Sheik, Cody S.; Reese, Brandi Kiel; Twing, Katrina I.; Sylvan, Jason B.; Grim, Sharon L.; Schrenk, Matthew O.; Sogin, Mitchell L.; Colwell, Frederick S.
2018-01-01
Earth’s subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium, Aquabacterium, Ralstonia, and Acinetobacter. While the top five most frequently observed genera were Pseudomonas, Propionibacterium, Acinetobacter, Ralstonia, and Sphingomonas. The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth’s deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset. PMID:29780369
Sheik, Cody S; Reese, Brandi Kiel; Twing, Katrina I; Sylvan, Jason B; Grim, Sharon L; Schrenk, Matthew O; Sogin, Mitchell L; Colwell, Frederick S
2018-01-01
Earth's subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium , Aquabacterium , Ralstonia , and Acinetobacter . While the top five most frequently observed genera were Pseudomonas , Propionibacterium , Acinetobacter , Ralstonia , and Sphingomonas . The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth's deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset.
NASA Astrophysics Data System (ADS)
Barnhart, E. P.; Ruppert, L. F.; Orem, W. H.; McIntosh, J. C.; Cunningham, A. B.; Fields, M. W.; Hiebert, R.; Hyatt, R.
2016-12-01
There is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by the extraction and transport of fossil fuels. This threat increases the need for improved groundwater monitoring and the ability to predict the extent to which microbial activity may remediate such contamination. The characterization of subsurface microbial communities could provide an ideal biomonitoring tool for the assessment of subsurface contamination due to prokaryotes environmental ubiquity, rapidity of response to environmental perturbation and the important role they play in hydrocarbon degradation and bioremediation. New DNA sequencing technologies provide the opportunity to cost-effectively identify the vast subsurface microbial ecosystem, but use of this new technology is restricted due to issues with sampling. Prior subsurface microbiology studies have relied on core samples that are expensive to obtain hard to collect aseptically and/or ground water samples that do not reflect in situ microbial densities or activities. The development of down-well incubation of sterile sediment with a Diffusive Microbial Sampler (DMS) has emerged as an alternative method to sample subsurface microbial communities that minimizes cost and contamination issues associated with traditional methods. We have designed a Subsurface Environment Sampler with a DMS module that could enable the anaerobic transport of the in situ microbial community from the field for laboratory bioremediation studies. This sampler could provide an inexpensive and standard method for subsurface microbial sampling which would make this tool useful for Federal, State, private and local agencies interested in monitoring contamination or the effectiveness of bioremediation activities in subsurface aquifers.
Microbial populations in contaminant plumes
Haack, S.K.; Bekins, B.A.
2000-01-01
Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.
Phytoforensics—Using trees to find contamination
Wilson, Jordan L.
2017-09-28
The water we drink, air we breathe, and soil we come into contact with have the potential to adversely affect our health because of contaminants in the environment. Environmental samples can characterize the extent of potential contamination, but traditional methods for collecting water, air, and soil samples below the ground (for example, well drilling or direct-push soil sampling) are expensive and time consuming. Trees are closely connected to the subsurface and sampling tree trunks can indicate subsurface pollutants, a process called phytoforensics. Scientists at the Missouri Water Science Center were among the first to use phytoforensics to screen sites for contamination before using traditional sampling methods, to guide additional sampling, and to show the large cost savings associated with tree sampling compared to traditional methods.
Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.
2012-01-01
The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233
A thermal extraction cone penetrometry gas chroma tography/mass spectrometry system (TECP GC/MS) has been developed to detect subsurface contaminants in situ. The TECP can collect soil-bound organics up to depths of 30 m. In contrast to traditional cone penetrometer sample collec...
Directional phytoscreening: contaminant gradients in trees for plume delineation.
Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G
2013-08-20
Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.
"Traditional" approaches to sampling groundwater and interpreting monitoring well data often provide misleading pictures of plume shape and location in the subsurface and the true extent of contamination. Groundwater samples acquired using pumps and bailers in conventional monito...
Wilson, Jordan L; Limmer, Matthew A; Samaranayake, V A; Schumacher, John G; Burken, Joel G
2017-09-19
Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the "sampler' and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R 2 values greater than 0.80) and in soil samples (adjusted R 2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700-1600 m 2 , the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.
Wilson, Jordan L.; Limmer, Matthew A.; Samaranayake, V. A.; Schumacher, John G.; Burken, Joel G.
2017-01-01
Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the “sampler’ and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700–1600 m2, the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.
Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasrotia, Puja; Green, Stefan; Canion, Andy
2014-01-01
The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungalmore » communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.« less
GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT
Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...
Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.
2009-01-01
Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.
Remediation of hazardous material spills is often costly and entails cumbersome procedures. he traditional method is to drill core samples in the area where the contaminant is thought to be present and then analyze these samples in a laboratory. he denser the sampling grid, the m...
SAMPLING PROTOCOLS TO SUPPORT CLEANUP DECISIONS FOR CONTAMINANTS IN GROUND WATER
The ability to make reliable decisions about the extent of subsurface contamination and approaches to restoration of contaminated ground water is dependent on the development of an accurate conceptual site model (CSM). The accuracy of the CSM is dependent on the quality of site ...
Plant-based plume-scale mapping of tritium contamination in desert soils
Andraski, Brian J.; Stonestrom, David A.; Michel, R.L.; Halford, K.J.; Radyk, J.C.
2005-01-01
Plant-based techniques were tested for field-scale evaluation of tritium contamination adjacent to a low-level radioactive waste (LLRW) facility in the Amargosa Desert, Nevada. Objectives were to (i) characterize and map the spatial variability of tritium in plant water, (ii) develop empirical relations to predict and map subsurface contamination from plant-water concentrations, and (iii) gain insight into tritium migration pathways and processes. Plant sampling [creosote bush, Larrea tridentata (Sessé & Moc. ex DC.) Coville] required one-fifth the time of soil water vapor sampling. Plant concentrations were spatially correlated to a separation distance of 380 m; measurement uncertainty accounted for <0.1% of the total variability in the data. Regression equations based on plant tritium explained 96 and 90% of the variation in root-zone and sub-root-zone soil water vapor concentrations, respectively. The equations were combined with kriged plant-water concentrations to map subsurface contamination. Mapping showed preferential lateral movement of tritium through a dry, coarse-textured layer beneath the root zone, with concurrent upward movement through the root zone. Analysis of subsurface fluxes along a transect perpendicular to the LLRW facility showed that upward diffusive-vapor transport dominates other transport modes beneath native vegetation. Downward advective-liquid transport dominates at one endpoint of the transect, beneath a devegetated road immediately adjacent to the facility. To our knowledge, this study is the first to document large-scale subsurface vapor-phase tritium migration from a LLRW facility. Plant-based methods provide a noninvasive, cost-effective approach to mapping subsurface tritium migration in desert areas.
Wittlingerova, Z; Machackova, J; Petruzelkova, A; Trapp, S; Vlk, K; Zima, J
2013-02-01
Chlorinated ethenes (CE) are among the most frequent contaminants of soil and groundwater in the Czech Republic. Because conventional methods of subsurface contamination investigation are costly and technically complicated, attention is directed on alternative and innovative field sampling methods. One promising method is sampling of tree cores (plugs of woody tissue extracted from a host tree). Volatile organic compounds can enter into the trunks and other tissues of trees through their root systems. An analysis of the tree core can thus serve as an indicator of the subsurface contamination. Four areas of interest were chosen at the experimental site with CE groundwater contamination and observed fluctuations in groundwater concentrations. CE concentrations in groundwater and tree cores were observed for a 1-year period. The aim was to determine how the CE concentrations in obtained tree core samples correlate with the level of contamination of groundwater. Other factors which can affect the transfer of contaminants from groundwater to wood were also monitored and evaluated (e.g., tree species and age, level of groundwater table, river flow in the nearby Ploučnice River, seasonal effects, and the effect of the remediation technology operation). Factors that may affect the concentration of CE in wood were identified. The groundwater table level, tree species, and the intensity of transpiration appeared to be the main factors within the framework of the experiment. Obtained values documented that the results of tree core analyses can be used to indicate the presence of CE in the subsurface. The results may also be helpful to identify the best sampling period for tree coring and to learn about the time it takes until tree core concentrations react to changes in groundwater conditions. Interval sampling of tree cores revealed possible preservation of the contaminant in the wood of trees.
Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.
2007-01-01
There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.
The Draft EPA Subsurface Vapor Intrusion Guidance Document was established to "address the incremental increases in exposures and risks from subsurface contaminants that my be intruding into indoor air". The document utilizes attenuation factors based on indoor air/soil gas or i...
The ability to make reliable decisions about the extent of subsurface contamination and approaches to restoration of contaminated ground water is dependent on the development of an accurate conceptual site model (CSM). The accuracy of the CSM is dependent on the quality of site ...
GROUND-WATER SAMPLING AND GEOPHYSICAL METHODS DEVELOPMENT AND EVALUATION
Inadequate site characterization and a lack of knowledge of subsurface contaminant distributions (particularly Non-Aqueous Phase Liquids [NAPLs]) hinder our ability to make good decisions on remediation options and to conduct adequate cleanup efforts at contaminated sites. Non-i...
NASA Astrophysics Data System (ADS)
Moon, J. W.; Paradis, C. J.; von Netzer, F.; Dixon, E.; Majumder, E.; Joyner, D.; Zane, G.; Fitzgerald, K.; Xiaoxuan, G.; Thorgersen, M. P.; Lui, L.; Adams, B.; Brewer, S. S.; Williams, D.; Lowe, K. A.; Rodriguez, M., Jr.; Mehlhorn, T. L.; Pfiffner, S. M.; Chakraborty, R.; Arkin, A. P.; Terry, A. Y.; Wall, J. D.; Stahl, D. A.; Elias, D. A.; Hazen, T. C.
2017-12-01
Conventional monitoring wells have produced useful long-term data about the contaminants, carbon flux, microbial population and their evolution. The averaged homogenized groundwater matrix from these wells is insufficient to represent all media properties in subsurface. This pilot study investigated the solid, liquid and gas phases from soil core samples from both uncontaminated and contaminated areas of the ENIGMA field research site at Oak Ridge, Tennessee. We focused on a site-specific assessment with depth perspective that included soil structure, soil minerals, major and trace elements and biomass for the solid phase; centrifuged soil pore water including cations, anions, organic acid, pH and conductivity for the liquid phase; and gas (CO2, CH4, N2O) evolution over a 4 week incubation with soil and unfiltered groundwater. Pore water from soil core sections showed a correlation between contamination levels with depth and the potential abundance of sulfate- and nitrate-reducing bacteria based on the 2-order of magnitude decreased concentration. A merged interpretation with mineralogical consideration revealed a more complicated correlation among contaminants, soil texture, clay minerals, groundwater levels, and biomass. This sampling campaign emphasized that subsurface microbial activity and metabolic reactions can be influenced by a variety of factors but can be understood by considering the influence of multiple geochemical factors from all subsurface phases including water, air, and solid along depth rather than homogenized groundwater.
