant effect of temperature on mortality. However, the short-term exposure to Pb did not result in any effects of Pb, nor did we find interactions between Pb and temperature. We analysed the relative abundance of major phospholipid fatty acids (PLFAs) in the gill tissue, but we found no significant effect of Pb tissue concentration on PLFA composition. Results suggest that Pb accumulation has limited effects on freeze tolerance and does not induce membrane damage in terms of persistent lipid peroxidation.

  5. Biofiltration for control of carbon disulfide and hydrogen sulfide vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fucich, W.J.; Yang, Y.; Togna, A.P.

    1997-12-31

    A full-scale biofiltration system has been installed to control carbon disulfide (CS{sub 2}) and hydrogen sulfide (H{sub 2}S) vapor emissions at Nylonge Corporation (Nylonge), a cellulose sponge manufacturing facility in Elyria, Ohio. Both CS{sub 2} and H{sub 2}S are toxic and odorous. In addition, the US Environmental Protection Agency (EPA) has classified CS{sub 2} as one of the 189 hazardous air pollutants listed under Title 3 of the 1990 Clean Air Act Amendments. Nylonge evaluated several technologies to control CS{sub 2} and H{sub 2}S vapor emissions. After careful consideration of both removal efficiency requirements and cost, Nylonge selected biological treatmentmore » as the best overall technology for their application. A biological based technology has been developed to effectively degrade CS{sub 2} and H{sub 2}S vapors. Biofiltration is a process that aerobically converts particular vapor phase compounds into CO{sub 2}, biomass, and water vapor. In this process, microorganisms, in the form of a moistened biofilm layer, immobilized on an organic packing material, such as compost, peat, wood chips, etc., are used to catalyze beneficial chemical reactions. As a contaminated vapor stream passes through the biofilter bed, the contaminants are transferred to the biofilm and are degraded by the microorganisms. This paper describes the CS{sub 2} and H{sub 2}S biofiltration process and the full-scale biofilter system installed at Nylonge`s facility. The system was started in October of 1995, and is designed to treat a 30,000 CFM exhaust stream contaminated with CS{sub 2} and H{sub 2}S vapors.« less

  6. A study of the effectiveness of particulate cleaning protocols on intentionally contaminated niobium surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Charles E.; Ciancio, Elizabeth J.; Keyes, Katharine A.

    2009-11-01

    Particulate contamination on the surface of SRF cavities limits their performance via the enhanced generation of field-emitted electrons. Considerable efforts are expended to actively clean and avoid such contamination on niobium surfaces. The protocols in active use have been developed via feedback from cavity testing. This approach has the risk of over-conservatively ratcheting an ever increasing complexity of methods tied to particular circumstances. A complementary and perhaps helpful approach is to quantitatively assess the effectiveness of candidate methods at removing intentional representative particulate contamination. Toward this end, we developed a standardized contamination protocol using water suspensions of Nb{sub 2}O{sub 5}more » and SS 316 powders applied to BCP’d surfaces of standardized niobium samples yielding particle densities of order 200 particles/mm{sup 2}. From these starting conditions, controlled application of high pressure water rinse, ultrasonic cleaning, or CO{sub 2} snow jet cleaning was applied and the resulting surfaces examined via SEM/scanning EDS with particle recognition software. Results of initial parametric variations of each will be reported.« less

  7. Molecular substrates of action control in cortico-striatal circuits.

    PubMed

    Shiflett, Michael W; Balleine, Bernard W

    2011-09-15

    The purpose of this review is to describe the molecular mechanisms in the striatum that mediate reward-based learning and action control during instrumental conditioning. Experiments assessing the neural bases of instrumental conditioning have uncovered functional circuits in the striatum, including dorsal and ventral striatal sub-regions, involved in action-outcome learning, stimulus-response learning, and the motivational control of action by reward-associated cues. Integration of dopamine (DA) and glutamate neurotransmission within these striatal sub-regions is hypothesized to enable learning and action control through its role in shaping synaptic plasticity and cellular excitability. The extracellular signal regulated kinase (ERK) appears to be particularly important for reward-based learning and action control due to its sensitivity to combined DA and glutamate receptor activation and its involvement in a range of cellular functions. ERK activation in striatal neurons is proposed to have a dual role in both the learning and performance factors that contribute to instrumental conditioning through its regulation of plasticity-related transcription factors and its modulation of intrinsic cellular excitability. Furthermore, perturbation of ERK activation by drugs of abuse may give rise to behavioral disorders such as addiction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The Effect of Si and Al Concentration Ratios on the Removal of U(VI) under Hanford Site 200 Area Conditions-12115

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsenovich, Yelena; Gonzalez, Nathan; Moreno-Pastor, Carol

    2012-07-01

    Injection of reactive gases, such as NH{sub 3}, is an innovative technique to mitigate uranium contamination in soil for a vadose zone (VZ) contaminated with radionuclides. A series of experiments were conducted to examine the effect of the concentration ratio of silicon to aluminum in the presence of various bicarbonate concentrations on the coprecipitation process of U(VI). The concentration of Al in all tests remained unchanged at 2.8 mM. Experiments showed that the removal efficiency of uranium was not significantly affected by the different bicarbonate and U(VI) concentrations tested. For the lower Si:Al molar ratios of 2:1 and 18:1, themore » removal efficiency of uranium was relatively low (≤ 8%). For the Si:Al molar ratio of 35:1, the removal efficiency of uranium was increased to an average of ∼82% for all bicarbonate concentrations tested. At higher Si:Al molar ratios (53:1 and above), a relatively high removal efficiency of U(VI), approximately 85% and higher, was observed. These results demonstrate that the U(VI) removal efficiency is more affected by the Si:Al molar ratio than by the bicarbonate concentration in solution. The results of this experiment are promising for the potential implementation of NH{sub 3} gas injection for the remediation of U(VI) -contaminated VZ. (authors)« less

  9. Integrated use of biomarkers and bioaccumulation data in Zebra mussel (Dreissena polymorpha) for site-specific quality assessment.

    PubMed

    Binelli, A; Ricciardi, F; Riva, C; Provini, A

    2006-01-01

    One of the useful biological tools for environmental management is the measurement of biomarkers whose changes are related to the exposure to chemicals or environmental stress. Since these responses might vary with different contaminants or depending on the pollutant concentration reached in the organism, the support of bioaccumulation data is needed to prevent false conclusions. In this study, several persistent organic pollutants -- 23 polychlorinated biphenyl (PCB) congeners, 11 polycyclic aromatic hydrocarbons (PAHs), six dichlorodiphenyltricholroethane (DDT) relatives, hexachlorobenzene (HCB), chlorpyrifos and its oxidized metabolite -- and some herbicides (lindane and the isomers alpha, beta, delta; terbutilazine; alachlor; metolachlor) were measured in the soft tissues of the freshwater mollusc Zebra mussel (Dreissena polymorpha) from 25 sampling sites in the Italian portions of the sub-alpine great lakes along with the measure of ethoxyresorufin dealkylation (EROD) and acetylcholinesterase (AChE) activity. The linkage between bioaccumulation and biomarker data allowed us to create site-specific environmental quality indexes towards man-made chemicals. This classification highlighted three different degrees of xenobiotic contamination of the Italian sub-alpine great lakes: a high water quality in Lake Lugano with negligible pollutant levels and no effects on enzyme activities, an homogeneous poor quality for Lakes Garda, Iseo and Como, and the presence of some xenobiotic point-sources in Lake Maggiore, whose ecological status could be jeopardized, also due to the heavy DDT contamination revealed since 1996.

  10. NHEERL RESEARCH ON CARCINOGENIC CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Water research in the Environmental Carcinogenesis Division focuses on improved understanding of the mechanisms of mutagenesis and carcinogenesis of water contaminants for incorporation into human cancer risk assessment models. The program uses cellular , animal, and computer mo...

  11. Multi-scale continuum modeling of biological processes: from molecular electro-diffusion to sub-cellular signaling transduction

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Kekenes-Huskey, P.; Hake, J. E.; Holst, M. J.; McCammon, J. A.; Michailova, A. P.

    2012-01-01

    This paper presents a brief review of multi-scale modeling at the molecular to cellular scale, with new results for heart muscle cells. A finite element-based simulation package (SMOL) was used to investigate the signaling transduction at molecular and sub-cellular scales (http://mccammon.ucsd.edu/smol/, http://FETK.org) by numerical solution of the time-dependent Smoluchowski equations and a reaction-diffusion system. At the molecular scale, SMOL has yielded experimentally validated estimates of the diffusion-limited association rates for the binding of acetylcholine to mouse acetylcholinesterase using crystallographic structural data. The predicted rate constants exhibit increasingly delayed steady-state times, with increasing ionic strength, and demonstrate the role of an enzyme's electrostatic potential in influencing ligand binding. At the sub-cellular scale, an extension of SMOL solves a nonlinear, reaction-diffusion system describing Ca2+ ligand buffering and diffusion in experimentally derived rodent ventricular myocyte geometries. Results reveal the important role of mobile and stationary Ca2+ buffers, including Ca2+ indicator dye. We found that alterations in Ca2+-binding and dissociation rates of troponin C (TnC) and total TnC concentration modulate sub-cellular Ca2+ signals. The model predicts that reduced off-rate in the whole troponin complex (TnC, TnI, TnT) versus reconstructed thin filaments (Tn, Tm, actin) alters cytosolic Ca2+ dynamics under control conditions or in disease-linked TnC mutations. The ultimate goal of these studies is to develop scalable methods and theories for the integration of molecular-scale information into simulations of cellular-scale systems.

  12. Robust imaging and gene delivery to study human lymphoblastoid cell lines.

    PubMed

    Jolly, Lachlan A; Sun, Ying; Carroll, Renée; Homan, Claire C; Gecz, Jozef

    2018-06-20

    Lymphoblastoid cell lines (LCLs) have been by far the most prevalent cell type used to study the genetics underlying normal and disease-relevant human phenotypic variation, across personal to epidemiological scales. In contrast, only few studies have explored the use of LCLs in functional genomics and mechanistic studies. Two major reasons are technical, as (1) interrogating the sub-cellular spatial information of LCLs is challenged by their non-adherent nature, and (2) LCLs are refractory to gene transfection. Methodological details relating to techniques that overcome these limitations are scarce, largely inadequate (without additional knowledge and expertise), and optimisation has never been described. Here we compare, optimise, and convey such methods in-depth. We provide a robust method to adhere LCLs to coverslips, which maintained cellular integrity, morphology, and permitted visualisation of sub-cellular structures and protein localisation. Next, we developed the use of lentiviral-based gene delivery to LCLs. Through empirical and combinatorial testing of multiple transduction conditions, we improved transduction efficiency from 3% up to 48%. Furthermore, we established strategies to purify transduced cells, to achieve sustainable cultures containing >85% transduced cells. Collectively, our methodologies provide a vital resource that enables the use of LCLs in functional cell and molecular biology experiments. Potential applications include the characterisation of genetic variants of unknown significance, the interrogation of cellular disease pathways and mechanisms, and high-throughput discovery of genetic modifiers of disease states among others.

  13. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cellmore » migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.« less

  14. DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (ABSTRACT ONLY)

    EPA Science Inventory

    Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

  15. DEGRADATION OF TRICHLOROETHYLENE UNDER HIGH-TEMPERATURE THERMAL SOURCE-ZONE REMOVAL CONDITIONS (POSTER PRESENTATION)

    EPA Science Inventory

    Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...

  16. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  17. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of themore » most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The primary objective of this project was to understand the complex interactions among the contaminants (i.e., Cr, Tc, and U), H{sub 2}S, and various soil constituents. The reaction with iron sulfide is also the focus of the research, which could be formed from iron oxide reduction by hydrogen sulfide. Factors controlling the reductive immobilization of these contaminants were identified and quantified. The results and fundamental knowledge obtained from this project shall help better evaluate the potential of in situ gaseous treatment to immobilize toxic and radioactive metals examined.« less

  18. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2}-induced down-regulation of endothelial nitric oxide synthase in association with HSP70 induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jinah; Lee, Hyun-Il; Chang, Young-Sun

    2007-05-25

    A natural ligand of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), 15-deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}), decreases endothelial nitric oxide synthase (eNOS) expression by an unknown mechanism. Here we found that 15d-PGJ{sub 2}-induced eNOS reduction is inversely associated with heat shock protein 70 (HSP70) induction in endothelial cells. Treatment of cells with 15d-PGJ{sub 2} decreased eNOS protein expression in a concentration- and time-dependent manner, but independently of PPAR{gamma} with no effect on mRNA levels. Although 15d-PGJ{sub 2} elicited endothelial apoptosis, inhibition of both pan-caspases and cathepsins failed to reverse reduction of eNOS protein. Interestingly, we observed that 15d-PGJ{sub 2} induced HSP70more » in a dose-dependent manner. Immunoprecipitation and heat shock treatment demonstrated that eNOS reduction was strongly related to HSP70 induction. Cellular fractionation revealed that treatment with 15d-PGJ{sub 2} increased eNOS distribution 2.5-fold from soluble to insoluble fractions. These findings provide new insights into mechanisms whereby eNOS regulation by 15d-PGJ{sub 2} is related to HSP70 induction.« less

  19. 3,3',5-Triiodo-L-thyronine-like activity in effluents from domestic sewage treatment plants detected by in vitro and in vivo bioassays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murata, Tomonori; Yamauchi, Kiyoshi

    2008-02-01

    Thyroid system-disrupting activity in effluents from municipal domestic sewage treatment plants was detected using three in vitro assays and one in vivo assay. Contaminants in the effluents were extracted by solid-phase extraction (SPE) and eluted stepwise with different organic solvents. The majority of the thyroid system-disrupting activity was detected in the dichloromethane/methanol (1/1) fraction after SPE in all three in vitro assays: competitive assays of 3,3',5-[{sup 125}I]triiodo-L-thyronine ([{sup 125}I]T{sub 3}) binding to the plasma protein transthyretin (TTR assay) and thyroid hormone receptor (TR assay) and T{sub 3}-dependent luciferase assay (Luc assay). Subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) of the dichloromethane/methanolmore » (1/1) fraction separated contaminants potent in the TR and Luc assays from those potent in the TTR assay. The contaminants potent in the TR and Luc assays were also potent in an in vivo short-term gene expression assay in Xenopus laevis (Tadpole assay). The present study demonstrated that the effluents from domestic sewage treatment plants contain contaminants with T{sub 3}-like activity of {approx} 10{sup -10} M T{sub 3}-equivalent concentration (T{sub 3}EQ) and that the TR and Luc assays are powerful in vitro bioassays for detecting thyroid system-disrupting activity in effluents. The availability and applicability of these bioassays for screening contaminants with thyroid system-disrupting activity in the water environment are discussed.« less

  20. Decision support methods for the environmental assessment of contamination at mining sites.

    PubMed

    Jordan, Gyozo; Abdaal, Ahmed

    2013-09-01

    Polluting mine accidents and widespread environmental contamination associated with historic mining in Europe and elsewhere has triggered the improvement of related environmental legislation and of the environmental assessment and management methods for the mining industry. Mining has some unique features such as natural background pollution associated with natural mineral deposits, industrial activities and contamination located in the three-dimensional sub-surface space, the problem of long-term remediation after mine closure, problem of secondary contaminated areas around mine sites and abandoned mines in historic regions like Europe. These mining-specific problems require special tools to address the complexity of the environmental problems of mining-related contamination. The objective of this paper is to review and evaluate some of the decision support methods that have been developed and applied to mining contamination. In this paper, only those methods that are both efficient decision support tools and provide a 'holistic' approach to the complex problem as well are considered. These tools are (1) landscape ecology, (2) industrial ecology, (3) landscape geochemistry, (4) geo-environmental models, (5) environmental impact assessment, (6) environmental risk assessment, (7) material flow analysis and (8) life cycle assessment. This unique inter-disciplinary study should enable both the researcher and the practitioner to obtain broad view on the state-of-the-art of decision support methods for the environmental assessment of contamination at mine sites. Documented examples and abundant references are also provided.

  1. Ellipsometric Analysis of Contaminant Layer on Optical Witness Samples from MISSE

    NASA Technical Reports Server (NTRS)

    Norwood, Joseph K.

    2007-01-01

    Several optical witness samples included in the Materials for International Space Station Experiment (MISSE) trays have been analyzed with a variable angle spectroscopic ellipsometer or VASE. Witness samples of gold or platinum mirrors are extremely useful as collectors of space-borne contamination, due to the relative inertness of these noble metals in the atomic oxygen-rich environment of LEO. Highly accurate thickness measurements, typically at the sub-nanometer scale, may be achieved with this method, which uses polarized light in a spectral range of 300 to 1300 nanometers at several angles of incidence to the sample surface.

  2. Natural and technical factors in faecal contamination incidents of drinking water in small distribution networks, France, 2003-2004: a geographical study.

    PubMed

    Beaudeau, Pascal; Valdes, Danièle; Mouly, Damien; Stempfelet, Morgane; Seux, René

    2010-03-01

    This geographical study aimed to show natural or water-processing-related factors of faecal contamination incidents (FCIs) of drinking water in continental France. We defined a FCI as the occurrence of at least 20 colony-forming Escherichia coli or enterococci among all the 100 mL samples collected for regulatory purpose within one day from a given drinking water supply zone (SZ). We explored correlations between the standardized number of FCIs per département (N_Pols) and various indicators related to weather, land cover, topography, geology and water management for three SZ size sub-classes. In 2003-2004, 2,739 FCIs occurred in SZs supplying fewer than 2,000 people, mainly with simply disinfected groundwater. N_Pols correlates with four covariates: (1) precipitation; (2) the extension of the karst outcrops; (3) the extent of disinfection; and (4) catchment protection. One hundred millimetres of yearly excess in precipitation increases the pollution risk by 28-37%, depending on the sub-class. A 10% extension of the karst areas, a 10% increase of unprotected resources, or of SZs with no disinfection, could entail a higher risk of FCI by about 10%. The correlations are reproducible over the three sub-classes and corroborate expert appraisals. These results encourage the ongoing effort to generalize disinfection and catchment protection.

  3. FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Katz, J.J.; Hyman, H.H.; Sheft, I.

    1958-04-15

    The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.

  4. A longitudinal study of long-term change in contamination hazards and shallow well quality in two neighbourhoods of Kisumu, Kenya.

    PubMed

    Okotto-Okotto, Joseph; Okotto, Lorna; Price, Heather; Pedley, Steve; Wright, Jim

    2015-04-17

    Sub-Saharan Africa is experiencing rapid urbanisation and many urban residents use groundwater where piped supplies are intermittent or unavailable. This study aimed to investigate long-term changes in groundwater contamination hazards and hand-dug well water quality in two informal settlements in Kisumu city, Kenya. Buildings, pit latrines, and wells were mapped in 1999 and 2013-2014. Sanitary risk inspection and water quality testing were conducted at 51 hand-dug wells in 2002 to 2004 and 2014. Pit latrine density increased between 1999 and 2014, whilst sanitary risk scores for wells increased between 2002 to 2004 and 2014 (n = 37, Z = -1.98, p = 0.048). Nitrate levels dropped from 2004 to 2014 (n = 14, Z = -3.296, p = 0.001), but multivariate analysis suggested high rainfall in 2004 could account for this. Thermotolerant coliform counts dropped between 2004 and 2014, with this reduction significant in one settlement. Hand-dug wells had thus remained an important source of domestic water between 1999 and 2014, but contamination risks increased over this period. Water quality trends were complex, but nitrate levels were related to both sanitary risks and rainfall. Given widespread groundwater use by the urban poor in sub-Saharan Africa, the study protocol could be further refined to monitor contamination in hand-dug wells in similar settings.

  5. A Longitudinal Study of Long-Term Change in Contamination Hazards and Shallow Well Quality in Two Neighbourhoods of Kisumu, Kenya

    PubMed Central

    Okotto-Okotto, Joseph; Okotto, Lorna; Price, Heather; Pedley, Steve; Wright, Jim

    2015-01-01

    Sub-Saharan Africa is experiencing rapid urbanisation and many urban residents use groundwater where piped supplies are intermittent or unavailable. This study aimed to investigate long-term changes in groundwater contamination hazards and hand-dug well water quality in two informal settlements in Kisumu city, Kenya. Buildings, pit latrines, and wells were mapped in 1999 and 2013–2014. Sanitary risk inspection and water quality testing were conducted at 51 hand-dug wells in 2002 to 2004 and 2014. Pit latrine density increased between 1999 and 2014, whilst sanitary risk scores for wells increased between 2002 to 2004 and 2014 (n = 37, Z = −1.98, p = 0.048). Nitrate levels dropped from 2004 to 2014 (n = 14, Z = −3.296, p = 0.001), but multivariate analysis suggested high rainfall in 2004 could account for this. Thermotolerant coliform counts dropped between 2004 and 2014, with this reduction significant in one settlement. Hand-dug wells had thus remained an important source of domestic water between 1999 and 2014, but contamination risks increased over this period. Water quality trends were complex, but nitrate levels were related to both sanitary risks and rainfall. Given widespread groundwater use by the urban poor in sub-Saharan Africa, the study protocol could be further refined to monitor contamination in hand-dug wells in similar settings. PMID:25898406

  6. Converting Y(OH){sub 3} nanofiber bundles to YVO{sub 4} polyhedrons for photodegradation of dye contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li; School of Chemical Engineering and Materials Engineering, Huainan Normal University, Huainan 232038; Zou, Lei

    2015-08-15

    Highlights: • YVO{sub 4} polyhedrons were prepared from Y(OH){sub 3} nanofiber bundles through a hydrothermal conversion process. • In contrast to the bulk oxide, the photocatalytic performance of the polyhedrons was much improved. • The main active species involved in photocatalytic oxidative reaction were also investigated. - Abstract: This paper reports a hydrothermal conversion process of rare earth microstructures, Y(OH){sub 3} nanofiber bundles, into YVO{sub 4} polyhedrons, together with the investigation on the related photocatalytic properties. The as-synthesized samples were characterized by a variety of techniques, including XRD, SEM, TEM and UV–vis diffuse reflectance spectroscopy. The photocatalytic activities of YVO{submore » 4} polyhedrons were comparatively evaluated by the photodegradation of Rhodamine B and methylene blue. In contrast to the bulk oxide, the photocatalytic performance of the polyhedrons was much improved. The mechanism and the main active species involved in photocatalytic oxidative reaction were also investigated through the carriers trapping experiments.« less

  7. In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application.

    PubMed

    Foglia, Sabrina; Ledda, Mario; Fioretti, Daniela; Iucci, Giovanna; Papi, Massimiliano; Capellini, Giovanni; Lolli, Maria Grazia; Grimaldi, Settimio; Rinaldi, Monica; Lisi, Antonella

    2017-04-19

    Magnetic iron oxide nanoparticles (IONPs), for their intriguing properties, have attracted a great interest as they can be employed in many different biomedical applications. In this multidisciplinary study, we synthetized and characterized ultrafine 3 nm superparamagnetic water-dispersible nanoparticles. By a facile and inexpensive one-pot approach, nanoparticles were coated with a shell of silica and contemporarily functionalized with fluorescein isothiocyanate (FITC) dye. The obtained sub-5 nm silica-coated magnetic iron oxide fluorescent (sub-5 SIO-Fl) nanoparticles were assayed for cellular uptake, biocompatibility and cytotoxicity in a human colon cancer cellular model. By confocal microscopy analysis we demonstrated that nanoparticles as-synthesized are internalized and do not interfere with the CaCo-2 cell cytoskeletal organization nor with their cellular adhesion. We assessed that they do not exhibit cytotoxicity, providing evidence that they do not affect shape, proliferation, cellular viability, cell cycle distribution and progression. We further demonstrated at molecular level that these nanoparticles do not interfere with the expression of key differentiation markers and do not affect pro-inflammatory cytokines response in Caco-2 cells. Overall, these results showed the in vitro biocompatibility of the sub-5 SIO-Fl nanoparticles promising their safe employ for diagnostic and therapeutic biomedical applications.

  8. PLAN2L: a web tool for integrated text mining and literature-based bioentity relation extraction.

    PubMed

    Krallinger, Martin; Rodriguez-Penagos, Carlos; Tendulkar, Ashish; Valencia, Alfonso

    2009-07-01

    There is an increasing interest in using literature mining techniques to complement information extracted from annotation databases or generated by bioinformatics applications. Here we present PLAN2L, a web-based online search system that integrates text mining and information extraction techniques to access systematically information useful for analyzing genetic, cellular and molecular aspects of the plant model organism Arabidopsis thaliana. Our system facilitates a more efficient retrieval of information relevant to heterogeneous biological topics, from implications in biological relationships at the level of protein interactions and gene regulation, to sub-cellular locations of gene products and associations to cellular and developmental processes, i.e. cell cycle, flowering, root, leaf and seed development. Beyond single entities, also predefined pairs of entities can be provided as queries for which literature-derived relations together with textual evidences are returned. PLAN2L does not require registration and is freely accessible at http://zope.bioinfo.cnio.es/plan2l.

  9. Functionally Charged Polystyrene Particles Activate Immortalized Mouse Microglia (BV2): Cellular and Genomic Response

    EPA Science Inventory

    The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Same size (~850-950 nm) spherical polystyrene microparticles (SPM) with net negative (carboxyl, COOH-) or positive (dimethyl amino, CH3)2

  10. TRANSPORT OF INORGANIC COLLOIDS THROUGH NATURAL AQUIFER MATERIAL: IMPLICATIONS FOR CONTAMINANT TRANSPORT

    EPA Science Inventory

    The stability and transport of radiolabeled Fe2O3 particles were studied using laboratory batch and column techniques. Core material collected from a shallow sand and gravel aquifer was used as the immobile column matrix material. Variables in the study incl...

  11. Combined wet and dry cleaning of SiGe(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced tomore » the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.« less

  12. Purification of lanthanides for double beta decay experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polischuk, O. G.; Barabash, A. S.; Belli, P.

    2013-08-08

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxidemore » by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.« less

  13. Immobilization of uranium in contaminated soil by natural apatite addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa

    2007-07-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uraniummore » determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)« less

  14. ODC-Free Solvent Implementation for Phenolics Cleaning

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Biegert, Lydia; Lamont, DT; McCool, Alex (Technical Monitor)

    2001-01-01

    During phenolic liner manufacture, resin-impregnated (pre-preg) bias tape of silica, glass, or carbon cloth is tape-wrapped, cured, machined, and then wiped with 1,1,1 tri-chloroethane (TCA) to remove contaminants that may have been introduced during machining and handling. Following the TCA wipe, the machined surface is given a resin wet-coat and over-wrapped with more prepreg and cured. A TCA replacement solvent for these wiping operations must effectively remove both surface contaminants, and sub-surface oils and greases while not compromising the integrity of this interface. Selection of a TCA replacement solvent for phenolic over-wrap interface cleaning began with sub-scale compatibility tests with cured phenolics. Additional compatibility tests included assessment of solvent retention in machined phenolic surfaces. Results from these tests showed that, while the candidate solvent did not degrade the cured phenolics, it was retained in higher concentrations than TCA in phenolic surfaces. This effect was most pronounced with glass and silica cloth phenolics with steep ply angles relative to the wiped surfaces.

  15. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less

  16. Porosity and mechanical properties of zirconium ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buyakova, S., E-mail: sbuyakova@ispms.tsc.ru; Kulkov, S.; Tomsk Polytechnic University

    2015-11-17

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. Theremore » were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.« less

  17. Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1975-01-01

    Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

  18. Cellular Telephone as Reservoir of Bacterial Contamination: Myth or Fact

    PubMed Central

    Walia, Satinder S.; Manchanda, Adesh; Narang, Ramandeep S.; N., Anup; Singh, Balwinder; Kahlon, Sukhdeep S.

    2014-01-01

    Objective: To assess bacterial contamination of cellular telephone of dental care personnel, and to determine factors contributing to their contamination. Materials and Methods: A descriptive, cross-sectional study was conducted, which included 300 people using a cellular telephone The study group (hundred in each group) comprised of Dental Health Care Personnel (DHCP), In-Hospital Personnel (IHP) and Out-Hospital Personnel (OHP) of a dental college cum hospital. Swab was wiped along the front and all sides of cellular handset and it was incubated in glucose broth. The swab was subplated onto growth media plates made with half Mac Conkey’s agar and half blood agar and allowed to incubate for 48 hours at 37oC. Isolates were tested for antimicrobial susceptibility. Result: The analysis of presence or absence of microorganisms in the DHCP, IHP and OHP group showed no pyogenic growth in 28%, 31% and 41% cases respectively, the distribution of which was not significant (p>.05). Among non potential pathogens, spore bearing gram positive bacilli were seen in 20 cases of DHCP group, 16 cases of IHP group and 17 cases of OHP group; the distribution of which was not significant (p>.05) Among potential pathogens, significant differences were observed in the distribution of growth of Enterobacter (p<.001), Pseudomonas species (p<.05), Acinetobacter bacteria (p<.05) and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria (p<.001) between the participants of different groups. Conclusion: Results of this study showed that fomites such as cellular telephones can potentially act as “Trojan horses”, thus causing Hospital-Acquired Infections (HAIs) in the dental setting. PMID:24596722

  19. Cellular telephone as reservoir of bacterial contamination: myth or fact.

    PubMed

    Walia, Satinder S; Manchanda, Adesh; Narang, Ramandeep S; N, Anup; Singh, Balwinder; Kahlon, Sukhdeep S

    2014-01-01

    To assess bacterial contamination of cellular telephone of dental care personnel, and to determine factors contributing to their contamination. A descriptive, cross-sectional study was conducted, which included 300 people using a cellular telephone The study group (hundred in each group) comprised of Dental Health Care Personnel (DHCP), In-Hospital Personnel (IHP) and Out-Hospital Personnel (OHP) of a dental college cum hospital. Swab was wiped along the front and all sides of cellular handset and it was incubated in glucose broth. The swab was subplated onto growth media plates made with half Mac Conkey's agar and half blood agar and allowed to incubate for 48 hours at 37(o)C. Isolates were tested for antimicrobial susceptibility. The analysis of presence or absence of microorganisms in the DHCP, IHP and OHP group showed no pyogenic growth in 28%, 31% and 41% cases respectively, the distribution of which was not significant (p>.05). Among non potential pathogens, spore bearing gram positive bacilli were seen in 20 cases of DHCP group, 16 cases of IHP group and 17 cases of OHP group; the distribution of which was not significant (p>.05) Among potential pathogens, significant differences were observed in the distribution of growth of Enterobacter (p<.001), Pseudomonas species (p<.05), Acinetobacter bacteria (p<.05) and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria (p<.001) between the participants of different groups. RESULTs of this study showed that fomites such as cellular telephones can potentially act as "Trojan horses", thus causing Hospital-Acquired Infections (HAIs) in the dental setting.

  20. Effects of ultraviolet radiation and contaminant-related stressors on arctic freshwater ecosystems.

    PubMed

    Wrona, Frederick J; Prowse, Terry D; Reist, James D; Hobbie, John E; Lévesque, Lucie M J; Macdonald, Robie W; Vincent, Warwick F

    2006-11-01

    Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.

  1. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gasmore » decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.« less

  2. Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics

    PubMed Central

    Breckels, Lisa M.; Holden, Sean B.; Wojnar, David; Mulvey, Claire M.; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W. B.; Kohlbacher, Oliver; Lilley, Kathryn S.; Gatto, Laurent

    2016-01-01

    Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis. PMID:27175778

  3. Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piri, Mohammad

    2014-03-31

    Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account themore » underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­based dynamic core-­scale pore network model; (4) Development of new, improved high-­performance modules for the UW-­team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­ and core-­scale models were rigorously validated against well-­characterized core-­ flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.« less

  4. Photo-acoustic sensor for detection of oil contamination in compressed air systems.

    PubMed

    Lassen, Mikael; Harder, David Baslev; Brusch, Anders; Nielsen, Ole Stender; Heikens, Dita; Persijn, Stefan; Petersen, Jan C

    2017-02-06

    We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm-1 (3.38 μm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10-9 W cm-1 Hz1/2.

  5. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less

  6. Chemical vapor deposition of Mo thin films from Mo(CO){sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, P.; Bond, J.; Westmore, T.

    1995-12-01

    Low levels of carbon and/or oxygen contamination in metallic thin films significantly alter the physical and chemical properties of these films often rendering them useless for any commercial applications. These impurities are often observed in films grown by a technique called metallorganic chemical vapor deposition (MOCVD). MOCVD films are grown by heating a substrate in the presence of a metallorganic precursor. We wish to identify the source(s) of contamination in films produced from the Group VIB metal hexacarbonyls, M(CO){sub 6}. Towards attaining this goal we have initiated studies on the elemental composition of thin films deposited by MOCVD using Mo(CO){submore » 6} as the precursor. The results obtained so far indicate that the level of contamination of the films partially depends on the deposition temperature. Our results will be compared to published work on films deposited by laser assisted CVD from Mo(CO){sub 6}.« less

  7. Forecasting sensitivity on tilt of power spectrum of primordial gravitational waves after Planck satellite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qing-Guo; Wang, Sai; Zhao, Wen, E-mail: huangqg@itp.ac.cn, E-mail: wangsai@itp.ac.cn, E-mail: wzhao7@ustc.edu.cn

    2015-10-01

    By taking into account the contamination of foreground radiations, we employ the Fisher matrix to forecast the future sensitivity on the tilt of power spectrum of primordial tensor perturbations for several ground-based (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloon-borne (EBEX, Spider) and satellite (CMBPol, COrE, LiteBIRD) experiments of B-mode polarizations. For the fiducial model n{sub t}=0, our results show that the satellite experiments give good sensitivity on the tensor tilt n{sub t} to the level σ{sub n{sub t}}∼<0.1 for r∼>2×10{sup −3}, while the ground-based and balloon-borne experiments give worse sensitivity. By considering the BICEP2/Keck Array and Planck (BKP) constraint onmore » the tensor-to-scalar ratio r, we see that it is impossible for these experiments to test the consistency relation n{sub t}=−r/8 in the canonical single-field slow-roll inflation models.« less

  8. Morphology and structure features of ZnAl{sub 2}O{sub 4} spinel nanoparticles prepared by matrix-isolation-assisted calcination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Xuelian, E-mail: xueliandu@126.com; Li, Liqiang; Zhang, Wenxing

    2015-01-15

    Graphical abstract: The substrate ZnO as the isolation medium is effective in preventing the sintering and agglomeration of ZnAl{sub 2}O{sub 4} nanoparticles, and it also prevents their contamination. High purity, well-dispersed, and single-crystal ZnAl{sub 2}O{sub 4} nanoparticles with 3.72 eV band gap were obtained. - Abstract: Well-dispersed ZnAl{sub 2}O{sub 4} spinel nanoparticles with an average crystalline size of 25.7 nm were synthesized successfully and easily by polymer-network and matrix-isolation-assisted calcination. The product microstructure and features were investigated by X-ray diffractometry, thermogravimetric and differential thermal analysis, Fourier transform-infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, and energy dispersive X-ray spectra. The morphology andmore » optical performance of the as-prepared ZnAl{sub 2}O{sub 4} nanoparticles were characterized by scanning electron microscope, transmission electron microscopy, and photoluminescence spectrometer. Experimental results indicate that excess ZnO acted as the isolation medium is effective in preventing the sintering and agglomeration of ZnAl{sub 2}O{sub 4} nanoparticles, and it also prevents their contamination. Then, high purity and well-dispersed ZnAl{sub 2}O{sub 4} nanoparticles with single-crystal structure were obtained.« less

  9. Fe doped TiO{sub 2} photocatalyst for the removal of As(III) under visible radiation and its potential application on the treatment of As-contaminated groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza-Arévalo, J.I.; García-Montes, I.; Reyes, M.Hinojosa

    2016-01-15

    Highlights: • Incorporation of Fe in TiO{sub 2} lattice extended absorption to visible light region. • TiO{sub 2}–Fe 1.0 in anatase crystalline form was synthesized by sol–gel method. • TiO{sub 2}–Fe 1.0 showed the highest photocatalytic activity for As(III) oxidation. • TiO{sub 2}–Fe 1.0 had the highest adsorption capacity for the removal of generated As(V). • TiO{sub 2}–Fe is a promising material on the treatment of As contaminated groundwater. - Abstract: The Fe doped TiO{sub 2} catalyst was evaluated under visible radiation for As(III) removal. The TiO{sub 2}–Fe was synthesized by sol–gel technique at 0.0, 1.0, 2.5, 5.0 and 10.0more » wt% iron doping concentrations. The semiconductors were characterized by X-ray diffraction, diffuse reflectance UV–vis, Raman spectroscopy, nitrogen physisorption, SEM–EDS and potentiometric titration for point of zero charge determination. The photocatalytic oxidation of As(III) was assessed in aqueous suspension contained 5 mg L{sup −1} As(III) at pH 7 with 0.25 g L{sup −1} catalyst loading. The incorporation of iron ions in TiO{sub 2} lattice extended the absorption to visible light region and create surface oxygen vacancies which favor photocatalytic oxidation reaction of As(III) using a small doping amount of Fe (1.0 wt%) in TiO{sub 2} powder. Additionally, TiO{sub 2}–Fe 1.0 showed the highest adsorption capacity for As(V) removal compared to sol–gel TiO{sub 2} and P25 indicating that this catalyst is a promising material for As contaminated groundwater treatment.« less

  10. Mercury in tropical and subtropical coastal environments

    PubMed Central

    Costa, Monica F.; Landing, William M.; Kehrig, Helena A.; Barletta, Mário; Holmes, Christopher D.; Barrocas, Paulo R. G.; Evers, David C.; Buck, David G.; Vasconcellos, Ana Claudia; Hacon, Sandra S.; Moreira, Josino C.; Malm, Olaf

    2012-01-01

    Anthropogenic activities influence the biogeochemical cycles of mercury, both qualitatively and quantitatively, on a global scale from sources to sinks. Anthropogenic processes that alter the temporal and spatial patterns of sources and cycling processes are changing the impacts of mercury contamination on aquatic biota and humans. Human exposure to mercury is dominated by the consumption of fish and products from aquaculture operations. The risk to society and to ecosystems from mercury contamination is growing, and it is important to monitor these expanding risks. However, the extent and manner to which anthropogenic activities will alter mercury sources and biogeochemical cycling in tropical and sub-tropical coastal environments is poorly understood. Factors as (1) lack of reliable local/regional data; (2) rapidly changing environmental conditions; (3) governmental priorities and; (4) technical actions from supra-national institutions, are some of the obstacles to overcome in mercury cycling research and policy formulation. In the tropics and sub-tropics, research on mercury in the environment is moving from an exploratory “inventory” phase towards more process-oriented studies. Addressing biodiversity conservation and human health issues related to mercury contamination of river basins and tropical coastal environments are an integral part of paragraph 221 paragraph of the United Nations document “The Future We Want” issued in Rio de Janeiro in June 2012. PMID:22901765

  11. MOLECULAR EVALUATION OF CHANGES IN PLANKTONIC BACTERIAL POPULATIONS RESULTING FROM EQUINE FECAL CONTAMINATION IN A SUB-WATERSHED

    EPA Science Inventory

    Considerable emphasis has been placed on developing watershed-based strategies with the potential to reduce non-point-source fecal contamination. Molecular methods applied used 16S-ribosomal-deoxyribonucleic-acid (rDNA) to try to determine sources of fecal contamination. Objectiv...

  12. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al.more » for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.« less

  13. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity

    PubMed Central

    2013-01-01

    Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560

  14. Object Synthesis in Conway's Game of Life and Other Cellular Automata

    NASA Astrophysics Data System (ADS)

    Niemiec, Mark D.

    Of the very large number of cellular automata rules in existence, a relatively small number of rules may be considered interesting. Some of the features that make such rules interesting permit patterns to expand, contract, separate into multiple sub-patterns, or combine with other patterns. Such rules generally include still-lifes, oscillators, spaceships, spaceship guns, and puffer trains. Such structures can often be used to construct more complicated computational circuitry, and rules that contain them can often be shown to be computationally universal. Conway's Game of Life is one rule that has been well-studied for several decades, and has been shown to be very fruitful in this regard.

  15. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and themore » gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.« less

  16. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Nan-Jie; Wong, Chun-Sing, E-mail: drcswong@gmail.com; Chu, Yiu-Ching

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using themore » proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.« less

  17. Multi-scale Imaging of Cellular and Sub-cellular Structures using Scanning Probe Recognition Microscopy.

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Rice, A. F.

    2005-03-01

    Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).

  18. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    NASA Astrophysics Data System (ADS)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  19. Mixtures of benzo(a)pyrene, dichlorodiphenyltrichloroethane and tributyltin are more toxic to neotropical fish Rhamdia quelen than isolated exposures.

    PubMed

    Oliveira, Heloísa H P; Liebel, Samuel; Rossi, Stéfani C; Azevedo, Ana C B; Barrera, Ellie A L; Garcia, Juan Ramon Esquivel; Grötzner, Sônia Regina; Neto, Francisco Filipak; Randi, Marco A F; Ribeiro, Ciro A O

    2015-12-01

    The effects of benzo(a)pyrene (BaP), dichlorodiphenyltrichloroethane (DDT) and tributyltin (TBT) association were investigated through a multi-biomarker approach. Ten Rhamdia quelen fish per group were exposed through intraperitoneal injections either to BaP (0.3; 3 or 30 mg kg(-1)), DDT or TBT (0.03; 0.3 or 3 mg kg(-1)) or BaP/DDT, BaP/TBT, DDT/TBT or BaP/DDT/TBT on their lowest doses. The experiments were divided in acute (one dose, 5-day) and sub-chronic (3 doses, 15-day). Control groups received an equal volume of PBS or canola oil (1 ml kg(-1)). The three tested contaminants altered AChE activity in brain and muscle in similar ways; the mixtures antagonized the increase evoked by the contaminants alone. BaP and TBT increased GSH content and mixtures reduced it. GPx activity was increased by DDT and TBT in the 15-day experiment and reduced by the mixtures. BaP increased GST activity in sub-chronic experiment while TBT reduced it in the acute experiment. BaP/TBT increased GST activity compared to all groups; the other mixtures reduced it compared to BaP or DDT in the 5-day experiment. BaP, DDT and TBT increased δ-ALAd activity mainly in acute exposure; the mixtures also increased δ-ALAd compared to DDT or TBT in 5 and 15-day. BaP, TBT and BaP/DDT decreased LPO in the acute experiment. In the sub-chronic experiment DDT/TBT increased LPO when compared to TBT. None of the contaminants alone altered PCO, but all mixtures increased it compared to one or another contaminant. Contaminants isolated had a more acute effect in ALT plasma level; their lowest dose, which had no effect alone, in combination has led to an increase of this enzyme, especially after 15 days. DDT increased AST in the acute and sub-chronic experiments, while TBT did the same in the latter. DDT/TBT decreased AST opposing the effect of the contaminants alone in the 5-day experiment. Hepatic lesions index could be explained by a more acute effect of the contaminants alone or combined and by activation of cell defenses after the sub-chronic exposure. TBT increased melanomacrophages counting in the 5-day experiment and the mixtures increased it in the 5 and 15-day experiments. Overall, the majority of the biomarkers pointed to a more toxic effect when these contaminants were combined, leading to unexpected toxicities compared to individual exposure scenarios. These findings are relevant considering environmental exposure conditions, since organisms are often exposed to different combinations of contaminants. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. II. Model building: an electrical theory of control of growth and development in animals, prompted by studies of exogenous magnetic field effects (paper I), and evidence of DNA current conduction, in vitro.

    PubMed

    Elson, Edward

    2009-01-01

    A theory of control of cellular proliferation and differentiation in the early development of metazoan systems, postulating a system of electrical controls "parallel" to the processes of molecular biochemistry, is presented. It is argued that the processes of molecular biochemistry alone cannot explain how a developing organism defies a stochastic universe. The demonstration of current flow (charge transfer) along the long axis of DNA through the base-pairs (the "pi-way) in vitro raises the question of whether nature may employ such current flows for biological purposes. Such currents might be too small to be accessible to direct measurement in vivo but conduction has been measured in vitro, and the methods might well be extended to living systems. This has not been done because there is no reasonable model which could stimulate experimentation. We suggest several related, but detachable or independent, models for the biological utility of charge transfer, whose scope admittedly outruns current concepts of thinking about organization, growth, and development in eukaryotic, metazoan systems. The ideas are related to explanations proposed to explain the effects demonstrated on tumors and normal tissues described in Article I (this issue). Microscopic and mesoscopic potential fields and currents are well known at sub-cellular, cellular, and organ systems levels. Not only are such phenomena associated with internal cellular membranes in bioenergetics and information flow, but remarkable long-range fields over tissue interfaces and organs appear to play a role in embryonic development (Nuccitelli, 1992 ). The origin of the fields remains unclear and is the subject of active investigation. We are proposing that similar processes could play a vital role at a "sub-microscopic level," at the level of the chromosomes themselves, and could play a role in organizing and directing fundamental processes of growth and development, in parallel with the more discernible fields and currents described.

  1. Identification of PM{sub 10} characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Den Heuvel, Rosette, E-mail: rosette.vandenheuvel@vito.be; Den Hond, Elly, E-mail: elly.denhond@wiv-isp.be; Govarts, Eva, E-mail: eva.govarts@vito.be

    Notwithstanding evidence is present that physicochemical characteristics of ambient particles attribute to adverse health effects, there is still some lack of understanding in this complex relationship. At this moment it is not clear which properties (such as particle size, chemical composition) or sources of the particles are most relevant for health effects. This study investigates the in vitro toxicity of PM{sub 10} in relation to PM chemical composition, black carbon (BC), endotoxin content and oxidative potential (OP). In 2013–2014 PM{sub 10} was sampled (24 h sampling, 108 sampling days) in ambient air at three sites in Flanders (Belgium) with differentmore » pollution characteristics: an urban traffic site (Borgerhout), an industrial area (Zelzate) and a rural background location (Houtem). To characterize the toxic potential of PM{sub 10}, airway epithelial cells (Beas-2B cells) have been exposed to particles in vitro. Different endpoints were studied including cell damage and death (cell viability) using the Neutral red Uptake assay, the production of pro-inflammatory molecules by interleukin 8 (IL-8) induction and DNA-damaging activity using the FPG-modified Comet assay. The endotoxin levels in the collected samples were analysed and the capacity of PM{sub 10} particles to produce reactive oxygen species (OP) was evaluated by electron paramagnetic resonance (EPR) spectroscopy. Chemical characteristics of PM{sub 10} (BC, As, Cd, Cr, Cu, Mn, Ni, Pb, Zn) and meteorological conditions were recorded on the sampling days. PM{sub 10} particles exhibited dose-dependent cytotoxicity in Beas-2B cells and were found to significantly induce the release of IL-8 in samples from the three locations. Oxidatively damaged DNA was observed in exposed Beas-2B cells. Endotoxin levels above the detection limit were detected in half of the samples. OP was measurable in all samples. Associations between PM{sub 10} characteristics and biological effects of PM{sub 10} were assessed by single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM{sub 10} induced biological effects differ due to differences in PM{sub 10} characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses. - Highlights: • On an equal mass basis, PM{sub 10} sampled at an urban, rural and industrial site induced different cellular effects in Beas-2B. • Endotoxin levels and oxidative potential (OP) were analysed in the PM{sub 10} samples. • Black carbon, cadmium and lead were correlated with decreased cell viability. • Endotoxin levels explained the majority of the variance in il-8 induction. • Oxidatively damaged DNA was observed in all the samples.« less

  2. Assessing the impact of Benzo[a]pyrene on Marine Mussels: Application of a novel targeted low density microarray complementing classical biomarker responses

    PubMed Central

    Sforzini, Susanna; Arlt, Volker M.; Barranger, Audrey; Dallas, Lorna J.; Oliveri, Caterina; Aminot, Yann; Pacchioni, Beniamina; Millino, Caterina; Lanfranchi, Gerolamo; Readman, James W.; Moore, Michael N.; Viarengo, Aldo; Jha, Awadhesh N.

    2017-01-01

    Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new ‘STressREsponse Microarray’ (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 μg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota. PMID:28651000

  3. Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil.

    PubMed

    Chiba, W A C; Passerini, M D; Tundisi, J G

    2011-05-01

    Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni) in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.

  4. Catastrophic failure of contaminated fused silica optics at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genin, F. Y., LLNL

    1996-12-03

    For years, contamination has been known to degrade the performance of optics and to sometimes initiate laser-induced damage to initiate. This study has W to quantify these effects for fused silica windows used at 355 mm Contamination particles (Al, Cu, TiO{sub 2} and ZrO{sub 2}) were artificially deposited onto the surface and damage tests were conducted with a 3 ns NdYAG laser. The damage morphology was characterized by Nomarski optical microscopy. The results showed that the damage morphology for input and output surface contamination is different. For input surface contamination, both input and output surfaces can damage. In particular, themore » particle can induce pitting or drilling of the surface where the beam exits. Such damage usually grows catastrophically. Output surface contamination is usually ablated away on the shot but can also induce catastrophic damage. Plasmas are observed during illumination and seem to play an important role in the damage mechanism. The relationship between fluence and contamination size for which catastrophic damage occurred was plotted for different contamination materials. The results show that particles even as small as 10 {micro}m can substantially decrease the damage threshold of the window and that metallic particles on the input surface have a more negative effect than oxide particles.« less

  5. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae

    PubMed Central

    Gupta, Ritu; Vijayraghavan, Usha

    2015-01-01

    Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation. PMID:26147804

  6. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae.

    PubMed

    Gupta, Ritu; Sadhale, Parag P; Vijayraghavan, Usha

    2015-01-01

    Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.

  7. Fluorescence Characterization of Clinically-Important Bacteria

    PubMed Central

    Dartnell, Lewis R.; Roberts, Tom A.; Moore, Ginny; Ward, John M.; Muller, Jan-Peter

    2013-01-01

    Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination. PMID:24098687

  8. Fluorescence characterization of clinically-important bacteria.

    PubMed

    Dartnell, Lewis R; Roberts, Tom A; Moore, Ginny; Ward, John M; Muller, Jan-Peter

    2013-01-01

    Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination.

  9. Dietary biomagnification of organochlorine contaminants in Alaskan polar bears

    USGS Publications Warehouse

    Bentzen, T.W.; Follmann, Erich H.; Amstrup, Steven C.; York, G.S.; Wooller, M.J.; Muir, D.C.G.; O'Hara, T. M.

    2008-01-01

    Concentrations of organochlorine contaminants in the adipose tissue of polar bears (Ursus maritimus Phipps, 1774) vary throughout the Arctic. The range in concentrations has not been explained fully by bear age, sex, condition, location, or reproductive status. Dietary pathways expose polar bears to a variety of contaminant profiles and concentrations. Prey range from lower trophic level bowhead whales (Balaena mysticetus L., 1758), one of the least contaminated marine mammals, to highly contaminated upper trophic level ringed seals (Phoca hispida (Schreber, 1775)). We used ??15N and ??13C signatures to estimate the trophic status of 42 polar bears sampled along Alaska's Beaufort Sea coast to determine the relationship between organochlorine concentration and trophic level. The ?? 15N values in the cellular portions of blood ranged from 18.2% to 20.7%. We found strong positive relationships between concentrations of the most recalcitrant polychlorinated biphenyls (PCBs) and ??15N values in models incorporating age, lipid content, and ??13C value. Specifically these models accounted for 67% and 76% of the variation in PCB153 and oxychlordane concentration in male polar bears and 85% and 93% in females, respectively. These results are strong indicators of variation in diet and biomagnification of organochlorines among polar bears related to their sex, age, and trophic position. ?? 2008 NRC.

  10. contamDE: differential expression analysis of RNA-seq data for contaminated tumor samples.

    PubMed

    Shen, Qi; Hu, Jiyuan; Jiang, Ning; Hu, Xiaohua; Luo, Zewei; Zhang, Hong

    2016-03-01

    Accurate detection of differentially expressed genes between tumor and normal samples is a primary approach of cancer-related biomarker identification. Due to the infiltration of tumor surrounding normal cells, the expression data derived from tumor samples would always be contaminated with normal cells. Ignoring such cellular contamination would deflate the power of detecting DE genes and further confound the biological interpretation of the analysis results. For the time being, there does not exists any differential expression analysis approach for RNA-seq data in literature that can properly account for the contamination of tumor samples. Without appealing to any extra information, we develop a new method 'contamDE' based on a novel statistical model that associates RNA-seq expression levels with cell types. It is demonstrated through simulation studies that contamDE could be much more powerful than the existing methods that ignore the contamination. In the application to two cancer studies, contamDE uniquely found several potential therapy and prognostic biomarkers of prostate cancer and non-small cell lung cancer. An R package contamDE is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/ zhanghfd@fudan.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Exploration of cellular reaction systems.

    PubMed

    Kirkilionis, Markus

    2010-01-01

    We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.

  12. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc.

    PubMed

    Hara, Kurt; Kakegawa, Takeshi; Yamashiro, Kan; Maruyama, Akihiko; Ishibashi, Jun-Ichiro; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2005-01-01

    A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  13. Method and apparatus for injecting particulate media into the ground

    DOEpatents

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  14. Dry efficient cleaning of poly-methyl-methacrylate residues from graphene with high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Petit-Etienne, C.; Davydova, A.

    Graphene is the first engineering electronic material, which is purely two-dimensional: it consists of two exposed sp{sup 2}-hybridized carbon surfaces and has no bulk. Therefore, surface effects such as contamination by adsorbed polymer residues have a critical influence on its electrical properties and can drastically hamper its widespread use in devices fabrication. These contaminants, originating from mandatory technological processes of graphene synthesis and transfer, also impact fundamental studies of the electronic and structural properties at the atomic scale. Therefore, graphene-based technology and research requires “soft” and selective surface cleaning techniques dedicated to limit or to suppress this surface contamination. Here,more » we show that a high-density H{sub 2} and H{sub 2}-N{sub 2} plasmas can be used to selectively remove polymeric residues from monolayer graphene without any damage on the graphene surface. The efficiency of this dry-cleaning process is evidenced unambiguously by a set of spectroscopic and microscopic methods, providing unprecedented insights on the cleaning mechanisms and highlighting the role of specific poly-methyl-methacrylate residues at the graphene interface. The plasma is shown to perform much better cleaning than solvents and has the advantage to be an industrially mature technology adapted to large area substrates. The process is transferable to other kinds of two-dimensional material and heterostructures.« less

  15. NADH induces the generation of superoxide radicals in leaf peroxisomes. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    del Rio, L.A.; Sandalio, L.M.; Palma, J.M.

    1989-03-01

    In peroxisomes isolated from pea leaves (Pisum sativum L.) the production of superoxide free radicals (O{sub 2}{sup {minus}}) by xanthine and NADH was investigated. In peroxisomal membranes, 100 micromolar NADH induced the production of O{sub 2}{sup {minus}} radicals. In the soluble fractions of peroxisomes, no generation of O{sub 2}{sup {minus}} radicals was observed by incubation with either NADH or xanthine, although xanthine oxidase was found located predominantly in the matrix of peroxisomes. The failure of xanthine to induce superoxide generation was probably due to the inability to fully suppress the endogenous Mn-superoxide dismutase activity by inhibitors which were inactive againstmore » xanthine oxidase. The generation of superoxide radicals in leaf peroxisomes together with the recently described production of these oxygen radicals in glyoxysomes suggests that O{sub 2}{sup {minus}} generation could be a common metabolic property of peroxisomes and further supports the existence of active oxygen-related roles for peroxisomes in cellular metabolism.« less

  16. Cellular characterization of compression induced-damage in live biological samples

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Balzer, Jens; Hahnel, Mark; Rankin, Sara M.; Brown, Katherine A.; Proud, William G.

    2011-06-01

    Understanding the dysfunctions that high-intensity compression waves induce in human tissues is critical to impact on acute-phase treatments and requires the development of experimental models of traumatic damage in biological samples. In this study we have developed an experimental system to directly assess the impact of dynamic loading conditions on cellular function at the molecular level. Here we present a confinement chamber designed to subject live cell cultures in liquid environment to compression waves in the range of tens of MPa using a split Hopkinson pressure bars system. Recording the loading history and collecting the samples post-impact without external contamination allow the definition of parameters such as pressure and duration of the stimulus that can be related to the cellular damage. The compression experiments are conducted on Mesenchymal Stem Cells from BALB/c mice and the damage analysis are compared to two control groups. Changes in Stem cell viability, phenotype and function are assessed flow cytometry and with in vitro bioassays at two different time points. Identifying the cellular and molecular mechanisms underlying the damage caused by dynamic loading in live biological samples could enable the development of new treatments for traumatic injuries.

  17. Movies of cellular and sub-cellular motion by digital holographic microscopy.

    PubMed

    Mann, Christopher J; Yu, Lingfeng; Kim, Myung K

    2006-03-23

    Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable focus, so that the moving object can be accurately tracked with a reconstruction rate of 300ms for each hologram. The holographic movies show paramecium swimming among other microbes as well as displaying some of their intracellular processes. A time lapse movie is also shown for fibroblast cells in the process of migration. Digital holography and movies of digital holography are seen to be useful new tools for visualization of dynamic processes in biological microscopy. Phase imaging digital holography is a promising technique in terms of the lack of coherent noise and the precision with which the optical thickness of a sample can be profiled, which can lead to images with an axial resolution of a few nanometres.

  18. Hydrogen passivation of titanium impurities in silicon: Effect of doping conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, P.; Coutinho, J., E-mail: jose.coutinho@ua.pt; Torres, V. J. B.

    2014-07-21

    While the contamination of solar silicon by fast diffusing transition metals can be now limited through gettering, much attention has been drawn to the slow diffusing species, especially the early 3d and 4d elements. To some extent, hydrogen passivation has been successful in healing many deep centers, including transition metals in Si. Recent deep-level transient spectroscopy (DLTS) measurements concerning hydrogen passivation of Ti revealed the existence of at least four electrical levels related to Ti{sub i}H{sub n} in the upper-half of the gap. These findings challenge the existing models regarding both the current level assignment as well as the structure/speciesmore » involved in the defects. We revisit this problem by means of density functional calculations and find that progressive hydrogenation of interstitial Ti is thermodynamically stable in intrinsic and n-doped Si. Full passivation may not be possible to attain in p-type Si as Ti{sub i}H{sub 3} and Ti{sub i}H{sub 4} are metastable against dissociation and release of bond-centered protons. All DLTS electron traps are assigned, namely, E40′ to Ti{sub i}H(-/0), E170′ to Ti{sub i}H{sub 3}(0/+), E(270) to Ti{sub i}H{sub 2}(0/+), and E170 to Ti{sub i}H(0/+) transitions. Ti{sub i}H{sub 4} is confirmed to be electrically inert.« less

  19. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.

    PubMed

    Chang, Wonjae; Klemm, Sara; Beaulieu, Chantale; Hawari, Jalal; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Several studies have shown that biostimulation in ex situ systems such as landfarms and biopiles can facilitate remediation of petroleum hydrocarbon contaminated soils at sub-Arctic sites during summers when temperatures are above freezing. In this study, we examine the biodegradation of semivolatile (F2: C10-C16) and nonvolatile (F3: C16-C34) petroleum hydrocarbons and microbial respiration and population dynamics at post- and presummer temperatures ranging from -5 to 14 °C. The studies were conducted in pilot-scale tanks with soils obtained from a historically contaminated sub-Arctic site in Resolution Island (RI), Canada. In aerobic, nutrient-amended, unsaturated soils, the F2 hydrocarbons decreased by 32% during the seasonal freeze-thaw phase where soils were cooled from 2 to -5 °C at a freezing rate of -0.12 °C d(-1) and then thawed from -5 to 4 °C at a thawing rate of +0.16 °C d(-1). In the unamended (control) tank, the F2 fraction only decreased by 14% during the same period. Biodegradation of individual hydrocarbon compounds in the nutrient-amended soils was also confirmed by comparing their abundance over time to that of the conserved diesel biomarker, bicyclic sesquiterpanes (BS). During this period, microbial respiration was observed, even at subzero temperatures when unfrozen liquid water was detected during the freeze-thaw period. An increase in culturable heterotrophs and 16S rDNA copy numbers was noted during the freezing phase, and the (14)C-hexadecane mineralization in soil samples obtained from the nutrient-amended tank steadily increased. Hydrocarbon degrading bacterial populations identified as Corynebacterineae- and Alkanindiges-related strains emerged during the freezing and thawing phases, respectively, indicating there were temperature-based microbial community shifts.

  20. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  1. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    DOEpatents

    Chang, Shih-Ger

    1994-01-01

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O.sub.3, PO, PO.sub.2, etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like.

  2. Impact of the Sea Empress oil spill on lysosomal stability in mussel blood cells.

    PubMed

    Fernley, P W; Moore, M N; Lowe, D M; Donkin, P; Evans, S

    2000-01-01

    Coastal zones are among the most productive and vulnerable areas on the planet. An example of impact on these fragile environments was shown in the case of the "Sea Empress" oil tanker, which ran aground in the Bristol Channel in 1996, spilling 72,000 tons of "Forties" crude oil. The objective was to investigate the sub-lethal cellular pathology and tissue hydrocarbon contamination in marine mussel populations, 4 months after the initial spill, using the neutral red retention (NRR) assay for lysosomal stability in blood cells. NRR was reduced in mussels, and indicative of cell injury, from the two sites closest to the spill in comparison with more distant and reference sites. Lysosomal stability was inversely correlated with polycyclic aromatic hydrocarbon concentrations in mussel tissues. Reduced lysosomal stability has previously been shown to contribute to impaired immunocompetence and to autophagic loss of body tissues. The use of this type of technique is discussed in the context of cost-effective, ecotoxicological tools for Integrated Coastal Zone Management.

  3. Simulation of changes in heavy metal contamination in farmland soils of a typical manufacturing center through logistic-based cellular automata modeling.

    PubMed

    Qiu, Menglong; Wang, Qi; Li, Fangbai; Chen, Junjian; Yang, Guoyi; Liu, Liming

    2016-01-01

    A customized logistic-based cellular automata (CA) model was developed to simulate changes in heavy metal contamination (HMC) in farmland soils of Dongguan, a manufacturing center in Southern China, and to discover the relationship between HMC and related explanatory variables (continuous and categorical). The model was calibrated through the simulation and validation of HMC in 2012. Thereafter, the model was implemented for the scenario simulation of development alternatives for HMC in 2022. The HMC in 2002 and 2012 was determined through soil tests and cokriging. Continuous variables were divided into two groups by odds ratios. Positive variables (odds ratios >1) included the Nemerow synthetic pollution index in 2002, linear drainage density, distance from the city center, distance from the railway, slope, and secondary industrial output per unit of land. Negative variables (odds ratios <1) included elevation, distance from the road, distance from the key polluting enterprises, distance from the town center, soil pH, and distance from bodies of water. Categorical variables, including soil type, parent material type, organic content grade, and land use type, also significantly influenced HMC according to Wald statistics. The relative operating characteristic and kappa coefficients were 0.91 and 0.64, respectively, which proved the validity and accuracy of the model. The scenario simulation shows that the government should not only implement stricter environmental regulation but also strengthen the remediation of the current polluted area to effectively mitigate HMC.

  4. Nonaqueous purification of mixed nitrate heat transfer media

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  5. IDENTIFICATION OF MEMBERS IN THE CENTRAL AND OUTER REGIONS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra, Ana Laura; Diaferio, Antonaldo, E-mail: serra@ph.unito.it

    2013-05-10

    The caustic technique measures the mass of galaxy clusters in both their virial and infall regions and, as a byproduct, yields the list of cluster galaxy members. Here we use 100 galaxy clusters with mass M{sub 200} {>=} 10{sup 14} h {sup -1} M{sub Sun} extracted from a cosmological N-body simulation of a {Lambda}CDM universe to test the ability of the caustic technique to identify the cluster galaxy members. We identify the true three-dimensional members as the gravitationally bound galaxies. The caustic technique uses the caustic location in the redshift diagram to separate the cluster members from the interlopers. Wemore » apply the technique to mock catalogs containing 1000 galaxies in the field of view of 12 h {sup -1} Mpc on a side at the cluster location. On average, this sample size roughly corresponds to 180 real galaxy members within 3r{sub 200}, similar to recent redshift surveys of cluster regions. The caustic technique yields a completeness, the fraction of identified true members, f{sub c} = 0.95 {+-} 0.03, within 3r{sub 200}. The contamination, the fraction of interlopers in the observed catalog of members, increases from f{sub i}=0.020{sup +0.046}{sub -0.015} at r{sub 200} to f{sub i}=0.08{sup +0.11}{sub -0.05} at 3r{sub 200}. No other technique for the identification of the members of a galaxy cluster provides such large completeness and small contamination at these large radii. The caustic technique assumes spherical symmetry and the asphericity of the cluster is responsible for most of the spread of the completeness and the contamination. By applying the technique to an approximately spherical system obtained by stacking the individual clusters, the spreads decrease by at least a factor of two. We finally estimate the cluster mass within 3r{sub 200} after removing the interlopers: for individual clusters, the mass estimated with the virial theorem is unbiased and within 30% of the actual mass; this spread decreases to less than 10% for the spherically symmetric stacked cluster.« less

  6. Tracing Staphylococcus aureus in small and medium-sized food-processing factories on the basis of molecular sub-species typing.

    PubMed

    Koreňová, Janka; Rešková, Zuzana; Véghová, Adriana; Kuchta, Tomáš

    2015-01-01

    Contamination by Staphylococcus aureus of the production environment of three small or medium-sized food-processing factories in Slovakia was investigated on the basis of sub-species molecular identification by multiple locus variable number of tandem repeats analysis (MLVA). On the basis of MLVA profiling, bacterial isolates were assigned to 31 groups. Data from repeated samplings over a period of 3 years facilitated to draw spatial and temporal maps of the contamination routes for individual factories, as well as identification of potential persistent strains. Information obtained by MLVA typing allowed to identify sources and routes of contamination and, subsequently, will allow to optimize the technical and sanitation measures to ensure hygiene.

  7. PFC Decontamination of a Metal Surface and the Recycling of a Spent PFC Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, C.H.; Won, H.J.; Oh, W.Z.

    2006-07-01

    PFC (per-fluorocarbon) ultrasonic decontamination behavior of loosely contaminated metal specimens such as a plate, pipe, welding and a crevice specimen in a mixed solution of PFC and an anionic surfactant was investigated. Perfluoroheptane (C{sub 7}F{sub 16}) was used as a PFC ultrasonic media. The contaminants were completely removed for almost all of the tested specimens except for the longest pipe length specimen. For the 6-cm long specimen, 98.5 % of the contaminants were removed. For the recycling of the PFC solution, a distillation test for the spent PFC solution was also performed. The results show that 97.5 % of themore » PFC was recycled without a loss of the decontamination efficiency. (authors)« less

  8. Chemical and Mineralogical Characterization of Arsenic, Lead, Chromium, and Cadmium in a Metal-contaminated Histosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, X.; Schulze, D

    2010-01-01

    The chemical and mineralogical forms of As, Pb, Cr, and Cd were studied in a metal-contaminated organic soil (Histosol) that received runoff and seepage water from a site that was once occupied by a lead smelter. Soil samples were collected from different depth intervals during both wet and dry seasons and analyzed using bulk powder X-ray diffraction (XRD), synchrotron-based micro X-ray diffraction ({mu}-XRD), and micro X-ray fluorescence ({mu}-SXRF) spectroscopy. There was a clear pattern of mineral distribution with depth that indicated the presence of an intense redox gradient. The oxidized reddish brown surface layer (0-10 cm) was dominated by goethitemore » ({alpha}-FeOOH) and poorly crystalline akaganeite ({beta}-FeOOH). Lead and arsenic were highly associated with these Fe oxides, possibly by forming inner-sphere surface complexes. Gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O) was abundant in the layer as well, particularly for samples collected during dry periods. Fe(II)-containing minerals, such as magnetite (Fe{sub 3}O{sub 4}) and siderite (FeCO{sub 3}), were identified in the intermediate layers (10-30 cm) where the reductive dissolution of Fe(III) oxides occurred. A number of high-temperature minerals, such as mullite (3Al{sub 2}O{sub 3} {center_dot} 2Si{sub 2}O), corundum ({alpha}-Al{sub 2}O{sub 3}), hematite ({alpha}-Fe{sub 2}O{sub 3}), and wustite (FeO) were identified in the subsurface and they probably formed as a result of a burning event. Several sulfide minerals were identified in the most reduced layers at depths > 30 cm. They included realgar (AsS), alacranite (As{sub 4}S{sub 4}), galena (PbS), and sphalerite (Zn, Fe{sup 2+})S, and a series of Fe sulfides, including greigite (Fe{sup 2+}Fe{sub 2}{sup 3+} S{sub 4}), pyrrhotite (Fe{sub 1-x}S), mackinawite (FeS), marcasite (FeS{sub 2}), and pyrite (FeS{sub 2}). Most of these minerals occurred as almost pure phases in sub-millimeter aggregates and appeared to be secondary phases that had precipitated from solution. Despite the elevated levels of Cd in the soil, no specific Cd phases were identified. The complex mineralogy has important implications for risk assessment and the design of in-situ remediation strategies for this and similar metal-contaminated sites.« less

  9. Vertical characterization of soil contamination using multi-way modeling--a case study.

    PubMed

    Singh, Kunwar P; Malik, Amrita; Basant, Ankita; Ojha, Priyanka

    2008-11-01

    This study describes application of chemometric multi-way modeling approach to analyze the dataset pertaining to soils of industrial area with a view to assess the soil/sub-soil contamination, accumulation pathways and mobility of contaminants in the soil profiles. The three-way (sampling depths, chemical variables, sampling sites) dataset on heavy metals in soil samples collected from three different sites in an industrial area, up to a depth of 60 m each was analyzed using three-way Tucker3 model validated for stability and goodness of fit. A two component Tucker3 model, explaining 66.6% of data variance, allowed interpretation of the data information in all the three modes. The interpretation of core elements revealing interactions among the components of different modes (depth, variables, sites) allowed inferring more realistic information about the contamination pattern of soils both along the horizontal and vertical coordinates, contamination pathways, and mobility of contaminants through soil profiles, as compared to the traditional data analysis techniques. It concluded that soils at site-1 and site-2 are relatively more contaminated with heavy metals of both the natural as well as anthropogenic origins, as compared to the soil of site-3. Moreover, the accumulation pathways of metals for upper shallow layers and deeper layers of soils in the area were differentiated. The information generated would be helpful in developing strategies for remediation of the contaminated soils for reducing the subsequent risk of ground-water contamination in the study region.

  10. Ceramicrete stabilization of U-and Pu-bearing materials

    DOEpatents

    Wagh, Arun S.; Maloney, M. David; Thompson, Gary H.

    2007-11-13

    A method of stabilizing nuclear material is disclosed. Oxides or halides of actinides and/or transuranics (TRUs) and/or hydrocarbons and/or acids contaminated with actinides and/or TRUs are treated by adjusting the pH of the nuclear material to not less than about 5 and adding sufficient MgO to convert fluorides present to MgF.sub.2; alumina is added in an amount sufficient to absorb substantially all hydrocarbon liquid present, after which a binder including MgO and KH.sub.2PO.sub.4 is added to the treated nuclear material to form a slurry. Additional MgO may be added. A crystalline radioactive material is also disclosed having a binder of the reaction product of calcined MgO and KH.sub.2PO.sub.4 and a radioactive material of the oxides and/or halides of actinides and/or transuranics (TRUs). Acids contaminated with actinides and/or TRUs, and/or actinides and/or TRUs with or without oils and/or greases may be encapsulated and stabilized by the binder.

  11. Adeno-associated virus-2 and its primary cellular receptor-Cryo-EM structure of a heparin complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, Jason; Taylor, Kenneth A.; Chapman, Michael S.

    2009-03-15

    Adeno-associated virus serotype 2 (AAV-2) is a leading candidate vector for gene therapy. Cell entry starts with attachment to a primary receptor, Heparan Sulfate Proteoglycan (HSPG) before binding to a co-receptor. Here, cryo-electron microscopy provides direct visualization of the virus-HSPG interactions. Single particle analysis was performed on AAV-2 complexed with a 17 kDa heparin fragment at 8.3 A resolution. Heparin density covers the shoulder of spikes surrounding viral 3-fold symmetry axes. Previously implicated, positively charged residues R{sub 448/585}, R{sub 451/588} and R{sub 350/487} from another subunit cluster at the center of the heparin footprint. The footprint is much more extensivemore » than apparent through mutagenesis, including R{sub 347/484}, K{sub 395/532} and K{sub 390/527} that are more conserved, but whose roles have been controversial. It also includes much of a region proposed as a co-receptor site, because prior studies had not revealed heparin interactions. Heparin density bridges over the viral 3-fold axes, indicating multi-valent attachment to symmetry-related binding sites.« less

  12. The Sunyaev-Zel'dovich Effect Spectrum of Abell 2163

    NASA Technical Reports Server (NTRS)

    LaRoque, S. J.; Carlstrom, J. E.; Reese, E. D.; Holder, G. P.; Holzapfel, W. L.; Joy, M.; Grego, L.; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present an interferometric measurement of the Sunyaev-Zel'dovich effect (SZE) at 1 cm for the galaxy cluster Abell 2163. We combine this data point with previous measurements at 1.1, 1.4, and 2.1 mm from the SuZIE experiment to construct the most complete SZE spectrum to date. The intensity in four wavelength bands is fit to determine the Compton y-parameter (y(sub 0)) and the peculiar velocity (v(sub p)) for this cluster. Our results are y(sub 0) = 3.56((sup +0.41+0.27)(sub -0.41-0.19)) X 10(exp -4) and v(sub p) = 410((sup +1030+460) (sub -850-440)) km s(exp -1) where we list statistical and systematic uncertainties, respectively, at 68% confidence. These results include corrections for contamination by Galactic dust emission. We find less contamination by dust emission than previously reported. The dust emission is distributed over much larger angular scales than the cluster signal and contributes little to the measured signal when the details of the SZE observing strategy are taken into account.

  13. Coal derived fuel gases for molten carbonate fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-11-01

    Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiersmore » operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.« less

  14. Contaminants of Emerging Concerns

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-ug/L) in surface, ground and drinking water. The most common...

  15. PHOTOTOXICITY OF POLYCYCLIC AROMATIC HYDROCARBONS IN COASTAL GREAT LAKES WATERS

    EPA Science Inventory

    Photoinduced toxicity is the exacerbated toxicity of environmental contaminants by UV radiation. Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) has been well established in the laboratory for numerous aquatic species including larval fish. The contaminants sub-p...

  16. Transient expression and cellular localization of recombinant proteins in cultured insect cells

    USDA-ARS?s Scientific Manuscript database

    Heterologous protein expression systems are used for production of recombinant proteins, interpretation of cellular trafficking/localization, and for the determination of biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for ...

  17. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangasluoma, J.; Junninen, H.; Sipilae, M.

    2013-05-24

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of themore » PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.« less

  18. Unbiased contaminant removal for 3D galaxy power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.

    2016-11-01

    We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (I) removing the contaminant signal, (II) estimating the uncontaminated cosmological power spectrum and (III) debiasing the resulting estimates. For (I), we show that removing the best-fitting contaminant (mode subtraction) and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (II), performing a quadratic maximum likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (II) as proposed by Feldman, Kaiser & Peacock (FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants, is less severe than that commonly ignored due to the survey window.

  19. Electrowinning process with electrode compartment to avoid contamination of electrolyte

    DOEpatents

    Poa, Davis S.; Pierce, R. Dean; Mulcahey, Thomas P.; Johnson, Gerald K.

    1993-01-01

    An electrolytic process and apparatus for reducing calcium oxide in a molten electrolyte of CaCl.sub.2 -CaF.sub.2 with a graphite anode in which particles or other contamination from the anode is restricted by the use of a porous barrier in the form of a basket surrounding the anode which may be removed from the electrolyte to burn the graphite particles, and wherein the calcium oxide feed is introduced to the anode compartment to increase the oxygen ion concentration at the anode.

  20. Emerging Contaminants in the Drinking Water Cycle

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-µg/L) in surface, ground and drinking water. The most common...

  1. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    PubMed

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  2. EPA Office of Water (OW): 2002 SPARROW Total NP (Catchments)

    EPA Pesticide Factsheets

    SPARROW (SPAtially Referenced Regressions On Watershed attributes) is a watershed modeling tool with output that allows the user to interpret water quality monitoring data at the regional and sub-regional scale. The model relates in-stream water-quality measurements to spatially referenced characteristics of watersheds, including pollutant sources and environmental factors that affect rates of pollutant delivery to streams from the land and aquatic, in-stream processing . The core of the model consists of a nonlinear regression equation describing the non-conservative transport of contaminants from point and non-point (or ??diffuse??) sources on land to rivers and through the stream and river network. SPARROW estimates contaminant concentrations, loads (or ??mass,?? which is the product of concentration and streamflow), and yields in streams (mass of nitrogen and of phosphorus entering a stream per acre of land). It empirically estimates the origin and fate of contaminants in streams and receiving bodies, and quantifies uncertainties in model predictions. The model predictions are illustrated through detailed maps that provide information about contaminant loadings and source contributions at multiple scales for specific stream reaches, basins, or other geographic areas.

  3. A Range Finding Protocol to Support Design for Transcriptomics Experimentation: Examples of In-Vitro and In-Vivo Murine UV Exposure

    PubMed Central

    van Oostrom, Conny T.; Jonker, Martijs J.; de Jong, Mark; Dekker, Rob J.; Rauwerda, Han; Ensink, Wim A.; de Vries, Annemieke; Breit, Timo M.

    2014-01-01

    In transcriptomics research, design for experimentation by carefully considering biological, technological, practical and statistical aspects is very important, because the experimental design space is essentially limitless. Usually, the ranges of variable biological parameters of the design space are based on common practices and in turn on phenotypic endpoints. However, specific sub-cellular processes might only be partially reflected by phenotypic endpoints or outside the associated parameter range. Here, we provide a generic protocol for range finding in design for transcriptomics experimentation based on small-scale gene-expression experiments to help in the search for the right location in the design space by analyzing the activity of already known genes of relevant molecular mechanisms. Two examples illustrate the applicability: in-vitro UV-C exposure of mouse embryonic fibroblasts and in-vivo UV-B exposure of mouse skin. Our pragmatic approach is based on: framing a specific biological question and associated gene-set, performing a wide-ranged experiment without replication, eliminating potentially non-relevant genes, and determining the experimental ‘sweet spot’ by gene-set enrichment plus dose-response correlation analysis. Examination of many cellular processes that are related to UV response, such as DNA repair and cell-cycle arrest, revealed that basically each cellular (sub-) process is active at its own specific spot(s) in the experimental design space. Hence, the use of range finding, based on an affordable protocol like this, enables researchers to conveniently identify the ‘sweet spot’ for their cellular process of interest in an experimental design space and might have far-reaching implications for experimental standardization. PMID:24823911

  4. CYP3A4-dependent cellular response does not relate to CYP3A4-catalysed metabolites of C-1748 and C-1305 acridine antitumor agents in HepG2 cells.

    PubMed

    Augustin, Ewa; Niemira, Magdalena; Hołownia, Adam; Mazerska, Zofia

    2014-11-01

    High CYP3A4 expression sensitizes tumor cells to certain antitumor agents while for others it can lower their therapeutic efficacy. We have elucidated the influence of CYP3A4 overexpression on the cellular response induced by antitumor acridine derivatives, C-1305 and C-1748, in two hepatocellular carcinoma (HepG2) cell lines, Hep3A4 stably transfected with CYP3A4 isoenzyme, and HepC34 expressing empty vector. The compounds were selected considering their different chemical structures and different metabolic pathways seen earlier in human and rat liver microsomes C-1748 was transformed to several metabolites at a higher rate in Hep3A4 than in HepC34 cells. In contrast, C-1305 metabolism in Hep3A4 cells was unchanged compared to HepC34 cells, with each cell line producing a single metabolite of comparable concentration. C-1748 resulted in a progressive appearance of sub-G1 population to its high level in both cell lines. In turn, the sub-G1 fraction was dominated in CYP3A4-overexpressing cells following C-1305 exposure. Both compounds induced necrosis and to a lesser extent apoptosis, which were more pronounced in Hep3A4 than in wild-type cells. In conclusion, CYP3A4-overexpressing cells produce higher levels of C-1748 metabolites, but they do not affect the cellular responses to the drug. Conversely, cellular response was modulated following C-1305 treatment in CYP3A4-overexpressing cells, although metabolism of this drug was unaltered. © 2014 International Federation for Cell Biology.

  5. Sperm quality biomarkers complement reproductive and endocrine parameters in investigating environmental contaminants in common carp (Cyprinus carpio) from the Lake Mead National Recreation Area

    USGS Publications Warehouse

    Jenkins, Jill A.; Rosen, Michael R.; Dale, Rassa O.; Echols, Kathy R.; Torres, Leticia; Wieser, Carla M.; Kersten, Constance A.; Goodbred, Steven L.

    2018-01-01

    Lake Mead National Recreational Area (LMNRA) serves as critical habitat for several federally listed species and supplies water for municipal, domestic, and agricultural use in the Southwestern U.S. Contaminant sources and concentrations vary among the sub-basins within LMNRA. To investigate whether exposure to environmental contaminants is associated with alterations in male common carp (Cyprinus carpio) gamete quality and endocrine- and reproductive parameters, data were collected among sub-basins over 7 years (1999–2006). Endpoints included sperm quality parameters of motility, viability, mitochondrial membrane potential, count, morphology, and DNA fragmentation; plasma components were vitellogenin (VTG), 17ß-estradiol, 11-keto-testosterone, triiodothyronine, and thyroxine. Fish condition factor, gonadosomatic index, and gonadal histology parameters were also measured. Diminished biomarker effects were noted in 2006, and sub-basin differences were indicated by the irregular occurrences of contaminants and by several associations between chemicals (e.g., polychlorinated biphenyls, hexachlorobenzene, galaxolide, and methyl triclosan) and biomarkers (e.g., plasma thyroxine, sperm motility and DNA fragmentation). By 2006, sex steroid hormone and VTG levels decreased with subsequent reduced endocrine disrupting effects. The sperm quality bioassays developed and applied with carp complemented endocrine and reproductive data, and can be adapted for use with other species.

  6. Sperm quality biomarkers complement reproductive and endocrine parameters in investigating environmental contaminants in common carp (Cyprinus carpio) from the Lake Mead National Recreation Area.

    PubMed

    Jenkins, Jill A; Rosen, Michael R; Draugelis-Dale, Rassa O; Echols, Kathy R; Torres, Leticia; Wieser, Carla M; Kersten, Constance A; Goodbred, Steven L

    2018-05-01

    Lake Mead National Recreational Area (LMNRA) serves as critical habitat for several federally listed species and supplies water for municipal, domestic, and agricultural use in the Southwestern U.S. Contaminant sources and concentrations vary among the sub-basins within LMNRA. To investigate whether exposure to environmental contaminants is associated with alterations in male common carp (Cyprinus carpio) gamete quality and endocrine- and reproductive parameters, data were collected among sub-basins over 7 years (1999-2006). Endpoints included sperm quality parameters of motility, viability, mitochondrial membrane potential, count, morphology, and DNA fragmentation; plasma components were vitellogenin (VTG), 17ß-estradiol, 11-keto-testosterone, triiodothyronine, and thyroxine. Fish condition factor, gonadosomatic index, and gonadal histology parameters were also measured. Diminished biomarker effects were noted in 2006, and sub-basin differences were indicated by the irregular occurrences of contaminants and by several associations between chemicals (e.g., polychlorinated biphenyls, hexachlorobenzene, galaxolide, and methyl triclosan) and biomarkers (e.g., plasma thyroxine, sperm motility and DNA fragmentation). By 2006, sex steroid hormone and VTG levels decreased with subsequent reduced endocrine disrupting effects. The sperm quality bioassays developed and applied with carp complemented endocrine and reproductive data, and can be adapted for use with other species. Published by Elsevier Inc.

  7. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taborda, A; Benabdallah, N; Desbree, A

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres ofmore » unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S-values of Auger-electron emitting 99m-Tc radionuclide will be presented and discussed.« less

  8. Growth of antiphase-domain-free GaP on Si substrates by metalorganic chemical vapor deposition using an in situ AsH{sub 3} surface preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Emily L., E-mail: emily.warren@nrel.gov; Kibbler, Alan E.; France, Ryan M.

    2015-08-24

    Antiphase-domain (APD) free GaP films were grown on Si(100) substrates prepared by annealing under dilute AsH{sub 3} in situ in an MOCVD reactor. LEED and AES surface analysis of Si(100) surfaces prepared by this treatment show that AsH{sub 3} etching quickly removes O and C contaminants at a relatively low temperature (690–740 °C), and creates a single-domain “A-type” As/Si surface reconstruction. The resulting GaP epilayers grown at the same temperature are APD-free, and could thereby serve as templates for direct growth of III-V semiconductors on Si. This single chamber process has a low thermal budget, and can enable heteroepitaxial integration ofmore » III-Vs and Si at an industrial scale.« less

  9. Compound-specific carbon and hydrogen isotope analysis of sub-parts per billion level waterborne petroleum hydrocarbons

    USGS Publications Warehouse

    Wang, Y.; Huang, Y.; Huckins, J.N.; Petty, J.D.

    2004-01-01

    Compound-specific carbon and hydrogen isotope analysis (CSCIA and CSHIA) has been increasingly used to study the source, transport, and bioremediation of organic contaminants such as petroleum hydrocarbons. In natural aquatic systems, dissolved contaminants represent the bioavailable fraction that generally is of the greatest toxicological significance. However, determining the isotopic ratios of waterborne hydrophobic contaminants in natural waters is very challenging because of their extremely low concentrations (often at sub-parts ber billion, or even lower). To acquire sufficient quantities of polycyclic aromatic hydrocarbons with 10 ng/L concentration for CSHIA, more than 1000 L of water must be extracted. Conventional liquid/liquid or solid-phase extraction is not suitable for such large volume extractions. We have developed a new approach that is capable of efficiently sampling sub-parts per billion level waterborne petroleum hydrocarbons for CSIA. We use semipermeable membrane devices (SPMDs) to accumulate hydrophobic contaminants from polluted waters and then recover the compounds in the laboratory for CSIA. In this study, we demonstrate, under a variety of experimental conditions (different concentrations, temperatures, and turbulence levels), that SPMD-associated processes do not induce C and H isotopic fractionations. The applicability of SPMD-CSIA technology to natural systems is further demonstrated by determining the ??13C and ??D values of petroleum hydrocarbons present in the Pawtuxet River, RI. Our results show that the combined SPMD-CSIA is an effective tool to investigate the source and fate of hydrophobic contaminants in the aquatic environments.

  10. Multimorbidity, age-related comorbidities and mortality: association of activation, senescence and inflammation markers in HIV adults.

    PubMed

    Duffau, Pierre; Ozanne, Alexandra; Bonnet, Fabrice; Lazaro, Estibaliz; Cazanave, Charles; Blanco, Patrick; Rivière, Etienne; Desclaux, Arnaud; Hyernard, Caroline; Gensous, Noemie; Pellegrin, I; Wittkop, L

    2018-05-11

    The widespread introduction of combination antiretroviral therapy (cART) has increased survival of HIV+ patients. However, the prevalence of age-related comorbidities remains higher than that of the general population, suggesting that individuals with HIV suffer from accelerated aging. Immune activation, -senescence and inflammation could play an important role in this process. The CIADIS (Chronic Immune Activation anD Senescence) sub-study analyzed biomarkers of activation, differentiation, and senescence of T-cells in a cellular-CIADIS weighted score, while biomarkers of inflammation were analyzed in a soluble-CIADIS weighted score using principal component analysis. Adjusted logistic regression and Cox proportional hazard models were used to determine the association between CIADIS weighted scores and 1) the presence of multimorbidity, 2) time to occurrence of the first new age-related comorbidity, and 3) time to death, over a 3-year follow-up period. Of 828 patients with an undetectable viral load, a higher cellular-CIADIS weighted score and higher TNFRI levels were independently associated with the presence of multimorbidity (OR=1.3; 95% CI 1.0-1.6; P=0.02), but the soluble-CIADIS weighted score was not (OR=1.1; 95% CI 0.9-1.3; P=0.33). A higher cellular-CIADIS weighted score (HR=2.2; P < 0.01), higher levels of CD8 activation and a lower CD4/CD8 ratio were associated with a higher risk of age-related comorbidities. Only TNFRI was associated with mortality in a 3-year period. The cellular-CIADIS weighted score was independently associated with both multimorbidity at inclusion and the risk of new age-related comorbidity during a 3- year follow-up. TNFRI was associated a higher risk for mortality.