NASA Astrophysics Data System (ADS)
Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.
2014-12-01
Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.
Soil gas screening for chlorinated solvents at three contaminated karst sites in Tennessee
Wolfe, W.J.; Williams, S.D.
2002-01-01
Soil gas was sampled using active sampling techniques and passive collectors at three sites in Tennessee to evaluate the effectiveness of these techniques for locating chlorinated solvent sources and flowpaths in karst aquifers. Actively collected soil gas samples were analyzed in the field with a portable gas chromatograph, and the passive soil gas collectors were analyzed in the lab with gas chromatography/mass spectrometry. Results of the sampling indicate that the effectiveness of both techniques is highly dependent on the distribution of the contaminants in the subsurface, the geomorphic and hydrogeologic characteristics of the site, and, in one case, on seasonal conditions. Both active and passive techniques identified areas of elevated subsurface chlorinated solvent concentrations at a landfill site where contamination remains concentrated in the regolith. Neither technique detected chlorinated solvents known to be moving in the bedrock at a manufacturing site characterized by thick regolith and an absence of surficial karst features. Passive soil gas sampling had varied success detecting flowpaths for chloroform in the bedrock at a train derailment site characterized by shallow regolith and abundant surficial karst features. At the train derailment site, delineation of the contaminant flowpath through passive soil gas sampling was stronger and more detailed under Winter conditions than summer.
IMPACT OF REDOX DISEQUILIBRIA ON CONTAMINANT TRANSPORT AND REMEDIATION IN SUBSURFACE SYSTEMS
Partitioning to mineral surfaces exerts significant control on inorganic contaminant transport in subsurface systems. Remedial technologies for in-situ treatment of subsurface contamination are frequently designed to optimize the efficiency of contaminant partitioning to solid s...
A direct push resistivity method was evaluated as a complementary screening tool to provide rapid in-situ contaminant detection to aid in better defining locations for drilling, sampling, and monitoring well installation at hazardous waste sites. Nine continuous direct push resi...
EFFECTS OF THE VARIATION OF SELECT SAMPLING PARAMETERS ON SOIL VAPOR CONCENTRATIONS
Currently soil vapor surveys are commonly used as a screening technique to delineate subsurface volatile organic compound (VOC) contaminant plumes and to provide information for vapor intrusion and contaminated site evaluations. To improve our understanding of the fate and transp...
An Inverse Analysis Approach to the Characterization of Chemical Transport in Paints
Willis, Matthew P.; Stevenson, Shawn M.; Pearl, Thomas P.; Mantooth, Brent A.
2014-01-01
The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials. If a material is contaminated, over time, the transport of highly toxic chemicals (such as chemical warfare agent species) out of the material can result in vapor exposure or transfer to the skin, which can result in percutaneous exposure to personnel who interact with the material. Due to the high toxicity of chemical warfare agents, the release of trace chemical quantities is of significant concern. Mapping subsurface concentration distribution and transport characteristics of absorbed agents enables exposure hazards to be assessed in untested conditions. Furthermore, these tools can be used to characterize subsurface reaction dynamics to ultimately design improved decontaminants or decontamination procedures. To achieve this goal, an inverse analysis mass transport modeling approach was developed that utilizes time-resolved mass spectroscopy measurements of vapor emission from contaminated paint coatings as the input parameter for calculation of subsurface concentration profiles. Details are provided on sample preparation, including contaminant and material handling, the application of mass spectrometry for the measurement of emitted contaminant vapor, and the implementation of inverse analysis using a physics-based diffusion model to determine transport properties of live chemical warfare agents including distilled mustard (HD) and the nerve agent VX. PMID:25226346
COMPARISON OF METHODS TO DETERMINE OXYGEN DEMAND FOR BIOREMEDIATION OF A FUEL CONTAMINATED AQUIFER
Four analytical methods were compared for estimating concentrations of fuel contaminants in subsurface core samples. The methods were total organic carbon, chemical oxygen demand, oil and grease, and a solvent extraction of fuel hydrocarbons combined with a gas chromatographic te...
Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi
2007-04-01
International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.
Deep subsurface microbial processes
Lovley, D.R.; Chapelle, F.H.
1995-01-01
Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of other habitats, the study of deep subsurface microbiology is still in its infancy.
In-situ chemical oxidation (ISCO) involves the delivery of a chemical oxidant into the subsurface where oxidative reactions transform ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...
Subsurface Noble Gas Sampling Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrigan, C. R.; Sun, Y.
2017-09-18
The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that allmore » sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.« less
MICROBIAL ECOLOGY OF THE SUBSURFACE AT AN ABANDONED CREOSOTE WASTE SITE
The microbial ecology of pristine, slightly contaminated, and heavily contaminated subsurface materials, and four subsurface materials on the periphery of the plume at an abandoned creosote waste site was investigated. Except for the unsaturated zone of the heavily contaminated m...
ANALYTICAL METHOD DEVELOPMENTS TO SUPPORT PARTITIONING INTERWELL TRACER TESTING
Partitioning Interwell Tracer Testing (PITT) uses alcohol tracer compounds in estimating subsurface contamination from non-polar pollutants. PITT uses the analysis of water samples for various alcohols as part of the overall measurement process. The water samples may contain many...
Schumacher, John G.; Struckhoff, Garrett C.; Burken, Joel G.
2004-01-01
Tree-core sampling has been a reliable and inexpensive tool to quickly assess the presence of shallow (less than about 30 feet deep) tetrachloroethene (PCE) and trichloroethene (TCE) contamination in soils and ground water at the Riverfront Superfund Site. This report presents the results of tree-core sampling that was successfully used to determine the presence and extent of chlorinated solvent contamination at two sites, the Front Street site (operable unit OU1) and the former dry cleaning facility, that are part of the overall Riverfront Superfund Site. Traditional soil and ground-water sampling at these two sites later confirmed the results from the tree-core sampling. Results obtained from the tree-core sampling were used to design and focus subsequent soil and ground-water investigations, resulting in substantial savings in time and site assessment costs. The Front Street site is a small (less than 1-acre) site located on the Missouri River alluvium in downtown New Haven, Missouri, about 500 feet from the south bank of the Missouri River. Tree-core sampling detected the presence of subsurface PCE contamination at the Front Street site and beneath residential property downgradient from the site. Core samples from trees at the site contained PCE concentrations as large as 3,850 mg-h/kg (micrograms in headspace per kilogram of wet core) and TCE concentrations as large as 249 mg-h/kg. Soils at the Front Street site contained PCE concentrations as large as 6,200,000 mg/kg (micrograms per kilogram) and ground-water samples contained PCE concentrations as large as 11,000 mg/L (micrograms per liter). The former dry cleaning facility is located at the base of the upland that forms the south bank of the Missouri River alluvial valley. Tree-core sampling did not indicate the presence of PCE or TCE contamination at the former dry cleaning facility, a finding that was later confirmed by the analyses of soil samples collected from the site. The lateral extent of PCE contamination in trees was in close agreement with the extent of subsurface PCE contamination determined using traditional soil and ground-water sampling methods. Trees growing in soils containing PCE concentrations of 60 to 5,700 mg/kg or larger or overlying ground water containing PCE concentrations from 5 to 11,000 mg/L generally contained detectable concentrations of PCE. The depth to contaminated ground water was about 20 to 25 feet below the land surface. Significant quantitative relations [probability (p) values of less than 0.05 and correlation coefficient (r2) values of 0.88 to 0.90] were found between PCE concentrations in trees and subsurface soils between 4 and 16 feet deep. The relation between PCE concentrations in trees and underlying ground water was less apparent (r2 value of 0.17) and the poor relation is thought to be the result of equilibrium with PCE concentrations in soil and vapor in the unsaturated zone. Based on PCE concentrations detected in trees at the Front Street site and trees growing along contaminated tributaries in other operable units, and from field hydroponic experiments using hybrid poplar cuttings, analysis of tree-core samples appears to be able to detect subsurface PCE contamination in soils at levels of several hundred micrograms per liter or less and PCE concentrations in the range of 8 to 30 mg/L in ground water in direct contact with the roots. Loss of PCE from tree trunks by diffusion resulted in an exponential decrease in PCE concentrations with increasing height above the land surface in most trees. The rate of loss also appeared to be a function of the size and growth characteristics of the tree as some trees exhibited a linear loss with increasing height. Diffusional loss of PCE in small (0.5-inch diameter) trees was observed to occur at a rate more than 10 times larger than in trees 6.5 inches in diameter. Concentrations of PCE also exhibited directional variability around the tree trunks and concentration differe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostka, Joel E.; Prakash, Om; Green, Stefan J.
2012-05-01
Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less
Gérard, Emmanuelle; Moreira, David; Philippot, Pascal; Van Kranendonk, Martin J.; López-García, Purificación
2009-01-01
Background Several abiotic processes leading to the formation of life-like signatures or later contamination with actual biogenic traces can blur the interpretation of the earliest fossil record. In recent years, a large body of evidence showing the occurrence of diverse and active microbial communities in the terrestrial subsurface has accumulated. Considering the time elapsed since Archaean sedimentation, the contribution of subsurface microbial communities postdating the rock formation to the fossil biomarker pool and other biogenic remains in Archaean rocks may be far from negligible. Methodology/Principal Findings In order to evaluate the degree of potential contamination of Archean rocks by modern microorganisms, we looked for the presence of living indigenous bacteria in fresh diamond drillcores through 2,724 Myr-old stromatolites (Tumbiana Formation, Fortescue Group, Western Australia) using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). We analyzed drillcore samples from 4.3 m and 66.2 m depth, showing signs of meteoritic alteration, and also from deeper “fresh” samples showing no apparent evidence for late stage alteration (68 m, 78.8 m, and 99.3 m). We also analyzed control samples from drilling and sawing fluids and a series of laboratory controls to establish a list of potential contaminants introduced during sample manipulation and PCR experiments. We identified in this way the presence of indigenous bacteria belonging to Firmicutes, Actinobacteria, and Alpha-, Beta-, and Gammaproteobacteria in aseptically-sawed inner parts of drillcores down to at least 78.8 m depth. Conclusions/Significance The presence of modern bacterial communities in subsurface fossil stromatolite layers opens the possibility that a continuous microbial colonization had existed in the past and contributed to the accumulation of biogenic traces over geological timescales. This finding casts shadow on bulk analyses of early life remains and makes claims for morphological, chemical, isotopic, and biomarker traces syngenetic with the rock unreliable in the absence of detailed contextual analyses at microscale. PMID:19396360
In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...