  11. Behavioral toxicology: Stimulating challenges for a growing discipline

    USGS Publications Warehouse

    Little, Edward E.

    1990-01-01

    Since the early 1970s, contaminants have been shown to affect virtually every aspect of behavior in terrestrial and aquatic organisms. Behavior inte- grates many cellular processes and is essential to the viability of the organism, the population and the community. Therefore, observations of behavior provide a unique toxicological perspective - one that links the biochemical and ecological conse- quences of environmental contamination.

  12. Sub-cellular localisation studies may spuriously detect the Yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function.

    PubMed

    Finch, Megan L; Passman, Adam M; Strauss, Robyn P; Yeoh, George C; Callus, Bernard A

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.

  13. Sub-Cellular Localisation Studies May Spuriously Detect the Yes-Associated Protein, YAP, in Nucleoli Leading to Potentially Invalid Conclusions of Its Function

    PubMed Central

    Finch, Megan L.; Passman, Adam M.; Strauss, Robyn P.; Yeoh, George C.; Callus, Bernard A.

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP’s sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data. PMID:25658431

  14. Emerging Contaminants in the Drinking Water Cycle.

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  15. U.S. Environmental Protection Agency and Emerging Contaminants

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-ug/L) in surface, ground and drinking water. The most common...

  16. Emerging Contaminants in the Drinking Water Cycle - MCEARD

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  17. Mass balance of polychlorinated biphenyls and other organochlorine compounds in a lactating cow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, M.S.

    1993-03-01

    A contaminant mass balance was conducted of a lactating cow in its natural state. PCBs, HDHs, DDE, DDT, HCB, and several other chlorinated substances were investigated. It was found that virtually all of the cow's exposure was through feed. The contaminant absorption in the cow and hence the carry-over rate of persistent compounds was found to be a function of K[sub ow], with approximately constant values up to a log K[sub ow] of 6.5 and thereafter rapidly decreasing absorption with increasing lipophilicity of the contaminant. The key to PCB persistence in the cow was the 4,4[prime] substitution pattern. The 2,3,5more » substitution was a less effective hindrance for PCB metabolism. 33 refs., 2 figs., 7 tabs.« less

  18. THE CELLULAR AND GENOMIC RESPONSE OF AN IMMORTALIZED MICROGLIA CELL LINE (BV2) TO CONCENTRATED AMBIENT PARTICULATE MATTER

    EPA Science Inventory

    This manuscript describes cellular and genomic evidence that microglia exposed to concentrated air pollutants (CAPs). These were CAPs achieved from a previous study in which sub-chronically exposed transgenic animals develop neurodegeneration (Veronesi et al., Inhalation Tox,...

  19. Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi-Kyoung; Lee, Ha Young; Kwak, Jong-Young

    2006-06-23

    Rat primary chondrocytes express the sphingosine-1-phosphate (S1P) receptor, S1P{sub 2}, S1P{sub 3}, S1P{sub 4}, but not S1P{sub 1}. When chondrocytes were stimulated with S1P or phytosphingosine-1-phosphate (PhS1P, an S1P{sub 1}- and S1P{sub 4}-selective agonist), phospholipase C-mediated cytosolic calcium increase was dramatically induced. S1P and PhS1P also stimulated two kinds of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) and p38 kinase in chondrocytes. In terms of the two phospholipids-mediated functional modulation of chondrocytes, S1P and PhS1P stimulated cellular proliferation. The two phospholipids-induced chondrocyte proliferations were almost completely blocked by PD98059 but not by SB203580, suggesting that ERK but not p38 kinasemore » is essentially required for the proliferation. Pertussis toxin almost completely inhibited the two phospholipids-induced cellular proliferation and ERK activation, indicating the crucial role of G{sub i} protein. This study demonstrates the physiological role of two important phospholipids (S1P and PhS1P) on the modulation of rat primary chondrocyte proliferation, and the crucial role played by ERK in the process.« less

  20. Hyperoside attenuates hydrogen peroxide-induced L02 cell damage via MAPK-dependent Keap{sub 1}-Nrf{sub 2}-ARE signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Hai-Yan; Liu, Yao; Chen, Jian-Hong

    Highlights: {yields} Hyperoside attenuated H{sub 2}O{sub 2}-induced L02 cell damage. {yields} Hyperoside up-regulated HO-1 expression at both mRNA and protein levels. {yields} Hyperoside activated both Nrf{sub 2} nuclear translocation and gene expression. {yields} Hyperoside may inhibit Keap{sub 1} mRNA translation or protein degradation. {yields} Phosphorylation of ERK and p38 is involved in hyperoside-mediated Nrf{sub 2} activation. -- Abstract: The flavonoid hyperoside has been reported to elicit cytoprotection against oxidative stress partly by increasing the activity of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase. However, the cellular and molecular mechanisms underlying this effect remain unclear. Here, hepatic L02more » cells exposed to H{sub 2}O{sub 2} (100 {mu}M) were used to demonstrate that hyperoside protected cells by significantly inhibiting overproduction of intracellular ROS, depletion of the mitochondrial membrane potential and leakage of lactate dehydrogenase. Hyperoside further enhanced the cellular antioxidant defense system through increasing the activity of heme oxygenase-1 (HO-1), and by up-regulating HO-1 expression. Meanwhile, real time PCR, western blot and immunofluorescence studies revealed that hyperoside stimulated nuclear translocation of the Nrf{sub 2} transcription factor in a dose-dependent manner, and this effect was significantly suppressed by pharmacological inhibition of the mitogen-activated protein kinases (MAPK) p38 and ERK. Collectively, our data provide the first description of the mechanism underlying hyperoside's ability to attenuate H{sub 2}O{sub 2}-induced cell damage, namely this compound interacts with the MAPK-dependent Keap{sub 1}-Nrf{sub 2}-ARE signaling pathway to up-regulate HO-1 expression and enhance intracellular antioxidant activity.« less

  1. Comparative proteomic analyses of the parietal lobe from rhesus monkeys fed a high-fat/sugar diet with and without resveratrol supplementation, relative to a healthy diet: Insights into the roles of unhealthy diets and resveratrol on function.

    PubMed

    Swomley, Aaron M; Triplett, Judy C; Keeney, Jeriel T; Warrier, Govind; Pearson, Kevin J; Mattison, Julie A; de Cabo, Rafael; Cai, Jian; Klein, Jon B; Butterfield, D Allan

    2017-01-01

    A diet consisting of a high intake of saturated fat and refined sugars is characteristic of a Western-diet and has been shown to have a substantial negative effect on human health. Expression proteomics were used to investigate changes to the parietal lobe proteome of rhesus monkeys consuming either a high fat and sugar (HFS) diet, a HFS diet supplemented with resveratrol (HFS+RSV), or a healthy control diet for 2 years. Here we discuss the modifications in the levels of 12 specific proteins involved in various cellular systems including metabolism, neurotransmission, structural integrity, and general cellular signaling following a nutritional intervention. Our results contribute to a better understanding of the mechanisms by which resveratrol functions through the up- or down-regulation of proteins in different cellular sub-systems to affect the overall health of the brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Results of the 1998 Field Demonstration and Preliminary Implementation Guidance for Phytoremediation of Lead-Contaminated Soil at the Twin Cities Army Ammunition Plant, Arden Hills, Minnesota

    DTIC Science & Technology

    1999-03-01

    Results of the 1998 Field Demonstration and Preliminary Implementation Guidance for Phytoremediation of Lead-Contaminated Soil at the Twin... Phytoremediation of Lead-Contaminated Soil at the Twin Cities Army Ammunition Plant, Arden Hills, Minnesota. 12. PERSONAL AUTHOR(S) A. P. Behel, Jr...CODES FIELD GROUP SUB-GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Phytoremediation of Lead-Contaminated

  3. Elution of Labile Fluorescent Dye from Nanoparticles during Biological Use

    PubMed Central

    Tenuta, Tiziana; Monopoli, Marco P.; Kim, JongAh; Salvati, Anna; Dawson, Kenneth A.; Sandin, Peter; Lynch, Iseult

    2011-01-01

    Cells act as extremely efficient filters for elution of unbound fluorescent tags or impurities associated with nanoparticles, including those that cannot be removed by extensive cleaning. This has consequences for quantification of nanoparticle uptake and sub-cellular localization in vitro and in vivo as a result of the presence of significant amount of labile dye even following extensive cleaning by dialysis. Polyacrylamide gel electrophoresis (PAGE) can be used to monitor the elution of unbound fluorescent probes from nanoparticles, either commercially available or synthesized in-house, and to ensure their complete purification for biological studies, including cellular uptake and sub-cellular localisation. Very different fluorescence distribution within cells is observed after short dialysis times versus following extensive dialysis against a solvent in which the free dye is more soluble, due to the contribution from free dye. In the absence of an understanding of the presence of residual free dye in (most) labeled nanoparticle solutions, the total fluorescence intensity in cells following exposure to nanoparticle solutions could be mis-ascribed to the presence of nanoparticles through the cell, rather than correctly assigned to either a combination of free-dye and nanoparticle-bound dye, or even entirely to free dye depending on the exposure conditions (i.e. aggregation of the particles etc). Where all of the dye is nanoparticle-bound, the particles are highly localized in sub-cellular organelles, likely lysosomes, whereas in a system containing significant amounts of free dye, the fluorescence is distributed through the cell due to the free diffusion of the molecule dye across all cellular barriers and into the cytoplasm. PMID:21998668

  4. HOPM1 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    DOEpatents

    He, Sheng Yang [Okemos, MI; Nomura, Kinya [East Lansing, MI

    2011-11-15

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein HopM1.sub.1-300 mediated protection is enhanced, such as increased protection to Pseudomonas syringae pv. tomato DC3000 HopM1 and/or there is an increase in activity of an ATMIN associated plant protection protein, such as ATMIN7. Reagents of the present invention further provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  5. Temporary vs. Permanent Sub-slab Ports: A Comparative Performance Study

    EPA Science Inventory

    Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated...

  6. Identification and substrate prediction of new Fragaria x ananassa aquaporins and expression in different tissues and during strawberry fruit development.

    PubMed

    Merlaen, Britt; De Keyser, Ellen; Van Labeke, Marie-Christine

    2018-01-01

    The newly identified aquaporin coding sequences presented here pave the way for further insights into the plant-water relations in the commercial strawberry ( Fragaria x ananassa ). Aquaporins are water channel proteins that allow water to cross (intra)cellular membranes. In Fragaria x ananassa , few of them have been identified hitherto, hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions (SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins belonging to a different but also to the same (sub)class.

  7. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DI Kaplan; RJ Serne

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste ismore » protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.« less

  8. Relationship of parasites and pathologies to contaminant body burden in sentinel bivalves: NOAA Status and Trends 'Mussel Watch' Program.

    PubMed

    Kim, Yungkul; Powell, Eric N; Wade, Terry L; Presley, Bobby J

    2008-03-01

    The 1995-1998 database from NOAA's National Status and Trends 'Mussel Watch' Program was used to compare the distributional patterns of parasites and pathologies with contaminant body burdens. Principal components analysis (PCA) resolved five groups of contaminants in both mussels and oysters: one dominated by polycyclic aromatic hydrocarbons (PAHs), one dominated by pesticides, and three dominated by metals. Metals produced a much more complex picture of spatial trends in body burden than did either the pesticides or PAHs. Contrasted to the relative simplicity of the contaminant groupings, PCA exposed a suite of parasite/pathology groups with few similarities between the sentinel bivalve taxa. Thus, the relationship between parasites/pathologies and contaminants differs significantly between taxa despite the similarity in contaminant pattern. Moreover, the combined effects of many contaminants and parasites may be important, leading to complex biological-contaminant interactions with synergies both of biological and chemical origin. Overall, correlations between parasites/pathologies and contaminants were more frequent with metals, frequent with pesticides, and less frequent with PAHs in mussels. In oysters, correlations with pesticides and metals were about equally frequent, but correlations with PAHs were still rare. In mytilids, correlations with metals predominated. Negative and positive correlations with metals occurred with about the same frequency in both taxa. The majority of correlations with pesticides were negative in oysters; not so for mytilids. Of the many significant correlations involving parasites, few involved single-celled eukaryotes or prokaryotes. The vast majority involved multi-cellular eukaryotes and nearly all of them either cestodes, trematode sporocysts, or trematode metacercariae. The few correlations for single-celled parasites all involved proliferating protozoa or protozoa reaching high body burdens through transmission. The tendency for the larger or more numerous parasites to be involved suggests that unequal sequestration of contaminates between host and parasite tissue is a potential mediator. An alternative is that contaminants differentially affect parasites and their hosts by varying host susceptibility or parasite survival.

  9. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias)

    PubMed Central

    Cutler, Christopher P.; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III–In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4 was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells. PMID:22363294

  10. Characterization of Aquaporin 4 Protein Expression and Localization in Tissues of the Dogfish (Squalus acanthias).

    PubMed

    Cutler, Christopher P; Harmon, Sheena; Walsh, Jonathon; Burch, Kia

    2012-01-01

    The role of aquaporin water channels such as aquaporin 4 (Aqp4) in elasmobranchs such as the dogfish Squalus acanthias is completely unknown. This investigation set out to determine the expression and cellular and sub-cellular localization of Aqp4 protein in dogfish tissues. Two polyclonal antibodies were generated (AQP4/1 and AQP4/2) and these showed somewhat different characteristics in Western blotting and immunohistochemistry. Western blots using the AQP4/1 antibody showed two bands (35.5 and 49.5 kDa) in most tissues in a similar fashion to mammals. Liver had an additional band of 57 kDa and rectal gland two further faint bands of 37.5 and 38.5 kDa. However, unlike in mammals, Aqp4 protein was ubiquitously expressed in all tissues including gill and liver. The AQP4/2 antibody appeared much less specific in Western blots. Both antibodies were used in immunohistochemistry and showed similar cellular localizations, although the AQP4/2 antibody had a more restricted sub-cellular distribution compared to AQP4/1 and therefore appeared to be more specific for Aqp4. In kidney a sub-set of tubules were stained which may represent intermediate tubule segments (In-III-In-VI). AQP4/1 and AQP4/2 antibodies localized to the same tubules segments in serial sections although the intensity and sub-cellular distribution were different. AQP4/2 showed a basal or basolateral membrane distribution whereas AQP4/1 was often distributed throughout the whole cell including the nuclear region. In rectal gland and cardiac stomach Aqp4 was localized to secretory tubules but again AQP/1 and AQP/2 exhibited different sub-cellular distributions. In gill, both antibodies stained large cells in the primary filament and secondary lamellae. Again AQP4/1 antibody stained most or all the cell including the nucleus, whereas AQP4/2 had a plasma membrane or plasma membrane and cytoplasmic distribution. Two types of large mitochondrial rich transport cells are known to exist in elasmobranchs, that express either Na, K-ATPase, or V-type ATPase ion transporters. Using Na, K-ATPase, and V-type ATPase antibodies, Aqp4 was colocalized with these proteins using the AQP4/1 antibody. Results show Aqp4 is expressed in both (and all) branchial Na, K-ATPase, and V-type ATPase expressing cells.

  11. On Pulsating and Cellular Forms of Hydrodynamic Instability in Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1998-01-01

    An extended Landau-Levich model of liquid-propellant combustion, one that allows for a local dependence of the burning rate on the (gas) pressure at the liquid-gas interface, exhibits not only the classical hydrodynamic cellular instability attributed to Landau but also a pulsating hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the gas-to-liquid density ratio p, analytical formulas for both neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of p in each of three distinguished wave-number regimes. In particular, composite analytical expressions are derived for the neutral stability boundaries A(sub p)(k), where A, is the pressure sensitivity of the burning rate and k is the wave number of the disturbance. For the cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wave numbers for negative values of A(sub p), which is characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension effects but is more sensitive to the effects of liquid viscosity because, for typical nonzero values of the latter, the pulsating boundary decreases to larger negative values of A(sub p) as k increases through O(l) values. Thus, liquid-propellant combustion is predicted to be stable (that is, steady and planar) only for a range of negative pressure sensitivities that lie below the cellular boundary that exists for sufficiently small negative values of A(sub p) and above the pulsating boundary that exists for larger negative values of this parameter.

  12. Simplified Enrichment of Plasma Membrane Proteins from Arabidopsis thaliana Seedlings Using Differential Centrifugation and Brij-58 Treatment.

    PubMed

    Collins, Carina A; Leslie, Michelle E; Peck, Scott C; Heese, Antje

    2017-01-01

    The plasma membrane (PM) forms a barrier between a plant cell and its environment. Proteins at this subcellular location play diverse and complex roles, including perception of extracellular signals to coordinate cellular changes. Analyses of PM proteins, however, are often limited by the relatively low abundance of these proteins in the total cellular protein pool. Techniques traditionally used for enrichment of PM proteins are time consuming, tedious, and require extensive optimization. Here, we provide a simple and reproducible enrichment procedure for PM proteins from Arabidopsis thaliana seedlings starting from total microsomal membranes isolated by differential centrifugation. To enrich for PM proteins, total microsomes are treated with the nonionic detergent Brij-58 to decrease the abundance of contaminating organellar proteins. This protocol combined with the genetic resources available in Arabidopsis provides a powerful tool that will enhance our understanding of proteins at the PM.

  13. Nickel impact on human health: An intrinsic disorder perspective.

    PubMed

    Zambelli, Barbara; Uversky, Vladimir N; Ciurli, Stefano

    2016-12-01

    The interplay of the presence of nickel and protein disorder in processes affecting human health is the focus of the present review. Many systems involving nickel as either a cofactor or as a toxic contaminant are characterized by large disorder. The role of nickel in the biochemistry of bacterial enzymes is discussed here, covering both the beneficial effects of nickel in the human microbiota as well as the role of nickel-depending bacteria in human pathogenesis. In addition, the hazardous health effects caused by nickel exposure to humans, namely nickel-induced carcinogenesis and allergy, are triggered by non-specific interactions of nickel with macromolecules and formation of reactive compounds that mediate cellular damage. Cellular response to nickel is also related to signal transduction cascades. This review thus highlights the most promising systems for future studies aimed at decreasing the adverse effects of nickel on human health. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. EVALUATION OF CHEMICALLY BONDED PHOSPHATE CERAMICS FOR MERCURY STABILIZATION OF A MIXED SYNTHETIC WASTE

    EPA Science Inventory

    This experimental study was conducted to evaluate the stabilization and encapsulation technique developed by Argonne National Laboratory, called the Chemically Bonded Phosphate Ceramics technology for Hg- and HgCl2-contaminated synthetic waste materials. Leachability ...

  15. Coating method for graphite

    DOEpatents

    Banker, John G.; Holcombe, Jr., Cressie E.

    1977-01-01

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided comprising coating the graphite surface with a suspension of Y.sub.2 O.sub.3 particles in water containing about 1.5 to 4% by weight sodium carboxymethylcellulose.

  16. Coating method for graphite

    DOEpatents

    Banker, J.G.; Holcombe, C.E. Jr.

    1975-11-06

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.

  17. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    NASA Astrophysics Data System (ADS)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  18. Resonant photoemission studies of the heavy-fermion superconductors CeCu/sub 2/Si/sub 2/, UBe/sub 13/, and UPt/sub 3/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, R.D.; denBoer, M.L.; Raaen, S.

    1984-08-01

    Valence-band photoemission studies, using synchrotron light and employing Fano resonances to enhance f-derived features, were made of the three known heavy-fermion superconductors: CeCu/sub 2/Si/sub 2/, UBe/sub 13/, and UPt/sub 3/. The results for CeCu/sub 2/Si/sub 2/ and UBe/sub 13/ contrast markedly with those reported earlier, reflecting closer control of surface contamination in the present study. We infer from the present study and other considerations that in all three systems there is sig- nificant hybridization between the f electrons and the nearest-neighbor ligands, which may be essential to the phenomenon of heavy-fermion superconductivity.

  19. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  20. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    PubMed

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (<63 μm) from clean and contaminated field sites to create 4 treatments of increasing metal concentrations. Sydney rock oysters were then exposed to sediment treatments at different TSS concentrations for 4 d, and cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausing, R.E.

    Equations based on kinetic theory relate the contamination of refractory metals in vacuum to the appropriate variables. Several examples are given for which the allowable system pressures are calculated. The examples illustrate the effect of varying several parameters. The importance of the sticking factor for active gases on hot refractory metals and its effect on the system design are discussed. The data for estimating the sticking factor for O/sub 2/ on Nb are given, along with some estimated values. Experimental data on the composition and rates of outgassing of ultrahigh-vacuum systems and their importance in system design are discussed. Severalmore » methods of reducing contamination rates and the relative ease and effectiveness of these methods are presented. It was concluded that tests of 1000 hr or longer will probably require system pressures of between 10/sup -9/ and 10/sup -6/ torr, the particular pressure depending upon the residual gas composition, test duration, allowable contamination level, and the other variables discussed. Since the most important source of contamination in a properly designed ultrahigh-vacuum system is the outgassing process, bakeable systems should be designed to operate with walls as cool as practical, and to have a minimum of surface area and outgassing materials inside. Considerable added protection may be obtained by incorporating sacrificial getter surfaces in the system, or, alternatively, higher pressures may be tolerated if proper getter design is used. (auth)« less

  2. Imaging Cell Shape Change in Living Drosophila Embryos

    PubMed Central

    Figard, Lauren; Sokac, Anna Marie

    2011-01-01

    The developing Drosophila melanogaster embryo undergoes a number of cell shape changes that are highly amenable to live confocal imaging. Cell shape changes in the fly are analogous to those in higher organisms, and they drive tissue morphogenesis. So, in many cases, their study has direct implications for understanding human disease (Table 1)1-5. On the sub-cellular scale, these cell shape changes are the product of activities ranging from gene expression to signal transduction, cell polarity, cytoskeletal remodeling and membrane trafficking. Thus, the Drosophila embryo provides not only the context to evaluate cell shape changes as they relate to tissue morphogenesis, but also offers a completely physiological environment to study the sub-cellular activities that shape cells. The protocol described here is designed to image a specific cell shape change called cellularization. Cellularization is a process of dramatic plasma membrane growth, and it ultimately converts the syncytial embryo into the cellular blastoderm. That is, at interphase of mitotic cycle 14, the plasma membrane simultaneously invaginates around each of ~6000 cortically anchored nuclei to generate a sheet of primary epithelial cells. Counter to previous suggestions, cellularization is not driven by Myosin-2 contractility6, but is instead fueled largely by exocytosis of membrane from internal stores7. Thus, cellularization is an excellent system for studying membrane trafficking during cell shape changes that require plasma membrane invagination or expansion, such as cytokinesis or transverse-tubule (T-tubule) morphogenesis in muscle. Note that this protocol is easily applied to the imaging of other cell shape changes in the fly embryo, and only requires slight adaptations such as changing the stage of embryo collection, or using "embryo glue" to mount the embryo in a specific orientation (Table 1)8-19. In all cases, the workflow is basically the same (Figure 1). Standard methods for cloning and Drosophila transgenesis are used to prepare stable fly stocks that express a protein of interest, fused to Green Fluorescent Protein (GFP) or its variants, and these flies provide a renewable source of embryos. Alternatively, fluorescent proteins/probes are directly introduced into fly embryos via straightforward micro-injection techniques9-10. Then, depending on the developmental event and cell shape change to be imaged, embryos are collected and staged by morphology on a dissecting microscope, and finally positioned and mounted for time-lapse imaging on a confocal microscope. PMID:21490577

  3. Statistical significance of hair analysis of clenbuterol to discriminate therapeutic use from contamination.

    PubMed

    Krumbholz, Aniko; Anielski, Patricia; Gfrerer, Lena; Graw, Matthias; Geyer, Hans; Schänzer, Wilhelm; Dvorak, Jiri; Thieme, Detlef

    2014-01-01

    Clenbuterol is a well-established β2-agonist, which is prohibited in sports and strictly regulated for use in the livestock industry. During the last few years clenbuterol-positive results in doping controls and in samples from residents or travellers from a high-risk country were suspected to be related the illegal use of clenbuterol for fattening. A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to detect low clenbuterol residues in hair with a detection limit of 0.02 pg/mg. A sub-therapeutic application study and a field study with volunteers, who have a high risk of contamination, were performed. For the application study, a total dosage of 30 µg clenbuterol was applied to 20 healthy volunteers on 5 subsequent days. One month after the beginning of the application, clenbuterol was detected in the proximal hair segment (0-1 cm) in concentrations between 0.43 and 4.76 pg/mg. For the second part, samples of 66 Mexican soccer players were analyzed. In 89% of these volunteers, clenbuterol was detectable in their hair at concentrations between 0.02 and 1.90 pg/mg. A comparison of both parts showed no statistical difference between sub-therapeutic application and contamination. In contrast, discrimination to a typical abuse of clenbuterol is apparently possible. Due to these findings results of real doping control samples can be evaluated. Copyright © 2014 John Wiley & Sons, Ltd.

  4. A Random Forest approach to predict the spatial distribution of sediment pollution in an estuarine system

    PubMed Central

    Kreakie, Betty J.; Cantwell, Mark G.; Nacci, Diane

    2017-01-01

    Modeling the magnitude and distribution of sediment-bound pollutants in estuaries is often limited by incomplete knowledge of the site and inadequate sample density. To address these modeling limitations, a decision-support tool framework was conceived that predicts sediment contamination from the sub-estuary to broader estuary extent. For this study, a Random Forest (RF) model was implemented to predict the distribution of a model contaminant, triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) (TCS), in Narragansett Bay, Rhode Island, USA. TCS is an unregulated contaminant used in many personal care products. The RF explanatory variables were associated with TCS transport and fate (proxies) and direct and indirect environmental entry. The continuous RF TCS concentration predictions were discretized into three levels of contamination (low, medium, and high) for three different quantile thresholds. The RF model explained 63% of the variance with a minimum number of variables. Total organic carbon (TOC) (transport and fate proxy) was a strong predictor of TCS contamination causing a mean squared error increase of 59% when compared to permutations of randomized values of TOC. Additionally, combined sewer overflow discharge (environmental entry) and sand (transport and fate proxy) were strong predictors. The discretization models identified a TCS area of greatest concern in the northern reach of Narragansett Bay (Providence River sub-estuary), which was validated with independent test samples. This decision-support tool performed well at the sub-estuary extent and provided the means to identify areas of concern and prioritize bay-wide sampling. PMID:28738089

  5. Method and system to reclaim functional sites on a sorbent contaminated by heat stable salts

    DOEpatents

    Krutka, Holly; Sjostrom, Sharon; Morris, William J.

    2016-03-08

    The objective of this invention is to develop a method to reclaim functional sites on a CO.sub.2 sorbent that have reacted with an acid gas (other than CO.sub.2) to form heat stable salts (HSS). HSS are a significant concern for dry sorbent based CO.sub.2 capture because over time the buildup of HSS will reduce the overall functionality of the CO.sub.2 sorbent. A chemical treatment can remove the non-CO.sub.2 acid gas and reclaim functional sites that can then be used for further CO.sub.2 adsorption.

  6. Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Li, Lingzi; Yeo, Yee-Chia, E-mail: yeo@ieee.org

    This work demonstrates and describes for the first time an unusual strain-relaxation mechanism by the formation and self-assembly of well-ordered tin wires during the thermal annealing of epitaxial Ge{sub 0.83}Sn{sub 0.17}-on-Ge(001) substrate. Fully strained germanium-tin alloys (Ge{sub 0.83}Sn{sub 0.17}) were epitaxially grown on Ge(001) substrate by molecular beam epitaxy. The morphological and compositional evolution of Ge{sub 0.83}Sn{sub 0.17} during thermal annealing is studied by atomic force microscopy, X-ray diffraction, transmission electron microscopy. Under certain annealing conditions, the Ge{sub 0.83}Sn{sub 0.17} layer decomposes into two stable phases, and well-defined Sn wires that are preferentially oriented along two orthogonal 〈100〉 azimuths aremore » formed. The formation of the Sn wires is related to the annealing temperature and the Ge{sub 0.83}Sn{sub 0.17} thickness, and can be explained by the nucleation of a grain with Sn islands on the outer front, followed by grain boundary migration. The Sn wire formation process is found to be thermally activated, and an activation enthalpy (E{sub c}) of 0.41 eV is extracted. This thermally activated phase transformation, i.e., 2D epitaxial layer to 3D wires, occurs via a mechanism akin to “cellular precipitation.” This synthesis route of Sn wires opens new possibilities for creation of nanoscale patterns at high-throughput without the need for lithography.« less

  7. Health hazard evaluation report no. ta-79-026-978, u. s. border crossing stations, laredo, texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markel, H.L. Jr; Ruhe, R.

    1981-10-01

    At the request of the U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), the National Institute for Occupational Safety and Health (NIOSH) conducted industrial hygiene surveys at the U.S. Border Crossing Stations (International Bridge and Juarez-Lincoln Bridge), Laredo, Texas, during the period September 29 to October 2, 1979. Environmental measurements were made to determine inspectors' exposures to carbon monoxide (CO), lead (Pb), ozone (O/sub 3/), benzene, sulfuric acid (H/sub 2/SO/sub 4/), particulate matter, sulfur dioxide (SO/sub 2/), and nitrogen dioxide (NO/sub 2/). All measurements for applicable airborne contaminants, including 7 for noise exposure, showed results tomore » be below 'permissible exposure limits' as set forth by NIOSH, the Occupational Safety and Health Administration, and the American Conference of Governmental Industrial Hygienists. Based on results obtained from this evaluation, NIOSH was determined that no health hazard to inspectors existed at the International and Juarez-Lincoln Bridges. Although carbon monoxide exposures were found to be below recommended levels, increases in inspector carboxyhemoglobin did occur during the work shifts. Recommendations relating to this evaluation are presented in the body of the full report.« less

  8. Cellular therapy injections in today's orthopedic market: A social media analysis.

    PubMed

    Ramkumar, Prem N; Navarro, Sergio M; Haeberle, Heather S; Chughtai, Morad; Demetriades, Christopher; Piuzzi, Nicolas S; Mont, Michael A; Bauer, Thomas W; Muschler, George F

    2017-12-01

    The current state of cellular therapy for musculoskeletal conditions is at a crossroads. Marketing efforts are often outpacing clinical evidence and regulatory control. This study was an effort to describe the marketing of cellular therapy in musculoskeletal medicine by evaluating the content in popular social media channels. Specifically, media posts were evaluated for the following: (1) perspective, (2) tone, (3) content and (4) visibility. Social media content related to cell therapy for musculoskeletal conditions was assessed in a search using 28 hashtags on the public domains of Instagram and Twitter over a 2-year period (2014-2016) that resulted in analysis of 698 posts. Supplemental analyses of LinkedIn and Facebook domains were also conducted. A categorical scoring system was used to analyze perspective (patient, family or friend, business or organization), tone (positive, negative), content (education, advertisement, research, media coverage or patient experience) and visibility (number of hashtags per post). Sub-analyses of the advertisement content from various perspectives (patients, physicians and businesses) were performed. The media perspective was most frequently from a business or organization (83%; n = 575). A total of 94% of the posts had a positive tone and only 6% had a negative tone, and the only negative posts came from patients (60% positive and 40% negative). The most common content of social media posts were advertisements, representing 68% (n = 477) of all posts; this was confirmed in the Facebook analysis. The mean number of hashtags was five per post. Sub-analyses revealed approximately half of the advertising posts originated from a single business that recruited physicians to market their cell-based therapies on social media, which was confirmed in the LinkedIn analysis. The market messages related to cell-based therapies for musculoskeletal conditions available on social media are dominated by businesses that seem to use a network of physicians, apply several hashtags to enhance visibility and advertise these largely unproven modalities. The posts portray an almost exclusively positive tone, without providing a "fair balance" on the risks, benefits and limitations. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Use of molecular approaches in hydrogeological studies: the case of carbonate aquifers in southern Italy

    NASA Astrophysics Data System (ADS)

    Bucci, Antonio; Petrella, Emma; Celico, Fulvio; Naclerio, Gino

    2017-06-01

    Waterborne pathogens represent a significant health risk in both developed and developing countries with sensitive sub-populations including children, the elderly, neonates, and immune-compromised people, who are particularly susceptible to enteric infections. Annually, approximately 1.8 billion people utilize a faecally contaminated water source, and waterborne diseases are resulting in up to 2.1 million human mortalities globally. Although groundwater has traditionally been considered less susceptible to contamination by enteric pathogens than surface water due to natural attenuation by overlying strata, the degree of microbial removal attributable to soils and aquifers can vary significantly depending on several factors. Thus, accurate assessment of the variable presence and concentration of microbial contaminants, and the relative importance of potentially causative factors affecting contaminant ingress, is critical in order to develop effective source (well) and resource (aquifer) protection strategies. "Traditional" and molecular microbiological study designs, when coupled with hydrogeological, hydrochemical, isotopic, and geophysical methods, have proven useful for analysis of numerous aspects of subsurface microbial dynamics. Accordingly, this overview paper presents the principal microbial techniques currently being employed (1) to predict and identify sources of faecal contamination in groundwater, (2) to elucidate the dynamics of contaminant migration, and (3) to refine knowledge about the hydrogeological characteristics and behaviours of aquifer systems affected by microbial contamination with an emphasis on carbonate aquifers, which represent an important global water supply. Previous investigations carried out in carbonate aquifers in southern Italy are discussed.

  10. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    NASA Astrophysics Data System (ADS)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  11. Cadmium accumulation, sub-cellular distribution and chemical forms in rice seedling in the presence of sulfur.

    PubMed

    Zhang, Wen; Lin, Kuangfei; Zhou, Jian; Zhang, Wei; Liu, Lili; Zhang, Qianqian

    2014-01-01

    Changes in cadmium (Cd) accumulation, distribution, and chemical form in rice seedling in the joint presence of different concentrations of sulfur (S) remain almost unknown. Therefore, the indoor experiments were performed to determine the accumulation, sub-cellular distribution and chemical forms of Cd under three S levels in rice seedling for the first time. The result showed that Cd accumulation in rice roots was more than in shoots. Sub-cellular distribution of Cd in rice roots and shoots indicated that the largest proportion of Cd accumulated in cell walls and soluble fractions. As S supply increased, the proportion of Cd in cell walls reduced, while it increased in the soluble fractions. The majority of Cd existed in inorganic form, and then gradually changed to organic forms that included pectates and proteins with increased S supply. The results showed that S supply significantly influenced Cd accumulation, distribution, and chemical forms, suggesting that S might provide the material for the synthesis of sulfhydryl protein and thereby affect Cd stress on plants. These observations provided a basic understanding of potential ecotoxicological effects of joint Cd and S exposure in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Therapeutics incorporating blood constituents.

    PubMed

    Charoenphol, Phapanin; Oswalt, Katie; Bishop, Corey J

    2018-04-05

    Blood deficiency and dysfunctionality can result in adverse events, which can primarily be treated by transfusion of blood or the re-introduction of properly functioning sub-components. Blood constituents can be engineered on the sub-cellular (i.e., DNA recombinant technology) and cellular level (i.e., cellular hitchhiking for drug delivery) for supplementing and enhancing therapeutic efficacy, in addition to rectifying dysfunctioning mechanisms (i.e., clotting). Herein, we report the progress of blood-based therapeutics, with an emphasis on recent applications of blood transfusion, blood cell-based therapies and biomimetic carriers. Clinically translated technologies and commercial products of blood-based therapeutics are subsequently highlighted and perspectives on challenges and future prospects are discussed. Blood-based therapeutics is a burgeoning field and has advanced considerably in recent years. Blood and its constituents, with and without modification (i.e., combinatorial), have been utilized in a broad spectrum of pre-clinical and clinically-translated treatments. This review article summarizes the most up-to-date progress of blood-based therapeutics in the following contexts: synthetic blood substitutes, acellular/non-recombinant therapies, cell-based therapies, and therapeutic sub-components. The article subsequently discusses clinically-translated technologies and future prospects thereof. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina-Reyes, Estefany I.; Déciga-Alcaraz, Alejandro; Freyre-Fonseca, Verónica

    Titanium dioxide nanoparticles (TiO{sub 2} NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO{sub 2} NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO{sub 2}-B) using TiO{sub 2} spheres (TiO{sub 2}-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm{sup 2}) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO{submore » 2}-B effect on agglomerates size, cell size and granularity than TiO{sub 2}-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO{sub 2}-SP and TiO{sub 2}-B, respectively; TiO{sub 2}-SP and TiO{sub 2}-B induced 23% and 70% cell size decrease, respectively, whilst TiO{sub 2}-SP and TiO{sub 2}-B induced 7 and 14-fold of granularity increase. NO{sub x} production was down-regulated (31%) by TiO{sub 2}-SP and up-regulated (70%) by TiO{sub 2}-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO{sub 2}-SP exposed cells while TiO{sub 2}-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO{sub 2}-B had higher proliferative potential than TiO{sub 2}-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome. - Graphical abstract: (A) Lung epithelial cells were low exposed (below 10 µg/cm{sup 2}) to titanium dioxide nanoparticles (TiO{sub 2}-NPs) shaped as spheres (TiO{sub 2}-SP) and belts (TiO{sub 2}-B) for midterm (7 continuous days) separately. (B) Then, cells from each cell culture were harvested and seeded on the top of the chorioallantoic membrane (CAM) for 5 days and (C) invasion and proliferation of cells were analyzed in CAM sections. - Highlights: • Hydrodynamic size of TiO2- SP was smaller than TiO2-B in cell culture media • TiO2- SP induced higher decrease in cell size than TiO2-B • TiO2-SP induced a transient cytokine release and TiO2-B a downregulation • TiO2-B caused higher proliferative capability than TiO2-SP.« less

  14. First Results from Contamination Monitoring with the WFC3 UVIS G280 Grism

    NASA Astrophysics Data System (ADS)

    Rothberg, B.; Pirzkal, N.; Baggett, S.

    2011-11-01

    The presence of contaminants within the optical light path of the instrument or telescope can alter photometric zeropoints and the observed flux levels of imaging and spectra, particularly at UV wavelengths. Regular monitoring of a spectro-photometric standard star using photometric filters has been used in the past to monitor the presence of contaminants and (when necessary) re-calibrate zeropoints. However, the use of the WFC3 UVIS Grism mode (G280 filter) may provide a more robust early alert detection system for the presence of contaminants, in particular, those that are photo-polymerized from the bright Earth. These contaminants may collect on surfaces in the optical light path of the telescope. The G280 grism is sensitive to light at wavelengths below the cutoff of the bluest UV filter (F218W). In this ISR, we present: 1) the first results from G280 monitoring for the period of 2010-November through 2011-August; 2) the discovery of an anomaly in the WCS header information of sub-array exposures; and 3) an outline for reducing standard G280 grism observations and the specialized case of observations obtained in sub-array mode.

  15. Myosin head orientation: a structural determinant for the Frank-Starling relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farman, Gerrie P.; Gore, David; Allen, Edward

    The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I{sub 1,1}/I{sub 1,0} intensity ratio decreases, whereas the M3 meridional reflection intensity (I{sub M3}) increases, concomitant with increases in diastolic and systolic force. Using a short ({approx}10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailedmore » structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by IM3) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.« less

  16. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp; Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp; Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogenmore » peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in the plasma-medium. These results showed that the medium irradiated with a non-lethal level of plasma flow altered various gene expressions of HeLa cells by giving not only common effects with H{sub 2}O{sub 2} but also some distinctive actions. This study suggests that in addition to H{sub 2}O{sub 2}, other chemical species able to affect the cellular responses exist in the plasma-irradiated medium and provide unique features for it, probably increasing the oxidative stress level.« less

  17. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR EMERGING ORGANIC CONTAMINANTS FROM FUNDAMENTAL ADSORBENT AND ADSORBATE PROPERTIES - PRESENTATION

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  18. Design, fabrication, and test of a trace contaminant control system. Appendixes A and B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Engineering specifications of a trace contaminant control system designed for the Space Station Prototype (SSP) were given. These were divided into two appendices: (1) a list of nonmetallic materials used, and (2) engineering drawings of the overall system, sub-assemblies, and components.

  19. Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment.

    PubMed

    Aliko, Valbona; Qirjo, Mihallaq; Sula, Eldores; Morina, Valon; Faggio, Caterina

    2018-05-01

    The manganese contamination has become a global problem, recently, because it is perceived as a real threat to the human health and the environment. It is well-known that overexposure to Mn 2+ may have negative physiological effects on fish and other organisms inhabiting heavy metal polluted waters. To the best of our knowledge, studies relating with manganese effects on fish antioxidant enzyme response in the blood, immunocompetence and erythron profile alteration, are scarce. In this study, the acute sub-lethal effects of manganese on blood antioxidant response, immune status and erythron profile were determined by exposing the freshwater model organism, Carassius auratus, to two doses of this metal (3.88 ± 0.193 mg/L and 7.52 ± 0.234 mg/L Mn 2+ ) for 96 h. Significant increases in blood antioxidant enzyme activity like superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), were observed in fish exposed to manganese. Furthermore, plasmatic glucose and cortisol levels increased, while total protein decreased significantly. White blood cell differential count revealed a significant increase in monocyte and neutrophil number and a significant decrease of lymphocyte's number in fish exposed to manganese compared with those of control group. That can be considered as a clear evidence of altered immune system. Measured of erythron profile revealed a significant increasing of cellular and nuclear alteration of red blood cells, with karryorhectic, dividing and micronucleated erythrocytes in exposed fish, indicating the cytotoxic and genotoxic effects Mn 2+ ions. Our data shown also that manganese could trigger antioxidant response, modulate immune response and induce erythron profile modification leading to eryptosis, compromising the blood oxygen carrying capacity, and overall health status in fish. This may suggest those parameters consider as useful biomarkers for monitoring effects of sub-lethal metal exposure on fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sm-Nd and Rb-Sr Ages for Northwest Africa 2977, A Young Lunar Gabbro from the PKT

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.; Reese, Y. D.; Irving, A. J.

    2009-01-01

    Northwest Africa (NWA) 2977 is an olivine gabbro cumulate equivalent to one of the lithologies in lunar mare breccia NWA 773 [1,2,3]. The Ar-39-Ar-40 age is 2.77+/-0.04 Ga based on the last approx.57% of the gas release [4], similar to results for NWA 773 [5]. A Sm-Nd age (T) of 2.865+/-0.031 Ga and Epsilon(sub Nd) = -7.84+/-0.22 for the NWA 773 gabbro reported by [6] has been revised to T = 2.993+/-=0.032 Ga, Epsilon(sub Nd) -4.5+/-0.3 [7]. Sm-147-Nd-143 isochron for NWA 2977: Whole rock, pyroxene, olivine, plagioclase, whole rock leachate (approx.phosphate) and the combined leachates from the mineral separates yield a well defined Sm-Nd isochron for an age T = 3.10+/-0.05 Ga and Epsilon(sub Nd-CHUR) = -3.74+/-0.26 [8], or Epsilon(sub Nd-HEDR) = -4.61+/-0.26 [9]. Rb-87-Sr-87 isochron: NWA 2977 contains only a modest amount of Rb and/or Sr contamination. The Sr-isotopic composition of the contaminant closely resembles that of seawater. The whole rock residue after leaching combined with leach residues for plagioclase and pyroxene define an isochron age of 3.29+/-0.11 Ga for initial Sr-87/Sr-86 = 0.70287+/-18. The olivine residue, with lower Sr abundance of approx 1.5 ppm, is only slightly displaced from the isochron. The relatively small uncertainties of the Rb-Sr isochron parameters and near-concordancy with the Sm-Nd age indicate that both the Rb-Sr and the Sm-Nd ages are reliable.