Evidence of Geobacter-associated phage in a uranium-contaminated aquifer
Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K; Williams, Kenneth H; Luef, Birgit; Wilkins, Michael J; Wrighton, Kelly C; Thompson, Courtney A; Comolli, Luis R; Lovley, Derek R
2015-01-01
Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site. PMID:25083935
NASA Astrophysics Data System (ADS)
Kraus, E. A.; Stamps, B. W.; Rempfert, K. R.; Ellison, E. T.; Nothaft, D. B.; Boyd, E. S.; Templeton, A. S.; Spear, J. R.
2017-12-01
Subsurface microbial life is poorly understood but potentially very important to the search for life on other planets as well as increasing our understanding of Earth's geobiological processes. Fluids and rocks of actively serpentinizing subsurface environments are a recent target of biological study due to their apparent ubiquity across the solar system. Areas of serpentinization can contain high concentrations of molecular hydrogen, H2, that can serve as the dominant fuel source for subsurface microbiota. Working with the Oman Drilling Project, DNA and RNA were extracted from fluids of seven alkaline wells and two rock cores from drill sites GT3 and BT1 within the Samail ophiolite. DNA and cDNA (produced via reverse transcription from the recovered RNA) were sequenced using universal primers to identify microbial life across all three domains. Alkaline subsurface fluids support a microbial community that changes with pH and host-rock type. In peridotite with pH values of >11, wells NSHQ 14 and WAB 71 have high relative abundances of Meiothermus, Methanobacterium, the family Nitrospiraceae, and multiple types of the class Dehalococcoidia. While also hosted in peridotite but at pH 8.5, wells WAB 104 and 105 have a distinct, more diverse microbial community. This increased variance in community make-up is seen in wells that sit near/at the contact of gabbro and peridotite formations as well. Core results indicate both sampled rock types host a very low biomass environment subject to multiple sources of contamination during the drilling process. Suggestions for contaminant reduction, such as having core handlers wear nitrile gloves and flame-sterilizing the outer surfaces of core rounds for biological sampling, would have minimal impact to overall ODP coreflow and maximize the ability to better understand in situ microbiota in this low-biomass serpentinizing subsurface environment. While DNA extraction was successful with gram amounts of crushed rock, much can be done to improve yields and reduce contamination sources for Phase II drilling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliermans, C.B.; Dougherty, J.M.; Franck, M.M.
Effective in situ bioremediation strategies require an understanding of the effects pollutants and remediation techniques have on subsurface microbial communities. Therefore, detailed characterization of a site`s microbial communities is important. Subsurface sediment borings and water samples were collected from a trichloroethylene (TCE) contaminated site, before and after horizontal well in situ air stripping and bioventing, as well as during methane injection for stimulation of methane-utilizing microorganisms. Subsamples were processed for heterotrophic plate counts, acridine orange direct counts (AODC), community diversity, direct fluorescent antibodies (DFA) enumeration for several nitrogen-transforming bacteria, and Biolog {reg_sign} evaluation of enzyme activity in collected water samples.more » Plate counts were higher in near-surface depths than in the vadose zone sediment samples. During the in situ air stripping and bioventing, counts increased at or near the saturated zone, remained elevated throughout the aquifer, but did not change significantly after the air stripping. Sporadic increases in plate counts at different depths as well as increased diversity appeared to be linked to differing lithologies. AODCs were orders of magnitude higher than plate counts and remained relatively constant with depth except for slight increases near the surface depths and the capillary fringe. Nitrogen-transforming bacteria, as measured by serospecific DFA, were greatly affected both by the in situ air stripping and the methane injection. Biolog{reg_sign} activity appeared to increase with subsurface stimulation both by air and methane. The complexity of subsurface systems makes the use of selective monitoring tools imperative.« less
Integrated system for gathering, processing, and reporting data relating to site contamination
Long, D.D.; Goldberg, M.S.; Baker, L.A.
1997-11-11
An integrated screening system comprises an intrusive sampling subsystem, a field mobile laboratory subsystem, a computer assisted design/geographical information subsystem, and a telecommunication linkup subsystem, all integrated to provide synergistically improved data relating to the extent of site soil/groundwater contamination. According to the present invention, data samples related to the soil, groundwater or other contamination of the subsurface material are gathered and analyzed to measure contaminants. Based on the location of origin of the samples in three-dimensional space, the analyzed data are transmitted to a location display. The data from analyzing samples and the data from the locating the origin are managed to project the next probable sample location. The next probable sample location is then forwarded for use as a guide in the placement of ensuing sample location, whereby the number of samples needed to accurately characterize the site is minimized. 10 figs.
Integrated system for gathering, processing, and reporting data relating to site contamination
Long, Delmar D.; Goldberg, Mitchell S.; Baker, Lorie A.
1997-01-01
An integrated screening system comprises an intrusive sampling subsystem, a field mobile laboratory subsystem, a computer assisted design/geographical information subsystem, and a telecommunication linkup subsystem, all integrated to provide synergistically improved data relating to the extent of site soil/groundwater contamination. According to the present invention, data samples related to the soil, groundwater or other contamination of the subsurface material are gathered and analyzed to measure contaminants. Based on the location of origin of the samples in three-dimensional space, the analyzed data are transmitted to a location display. The data from analyzing samples and the data from the locating the origin are managed to project the next probable sample location. The next probable sample location is then forwarded for use as a guide in the placement of ensuing sample location, whereby the number of samples needed to accurately characterize the site is minimized.
NASA Astrophysics Data System (ADS)
Bonaccorsi, R.; Stoker, C. R.
2005-12-01
The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this research will support future drilling mission planned on Mars. [1] Boston, P.J., et al., 1992. Icarus 95,300-308; [2] Leistel et al., 1998.
NASA Astrophysics Data System (ADS)
Miller, David P.; Bonaccorsi, Rosalba; Davis, Kiel
2008-10-01
Mars Astrobiology Research and Technology Experiment (MARTE) investigators used an automated drill and sample processing hardware to detect and categorize life-forms found in subsurface rock at Río Tinto, Spain. For the science to be successful, it was necessary for the biomass from other sources -- whether from previously processed samples (cross contamination) or the terrestrial environment (forward contamination) -- to be insignificant. The hardware and practices used in MARTE were designed around this problem. Here, we describe some of the design issues that were faced and classify them into problems that are unique to terrestrial tests versus problems that would also exist for a system that was flown to Mars. Assessment of the biomass at various stages in the sample handling process revealed mixed results; the instrument design seemed to minimize cross contamination, but contamination from the surrounding environment sometimes made its way onto the surface of samples. Techniques used during the MARTE Río Tinto project, such as facing the sample, appear to remove this environmental contamination without introducing significant cross contamination from previous samples.
Miller, David P; Bonaccorsi, Rosalba; Davis, Kiel
2008-10-01
Mars Astrobiology Research and Technology Experiment (MARTE) investigators used an automated drill and sample processing hardware to detect and categorize life-forms found in subsurface rock at Río Tinto, Spain. For the science to be successful, it was necessary for the biomass from other sources--whether from previously processed samples (cross contamination) or the terrestrial environment (forward contamination)-to be insignificant. The hardware and practices used in MARTE were designed around this problem. Here, we describe some of the design issues that were faced and classify them into problems that are unique to terrestrial tests versus problems that would also exist for a system that was flown to Mars. Assessment of the biomass at various stages in the sample handling process revealed mixed results; the instrument design seemed to minimize cross contamination, but contamination from the surrounding environment sometimes made its way onto the surface of samples. Techniques used during the MARTE Río Tinto project, such as facing the sample, appear to remove this environmental contamination without introducing significant cross contamination from previous samples.
Kimura, Hiroyuki; Sugihara, Maki; Kato, Kenji; Hanada, Satoshi
2006-01-01
Deep-subsurface samples obtained by deep drilling are likely to be contaminated with mesophilic microorganisms in the drilling fluid, and this could affect determination of the community structure of the geothermal microflora using 16S rRNA gene clone library analysis. To eliminate possible contamination by PCR-amplified 16S rRNA genes from mesophiles, a combined thermal denaturation and enzyme digestion method, based on a strong correlation between the G+C content of the 16S rRNA gene and the optimum growth temperatures of most known prokaryotic cultures, was used prior to clone library construction. To validate this technique, hot spring fluid (76°C) and river water (14°C) were used to mimic a deep-subsurface sample contaminated with drilling fluid. After DNA extraction and PCR amplification of the 16S rRNA genes from individual samples separately, the amplified products from river water were observed to be denatured at 82°C and completely digested by exonuclease I (Exo I), while the amplified products from hot spring fluid remained intact after denaturation at 84°C and enzyme digestion with Exo I. DNAs extracted from the two samples were mixed and used as a template for amplification of the 16S rRNA genes. The amplified rRNA genes were denatured at 84°C and digested with Exo I before clone library construction. The results indicated that the 16S rRNA gene sequences from the river water were almost completely eliminated, whereas those from the hot spring fluid remained. PMID:16391020
Trends and future challenges in sampling the deep terrestrial biosphere.
Wilkins, Michael J; Daly, Rebecca A; Mouser, Paula J; Trexler, Ryan; Sharma, Shihka; Cole, David R; Wrighton, Kelly C; Biddle, Jennifer F; Denis, Elizabeth H; Fredrickson, Jim K; Kieft, Thomas L; Onstott, Tullis C; Peterson, Lee; Pfiffner, Susan M; Phelps, Tommy J; Schrenk, Matthew O
2014-01-01
Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on "Trends and Future Challenges in Sampling The Deep Subsurface" was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty, and sponsored by The Ohio State University and the Sloan Foundation's Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.
Groundwater Sampling at ISCO Sites: Binary Mixtures of Volatile Organic Compounds and Persulfate
In-situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground-water contaminants into less harmful byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contain o...
EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines
In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...
NASA Astrophysics Data System (ADS)
Dong, Y.; Cann, I.; Mackie, R.; Price, N.; Flynn, T. M.; Sanford, R.; Miller, P.; Chia, N.; Kumar, C. G.; Kim, P.; Sivaguru, M.; Fouke, B. W.