  1. Non-Gaussianities due to relativistic corrections to the observed galaxy bispectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dio, E. Di; Perrier, H.; Durrer, R.

    2017-03-01

    High-precision constraints on primordial non-Gaussianity (PNG) will significantly improve our understanding of the physics of the early universe. Among all the subtleties in using large scale structure observables to constrain PNG, accounting for relativistic corrections to the clustering statistics is particularly important for the upcoming galaxy surveys covering progressively larger fraction of the sky. We focus on relativistic projection effects due to the fact that we observe the galaxies through the light that reaches the telescope on perturbed geodesics. These projection effects can give rise to an effective f {sub NL} that can be misinterpreted as the primordial non-Gaussianity signalmore » and hence is a systematic to be carefully computed and accounted for in modelling of the bispectrum. We develop the technique to properly account for relativistic effects in terms of purely observable quantities, namely angles and redshifts. We give some examples by applying this approach to a subset of the contributions to the tree-level bispectrum of the observed galaxy number counts calculated within perturbation theory and estimate the corresponding non-Gaussianity parameter, f {sub NL}, for the local, equilateral and orthogonal shapes. For the local shape, we also compute the local non-Gaussianity resulting from terms obtained using the consistency relation for observed number counts. Our goal here is not to give a precise estimate of f {sub NL} for each shape but rather we aim to provide a scheme to compute the non-Gaussian contamination due to relativistic projection effects. For the terms considered in this work, we obtain contamination of f {sub NL}{sup loc} ∼ O(1).« less

  2. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high-energy x-ray microbeam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, D. J.; Almer, J.; Cruse, T.

    2010-01-01

    A key feature of planar solid oxide fuel cells (SOFCs) is the feasibility of using metallic interconnects made of high temperature ferritic stainless steels, which reduce system cost while providing excellent electric conductivity. Such interconnects, however, contain high levels of chromium, which has been found to be associated with SOFC cathode performance degradation at SOFC operating temperatures; a phenomenon known as Cr poisoning. Here, we demonstrate an accurate measurement of the phase and concentration distributions of Cr species in a degraded SOFC, as well as related properties including deviatoric strain, integrated porosity, and lattice parameter variation, using high energy microbeammore » X-ray diffraction and radiography. We unambiguously identify (MnCr){sub 3}O{sub 4} and Cr{sub 2}O{sub 3} as the two main contaminant phases and find that their concentrations correlate strongly with the cathode layer composition. Cr{sub 2}O{sub 3} deposition within the active cathode region reduces porosity and produces compressive residual strains, which hinders the reactant gas percolation and can cause structural breakdown of the SOFC cathode. The information obtained through this study can be used to better understand the Cr-poisoning mechanism and improve SOFC design.« less

  3. Plutonium weathering on Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S.E.; Bates, J.K.; Buck, E.C.

    1995-12-31

    Johnston Atoll was contaminated with transuranic elements, particularly plutonium, by atmospheric nuclear weapons tests and aborted nuclear devices. Initial cleanup operations and and an extensive soil remediation program were performed. However, many areas contained a low-level continuum of activity, and subsurface contamination has been detected. Discrete hot particles and contaminated soil were characterized to determine whether the spread of activity was caused by weathering. Analytical techniques included gamma spectrometry, alpha spectrometry, and inductively coupled plasma-mass spectrometry to determine transuranic elemental and isotopic composition. Ultrafiltration and small-particle handling techniques were employed to isolate individual particles. Optical microscopy, scanning electron microscopy, analyticalmore » transmission electron microscopy, energy dispersive X-ray spectroscopy, and electron energy loss spectroscopy were used to characterize individual particles. Analyses of the hot particles showed that they are aborted nuclear warhead fragments that been melted and weathered in the presence of water and CaCO{sub 3}. It was concluded that the formation of aqueous ionic (Pu/Am)-CO{sub 3} coordinated complexes, during environmental exposure to large volumes of rainwater and carbonate-satured seawater, enhanced the solubility of transuranic elements. The (Pu/Am)-CO{sub 3} complexes sorbed onto colloidal CaCO{sub 3} and coral soil surfaces as they were exposed to rain and seawater. This mechanism led to greater dispersal of plutonium and americium than would be expected by physical transport of discrete hot particles alone.« less

  4. Measuring organic carbon, nutrients and heavy metals in rivers receiving leachate from controlled and uncontrolled municipal solid waste (MSW) landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, N.; Department of Biology, Faculty of Science and Technology, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak; Haraguchi, A.

    2009-10-15

    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact ofmore » leachate from an active uncontrolled landfill was the highest, as the organic content, NH{sub 4}{sup +}-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH{sub 4}{sup +}-N, NO{sub 3}{sup -}-N and NO{sub 2}{sup -}-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.« less

  5. In situ detection of organic molecules: Optrodes for TCE (trichloroethylene) and CHCl sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, S. M.; Langry, K. C.; Ridley, M. N.

    1990-05-01

    We have developed new absorption-based chemical indicators for detecting chloroform (CHCl{sub 3}) and trichloroethylene (TCE). These indicators were used to make very sensitive optical chemical sensors (optrodes) for each of these two contaminants. Concentrations below 10 ppb can be accurately measured using these sensors. Furthermore, they are selective and do not response to similar contaminants commonly found with TCE and CHCl{sub 3} in contaminated groundwater. In addition, the sensor response is linearly proportional to the chemical concentration. In this report, we describe the details of this optrode and the putative reaction sequences of the indicator chemistries with CHCl{sub 3} andmore » TCE and present an analysis of the spectral data obtained from the reaction products. A key part of the development of this optrode was designing a simple readout device. The readout is a dual-channel fiber-optic fluorimeter modified to measure transmission or absorption of light. The system is controlled by a lap-top microcomputer and is fully field portable. In addition to describing the final absorption optrode, details of the chemical indicator reactions are presented for both absorption- (colorimetric) and fluorescence-based optrodes. Finally, we report on the syntheses of several compounds used to evaluate the indicator chemical reactions that led to the development of the absorption optrode. 23 refs., 26 figs., 1 tab.« less

  6. Comparison of homogenization techniques and incidence of aflatoxin contamination in dried figs for export.

    PubMed

    Bircan, Cavit

    2009-01-01

    To determine differences in mean aflatoxin contamination and subsample variance from dry and slurry homogenizations, 10 kg of six different, naturally contaminated dried fig samples were collected from various exporting companies in accordance with the EU Commission Directive. The samples were first dry-mixed for 5 min using a blender and sub-sampled seven times; the remainder was slurry homogenized (1 : 1, v/v) and sub-sampled seven times. Aflatoxin B1 and total aflatoxin levels were recorded and coefficient of variations (CV) computed for all sub-samples. Only a small reduction in sub-sample variations, indicated by the lower CV values, and slight differences in mean aflatoxin B1 and total aflatoxin levels were observed when slurry homogenization was applied. Therefore, 7326 dried figs, destined for export from Turkey to the EU and collected during the 2008 crop year, were dry-homogenized and tested for aflatoxins (B1, B2, G1 and G2) by immunoaffinity column clean-up using RP-HPLC. While 34% of the samples contained detectable levels of total aflatoxins (0.20-208.75 µg kg(-1)), only 9% of them exceeded the EU limit of 4 µg kg(-1) in the range 2.0-208.75 µg kg(-1), respectively. A substantial increase in the incidence of aflatoxins was observed in 2008, most likely due to the drought stress experienced in Aydin province as occurred in 2007.

  7. Developmental sub-chronic exposure to chlorpyrifos reduces anxiety-related behavior in zebrafish larvae

    PubMed Central

    Richendrfer, Holly; Pelkowski, Sean D.; Colwill, Ruth M.; Créton, Robbert

    2013-01-01

    Neurobehavioral disorders such as anxiety, autism, and attention deficit hyperactivity disorders are typically influenced by genetic and environmental factors. Although several genetic risk factors have been identified in recent years, little is known about the environmental factors that either cause neurobehavioral disorders or contribute to their progression in genetically predisposed individuals. One environmental factor that has raised concerns is chlorpyrifos, an organophosphate pesticide that is widely used in agriculture and is found ubiquitously in the environment. In the present study, we examined the effects of sub-chronic chlorpyrifos exposure on anxiety-related behavior during development using zebrafish larvae. We found that sub-chronic exposure to 0.01 or 0.1 μM chlorpyrifos during development induces specific behavioral defects in 7-day-old zebrafish larvae. The larvae displayed decreases in swim speed and thigmotaxis, yet no changes in avoidance behavior were seen. Exposure to 0.001 μM chlorpyrifos did not affect swimming, thigmotaxis, or avoidance behavior and exposure to 1 μM chlorpyrifos induced behavioral defects, but also induced defects in larval morphology. Since thigmotaxis, a preference for the edge, is an anxiety-related behavior in zebrafish larvae, we propose that sub-chronic chlorpyrifos exposure interferes with the development of anxiety-related behaviors. The results of this study provide a good starting point for examination of the molecular, cellular, developmental, and neural mechanisms that are affected by environmentally relevant concentrations of organophosphate pesticides. A more detailed understanding of these mechanisms is important for the development of predictive models and refined health policies to prevent toxicant-induced neurobehavioral disorders. PMID:22579535

  8. Accumulation and sub-cellular partitioning of metals and As in the clam Venerupis corrugata: Different strategies towards different elements.

    PubMed

    Velez, Cátia; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2016-08-01

    The main goal of the present study was to assess accumulation, tolerance and sub-cellular partitioning of As, Hg, Cd and Pb in Venerupis corrugata. Results showed an increase of elements accumulation in V. corrugata with the increase of exposure. However, organisms presented higher capacity to accumulate Hg, Cd and Pb (BCF ≥ 12.8) than As (BCF ≤ 2.1) and higher accumulation rate for Cd and Pb than for Hg and As. With the increase of Hg exposure concentrations clams tended to increase the amount of metal bound to metal-sensitive fractions, which may explain the mortality recorded at the highest exposure concentration. Cd sub-cellular partitioning showed that with the increase of exposure concentrations V. corrugata increased the amount of metal in the cellular debris fraction, probably bound to the cellular membranes which explain the mortality recorded at the highest concentration. Results on As partitioning demonstrated that most of the metalloid was associated with fractions in the biologically detoxified metal compartment (BDM). Since high mortality was observed in clams exposed to As our results may indicate that this strategy was not enough to prevent clams from toxic effects and mortality occurred. When exposed to Pb most of the metal was in the BDM compartment, but in this case the metal was mostly in the metal-rich granules fraction which seemed to be efficient in preventing clams from toxicity, and no mortality was recorded. Our study further revealed that As and Hg were the most available elements to be biomagnified through the food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Arc/Arg3.1 mRNA expression reveals a sub-cellular trace of prior sound exposure in adult primary auditory cortex

    PubMed Central

    Ivanova, Tamara; Matthews, Andrew; Gross, Christina; Mappus, Rudolph C.; Gollnick, Clare; Swanson, Andrew; Bassell, Gary J.; Liu, Robert C.

    2011-01-01

    Acquiring the behavioral significance of a sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 minute (24 hour separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in-situ hybridization (FISH) to assess the layer-specific sub-cellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3–6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1–2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical sub-cellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool. PMID:21334422

  10. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments.

    PubMed

    Roberts, David A

    2012-04-01

    Sediments act as a net sink for anthropogenic contaminants in marine ecosystems and contaminated sediments may have a range of toxicological effects on benthic fauna and associated species. When resuspended, however, particulate-bound contaminants may be remobilised into the water column and become bioavailable to an additional assemblage of species. Such resuspension occurs through a range of natural and anthropogenic processes each of which may be thought of as pulsed disturbances resulting in pulsed exposures to contaminants. Thus, it is important to understand not only the toxicological responses of organisms to resuspended contaminated sediments (RCS), but also the frequency, magnitude and duration of sediment disturbance events. Such information is rarely collected together with toxicological data. Rather, the majority of published studies (>50% of the articles captured in this review) have taken the form of fixed-duration laboratory-based exposures with individual species. While this research has clearly demonstrated that resuspension of contaminated sediments can liberate sediment-bound contaminants leading to toxicity and bioaccumulation under controlled conditions, the potential for ecological effects in the field is often unclear. Monitoring studies suggest that recurrent natural disturbances such as tides and waves may cause the majority of contaminant release in many environments. However, various processes also act to limit the spatial and temporal scales across which contaminants are remobilised to the most toxic dissolved state. Various natural and anthropogenic disturbances of contaminated sediments have been linked to both community-level and sub-lethal responses in exposed populations of invertebrates and fish in the field. Together these findings suggest that resuspension of contaminated sediments is a frequently recurring ecological threat in contaminated marine habitats. Further consideration of how marine communities respond to temporally variable exposures to RCS is required, as well as research into the relative importance of various disturbances under field conditions. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  11. Characterization of the cell growth analysis for detection of immortal cellular impurities in human mesenchymal stem cells.

    PubMed

    Kono, Ken; Takada, Nozomi; Yasuda, Satoshi; Sawada, Rumi; Niimi, Shingo; Matsuyama, Akifumi; Sato, Yoji

    2015-03-01

    The analysis of in vitro cell senescence/growth after serial passaging can be one of ways to show the absence of immortalized cells, which are frequently tumorigenic, in human cell-processed therapeutic products (hCTPs). However, the performance of the cell growth analysis for detection of the immortalized cellular impurities has never been evaluated. In the present study, we examined the growth rates of human mesenchymal stem cells (hMSCs, passage 5 (P = 5)) contaminated with various doses of HeLa cells, and compared with that of hMSCs alone. The growth rates of the contaminated hMSCs were comparable to that of hMSCs alone at P = 5, but significantly increased at P = 6 (0.1% and 0.01% HeLa) or P = 7 (0.001% HeLa) within 30 days. These findings suggest that the cell growth analysis is a simple and sensitive method to detect immortalized cellular impurities in hCTPs derived from human somatic cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Drinking water quality in six small tea gardens of Sonitpur District of Assam, India, with special reference to heavy metals.

    PubMed

    Dutta, Joydev; Chetia, Mridul; Misra, A K

    2011-10-01

    Contamination of drinking water by arsenic and other heavy metals and their related toxicology is a serious concern now-a-days. Millions of individual world-wide are suffering from the arsenic and other heavy metal related diseases due to the consumption of contaminated groundwater. 60 water samples from different sources of 6 small tea gardens of Sonitpur district were collected to study the potability of water for drinking purposes. The water samples collected from sources like tube wells, ring wells and ponds were analyzed for arsenic, heavy metals like iron, manganese and mercury with sodium, potassium, calcium, magnesium, pH, total hardness, chloride, fluoride and sulphate. Some drain water samples of the tea garden areas were also collected to analyze the above mentioned water parameters to see the contamination level. Experiments revealed that 78% samples of total collection had arsenic content above the permissible limit (0.01 ppm) of WHO guideline value for drinking water. The highest arsenic was observed 0.09 ppm at one sample of Gobindra Dahal tea garden of Gohpur sub division of Sonitpur district. 94% samples had contamination due to manganese 39% samples had iron and 44% samples had Hg. The water quality data was subjected to some statistical treatments like NDA, cluster analysis and pearson correlation to observe the distribution pattern of the different water quality parameters. A strong pearson correlation coefficient was observed between parameters-arsenic and manganese (0.865) and arsenic and mercury (0.837) at 0.01 level, indicated the same sources of drinking water contamination.

  13. Single-layer centrifugation separates spermatozoa from diploid cells in epididymal samples from gray wolves, Canis lupus (L.).

    PubMed

    Muñoz-Fuentes, Violeta; Linde Forsberg, Catharina; Vilà, Carles; Morrell, Jane M

    2014-09-15

    Sperm samples may be used for assisted reproductive technologies (e.g., farmed or endangered species) or as a source of haploid DNA or sperm-specific RNA. When ejaculated spermatozoa are not available or are very difficult to obtain, as is the case for most wild endangered species, the epididymides of dead animals (e.g., animals that have been found dead, shot by hunters or poachers, or that that require euthanasia in zoological collections) can be used as a source of sperm. Such epididymal sperm samples are usually contaminated with cellular debris, erythrocytes, leukocytes, and sometimes also bacteria. These contaminants may be sources of reactive oxygen species that damage spermatozoa during freezing or contribute undesired genetic material from diploid cells. We used single-layer centrifugation through a colloid formulation, Androcoll-C, to successfully separate wolf epididymal spermatozoa from contaminating cells and cellular debris in epididymal samples harvested from carcasses. Such a procedure may potentially be applied to epididymal sperm samples from other species. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Sorption kinetics of Hg and HgCl[sub 2] on Kirkwood-Cohansey aquifer sediments from the New Jersey Coastal Plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, C.; Peterson, J.

    1992-01-01

    Anomalously high Hg concentrations have been detected from domestic wells in the Kirkwood-Cohansey Aquifer System, New Jersey Coastal Plain. Mercury concentrations ranging from 0.2--83.0 [mu]g/l in relatively shallow wells ([lt] 100 feet) have been detected. Concentrations in excess of 2.0 [mu]g/l, (the USEPA Drinking Water Standard) have been detected in wells where the Cohansey Sand is overlain by the Bridgeton Formation; a fluvial iron-rich sand with some gravelly channel deposits containing goethite and gibbsite nodules. In this study, Bridgeton Fm. sediments were used to determine the sorption kinetics for solutions containing HgCl[sub 2] and for solutions containing dissolved elemental Hgmore » in order to assess the potential for the Bridgeton sediments to act as a conduit for Hg mobilized from the surface. Results of batch equilibrium experiments suggest that dissolved elemental Hg sorbs to Bridgeton sediments by a risk-order kinetic process. Sorption of the Hg proceeded exponentially and equilibrium was reached within 14 hours. The sorption kinetics for the HgCl[sub 2] solutions, however, appear to be of a second or higher order. For this compound sorption to the sediments begins exponentially, but after 6 hours desorption into the water begins to predominate followed by a slower exponential sorption step that requires nearly 36 hours to reach equilibrium. These experiments illustrate the necessity of determining the distribution coefficients of possible source compounds when attempting to evaluate mobilization potential of a contaminant in the unsaturated zone. Moreover, these data also suggest that HgCl[sub 2], a seed dressing for corn, medial bacteriacide, and embalming fluid ingredient, is more mobile in the environment than dissolved elemental Hg. Consequently, the ground water contamination potential appears to be greater for HgCl[sub 2] than for elemental Hg.« less

  15. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies.

    PubMed

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.

  16. PDADMAC flocculation of Chinese hamster ovary cells: Enabling a centrifuge-less harvest process for monoclonal antibodies

    PubMed Central

    McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine

    2015-01-01

    High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650

  17. Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu

    PubMed Central

    Tao, Min; Xie, Ping; Chen, Jun; Qin, Boqiang; Zhang, Dawen; Niu, Yuan; Zhang, Meng; Wang, Qing; Wu, Laiyan

    2012-01-01

    Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation. PMID:22384128

  18. Estimation of furan contamination across the Belgian food chain.

    PubMed

    Scholl, G; Scippo, M-L; De Pauw, E; Eppe, G; Saegerman, C

    2012-01-01

    This paper provides an estimate of the furan content of Belgian foods. The objective of the study was to achieve the best food chain coverage with a restricted number of samples (n = 496). The geographic distribution, different market chains and labels, and consumption frequencies were taken into account in the construction of the sampling plan. Weighting factors such as contamination levels, consumption frequency and the diversity of food items were applied to set up the model. The very low detection capabilities (CC(β)) of the analytical methods used (sub-ppb) allowed reporting of 78.2% of the overall dataset above CC(β) and, in particular, 96.7% for the baby food category. The highest furan levels were found in powdered roasted bean coffee (1912 µg kg(-1)) with a mean of 756 µg kg(-1) for this category. Prepared meat, pasta and rice, breakfast cereals, soups, and baby food also showed high mean furan contents ranging from 16 to 43 µg kg(-1). Comparisons with contamination surveys carried out in other countries pointed out differences for the same food group and therefore contamination levels are related to the geographical origin of food items.

  19. Microstructural Characterization of a Directionally-Solidified Ni-33 (at. %)Al-31Cr-3Mo Eutectic Alloy as a Function of Withdrawal Rate

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.; Salem, J. A.

    2000-01-01

    The Ni-33 (at. %)Al-3lCr-3Mo eutectic alloy was directionally-solidified (DS) at different rates, V(sub I), varying between 2.5 to 508 mm/ h. Detailed qualitative and quantitative metallographic and chemical analyses were conducted on the directionally-solidified rods. The microstructures consisted of eutectic colonies with parallel lamellar NiAl/(Cr,Mo) plates for solidification rates at and below 12.7 mm/ h. Cellular eutectic microstructures were observed at higher solidification rates, where the plates exhibited a radial pattern. The microstructures were demonstrated to be fairly uniform throughout a 100 mm length of the DS zone by quantitative metallography. The average cell size, bar-d, decreased with increasing growth rate to a value of 125 microns at 508 mm/ h according to the relation bar-d (microns) approx. = 465 V(sup -0.22, sub I), where V(sub I) is in mm/ h. Both the average NiAl plate thickness, bar-Delta(sub NiAl), and the interlamellar spacing, bar-lambda, were observed to be constant for V(sub I) less than or = 50.8 mm/ h but decreased with increasing growth rate above this value as 0.93 bar-Delta(sub NiAl)(microns) = 61.2 V(sup -0.93, sub I) and bar-lambda (microns) = 47.7 V(sup -0.64, sub I), respectively. The present results are detailed on a microstructural map. Keywords Optical microscopy, microstructure, compounds intermetallic, directional solidification

  20. Bioaccumulation of organic contaminants by benthic invertebrates of the Chesapeake Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimbrough, K.; Dickhut, R.

    1995-12-31

    In situ partitioning of PCBs and PAHs between benthic invertebrates and the environment has been compared to previously obtained laboratory bioaccumulation results. Previous laboratory studies show a characteristic nonlinear plot when bioaccumulation factors (BAF) are plotted against octanol-water partition coefficients (K{sub ow}), on a log-log scale. This phenomena can be explained by desorption and elimination kinetics. However preliminary in situ studies show a different relationship between field BAFs and K{sub ow} which may be explained by other biogeochemical factors. In situ and laboratory PAH and PCB partitioning measurements will be used to determine major mechanisms affecting contaminant bioaccumulation.

  1. Phytoremediation of cadmium and zinc by Populus deltoids and Pinus tada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M.; Houpis, J.; Johnson, K.

    1998-12-31

    Phytoremediation, the use of plants to uptake contaminants and thereby lower soil contamination, is an emerging alternative to the costly and often impractical conventional methods of soil remediation. There has been limited research in using trees for metal extraction, despite their high potential for remediating contaminated soils. The authors investigated the cadmium phytoextraction capability of Pinus taeda. Cadmium uptake was investigated using a randomized design with four replicates of each treatment. Seeds were germinated, grown for 60 days and treated with cadmium at 4 mg/L [supplied as cadmium nitrate tetrahydrate (Cd-(NO{sub 3})2x4H{sub 2}O)] or with potassium nitrate (KNO{sub 3}) asmore » a control. Seedlings were harvested at either seven or seventeen days. Metal analysis of plant tissues was conducted by atomic absorption spectroscopy following acid digestion. A phytoextraction coefficient was determined and data were analyzed using analysis of variance. P. taeda seedlings treated with cadmium contained significantly higher Cd tissue levels than control seedlings. Cd tissue levels did not differ significantly between seedlings harvested seven days and seedlings harvested seventeen days after treatment. Cd levels also differed significantly between all plant organs (leaves, stems and roots).« less

  2. Contaminant and food limitation stress in an endangered estuarine fish

    PubMed Central

    Hammock, Bruce G.; Hobbs, James A.; Slater, Steven B.; Acuña, Shawn; Teh, Swee J.

    2016-01-01

    The abundance of Delta Smelt (Hypomesus transpacificus), a fish species endemic to the upper San Francisco Estuary (SFE), is declining. Several causes for the population decline have been proposed, including food limitation and contaminant effects. Here, using juvenile Delta Smelt collected from throughout their range, we measured a suite of indices across three levels of biological organization (cellular, organ, individual) that reflect fish condition at temporal scales ranging from hours to weeks. Using these indices, the relative conditions of fish collected from five regions in the SFE were compared: Cache Slough, Sacramento River Deep Water Ship Channel, Confluence, Suisun Bay and Suisun Marsh. Fish sampled from Suisun Bay and, to a lesser extent the Confluence, exhibited relatively poor short-term nutritional and growth indices and morphometric condition, while fish from the freshwater regions of the estuary, and Cache Slough in particular, exhibited the most apparent histopathological signs of contaminant exposure. In contrast, fish from the Suisun Marsh region exhibited higher short-term nutrition and growth indices, and better morphometric and histopathological condition. For instance, fish collected from Suisun Marsh had a mean stomach fullness, expressed as a percentage of fish weight, that was 3.4-fold higher than fish collected from Suisun Bay, while also exhibiting an incidence of histopathological lesions that was 11-fold lower than fish collected from Cache Slough. Thus, our findings support the hypothesis that multiple stressors, including food limitation and contaminants, are contributing to the decline of Delta Smelt, and that these stressors influence Delta Smelt heterogeneously across space. PMID:26081734

  3. Contaminant and food limitation stress in an endangered estuarine fish.

    PubMed

    Hammock, Bruce G; Hobbs, James A; Slater, Steven B; Acuña, Shawn; Teh, Swee J

    2015-11-01

    The abundance of Delta Smelt (Hypomesus transpacificus), a fish species endemic to the upper San Francisco Estuary (SFE), is declining. Several causes for the population decline have been proposed, including food limitation and contaminant effects. Here, using juvenile Delta Smelt collected from throughout their range, we measured a suite of indices across three levels of biological organization (cellular, organ, individual) that reflect fish condition at temporal scales ranging from hours to weeks. Using these indices, the relative conditions of fish collected from five regions in the SFE were compared: Cache Slough, Sacramento River Deep Water Ship Channel, Confluence, Suisun Bay and Suisun Marsh. Fish sampled from Suisun Bay and, to a lesser extent the Confluence, exhibited relatively poor short-term nutritional and growth indices and morphometric condition, while fish from the freshwater regions of the estuary, and Cache Slough in particular, exhibited the most apparent histopathological signs of contaminant exposure. In contrast, fish from the Suisun Marsh region exhibited higher short-term nutrition and growth indices, and better morphometric and histopathological condition. For instance, fish collected from Suisun Marsh had a mean stomach fullness, expressed as a percentage of fish weight, that was 3.4-fold higher than fish collected from Suisun Bay, while also exhibiting an incidence of histopathological lesions that was 11-fold lower than fish collected from Cache Slough. Thus, our findings support the hypothesis that multiple stressors, including food limitation and contaminants, are contributing to the decline of Delta Smelt, and that these stressors influence Delta Smelt heterogeneously across space. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Treatment Of Polychlorinated Biphenyls In Two Surface Soils Using Catalyzed H2O2 Propagations

    EPA Science Inventory

    Two surface soils contaminated with polychlorinated biphenyls (PCBs) collected from Superfund sites in the New England region of the United States, Fletcher Paints and Merrimack Industrial Metals, were evaluated for field treatment at the bench level using catalyzed H2...

  5. ISSUES IN MANAGING THE RISKS ASSOCIATED WITH PERCHLORATE IN DRINKING WATER

    EPA Science Inventory

    Perchlorate (ClO4-) contamination of ground and surface waters has placed drinking water supplies at risk in communities throughout the US, especially in the West. Several major assessment studies of that risk in terms of health and environmental impact are ...

  6. Meta-analysis of studies using suppression subtractive hybridization and microarrays to investigate the effects of environmental stress on gene transcription in oysters.

    PubMed

    Anderson, Kelli; Taylor, Daisy A; Thompson, Emma L; Melwani, Aroon R; Nair, Sham V; Raftos, David A

    2015-01-01

    Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters.

  7. Meta-Analysis of Studies Using Suppression Subtractive Hybridization and Microarrays to Investigate the Effects of Environmental Stress on Gene Transcription in Oysters

    PubMed Central

    Thompson, Emma L.; Melwani, Aroon R.; Nair, Sham V.; Raftos, David A.

    2015-01-01

    Many microarray and suppression subtractive hybridization (SSH) studies have analyzed the effects of environmental stress on gene transcription in marine species. However, there have been no unifying analyses of these data to identify common stress response pathways. To address this shortfall, we conducted a meta-analysis of 14 studies that investigated the effects of different environmental stressors on gene expression in oysters. The stressors tested included chemical contamination, hypoxia and infection, as well as extremes of temperature, pH and turbidity. We found that the expression of over 400 genes in a range of oyster species changed significantly after exposure to environmental stress. A repeating pattern was evident in these transcriptional responses, regardless of the type of stress applied. Many of the genes that responded to environmental stress encoded proteins involved in translation and protein processing (including molecular chaperones), the mitochondrial electron transport chain, anti-oxidant activity and the cytoskeleton. In light of these findings, we put forward a consensus model of sub-cellular stress responses in oysters. PMID:25768438

  8. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CEC) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from...

  9. MOLECULAR EVALUATION OF CHANGES IN PLANKTONIC BACTERIAL POPULATION RESULTING FROM EQUINE FECAL CONTAMINATION IN A SUB-WATERSHED

    EPA Science Inventory

    Contamination of watersheds by fecal bacteria is a frequent cause for surface waters to be placed on the national impaired waters list. However, since the presence of fecal bacteria does not always indicate human fecal input, it is necessary to distinguish between fecal sources. ...

  10. Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change

    USDA-ARS?s Scientific Manuscript database

    Aflatoxin contamination of crops is frequent in warm regions across the globe, including large areas in sub-Saharan Africa. Crop contamination with these dangerous toxins transcends health, food security, and trade sectors. It cuts across the value chain, affecting farmers, traders, markets, and fin...

  11. Can ecological history influence immunomarker responses and antioxidant enzyme activities in bivalves that have been experimentally exposed to contaminants? A new subject for discussion in "eco-immunology" studies.

    PubMed

    Matozzo, Valerio; Giacomazzo, Matteo; Finos, Livio; Marin, Maria Gabriella; Bargelloni, Luca; Milan, Massimo

    2013-07-01

    Numerous studies have demonstrated that environmental parameters affect bivalve immunomarkers. In the present study, we tested the hypothesis that clams (Venerupis philippinarum) collected in sites with different environmental conditions respond differently to experimental contaminant exposure. Clams were collected at two sites within the Lagoon of Venice that are influenced differently by both anthropogenic impact and natural conditions: Marghera, which is characterised by relatively high contamination levels and restricted clam fishing, and Chioggia, which is inside a licensed clam culture area that is characterised by lower contamination levels. Total haemocyte count, haemocyte diameter and volume, lysozyme activity in both haemocyte lysate and cell-free haemolymph, superoxide dismutase and catalase activities in gills and digestive glands were measured at time 0 (clam sampling time), after 7 days of acclimation in the laboratory and after 1, 3 and 7 days of copper exposure. Interestingly, statistical analyses (three-way ANOVA and Canonical Correlation Analysis) revealed persistent differences in the biological responses of clams from the two sampling sites before and after copper exposure. Conversely, the influence of copper on cellular and biochemical parameters was negligible. Overall, the results obtained indicated that animals with a different ecological history respond differently to experimental contaminant exposure. In addition, this study suggested that immunomarkers and other biomarkers might be used to determine the origin of fishing products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. Tomore » determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive pulmonary disease (COPD). • It is unknown if comorbid pulmonary hypertension may influence such effects in COPD patients. • Pulmonary hypertension in a mouse model significantly exacerbated ozone-induced lung injury. • Adverse ozone outcomes were largely attenuated by a rho kinase inhibitor, fasudil. • Therapeutic benefit from rho kinase inhibition may be related to endothelial barrier integrity.« less

  13. Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO{sub 2}/SiO{sub 2} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czech, Bożena, E-mail: bczech@hektor.umcs.lublin.pl; Buda, Waldemar

    For the photocatalytic removal of bisphenol A (BPA) and carbamazepine (CBZ) from water solution a new multiwall-carbon nanotubes and TiO{sub 2}/SiO{sub 2} nanocomposites (MWCNT–TiO{sub 2}–SiO{sub 2}) were applied. Nanocomposites with the addition of 0.15–17.8 wt% MWCNT show high potential for the removal of both pollutants. The starting concentration of each contaminant was halved during 20 min of UVA irradiation. The decomposition process of CBZ over investigated nanocomposites proceeded differently than it was observed for the classical photocatalyst P25. The kinetics of the removal followed as a pseudo-first order regime with the k{sub 1} in range 0.0827–0.1751 min{sup −1} for BPA andmore » 0.0131–0.0743 min{sup −1} for CBZ. Toxicity to Vibrio fischeri and Daphnia magna was significantly reduced indicating formation of non-toxic products of photooxidation of tested contaminants. - Highlights: • MWCNT enhanced TiO{sub 2} activity in UVA and the removal of BPA and CBZ. • At least 50% PPCPs removal during 30 min of photocatalytic treatment was observed. • MWCNT changed the mechanism of CBZ decomposition but not BPA. • Decomposition products of both BPA and CBZ possessed low toxicity. • Photocatalysis may be recommended for the initial treatment of pharmaceutical wastewater.« less

  14. Computer simulation of a cellular automata model for the immune response in a retrovirus system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, R.B.

    1989-02-01

    Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viralmore » cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B/sub ca/ (B/sub cq/). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B/sub ca/ (B/sub cq/).« less

  15. Tritium contamination at EG&G/EM in North Las Vegas, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, C.V.; Arent, L.J.

    1996-06-01

    The tritium contamination discovered at the EG&G Energy Measurements (EG&G/EM) facility in North Las Vegas, Nevada, on 20 April 1995, could have been averted by good health physics practices and/or adequate management oversight. Scandium tritide (ScT{sub 3}) targets were installed for use in sealed tube neutron generators at EG&G/EM. In addition, EG&G/EM was also storing zirconium tritide (ZrT{sub 3}) and titanium tritide (TiT{sub 3}) foils. Since the targets were classified as sealed sources, the appropriate administrative and engineering control measures such as relocating targets/sources, air monitoring, bioassay, waste stream management, labeling/posting and training were not implemented. In all there weremore » six unreported incidents of tritium contamination from March 1994 to July 1995. Swipe surveys revealed areas exceeding the action level of 10,000 dpm/100 cm{sup 2} by up to three orders of magnitude. After reclassifying the targets as unsealed sources, a bioassay program was instituted, and the results were higher than expected for three employees. The doses assigned to the three individuals working in the contaminated area were 35, 58, and 61 mrem committed effective dose equivalent. Though the doses were low, the decontamination costs were in excess of $350,000.00. An investigation, was initiated by the U.S. Department of Energy Nevada Operations Office to analyze the events that led to the tritium contamination and recommend actions to prevent recurrence. Event and causal factor charting, Project Evaluation Tree (PET) analysis techniques, and root cause analysis, were used to evaluate management systems, causal sequences, and systems factors contributing to the tritium release.« less

  16. Freshwater Vulnerability to Nitrate Contamination as an Indicator of Sustainability and Resilience within the Water-Energy-Food Nexus of the California Coastal Basins

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Geyer, G.; Gurdak, J. J.; Orencio, P. M.; Endo, A.; Taniguchi, M.

    2014-12-01

    The California Coastal Basin (CCB) aquifers are representative of many coastal aquifers that are vulnerable to nonpoint-source (NPS) contamination from intense agriculture and increased urbanization combined with historical groundwater use and overdraft conditions. Overdraft has led to seawater intrusion along parts of the central California coast, which negatively affects food production because of high salinity concentrations in groundwater used for irrigation. Recent drought conditions in California have led to an increased need to further understand freshwater sustainability and resilience within the water-energy-food (WEF) nexus. Assessing the vulnerability of NPS contamination in groundwater provides valuable information for optimal resource management and policy. Vulnerability models of nitrate contamination in the CCB were developed as one of many indicators to evaluate risk in terms of susceptibility of the physical environment at local and regional scales. Multivariate logistic regression models were developed to predict the probability of NPS nitrate contamination in recently recharged groundwater and to identify significant explanatory variables as controlling factors in the CCB. Different factors were found to be significant in the sub-regions of the CCB and issues of scale are important. For example, land use is scale dependent because of the difference in land management practices between the CCB sub-regions. However, dissolved oxygen concentrations in groundwater, farm fertilizer, and soil thickness are scale invariant because they are significant both regionally and sub-regionally. Thus, the vulnerability models for the CCB show that different explanatory variables are scale invariant. This finding has important implications for accurately quantifying linkages between vulnerability and consequences within the WEF nexus, including inherent tradeoffs in water and food production in California and associated impacts on the local and regional economy, governance, environment, and society at multiple scales.

  17. Lead detection in living plant tissue using a new histochemical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glater, R.A.B.; Hernandez, L. Jr.

    1972-06-01

    A quick, simple method for identifying and distinguishing lead from other heavy metals in living plants has been developed using sodium rhodizonate (C/sub 6/O/sub 6/Na/sub 2/) which forms a scarlet precipitate with lead at approximately pH 2.8. Hand sections of plant tissues are treated with rhodizonate reagent, buffered, and examined microscopically. Very little time and/or effect is required for this method. Those cells and tissues contaminated with lead turn scarlet - color intensity being directly related to concentration. Lead may be detected in quite low concentrations and, most importantly, may be observed in situ; its entry and movement through themore » plant can thus be followed. In an area of moderate traffic of Downey, California (Southeast Los Angeles), lead was found abundantly on leaves as well as on and in roots of garden-grown lettuce; origin of this lead is presumed to be from car exhausts.« less

  18. Preventing CO poisoning in fuel cells

    DOEpatents

    Gottesfeld, Shimshon

    1990-01-01

    Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

  19. Quantification of asymmetric microtubule nucleation at sub-cellular structures

    PubMed Central

    Zhu, Xiaodong; Kaverina, Irina

    2012-01-01

    Cell polarization is important for multiple physiological processes. In polarized cells, microtubules (MTs) are organized into a spatially polarized array. Generally, in non-differentiated cells, it is assumed that MTs are symmetrically nucleated exclusively from centrosome (microtubule organizing center, MTOC) and then reorganized into the asymmetric array. We have recently identified the Golgi complex as an additional MTOC that asymmetrically nucleates MTs toward one side of the cell. Methods used for alternative MTOC identification include microtubule re-growth after complete drug-induced depolymerization and tracking of growing microtubules using fluorescence labeled MT +TIP binding proteins in living cells. These approaches can be used for quantification of MT nucleation sites at diverse sub-cellular structures. PMID:21773933

  20. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy.

    PubMed

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-01-18

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.

  1. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.

  2. Vitamin D endocrine system after short-term space flight

    NASA Technical Reports Server (NTRS)

    Rhoten, William B. (Principal Investigator); Sergeev, Igor N. (Principal Investigator)

    1996-01-01

    The exposure of the body to microgravity during space flight causes a series of well-documented changes in Ca(2+) metabolism, yet the cellular/molecular mechanisms leading to these changes are poorly understood. There is some evidence for microgravity-induced alterations in the vitamin D endocrine system, which is known to be primarily involved in the regulation of Ca(2+) metabolism. Vitamin D-dependent Ca(2+) binding proteins, or calbindins, are believed to have a significant role in maintaining cellular Ca(2+) homeostasis. We used immunocytochemical, biochemical and molecular approaches to analyze the expression of calbindin-D(sub 28k) and calbindin-D(sub 9k) in kidneys and intestines of rats flown for 9 days aboard the Spacelab 3 mission. The effects of microgravity on calbindins in rats in space vs. 'grounded' animals (synchronous Animal Enclosure Module controls and tail suspension controls) were compared. Exposure to microgravity resulted in a significant decrease in calbindin-D(sub 28k) content in kidneys and calbindin-D(sub 9k) in the intestine of flight and suspended animals, as measured by enzyme-linked immunosorbent assay (ELISA). Immunocytochemistry (ICC) in combination with quantitative computer image analysis was used to measure in situ the expression of calbindins in kidneys and intestine, and insulin in pancreas. There was a large decrease in the distal tubular cell-associated calbindin-D(sub 28k) and absorptive cell-associated calbindin-D(sub 9k) immunoreactivity in the space and suspension kidneys and intestine, as compared with matched ground controls. No consistent differences in pancreatic insulin immunoreactivity between space, suspension and ground controls was observed. There were significant correlations between results by quantitative ICC and ELISA. Western blot analysis showed no consistent changes in the low levels of intestinal and renal vitamin D receptors. These findings suggest that a decreased expression of calbindins after a short-term exposure to microgravity and modelled weightlessness, may affect cellular Ca(2+) homeostasis and contribute to Ca(2+) and bone metabolism disorders induced by space flight.

  3. Test rig and particulate deposit and cleaning evaluation processes using the same

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

  4. Current Status of Aerosol Retrievals from TOMS

    NASA Technical Reports Server (NTRS)

    Torres, O.; Herman, J. R.; Bhartia, P. K.; Ginoux, P.

    1999-01-01

    Properties of atmospheric aerosols over all land and water surfaces are retrieved from TOMS measurements of backscattered radiances. The TOMS technique, uses observations at two wavelengths. In the near ultraviolet (330-380 nm) range, where the effects of gaseous absorption are negligible. The retrieved properties are optical depth and a measure of aerosol absorptivity, generally expressed as single scattering albedo. The main sources of error of the TOMS aerosol products are sub-pixel cloud contamination and uncertainty on the height above the surface of UV-absorbing aerosol layers. The first error source is related to the large footprint (50 x 50 km at nadir) of the sensor, and the lack of detection capability of sub-pixel size clouds. The uncertainty associated with the height of the absorbing aerosol layers, on the other hand, is related to the pressure dependence of the molecular scattering process, which is the basis of the near-UV method of absorbing aerosol detection. The detection of non-absorbing aerosols is not sensitive to aerosol layer height. We will report on the ongoing work to overcome both of these difficulties. Coincident measurements of high spatial resolution thermal infrared radiances are used to address the cloud contamination issue. Mostly clear scenes for aerosol retrieval are selected by examining the spatial homogeneity of the IR radiance measurements within a TOMS pixel. The approach to reduce the uncertainty associated with the height of the aerosol layer by making use of a chemical transport model will also be discussed.

  5. Estimating the fates of organic contaminants in an aquifer using QSAR.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2013-01-01

    The quantitative structure activity relationship (QSAR) model, BIOWIN, was modified to more accurately estimate the fates of organic contaminants in an aquifer. The predictions from BIOWIN were modified to include oxidation and sorption effects. The predictive model therefore included the effects of sorption, biodegradation, and oxidation. A total of 35 organic compounds were used to validate the predictive model. The majority of the ratios of predicted half-life to measured half-life were within a factor of 2 and no ratio values were greater than a factor of 5. In addition, the accuracy of estimating the persistence of organic compounds in the sub-surface was superior when modified by the relative fraction adsorbed to the solid phase, 1/Rf, to that when modified by the remaining fraction of a given compound adsorbed to a solid, 1 - fs.

  6. THE MID-INFRARED EXTINCTION LAW IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jian; Jiang, B. W.; Xue, M. Y.

    Based on photometric data from the Spitzer/SAGE survey, using red giants as extinction tracers, the mid-infrared (MIR) extinction laws in the Large Magellanic Cloud (LMC) are derived for the first time in the form of A{sub λ}/A{sub K{sub S}}. This quantity refers to the extinction in the four Infrared Array Camera (IRAC) bands (i.e., [3.6], [4.5], [5.8], and [8.0] μm) relative to the Two Micron All Sky Survey K{sub S} band at 2.16 μm. We obtain the near-infrared extinction coefficient to be E(J – H)/E(H – K{sub S} ) ≈ 1.29 ± 0.04 and E(J – K{sub S} )/E(H –more » K{sub S} ) ≈ 1.94 ± 0.04. The wavelength dependence of the MIR extinction A{sub λ}/A{sub K{sub S}} in the LMC varies from one sightline to another. The overall mean MIR extinction is A{sub [3.6]}/A{sub K{sub S}}∼0.72±0.03, A{sub [4.5]}/A{sub K{sub S}}∼0.94±0.03, A{sub [5.8]}/A{sub K{sub S}}∼0.58±0.04, and A{sub [8.0]}/A{sub K{sub S}}∼0.62±0.05. Except for the extinction in the IRAC [4.5] μm band, which may be contaminated by the 4.6 μm CO gas absorption of red giants used to trace LMC extinction, the extinction in the other three IRAC bands show a flat curve, close to the Milky Way R{sub V} = 5.5 model extinction curve, where R{sub V} is the optical total-to-selective extinction ratio. The possible systematic bias caused by the correlated uncertainties of K{sub S} – λ and J – K{sub S} is explored in terms of Monte Carlo simulations. We find that this bias could lead to an overestimation of A{sub λ}/A{sub K{sub S}} in the MIR.« less

  7. 3D membrane segmentation and quantification of intact thick cells using cryo soft X-ray transmission microscopy: A pilot study

    PubMed Central

    Klementieva, Oxana; Werner, Stephan; Guttmann, Peter; Pratsch, Christoph; Cladera, Josep

    2017-01-01

    Structural analysis of biological membranes is important for understanding cell and sub-cellular organelle function as well as their interaction with the surrounding environment. Imaging of whole cells in three dimension at high spatial resolution remains a significant challenge, particularly for thick cells. Cryo-transmission soft X-ray microscopy (cryo-TXM) has recently gained popularity to image, in 3D, intact thick cells (∼10μm) with details of sub-cellular architecture and organization in near-native state. This paper reports a new tool to segment and quantify structural changes of biological membranes in 3D from cryo-TXM images by tracking an initial 2D contour along the third axis of the microscope, through a multi-scale ridge detection followed by an active contours-based model, with a subsequent refinement along the other two axes. A quantitative metric that assesses the grayscale profiles perpendicular to the membrane surfaces is introduced and shown to be linearly related to the membrane thickness. Our methodology has been validated on synthetic phantoms using realistic microscope properties and structure dimensions, as well as on real cryo-TXM data. Results demonstrate the validity of our algorithms for cryo-TXM data analysis. PMID:28376110

  8. In vitro cytogenetic studies of organic chemicals found as contaminants in spacecraft cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Torres, J.

    1986-01-01

    Astronauts can be exposed during spaceflight to organic chemical contaminants in the spacecraft cabin atmosphere. Toxic exposures may cause lesions in the cellular DNA which are subsequently expressed as sister-chromatid exchanges (SCE). Analysis of SCE is a sensitive short-term assay technique to detect and quantitate exposures to DNA-damaging (mutagenic) substances. The increase in SCE incidence over baseline (control) levels is generally proportional to the concentration of the mutagen and to the duration of exposure. Dichloromethane (methylene chloride) was chosen for this study since it occurred as an atmospheric contaminant in ten of the first 12 STS flights, and has been reported to have toxic and mutagenic effects in various test systems. Glutaraldehyde was chosen because relatively few data are available on the toxicity or mutagenicity of this common biological fixative, which is carried on STS flights for use in biological experiments. The BHK-21 baby hamster kidney cell line was the in vitro test system used in this study. Neither dichloromethane (10 ppm to 500 ppm) nor glutaraldehyde (1 ppm to 10 ppm) increased SCE levels following 20-hour exposure of BHK-21 cells to the test chemicals.

  9. Heavy metals in surface lake sediments on the Kola Penninsula as an index of air quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dauvalter, V.

    1996-12-31

    The investigations of heavy metal (Ni, Cu, Co, Zn, Pb, Cd, Hg) distribution in sediments of more than 100 lakes were carried out between 1989 and 1994. The study lakes are situated at different distances from two main heavy metal pollution sources of the Kola Peninsula-smelters of the Pechenganickel and Severonickel Companies. To assess the pollution extent of investigated lakes, values of factor and degree of contamination were calculated according to the method suggested by Hakanson (1980). Heavy metal contamination factor (C{sub f}) for each heavy metal was calculated as the quotient of concentration from the uppermost (0-1 cm) sedimentmore » to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region. Degree of contamination (C{sub d}) was defined as the sum of all contamination factors for studied heavy metals. To quantitatively express the potential ecological risk of given contaminants created for ecosystems, risk factor (Er) for each heavy metal has been calculated. Er takes into account the toxicity of a heavy metal and bioproduction index (BPI) of a lake. Risk index (RI) was determined as the sum of all ecological risk factor for studied heavy metals.« less

  10. A Random Forest Approach to Predict the Spatial Distribution ...

    EPA Pesticide Factsheets

    Modeling the magnitude and distribution of sediment-bound pollutants in estuaries is often limited by incomplete knowledge of the site and inadequate sample density. To address these modeling limitations, a decision-support tool framework was conceived that predicts sediment contamination from the sub-estuary to broader estuary extent. For this study, a Random Forest (RF) model was implemented to predict the distribution of a model contaminant, triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) (TCS), in Narragansett Bay, Rhode Island, USA. TCS is an unregulated contaminant used in many personal care products. The RF explanatory variables were associated with TCS transport and fate (proxies) and direct and indirect environmental entry. The continuous RF TCS concentration predictions were discretized into three levels of contamination (low, medium, and high) for three different quantile thresholds. The RF model explained 63% of the variance with a minimum number of variables. Total organic carbon (TOC) (transport and fate proxy) was a strong predictor of TCS contamination causing a mean squared error increase of 59% when compared to permutations of randomized values of TOC. Additionally, combined sewer overflow discharge (environmental entry) and sand (transport and fate proxy) were strong predictors. The discretization models identified a TCS area of greatest concern in the northern reach of Narragansett Bay (Providence River sub-estuary), which was validated wi

  11. Cell behavior related to implant surfaces with different microstructure and chemical composition: an in vitro analysis.

    PubMed

    Conserva, Enrico; Lanuti, Anna; Menini, Maria

    2010-01-01

    This paper reports on an in vitro comparison of osteoblast and mesenchymal stem cell (MSC) adhesion, proliferation, and differentiation related to two different surface treatments applied to the same implant design to determine whether the interaction between cells and implants is influenced by surface structure and chemical composition of the implants. Thirty-nine implants with a sandblasted (SB) surface and 39 implants with a grit-blasted and high-temperature acid-etched (GBAE) surface were used. The implant macrostructures and microstructures were analyzed by high- and low-voltage scanning electron microscopy (SEM) and by stereo-SEM. The surface chemical composition was investigated by energy dispersive analysis and x-ray photoemission spectroscopy. SaOS-2 osteoblasts and human MSCs were used for the evaluation of cell proliferation and alkaline phosphatase enzymatic activity in contact with the two surfaces. The GBAE surface showed fewer contaminants and a very high percentage of titanium (19.7%) compared to the SB surface (14.2%). The two surfaces showed similar mean roughness (Ra), but the depth (Rz) and density (RSm) of the porosity were significantly increased in the GBAE surface. The GBAE surface presented more osteoblast and MSC proliferation than the SB surface. No statistically significant differences in alkaline phosphatase activity were found between surfaces for either cellular line. The GBAE surface showed less surface contaminants and a higher percentage of titanium (19.7%) than the SB surface. The macro/micropore structured design and chemical composition of the GBAE surface allowed greater cell adhesion and proliferation and an earlier cell spreading but did not play an obvious role in in vitro cellular differentiation.

  12. Food decontamination using nanomaterials

    USDA-ARS?s Scientific Manuscript database

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  13. Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si

    NASA Astrophysics Data System (ADS)

    Yang, W.; Akey, A. J.; Smillie, L. A.; Mailoa, J. P.; Johnson, B. C.; McCallum, J. C.; Macdonald, D.; Buonassisi, T.; Aziz, M. J.; Williams, J. S.

    2017-12-01

    Au-hyperdoped Si, synthesized by ion implantation and pulsed laser melting, is known to exhibit a strong sub-band gap photoresponse that scales monotonically with the Au concentration. However, there is thought to be a limit to this behavior since ultrahigh Au concentrations (>1 ×1020c m-3 ) are expected to induce cellular breakdown during the rapid resolidification of Si, a process that is associated with significant lateral impurity precipitation. This work shows that the cellular morphology observed in Au-hyperdoped Si differs from that in conventional, steady-state cellular breakdown. In particular, Rutherford backscattering spectrometry combined with channeling and transmission electron microscopy revealed an inhomogeneous Au distribution and a subsurface network of Au-rich filaments, within which the Au impurities largely reside on substitutional positions in the crystalline Si lattice, at concentrations as high as ˜3 at. %. The measured substitutional Au dose, regardless of the presence of Au-rich filaments, correlates strongly with the sub-band gap optical absorptance. Upon subsequent thermal treatment, the supersaturated Au forms precipitates, while the Au substitutionality and the sub-band gap optical absorption both decrease. These results offer insight into a metastable filamentary regime in Au-hyperdoped Si that has important implications for Si-based infrared optoelectronics.

  14. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Lin-Ru; Chou, Chang-Wei; Wu, Jing-Ying

    2013-11-15

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20{sub NLS} mutant gene and examined polysome profile of cells that had been transfected with the S20{sub NLS} gene. As a result, we observed the formation of recombinant 40S carried S20{sub NLS} but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletionmore » and restoration, we were able to restrain the nuclear-resided S20{sub NLS} in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20{sub NLS} in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20{sub NLS} is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20{sub NLS}. • Cytoplasm-retained S20{sub NLS} is crucial for creating a functional small subunit.« less

  15. Development of Novel Decontamination Techniques for Chemical Agents (GB, VX, HD) Contaminated Facilities. Phase II. Laboratory Evaluation of Novel Agent Decontamination Concepts

    DTIC Science & Technology

    1985-06-21

    mild steel, unpainted mild steel, and porous (i.e., concrete and unglazed porcelain ) test coupons contaminated with agent to a hot-gas composition near...unpainted *’ mild steel, painted stainless steel, concrete, and unglazed porcelain * coupons contaminated with HD, GB, or VX. The detectable limit for the Sub...similar decontamination efficiency was observable in the concrete and unglazed porcelain tests for an initial dose level of 1.8 mg agent/g of material

  16. MASS TRANSPORT EFFECTS ON THE KINETICS OF NITROBENZENE REDUCTION BY IRON METAL. (R827117)

    EPA Science Inventory

    To evaluate the importance of external mass transport on the overall rates of
    contaminant reduction by iron metal (Fe0), we have compared measured
    rates of surface reaction for nitrobenzene (ArNO2) to estimated rates
    of external mass transport...

  17. Speciation And Distribution Of Vanadium In Drinking Water Iron Pipe Corrosion By-Products

    EPA Science Inventory

    Vanadium (V) when ingested from drinking water in high concentrations (> 15 µg L-1) is a potential health risk and is on track to becoming a regulated contaminant. High concentrations of V have been documented in lead corrosion by-products as Pb5(V5+

  18. Distinct Structural Behavior and Transport of TiO2 Nano- and Nanostructured Particles in Sand

    EPA Science Inventory

    Environmental impact of TiO2 particles along with other widely-used nanomaterials as a new class of contaminants has recently emerged. Due to the lack of detailed information and proper understanding of their properties as a result of synthesis (nanoparticles vs nanost...

  19. Removal of Trichloroethylene by Activated Carbon in the Presence and Absence of TiO2 Nanoparticles

    EPA Science Inventory

    Nanoparticles (NPs) are emerging as a new type of contaminant in water and wastewater. The fate of titanium dioxide nanoparticles (TiO2NPs) in a granular activated carbon (GAC) adsorber and their impact on the removal of trichloroethylene (TCE) by GAC was investigated...

  20. Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells.

    PubMed

    Manda, Gina; Mocanu, Mihaela Andreea; Marin, Daniela Eliza; Taranu, Ionelia

    2015-02-16

    Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37-1.50 μM), relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics.

  1. Atacama perchlorate as an agricultural contaminant in groundwater: Isotopic and chronologic evidence from Long Island, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlke, J. K.; Hatzinger, Paul B.; Sturchio, N. C.

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is a common groundwater constituent with both synthetic and natural sources. A potentially important source of ClO{sub 4}{sup -} is past agricultural application of ClO{sub 4}{sup -}-bearing natural NO{sub 3}{sup -} fertilizer imported from the Atacama Desert, Chile, but evidence for this has been largely circumstantial. Here we report ClO{sub 4}{sup -} stable isotope data ({delta}{sup 37}Cl, {delta}{sup 18}O, and {Delta}{sup 17}O), along with other supporting chemical and isotopic environmental tracer data, to document groundwater ClO{sub 4}{sup -} contamination sources and history in parts of Long Island, New York. Sampled groundwaters were oxic and ClO{sub 4}{supmore » -} apparently was not affected by biodegradation within the aquifers. Synthetic ClO{sub 4}{sup -} was indicated by the isotopic method in groundwater near a fireworks disposal site at a former missile base. Atacama ClO{sub 4}{sup -} was indicated in agricultural and urbanizing areas in groundwaters with apparent ages >20 years. In an agricultural area, ClO{sub 4}{sup -} concentrations and ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratios increased with groundwater age, possibly because of decreasing application rates of Atacama NO{sub 3}{sup -} fertilizers and/or decreasing ClO{sub 4}{sup -} concentrations in Atacama NO{sub 3}{sup -} fertilizers in recent years. Because ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratios of Atacama NO{sub 3}{sup -} fertilizers imported in the past (2 x 10{sup -3} mol mol{sup -1}) were much higher than the ClO{sub 4}{sup -}/NO{sub 3}{sup -} ratio of recommended drinking-water limits (7 x 10{sup -5} mol mol{sup -1} in New York), ClO{sub 4}{sup -} could exceed drinking-water limits even where NO{sub 3}{sup -} does not, and where Atacama NO{sub 3}{sup -} was only a minor source of N. Groundwater ClO{sub 4}{sup -} with distinctive isotopic composition was a sensitive indicator of past Atacama NO{sub 3}{sup -} fertilizer use on Long Island and may be common in other areas that received NO{sub 3}{sup -} fertilizers from the late 19th century through the 20th century.« less

  2. Circumpolar contaminant concentrations in polar bears (Ursus maritimus) and potential population-level effects.

    PubMed

    Nuijten, R J M; Hendriks, A J; Jenssen, B M; Schipper, A M

    2016-11-01

    Polar bears (Ursus maritimus) currently receive much attention in the context of global climate change. However, there are other stressors that might threaten the viability of polar bear populations as well, such as exposure to anthropogenic pollutants. Lipophilic organic compounds bio-accumulate and bio-magnify in the food chain, leading to high concentrations at the level of top-predators. In Arctic wildlife, including the polar bear, various adverse health effects have been related to internal concentrations of commercially used anthropogenic chemicals like PCB and DDT. The extent to which these individual health effects are associated to population-level effects is, however, unknown. In this study we assembled data on adipose tissue concentrations of ∑PCB, ∑DDT, dieldrin and ∑PBDE in individual polar bears from peer-reviewed scientific literature. Data were available for 14 out of the 19 subpopulations. We found that internal concentrations of these contaminants exceed threshold values for adverse individual health effects in several subpopulations. In an exploratory regression analysis we identified a clear negative correlation between polar bear population density and sub-population specific contaminant concentrations in adipose tissue. The results suggest that adverse health effects of contaminants in individual polar bears may scale up to population-level consequences. Our study highlights the need to consider contaminant exposure along with other threats in polar bear population viability analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Design and evaluation of a novel subatmospheric pressure bioreactor for the preconditioning of tissue-engineered vascular constructs.

    PubMed

    Coakley, Daniel N; Shaikh, Faisal M; O'Sullivan, Kathleen; Kavanagh, Eamon G; Grace, Pierce A; McGloughlin, Tim M

    2016-02-01

    The pre-conditioning of tissue-engineered vascular scaffolds with mechanical stimuli is being recognised as an essential step in producing a functional vascular construct. In this study we design and evaluate a novel bioreactor, which exerts a mechanical strain on developing vascular scaffolds via subatmospheric pressure. We design and construct a bioreactor, which exerts subatmospheric pressure via a vacuum assisted closure unit. Vascular scaffolds seeded with human umbilical endothelial cells were evaluated for structural integrity, microbial contamination, cellular viability, von Willebrand factor (VWF) production, cell proliferation and morphology under a range of subatmospheric pressures (75-200mmHg). The bioreactor produced sustained subatmospheric pressures, which exerted a mechanical strain on the vascular scaffold. No microbial contamination was found during the study. The structural integrity of the vascular construct was maintained. There was no difference in cellular viability between control or subatmospheric pressure groups (p = 0.817). Cells continued to produce VWF under a range of subatmospheric pressures. Cells subjected to subatmospheric pressures of 125mmHg and 200mmHg exhibited higher levels of growth than cells in atmospheric pressure at 24 (p≤0.016) and 48 hour (p≤0.001). Negative pressure affected cellular morphology, which were more organised, elongated and expanded when exposed to subatmospheric pressure. We have constructed and validated a novel subatmospheric bioreactor. The bioreactor maintained a continuous subatmospheric pressure to the vascular scaffolds in a stable, sterile and constant environment. The bioreactor exerted a strain on the vascular sheets, which was shown to alter cellular morphology and enhance cellular proliferation.

  4. Key determinants of AIDS impact in Southern sub-Saharan Africa.

    PubMed

    Shandera, Wayne Xavier

    2007-11-01

    To investigate why Southern sub-Saharan Africa is more severely impacted by HIV and AIDS than other parts of sub-Saharan Africa, I conducted a review of the literature that assessed viral, host and transmission (societal) factors. This narrative review evaluates: 1) viral factors, in particular the aggregation of subtype-C HIV infections in Southern sub-Saharan Africa; 2) host factors, including unique behaviour patterns, concomitant high prevalence of sexually transmitted diseases, circumcision patterns, average age at first marriage and immunogenetic determinants; and, 3) transmission and societal factors, including levels of poverty, degrees of literacy, migrations of people, extent of political corruption, and the usage of contaminated injecting needles in community settings. HIV prevalence data and published indices on wealth, fertility, and governmental corruption were correlated using statistical software. The high prevalence of HIV in Southern sub-Saharan Africa is not explained by the unusual prevalence of subtype-C HIV infection. Many host factors contribute to HIV prevalence, including frequency of genital ulcerating sexually transmitted infections, absence of circumcision (compiled odds ratios suggest a protective effect of between 40% and 60% from circumcision), and immunogenetic loci, but no factor alone explains the high prevalence of HIV in the region. Among transmission and societal factors, the wealthiest, most literate and most educated, but also the most income-disparate, nations of sub-Saharan Africa show the highest HIV prevalence. HIV prevalence is also highest within societies experiencing significant migration and conflict as well as in those with government systems experiencing a high degree of corruption. The interactions between poverty and HIV transmission are complex. Epidemiologic studies currently do not suggest a strong role for the community usage of contaminated injecting needles. Areas meriting additional study include clade type, host immunogenetic determinants, the complex interrelationship of HIV with poverty, and the community usage of contaminated injecting needles.

  5. Chemistry and phytotoxicity of arsenic in soils. II. Effects of time and phosphorus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolson, E.A.; Axley, J.H.; Kearney, P.C.

    Arsenate from sodium arsenate changes to less soluble compounds in soils with time. To study these changes, the arsenic soluble in 1N NH/sub 4/Cl, 0.5N NH/sub 4/F, 0.1N NaOH, and 0.5N H/sub 2/SO/sub 4/ solutions was determined. These dissolved arsenates, were designated as WS-As (water soluble, Al-As, Fe-As, or Ca-As, respectively. The percent of WS-As present was proportional to As added and inversely proportional to time, and to the Fe and Al content. Fe-As was the predominant form of As in Hagerstown silty clay loam while Al-As predominated in Lakeland loamy sand. Growth of corn (Zea mays) increased with increasemore » in time of As incubation in the soil before planting. Arsenic phytotoxicity and As in the plant were altered by P additions. Arsenic residues in the Lakeland soil became more phytotoxic, while residues in the Hagerstown soil became less phytotoxic with P additions. This plant response was related to the availability of As and P in these soils. Leaching with 0.05 M KH/sub 2/PO/sub 4/ removed 77% of the total As from a contaminated Dunkirk fine sand. The distribution of the forms of As in this soil changed during leaching. 26 references, 3 figures, 4 tables.« less

  6. Spatially resolved emission of a high-redshift DLA galaxy with the Keck/OSIRIS IFU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgenson, Regina A.; Wolfe, Arthur M., E-mail: raj@ifa.hawaii.edu

    2014-04-10

    We present the first Keck/OSIRIS infrared IFU observations of a high-redshift damped Lyα (DLA) galaxy detected in the line of sight to a background quasar. By utilizing the Laser Guide Star Adaptive Optics to reduce the quasar point-spread function to FWHM ∼ 0.''15, we were able to search for and map the foreground DLA emission free from the quasar contamination. We present maps of the Hα and [O III] λλ5007, 4959 emission of DLA 2222–0946 at a redshift of z ∼ 2.35. From the composite spectrum over the Hα emission region, we measure a star formation rate of 9.5 ±more » 1.0 M {sub ☉} yr{sup –1} and a dynamical mass of M {sub dyn} = 6.1 × 10{sup 9} M {sub ☉}. The average star formation rate surface density is (Σ{sub SFR}) = 0.55 M {sub ☉} yr{sup –1} kpc{sup –2}, with a central peak of 1.7 M {sub ☉} yr{sup –1} kpc{sup –2}. Using the standard Kennicutt-Schmidt relation, this corresponds to a gas mass surface density of Σ{sub gas} = 243 M {sub ☉} pc{sup –2}. Integrating over the size of the galaxy, we find a total gas mass of M {sub gas} = 4.2 × 10{sup 9} M {sub ☉}. We estimate the gas fraction of DLA 2222–0946 to be f {sub gas} ∼ 40%. We detect [N II] λ6583 emission at 3σ significance with a flux corresponding to a metallicity of 75% solar. Comparing this metallicity with that derived from the low-ion absorption gas ∼6 kpc away, ∼30% solar, indicates possible evidence for a metallicity gradient or enriched in/outflow of gas. Kinematically, both Hα and [O III] emission show relatively constant velocity fields over the central galactic region. While we detect some red and blueshifted clumps of emission, they do not correspond with rotational signatures that support an edge-on disk interpretation.« less

  7. Single cell genomic study of Dehalococcoidites in deep sea sediments of Peru Margin 1230

    NASA Astrophysics Data System (ADS)

    Kaster, A.; Meyer-Blackwell, K.; Spormann, A. M.

    2013-12-01

    Dehalogenating Chloroflexi, such as Dehalococcoidites Dhc were originally discovered as the key microorganisms mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene. Molecular and genomic studies on their key enzymes for energy conservation, reductive dehalogenases rdh, have provided evidence for ubiquitous horizontal gene transfer. A pioneering study by Futagami et al. discovered novel putative rdh phylotypes in sediments from the Pacific, revealing an unknown and surprising abundance of rdh genes in pristine habitats. The frequent detection of Dhc-related 16S rRNA genes from these environments implied the occurrence of dissimilatory dehalorespiration in marine subsurface sediments, however, pristine Dhc could never be linked to this activity. Despite being ubiquitous in those environments, metabolic life style or ecological function of Dhc in the absence of anthropogenic contaminants is still completely unknown. We therefore analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site by a single cell genomic (SGC) approach. We present for the first time data on three single Dhc cells, helping to elucidate their role in the poorly understood oligotrophic marine sub-surface environment.

  8. Dynamics of Active Microfilaments

    NASA Astrophysics Data System (ADS)

    Ling, Feng; Guo, Hanliang; Kanso, Eva

    2017-11-01

    Soft elastic filaments are ubiquitous in natural and artificial systems at various length scales, and their interactions within and between filaments and their environments provide a persistent source of curiosity due to both the complexity of their behaviors and the relative mathematical simplicity of their structures. Specifically, a deeper understanding of the dynamic characteristics of microscopic filaments in viscous fluids is relevant to many biophysical and physiological processes. Here we start with the Cosserat model that allows all six possible modes of deformation for an elastic rod, and focus on the case of inextensible filaments submerged in viscous fluids by ignoring inertial effects and using local resistive force theory for fluid-filament interactions. We verify our simulations against special analytic solutions and present some results on the active internal control of cilia and flagella motion. We conclude by commenting on the utility of this general framework for studying other cellular and sub-cellular physical processes such as systems involving protein filaments.

  9. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. © 2015 Authors; published by Portland Press Limited.

  10. High efficiency virtual impactor

    DOEpatents

    Loo, B.W.

    1980-03-27

    Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor for separating an inlet flow (Q/sub 0/) having particulate contaminants into a coarse particle flow (Q/sub 1/) and a fine particle flow (Q/sub 2/) to enable collection of such particles on different filters for separate analysis. An inlet particle acceleration nozzle and coarse particle collection probe member having a virtual impaction opening are aligned along a single axis and spaced apart to define a flow separation region at which the fine particle flow (Q/sub 2/) is drawn radially outward into a chamber while the coarse particle flow (Q/sub 1/) enters the virtual impaction opening.

  11. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing.

    PubMed

    Siebman, Coralie; Velev, Orlin D; Slaveykova, Vera I

    2015-06-15

    An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm⁻¹, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10⁻⁵ M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.

  12. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsuwaidi, Ahmed R., E-mail: alsuwaidia@uaeu.ac.ae; Albawardi, Alia, E-mail: alia.albawardi@uaeu.ac.ae; Almarzooqi, Saeeda, E-mail: saeeda.almarzooqi@uaeu.ac.ae

    2014-04-15

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O{sub 2} consumption) and ATPmore » following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection.« less

  13. Current Status of Mycotoxin Contamination of Food Commodities in Zimbabwe.

    PubMed

    Nleya, Nancy; Adetunji, Modupeade Christianah; Mwanza, Mulunda

    2018-05-03

    Agricultural products, especially cereal grains, serve as staple foods in sub-Saharan Africa. However, climatic conditions in this region can lead to contamination of these commodities by moulds, with subsequent production of mycotoxins posing health risks to both humans and animals. There is limited documentation on the occurrence of mycotoxins in sub-Saharan African countries, leading to the exposure of their populations to a wide variety of mycotoxins through consumption of contaminated foods. This review aims at highlighting the current status of mycotoxin contamination of food products in Zimbabwe and recommended strategies of reducing this problem. Zimbabwe is one of the African countries with very little information with regards to mycotoxin contamination of its food commodities, both on the market and at household levels. Even though evidence of multitoxin occurrence in some food commodities such as maize and other staple foods exist, available published research focuses only on Aspergillus and Fusarium mycotoxins, namely aflatoxins, deoxynivalenol (DON), trichothecenes, fumonisins, and zearalenone (ZEA). Occurrence of mycotoxins in the food chain has been mainly associated with poor agricultural practices. Analysis of mycotoxins has been done mainly using chromatographic and immunological methods. Zimbabwe has adopted European standards, but the legislation is quite flexible, with testing for mycotoxin contamination in food commodities being done voluntarily or upon request. Therefore, the country needs to tighten its legislation as well as adopt stricter standards that will improve the food safety and security of the masses.

  14. Sub-cellular distribution and translocation of TRP channels.

    PubMed

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izquierdo-Vega, Jeannett A.; FES-Cuautitlan. UNAM. Cuautitlan Izcalli, Estado de Mexico; Sanchez-Gutierrez, Manuel

    Fluorosis, caused by drinking water contamination with inorganic fluoride, is a public health problem in many areas around the world. The aim of the study was to evaluate the effect of environmentally relevant doses of fluoride on in vitro fertilization (IVF) capacity of spermatozoa, and its relationship to spermatozoa mitochondrial transmembrane potential ({delta}{psi}{sub m}). Male Wistar rats were administered at 5 mg fluoride/kg body mass/24 h, or deionized water orally for 8 weeks. We evaluated several spermatozoa parameters in treated and untreated rats: i) standard quality analysis, ii) superoxide dismutase (SOD) activity, iii) the generation of superoxide anion (O{sub 2}{supmore » {center_dot}}{sup -}), iv) lipid peroxidation concentration, v) ultrastructural analyses of spermatozoa using transmission electron microscopy, vi) {delta}{psi}{sub m}, vii) acrosome reaction, and viii) IVF capability. Spermatozoa from fluoride-treated rats exhibited a significant decrease in SOD activity ({approx} 33%), accompanied with a significant increase in the generation of O{sub 2}{sup {center_dot}} ({approx} 40%), a significant decrease in {delta}{psi}{sub m} ({approx} 33%), and a significant increase in lipid peroxidation concentration ({approx} 50%), relative to spermatozoa from the control group. Consistent with this finding, spermatozoa from fluoride-treated rats exhibited altered plasmatic membrane. In addition, the percentage of fluoride-treated spermatozoa capable of undergoing the acrosome reaction was decreased relative to control spermatozoa (34 vs. 55%), while the percentage fluoride-treated spermatozoa capable of oocyte fertilization was also significantly lower than the control group (13 vs. 71%). These observations suggest that subchronic exposure to fluoride causes oxidative stress damage and loss of mitochondrial transmembrane potential, resulting in reduced fertility.« less

  16. Integrated multi-biomarker responses in two dreissenid species following metal and thermal cross-stress.

    PubMed

    Potet, Marine; Devin, Simon; Pain-Devin, Sandrine; Rousselle, Philippe; Giambérini, Laure

    2016-11-01

    With current global changes, the combination of several stressors such as temperature and contaminants may impact species distribution and ecosystem functioning. In this study, we evaluated the combined impact of two metals (Ni and Cr) with a thermal stress (from 12 to 17 °C) on biomarker responses in two bivalves, Dreissena rostriformis bugensis and Dreissena polymorpha. Biomarkers are informative tools to evaluate exposure and effects of stressors on organisms. The set of 14 biomarkers measured here was representative of both physiologic (filtration activity) and cellular antioxidant and detoxification mechanisms. Our aim was to study the response pattern of both species, and its meaning in terms of invasive potential. The implications for the use of these mussels in environmental monitoring are also discussed. Results evidenced that the two species do not respond to multiple stressors in the same way. Indeed, the effects of contamination on biomarker responses were more marked for D. polymorpha, especially under nickel exposure. While we cannot conclude as to the effect of temperature, invasiveness could be influenced by species sensitivity to contaminants. The physiological and cellular differences between D. polymorpha and D. r. bugensis might also be of concern for environmental risk assessment. The two species present differential bioaccumulation patterns, filtration activity and cellular biomarker responses. If D. polymorpha populations decline, their substitution by D. r. bugensis for biomonitoring or laboratory studies will not be possible without a deeper understanding of biomarker responses of the new invasive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. HYDRODEHALOGENATION OF 1- TO 3-CARBON HALOGENATED ORGANIC COMPOUNDS IN WATER USING A PALLADIUM CATALYST AND HYDROGEN GAS. (R825421)

    EPA Science Inventory

    Supported palladium (Pd) metal catalysts along with H2 gas show
    significant potential as a technology which can provide rapid, on-site
    destruction of halogenated groundwater contaminants. Pd catalyzes the rapid
    hydrodehalogenation of nine 1- to 3-carbon ...

  18. MEASUREMENT OF PERCHLORATE IN WATER BY USE OF AN 18O-ENRICHED ISOTOPIC STANDARD AND ION CHROMATOGRAPHY WITH MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Perchlorate (ClO4-) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a compone...

  19. CATALYTIC HYDRODEHALOGENATION OF CHLORINATED ETHYLENES USING PALLADIUM AND HYDROGEN FOR THE TREATMENT OF CONTAMINATED WATER. (R825689C054,R825689C060)

    EPA Science Inventory

    Abstract

    A kinetic model is presented for the catalytic hydrodehalogenation of chlorinated ethylenes using Pd and H2 under water treatment conditions. All five chlorinated ethylenes, including tetrachloroethylene (PCE) and vinyl chloride, were completely rem...

  20. Determination of pseudogap state density and carrier mobility in rf sputtered amorphous silicon. Quarterly technical progress report, January-March 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, W

    1980-06-01

    The effect of a variety of plasma cleaning procedures on the level of bulk and interfacial contaminants in the films is analyzed by secondary ion mass spectrometry. Bulk levels of 0 have been reduced considerably by N/sub 2/ plasma cleaning, but no reproducible reductions in interfacial contamination have been achieved. A method is described of determining the gap state density N(epsilon) of a-Si:H from field effect, in which no assumptions are made about the form of the band bending in the semiconductor. The problem is reduced to three successive integrals over an assumed N(epsilon) by change of variable from distancemore » to applied voltage and the best fit to the experimental data is obtained by iteration of the assumed state density. The method is shown to be no less rigorous and considerably more economical than the recent analysis of Goodman, Fritzsche and Ozaki. In addition, an experimental means of determining the flat-band voltage to within 5% of the maximum gate voltage V/sub g/ used is demonstrated, by finding the value of V/sub g/ for which (kT/e)dlog I/sub SD//dV/sub g/ is independent of temperature.« less

  1. Demonstration Results for the Phytoextraction of Lead-Contaminated Soil at the Twin Cities Army Ammunition Plant, Arden Hills, Minnesota

    DTIC Science & Technology

    2000-07-01

    and leachate collection prior to approval of future phytoextraction at sites such as this. Lead Phytoremediation Demonstration 8-1...number) FIELD GROUP SUB-GROUP Phytoremediation of Lead-Contaminated Soil 19. ABSTRACT (Continue on reverse if necessary and identify by block number...editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE Lead Phytoremediation Demonstration

  2. Mitigation of radiation induced surface contamination

    DOEpatents

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  3. Thermal treatment wall

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  4. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism ofmore » phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.« less

  5. Evolution of thermoelectric performance for (Bi,Sb){sub 2}Te{sub 3} alloys from cutting waste powders to bulks with high figure of merit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Xi'an, E-mail: groupfxa@163.com; Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081; School of Materials and Metallurgy, Wuhan University of Science and Technology, 947 Heping Road, Qingshan District, Wuhan 430081

    Bi{sub 2}Te{sub 3} based cutting waste powders from cutting wafers were firstly selected as raw materials to prepare p-type Bi{sub 2}Te{sub 3} based thermoelectric (TE) materials. Through washing, reducing, composition correction, smelting and resistance pressing sintering (RPS) process, p-type (Bi,Sb){sub 2}Te{sub 3} alloy bulks with different nominal stoichiometries were successfully obtained. The evolution of microstructure and TE performance for (Bi,Sb){sub 2}Te{sub 3} alloys were investigated in detail. All evidences confirmed that most of contaminants from line cutting process such as cutting fluid and oxides of Bi, Sb or Te could be removed by washing, reducing and smelting process used inmore » this work. The carrier content and corresponding TE properties could be adjusted effectively by appropriate composition correction treatment. At lastly, a bulk with a nominal stoichiometry of Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} was obtained and its' dimensionless figure of merit (ZT) was about 1.16 at 90 °C. The ZT values of Bi{sub 0.36}Sb{sub 1.64}Te{sub 3} and Bi{sub 0.4}Sb{sub 1.6}Te{sub 3} alloy bulks could also reach 0.98 and 1.08, respectively. Different from the conventional recycling technology such as hydrometallurgy extraction methods, the separation and extraction of beneficial elements such as Bi, Sb and Te did not need to be performed and the Bi{sub 2}Te{sub 3} based bulks with high TE properties could be directly obtained from the cutting waste powders. In addition, the recycling technology introduced here was green and more suitable for practical industrial application. It can improve material utilization and lower raw material costs of manufacturers. - Graphical abstract: Three kinds of typical morphologies for the fractographs: typical lamellar structure, agglomerated submicron-sized granules and dispersed cubic particles from the initial cutting waste powders. - Highlights: • Bi{sub 2}Te{sub 3} based wastes were directly selected as raw materials for TE alloys. • Contaminants from cutting fluid and oxides could be effectively removed. • Bulk Bi{sub 0.44}Sb{sub 1.56}Te{sub 3} with ZT of 1.16 was obtained from Bi{sub 2}Te{sub 3} based wastes. • Different from hydrometallurgy, the recycling method introduced here was green. • Directly recycling Bi{sub 2}Te{sub 3} wastes can lower raw material costs of manufacturers.« less

  6. Accommodating permafrost in contaminant transport modeling, a preliminary approach to modify the TREECS modeling tools

    NASA Astrophysics Data System (ADS)

    Ryder, J. L.; Dortch, M. S.; Johnson, B. E.

    2017-12-01

    Efforts are underway to adapt TREECS (Training Range Environmental Evaluation and Characterization System) for use in arctic or subarctic conditions where the extent and duration of snowpack and frozen ground may influence the development and concentration of contaminant plumes. TREECS is a multi-media model designed to aid facility managers in the long term stewardship of Army properties. TREECS includes sub-models for mass loading, soil, vadose zone, aquifer, and stream transport. Potential changes to the sub-models to improve the ability to model contaminant transport in areas with permafrost include accurately representing the dissolution of contaminants over a wider range of temperatures, estimating snow depth and ablation for both the hydrology and thermal conditions, determining ground freeze/thaw state and an average active layer depth, a more precise method to estimate a vertical transport time to a water table, and a soil interflow routine that adapts for permafrost condition. In this presentation we will show three sub-model comparisons 1) the use of the National Weather Service SNOW-17 model and the current TREECS snowmelt routines for input hydrology, 2) a Continuous Frozen Ground Index (CFGI) model and the Geophysical Institute Permafrost Lab model (GIPL 1.0) for determining active layer depth and summer season length, and 3) the use of HYDRUS-1D and the current TREECS vadose zone model for transport to the water table. The performance vs input needs, assumptions, and limitations of each approach, as well as the physical system uncertainties will also be discussed.

  7. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    PubMed

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.

  8. Characterization of a new family of metal transport proteins. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerinot, M.L.

    1998-06-01

    'Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal-contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before the authors can engineer such plants, they need more basic informationmore » on how plants acquire metals. An important long term goal of the research program is to understand how metals such as zinc, cadmium and copper are transported across membranes. The research is focused on a new family of metal transporters which they have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. They have identified a family of 19 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which the authors have designated the ZIP genes, provides a rich source of material with which to undertake studies on metal transport in eukaryotes. The project has three main objectives: Objective 1: Determine the sub-cellular location of the ZIP proteins in Arabidopsis. Objective 2: Carry out a structure/function analysis of the proteins encoded by the ZIP gene family to identify regions of the protein responsible for substrate specificity and affinity. Objective 3: Engineer plants to overexpress and underexpress members of the ZIP gene family and analyze these transgenic plants for alterations in metal accumulation. They now know that manipulation of transporter levels will also require an understanding of post-transcriptional control of ZIP gene expression. They are currently in year one of a three-year project.'« less

  9. LoCuSS: THE MASS DENSITY PROFILE OF MASSIVE GALAXY CLUSTERS AT z = 0.2 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okabe, Nobuhiro; Umetsu, Keiichi; Smith, Graham P.

    We present a stacked weak-lensing analysis of an approximately mass-selected sample of 50 galaxy clusters at 0.15 < z < 0.3, based on observations with Suprime-Cam on the Subaru Telescope. We develop a new method for selecting lensed background galaxies from which we estimate that our sample of red background galaxies suffers just 1% contamination. We detect the stacked tangential shear signal from the full sample of 50 clusters, based on this red sample of background galaxies, at a total signal-to-noise ratio of 32.7. The Navarro-Frenk-White model is an excellent fit to the data, yielding sub-10% statistical precision on massmore » and concentration: M{sub vir}=7.19{sup +0.53}{sub -0.50} Multiplication-Sign 10{sup 14} h{sup -1} M{sub sun}, c{sub vir}=5.41{sup +0.49}{sub -0.45} (c{sub 200}=4.22{sup +0.40}{sub -0.36}). Tests of a range of possible systematic errors, including shear calibration and stacking-related issues, indicate that they are subdominant to the statistical errors. The concentration parameter obtained from stacking our approximately mass-selected cluster sample is broadly in line with theoretical predictions. Moreover, the uncertainty on our measurement is comparable with the differences between the different predictions in the literature. Overall, our results highlight the potential for stacked weak-lensing methods to probe the mean mass density profile of cluster-scale dark matter halos with upcoming surveys, including Hyper-Suprime-Cam, Dark Energy Survey, and KIDS.« less

  10. Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals

    DOEpatents

    Cohen, Bruce E.; Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Schuck, P. James; Milliron, Delia J.

    2017-01-31

    Certain nanocrystals possess exceptional optical properties that may make them valuable probes for biological imaging, but rendering these nanoparticles biocompatible requires that they be small enough not to perturb cellular systems. This invention describes a phosphorescent upconverting sub-10 nm nanoparticle comprising a lanthanide-doped hexagonal .beta.-phase NaYF.sub.4 nanocrystal and methods for making the same.

  11. Simian virus 40 (SV40)-like DNA sequences not detectable in finnish mesothelioma patients not exposed to SV40-contaminated polio vaccines.

    PubMed

    Hirvonen, A; Mattson, K; Karjalainen, A; Ollikainen, T; Tammilehto, L; Hovi, T; Vainio, H; Pass, H I; Di Resta, I; Carbone, M; Linnainmaa, K

    1999-10-01

    Occupational asbestos exposure can be demonstrated in 80% of mesothelioma cases. A possible role of simian virus 40 (SV40) in the etiology of mesothelioma was raised because several studies reported the presence and expression of SV40-like DNA sequences in human mesotheliomas. It is also known that expression of SV40 large T antigen inhibits cellular Rb and p53. This suggests that SV40 might render infected cells more susceptible to asbestos carcinogenicity. The SV40-like sequences are suggested to have arisen from contaminated polio vaccines. Millions of people in the United States and most European countries were inoculated with SV40-contaminated polio vaccine in 1955-1963. However, in Finland, where polio vaccination started in 1957, no SV40-contaminated vaccine was used. We used a polymerase chain reaction-based method to test for the presence of SV40-like sequences in DNA extracted from the frozen tumor tissues of 49 Finnish mesothelioma patients, most of whom had been occupationally exposed to asbestos. All of the Finnish tumor tissues tested negative for SV40-like sequences. The results suggest that the SV40-like sequences detected in mesothelioma tissue in some previous studies may indeed originate from SV40-contaminated polio vaccines. It is a matter of speculation whether the absence of SV40 infection has contributed to the relatively low incidence of mesothelioma in Finland (1/10(5) in 1990-1995). Copyright 1999 Wiley-Liss, Inc.

  12. Haem peroxidase activity in Daphnia magna: a biomarker for sub-lethal toxicity assessments of kerosene-contaminated groundwater.

    PubMed

    Connon, Richard; Dewhurst, Rachel E; Crane, Mark; Callaghan, Amanda

    2003-10-01

    A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.

  13. A unified algorithm for predicting partition coefficients for PBPK modeling of drugs and environmental chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peyret, Thomas; Poulin, Patrick; Krishnan, Kannan, E-mail: kannan.krishnan@umontreal.ca

    The algorithms in the literature focusing to predict tissue:blood PC (P{sub tb}) for environmental chemicals and tissue:plasma PC based on total (K{sub p}) or unbound concentration (K{sub pu}) for drugs differ in their consideration of binding to hemoglobin, plasma proteins and charged phospholipids. The objective of the present study was to develop a unified algorithm such that P{sub tb}, K{sub p} and K{sub pu} for both drugs and environmental chemicals could be predicted. The development of the unified algorithm was accomplished by integrating all mechanistic algorithms previously published to compute the PCs. Furthermore, the algorithm was structured in such amore » way as to facilitate predictions of the distribution of organic compounds at the macro (i.e. whole tissue) and micro (i.e. cells and fluids) levels. The resulting unified algorithm was applied to compute the rat P{sub tb}, K{sub p} or K{sub pu} of muscle (n = 174), liver (n = 139) and adipose tissue (n = 141) for acidic, neutral, zwitterionic and basic drugs as well as ketones, acetate esters, alcohols, aliphatic hydrocarbons, aromatic hydrocarbons and ethers. The unified algorithm reproduced adequately the values predicted previously by the published algorithms for a total of 142 drugs and chemicals. The sensitivity analysis demonstrated the relative importance of the various compound properties reflective of specific mechanistic determinants relevant to prediction of PC values of drugs and environmental chemicals. Overall, the present unified algorithm uniquely facilitates the computation of macro and micro level PCs for developing organ and cellular-level PBPK models for both chemicals and drugs.« less

  14. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp; Fujiwara, Yuki; Yamaguchi, Hideki

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however,more » its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.« less

  15. Characteristics of the uridine uptake system in normal and polyoma transformed hamster embryo cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemkin, J.A.