2010-12-01
Knowledge of the composition, structure and activity of microbial communities that live in deeply buried sedimentary rocks is fundamental to the future of subsurface biosphere stewardship as it relates to hydrocarbon exploration and extraction, carbon sequestration, gas storage and groundwater management. However, the study of indigenous subsurface microorganisms has been limited by the technical challenges of collecting deep formation water samples that have not been heavily contaminated by the mud used to drill the wells. To address this issue, a “clean-sampling method” deploying the newly developed Schlumberger Quicksilver MDT probe was used to collect a subsurface sample at a depth of 1.79 km (5872 ft) from an exploratory well within Cambrian-age sandstones in the Illinois Basin. This yielded a formation water sample that was determined to have less than 4% drilling mud contamination based on tracking changes in the aqueous geochemistry of the formation water during ~3 hours of pumping at depth prior to sample collection. A suite of microscopy and culture-independent molecular analyses were completed using the DNA extracted from microbial cells in the formation water, which included 454 amplicon pyrosequencing that targeted the V1-V3 hypervariable region of bacterial 16S rRNA gene sequences. Results demonstrated an extremely low diversity microbial community living in formation water at 1.79 km-depth. More than 95 % of the total V1-V3 pyrosequencing reads (n=11574) obtained from the formation water were affiliated with a halophilic γ-proteobacterium and most closely related to the genus Halomonas. In contrast, about 3 % of the V1-V3 sequences in the drilling mud library (n=13044) were classified as genus Halomonas but were distinctly different and distantly related to the formation water Halomonas detected at 1.79 km-depth. These results were consistent with those obtained using a suite of other molecular screens (e.g., Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and the initial full length 16S rRNA amplicon libraries) and bioinformatic analyses (e.g., 16S rRNA and Open Reading Frame (ORF) calls established from the 454 metagenomic community analyses). Functional pathway modeling is underway to evaluate the adaptation of this indigenous microbial community to the hydrologic and geologic history of the deep subsurface environment of the Illinois Basin.
NASA Astrophysics Data System (ADS)
Kelley, N.; Mount, G.; Terry, N.; Herndon, E.; Singer, D. M.
2017-12-01
The Critical Zone represents the surficial and shallow layer of rock, air, water, and soil where most interactions between living organisms and the Earth occur. Acid mine drainage (AMD) resulting from coal extraction can influence both biological and geochemical processes across this zone. Conservative estimates suggest that more than 300 million gallons of AMD are released daily, making this acidic solution of water and contaminants a common issue in areas with legacy or current coal extraction. Electrical resistivity imaging (ERI) provides a rapid and minimally invasive method to identify and monitor contaminant pathways from AMD remediation systems in the subsurface of the Critical Zone. The technique yields spatially continuous data of subsurface resistivity that can be inverted to determine electrical conductivity as a function of depth. Since elevated concentrations of heavy metals can directly influence soil conductivity, ERI data can be used to trace the flow pathways or perhaps unknown mine conduits and transport of heavy metals through the subsurface near acid mine drainage sources. This study aims to examine preferential contaminant migration from those sources through substrate pores, fractures, and shallow mine workings in the near subsurface surrounding AMD sites in eastern Ohio and western Pennsylvania. We utilize time lapse ERI measures during different hydrologic conditions to better understand the variability of preferential flow pathways in relation to changes in stage and discharge within the remediation systems. To confirm ERI findings, and provide constraint to geochemical reactions occurring in the shallow subsurface, we conducted Inductively Coupled Plasma (ICP) spectrometry analysis of groundwater samples from boreholes along the survey transects. Through these combined methods, we can provide insight into the ability of engineered systems to contain and isolate metals in passive acid mine drainage treatment systems.
Enhancement of in situ microbial remediation of aquifers
Fredrickson, James K.; Brockman, Fred J.; Streile, Gary P.; Cary, John W.; McBride, John F.
1993-01-01
Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification.
Enhancement of in situ microbial remediation of aquifers
Fredrickson, J.K.; Brockman, F.J.; Streile, G.P.; Cary, J.W.; McBride, J.F.
1993-11-30
Methods are provided for remediating subsurface areas contaminated by toxic organic compounds. An innocuous oil, such as vegetable oil, mineral oil, or other immiscible organic liquid, is introduced into the contaminated area and permitted to move therethrough. The oil concentrates or strips the organic contaminants, such that the concentration of the contaminants is reduced and such contaminants are available to be either pumped out of the subsurface area or metabolized by microorganisms. Microorganisms may be introduced into the contaminated area to effect bioremediation of the contamination. The methods may be adapted to deliver microorganisms, enzymes, nutrients and electron donors to subsurface zones contaminated by nitrate in order to stimulate or enhance denitrification. 4 figures.
USDA-ARS?s Scientific Manuscript database
Over the past 50 years, significant progress has been made in improving our understanding of the extent and potential consequences of groundwater contamination, with research advancing on several fronts including groundwater sampling methods, laboratory detection methods, subsurface transport (and m...
CONSIDERATIONS FOR INNOVATIVE REMEDIATION TECHNOLOGY EVALUATION SAMPLING PLANS
Field trials of innovative subsurface cleanup technologies require the use of integrated site characterization approaches to obtain critical design parameters, to evaluate pre-treatment contaminant distributions, and to assess process efficiency. This review focuses on the trans...
Setmire, J.G.; Schroeder, R.A.; Densmore, J.N.; Goodbred, S.O.; Audet, D.J.; Radke, W.R.
1993-01-01
Results of a detailed study by the National Irrigation Water-Quality Program (NIWQP), U.S. Department of the Interior, indicate that factors controlling contaminant concentrations in subsurface irrigation drainwater in the Imperial Valley are soil characteristics, hydrology, and agricultural practices. Higher contaminant concentrations commonly were associated with clayey soils, which retard the movement of irrigation water and thus increase the degree of evaporative concentration. Regression of hydrogen- and oxygen-isotope ratios in samples collected from sumps yields a linear drainwater evaporation line that extrapolates through the isotopic composition of Colorado River water, thus demonstrating that Colorado River water is the sole source of subsurface drainwater in the Imperial Valley. Ratios of selenium to chloride indicate that selenium present in subsurface drainwater throughout the Imperial Valley originates from the Colorado River. The selenium load discharged to the Salton Sea from the Alamo River, the largest contributor, is about 6.5 tons/yr. Biological sampling and analysis showed that drainwater contaminants, including selenium, boron, and DDE, are accumulating in tissues of migratory and resident birds that use food sources in the Imperial Valley and the Salton Sea. Selenium concentration in fish-eating birds, shorebirds, and the endangered Yuma clapper rail were at levels that could affect reproduction. Boron concentrations in migratory waterfowl and resident shorebirds were at levels that potentially could cause reduced growth in young. As a result of DDE contamination of food sources, waterfowl and fish-eating birds in the Imperial Valley may be experiencing reproductive impairment.
Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.
2017-12-01
Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data. Performance of the statistical model is illustrated through comparisons of generated realizations with the `true' numerical simulations. Finally, we demonstrate how these realizations can be used to determine statistically optimal locations for further interrogation of the subsurface.
Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils
NASA Astrophysics Data System (ADS)
Carte, J.; Fantle, M. S.
2017-12-01
An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due to adsorption. This hypothesis will be further tested by modeling with the reactive transport code CrunchTope. This study provides evidence that trace element and isotopic composition of soils can be useful tracers of subsurface hydrologic pathways and elemental fate and transport.
GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER
Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...
NASA Astrophysics Data System (ADS)
Hickok, K.; Nguyen, T.; Orcutt, B.; Fruh-Green, G. L.; Wanamaker, E.; Lang, S. Q.
2016-12-01
The high concentrations of hydrogen created during serpentinization can promote the formation of abiotic organic carbon molecules such as methane, formate, short chain hydrocarbons and, in laboratory experiments, larger molecules containing up to 32 carbon atoms. Subsurface archaeal and bacterial communities can use these reduced compounds for metabolic energy. International Ocean Discovery Project Expedition 357 drilled into the Atlantis Massif with the goals of investigating carbon cycling and the presence of life in a zone of active serpentinization. The expedition recovered multiple rock lithologies including gabbros, basalts, carbonate sands, and serpentinites. A subset of these samples are being analyzed to determine if non-volatile organic molecules are produced abiotically in serpentinizing environments and to identify `hot spots' of microbial life in the subsurface. Rock samples of contrasting representative lithologies are being analyzed for the presence of n-alkanes and fatty acids. Preliminary results have so far indicated the presence of alkanes in some samples. The isotopic (13C, 2H) characteristics of these compounds are being compared to a suite of oils, greases, and drilling fluids used during sample collection to distinguish in situ abiotic and biotic signatures from contaminant compounds. Other initial results have shown the efficacy of various sample-handling procedures designed to reduce surface contamination. This study will contribute to the overall understanding of the role serpentinization plays in the global carbon cycle and its implications for pre-biotic chemistry.
THE ONSITE ON-LINE CALCULATORS AND TRAINING FOR SUBSURFACE CONTAMINANT TRANSPORT SITE ASSESSMENT
EPA has developed a suite of on-line calculators called "OnSite" for assessing transport of environmental contaminants in the subsurface. The purpose of these calculators is to provide methods and data for common calculations used in assessing impacts from subsurface contaminatio...
DEVELOPMENT OF A DATA EVALUATION/DECISION SUPPORT SYSTEM FOR REMEDIATION OF SUBSURFACE CONTAMINATION
Subsurface contamination frequently originates from spatially distributed sources of multi-component nonaqueous phase liquids (NAPLs). Such chemicals are typically persistent sources of ground-water contamination that are difficult to characterize. This work addresses the feasi...
Application of model abstraction techniques to simulate transport in soils
USDA-ARS?s Scientific Manuscript database
Successful understanding and modeling of contaminant transport in soils is the precondition of risk-informed predictions of the subsurface contaminant transport. Exceedingly complex models of subsurface contaminant transport are often inefficient. Model abstraction is the methodology for reducing th...
Peyrard, X; Liger, L; Guillemain, C; Gouy, V
2016-01-01
Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... Groundwater and Soils (Subsurface Vapor Intrusion Guidance) AGENCY: Environmental Protection Agency (EPA... Pathway from Contaminated Groundwater and Soil (Subsurface Vapor Intrusion Guidance). A draft of the... Evaluating Vapor Intrusion to Indoor Air Pathway from Contaminated Groundwater and Soil (Subsurface Vapor...
Kwon, Man Jae; Boyanov, Maxim I; Yang, Jung-Seok; Lee, Seunghak; Hwang, Yun Ho; Lee, Ju Yeon; Mishra, Bhoopesh; Kemner, Kenneth M
2017-07-01
Zinc contamination in near- and sub-surface environments is a serious threat to many ecosystems and to public health. Sufficient understanding of Zn speciation and transport mechanisms is therefore critical to evaluating its risk to the environment and to developing remediation strategies. The geochemical and mineralogical characteristics of contaminated soils in the vicinity of a Zn ore transportation route were thoroughly investigated using a variety of analytical techniques (sequential extraction, XRF, XRD, SEM, and XAFS). Imported Zn-concentrate (ZnS) was deposited in a receiving facility and dispersed over time to the surrounding roadside areas and rice-paddy soils. Subsequent physical and chemical weathering resulted in dispersal into the subsurface. The species identified in the contaminated areas included Zn-sulfide, Zn-carbonate, other O-coordinated Zn-minerals, and Zn species bound to Fe/Mn oxides or clays, as confirmed by XAFS spectroscopy and sequential extraction. The observed transformation from S-coordinated Zn to O-coordinated Zn associated with minerals suggests that this contaminant can change into more soluble and labile forms as a result of weathering. For the purpose of developing a soil washing remediation process, the contaminated samples were extracted with dilute acids. The extraction efficiency increased with the increase of O-coordinated Zn relative to S-coordinated Zn in the sediment. This study demonstrates that improved understanding of Zn speciation in contaminated soils is essential for well-informed decision making regarding metal mobility and toxicity, as well as for choosing an appropriate remediation strategy using soil washing. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy Dilek, C.A.; Looney, B.B.; Hazen, T.C.