    1973-01-01

    The lability of the uridine uptake system in the normal and polyoma transformed hamster embryo fibroblast was studied. The major areas investigated were: the kinetic parameters of uridine transport, a comparison of changes in cellular ATP content by factors which modulate uridine uptake, and a comparison of the qualitative and quantitative effects of the same modulating agent on uridine transport, cell growth, and cellular ATP content. Uridine uptake into cells in vitro was examined using tritiated uridine as a tracer to measure the amount of uridine incorporated into the acid soluble and acid-insoluble fractions of the cells studied. The ATPmore » content of the cells was determined by the firefly bioluminescence method. It was found that the K/sub t/ for uridine uptake into the normal hamster embryo cell and two polyoma transformed hamster embryo cell lines was identical. However, the V/sub max/ for uridine transport was higher in both polyoma transformed cell lines. Furthermore, the K/sub t/ in both the normal and transformed cell cultured in serum-less or serum-containing media was identical, although the V/sub max/ was higher in the serum-stimulated cell in both the normal and transformed cell. Stimulation of the normal cell with adenosine produced a different K/sub t/ for uridine transport. Preliminary investigations have demonstrated that treatment of the polyoma transformed with adenosine also induces a different K/sub t/ (not shown). The K/sub i/ for phloretin inhibition in serum-less and serum-stimulated normal and polyoma transformed cells was found to be identical in each case.« less

  16. Evaluation of toxic and genotoxic potential of a wet gas scrubber effluent obtained from wooden-based biomass furnaces: A case study in the red ceramic industry in southern Brazil.

    PubMed

    Bortolotto, Tiago; da Silva, Jaqueline; Sant'Ana, Alex Célio; Tomazi, Kamila Osowski; Geremias, Reginaldo; Angioletto, Elídio; Pich, Claus Tröger

    2017-09-01

    Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC 50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effects of increased temperatures on Gammarus fossarum under the influence of copper sulphate.

    PubMed

    Schmidlin, Lara; von Fumetti, Stefanie; Nagel, Peter

    2015-03-01

    The specialised fauna of freshwater springs will have to cope with a possible temperature rise owing to Global Change. It is affected additionally by contamination of the water with xenobiotics from human activities in the surrounding landscape. We assessed the combined effects of temperature increase and exposure to toxins in laboratory experiments by using copper sulphate as a model substance and Gammarus fossarum Koch, 1835, as the model organism. This amphipod is a common representative of the European spring fauna and copper ions are widespread contaminants, mainly from agricultural practice. The experiments were conducted in boxes placed in flow channels and the water temperatures were varied. The gammarids were fed with conditioned beech leaf discs. The feeding activity of the amphipods was quantified on the level of the organism; and the respiratory electron transport system (ETS) assay was conducted in order to determine changes on the cellular level in the test organisms. The results show that the feeding activity increased slightly with higher water temperature. The sub-lethal copper dose had no significant effect other than a trend towards lower feeding activity. The ETS activity was significantly higher at the higher water temperatures, and the copper ions significantly lowered the ETS activity of the organisms. The combination of the two methods was useful when testing for combined effects of environmental changes and pollutants on a species. From the results one can reasonably infer a higher risk of adverse effects with increase in water temperature and exposure to a particular heavy metal.

  18. Surveillance of hepatitis E virus contamination in shellfish in China.

    PubMed

    Gao, Shenyang; Li, Dandan; Zha, Enhui; Zhou, Tiezhong; Wang, Shen; Yue, Xiqing

    2015-02-11

    Hepatitis E virus (HEV) has been confirmed to be a zoonotic virus of worldwide distribution. HEV contamination in the water environment has not been well examined in China. The objective of this study was to evaluate HEV contamination in shellfish in a coastal area of China. Such contamination would be significant for evaluating public health risks. samples of three species shellfish were collected from thirteen points of estuarine tidal flats around the Bohai Gulf and screened for HEV RNA using an in-house nested RT-PCR assay. The detected HEV-positive samples were further verified by gene cloning and sequencing analysis. the overall HEV-positive detection rate is approximately 17.5% per kilogram of shellfish.  HEV was more common among S. subcrenata (28.2%), followed by A. granosa (14.3%) and R. philippinarum (11.5%). The phylogenetic analysis of the 13 HEV strains detected revealed that gene fragments fell into two known 4 sub-genotypes (4b/4d) groups and another unknown group. 13 different sub-genotype 4 HEVs were found in contaminated shellfish in the Bohai Gulf rim. The findings suggest that a health risk may exist for users of waters in the Bonhai area and to consumers of shellfish.  Further research is needed to assess the sources and infectivity of HEV in these settings, and to evaluate additional shellfish harvesting areas.

  19. Transport and release of chemicals from plastics to the environment and to wildlife.

    PubMed

    Teuten, Emma L; Saquing, Jovita M; Knappe, Detlef R U; Barlaz, Morton A; Jonsson, Susanne; Björn, Annika; Rowland, Steven J; Thompson, Richard C; Galloway, Tamara S; Yamashita, Rei; Ochi, Daisuke; Watanuki, Yutaka; Moore, Charles; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Boonyatumanond, Ruchaya; Zakaria, Mohamad P; Akkhavong, Kongsap; Ogata, Yuko; Hirai, Hisashi; Iwasa, Satoru; Mizukawa, Kaoruko; Hagino, Yuki; Imamura, Ayako; Saha, Mahua; Takada, Hideshige

    2009-07-27

    Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.

  20. Transport and release of chemicals from plastics to the environment and to wildlife

    PubMed Central

    Teuten, Emma L.; Saquing, Jovita M.; Knappe, Detlef R. U.; Barlaz, Morton A.; Jonsson, Susanne; Björn, Annika; Rowland, Steven J.; Thompson, Richard C.; Galloway, Tamara S.; Yamashita, Rei; Ochi, Daisuke; Watanuki, Yutaka; Moore, Charles; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Boonyatumanond, Ruchaya; Zakaria, Mohamad P.; Akkhavong, Kongsap; Ogata, Yuko; Hirai, Hisashi; Iwasa, Satoru; Mizukawa, Kaoruko; Hagino, Yuki; Imamura, Ayako; Saha, Mahua; Takada, Hideshige

    2009-01-01

    Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development. PMID:19528054

  1. Gamma rays induce DNA damage and oxidative stress associated with impaired growth and reproduction in the copepod Tigriopus japonicus.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Leung, Kenneth Mei Yee; Lee, Yong Sung; Lee, Jae-Seong

    2014-07-01

    Nuclear radioisotope accidents are potentially ecologically devastating due to their impact on marine organisms. To examine the effects of exposure of a marine organism to radioisotopes, we irradiated the intertidal copepod Tigriopus japonicus with several doses of gamma radiation and analyzed the effects on mortality, fecundity, and molting by assessing antioxidant enzyme activities and gene expression patterns. No mortality was observed at 96h, even in response to exposure to a high dose (800Gy) of radiation, but mortality rate was significantly increased 120h (5 days) after exposure to 600 or 800Gy gamma ray radiation. We observed a dose-dependent reduction in fecundity of ovigerous females; even the group irradiated with 50Gy showed a significant reduction in fecundity, suggesting that gamma rays are likely to have a population level effect. In addition, we observed growth retardation, particularly at the nauplius stage, in individuals after gamma irradiation. In fact, nauplii irradiated with more than 200Gy, though able to molt to copepodite stage 1, did not develop into adults. Upon gamma radiation, T. japonicus showed a dose-dependent increase in reactive oxygen species (ROS) levels, the activities of several antioxidant enzymes, and expression of double-stranded DNA break damage genes (e.g. DNA-PK, Ku70, Ku80). At a low level (sub-lethal dose) of gamma irradiation, we found dose-dependent upregulation of p53, implying cellular damage in T. japonicus in response to sub-lethal doses of gamma irradiation, suggesting that T. japonicus is not susceptible to sub-lethal doses of gamma irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50-200Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synthesis and isolation of one isomer of C{sub 60}H{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, M.S.; Weedon, B.R.; Spielmann, H.P.

    1996-11-20

    A reaction is reported that produces C{sub 60}H{sub 6} with essentially no contamination by adjacent oxidation states. The compound is formed as one dominant isomer and one minor isomer, and the assignment is reported of the structure of the major isomer through a comparison of its C-H coupled {sup 13}C NMR spectrum with that of 1, 2-C{sub 60}H{sub 2}. Isolation of the major C{sub 60}H{sub 6} band was accomplished by HPLC using a preparative Buckyclutcher column and an automated injector/fraction collector. Analysis of the fraction containing 1 (a cranberry-colored solution when concentrated) by Buckyclutcher and C{sub 18} HPCL in severalmore » different solvent systems has failed to produce evidence of more than one component. The typical isolated yield is 35%. 15 refs., 3 figs.« less

  3. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications.

    PubMed

    Chin, Lip Ket; Lee, Chau-Hwang; Chen, Bi-Chang

    2016-05-24

    Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.

  4. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    PubMed

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  5. Focus on the emerging new fields of network physiology and network medicine

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch; Liu, Kang K. L.; Bartsch, Ronny P.

    2016-10-01

    Despite the vast progress and achievements in systems biology and integrative physiology in the last decades, there is still a significant gap in understanding the mechanisms through which (i) genomic, proteomic and metabolic factors and signaling pathways impact vertical processes across cells, tissues and organs leading to the expression of different disease phenotypes and influence the functional and clinical associations between diseases, and (ii) how diverse physiological systems and organs coordinate their functions over a broad range of space and time scales and horizontally integrate to generate distinct physiologic states at the organism level. Two emerging fields, network medicine and network physiology, aim to address these fundamental questions. Novel concepts and approaches derived from recent advances in network theory, coupled dynamical systems, statistical and computational physics show promise to provide new insights into the complexity of physiological structure and function in health and disease, bridging the genetic and sub-cellular level with inter-cellular interactions and communications among integrated organ systems and sub-systems. These advances form first building blocks in the methodological formalism and theoretical framework necessary to address fundamental problems and challenges in physiology and medicine. This ‘focus on’ issue contains 26 articles representing state-of-the-art contributions covering diverse systems from the sub-cellular to the organism level where physicists have key role in laying the foundations of these new fields.

  6. Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy.

    PubMed

    Kwon, Man Jae; Boyanov, Maxim I; Yang, Jung-Seok; Lee, Seunghak; Hwang, Yun Ho; Lee, Ju Yeon; Mishra, Bhoopesh; Kemner, Kenneth M

    2017-07-01

    Zinc contamination in near- and sub-surface environments is a serious threat to many ecosystems and to public health. Sufficient understanding of Zn speciation and transport mechanisms is therefore critical to evaluating its risk to the environment and to developing remediation strategies. The geochemical and mineralogical characteristics of contaminated soils in the vicinity of a Zn ore transportation route were thoroughly investigated using a variety of analytical techniques (sequential extraction, XRF, XRD, SEM, and XAFS). Imported Zn-concentrate (ZnS) was deposited in a receiving facility and dispersed over time to the surrounding roadside areas and rice-paddy soils. Subsequent physical and chemical weathering resulted in dispersal into the subsurface. The species identified in the contaminated areas included Zn-sulfide, Zn-carbonate, other O-coordinated Zn-minerals, and Zn species bound to Fe/Mn oxides or clays, as confirmed by XAFS spectroscopy and sequential extraction. The observed transformation from S-coordinated Zn to O-coordinated Zn associated with minerals suggests that this contaminant can change into more soluble and labile forms as a result of weathering. For the purpose of developing a soil washing remediation process, the contaminated samples were extracted with dilute acids. The extraction efficiency increased with the increase of O-coordinated Zn relative to S-coordinated Zn in the sediment. This study demonstrates that improved understanding of Zn speciation in contaminated soils is essential for well-informed decision making regarding metal mobility and toxicity, as well as for choosing an appropriate remediation strategy using soil washing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity and choosing an optimal remediation strategy

    DOE PAGES

    Kwon, Man Jae; Boyanov, Maxim I.; Yang, Jung -Seok; ...

    2017-03-24

    Zinc contamination in near- and sub-surface environments is a serious threat to many ecosystems and to public health. Sufficient understanding of Zn speciation and transport mechanisms is therefore critical to evaluating its risk to the environment and to developing remediation strategies. The geochemical and mineralogical characteristics of contaminated soils in the vicinity of a Zn ore transportation route were thoroughly investigated using a variety of analytical techniques (sequential extraction, XRF, XRD, SEM, and XAFS). Imported Zn-concentrate (ZnS) was deposited in a receiving facility and dispersed over time to the surrounding roadside areas and rice-paddy soils. Subsequent physical and chemical weatheringmore » resulted in dispersal into the subsurface. The species identified in the contaminated areas included Zn-sulfide, Zn-carbonate, other O-coordinated Zn-minerals, and Zn species bound to Fe/Mn oxides or clays, as confirmed by XAFS spectroscopy and sequential extraction. The observed transformation from S-coordinated Zn to O-coordinated Zn associated with minerals suggests that this contaminant can change into more soluble and labile forms as a result of weathering. For the purpose of developing a soil washing remediation process, the contaminated samples were extracted with dilute acids. The extraction efficiency increased with the increase of O-coordinated Zn relative to S-coordinated Zn in the sediment. Furthermore, this study demonstrates that improved understanding of Zn speciation in contaminated soils is essential for well-informed decision making regarding metal mobility and toxicity, as well as for choosing an appropriate remediation strategy using soil washing.« less

  8. Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae

    PubMed Central

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A.; Meyer, Andreas J.; Perrone, Gabriel G.; Dawes, Ian W.

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions. PMID:23762325

  9. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner.more » siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H{sub 2}O{sub 2}) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H{sub 2}O{sub 2} levels. Furthermore, H{sub 2}O{sub 2} independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H{sub 2}O{sub 2} levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H{sub 2}O{sub 2}-independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H{sub 2}O{sub 2} - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. - Highlights: • Omeprazole induces HO-1 in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of HO-1. • Nrf2 knockdown abrogates omeprazole-mediated HO-1 induction in human lung cells. • Hydrogen peroxide depletion augments omeprazole-mediated induction of HO-1.« less

  10. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants.

    PubMed

    Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad

    2016-09-01

    Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.

  11. Carvedilol, a third-generation β-blocker prevents oxidative stress-induced neuronal death and activates Nrf2/ARE pathway in HT22 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Ying; Chen, Ziwei; Tan, Min

    Highlights: •Carvedilol significantly prevented oxidative stress-induced cell death. •Carvedilol significantly decreased the production of ROS. •Carvedilol activated Nrf2/ARE pathway. •Carvedilol increased the protein levels of HO-1 and NQO-1. -- Abstract: Carvedilol, a nonselective β-adrenoreceptor blocker with pleiotropic activities has been shown to exert neuroprotective effect due to its antioxidant property. However, the neuroprotective mechanism of carvedilol is still not fully uncovered. Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. Here we investigated the effect of carvedilol on oxidative stress-induced cell death (glutamate 2 mM and H{sub 2}O{sub 2}more » 600 μM) and the activity of Nrf2/ARE pathway in HT22 hippocampal cells. Carvedilol significantly increased cell viability and decreased ROS in HT22 cells exposed to glutamate or H{sub 2}O{sub 2}. Furthermore, carvedilol activated the Nrf2/ARE pathway in a concentration-dependent manner, and increased the protein levels of heme oxygenase-1(HO-1) and NAD(P)H quinone oxidoreductase-1(NQO-1), two downstream factors of the Nrf2/ARE pathway. Collectively, our results indicate that carvedilol protects neuronal cell against glutamate- and H{sub 2}O{sub 2}-induced neurotoxicity possibly through activating the Nrf2/ARE signaling pathway.« less

  12. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumi, Daigo, E-mail: sdaigo@ph.bunri-u.ac.j; Shinkai, Yasuhiro; Kumagai, Yoshito

    2010-05-01

    Arsenic trioxide (As{sub 2}O{sub 3}) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As{sub 2}O{sub 3} affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As{sub 2}O{sub 3} to induce a complete remission in relapsed APLmore » patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As{sub 2}O{sub 3} exposure in leukemia cells.« less

  13. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture.

    PubMed

    Liu, Liyuan; Wang, Jinhuan; Duan, Shengchang; Chen, Lei; Xiang, Hui; Dong, Yang; Wang, Wen

    2016-08-17

    Fetal bovine serum (FBS) shows obvious deficiencies in cell culture, such as low batch to batch consistency, adventitious biological contaminant risk, and high cost, which severely limit the development of the cell culture industry. Sericin protein derived from the silkworm cocoon has become increasingly popular due to its diverse and beneficial cell culture characteristics. However, systematic evaluation of sericin as a substitute for FBS in cell culture medium remains limited. In this study, we conducted cellular morphological, physiological, and transcriptomic evaluation on three widely used mammalian cells. Compared with cells cultured in the control, those cultured in sericin-substitute medium showed similar cellular morphology, similar or higher cellular overall survival, lower population doubling time (PDT), and a higher percentage of S-phase with similar G2/G1 ratio, indicating comparable or better cell growth and proliferation. At the transcriptomic level, differentially expressed genes between cells in the two media were mainly enriched in function and biological processes related to cell growth and proliferation, reflecting that genes were activated to facilitate cell growth and proliferation. The results of this study suggest that cells cultured in sericin-substituted medium perform as well as, or even better than, those cultured in FBS-containing medium.

  14. Systematic evaluation of sericin protein as a substitute for fetal bovine serum in cell culture

    PubMed Central

    Liu, Liyuan; Wang, Jinhuan; Duan, Shengchang; Chen, Lei; Xiang, Hui; Dong, Yang; Wang, Wen

    2016-01-01

    Fetal bovine serum (FBS) shows obvious deficiencies in cell culture, such as low batch to batch consistency, adventitious biological contaminant risk, and high cost, which severely limit the development of the cell culture industry. Sericin protein derived from the silkworm cocoon has become increasingly popular due to its diverse and beneficial cell culture characteristics. However, systematic evaluation of sericin as a substitute for FBS in cell culture medium remains limited. In this study, we conducted cellular morphological, physiological, and transcriptomic evaluation on three widely used mammalian cells. Compared with cells cultured in the control, those cultured in sericin-substitute medium showed similar cellular morphology, similar or higher cellular overall survival, lower population doubling time (PDT), and a higher percentage of S-phase with similar G2/G1 ratio, indicating comparable or better cell growth and proliferation. At the transcriptomic level, differentially expressed genes between cells in the two media were mainly enriched in function and biological processes related to cell growth and proliferation, reflecting that genes were activated to facilitate cell growth and proliferation. The results of this study suggest that cells cultured in sericin-substituted medium perform as well as, or even better than, those cultured in FBS-containing medium. PMID:27531556

  15. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie; Waters, Alicia H.C.; Golubeva, Anna V.

    2015-01-01

    Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP,more » produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, A.J.R.; Clague, D.A.; Honda, M.

    Many tholeiitic and transitional pillow-rim and fragmental glasses from Loihi seamount, Hawaii, have high Cl contents and Cl/K{sub 2}O ratios (and ratios of Cl to other incompatible components, such as P{sub 2}O{sub 5}, H{sub 2}O, etc.) relative to other Hawaiian subaerial volcanoes (e.g., Mauna Loa, Mauna Kea, and Kilauea). The authors suggest that this results from widespread contamination of Loihi magmas by a Cl-rich, seawater-derived component. Assimilation of high-Cl phases such as saline brine or Cl-rich minerals (halite or iron-hydroxychlorides) with high Cl/H{sub 2}O ratios can explain the range and magnitude of Cl contents in Loihi glasses, as well asmore » the variations in the ratios of Cl to other incompatible elements. Brines and Cl-rich minerals are thought to form from seawater within the hydrothermal systems associated with submarine volcanoes, and Loihi magmas could plausibly have assimilated such materials from the hydrothermal envelope adjacent to the magma chamber. Their model can also explain semiquantitatively the observed contamination of Loihi glasses with atmospheric-derived noble gases, provided the assimilant has concentrations of Ne and Ar comparable to or slightly less than seawater. This is more likely for brines than for Cl-rich minerals, leading the authors to favor brines as the major assimilant. Cl/Br ratios for a limited number of Loihi samples are also seawater-like, and show no indication of the higher values expected to be associated with the assimilation of Cl-rich hydrothermal minerals. Although Cl enrichment is a common feature of lavas from Loihi, submarine glasses from other Hawaiian volcanoes show little (Kilauea) or no (Mauna Loa, Mauna Kea) evidence of this process, suggesting that assimilation of seawater-derived components is more likely to occur in the early stages of growth of oceanic volcanoes. Summit collapse events such as the one observed at Loihi in October 1996 provide a ready mechanism for depositing brine-bearing rocks from the volcanic edifice into the top of a submarine summit magma chamber.« less

  17. A Liver-Centric Multiscale Modeling Framework for Xenobiotics.

    PubMed

    Sluka, James P; Fu, Xiao; Swat, Maciej; Belmonte, Julio M; Cosmanescu, Alin; Clendenon, Sherry G; Wambaugh, John F; Glazier, James A

    2016-01-01

    We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics.

  18. A Liver-Centric Multiscale Modeling Framework for Xenobiotics

    PubMed Central

    Swat, Maciej; Cosmanescu, Alin; Clendenon, Sherry G.; Wambaugh, John F.; Glazier, James A.

    2016-01-01

    We describe a multi-scale, liver-centric in silico modeling framework for acetaminophen pharmacology and metabolism. We focus on a computational model to characterize whole body uptake and clearance, liver transport and phase I and phase II metabolism. We do this by incorporating sub-models that span three scales; Physiologically Based Pharmacokinetic (PBPK) modeling of acetaminophen uptake and distribution at the whole body level, cell and blood flow modeling at the tissue/organ level and metabolism at the sub-cellular level. We have used standard modeling modalities at each of the three scales. In particular, we have used the Systems Biology Markup Language (SBML) to create both the whole-body and sub-cellular scales. Our modeling approach allows us to run the individual sub-models separately and allows us to easily exchange models at a particular scale without the need to extensively rework the sub-models at other scales. In addition, the use of SBML greatly facilitates the inclusion of biological annotations directly in the model code. The model was calibrated using human in vivo data for acetaminophen and its sulfate and glucuronate metabolites. We then carried out extensive parameter sensitivity studies including the pairwise interaction of parameters. We also simulated population variation of exposure and sensitivity to acetaminophen. Our modeling framework can be extended to the prediction of liver toxicity following acetaminophen overdose, or used as a general purpose pharmacokinetic model for xenobiotics. PMID:27636091

  19. Selective protection of cultured human cells from the toxic effects of ultraviolet light by proflavine pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, J.R.; Little, J.B.

    1977-10-01

    Pretreatment of LICH human cells by nontoxic doses (0.1 to 5.0 ..mu..g/ml) of proflavine protects them from inactivation by ultraviolet light. The protection is acquired rapidly after exposure of cells to proflavine, with 50 percent of maximum protection being afforded within 5 min and cells being maximally protected by 20 min. Loss of protection follows similar kinetics upon removal of proflavine from the culture medium. Protection is selective and cannot be explained on the basis of proflavine absorption of uv light. Cellular survival curves after ultraviolet light for cells protected by 1, 2, 3, 4, or 5 ..mu..g/ml of proflavinemore » show that protection alters only the slope of the survival curve, not altering the quasi-threshold dose, D/sub q/. The D/sub 0/ varies from 4.8 J/m/sup 2/ for untreated cells to 10.5 J/m/sup 2/ for cells pretreated with 5 ..mu..g/ml. These data suggest the D/sub 0/ and D/sub q/ do not represent parameters of a single underlying process, manifested in a random stochastic manner, but may reflect different cellular mechanisms or responses to different DNA damage. Proflavine is selective in mitigating only those which predominate at uv doses greater than the D/sub q/.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinova, Larisa, E-mail: larisalitvinova@yandex.ru, E-mail: vshupletsova@mail.ru, E-mail: leitsin@mail.ru; Shupletsova, Valeria, E-mail: larisalitvinova@yandex.ru, E-mail: vshupletsova@mail.ru, E-mail: leitsin@mail.ru; Leitsin, Vladimir, E-mail: larisalitvinova@yandex.ru, E-mail: vshupletsova@mail.ru, E-mail: leitsin@mail.ru

    The work studies ZrO{sub 2}(Me{sub x}O{sub y})-based porous ceramics produced from the powders consisting of hollow spherical particles. It was shown that the structure is represented by a cellular framework with bimodal porosity consisting of sphere-like large pores and pores that were not filled with the powder particles during the compaction. For such ceramics, the increase of pore volume is accompanied by the increased strain in an elastic area. It was also shown that the porous ZrO{sub 2} ceramics had no acute or chronic cytotoxicity. At the same time, ceramics possess the following osteoconductive properties: adhesion support, spreading, proliferation andmore » osteogenic differentiation of MSCs.« less

  1. Toward zero waste: Composting and recycling for sustainable venue based events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hottle, Troy A., E-mail: troy.hottle@asu.edu; Bilec, Melissa M., E-mail: mbilec@pitt.edu; Brown, Nicholas R., E-mail: nick.brown@asu.edu

    Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g.more » recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO{sub 2} equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO{sub 2} eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO{sub 2} eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game.« less

  2. Spatiotemporal chaos near the onset of cellular growth during thin-film solidification of a binary alloy

    NASA Technical Reports Server (NTRS)

    Lee, J. T. C.; Tsiveriotis, K.; Brown, R. A.

    1992-01-01

    Thin-film solidification experiments with a succinonitrile-acetone alloy are used to observe the long time-scale dynamics of cellular crystal growth at growth rates only slightly above the critical value VC = Vc(lambda sub c) for the onset of morphological instability. Under these conditions only very small amplitude cells are observed with wavelengths near the value predicted by linear stability theory lambda = lambda sub c. At long times, microstructures with wavelengths significantly finer than lambda suc c form by nucleation at defects across the interface. These interfaces do not have a unique microstructure, but seem to exhibit spatiotemporal chaos on a long time scale caused by the continual birth and death of cells by tip splitting and cell annihilation in grooves.

  3. The metallic contamination of the Loire River Basin (France): Spatial and temporal evolution with a multi-scale approach

    NASA Astrophysics Data System (ADS)

    Dhivert, Elie; Grosbois, Cécile; Desmet, Marc; Curie, Florence; Moatar, Florentina; Meybeck, Michel; Bourrain, Xavier

    2013-04-01

    Since the early 19th century, important agricultural, mining and industrial development has been active in Western Europe. The Loire River Basin (117,800 km2, total population of 8.4 Mp) presents a long history of human pressures, reflecting temporal evolution of technological and urban activities (Grosbois et al, 2012). Hence, sediments of the Loire River and its tributaries have recorded partially and/or totally organic, nutrients and trace element contamination. Nowadays, can we determine history of metallic emissions in sediment records and what is the part of these past inputs relative to the actual contamination? Can we point out historical sources of contamination? To answer these questions, two approaches were used in this study. Firstly, in four coring sites in the Loire River Basin, a temporal re-enacting of metallic contamination trapped in sediments was carried out. Based on age-model and inter-element correlations in each core, trace element signals were deconvoluted and compared to actual and specific chemical signatures of anthropogenic inputs (300 bed sediment samples collected downstream of former and current industrial sites like mines, smelters, planting/coating plants, glassware and car industries, metal recycling plants and waste water treatment plants). The second approach was at a larger basin scale, comparing location of these former and actual contamination sources with explanatory factors such as geology, evolution of population density, of industrial activities and of land use. This was done in the main stream of the Loire River and its major tributaries and locally at a smaller scale (0-500 km²). All these approaches emphasized three temporal periods of metallic contamination: (i) the first period begins with the 20th century until 1950, it corresponds to the first increase of major contaminants like Ag, As, Cd, Cr, Hg, Pb, Sb, Sn and Zn; some trace elements like Hg and Sn seem to be present in the Loire sediments much earlier as they were already enriched before 1900.; (ii) the second one (1950-1980s) represents the highest level of contamination for the cited contaminants above; (iii) the last period is characterized by a large decrease of pollution from 1980s to nowadays when environmental policies and contaminant emission control started. At a spatial scale, small and medium-scale sub-basins, presenting numerous important mining sites and associated industrial plants, are specifically associated to local sources. In contrast, industrial and urban poles are related to polymetallic concentrated bed sediments.

  4. Development of 3D woven cellular structures for adaptive composites based on thermoplastic hybrid yarns

    NASA Astrophysics Data System (ADS)

    Sennewald, C.; Vorhof, M.; Schegner, P.; Hoffmann, G.; Cherif, C.; Boblenz, J.; Sinapius, M.; Hühne, C.

    2018-05-01

    Flexible cellular 3D structures with structure-inherent compliance made of fiber-reinforced composites have repeatedly aroused the interest of international research groups. Such structures offer the possibility to meet the increasing demand for flexible and adaptive structures. The aim of this paper is the development of cellular 3D structures based on weaving technology. Considering the desired geometry of the 3D structure, algorithms are developed for the formation of geometry through tissue sub-areas. Subsequently, these sub-areas are unwound into the weaving level and appropriate weave patterns are developed. A particular challenge is the realization of compliant mechanisms in the woven fabric. This can be achieved either by combining different materials or, in particular, by implementing large stiffness gradients by means of varying the woven fabrics thickness, whereas differences in wall thickness have to be realized with a factor of 1:10. A manufacturing technology based on the weaving process is developed for the realization of the developed 3D cellular structures. To this end, solutions for the processing of hybrid thermoplastic materials (e.g. tapes), solutions for the integration of inlays in the weaving process (thickening of partial areas), and solutions for tissue retraction, as well as for the fabric pull-off (linear pull-off system) are being developed. In this way, woven cellular 3D structures with woven outer layers and woven joint areas (compliance) can be realized in a single process step and are subsequently characterized.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Milton, E-mail: Milton.levin@uconn.edu

    To better elucidate the potential immune-related health effects of exposure to environmentally persistent organic pollutants (POP), such as polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), in ringed seals (Pusa hispida), a sentinel Arctic species, we assessed 1) associations between mitogen-induced lymphocyte proliferation and in vivo tissue contaminant burdens, and 2) the concentration-response effects of in vitro exposure to PFASs and PCB congeners on mitogen-induced lymphocyte proliferation. Upon in vitro contaminant exposure, the non-coplanar PCB congeners CB 138, 153, and 180, but not the coplanar CB 169, significantly reduced lymphocyte proliferation between 10 and 20 µg g{sup −1} ww. The respectivemore » in vitro EC{sub 50} values for these congeners were 13.3, 20.7, 20.8, and 54.6 µg g{sup −1} ww. No modulation of lymphocyte proliferation was observed upon in vitro exposure to two individual PFASs, perfluorooctane sulphonic acid (PFOS) and perfluorooctanoic acid (PFOA), at concentrations up to 1000 ng g-1. In addition, no significant correlations were found between lymphocyte proliferation and any blood or blubber contaminant measured. Taken together, these data suggest this population of ringed seals is not currently at high risk of altered lymphocyte proliferation from exposure to the POPs or PFASs in this study. - Highlights: • Assess relationships between tissue contaminants and changes in immune function. • Risk for contaminant-induced immunotoxicity in East Greenland ringed seal is low. • Weight of evidence suggest non-coplanar PCBs are immunotoxic at high concentrations.« less

  6. Optical magnetic imaging of living cells

    PubMed Central

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  7. Synthesis and nonstoichiometry of the zirconium trihalides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daake, R.L.; Corbett, J.D.

    1978-05-01

    The synthesis of ZrX/sub 3/ (X = Cl, Br, I) by reaction of the corresponding tetrahalides with ZrCl, ZrBr, or ZrI/sub 1.8/ in sealed tantalum tubing gives high-purity, single-phase products, thereby avoiding problems of the relatively low reactivity of and contamination by zirconium powder reductant used previously. Phase limits for the three trihalides established by isopiestic equilibration with the adjoining phases are 2.94 (2) less than or equal to Cl:Zr less than or equal to 3.03 (2) (440/sup 0/C), 2.87 (2) less than or equal to Br:Zr less than or equal to 3.23 (2) (435/sup 0/C), and 2.83 (5) (775/supmore » 0/C) less than or equal to I:Zr less than or equal to 3.43 (5) (475/sup 0/C). The hexagonal lattice constants for the bromide phase (Guinier techniques) decrease linearly with increasing bromide content across the entire range without the development of any additional lines. The variation of the c dimension for ZrI/sub 3/ (and HfI/sub 3/) on oxidation is in the opposite direction, and in this case extra lines from a presumed superlattice structure developed toward the upper limit. The structural implications of these results are considered. The reported structure for ..cap alpha..-ZrCl/sub 3/, an unusual BiI/sub 3/-type variant, was based on a misassigned ZrCl powder pattern and therefore appears to be in error. 25 references.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jadeja, K.A.; Patel, K.M.; Tanna, R.L., E-mail: kumarpal@ipr.res.in

    Low temperature glow discharge wall conditioning (GDC) using H{sub 2} gas is effective in reduction of oxygen and carbon (low-Z) contain impurities on near surface region of vessel wall. The high retention of hydrogen in vessel wall/components due to long operation of H{sub 2} GDC increases hydrogen out-gassing during tokamak operation and affects the production of high temperature plasma. The hydrogen retention can be reduced using inert gas GDC by sputter cleaning for short duration. But in that case the out-gassing rate of inert gas increases, that again impairs the plasma performance. To overcome above problems, the GDC with hydrogen-inertmore » gas mixture can be used for better removal of C and O surface contaminants and low hydrogen retention in surface. In ADITYA tokamak, H{sub 2}-GDC is carried out regularly after plasma operation, while the GDC with argon-hydrogen (Ar-H{sub 2}) mixture has been experimentally tested to observe the reduction of oxygen and carbon impurities along with low hydrogen retention. In Ar-H{sub 2} GDC, the reason being the formation of ArH{sup +} hydride ions, which has quite long life and more energy compared to H{sub 2}{sup +} ions formed in H{sub 2} GDC for breaking the bond of wall molecules. A systematic comparative study of H{sub 2} GDC and Ar-H{sub 2} Mixture GDC by changing the mixture ratio has been carried out in ADITYA tokamak. The relative levels of oxygen and carbon contain impurities have been measured using residual gas analyzer in both GDC's. We have observed a substantial reduction in oxygen and carbon impurities with a significant improvement in wall condition with Ar-H{sub 2} GDC compared to the H{sub 2} GDC. The effect of wall conditioning by Ar-H{sub 2} GDC on the performance of high temperature plasma operation will be presented in this paper. (author)« less

  9. Cellular Metabolomics for Exposure and Toxicity Assessment

    EPA Science Inventory

    We have developed NMR automation and cell quench methods for cell culture-based metabolomics to study chemical exposure and toxicity. Our flow automation method is robust and free of cross contamination. The direct cell quench method is rapid and effective. Cell culture-based met...

  10. RpoS Plays a Central Role in the SOS Induction by Sub-Lethal Aminoglycoside Concentrations in Vibrio cholerae

    PubMed Central

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC. PMID:23613664

  11. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    PubMed

    Baharoglu, Zeynep; Krin, Evelyne; Mazel, Didier

    2013-01-01

    Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  12. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG

    PubMed Central

    Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.

    2016-01-01

    Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322

  13. Skin Transcriptomes of common bottlenose dolphins (Tursiops truncatus) from the northern Gulf of Mexico and southeastern U.S. Atlantic coasts.

    PubMed

    Neely, Marion G; Morey, Jeanine S; Anderson, Paul; Balmer, Brian C; Ylitalo, Gina M; Zolman, Eric S; Speakman, Todd R; Sinclair, Carrie; Bachman, Melannie J; Huncik, Kevin; Kucklick, John; Rosel, Patricia E; Mullin, Keith D; Rowles, Teri K; Schwacke, Lori H; Van Dolah, Frances M

    2018-04-01

    Common bottlenose dolphins serve as sentinels for the health of their coastal environments as they are susceptible to health impacts from anthropogenic inputs through both direct exposure and food web magnification. Remote biopsy samples have been widely used to reveal contaminant burdens in free-ranging bottlenose dolphins, but do not address the health consequences of this exposure. To gain insight into whether remote biopsies can also identify health impacts associated with contaminant burdens, we employed RNA sequencing (RNA-seq) to interrogate the transcriptomes of remote skin biopsies from 116 bottlenose dolphins from the northern Gulf of Mexico and southeastern U.S. Atlantic coasts. Gene expression was analyzed using principal component analysis, differential expression testing, and gene co-expression networks, and the results correlated to season, location, and contaminant burden. Season had a significant impact, with over 60% of genes differentially expressed between spring/summer and winter months. Geographic location exhibited lesser effects on the transcriptome, with 23.5% of genes differentially expressed between the northern Gulf of Mexico and the southeastern U.S. Atlantic locations. Despite a large overlap between the seasonal and geographical gene sets, the pathways altered in the observed gene expression profiles were somewhat distinct. Co-regulated gene modules and differential expression analysis both identified epidermal development and cellular architecture pathways to be expressed at lower levels in animals from the northern Gulf of Mexico. Although contaminant burdens measured were not significantly different between regions, some correlation with contaminant loads in individuals was observed among co-expressed gene modules, but these did not include classical detoxification pathways. Instead, this study identified other, possibly downstream pathways, including those involved in cellular architecture, immune response, and oxidative stress, that may prove to be contaminant responsive markers in bottlenose dolphin skin. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Biodegradation of munitions compounds by a sulfate reducing bacterial enrichment culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boopathy, R.; Manning, J.

    1997-08-01

    The degradation of several munitions compounds was studied. The compounds included 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine, 2,4,6-trinitrobenzene (TNB), and 2,4-dinitrotoluene. All of the compounds studied were degraded by the sulfate reducing bacterial (SRB) enrichment culture. The SRB culture did not use the munitions compounds as their sole source of carbon. However, all the munitions compounds tested served as the sole source of nitrogen for the SRB culture. Degradation of munitions compounds was achieved by a co-metabolic process. The SRB culture used a variety of carbon sources including pyruvate, ethanol, formate, lactate, and H{sub 2}-CO{sub 2}. The SRB culture was an incompletemore » oxidizer, unable to carry out the terminal oxidation of organic substrates to CO{sub 2} as the sole product, and it did not use acetate or methanol as a carbon source. In addition to serving as nitrogen sources, the munitions compounds also served as electron acceptors in the absence of sulfate. A soil slurry experiment with 5% and 10% munitions compounds-contaminated soil showed that the contaminant TNT was metabolized by the SRB culture in the presence of pyruvate as electron donor. This culture may be useful in decontaminating munitions compounds-contaminated soil and water under anaerobic conditions.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianbin

    The microstructure and mechanical properties of resistance-spot-welded A5052 aluminum alloy and DP 600 dual-phase steel joint were studied. The fusion zone (FZ) and heat-affected zone (HAZ) of DP 600 exhibited lath martensite and ferrite-martensite structures, respectively. The microstructure of FZ and HAZ in the A5052 side was composed of cellular crystals and the boundary region of FZ exhibited a columnar crystal morphology. A Fe{sub 2}Al{sub 5} intermetallic compound (IMC) layer with 3.3 μm thickness was found adjacent to the DP 600 side, whereas a needle-shaped Fe{sub 4}Al{sub 13} IMC layer with length of 0.67 μm to 15.8 μm was foundmore » adjacent to the aluminum alloy side. The maximum tensile shear load of the A5052/DP 600 joint was 5.5 KN, with a corresponding molten nugget diameter of 6.3 mm. The fracture morphology of the optimized A5052/DP 600 joint was mainly an elongated dimple fracture accompanied by cleavage fracture. - Highlights: •A5052 and DP 600 with large gaps in properties were investigated by RSW. •The microstructures of RSW joints in DP 600/A5052 were examined detailedly. •The micro/macro-characteristics and strength relations of joints were analyzed.« less

  16. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA

    USGS Publications Warehouse

    Patino, Reynaldo; VanLandeghem, Matthew M.; Goodbred, Steven L.; Orsak, Erik; Jenkins, Jill A.; Echols, Kathy R.; Rosen, Michael R.; Torres, Leticia

    2015-01-01

    Adult male Common Carp were sampled in 2007/08 over a full reproductive cycle at Lake Mead National Recreation Area. Sites sampled included a stream dominated by treated wastewater effluent, a lake basin receiving the streamflow, an upstream lake basin (reference), and a site below Hoover Dam. Individual body burdens for 252 contaminants were measured, and biological variables assessed included physiological [plasma vitellogenin (VTG), estradiol-17β (E2), 11-ketotestosterone (11KT)] and organ [gonadosomatic index (GSI)] endpoints. Patterns in contaminant composition and biological condition were determined by Principal Component Analysis, and their associations modeled by Principal Component Regression. Three spatially distinct but temporally stable gradients of contaminant distribution were recognized: a contaminant mixture typical of wastewaters (PBDEs, methyl triclosan, galaxolide), PCBs, and DDTs. Two spatiotemporally variable patterns of biological condition were recognized: a primary pattern consisting of reproductive condition variables (11KT, E2, GSI), and a secondary pattern including general condition traits (condition factor, hematocrit, fork length). VTG was low in all fish, indicating low estrogenic activity of water at all sites. Wastewater contaminants associated negatively with GSI, 11KT and E2; PCBs associated negatively with GSI and 11KT; and DDTs associated positively with GSI and 11KT. Regression of GSI on sex steroids revealed a novel, nonlinear association between these variables. Inclusion of sex steroids in the GSI regression on contaminants rendered wastewater contaminants nonsignificant in the model and reduced the influence of PCBs and DDTs. Thus, the influence of contaminants on GSI may have been partially driven by organismal modes-of-action that include changes in sex steroid production. The positive association of DDTs with 11KT and GSI suggests that lifetime, sub-lethal exposures to DDTs have effects on male carp opposite of those reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes.

  17. Novel associations between contaminant body burdens and biomarkers of reproductive condition in male Common Carp along multiple gradients of contaminant exposure in Lake Mead National Recreation Area, USA.

    PubMed

    Patiño, Reynaldo; VanLandeghem, Matthew M; Goodbred, Steven L; Orsak, Erik; Jenkins, Jill A; Echols, Kathy; Rosen, Michael R; Torres, Leticia

    2015-08-01

    Adult male Common Carp were sampled in 2007/08 over a full reproductive cycle at Lake Mead National Recreation Area. Sites sampled included a stream dominated by treated wastewater effluent, a lake basin receiving the streamflow, an upstream lake basin (reference), and a site below Hoover Dam. Individual body burdens for 252 contaminants were measured, and biological variables assessed included physiological [plasma vitellogenin (VTG), estradiol-17β (E2), 11-ketotestosterone (11KT)] and organ [gonadosomatic index (GSI)] endpoints. Patterns in contaminant composition and biological condition were determined by Principal Component Analysis, and their associations modeled by Principal Component Regression. Three spatially distinct but temporally stable gradients of contaminant distribution were recognized: a contaminant mixture typical of wastewaters (PBDEs, methyl triclosan, galaxolide), PCBs, and DDTs. Two spatiotemporally variable patterns of biological condition were recognized: a primary pattern consisting of reproductive condition variables (11KT, E2, GSI), and a secondary pattern including general condition traits (condition factor, hematocrit, fork length). VTG was low in all fish, indicating low estrogenic activity of water at all sites. Wastewater contaminants associated negatively with GSI, 11KT and E2; PCBs associated negatively with GSI and 11KT; and DDTs associated positively with GSI and 11KT. Regression of GSI on sex steroids revealed a novel, nonlinear association between these variables. Inclusion of sex steroids in the GSI regression on contaminants rendered wastewater contaminants nonsignificant in the model and reduced the influence of PCBs and DDTs. Thus, the influence of contaminants on GSI may have been partially driven by organismal modes-of-action that include changes in sex steroid production. The positive association of DDTs with 11KT and GSI suggests that lifetime, sub-lethal exposures to DDTs have effects on male carp opposite of those reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes. Published by Elsevier Inc.