A full-scale demonstration of the use of horizontal wells for in situ air stripping for environment restoration was completed as part of the Savannah River Integrated Demonstration Program. The demonstration of in situ air stripping was the first in a series of demonstrations of innovative remediation technologies for the cleanup of sites contaminated with volatile organic contaminants. The in situ air stripping system consisted of two directionally drilled wells that delivered gases to and extract contamination from the subsurface. The demonstration was designed to remediate soils and sediments in the unsaturated and saturated zones as well as groundwater contaminated withmore » volatile organic compounds. The demonstration successfully removed significant quantities of solvent from the subsurface. The field site and horizontal wells were subsequently used for an in situ bioremediation demonstration during which methane was added to the injected air. The field conditions documented herein represent the baseline status of the site for evaluating the in situ bioremediation as well as the post-test conditions for the in situ air stripping demonstration. Characterization activities focused on documenting the nature and distribution of contamination in the subsurface. The post-test characterization activities discussed herein include results from the analysis of sediment samples, three-dimensional images of the pretest and post-test data, contaminant inventories estimated from pretest and post-test models, a detailed lithologic cross sections of the site, results of aquifer testing, and measurements of geotechnical parameters of undisturbed core sediments.« less
Kwon, Man Jae; Boyanov, Maxim I.; Yang, Jung -Seok; ...
2017-03-24
Zinc contamination in near- and sub-surface environments is a serious threat to many ecosystems and to public health. Sufficient understanding of Zn speciation and transport mechanisms is therefore critical to evaluating its risk to the environment and to developing remediation strategies. The geochemical and mineralogical characteristics of contaminated soils in the vicinity of a Zn ore transportation route were thoroughly investigated using a variety of analytical techniques (sequential extraction, XRF, XRD, SEM, and XAFS). Imported Zn-concentrate (ZnS) was deposited in a receiving facility and dispersed over time to the surrounding roadside areas and rice-paddy soils. Subsequent physical and chemical weatheringmore » resulted in dispersal into the subsurface. The species identified in the contaminated areas included Zn-sulfide, Zn-carbonate, other O-coordinated Zn-minerals, and Zn species bound to Fe/Mn oxides or clays, as confirmed by XAFS spectroscopy and sequential extraction. The observed transformation from S-coordinated Zn to O-coordinated Zn associated with minerals suggests that this contaminant can change into more soluble and labile forms as a result of weathering. For the purpose of developing a soil washing remediation process, the contaminated samples were extracted with dilute acids. The extraction efficiency increased with the increase of O-coordinated Zn relative to S-coordinated Zn in the sediment. Furthermore, this study demonstrates that improved understanding of Zn speciation in contaminated soils is essential for well-informed decision making regarding metal mobility and toxicity, as well as for choosing an appropriate remediation strategy using soil washing.« less
Hwang, C.; Copeland, A.; Lucas, Susan; ...
2015-01-22
We report the genome sequence of Anaeromyxobacter sp. Fw109-5, isolated from nitrate- and uranium-contaminated subsurface sediment of the Oak Ridge Integrated Field-Scale Subsurface Research Challenge (IFC) site, Oak Ridge Reservation, TN. The bacterium’s genome sequence will elucidate its physiological potential in subsurface sediments undergoing in situ uranium bioremediation and natural attenuation.
Resistivity and Induced Polarization Imaging at a Hydrocarbon Contaminated Site in Brazil
NASA Astrophysics Data System (ADS)
Ustra, A.; Elis, V.; Hiodo, F.; Bondioli, A.; Miura, G.
2012-12-01
An area contaminated by accidental BTEX spills was investigated with resistivity and induced polarization methods. The main objective in this study was to relate the geophysical signature of the area with zones that were possibly undergoing microbial degradation of the contaminants. The spills took place over a decade ago; however, the exact location of these spills is unknown, as well as the amount of contaminant that was released into the subsurface. DC-resistivity identified a high contrast between the background (rho up to 2000 ohm.m) and a relatively conductive zone (rho < 100 ohm.m), where high chargeabilities were also measured (m > 30 mV/V). Normalized chargeability is enhanced in this anomaly zone (mn > 0.1). Soil samples collected in the area were submitted to direct bacterial count, clay content estimation, X-ray diffraction and SEM analysis. The electrical properties of each samples was also measured. The samples collected from the "background" (high resistivity zone) presented total bacterial amounts much smaller (dozens of colony forming units) than the samples from the conductive zone (millions of colony forming units). This observation could lead us to interpret that the zone of higher bacteria amount is undergoing biodegradation that would explain the increased conductivity at that portion of the subsurface. However, the geophysical properties observed at this zone could also be related to the clay content distribution throughout the surveyed area (concentrations up to 30%). Moreover, despite the fact that more microbes were found in the area, SEM images did not find any biodegradation typical feature of the grains, which are for example, mineral corrosion and dissolution or even biomineralization. This study is still undergoing and we are searching for more evidence of biodegradation in the samples. This study shows the limitation of the use of geophysical methods to access contaminant presence and/or biodegradation zones when the exact location of the contamination is unknown.
Parks, W.S.; Carmichael, J.K.; Mirecki, J.E.
1993-01-01
Direct Push Technology (DPT) and a modified-auger method of sampling were used at an abandoned wood-preserving plant site at Jackson, Tennessee, to collect lithologic data and ground-water samples in an area known to be affected by a subsurface creosote plume. The groundwater samples were analyzed using (1) gas chromatography with photo-ionization detection (GS/PID), (2) high- performance liquid chromatography (HPLC), (3) colonmetric phenol analysis, and (4) toxicity bioassay. DPT piezocone and cone-penetrometer-type tools provided lithologic data and ground-water samples at two onsite stations to a depth of refusal of about 35 feet below land surface. With the assistance of an auger rig, this depth was extended to about 65 feet by pushing the tools in advance of the augers. Following the DPT work, a modified-auger method was tested by the USGS. This method left doubt as to the integrity of the samples collected once zones of contamination were penetrated. GC/PID and HPLC methods of water-quality analysis provided the most data concerning contaminants in the ground-water and proved to be the most effective in creosote plume detection. Analyses from these methods showed that the highest concentrations of contaminants were detected at depths less than about 35 feet below land surface. Phenol analyses provided data supplemental to the HPLC analyses. Bioassay data indicated that toxicity associated with the plume extended to depths of about 55 feet below land surface.
We investigated the geophysical response to subsurface hydrocarbon contamination source removal. Source removal by natural attenuation or by engineered bioremediation is expected to change the biological, chemical, and physical environment associated with the contaminated matrix....
Methods for microbial filtration of fluids
Carman, Margaret L.; Jackson, Kenneth J.; Knapp, Richard B.; Knezovich, John P.; Shah, Nilesh N.; Taylor, Robert T.
1996-01-01
Novel methods for purifying contaminated subsurface groundwater are disclosed. The method is involves contacting the contaminated subsurface groundwater with methanotrophic or heterotrophic microorganisms which produce contaminant-degrading enzymes. The microorganisms are derived from surface cultures and are injected into the ground so as to act as a biofilter. The contaminants which may be treated include organic or metallic materials and radionuclides.
Bioremediation of contaminated groundwater
Hazen, T.C.; Fliermans, C.B.
1994-01-01
Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.
Subsurface Contamination Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Yuan
There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of themore » subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a table of derived LRCL for nuclides of radiological importance; (3) Provides an as low as is reasonably achievable (ALARA) evaluation of the derived LRCL by comparing potential onsite and offsite doses to documented ALARA requirements; (4) Provides a method for estimating potential releases from a defective WP; (5) Provides an evaluation of potential radioactive releases from a defective WP that may become airborne and result in contamination of the subsurface facility; and (6) Provides a preliminary analysis of the detectability of a potential WP leak to support the design of an airborne release monitoring system.« less
MINERALOGICAL PRESERVATION OF SOLID SAMPLES COLLECTED FROM ANOXIC SUBSURFACE ENVIRONMENTS
Remedial technologies utilized at hazardous waste sites for the treatment of metal and metalloid contaminants often take advantage of reduction-oxidation (redox) processes to reach ground water clean up goals. This is because redox reactions, in many cases, govern the biogeochem...
NASA Technical Reports Server (NTRS)
Dolgin, B.; Yarbrough, C.; Carson, J.; Troy, R.
2000-01-01
The proposed Mars Sample Transfer Chain Architecture provides Planetary Protection Officers with clean samples that are required for the eventual release from confinement of the returned Martian samples. At the same time, absolute cleanliness and sterility requirement is not placed of any part of the Lander (including the deep drill), Mars Assent Vehicle (MAV), any part of the Orbiting Sample container (OS), Rover mobility platform, any part of the Minicorer, Robotic arm (including instrument sensors), and most of the caching equipment on the Rover. The removal of the strict requirements in excess of the Category IVa cleanliness (Pathfinder clean) is expected to lead to significant cost savings. The proposed architecture assumes that crosscontamination renders all surfaces in the vicinity of the rover(s) and the lander(s) contaminated. Thus, no accessible surface of Martian rocks and soil is Earth contamination free. As a result of the latter, only subsurface samples (either rock or soil) can be and will be collected for eventual return to Earth. Uncontaminated samples can be collected from a Category IVa clean platform. Both subsurface soil and rock samples can be maintained clean if they are collected by devices that are self-contained and clean and sterile inside only. The top layer of the sample is removed in a manner that does not contaminate the collection tools. Biobarrier (e.g., aluminum foil) covering the moving parts of these devices may be used as the only self removing bio-blanket that is required. The samples never leave the collection tools. The lids are placed on these tools inside the collection device. These single use tools with the lid and the sample inside are brought to Earth in the OS. The lids have to be designed impenetrable to the Earth organisms. The latter is a well established art.
Yung, Loïc; Lagron, Jérôme; Cazaux, David; Limmer, Matt; Chalot, Michel
2017-05-01
Chlorinated ethenes (CE) are among the most common volatile organic compounds (VOC) that contaminate groundwater, currently representing a major source of pollution worldwide. Phytoscreening has been developed and employed through different applications at numerous sites, where it was generally useful for detection of subsurface chlorinated solvents. We aimed at delineating subsurface CE contamination at a chlor-alkali facility using tree core data that we compared with soil data. For this investigation a total of 170 trees from experimental zones was sampled and analyzed for perchloroethene (PCE) and trichloroethene (TCE) concentrations, measured by solid phase microextraction gas chromatography coupled to mass spectrometry. Within the panel of tree genera sampled, Quercus and Ulmus appeared to be efficient biomonitors of subjacent TCE and PCE contamination, in addition to the well known and widely used Populus and Salix genera. Among the 28 trees located above the dense non-aqueous phase liquid (DNAPL) phase zone, 19 tree cores contained detectable amounts of CE, with concentrations ranging from 3 to 3000 μg L -1 . Our tree core dataset was found to be well related to soil gas sampling results, although the tree coring data were more informative. Our data further emphasized the need for choosing the relevant tree species and sampling periods, as well as taking into consideration the nature of the soil and its heterogeneity. Overall, this low-invasive screening method appeared useful to delineate contaminants at a small-scale site impacted by multiple sources of chlorinated solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methods for microbial filtration of fluids
Carman, M.L.; Jackson, K.J.; Knapp, R.B.; Knezovich, J.P.; Shah, N.N.; Taylor, R.T.
1996-01-30
Novel methods for purifying contaminated subsurface groundwater are disclosed. The method is involves contacting the contaminated subsurface groundwater with methanotrophic or heterotrophic microorganisms which produce contaminant-degrading enzymes. The microorganisms are derived from surface cultures and are injected into the ground so as to act as a biofilter. The contaminants which may be treated include organic or metallic materials and radionuclides. 8 figs.
Ground Water Issue. BASIC CONCEPTS OF CONTAMINANT SORPTION AT HAZARDOUS WASTE SITES
One of the major issues of concern to the Regional Superfund Ground Water Forum is the transport and fate of contaminants in soil and ground water as related to subsurface remediation. Processes which influence the behavior of contaminants in the subsurface must be considered bot...
BIODEGRADATION OF A PAH MIXTURE BY NATIVE SUBSURFACE MICROBIOTA. (R828770)
Laboratory microcosm studies were conducted to estimate biodegradation rates for a mixture of five polycyclic aromatic hydrocarbon compounds (PAHs). Static microcosms were assembled using soil samples from two locations collected at a No. 2 fuel oil-contaminated site in the At...
Salmon Site Remedial Investigation Report, Exhibit 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
USDOE /NV
1999-09-01
This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less
Salmon Site Remedial Investigation Report, Main Body
DOE Office of Scientific and Technical Information (OSTI.GOV)
US DOE /NV
1999-09-01
This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less
Salmon Site Remedial Investigation Report, Exhibit 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
USDOE NV
1999-09-01
This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides intomore » the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the installation of a water supply system that will provide potable water to the site and residence in the proximity to the site; (2) continued maintenance of surface institutional controls and subsurface restrictions; and (3) continue to implement the long-term hydrologic monitoring program. The Salmon Site will be relinquished the State of Mississippi as mandated by Public Law 104-201-September 23, 1996, to be used as a demonstration forest/wildlife refuge. Should the land use change in the future and/or monitoring information indicates a change in the site conditions, the DOE will reassess the risk impacts to human health and the environment.« less
Evaluating Contaminants of Emerging Concern as tracers of wastewater from septic systems.
James, C Andrew; Miller-Schulze, Justin P; Ultican, Shawn; Gipe, Alex D; Baker, Joel E
2016-09-15
Bacterial and nutrient contamination from anthropogenic sources impacts fresh and marine waters, reducing water quality and restricting recreational and commercial activities. In many cases the source of this contamination is ambiguous, and a tracer or set of tracers linking contamination to source would be valuable. In this work, the effectiveness of utilizing a suite of Contaminants of Emerging Concern (CECs) as tracers of bacteria from human septic system effluent is investigated. Field sampling was performed at more than 20 locations over approximately 18 months and analyzed for a suite of CECs and fecal coliform bacteria. The sampling locations included seeps and small freshwater discharges to the shoreline. Sites were selected and grouped according to level of impact by septic systems as determined by previous field sampling programs. A subset of selected locations had been positively identified as being impacted by effluent from failing septic systems through dye testing. The CECs were selected based on their predominant use, their frequency of use, and putative fate and transport properties. In addition, two rounds of focused sampling were performed at selected sites to characterize short-term variations in CEC and fecal coliform concentrations, and to evaluate environmental persistence following source correction activities. The results indicate that a suite of common use compounds are suitable as generalized tracers of bacterial contamination from septic systems and that fate and transport properties are important in tracer selection. Highly recalcitrant or highly labile compounds likely follow different loss profiles in the subsurface compared to fecal bacteria and are not suitable tracers. The use of more than one tracer compound is recommended due to source variability of septic systems and to account for variations in the subsurface condition. In addition, concentrations of some CECs were measured in receiving waters at levels which suggested the potential for environmental harm, indicating that the possible risk presented from these sources warrants further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ramirez, Abelardo L.; Cooper, John F.; Daily, William D.
1996-01-01
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination.
Ramirez, A.L.; Cooper, J.F.; Daily, W.D.
1996-02-27
This invention relates generally to the remote detections of subsurface liquid contaminants using in combination a geophysical technique known as ERT and an EKS. Electrokinetic transport is used to enhance the ability of electrical resistance tomography (ERT) to detect position and movement of subsurface contaminant liquids, particles or ions. ERT images alone are difficult to interpret because of natural inhomogeneities in soil composition and electrical properties. By subtracting two or more ERT images obtained before and after field induced movement, a high contrast image of a plume of distinct electrokinetic properties can be seen. The invention is applicable to important subsurface characterization problems including, as examples, (1) detection of liquid-saturated plumes of contaminants such as those associated with leaks from underground storage tanks containing hazardous concentrated electrolytes, (2) detection and characterization of soils contaminated with organic pollutants such as droplets of gasoline; and (3) monitoring the progress of electrokinetic containment or clean up of underground contamination. 1 fig.
Bioremediation of contaminated groundwater
Hazen, Terry C.; Fliermans, Carl B.
1995-01-01
An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.
Bioremediation of contaminated groundwater
Hazen, T.C.; Fliermans, C.B.
1995-01-24
An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.
Bargar, Timothy A.; Alvarez, David; Garrison, Virginia H.
2015-01-01
Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r2 = 0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.
BIODEGRADATION OF A PAH MIXTURE BY NATIVE SUBSURFACE MICROBIOTA. (R828770C004)
Laboratory microcosm studies were conducted to estimate biodegradation rates for a mixture of five polycyclic aromatic hydrocarbon compounds (PAHs). Static microcosms were assembled using soil samples from two locations collected at a No. 2 fuel oil-contaminated site in the At...
Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer.
Malard, Florian; Datry, Thibault; Gibert, Janine
2005-10-01
Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 +/- 118 mg kg(-1) dry sediment (n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg(-1)). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.
USDA-ARS?s Scientific Manuscript database
Improving strategies for monitoring subsurface contaminant transport includes performance comparison of competing models, developed independently or obtained via model abstraction. Model comparison and parameter discrimination involve specific performance indicators selected to better understand s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.
1993-10-01
The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.
Lovely, Derek R.; Anderson, Robert T.
2000-01-01
Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination.
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Versteeg, Roelof; Day-Lewis, Frederick D.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERTmore » to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surfacebased ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.« less
Time-lapse electrical geophysical monitoring of amendment-based biostimulation
Johnson, Timothy C.; Versteeg, Roelof J.; Day-Lewis, Frederick D.; Major, William; Lane, John W.
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation.Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation.In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.
SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)
The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...
BIOPLUME MODEL FOR CONTAMINANT TRANSPORT AFFECTED BY OXYGEN LIMITED BIODEGRADATION
Many of the organic pollutants entering ground water are potentially biodegradable in the subsurface. This potential has been demonstrated in aquifers contaminated by wood-creosoting process wastes. The persistence of many of these organic compounds in the subsurface indicated ...
Biogeochemical Stability of Contaminants in the Subsurface Following In Situ Treatment
In recent years, innovative treatment technologies have emerged to meet groundwater cleanup goals. In many cases these methods take advantage of the redox behavior of contaminant species. For example, remedial technologies that strategically manipulate subsurface redox conditio...
Predicting subsurface contaminant transport and transformation requires mathematical models based on a variety of physical, chemical, and biological processes. The mathematical model is an attempt to quantitatively describe observed processes in order to permit systematic forecas...
Apparatus for passive removal of subsurface contaminants
Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph
1997-01-01
An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere.
Apparatus for passive removal of subsurface contaminants
Pemberton, B.E.; May, C.P.; Rossabi, J.
1997-06-24
An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.
Contaminated environments in the subsurface and bioremediation: organic contaminants.
Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F
1997-07-01
Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.
Wilson, Jordan; Bartz, Rachel; Limmer, Matt; Burken, Joel
2013-01-01
Numerous studies have demonstrated trees' ability to extract and translocate moderately hydrophobic contaminants, and sampling trees for compounds such as BTEX can help delineate plumes in the field. However, when BTEX is detected in the groundwater, detection in nearby trees is not as reliable an indicator of subsurface contamination as other compounds such as chlorinated solvents. Aerobic rhizospheric and bulk soil degradation is a potential explanation for the observed variability of BTEX in trees as compared to groundwater concentrations. The goal of this study was to determine the effect of groundwater level on BTEX concentrations in tree tissue. The central hypothesis was increased vadose zone thickness promotes biodegradation of BTEX leading to lower BTEX concentrations in overlying trees. Storage methods for tree core samples were also investigated as a possible reason for tree cores revealing lower than expected BTEX levels in some sampling efforts. The water level hypothesis was supported in a greenhouse study, where water table level was found to significantly affect tree BTEX concentrations, indicating that the influx of oxygen coupled with the presence of the tree facilitates aerobic biodegradation of BTEX in the vadose zone.
Verginelli, Iason; Pecoraro, Roberto; Baciocchi, Renato
2018-04-01
In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m 2 . These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites. Copyright © 2017 Elsevier B.V. All rights reserved.
ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS
An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...
Models Show Subsurface Cracking May Complicate Groundwater Cleanup at Hazardous Waste Sites
Chlorinated solvents like trichloroethylene contaminate groundwater at numerous sites nationwide. This modeling study, conducted at the Air Force Institute of Technology, shows that subsurface cracks, either natural or due to the presence of the contaminant itself, may result in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2017-04-11
At Pacific Northwest National Laboratory, we are a leader in subsurface science and remediation. We use our expertise in these areas to characterize subsurface contaminants and assess contaminant transport. We're also using our capabilities to restore the Hanford Site in southeastern Washington State to a safe, clean environment.
Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring
2012-04-16
Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless
Jasrotia, Puja; Green, Stefan J.; Canion, Andy; Overholt, Will A.; Prakash, Om; Wafula, Denis; Hubbard, Daniela; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.
2014-01-01
The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions. PMID:24389927
NASA Astrophysics Data System (ADS)
Morsy, Mona; Rashed, Mohamed
2013-01-01
Sharm El-Sheikh waters were suddenly hit by hydrocarbon spills which created a serious threat to the prosperous tourism industry in and around the city. Analysis of soil samples, water samples, and seabed samples collected in and around the contaminated bay area showed anomalous levels of hydrocarbons. An integrated geophysical investigation, using magnetic, gravity, and ground penetrating radar geophysical tools, was conducted in the headland overlooking the contaminated bay in order to delineate the possible subsurface source of contamination. The results of the geophysical investigations revealed three underground manmade reinforced concrete tanks and a complicated network of buried steel pipes in addition to other unidentified buried objects. The depths and dimensions of the discovered objects were determined. Geophysical investigations also revealed the presence of a north-south oblique slip fault running through the eastern part of the studied area. Excavations, conducted later on, confirmed the presence of one of the tanks delineated by the geophysical surveys.
Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Michael J.; Daly, Rebecca; Mouser, Paula J.
2014-09-12
Research in the deep terrestrial biosphere is driven by interest in novel biodiversity and metabolisms, biogeochemical cycling, and the impact of human activities on this ecosystem. As this interest continues to grow, it is important to ensure that when subsurface investigations are proposed, materials recovered from the subsurface are sampled and preserved in an appropriate manner to limit contamination and ensure preservation of accurate microbial, geochemical, and mineralogical signatures. On February 20th, 2014, a workshop on “Trends and Future Challenges in Sampling The Deep Subsurface” was coordinated in Columbus, Ohio by The Ohio State University and West Virginia University faculty,more » and sponsored by The Ohio State University and the Sloan Foundation’s Deep Carbon Observatory. The workshop aims were to identify and develop best practices for the collection, preservation, and analysis of terrestrial deep rock samples. This document summarizes the information shared during this workshop.« less
NASA Astrophysics Data System (ADS)
Bonaccorsi, R.; Stoker, C. R.
2006-12-01
The subsurface is the key environment for searching for life on planets lacking surface life. This includes the search for past/present life on Mars where possible subsurface life could exist [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) performed a simulation of a Mars robotic drilling at the RT Borehole#7 Site ~6.07m, atop a massive-pyrite deposit from the Iberian Pyritic Belt. The RT site is considered an important analog of Sinus Meridiani on Mars, an ideal model analog for a subsurface Martian setting [2], and a relevant example of deep subsurface microbial community including aerobic and anaerobic chemoautotrophs [4-5]. Searching for microbes or bulk organics of biological origin in a subsurface sample from a planet is a key scientific objective of Robotic drilling missions. During the 2005 Field experiment 28 minicores were robotically handled and subsampled for life detection experiments under anti-contamination protocols. Ground truth included visual observation of cores and lab based Elemental and Isotope Ratios Mass Spectrometry analysis (EA-IRMS) of bulk organics in Hematite and Gohetite-rich gossanized tuffs, gossan and clay layers within 0-6m-depth. C-org and N-tot vary up to four orders of magnitude among the litter (~11Wt%, 0-1cm) and the mineralized (~3Wt%, 1-3cm) layers, and the first 6 m-depth (C-org=0.02-0.38Wt%). Overall, the distribution/ preservation of plant and soil-derived organics (d13C-org = 26 per mil to 24 per mil) is ten times higher (C-org=0.33Wt%) that in hematite-poor clays, or where rootlets are present, than in hematite- rich samples (C-org=<0.01Wt%). This is consistent with ATP assay (Lightning-MVP, Biocontrol) for total biomass in subsurface (Borehole#7 ~6.07m, ~avg. 153RLU) vs. surface soil samples (~1,500-81,449RLU) [5]. However, the in-situ ATP assay failed in detecting presence of roots during the in-situ life detection experiment. Furthermore, cm-sized roots were overlooked during remote observations. Finally, ATP Luminometry provided insights for potential contamination from core-handling and environmental dust loadings on cleaned/sterilized control surfaces (e.g., 6,782-36,243RLU/cm2). Cleanliness/sterility can be maintained by applying a simple sterile protocol under field conditions. Science results from this research will support future Astrobiology driven drilling mission planned on Mars. Specifically, ground truth offers relevant insights to assess strengths and limits of in-situ/remote observations vs. laboratory measurements. Results from this experiment will also aid the debate on advantages/ disadvantages of manned vs. robotic drilling missions on Mars or other planets. [1] Boston et al., 1997; [2] http://marte.arc.nasa.gov; [3] Stoker, C., et al., 2006 AbSciCon, [4] Stoker et al., submitted; [5] Bonaccorsi., et al., 2006 AbSciCon.
Temporary vs. Permanent Sub-slab Ports: A Comparative Performance Study
Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated...
The collective processes that constitute the broadly used term Anatural attenuation,@ as it relates to subsurface remediation of contaminants, refer to the physical, chemical, and biological interactions that, without human intervention, reduce or contain contaminants in the sub...
Contamination and restoration of groundwater aquifers.
Piver, W T
1993-01-01
Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented. PMID:8354172
A survey of lead contamination in soil along Interstate 880, Alameda County, California.
Teichman, J; Coltrin, D; Prouty, K; Bir, W A
1993-09-01
This study was undertaken to determine the levels of lead in soils taken from yards of homes in close proximity to a major freeway. Soils were collected from the yards of homes in communities adjacent to the freeway and within a 1-mile radius. Samples were analyzed using U.S. Environmental Protection Agency (EPA) methods and atomic absorption instrumentation. Ten percent of the samples were split and sent to a second laboratory for quality control. The possibility of lead-based paint contributing to the contamination was eliminated by sampling more than 20 feet from the homes. The soils closest to the highway showed lead levels exceeding California's and EPA's criteria for hazardous waste. A stratified sample of the depth of contamination in soils was also undertaken. Previously identified "hot spots" (soils with lead levels exceeding 500 ppm in the top 0.75 inch) were core sampled. Results indicated 90% of the subsurface samples contained lead exceeding the surface contaminations. This may be attributed to decades of urban lead-laden dust deposition. As the use of leaded gasolines have diminished in the past decade, the uppermost layers of soil/dust contained lower amounts of lead.
Johnston, Allison; Runkel, Robert L.; Navarre-Sitchler, Alexis; Singha, Kamini
2017-01-01
We investigated the impact of acid mine drainage (AMD) contamination from the Minnesota Mine, an inactive gold and silver mine, on Lion Creek, a headwater mountain stream near Empire, Colorado. The objective was to map the sources of AMD contamination, including discrete sources visible at the surface and diffuse inputs that were not readily apparent. This was achieved using geochemical sampling, in-stream and in-seep fluid electrical conductivity (EC) logging, and electrical resistivity imaging (ERI) of the subsurface. The low pH of the AMD-impacted water correlated to high fluid EC values that served as a target for the ERI. From ERI, we identified two likely sources of diffuse contamination entering the stream: (1) the subsurface extent of two seepage faces visible on the surface, and (2) rainfall runoff washing salts deposited on the streambank and in a tailings pile on the east bank of Lion Creek. Additionally, rainfall leaching through the tailings pile is a potential diffuse source of contamination if the subsurface beneath the tailings pile is hydraulically connected with the stream. In-stream fluid EC was lowest when stream discharge was highest in early summer and then increased throughout the summer as stream discharge decreased, indicating that the concentration of dissolved solids in the stream is largely controlled by mixing of groundwater and snowmelt. Total dissolved solids (TDS) load is greatest in early summer and displays a large diel signal. Identification of diffuse sources and variability in TDS load through time should allow for more targeted remediation options.
Single cell genomic study of Dehalococcoidites in deep sea sediments of Peru Margin 1230
NASA Astrophysics Data System (ADS)
Kaster, A.; Meyer-Blackwell, K.; Spormann, A. M.
2013-12-01
Dehalogenating Chloroflexi, such as Dehalococcoidites Dhc were originally discovered as the key microorganisms mediating reductive dehalogenation of the prevalent groundwater contaminants tetrachloroethene and trichloroethene. Molecular and genomic studies on their key enzymes for energy conservation, reductive dehalogenases rdh, have provided evidence for ubiquitous horizontal gene transfer. A pioneering study by Futagami et al. discovered novel putative rdh phylotypes in sediments from the Pacific, revealing an unknown and surprising abundance of rdh genes in pristine habitats. The frequent detection of Dhc-related 16S rRNA genes from these environments implied the occurrence of dissimilatory dehalorespiration in marine subsurface sediments, however, pristine Dhc could never be linked to this activity. Despite being ubiquitous in those environments, metabolic life style or ecological function of Dhc in the absence of anthropogenic contaminants is still completely unknown. We therefore analyzed a non-contaminated deep sea sediment sample of the Peru Margin 1230 site by a single cell genomic (SGC) approach. We present for the first time data on three single Dhc cells, helping to elucidate their role in the poorly understood oligotrophic marine sub-surface environment.
Al-Baldawi, Israa Abdulwahab; Sheikh Abdullah, Siti Rozaimah; Anuar, Nurina; Suja, Fatihah; Idris, Mushrifah
2013-01-01
One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
Phytoremediation removal rates of benzene, toluene, and chlorobenzene.
Limmer, Matt A; Wilson, Jordan; Westenberg, David; Lee, Amy; Siegman, Mark; Burken, Joel G
2018-06-07
Phytoremediation is a sustainable remedial approach, although performance efficacy is rarely reported. In this study, we assessed a phytoremediation plot treating benzene, toluene, and chlorobenzene. A comparison of the calculated phytoremediation removal rate with estimates of onsite contaminant mass was used to forecast cleanup periods. The investigation demonstrated that substantial microbial degradation was occurring in the subsurface. Estimates of transpiration indicated that the trees planted were removing approximately 240,000 L of water per year. This large quantity of water removal implies substantial removal of contaminant due to large amounts of contaminants in the groundwater; however, these contaminants extensively sorb to the soil, resulting in large quantities of contaminant mass in the subsurface. The total estimate of subsurface contaminant mass was also complicated by the presence of non-aqueous phase liquids (NAPL), additional contaminant masses that were difficult to quantify. These uncertainties of initial contaminant mass at the site result in large uncertainty in the cleanup period, although mean estimates are on the order of decades. Collectively, the model indicates contaminant removal rates on the order of 10 -2 -10 0 kg/tree/year. The benefit of the phytoremediation system is relatively sustainable cleanup over the long periods necessary due to the presence of NAPL.