  18. Plasmatic concentration of organochlorine lindane acts as metabolic disruptors in HepG2 liver cell line by inducing mitochondrial disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benarbia, Mohammed el Amine; Inserm 1063, Angers; Macherel, David

    Lindane (LD) is a persistent environmental pollutant that has been the subject of several toxicological studies. However, concentrations used in most of the reported studies were relatively higher than those found in the blood of the contaminated area residents and effects of low concentrations remain poorly investigated. Moreover, effects on cell metabolism and mitochondrial function of exposure to LD have received little attention. This study was designed to explore the effects of low concentrations of LD on cellular metabolism and mitochondrial function, using the hepatocarcinoma cell line HepG2. Cells were exposed to LD for 24, 48 and 72 h andmore » different parameters linked with mitochondrial regulation and energy metabolism were analyzed. Despite having any impact on cellular viability, exposure to LD at plasmatic concentrations led to an increase of maximal respiratory capacity, complex I activity, intracellular ATP and NO release but decreased uncoupled respiration to ATP synthesis and medium lactate levels. In addition, LD exposure resulted in the upregulation of mitochondrial biogenesis genes. We suggest that, at plasmatic concentrations, LD acts as a metabolic disruptor through impaired mitochondrial function and regulation with an impact on cellular energetic metabolism. In addition, we propose that a cellular assay based on the analysis of mitochondria function, such as described here for LD, may be applicable for larger studies on the effects of low concentrations of xenobiotics, because of the exquisite sensitivity of this organelle. - Highlights: Our data clearly demonstrated in HepG2 cells that exposure at plasmatic low concentrations of LD were able to: • Impair mitochondrial function • Caused alteration on nucleo-mitochondrial cross-talk • Increase nitric oxide release and protein nitration • Impair cellular energetic metabolism and lipid accumulation.« less

  19. Ecologically-based clean-up criteria for nitroaromatic explosives using toxicity test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duh, D.; Roberts, B.; Buzgo, S.

    1995-12-31

    A former trinitrotoluene (TNT) production and storage facility was the focus of a Remedial Investigation (RI). Contaminants identified during the RI included 2,4-dinitrotoluene (DNT), 2,6-DNT, and 2,4,6-TNT, PCBs, arsenic, lead and chromium. The Conceptual Site Model determined there to be several complete exposure pathways. One of these identified a route by which soil invertebrate communities could be affected through dermal contact and ingestion of soil contaminants. Maintenance of the soil invertebrate community was chosen as the assessment endpoints for this pathway in the Ecological Risk Assessment. The corresponding measurement endpoint was survival of earthworms in 14-day toxicity tests in whichmore » they were exposed to site soils. Seven surficial soil samples were collected from Areas of Concern. Each sample was evaluated for acute toxicity to earthworms using standard USEPA protocols. Chemical concentrations were also measured. An artificial soil was used as the control and diluent to establish the Lethal Concentration (LC{sub 50}) of the test soils to earthworms. From the toxicity test results and the corresponding chemical analysis, a matrix of toxicity and contaminant levels was developed. This table was used to determine a concentration of each contaminant at which no acute lethality would be expected. Lower bounds to the chemical specific LC{sub 50} values were determined and, based on sample-specific toxicity units, appropriate LC{sub 50} values were derived (333 mg/kg 2,4-DNT, 182 mg/kg 2,6-DNT, and 1960 mg/kg 2,4,6TNT). Extrapolation of this level to a chronic No Observable Adverse Effect Level (NOAEL) provided a means of proposing site-specific ecologically based clean-up criteria for the constituents of concern which would be protective of the chosen assessment endpoint.« less

  20. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offsetmore » of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.« less

  1. [Cellular transplantation laboratory: a new field of action for nurses].

    PubMed

    Corradi, Maria Inês; da Silva, Sandra Honorato

    2008-01-01

    This article presents the experience of a nurse at a cellular transplantation laboratory. This laboratory goal is to isolate insulin producing cells for human transplantation. The nurse, as a member of an interdisciplinary team, took part in the planning of all work processes: working procedures and team training. The main activities under the nurse responsibilities include contamination control, on-the-job training and evaluation of the Quality of the procedures developed by the interdisciplinary team. Results have shown the effectiveness of the nurses' work in this new field.

  2. Micro-positron emission tomography for measuring sub-core scale single and multiphase transport parameters in porous media

    NASA Astrophysics Data System (ADS)

    Zahasky, Christopher; Benson, Sally M.

    2018-05-01

    Accurate descriptions of heterogeneity in porous media are important for understanding and modeling single phase (e.g. contaminant transport, saltwater intrusion) and multiphase (e.g. geologic carbon storage, enhanced oil recovery) transport problems. Application of medical imaging to experimentally quantify these processes has led to significant progress in material characterization and understanding fluid transport behavior at laboratory scales. While widely utilized in cancer diagnosis and management, cardiology, and neurology, positron emission tomography (PET) has had relatively limited applications in earth science. This study utilizes a small-bore micro-PET scanner to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in two heterogeneous Berea sandstone cores. The cores are discretized into axial-parallel streamtubes, and using the reconstructed micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core tracer flux and pore water velocity. Using the flux and velocity measurements, it is possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Second spatial moment analysis enables measurement of sub-core solute dispersion during both single phase and multiphase experiments. A numerical simulation model is developed to verify the assumptions of the streamtube dimension reduction technique. A variation of the reactor ratio is presented as a diagnostic metric to efficiently determine the validity of the streamtube approximation in core and column-scale experiments. This study introduces a new method to quantify sub-core permeability, relative permeability, and dispersion. These experimental and analytical methods provide a foundation for future work on experimental measurements of differences in transport behavior across scales.

  3. Subchronic exposure of benzo(a)pyrene interferes with the expression of Bcl-2, Ki-67, C-myc and p53, Bax, Caspase-3 in sub-regions of cerebral cortex and hippocampus.

    PubMed

    He, Jianlong; Ji, Xiaoying; Li, Yongfei; Xue, Xiaochang; Feng, Guodong; Zhang, Huqin; Wang, Huichun; Gao, Meilii

    2016-01-01

    Benzo[a]pyrene [B(a)P], a representative substance of the polycyclic aromatic hydrocarbons, is an ubiquitous environmental contaminant. However, the mechanism of B(a)P neurotoxicity is still not clear. The aim of this study was to investigate the molecular mechanism by assay the expression of Bcl-2, C-myc, Ki-67 oncogene and p53, Bax, Caspase-3 proapoptotic gene in sub-regions of cerebral cortex and hippocampus in brain. Mice were administrated with subchronic intraperitoneal injection and oral gavage of B(a)P (2.5, 5, 10mg/kg body weight) for 13 weeks. We observed that B(a)P induced the significant increase in relative brain weights and the slight proliferation phenomenon in hippocampus in the experiment. Significant increase of C-myc, Ki-67 and p53, Bax, Caspase-3 and dramatic decrease of Bcl-2 protein levels were observed through immunohistochemical analysis. The relative higher interference of Bcl-2, C-myc, Ki-67 and p53, Bax, Caspase-3 proteins was observed in hippocampus sub-regions of dentate gyrus, cornu ammonis 3 and cornu ammonis 1. The relative lower interference of the examined genes was found in cerebral cortex sub-regions of frontal cortex, temporal cortex and parietal cortex. The results showed a region-difference manner with accompanying dose-dependent manner in brain hippocampus and cerebral cortex induced by B(a)P. These findings indicate that B(a)P-induced subchronic neural toxicity may occur through the enhancement in Bcl-2, C-myc, Ki-67 oncogenes and p53, Bax, Caspase-3 proapoptotic genes expression. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Solid-base loaded WO{sub 3} photocatalyst for decomposition of harmful organics under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kako, Tetsuya, E-mail: kako.tetsuya@nims.go.jp; Meng, Xianguang; Ye, Jinhua

    Composite of NaBiO{sub 3}-loaded WO{sub 3} with a mixing ratio of 10:100 was prepared for photocatalytic harmful-organic-contaminant decomposition. The composite properties were measured using X-ray diffraction, ultraviolet-visible spectrophotometer (UV-Vis), and valence band-X-ray photoelectron spectroscope (VB-XPS). The results exhibited that the potentials for top of the valence band and bottom of conduction band for NaBiO{sub 3} can be estimated, respectively, as +2.5 V and -0.1 to 0 V. Furthermore, WO{sub 3}, NaBiO{sub 3}, and the composite showed IPA oxidation properties under visible-light irradiation. Results show that the composite exhibited much higher photocatalytic activity about 2-propanol (IPA) decomposition into CO{sub 2} thanmore » individual WO{sub 3} or NaBiO{sub 3} because of charge separation promotion and the base effect of NaBiO{sub 3}.« less

  5. Arsenic, microbes and contaminated aquifers

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  6. Recovering Greater Fungal Diversity from Pristine and Diesel Fuel Contaminated Sub-Antarctic Soil Through Cultivation Using Both a High and a Low Nutrient Media Approach

    PubMed Central

    Ferrari, Belinda C.; Zhang, Chengdong; van Dorst, Josie

    2011-01-01

    Novel cultivation strategies for bacteria are widespread and well described for recovering greater diversity from the “hitherto” unculturable majority. While similar approaches have not yet been demonstrated for fungi it has been suggested that of the 1.5 million estimated species less than 5% have been recovered into pure culture. Fungi are known to be involved in many degradative processes, including the breakdown of petroleum hydrocarbons, and it has been speculated that in Polar Regions they contribute significantly to bioremediation of contaminated soils. Given the biotechnological potential of fungi there is a need to increase efforts for greater species recovery, particularly from extreme environments such as sub-Antarctic Macquarie Island. In this study, like the yet-to-be cultured bacteria, high concentrations of nutrients selected for predominantly different fungal species to that recovered using a low nutrient media. By combining both media approaches to the cultivation of fungi from contaminated and non-contaminated soils, 91 fungal species were recovered, including 63 unidentified species. A preliminary biodegradation activity assay on a selection of isolates found that a high proportion of novel and described fungal species from a range of soil samples were capable of hydrocarbon degradation and should be characterized further. PMID:22131985

  7. A LYSIMETER STUDY TO INVESTIGATE THE EFFECT OF DAIRY EFFLUENT AND UREA ON CATTLE URIN N LOSSES, PLANT UPTAKE, AND SOIL RETENTION

    EPA Science Inventory

    Loss of nitrate (NO3-) from grazing land is a major cause for surface and ground water contamination. These losses can further increase when other N sources apply to grazing land. The objectives of this work were 1) to study the impact of either dairy effl...

  8. TREATMENT OF 1,2-DIBROMO-3-CHLOROPROPANE AND NITRATE-CONTAMINATED WATER WITH ZERO-VALENT IRON OR HYDROGEN/PALLADIUM CATALYSTS. (R825689C054,R825689C078)

    EPA Science Inventory

    Abstract

    The abilities of zero-valent iron powder and hydrogen with a palladium catalyst (H2/Pd-alumina) to hydrodehalogenate 1,2-dibromo-3-chloropropane (DBCP) to propane under water treatment conditions (ambient temperature and circumneutral pH) were compa...

  9. Isolation and analysis of linker histones across cellular compartments

    PubMed Central

    Harshman, Sean W.; Chen, Michael M.; Branson, Owen E.; Jacob, Naduparambil K.; Johnson, Amy J.; Byrd, John C.; Freitas, Michael A.

    2013-01-01

    Analysis of histones, especially histone H1, is severely limited by immunological reagent availability. This paper describes the application of cellular fractionation with LC-MS for profiling histones in the cytosol and upon chromatin. First, we show that linker histones enriched by cellular fractionation gives less nuclear contamination and higher histone content than when prepared by nuclei isolation. Second, we profiled the soluble linker histones throughout the cell cycle revealing phosphorylation increases as cells reach mitosis. Finally, we monitored histone H1.2–H1.5 translocation to the cytosol in response to the CDK inhibitor flavopiridol in primary CLL cells treated ex vivo. Data shows all H1 variants translocate in response to drug treatment with no specific order to their cytosolic appearance. The results illustrate the utility of cellular fractionation in conjunction with LC-MS for the analysis of histone H1 throughout the cell. PMID:24013129

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Li; Wang, Yu; Wang, Huan

    Highlights: Black-Right-Pointing-Pointer We detect the functional Ca{sup 2+} currents and mRNA expression of VDCC{sub L} in rMSCs. Black-Right-Pointing-Pointer Blockage of VDCC{sub L} exert antiproliferative and apoptosis-inducing effects on rMSCs. Black-Right-Pointing-Pointer Inhibiting VDCC{sub L} can suppress the ability of rMSCs to differentiate into osteoblasts. Black-Right-Pointing-Pointer {alpha}1C of VDCC{sub L} may be a primary functional subunit in VDCC{sub L}-regulating rMSCs. -- Abstract: L-type voltage-dependent Ca{sup 2+} channels (VDCC{sub L}) play an important role in the maintenance of intracellular calcium homeostasis, and influence multiple cellular processes. They have been confirmed to contribute to the functional activities of osteoblasts. Recently, VDCC{sub L} expression wasmore » reported in mesenchymal stem cells (MSCs), but the role of VDCC{sub L} in MSCs is still undetermined. The aim of this study was to determine whether VDCC{sub L} may be regarded as a new regulator in the proliferation and osteogenic differentiation of rat MSC (rMSCs). In this study, we examined functional Ca{sup 2+} currents (I{sub Ca}) and mRNA expression of VDCC{sub L} in rMSCs, and then suppressed VDCC{sub L} using nifedipine (Nif), a VDCC{sub L} blocker, to investigate its role in rMSCs. The proliferation and osteogenic differentiation of MSCs were analyzed by MTT, flow cytometry, alkaline phosphatase (ALP), Alizarin Red S staining, RT-PCR, and real-time PCR assays. We found that Nif exerts antiproliferative and apoptosis-inducing effects on rMSCs. ALP activity and mineralized nodules were significantly decreased after Nif treatment. Moreover, the mRNA levels of the osteogenic markers, osteocalcin (OCN), bone sialoprotein (BSP), and runt-related transcription factor 2 (Runx2), were also down-regulated. In addition, we transfected {alpha}1C-siRNA into the cells to further confirm the role of VDCC{sub L} in rMSCs, and a similar effect on osteogenesis was found. These results suggest that VDCC{sub L} plays a crucial role in the proliferation and osteogenic differentiation of rMSCs.« less

  11. Removal of nitrogen oxides from gas streams by biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, K.B.; Barnes, J.M.; Apel, W.A.

    1994-12-31

    Nitrogen oxides (NO{sub x}) are primary air pollutants and, as such, there is considerable interest in the development of efficient, cost effective technologies to remediate NO{sub x} containing emissions. Biofiltration involves the venting of contaminated gas streams through biologically active material such as soil or compost. This technology has been used successfully to control odors as well as volatile organic compounds from a variety of industrial and public sources. The purpose of this study was to evaluate the feasibility of using biofiltration to convert NO{sub x} to nitrogen gas.

  12. Observations on Si-based micro-clusters embedded in TaN thin film deposited by co-sputtering with oxygen contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young Mi; Jung, Min-Sang; Choi, Duck-Kyun, E-mail: duck@hanyang.ac.kr, E-mail: mcjung@oist.jp

    2015-08-15

    Using scanning electron microscopy (SEM) and high-resolution x-ray photoelectron spectroscopy with the synchrotron radiation we investigated Si-based micro-clusters embedded in TaSiN thin films having oxygen contamination. TaSiN thin films were deposited by co-sputtering on fixed or rotated substrates and with various power conditions of TaN and Si targets. Three types of embedded micro-clusters with the chemical states of pure Si, SiO{sub x}-capped Si, and SiO{sub 2}-capped Si were observed and analyzed using SEM and Si 2p and Ta 4f core-level spectra were derived. Their different resistivities are presumably due to the different chemical states and densities of Si-based micro-clusters.

  13. Process for separating coal synthesized methane from unreacted intermediate and contaminant gases

    DOEpatents

    Barker, Ray E.; Scott, Charles D.; Ryon, Allen D.

    1982-01-01

    Gas produced from coal and containing CH.sub.4, CO, CO.sub.2, H.sub.2 and H.sub.2 S is contacted with CO.sub.2 scrub liquid to form (1) a liquid CO.sub.2 stream containing as solutes CH.sub.4, H.sub.2 S and minor portions of the CO and H.sub.2, and (2) a gas stream containing CO.sub.2 and major portions of the CO and H.sub.2, the CO and H.sub.2 in this stream being recycled to the means which produces gas from coal, and CO.sub.2 in the stream being recycled to the scrub liquid. The solute-bearing liquid CO.sub.2 stream is fractionated into (1) a liquid CO.sub.2 stream containing CH.sub.4 and H.sub.2 S, and (2) a H.sub.2 /CO gas stream which is recycled into contact with the scrub liquid. The last-mentioned liquid CO.sub.2 stream is fractionated into (1) a CH.sub.4 /CO.sub.2 gas stream the CO.sub.2 of which is recycled to the scrub liquid, and (2) a liquid CO.sub.2 stream containing H.sub.2 S, and CO.sub.2 of this stream is also recycled to the scrub liquid.

  14. Process for separating coal synthesized methane from unreacted intermediate and contaminant gases. [Patent application

    DOEpatents

    Barker, R.E.; Scott, C.D.; Ryon, A.D.

    1980-10-27

    Gas produced from coal and containing CH/sub 4/, CO, CO/sub 2/, H/sub 2/ and H/sub 2/S is contacted with CO/sub 2/ scrub liquid to form (1) a liquid CO/sub 2/ stream containing as solutes CH/sub 4/, H/sub 2/S and minor portions of the CO and H/sub 2/, and (2) a gas stream containing CO/sub 2/ and major portions of the CO and H/sub 2/, the CO and H/sub 2/ in this stream being recycled to the means which produces gas from coal, and CO/sub 2/ in the stream being recycled to the scrub liquid. The solute-bearing liquid CO/sub 2/ stream is fractionated into (1) a liquid CO/sub 2/ stream containing CH/sub 4/ and H/sub 2/S, and (2) a H/sub 2//CO gas stream which is recycled into contact with the scrub liquid. The last-mentioned liquid CO/sub 2/ stream is fractionated into (1) a CH/sub 4//CO/sub 2/ gas stream the CO/sub 2/ of which is recycled to the scrub liquid, and (2) a liquid CO/sub 2/ stream containing H/sub 2/S, and CO/sub 2/ of this stream is also recycled to the scrub liquid.

  15. How-to-Do-It: A Simple DNA Isolation Technique Using Halophilic Bacteria.

    ERIC Educational Resources Information Center

    Guilfoile, Patrick

    1989-01-01

    Described is a simple technique for isolating DNA from halophilic bacteria. Materials, procedure, and additional experiments are outlined. It is stated that the DNA obtained will be somewhat contaminated with cellular proteins and RNA. Offers a procedure for greater purification. (RT)

  16. Public health implications of contamination of Franc CFA (XAF) circulating in Buea (Cameroon) with drug resistant pathogens.

    PubMed

    Akoachere, Jane-Francis Tatah Kihla; Gaelle, Nana; Dilonga, Henry Meriki; Nkuo-Akenji, Theresa K

    2014-01-08

    Studies in different parts of the world have implicated money as a vehicle for transmission of pathogens. Such information which is necessary to facilitate infection control strategies is lacking in many sub-Saharan countries including Cameroon. This study analyzed the Franc de la Communauté Financiere d'Afrique (Franc CFA), the currency used in Cameroon and other countries in the Central African sub-region, as a potential vehicle for transmission of pathogenic bacteria and fungi, particularly drug-resistant strains, to generate findings which could create awareness on currency contamination and serve as a guide when formulating health policies on currency. Two hundred and thirteen currency samples representing various denominations of notes and coins randomly collected from diverse sources in Buea, Cameroon were analyzed for bacteria and fungi. The sensitivity of bacterial isolates to antibiotics was tested using the disc diffusion method. The relationship between contamination and physical state, source or denomination of currency was assessed using the χ2 test. All statistics were discussed at 0.05 significance level. Two hundred (93.9%) samples were contaminated with notes (96.6%) showing higher contamination than coins (88.2%). Uncirculated (mint) samples showed no contamination. There was a significant difference (P<0.05) in contamination with respect to currency denomination, physical state and source. All samples from butchers and patients/personnel in hospitals were contaminated. Lower denominations showed significantly higher (P = 0.008) levels of contamination than higher denominations. Dirty currency was more contaminated than clean currency. Nine bacterial species were isolated. Coagulase-negative Staphylococcus (CoNS) (54.9%) and Staphylococcus aureus (20.1%) predominated. Among the fungi detected, Aspergillus sp (17.3%) and Penicillium sp (15.9%) showed higher frequency of occurrence. Bacteria were susceptible (100%) to ceftriaxone, gentamicin, norfloxacin and ofloxacin. Susceptibility to amoxicillin, penicillin, ampicillin, vancomycin and cotrimoxazole was low. Staphylococci were resistant (100%) to vancomycin, penicillin G, and amoxicillin. CoNS in addition showed resistance (100%) to cotrimoxazole. The CFA franc circulating in Buea could serve as a vehicle for transmission of drug resistant pathogenic or potential organisms and contamination could be due to currency usage and handling as mint notes were not contaminated. Hygiene practices during or after handling currency is greatly encouraged to prevent infection.

  17. Investigation of the Effects of Biodiesel-based Na on Emissions Control Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookshear, D. William; Nguyen, Ke; Toops, Todd J

    2012-01-01

    A single-cylinder diesel engine was used to investigate the impact of biodiesel-based Na on emissions control components using specially blended 20% biodiesel fuel (B20). The emissions control components investigated were a diesel oxidation catalyst (DOC), a Cu-zeolite-based NH{sub 3}-SCR (selective catalytic reduction) catalyst, and a diesel particulate filter (DPF). Both light-duty vehicle, DOC-SCR-DPF, and heavy-duty vehicle, DOC-DPF-SCR, emissions control configurations were employed. The accelerated Na aging is achieved by introducing elevated Na levels in the fuel, to represent full useful life exposure, and periodically increasing the exhaust temperature to replicate DPF regeneration. To assess the validity of the implemented acceleratedmore » Na aging protocol, engine-aged lean NO{sub x} traps (LNTs), DOCs and DPFs are also evaluated. To fully characterize the impact on the catalytic activity the LNT, DOC and SCR catalysts were evaluated using a bench flow reactor. The evaluation of the aged DOC samples and LNT show little to no deactivation as a result of Na contamination. However, the SCR in the light-duty configuration (DOC-SCR-DPF) was severely affected by Na contamination, especially when NO was the only fed NO{sub x} source. In the heavy-duty configuration (DOC-DPF-SCR), no impact is observed in the SCR NO{sub x} reduction activity. Electron probe micro-analysis (EPMA) reveals that Na contamination on the LNT, DOC, and SCR samples is present throughout the length of the catalysts with a higher concentration on the washcoat surface. In both the long-term engine-aged DPF and the accelerated Na-aged DPFs, there is significant Na ash present in the upstream channels; however, in the engine-aged sample lube oil-based ash is the predominant constituent.« less

  18. SNARE-mediated trafficking of {alpha}{sub 5}{beta}{sub 1} integrin is required for spreading in CHO cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, Michael; Coppolino, Marc G.

    2005-10-07

    In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cellmore » spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of {alpha}{sub 5}{beta}{sub 1} integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading.« less

  19. Biofilm Shows Spatially Stratified Metabolic Responses to Contaminant Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Bin; Majors, Paul D.; Ahmed, B.

    2012-11-01

    The objective of this study was to elucidate the spatiotemporal responses of live S. oneidensis MR-1 biofilms to U(VI) (uranyl, UO22+) and Cr(VI) (chromate, CrO42-), important environmental contaminants at DOE contaminated sites. Toward this goal, we applied noninvasive nuclear magnetic resonance (NMR) imaging, diffusion, relaxation and spectroscopy techniques to monitor in situ spatiotemporal responses of S. oneidensis biofilms to U(VI) and Cr(VI) exposure in terms of changes in biofilm structures, diffusion properties, and cellular metabolism. Exposure to U(VI) or Cr(VI) did not appear to change the overall biomass distribution but caused changes in the physicochemical microenvironments inside the biofilm asmore » indicated by diffusion measurements. Changes in the diffusion properties of the biofilms in response to U(VI) and Cr(VI) exposure imply a novel function of the extracellular polymeric substances (EPS) affecting the biotransformation and transport of contaminants in the environment. In the presence of U(VI) or Cr(VI), the anaerobic metabolism of lactate was inhibited significantly, although the biofilms were still capable of reducing U(VI) and Cr(VI). Local concentrations of Cr(III)aq in the biofilm suggested relatively high Cr(VI) reduction activities at the top of the biofilm, near the medium-biofilm interface. The depth-resolved metabolic activities of the biofilm suggested higher diversion effects of gluconeogenesis and C1 metabolism pathways at the bottom of the biofilm and in the presence of U(VI). This study provides a noninvasive means to investigate spatiotemporal responses of biofilms, including surface-associated microbial communities in engineering, natural and medical settings, to various environmental perturbations including exposure to environmental contaminants and antimicrobials.« less

  20. Carcinogenic chemicals in food: evaluating the health risk.

    PubMed

    Abbott, P J

    1992-04-01

    The presence of a low level of potentially harmful chemicals in food continues to be a concern to many individuals. A major concern is that these chemicals, which can be synthetic or naturally occurring, may be a causative factor in human cancer. Synthetic chemicals in food may be present either as specific additives or as contaminants derived from environmental or agricultural chemicals. Food also contains a variety of naturally occurring chemicals derived from vegetables or other plants. These may in some cases be considered as contaminants, and are occasionally used as specific additives. New chemicals can also be formed during the cooking or preserving processes. The capacity of any of these chemicals to induce cellular damage and mutation is minimized by natural defence systems such as an efficient cellular detoxification system and DNA repair. The factors influencing tumour formation in humans are numerous and interrelated and exposure to minor dietary chemicals needs to be considered in this context. Thus, the results of animal carcinogenicity assays on individual chemicals need to be interpreted with care, taking into account the mechanisms by which mutagenic and other chemicals initiate cancer, as well as the level of human exposure to these chemicals. Further research is necessary to determine the role, if any, of minor dietary components in tumour formation. Meanwhile, there needs to be a more holistic approach to the multitude of factors, including total diet, that may influence human cancer incidence. In this way, the relative risk of dietary chemicals may be given a more meaningful perspective for health professionals and consumers alike.

  1. Interference-Detection Module in a Digital Radar Receiver

    NASA Technical Reports Server (NTRS)

    Fischman, Mark; Berkun, Andrew; Chu, Anhua; Freedman, Adam; Jourdan, Michael; McWatters, Dalia; Paller, Mimi

    2009-01-01

    A digital receiver in a 1.26-GHz spaceborne radar scatterometer now undergoing development includes a module for detecting radio-frequency interference (RFI) that could contaminate scientific data intended to be acquired by the scatterometer. The role of the RFI-detection module is to identify time intervals during which the received signal is likely to be contaminated by RFI and thereby to enable exclusion, from further scientific data processing, of signal data acquired during those intervals. The underlying concepts of detection of RFI and rejection of RFI-contaminated signal data are also potentially applicable in advanced terrestrial radio receivers, including software-defined radio receivers in general, receivers in cellular telephones and other wireless consumer electronic devices, and receivers in automotive collision-avoidance radar systems.

  2. Copper and zinc contamination in oysters: subcellular distribution and detoxification.

    PubMed

    Wang, Wen-Xiong; Yang, Yubo; Guo, Xiaoyu; He, Mei; Guo, Feng; Ke, Caihuan

    2011-08-01

    Metal pollution levels in estuarine and coastal environments have been widely reported, but few documented reports exist of severe contamination in specific environments. Here, we report on a metal-contaminated estuary in Fujian Province, China, in which blue oysters (Crassostrea hongkongensis) and green oysters (Crassostrea angulata) were discovered to be contaminated with Cu and other metals. Extraordinarily high metal concentrations were found in the oysters collected from the estuary. Comparison with historical data suggests that the estuary has recently been contaminated with Cr, Cu, Ni, and Zn. Metal concentrations in blue oysters were as high as 1.4 and 2.4% of whole-body tissue dry wt for Cu and Zn, respectively. Cellular debris was the main subcellular fraction binding the metals, but metal-rich granules were important for Cr, Ni, and Pb. With increasing Cu accumulation, its partitioning into the cytosolic proteins decreased. In contrast, metallothionein-like proteins increased their importance in binding with Zn as tissue concentrations of Zn increased. In the most severely contaminated oysters, only a negligible fraction of their Cu and Zn was bound with the metal-sensitive fraction, which may explain the survival of oysters in such contaminated environments. Copyright © 2011 SETAC.

  3. In vivo Labeling of Constellations of Functionally Identified Neurons for Targeted in vitro Recordings

    PubMed Central

    Lien, Anthony D.; Scanziani, Massimo

    2011-01-01

    Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948

  4. GEOPHYSICS AND SITE CHARACTERIZATION AT THE HANFORD SITE THE SUCCESSFUL USE OF ELECTRICAL RESISTIVITY TO POSITION BOREHOLES TO DEFINE DEEP VADOSE ZONE CONTAMINATION - 11509

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GANDER MJ; LEARY KD; LEVITT MT

    2011-01-14

    Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) ofmore » wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the vadose zone (i.e., 79 m [260 ft] bgs) within the footprint of the Crib, and (b) 15 to 30 m (50 to 100 ft) east of the Crib footprint, where contaminants are inferred to have migrated through relatively permeable soils. Confirmation of the presence of contamination in historic boreholes correlates well with mapping from the 2010 survey, and serves as a basis to site future characterization boreholes that will likely intersect contamination both laterally and at depth.« less

  5. Uptakes of Cs and Sr on San Joaquin soil measured following ASTM method C1733.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W.L.; Petri, E.T.

    2012-04-04

    Series of tests were conducted following ASTM Standard Procedure C1733 to evaluate the repeatability of the test and the effects of several test parameters, including the solution-to-soil mass ratio, test duration, pH, and the concentrations of contaminants in the solution. This standard procedure is recommended for measuring the distribution coefficient (K{sub d}) of a contaminant in a specific soil/groundwater system. One objective of the current tests was to identify experimental conditions that can be used in future interlaboratory studies to determine the reproducibility of the test method. This includes the recommendation of a standard soil, the range of contaminant concentrationsmore » and solution matrix, and various test parameters. Quantifying the uncertainty in the distribution coefficient that can be attributed to the test procedure itself allows the differences in measured values to be associated with differences in the natural systems being studied. Tests were conducted to measure the uptake of Cs and Sr dissolved as CsCl and Sr(NO{sub 3}){sub 2} in a dilute NaHCO{sub 3}/SiO{sub 2} solution (representing contaminants in a silicate groundwater) by a NIST standard reference material of San Joaquin soil (SRM 2709a). Tests were run to measure the repeatability of the method and the sensitivity of the test response to the reaction time, the mass of soil used (at a constant soil-to-solution ratio), the solution pH, and the contaminant concentration. All tests were conducted in screw-top Teflon vessels at 30 C in an oven. All solutions were passed through a 0.45-{mu}m pore size cellulose acetate membrane filter and stabilized with nitric acid prior to analysis with inductively-coupled plasma mass spectrometry (ICP-MS). Scoping tests with soil in demineralized water resulted in a solution pH of about 8.0 and the release of small amounts of Sr from the soil. Solutions were made with targeted concentrations of 1 x 10{sup -6} m, 1 x 10{sup -5} m, 2.5 x 10{sup -5} m, 5 x 10{sup -5} m, 1 x 10{sup -4} m, and 5 x 10{sup -4} m to measure the effects of the Cs and Sr concentrations on their uptake by the soil. The pH values of all solutions were adjusted to about pH 8.5 so that the effects of pH and concentration could be measured separately. The 1 x 10{sup -4} m solutions were used to measure the repeatability of the test and the effects of duration, scale, and imposed pH on the test response.« less

  6. Accumulation and persistence of chlorobiphenyls, organochlorine pesticides and faecal sterols at the Garroch Head sewage sludge disposal site, Firth of Clyde.

    PubMed

    Kelly, A G

    1995-01-01

    The sediment concentrations of organic carbon, faecal sterols, individual chlorobiphenyl congeners and organochlorine pesticides have been measured in seabed cores from the sewage sludge disposal area at Garroch Head in the Firth of Clyde. The measurements confirm the accumulative nature of the site with high levels of sedimentary faecal sterols (152 mg kg(-1) coprostanol). Levels of chlorobiphenyls, DDT compounds and dieldrin in surface sediment were elevated by factors of 12, 40 and 120, respectively, over those observed at a site remote from the effects of dumping. Total chlorobiphenyl levels of 515 microg kg(-1) Arochlor 1254 in surface sediment were comparable to levels found in other areas heavily contaminated with sewage sludge. The 20-cm depth of heavily sludge-contaminated sediment overlays a mixed sludge/basal sediment layer some 10 cm in depth. Levels of organochlorine contaminants were elevated to depths of 90 cm in the sediment, suggesting that the surface layer is a source of contaminants to the deeper sediment. Within the upper 15-20 cm sediment in the disposal area, chlorobiphenyls are conservative, the variation in their concentration with respect to depth being related to historical input. Lindane and possibly dieldrin, and hexachlorobenzene are not conservative. Faecal sterols are removed in sub-surface sediment, in contrast to conservative behaviour previously found at other sewage polluted sites.

  7. Photometric Repeatability of Scanned Imagery: UVIS

    NASA Astrophysics Data System (ADS)

    Shanahan, Clare E.; McCullough, Peter; Baggett, Sylvia

    2017-08-01

    We provide the preliminary results of a study on the photometric repeatability of spatial scans of bright, isolated white dwarf stars with the UVIS channel of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). We analyze straight-line scans from the first pair of identical orbits of HST program 14878 to assess if sub 0.1% repeatability can be attained with WFC3/UVIS. This study is motivated by the desire to achieve better signal-to-noise in the UVIS contamination and stability monitor, in which observations of standard stars in staring mode have been taken from the installation of WFC3 in 2009 to the present to assess temporal photometric stability. Higher signal to noise in this program would greatly benefit the sensitivity to detect contamination, and to better characterize the observed small throughput drifts over time. We find excellent repeatability between identical visits of program 14878, with sub 0.1% repeatability achieved in most filters. These! results support the initiative to transition the staring mode UVIS contamination and photometric stability monitor from staring mode images to spatial scans.

  8. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.

    PubMed

    Robson, T C; Braungardt, C B; Rieuwerts, J; Worsfold, P

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (<63 μm, 0.92 wt.% Cd) showed continuous, slow dissolution (0.6-1.2% y(-1)). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg(-1)) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg(-1)) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Performance assessment of pilot horizontal sub-surface flow constructed wetlands for removal of diesel from wastewater by Scirpus grossus.

    PubMed

    Al-Baldawi, Israa Abdulwahab; Sheikh Abdullah, Siti Rozaimah; Anuar, Nurina; Suja, Fatihah; Idris, Mushrifah

    2013-01-01

    One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.

  10. Oxidation of aromatic contaminants coupled to microbial iron reduction

    USGS Publications Warehouse

    Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.

    1989-01-01

    THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.

  11. Prostate cancer-associated gene expression alterations determined from needle biopsies.

    PubMed

    Qian, David Z; Huang, Chung-Ying; O'Brien, Catherine A; Coleman, Ilsa M; Garzotto, Mark; True, Lawrence D; Higano, Celestia S; Vessella, Robert; Lange, Paul H; Nelson, Peter S; Beer, Tomasz M

    2009-05-01

    To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays composed of 6,200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative reverse transcription-PCR. Comparative analyses identified 954 transcript alterations associated with cancer (q < 0.01%), including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy use, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of androgen receptor expression changes was noted. In exploratory analyses, androgen receptor down-regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation.

  12. Prostate Cancer-Associated Gene Expression Alterations Determined from Needle Biopsies

    PubMed Central

    Qian, David Z.; Huang, Chung-Ying; O'Brien, Catherine A.; Coleman, Ilsa M.; Garzotto, Mark; True, Lawrence D.; Higano, Celestia S.; Vessella, Robert; Lange, Paul H.; Nelson, Peter S.; Beer, Tomasz M.

    2010-01-01

    Purpose To accurately identify gene expression alterations that differentiate neoplastic from normal prostate epithelium using an approach that avoids contamination by unwanted cellular components and is not compromised by acute gene expression changes associated with tumor devascularization and resulting ischemia. Experimental Design Approximately 3,000 neoplastic and benign prostate epithelial cells were isolated using laser capture microdissection from snap-frozen prostate biopsy specimens provided by 31 patients who subsequently participated in a clinical trial of preoperative chemotherapy. cDNA synthesized from amplified total RNA was hybridized to custom-made microarrays comprised of 6200 clones derived from the Prostate Expression Database. Expression differences for selected genes were verified using quantitative RT-PCR. Results Comparative analyses identified 954 transcript alterations associated with cancer (q value <0.01%) including 149 differentially expressed genes with no known functional roles. Gene expression changes associated with ischemia and surgical removal of the prostate gland were absent. Genes up-regulated in prostate cancer were statistically enriched in categories related to cellular metabolism, energy utilization, signal transduction, and molecular transport. Genes down-regulated in prostate cancers were enriched in categories related to immune response, cellular responses to pathogens, and apoptosis. A heterogeneous pattern of AR expression changes was noted. In exploratory analyses, AR down regulation was associated with a lower probability of cancer relapse after neoadjuvant chemotherapy followed by radical prostatectomy. Conclusions Assessments of tumor phenotypes based on gene expression for treatment stratification and drug targeting of oncogenic alterations may best be ascertained using biopsy-based analyses where the effects of ischemia do not complicate interpretation. PMID:19366833

  13. Probing eukaryotic cell mechanics via mesoscopic simulations

    PubMed Central

    Shang, Menglin; Lim, Chwee Teck

    2017-01-01

    Cell mechanics has proven to be important in many biological processes. Although there is a number of experimental techniques which allow us to study mechanical properties of cell, there is still a lack of understanding of the role each sub-cellular component plays during cell deformations. We present a new mesoscopic particle-based eukaryotic cell model which explicitly describes cell membrane, nucleus and cytoskeleton. We employ Dissipative Particle Dynamics (DPD) method that provides us with the unified framework for modeling of a cell and its interactions in the flow. Data from micropipette aspiration experiments were used to define model parameters. The model was validated using data from microfluidic experiments. The validated model was then applied to study the impact of the sub-cellular components on the cell viscoelastic response in micropipette aspiration and microfluidic experiments. PMID:28922399

  14. Isolation of intact sub-dermal secretory cavities from Eucalyptus

    PubMed Central

    2010-01-01

    Background The biosynthesis of plant natural products in sub-dermal secretory cavities is poorly understood at the molecular level, largely due to the difficulty of physically isolating these structures for study. Our aim was to develop a protocol for isolating live and intact sub-dermal secretory cavities, and to do this, we used leaves from three species of Eucalyptus with cavities that are relatively large and rich in essential oils. Results Leaves were digested using a variety of commercially available enzymes. A pectinase from Aspergillus niger was found to allow isolation of intact cavities after a relatively short incubation (12 h), with no visible artifacts from digestion and no loss of cellular integrity or cavity contents. Several measurements indicated the potential of the isolated cavities for further functional studies. First, the cavities were found to consume oxygen at a rate that is comparable to that estimated from leaf respiratory rates. Second, mRNA was extracted from cavities, and it was used to amplify a cDNA fragment with high similarity to that of a monoterpene synthase. Third, the contents of the cavity lumen were extracted, showing an unexpectedly low abundance of volatile essential oils and a sizeable amount of non-volatile material, which is contrary to the widely accepted role of secretory cavities as predominantly essential oil repositories. Conclusions The protocol described herein is likely to be adaptable to a range of Eucalyptus species with sub-dermal secretory cavities, and should find wide application in studies of the developmental and functional biology of these structures, and the biosynthesis of the plant natural products they contain. PMID:20807444

  15. Involvement of 1,25D{sub 3}-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Cynthia L.; Farach-Carson, Mary C.; Rohe, Ben

    2010-03-10

    In addition to classical roles in calcium homeostasis and bone development, 1,25 dihydroxyvitamin D{sub 3} [1,25(OH){sub 2}D{sub 3}] inhibits the growth of several cancer types, including breast cancer. Although cellular effects of 1,25(OH){sub 2}D{sub 3} traditionally have been attributed to activation of a nuclear vitamin D receptor (VDR), a novel receptor for 1,25(OH){sub 2}D{sub 3} called 1,25D{sub 3}-MARRS (membrane-associated, rapid response steroid-binding) protein was identified recently. The purpose of this study was to determine if the level of 1,25D{sub 3}-MARRS expression modulates 1,25(OH){sub 2}D{sub 3} activity in breast cancer cells. Relative levels of 1,25D{sub 3}-MARRS protein in MCF-7, MDA MBmore » 231, and MCF-10A cells were estimated by real-time RT-PCR and Western blotting. To determine if 1,25D{sub 3}-MARRS receptor was involved in the growth inhibitory effects of 1,25(OH){sub 2}D{sub 3} in MCF-7 cells, a ribozyme construct designed to knock down 1,25D{sub 3}-MARRS mRNA was stably transfected into MCF-7 cells. MCF-7 clones in which 1,25D{sub 3}-MARRS receptor expression was reduced showed increased sensitivity to 1,25(OH){sub 2}D{sub 3} ( IC{sub 50} 56 {+-} 24 nM) compared to controls (319 {+-} 181 nM; P < 0.05). Reduction in 1,25D{sub 3}-MARRS receptor lengthened the doubling time in transfectants treated with 1,25(OH){sub 2}D{sub 3}. Knockdown of 1,25D{sub 3}-MARRS receptor also increased the sensitivity of MCF-7 cells to the vitamin D analogs KH1060 and MC903, but not to unrelated agents (all-trans retinoic acid, paclitaxel, serum/glucose starvation, or the isoflavone, pomiferin). These results suggest that 1,25D{sub 3}-MARRS receptor expression interferes with the growth inhibitory activity of 1,25(OH){sub 2}D{sub 3} in breast cancer cells, possibly through the nuclear VDR. Further research should examine the potential for pharmacological or natural agents that modify 1,25D{sub 3}-MARRS expression or activity as anticancer agents.« less

  16. Influence of diesel contamination on the benthic microbial/meiofaunal food web of a Louisiana salt marsh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carman, K.R.; Fleeger, J.W.; Pomarico, S.

    The authors studied the influence of diesel-contaminated sediments on the benthic microbial/meiofaunal food web from a Louisiana salt marsh. Diesel-contaminated sediment was added to microcosms (intact cores of marsh mud) in a range of doses, and a suite of microbial and meiofaunal responses were measured over a 28-day period. The authors measured bacterial and microalgal (Chl a) abundance, bacterial and microalgal activity using radiotracers ({sup 14}C-acetate and {sup 14}CO{sub 2}, respectively), meiofaunal grazing on microalgae, meiofaunal community structure, and meiofaunal physiological condition. Preliminary results indicate that diesel-contaminated sediments influence microalgal biomass and activity, as well as the life histories ofmore » benthic copepod species.« less

  17. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu; Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu; Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology tomore » atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.« less

  18. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    PubMed

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.

  19. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    PubMed Central

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. PMID:28060865

  20. Hydrochemical profiles in urban groundwater systems: New insights into contaminant sources and pathways in the subsurface from legacy and emerging contaminants.

    PubMed

    White, D; Lapworth, D J; Stuart, M E; Williams, P J

    2016-08-15

    It has long been known that groundwaters beneath urban areas carry a fingerprint from urban activities but finding a consistent tracer for anthropogenic influence has proved elusive. The varied sources of urban contaminants means that a single consistent and inexpensive means of tracing the fate of urban contaminants is not generally possible and multiple tracers are often required to understand the contaminant sources and pathways in these complex systems. This study has utilized a combination of micro-organic (MO) contaminants and inorganic hydrochemistry to trace recharge pathways and quantify the variability of groundwater quality in multi-level piezometers in the city of Doncaster, UK. A total of 23 MOs were detected during this study, with more compounds consistently detected during higher groundwater table conditions highlighting the importance of sampling under different hydrological conditions. Four of the compounds detected are EU Water Framework Directive priority substances: atrazine, simazine, naphthalene and DEHP, with a maximum concentration of 0.18, 0.03, 0.2, 16μg/l respectively. Our study shows that the burden of the banned pesticide atrazine persists in the Sherwood Sandstone and is detected at two of the three study sites. Emerging contaminants are seen throughout the borehole profiles and provide insights into transient pathways for contaminant migration in the sub-surface. Long term changes in inorganic hydrochemistry show possible changes in contaminant input or the dissolution of minerals. Nitrate was detected above 50mg/l but on the whole nitrate concentrations have declined in the intervening years either due to a reduction of nitrate application at the surface or a migration of peak nitrate concentrations laterally or to greater depth. This study shows that multiple tracers together with multi-level piezometers can give a better resolution of contaminant pathways and variable flow regimes within the relatively uncomplicated aquifer of the Sherwood Sandstone compared with single long screened wells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  2. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  3. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  4. Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, Misty; Martinez, Raquel; Ali, Hind

    2006-06-23

    Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC{sub 5} {approx} 20 {mu}M). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositolmore » 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.« less

  5. A quantitative, multi-national and multi-stakeholder assessment of barriers to the adoption of cell therapies.

    PubMed

    Davies, Benjamin M; Smith, James; Rikabi, Sarah; Wartolowska, Karolina; Morrey, Mark; French, Anna; MacLaren, Robert; Williams, David; Bure, Kim; Pinedo-Villanueva, Rafael; Mathur, Anthony; Birchall, Martin; Snyder, Evan; Atala, Anthony; Reeve, Brock; Brindley, David

    2017-01-01

    Cellular therapies, such as stem cell-based treatments, have been widely researched and numerous products and treatments have been developed. Despite this, there has been relatively limited use of these technologies in the healthcare sector. This study sought to investigate the perceived barriers to this more widespread adoption. An anonymous online questionnaire was developed, based on the findings of a pilot study. This was distributed to an audience of clinicians, researchers and commercial experts in 13 countries. The results were analysed for all respondents, and also sub-grouped by geographical region, and by profession of respondents. The results of the study showed that the most significant barrier was manufacturing, with other factors such as efficacy, regulation and cost-effectiveness being identified by the different groups. This study further demonstrates the need for these important issues to be addressed during the development of cellular therapies to enable more widespread adoption of these treatments.

  6. Responses of Noccaea caerulescens and Lupinus albus in trace elements-contaminated soils.

    PubMed

    Martínez-Alcalá, Isabel; Hernández, Luis E; Esteban, Elvira; Walker, David J; Bernal, M Pilar

    2013-05-01

    Plants exposed to trace elements can suffer from oxidative stress, which is characterised by the accumulation of reactive oxygen species, alteration in the cellular antioxidant defence system and ultimately lipid peroxidation. We assessed the most-appropriate stress indexes to describe the response of two plant species, with different strategies for coping with trace elements (TEs), to particular contaminants. Noccaea caerulescens, a hyperaccumulator, and Lupinus albus, an excluder, were grown in three soils of differing pH: an acidic soil, a neutral soil (both contaminated mainly by Cu, Zn and As) and a control soil. Then, plant stress indicators were measured. As expected, N. caerulescens accumulated higher levels of Zn and Cd in shoots than L. albus, this effect being stronger in the acid soil, reflecting greater TE solubility in this soil. However, the shoot concentrations of Mn were higher in L. albus than in N. caerulescens, while the As concentration was similar in the two species. In L. albus, the phenolic content and lipid peroxidation were related with the Cu concentration, whereas the Zn and Cd concentrations in N. caerulescens were more closely related to glutathione content and lipid peroxidation. Interestingly, phytochelatins were only found in L. albus grown in polluted soils. Hence, the two species differed with respect to the TEs which provoked stress and the biochemical indicators of the stress, there being a close relationship between the accumulation of TEs and their associated stress indicators in the different plant organs. Crown Copyright © 2013. Published by Elsevier Masson SAS. All rights reserved.

  7. THE SCATTERING OF POSITIVE 120 MEV PIONS ON PROTONS. PART I. PART II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loria, A.; Mittner, P.; Santangelo, R.

    1961-04-11

    An investigation of the elastic scattering of 120 Mev positive pions by protons is described in which a liquid propane chamber was exposed to the CERN 600 Mev synchrocyclotron. The results refer to 5405 selected events in which the contamination from scattering on carbon nuclei is shown to be negligible. The values obtained for the phase shifts are: alpha /sub 3//sub 1/ = -2.60 deg plus or minus 0.69 deg , alpha /sub 3/= -11.05 deg plus or minus 1.32 deg , alpha /sub 3//sub 3/ = +31.67 deg plus or minus O.O1 deg . The value of alpha /submore » 3/ differs significantly from that expected if the linear dependence of alpha /sub 3/ on the momentum, which has been proposed by some authors, is assumed. (auth)« less

  8. Repeated exposure of mouse dermal fibroblasts at a sub-cytotoxic dose of UVB leads to premature senescence: a robust model of cellular photoaging.

    PubMed

    Zeng, Ji-ping; Bi, Bo; Chen, Liang; Yang, Ping; Guo, Yu; Zhou, Yi-qun; Liu, Tian-yi

    2014-01-01

    Photoaging skin is due to accumulative effect of UV irradiation that mainly imposes its damage on dermal fibroblasts. To mimic the specific cellular responses invoked by long term effect of UVB, it is preferable to develop a photo-damaged model in vitro based on repeated UVB exposure instead of a single exposure. To develop a photo-damaged model of fibroblasts by repeated UVB exposure allowing for investigation of molecular mechanism underlying premature senescence and testing of potential anti-photoaging compounds. Mouse dermal fibroblasts (MDFs) at early passages (passages 1-3) were exposed to a series of 4 sub-cytotoxic dose of UVB. The senescent phenotypes were detected at 24 or 48h after the last irradiation including cell viability, ROS generation, mitochondrial membrane potential, cell cycle, production and degradation of extracellular matrix. Repeated exposure of UVB resulted in remarkable features of senescence. It effectively avoided the disadvantages of single dose such as induction of cell death rather than senescence, inadequate stress resulting in cellular self-rehabilitation. Our work confirms the possibility of detecting cellular machinery that mediates UVB damage to fibroblasts in vitro by repeated exposure, while the potential molecular mechanisms including cell surface receptors, protein kinase signal transduction pathways, and transcription factors remain to be further evaluated. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhupathiraju, V.K.; Sharma, P.K.; Tanner, R.S.

    A strictly anaerobic, moderately halophilic, gram-negative bacterium was isolated from a highly saline oil field brine. The bacterium was a non-spore-forming, nonmotile rod, appearing singly, in pairs, or occasionally as long chains, and measured 0.3 to 0.4 by 2.6 to 4 {micro}m. The bacterium had a specific requirement for NaCl and grew at NaCl concentrations of between 6 and 24%, with optimal growth at 9% NaCl. The isolate grew at temperatures of between 22 and 51 C and pH values of between 5.6 and 8.0. The doubling time in a complex medium containing 10% NaCl was 9 h. Growth wasmore » inhibited by chloramphenicol, tetracycline, and penicillin but not by cycloheximide or azide. Fermentable substrates were predominantly carbohydrates. The end products of glucose fermentation were acetate, ethanol, CO{sub 2}, and H{sub 2}. The major components of the cellular fatty acids were C{sub 14:0}, C{sub 16:0}, C{sub 16:1}, and C{sub 17:0 cyc} acids. The DNA base composition of the isolate was 34 mol% G+C. Oligonucleotide catalog and sequence analyses of the 16S rRNA showed that strain VS-752{sup T} was most closely related to Haloanaerobium praevalens GSL{sup T} (ATCC 33744), the sole member of the genus Haloanaerobium. The authors propose that strain VS-752 (ATCC 51327) by established as the type strain of a new species, Haloanaerobium salsugo, in the genus Haloanaerobium. 40 refs., 3 figs, 5 tabs.« less

  10. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    PubMed

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  11. Pyrolytic fate of piperidinocyclohexanecarbonitrile, a contaminant of phencyclidine, during smoking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lue, L.P.; Scimeca, J.A.; Thomas, B.F.

    The pyrolysis products of 1-(1-piperidino)cyclo-hexanecarbonitrile (PCC), the major contaminant of illicit phencyclidine (PCP), have not been previously reported. In order to quantify PCC in mainstream smoke as well as to identify the pyrolysis products, (/sup 3/H)piperidino-(/sup 14/C)cyano-PCC was synthesized. Marijuana placebo cigarettes were impregnated with this double-labeled PCC and burned with an apparatus that simulated smoking. The mainstream smoke was passed through a series of traps containing glass wool, H/sub 2/SO/sub 4/, or NaOH. Approximately 75% of the /sup 3/H was collected in these traps, and 46, 11, and 5% of the /sup 14/C was found in the glass wool,more » H/sub 2/SO/sub 4/, and NaOH traps, respectively. Contents of the traps were analyzed by GC/MS. The glass wool trap contained 1-(1-piperidino)-1-cyclo-hexene, PCC, piperidine, and N-acetylpiperidine, and cyanide ion was detected in all three traps. Approximately 47% of the PCC was found intact in mainstream smoke. Approximately 58% was cleaved to form cyanide and 1-(1-piperidino)-1-cyclohexene. The latter was further broken down to cyclohexanone (which represented 21% of the starting material), piperidine (29%), and N-acetylpiperidine (7%), and about 2% remained intact.« less

  12. Identification and Structural Characterization of the ALIX-Binding Late Domains of Simian Immunodeficiency Virus SIV mac239 and SIV agmTan-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Q Zhai; M Landesman; H Robinson

    2011-12-31

    Retroviral Gag proteins contain short late-domain motifs that recruit cellular ESCRT pathway proteins to facilitate virus budding. ALIX-binding late domains often contain the core consensus sequence YPX{sub n}L (where X{sub n} can vary in sequence and length). However, some simian immunodeficiency virus (SIV) Gag proteins lack this consensus sequence, yet still bind ALIX. We mapped divergent, ALIX-binding late domains within the p6{sup Gag} proteins of SIV{sub MAC239} ({sub 40}SREK{und P}YKE{und VT}ED{und L}LHLNSLF{sub 59}) and SIV{sub agmTan-1} ({sub 24}AAG{und A}YDP{und AR}KL{und L}EQYAKK{sub 41}). Crystal structures revealed that anchoring tyrosines (in lightface) and nearby hydrophobic residues (underlined) contact the ALIX V domain,more » revealing how lentiviruses employ a diverse family of late-domain sequences to bind ALIX and promote virus budding.« less

  13. Identification and Structural Characterization of the ALIX-Binding Late Domains of Simian Immunodeficiency Virus SIVmac239 and SIVagmTan-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Q.; Robinson, H.; Landesman, M. B.

    2011-01-01

    Retroviral Gag proteins contain short late-domain motifs that recruit cellular ESCRT pathway proteins to facilitate virus budding. ALIX-binding late domains often contain the core consensus sequence YPX{sub n}L (where X{sub n} can vary in sequence and length). However, some simian immunodeficiency virus (SIV) Gag proteins lack this consensus sequence, yet still bind ALIX. We mapped divergent, ALIX-binding late domains within the p6{sup Gag} proteins of SIV{sub mac239} ({sub 40}SREK{und P}YKE{und VT}ED{und L}LHLNSLF{sub 59}) and SIV{sub agmTan-1} ({sub 24}AAG{und A}YDP{und AR}KL{und L}EQYAKK{sub 41}). Crystal structures revealed that anchoring tyrosines (in lightface) and nearby hydrophobic residues (underlined) contact the ALIX V domain,more » revealing how lentiviruses employ a diverse family of late-domain sequences to bind ALIX and promote virus budding.« less

  14. Fish consumption and frying of fish in relation to type 2 diabetes incidence: a prospective cohort study of Swedish men.

    PubMed

    Wallin, Alice; Di Giuseppe, Daniela; Orsini, Nicola; Åkesson, Agneta; Forouhi, Nita G; Wolk, Alicja

    2017-03-01

    Epidemiological evidence on the association between fish consumption and risk of type 2 diabetes is heterogeneous across geographical regions. Differences related to fish consumption pattern could possibly help explain the discrepancy between the findings. We therefore aimed to investigate the association between fish consumption (total, fried, specific fish items) and type 2 diabetes incidence, taking exposure to contaminants present in fish (polychlorinated biphenyls and methyl mercury) into consideration. The population-based Cohort of Swedish Men, including 35,583 men aged 45-79 years, was followed from 1998 to 2012. We estimated hazard ratios (HRs) with 95 % confidence intervals (CIs) using Cox proportional hazards models. During 15 years of follow-up, 3624 incident cases were identified. Total fish consumption (≥4 servings/week vs. <1 serving/week) was not associated with type 2 diabetes in multivariable-adjusted analysis (HR 1.00; 95 % CI 0.85-1.18); however, a statistically non-significant inverse association was observed after adjustment for dietary contaminant exposures (HR 0.79; 95 % CI 0.60-1.04). Fried fish (≥6 servings/month vs. ≤1 servings/month) and shellfish consumption (≥1 serving/week vs. never/seldom) were associated with HRs of 1.14 (95 % CI 1.03-1.31) and 1.21 (95 % CI 1.07-1.36), respectively. We observed no overall association between total fish consumption and type 2 diabetes. The results indicated that dietary contaminants in fish may influence the relationship. Fried fish and shellfish consumption were associated with higher type 2 diabetes incidence. These findings suggest that more specific advice on fish species sub-types (varying in contamination) and preparation methods may be warranted.

  15. Determining significant endpoints for ecological risk analyses. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinton, T.G.; Congdon, J.; Rowe, C.

    1997-11-01

    'This report summarizes the first year''s progress of research funded under the Department of Energy''s Environmental Management Science Program. The research was initiated to better determine ecological risks from toxic and radioactive contaminants. More precisely, the research is designed to determine the relevancy of sublethal cellular damage to the performance of individuals and to identify characteristics of non-human populations exposed to chronic, low-level radiation, as is typically found on many DOE sites. The authors propose to establish a protocol to assess risks to non-human species at higher levels of biological organization by relating molecular damage to more relevant responses thatmore » reflect population health. They think that they can achieve this by coupling changes in metabolic rates and energy allocation patterns to meaningful population response variables, and by using novel biological dosimeters in controlled, manipulative dose/effects experiments. They believe that a scientifically defensible endpoint for measuring ecological risks can only be determined once its understood the extent to which molecular damage from contaminant exposure is detrimental at the individual and population levels of biological organization.'« less

  16. Methylsulfone polychlorinated biphenyl and 2,2-bis(chlorophenyl)-1,1-dichloroethylene metabolites in beluga whale (Delphinapterus leucas) from the St. Lawrence River estuary and western Hudson Bay, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letcher, R.J.; Norstrom, R.J.; Muir, D.C.G.

    2000-05-01

    Knowledge is limited regarding methylsulfone (MeSO{sub 2})-polychlorinated biphenyl (PCB), and especially MeSo{sub 2}-2,2-bis(chlorophenyl)-1,1-dichloroethylene (DDE), metabolites in cetacean species. The authors hypothesized that the ability of beluga whale (Delphinapterus leucas) to biotransform PCB and DDE compounds, and to form and degrade their MeSO{sub 2}-PCB and -DDE metabolites, is related to the capacity for xenobiotic metabolism. Adipose biopsies were collected from male and female beluga whale from distinct populations in the St. Lawrence River estuary (STL) and western Hudson Bay (WHB), Canada, which are contrasted by the exposure to different levels of cytochrome P450 enzyme-inducing, chlorinated hydrocarbon contaminants. The PCBs, DDTs, DDEs,more » 28 MeSO{sub 2} metabolites of 14 meta-para chlorine-unsubstituted PCBs, and four MeSO{sub 2} metabolites of 4,4{prime}- and 2,4{prime}-DDE were determined. The mean concentrations of total ({Sigma}-) MeSO{sub 2}-PCB in male STL beluga (230 ng/g), and ratios of {Sigma}-MeSO{sub 2}-PCB to {Sigma}-PCB (0.05) and {Sigma}-precursor-PCB (0.17) were approximately twofold higher, whereas the {Sigma}-precursor-PCB to {Sigma}-PCB ratio was approximately twofold lower, than in male WHB beluga. Both populations had a low formation capacity for MeSO{sub 2}-PCBs with {le} six chlorines (<4% of {Sigma}-MeSO{sub 2}-PCBs). The congener patterns were dominated by trichloro- and tetrachloro-MeSO{sub 2}-PCBs, and tetrachloro- and pentachloro-MeSO{sub 2}-PCBs in WHB and STL animals, respectively. In addition to 2- and 3-MeSO{sub 2}-4,4{prime}-DDE, two unknown MeSO{sub 2}-2,4{prime}-DDEs were detected. The mean 3-MeSO{sub 2}-4,4{prime}-DDE concentration in STL beluga (1.2 ng/g) was much greater than in WHB animals. The concentrations of 4,4{prime}-DDE, and not 3-MeSO{sub 2}-4,4{prime}-DDE, increased with age in male STL animals. The authors demonstrated that sulfone formation and clearance is related to metabolic capacity, and thus PCB, DDE, and MeSO{sub 2}-PCB and -DDE toxicokinetics differ for STL and WHB beluga. In the past, the capacity of odontocetes for PCB and DDE biotransformation leading to persistent sulfone formation and clearance is related to metabolic capacity, and thus PCB, DDE, and MeSO{sub 2}-PCB and -DDE toxicokinetics differ for STL and WHB beluga. In the past, the capacity of odontocetes for PCB and DDE biotransformation leading to persistent sulfone metabolites has been underestimated. More information is needed for other cetacean species and marine mammals. The results of this study indicate that MeSO{sub 2}-PCBs and -DDEs need to be included in the toxicologic risk assessment of PCB and DDT exposure in odontocetes, and perhaps for cetaceans in general.« less

  17. PCB intake from sport fishing along the Northern Illinois shore of Lake Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellettieri, M.B.; Hallenbeck, W.H.; Brenniman, G.R.

    1996-12-31

    Polychlorinated biphenyls (PCBs) are chlorinated hydrocarbons with an empirical formula of C{sub 12}H{sub 10-x}Cl{sub x}. The biphenyl can have from one to 10 chlorine substitutions resulting in 209 theoretical congeners. Commercial formulations of PCBs are complex mixtures of congeners; 125 congeners have been identified in commercial formulations. PCBs have entered the aquatic environment by industrial discharge, airborne deposition, and release from sediments. The most likely route of non-occupational human exposure to PCBs is from consumption of contaminated fish. PCBs are considered to be the most important contaminants in fish from the Great Lakes. Hence, in 1993 the Great Lakes Fishmore » and Advisory Task Force developed a fish consumption advisory for the Great Lakes which incorporated a Health Protection Value (HPV) of 3.5 {mu}g of PCBs/day. This study combines the creel species, weight, and length distribution data with PCB monitoring data to quantitate the theoretical intake of PCBs by sport fishermen in the Chicago area. 6 refs., 3 tabs.« less

  18. Exploring the cause of initially reactive bovine brains on rapid tests for BSE

    PubMed Central

    Dudas, Sandor; James, Jace; Anderson, Renee; Czub, Stefanie

    2015-01-01

    ABSTRACT Bovine spongiform encephalopathy (BSE) is an invariably fatal prion disease of cattle. The identification of the zoonotic potential of BSE prompted safety officials to initiate surveillance testing for this disease. In Canada, BSE surveillance is primarily focused on high risk cattle including animals which are dead, down and unable to rise, diseased or distressed. This targeted surveillance results in the submission of brain samples with a wide range of tissue autolysis and associated contaminants. These contaminants have the potential to interfere with important steps of surveillance tests resulting in initially positive test results requiring additional testing to confirm the disease status of the animal. The current tests used for BSE screening in Canada utilize the relative protease resistance of the prion protein gained when it misfolds from PrPC to PrPSc as part of the disease process. Proteinase K completely digests PrPC in normal brains, but leaves most of the PrPSc in BSE positive brains intact which is detected using anti-prion antibodies. These tests are highly reliable but occasionally give rise to initially reactive/false positive results. Test results for these reactive samples were close to the positive/negative cut-off on a sub set of test platforms. This is in contrast to all of the previous Canadian positive samples whose numeric values on these same test platforms were 10 to 100 fold greater than the test positive/negative cut-off. Here we explore the potential reason why a sample is repeatedly positive on a sub-set of rapid surveillance tests, but negative on other test platforms. In order to better understand and identify what might cause these initial reactions, we have conducted a variety of rapid and confirmatory assays as well as bacterial isolation and identification on BSE positive, negative and initially reactive samples. We observed high levels of viable bacterial contamination in initially reactive samples suggesting that the reactivity may be related to bacterial factors. Several bacteria isolated from the initially reactive samples have characteristics of biofilm forming bacteria and this extracellular matrix might play a role in preventing complete digestion of PrPC in these samples. PMID:26689488

  19. Defining the sources of low-flow phosphorus transfers in complex catchments.

    PubMed

    Arnscheidt, J; Jordan, P; Li, S; McCormick, S; McFaul, R; McGrogan, H J; Neal, M; Sims, J T

    2007-08-15

    Nutrient transfers from the land to rivers have the potential to cause persistent eutrophic impacts at low flows even though the transfers may constitute a minor percentage of total annual fluxes. In rural catchments, the contribution from agricultural soils during storm events can be particularly large and untangling the relative contributions from multiple sources that vary in time and space is especially problematic. In this study, the potential for domestic septic tank system pollution during low flows was investigated in 3 small catchments (3 to 5 km(2)) using an integrated series of methods. These included septic system surveys, continuous (10 min) total phosphorus (TP) monitoring at the outlet of each catchment, repeated low-flow water quality surveys in sub-catchments upstream of the catchment outlets and single day river-walk water quality surveys. A series of faecal matter and grey-water fingerprinting techniques were also employed. These included determining sterol ratios in stream sediments, monitoring the presence of proteins, E. coli and enterococci bacterial signatures and boron. The total density and density of poorly maintained septic systems mirrored the magnitude of frequent TP concentrations in the catchments although this relationship was less apparent in the nested sub-catchments. The exception was possibly related to the simple hydraulics in one particular catchment and indicated temporary effluent attenuation in the other catchments. Repeated low-flow and river-walk water quality surveys highlighted discrete areas and reaches where stepped changes in nutrient concentration occurred. Bio-chemical fingerprinting showed that between 7% and 27% of sediments were contaminated with human faecal material and correlation matrices indicated that, at least during low flows, P fractions were positively correlated with some markers of faecal and grey-water contamination.

  20. Evaluation of nefazodone-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sujeong, E-mail: crystalee@gmail.com; Lee, Hyang-Ae, E-mail: hyangaelee@gmail.com; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 110-799

    2016-04-01

    The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which express the major cardiac ion channels and recapitulate spontaneous mechanical and electrical activities, may provide a possible solution for the lack of in vitro human-based cardiotoxicity testing models. Cardiotoxicity induced by the antidepressant nefazodone was previously revealed to cause an acquired QT prolongation by hERG channel blockade. To elucidate the cellular mechanisms underlying the cardiotoxicity of nefazodone beyond hERG, its effects on cardiac action potentials (APs) and ion channels were investigated using hiPSC-CMs with whole-cell patch clamp techniques. In a proof of principle study, we examined the effectsmore » of cardioactive channel blockers on the electrophysiological profile of hiPSC-CMs in advance of the evaluation of nefazodone. Nefazodone dose-dependently prolonged the AP duration at 90% (APD{sub 90}) and 50% (APD{sub 50}) repolarization, reduced the maximum upstroke velocity (dV/dt{sub max}) and induced early after depolarizations. Voltage-clamp studies of hiPSC-CMs revealed that nefazodone inhibited various voltage-gated ion channel currents including I{sub Kr}, I{sub Ks}, I{sub Na}, and I{sub Ca}. Among them, I{sub Kr} and I{sub Na} showed relatively higher sensitivity to nefazodone, consistent with the changes in the AP parameters. In summary, hiPSC-CMs enabled an integrated approach to evaluate the complex interactions of nefazodone with cardiac ion channels. These results suggest that hiPSC-CMs can be an effective model for detecting drug-induced arrhythmogenicity beyond the current standard assay of heterologously expressed hERG K{sup +} channels. - Highlights: • Nefazodone prolonged APD and decreased upstroke velocity of APs in hiPSC-CMs. • Nefazodone inhibited cardiac ion channels, especially I{sub Kr} and I{sub Na}, in hiPSC-CMs. • Nefazodone-induced AP changes are mainly the result of I{sub Kr} and I{sub Na} inhibition. • hiPSC-CMs are sensitive model to validate nefazodone-induced cardiotoxicity. • hiPSC-CMs provide an integrated approach for evaluating mechanism of drug actions.« less

  1. Characterization of a DNA damage-recognition protein mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donahue, B.A.; Augot, M.; Bellon, S.F.

    1990-06-19

    A factor has been identified in extracts from human HeLa and hamster V79 cells that retards the electrophoretic mobility of several DNA restriction fragments modified with the antitumor drug cis-diamminedichloroplatinum(II) (cisplatin). Binding of the factor to cisplatin-modified DNA was sensitive to pretreatment with proteinase K, establishing that the factor is a protein. Gel mobility shifts were observed with probes containing as few as seven Pt atoms per kilobase of duplex DNA. By competition experiments the dissociation constant, K{sub d}, of the protein from cisplatin-modified DNA was estimated to be (1-20) {times} 10{sup {minus}10} M. Protein binding is selective for DNAmore » modified with cisplatin, (Pt(en)Cl{sub 2}) (en, ethylenediamine), and (Pt(dach)Cl{sub 2}) (dach, 1,2-diaminocyclohexane) but not with chemotherapeutically inactive trans-diamminedichloroplatinum(II) or monofunctionally coordinating (Pt(dien)Cl)Cl (dien, diethylenetriamine) complexes. The protein binds specifically to 1,2-intrastrand d(GpG) and d(ApG) cross-links formed by cisplatin. The apparent molecular weight of the protein is 91,000, as determined by sucrose gradient centrifugation of a preparation partially purified by ammonium sulfate fractionation. Binding of the protein to platinum-modified DNA does not require cofactors but is sensitive to treatment with 5 mM MnCl{sub 2}, CdCl{sub 2}, CoCl{sub 2}, or ZnCl{sub 2} and with 1 mM HgCl{sub 2}. This protein, alone or in conjunction with other cellular constituents, could be of general importance in the initial stages of processing of mammalian DNA damaged by cisplatin or other genotoxic agents and may belong to a wider class of such cellular damage-recognition proteins (DRPs).« less

  2. Ordinary Stoichiometry of Extraordinary Microbes

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Poret-Peterson, A. T.; Anbar, A. D.; Elser, J. J.

    2013-12-01

    Life on Earth seems to be composed of the same chemical elements in relatively conserved stoichiometric proportions. However, this observation is largely based on observations of biota from habitats spanning a moderate range of temperature and chemical composition (e.g., temperate lakes, forests, grasslands, oceanic phytoplankton). Whether this stoichiometry is conserved in settings that differ radically from such "normal" planetary settings may provide insight into the habitability of environments with radically different stoichiometries, and into possible stoichiometries for putative life beyond Earth. Here we report the first measurements of elemental stoichiometries of microbial extremophiles from hot springs of Yellowstone National Park (YNP). These phototrophic and chemotrophic microbes were collected in locations spanning large ranges of temperature (ambient to boiling) and pH (1 to 9). Microbial biomass was carefully extracted from hot spring sediment substrata following a procedure adapted from [1], which conserves cellular elemental abundances [2]. Their C and N contents were determined by Elemental Analysis Isotope Ratio Mass Spectrometry, and their P and trace element (Mg, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and non-biogenic Al and Ti) contents were measured by Inductively Coupled Plasma Mass Spectrometry. Residual mineral contamination was an issue in some samples with low measured C and N; we eliminated these from our results. Even in the remaining samples, contamination sometimes prevented accurate determinations of cellular Mg, Ca, Mn, and Fe abundances; however, the cellular Ni, Cu, Zn, and Mo contents were several-fold above contamination level. Although hot spring water and sediment elemental abundances varied by orders of magnitude, the data showed that the extremophiles have a major and trace element stoichiometry similar to those previously measured in "normal" microbial biomass [3-6]. For example, biomass C:N:P ratios resembled those commonly observed in temperate lakes (e.g., C:P ratios of 260 to 1600 and N:P ratios of 35 to 200) while cellular C:Fe ratios were of a similar magnitude to those of marine phytoplankton. Exceptions were Al and Ti, much higher than previously measured, likely because of contamination from residual sediment. Moreover, the low phosphorus contents (high C:P and N:P ratios) are suggestive of limited P supply. Chemotrophs and phototrophs had similar elemental compositions to one another, although Mg, Mn, Ni, and Zn abundances were higher and nearly constant in phototrophs, due to their importance in phototrophic metabolism. Despite the tremendous physical and chemical diversity of YNP environments, the stoichiometry of life in these settings is surprisingly ordinary. Thus, our study supports the view that the biological stoichiometry of life is heavily constrained by the elemental composition of core biomolecules, and that even life in extreme environments must operate within these constraints. In the frame of life detection in exotic locales, these results suggest a general elemental biosignature for life as we know it. References: [1] Amalfitano and Fazi. 2008. J. Microbiol. Meth. 75:237 [2] Neveu et al. L&O: Meth., in review [3] Ho et al. 2003. J. Phycol. 39:1145 [4] Nuester et al. 2012. Front. Microbiol. 3:150 [5] Sterner and Elser. 2002. Ecological Stoichiometry. Princeton U. Press [6] Twining et al. 2011. Deep-Sea Res. II 58:325

  3. Locating Groundwater Pathways of Anthropogenic Contaminants Using a Novel Approach in Kānéohe Watershed, Óahu, Hawaíi

    NASA Astrophysics Data System (ADS)

    McKenzie, T.; Dulai, H.; Popp, B. N.; Whittier, R. B.

    2017-12-01

    We have applied a novel approach using radon, δ15N and δ18O values of nitrate, and contaminants of emerging concern (CECs) to identify groundwater pathways of anthropogenic contaminants. This approach was applied in Kānéohe watershed, located on the windward side of Óahu, which has been subject to persistent near shore water pollution. Previous research has indicated that there are strong seasonal differences between surface runoff and groundwater discharge into Kānéohe Bay. Three sub-watersheds of varying land-use (e.g. cesspool density, agriculture, urbanization) bordering Kānéohe Bay were studied. Seasonality, as well as spatial and temporal variations of groundwater discharge into streams and the bay were captured by a series of snapshot studies using a natural isotope of radon as a tracer for groundwater inflow. δ15N and δ18O values of nitrate were used as source tracking tools to determine the potential origin (e.g. wastewater, agriculture) of nitrate. These results were paired with spatial analysis of land-use and further coupled with CEC concentrations in order to evaluate how land-use relates to stream and groundwater contaminant distribution. Previously unrecognized groundwater pathways for contaminant transport were identified using radon in conjunction with CEC and stable isotopic techniques. We present results for stream and coastal water quality, focusing on nutrient and CEC fluxes across the land-ocean interface, as well as discuss the application of CECs as novel wastewater tracers.

  4. Surface inspection using FTIR spectroscopy

    NASA Technical Reports Server (NTRS)

    Powell, G. L.; Smyrl, N. R.; Williams, D. M.; Meyers, H. M., III; Barber, T. E.; Marrero-Rivera, M.

    1995-01-01

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces with detection limits under the best of conditions in the sub-nanometer range, i.e.. near absolute cleanliness, excellent performance in the sub-micrometer range, and useful performance for films tens of microns thick. Examples of discovering and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and sandblasted 7075 aluminum alloy and D6AC steel. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques associated with quantitatively applying oils to metals, subsequently verifying the application, and non-linear relationships between reflectance and the quantity oil are described.

  5. Quantitation of protein S-glutathionylation by liquid chromatograph-tandem mass spectrometry: Correction for contaminating glutathione and glutathione disulfide

    USDA-ARS?s Scientific Manuscript database

    Protein S-glutathionylation is a posttranslational modification that links oxidative stimuli to reversible changes in cellular function. Protein-glutathione mixed disulfides (PSSG) are commonly quantified by the reduction of the disulfide and detection of the resultant glutathione species. This met...

  6. Cellular development associated with induced secondary metabolism in the filamentous fungus Fusarium graminearum

    USDA-ARS?s Scientific Manuscript database

    Several species of the filamentous fungus Fusarium colonize plants and produce toxic small molecules that contaminate agricultural products, rendering them unsuitable for consumption. Among the most destructive of these species is F. graminearum, which causes disease in wheat and barley and often in...

  7. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS. (R824760)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. RISK ASSESSMENT OF THE INFLAMMOGENIC AND MUTAGENIC EFFECTS OF DIESEL EXHAUST PARTICLES: A SYSTEMS BIOLOGY APPROACH

    EPA Science Inventory

    Diesel exhaust particulate matter (DEP) is a ubiquitous ambient air contaminant derived from mobile and stationary diesel fuel combustion. Exposure to DEP is associated with carcinogenic and immunotoxic effects in humans and experimental animals. At the cellular level, these heal...

  9. Contamination of supplements: an interview with professor Ron Maughan by Louise M. Burke.

    PubMed

    Maughan, Ron

    2004-08-01

    This issue of IJSNEM features two articles related to supplement use by athletes. In one (Morrison et al. 2004), people who undertake regular exercise in a gym were found to report the use of a wide variety of supplements. The other paper (Goel et al. 2004) dealt with one of the issues that a sub-group of athletes need to consider before deciding to take supplements - the risk of a positive drug test if the product contains substances banned by the anti-doping codes under which their sport is conducted. This issue received much publicity earlier in the year when top tennis player Greg Rusedski tested positive for the steroid nandrolone as the result of inadvertent intake via a contaminated supplement. In this article, Professor Ron Maughan, Chair of Sports Nutrition at Loughborough University in the United Kingdom, advisor to the British Olympic team, and co-editor of IJSNEM, provides his insight on this important topic.

  10. Linking stable isotopes and biochemical responses in Balanus glandula under sewage influence.

    PubMed

    Laitano, M V; Díaz-Jaramillo, M; Rodriguez, Y E; Ducós, E; Panarello, H O; Fernández-Gimenez, A V

    2018-02-01

    In the present study, we analyzed the influence of untreated sewage exposure on carbon (δ13C) and nitrogen (δ15N) isotopic composition and several biochemical responses in the barnacle Balanus glandula. The main objective was to evaluate whether changes in stable isotopes signature do reflect biochemical sub-lethal effects in a sewage influence gradient. Stable isotopes analysis showed differences in isotope signatures between close sewage influence and distant sites, being δ13C signatures stronger than that of δ15N. Regarding biochemical effects, although organisms close to the effluent would be clearly exposed to contaminants (increased GST activity) the oxidative stress would not be too evident (peroxidases and ACAP not affected). The most affected physiological aspect was the digestive one, reflected in increased alkaline proteases and lipases activities. A clear relation between δ15N and GST activity was found, showing to δ15N as an indicator of potential exposure to chemical contaminants.

  11. Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Chen, Caidong; Du, Shaoting; Dong, Ying

    2015-12-01

    The low volatility of ionic liquids effectively eliminates a major pathway for environmental release and contamination; however, the good solubility, low degree of environmental degradation and biodegradation of ILs may pose a potential threat to the aquatic environment. The growth inhibition of the green alga Scenedesmus obliquus by five 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) ([Cnmim]Cl, n=6, 8, 10, 12, 16) was investigated, and the effect on cellular membrane permeability and the ultrastructural morphology by ILs ([Cnmim]Cl, n=8, 12, 16) were studied. The results showed that the growth inhibition rate increased with increasing IL concentration and increasing alkyl chain lengths. The relative toxicity was determined to be [C6mim]Cl<[C8mim]Cl<[C10mim]Cl<[C12mim]Cl<[C16mim]Cl. The algae were most sensitive to imidazolium chloride ILs at 48 h according to the results from the growth inhibition rate and cellular membrane permeability tests. The ultrastructural morphology showed that the ILs had negative effects on the cellular morphology and structure of the algae. The cell wall of treated algae became wavy and separated from the cell membrane. Chloroplast grana lamellae became obscure and loose, osmiophilic material was deposited in the chloroplast, and mitochondria and their cristae swelled. Additionally, electron-dense deposits were observed in the vacuoles. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Detection and identification of bacteria in a juice matrix with Fourier transform-near infrared spectroscopy and multivariiate analysis.

    PubMed

    Rodriguez-Saona, L E; Khambaty, F M; Fry, F S; Dubois, J; Calvey, E M

    2004-11-01

    The use of Fourier transform-near infrared (FT-NIR) spectroscopy combined with multivariate pattern recognition techniques was evaluated to address the need for a fast and senisitive method for the detection of bacterial contamination in liquids. The complex cellular composition of bacteria produces FT-NIR vibrational transitions (overtone and combination bands), forming the basis for identification and subtyping. A database including strains of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus cereus, and Bacillus thuringiensis was built, with special care taken to optimize sample preparation. The bacterial cells were treated with 70% (vol/vol) ethanolto enhance safe handling of pathogenic strains and then concentrated on an aluminum oxide membrane to obtain a thin bacterial film. This simple membrane filtration procedure generated reproducible FT-NIR spectra that allowed for the rapid discrimination among closely related strains. Principal component analysis and soft independent modeling of class analogy of transformed spectra in the region 5,100 to 4,400 cm(-1) were able to discriminate between bacterial species. Spectroscopic analysis of apple juices inoculated with different strains of E. coli at approximately 10(5) CFU/ml showed that FT-NIR spectralfeatures are consistent with bacterial contamination and soft independent modeling of class analogy correctly predicted the identity of the contaminant as strains of E. coli. FT-NIR in conjunction with multivariate techniques can be used for the rapid and accurate evaluation of potential bacterial contamination in liquids with minimal sample manipulation, and hence limited exposure of the laboratory worker to the agents.

  13. Single particle tracking through highly scattering media with multiplexed two-photon excitation

    NASA Astrophysics Data System (ADS)

    Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-03-01

    3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically <15μm). In this report we highlight our novel design for a spatiotemporally multiplexed two-photon microscope which is able to reach sub-diffraction-limit tracking accuracy and sub-millisecond temporal resolution, but with a dramatically extended SPT range of up to 200 μm through dense cell samples. We have validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.

  14. ToF-SIMS cluster ion imaging of hippocampal CA1 pyramidal rat neurons

    NASA Astrophysics Data System (ADS)

    Francis, J. T.; Nie, H.-Y.; Taylor, A. R.; Walzak, M. J.; Chang, W. H.; MacFabe, D. F.; Lau, W. M.

    2008-12-01

    Recent studies have demonstrated the power of time-of-flight secondary ion mass spectrometry (ToF-SIMS) cluster ion imaging to characterize biological structures, such as that of the rat central nervous system. A large number of the studies to date have been carried out on the "structural scale" imaging several mm 2 using mounted thin sections. In this work, we present our ToF-SIMS cluster ion imaging results on hippocampal rat brain neurons, at the cellular and sub-cellular levels. As a part of an ongoing investigation to examine gut linked metabolic factors in autism spectrum disorders using a novel rat model, we have observed a possible variation in hippocampal Cornu ammonis 1 (CA1) pyramidal neuron geometry in thin, paraformaldehyde fixed brain sections. However, the fixation process alters the tissue matrix such that much biochemical information appears to be lost. In an effort to preserve as much as possible this original information, we have established a protocol using unfixed thin brain sections, along with low dose, 500 eV Cs + pre-sputtering that allows imaging down to the sub-cellular scale with minimal sample preparation.

  15. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  16. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X.; Li, L.; Zhang, L.

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidativemore » stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H{sub 2}O{sub 2} generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H{sub 2}O{sub 2} generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H{sub 2}O{sub 2} accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.« less

  17. [Radiation-induced changes in the cellular chromatin of cereal plants cultivated in the area of the Chernobyl Atomic Electric Power Station].

    PubMed

    Reshetnikov, V N; Lapteva, O K; Sosnovskaia, T F; Roshchenko, M V

    1996-01-01

    The changes in chromatin and DNA of seedling and callus tissues of cereals grown in the Chernobyl NPP zones with contamination levels of 15, 40 and 60 Ci/km2 were studied. Test samples produced by germinating and culturing seed cells of grown in contaminated areas were notable for the content of soluble polydesoxiribonucleotides, amount of DNA damages, DNA distribution over separate compartments of cell nucleus as compared to the control. Analogy between radiation-induced changes in chromatine and processes occurring in cell nucleus senescence was observed.

  18. A Model to Guide Development of Environmental Final Governing Standards for Overseas United States Department of Defense Installations

    DTIC Science & Technology

    2014-03-28

    four sub-sections were included into “System” because none of them address limits of contaminates or chemicals in the water. 24 The Hazardous...maximum contaminant levels (MCL) of chemicals, stricter emission standards, stricter control limits, greater minimum separation distances, prohibited...0.37 Indonesia Strugglers 52.29 -0.40 Malaysia Progressives 62.51 0.34 Mongolia Regressives 45.37 -0.21 Myanmar Strugglers 52.72 -1.09 Nepal

  19. Inspection of lithographic mask blanks for defects

    DOEpatents

    Sommargren, Gary E.

    2001-01-01

    A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.

  20. H{sub 2} MOLECULAR CLUSTERS WITH EMBEDDED MOLECULES AND ATOMS AS THE SOURCE OF THE DIFFUSE INTERSTELLAR BANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L. S.; Clark, F. O.; Lynch, D. K., E-mail: larry@spectral.com, E-mail: dave@thulescientific.com

    2013-05-01

    We suggest that the diffuse interstellar bands (DIBs) arise from absorption lines of electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion ({sup s}eed{sup )}, embedded in a single-layer shell of H{sub 2} molecules. Less abundant variants of the cluster, including two seed molecules and/or a two-layer shell of H{sub 2} molecules, may also occur. The lines are broadened, blended, and wavelength-shifted by interactions between the seed and surrounding H{sub 2} shell. We refer to these clusters as contaminated H{sub 2} clusters (CHCs). We show that CHC spectroscopy matches the diversity of observed DIB spectralmore » profiles and provides good fits to several DIB profiles based on a rotational temperature of 10 K. CHCs arise from {approx}centimeter-sized, dirty H{sub 2} ice balls, called contaminated H{sub 2} ice macro-particles (CHIMPs), formed in cold, dense, giant molecular clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Attractive interactions, arising from Van der Waals and ion-induced dipole potentials, between the seeds and H{sub 2} molecules enable CHIMPs to attain centimeter-sized dimensions. When an ultraviolet (UV) photon is absorbed in the outer layer of a CHIMP, it heats the icy matrix and expels CHCs into the ISM. While CHCs are quickly destroyed by absorbing UV photons, they are replenished by the slowly eroding CHIMPs. Since CHCs require UV photons for their release, they are most abundant at, but not limited to, the edges of UV-opaque molecular clouds, consistent with the observed, preferred location of DIBs. An inherent property of CHCs, which can be characterized as nanometer size, spinning, dipolar dust grains, is that they emit in the radio-frequency region. We also show that the CHCs offer a natural explanation for the anomalous microwave emission feature in the {approx}10-100 GHz spectral region.« less

Top