EPA's Ecological Risk Assessment Support Center (ERASC) announced the release of the final report, Evaluating Potential Exposures to Ecological Receptors Due to Transport of Hydrophobic Organic Contaminants in Subsurface Systems. This technical paper recommends several ty...
Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.
Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W
2015-01-01
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Determination of subsurface fluid contents at a crude-oil spill site
Hess, K.M.; Herkelrath, W.N.; Essaid, H.I.
1992-01-01
Measurement of the fluid-content distribution at sites contaminated by immiscible fluids, including crude oil, is needed to better understand the movement of these fluids in the subsurface and to provide data to calibrate and verify numerical models and geophysical methods. A laboratory method was used to quantify the fluid contents of 146 core sections retrieved from boreholes aligned along a 120-m longitudinal transect at a crude-oil spill site near Bemidji, Minnesota, U.S.A. The 47-mm-diameter, minimally disturbed cores spanned a 4-m vertical interval contaminated by oil. Cores were frozen on site in a dry ice-alcohol bath to prevent redistribution and loss of fluids while sectioning the cores. We gravimetrically determined oil and water contents using a two-step method: (1) samples were slurried and the oil was removed by absorption onto strips of hydrophobic porous polyethylene (PPE); and (2) the samples were oven-dried to remove the water. The resulting data show sharp vertical gradients in the water and oil contents and a clearly defined oil body. The subsurface distribution is complex and appears to be influenced by sediment heterogeneities and water-table fluctuations. The center of the oil body has depressed the water-saturated zone boundary, and the oil is migrating laterally within the capillary fringe. The oil contents are as high as 0.3 cm3 cm-3, which indicates that oil is probably still mobile 10 years after the spill occurred. The thickness of oil measured in wells suggests that accumulated thickness in wells is a poor indicator of the actual distribution of oil in the subsurface. Several possible sources of error are identified with the field and laboratory methods. An error analysis indicates that adsorption of water and sediment into the PPE adds as much as 4% to the measured oil masses and that uncertainties in the calculated sample volume and the assumed oil density introduce an additional ??3% error when the masses are converted to fluid contents.
Vroblesky, Don A.
2008-01-01
Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.
Juck, D F; Whissell, G; Steven, B; Pollard, W; McKay, C P; Greer, C W; Whyte, L G
2005-02-01
Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-microm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses.
Juck, D. F.; Whissell, G.; Steven, B.; Pollard, W.; McKay, C. P.; Greer, C. W.; Whyte, L. G.
2005-01-01
Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-μm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses. PMID:15691963
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.; McNab, W. W.
2007-12-01
Long-term monitoring (LTM) is particularly important for contaminants which are mitigated by natural processes of dilution, dispersion, and degradation. At many sites, LTM can require decades of expensive sampling at tens or even hundreds of existing monitoring wells, resulting in hundreds of thousands, or millions of dollars per year for sampling and data management. Therefore, contaminant sampling tools, methods and frequencies are chosen to minimize waste and data management costs while ensuring a reliable and informative time-history of contaminant measurement for regulatory compliance. The interplay play between cause (i.e. subsurface heterogeneities, sampling techniques, measurement frequencies) and effect (unreliable data and measurements gap) has been overlooked in many field applications which can lead to inconsistencies in time- histories of contaminant samples. In this study we address the relationship between cause and effect for different hydrogeological sampling settings: porous and fractured media. A numerical model has been developed using AMR-FEM to solve the physicochemical processes that take place in the aquifer and the monitoring well. In the latter, the flow is governed by the Navier-Stokes equations while in the former the flow is governed by the diffusivity equation; both are fully coupled to mimic stressed conditions and to assess the effect of dynamic sampling tool on the formation surrounding the monitoring well. First of all, different sampling tools (i.e., Easy Pump, Snapper Grab Sampler) were simulated in a monitoring well screened in different homogeneous layered aquifers to assess their effect on the sampling measurements. Secondly, in order to make the computer runs more CPU efficient the flow in the monitoring well was replaced by its counterpart flow in porous media with infinite permeability and the new model was used to simulate the effect of heterogeneities, sampling depth, sampling tool and sampling frequencies on the uncertainties in the concentration measurements. Finally, the models and results were abstracted using a simple mixed-tank approach to further simplify the models and make them more accessible to field hydrogeologists. During the abstraction process a novel method was developed for mapping streamlines in the fractures as well within the monitoring well to illustrate mixing and mixing zones. Applications will be demonstrated for both sampling in porous and fractured media. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Effects of Subsurface Microbial Ecology on Geochemical Evolution of a Crude-Oil Contaminated Aquifer
NASA Astrophysics Data System (ADS)
Bekins, B. A.; Cozzarelli, I. M.; Godsy, E. M.; Warren, E.; Hostettler, F. D.
2001-12-01
We have identified several subsurface habitats for microorganisms in a crude oil contaminated located near Bemidji, Minnesota. These aquifer habitats include: 1) the unsaturated zone contaminated by hydrocarbon vapors, 2) the zones containing separate-phase crude oil, and 3) the aqueous-phase contaminant plume. The surficial glacial outwash aquifer was contaminated when a crude oil pipeline burst in 1979. We analyzed sediment samples from the contaminated aquifer for the most probable numbers of aerobes, iron reducers, fermenters, and three types of methanogens. The microbial data were then related to gas, water, and oil chemistry, sediment extractable iron, and permeability. The microbial populations in the various contaminated subsurface habitats each have special characteristics and these affect the aquifer and contaminant chemistry. In the eight-meter-thick, vapor-contaminated vadose zone, a substantial aerobic population has developed that is supported by hydrocarbon vapors and methane. Microbial numbers peak in locations where access to both hydrocarbons and nutrients infiltrating from the surface is maximized. The activity of this population prevents hydrocarbon vapors from reaching the land surface. In the zone where separate-phase crude oil is present, a consortium of methanogens and fermenters dominates the populations both above and below the water table. Moreover, gas concentration data indicate that methane production has been active in the oily zone since at least 1986. Analyses of the extracted separate-phase oil show that substantial degradation of C15 -C35 n-alkanes has occurred since 1983, raising the possibility that significant degradation of C15 and higher n-alkanes has occurred under methanogenic conditions. However, lab and field data suggest that toxic inhibition by crude oil results in fewer acetate-utilizing methanogens within and adjacent to the separate-phase oil. Data from this and other sites indicate that toxic inhibition of acetoclastic methanogenesis in the proximity of separate phase contaminant sources may result in build-up of acetate in contaminant plumes. Within the aqueous-phase contaminant plume steep vertical hydrocarbon concentration gradients are associated with sharp transitions in the dominant microbial population. In the 20 years since the aquifer became contaminated, sediment iron oxides have been depleted and the dominant physiologic type has changed in areas of high contaminant flux from iron reducing to methanogenic. Thus, methanogens are found in high permeability horizons down gradient from the oil while iron reducers persist in low permeability zones. Expansion of the methanogenic zone over time has resulted in a concomitant increase in the aquifer volume contaminated with the highest concentrations of benzene and ethylbenzene.
Subsurface defects of fused silica optics and laser induced damage at 351 nm.
Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng
2013-05-20
Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.
Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G
2017-12-19
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Schumacher, John G.; Burken, Joel G.
2017-01-01
Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman’s coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in-planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.
An assessment of subsurface contamination of an urban coastal aquifer due to oil spill.
Nambi, Indumathi M; Rajasekhar, Bokam; Loganathan, Vijay; RaviKrishna, R
2017-04-01
Incidences of leakages of chemicals from underground oil storage tanks or oil-carrying pipelines have posed huge threat to the coastal aquifers around the world. One such leak was recently identified and notified by the people of Tondiarpet, Chennai, India. The assessment of the contamination level was done by obtaining electrical resistivity maps of the subsurface, drilling of 20 new borewells for soil and water analysis, and testing the water quality of 30 existing borewells. Samples were collected from the borewells, and observations were made that included parameters such as odor, moisture, contamination characteristics, lithology, groundwater level, thickness of the free product that are used to demarcate the extent of soil, and water contamination. Furthermore, a multigas detector was used to detect hydrocarbon presence as soil vapor. Moreover, to capture the transport of dissolved hydrocarbons, 10 samples were collected in the periphery of the study area and were analyzed for the presence of petroleum hydrocarbon and polyaromatic hydrocarbon. Analysis of the data indicated the presence of free-phase hydrocarbon in soil and groundwater close to the junction of Thiruvottiyur high (TH) road (TH) and Varadaja Perumal Koil (VPK) street. Although the contaminant plume is confined to a limited area, it has spread more to the southern and eastern side of the pipeline possibly due to continuous abstraction of groundwater by residential apartments. After cutting a trench along the VPK street and plotting of the plume delineation map, observations indicated that the source of the hydrocarbon leak is present in VPK street close to TH road. A multipronged strategy was suggested targeting the remediation of oil in various phases.
Israde-Alcantara, Isabel; Buenrostro Delgado, Otoniel; Carrillo Chavez, Alejandro
2005-06-01
The landfill of Morelia, the capital city of the state of Michoacán in central-western Mexico, is located 12 km west of the city and has operated since 1997 without a structure engineered and designed to control the generation in situ of biogas and leachates. A geological evaluation of the landfill site is presented in this paper. The results indicate that the site lacks ideal impermeable subsurface strata. The subsurface strata consist of highly fractured basaltic lava flows (east-west fault and fracture system trend) and sand-size cineritic material with high permeability and porosity. Geochemical analysis of groundwater from Morelia's municipal aquifer shows a high concentration of heavy metals (Cd, Pb, As) exceeding the Mexican environmental regulations, along with the presence of some organic pollutants (phenols). Analyses of samples of the landfill's permanent leachate ponds show very high concentrations of the same contaminants. Samples were taken from the leachate pond and from nearby water-wells during the rainy season (summer 1997) and the dry season (spring 1997, 1998, and 1999). In all cases, the concentration of contaminants registered exceeded the standards for drinking water of the World Health Organization (American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 2000). Some metal contaminants could be leaching directly from the landfill.
Temporary vs. Permanent Sub-slab Ports: A Comparative ...
Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated groundwater, to indoor air-exposure points. Therefore, contaminated matrices may include groundwater, soil, soil gas, and indoor air. VOC contaminants of concern typically include halogenated solvents such as trichloroethene, tetrachloroethene, and chloroform, as well as petroleum hydrocarbons, such as the aromatic VOCs benzene, toluene, and xylenes. Radon is a colorless radioactive gas that is released by radioactive decay of radionuclides in rock and soil that migrate into homes through VI in a similar fashion to VOCs. This project focused on the performance of permanent versus temporary sub-slab sampling ports for the determination of VI of halogenated VOCs and radon into an unoccupied house. VOC and radon concentrations measured simultaneously in soil gas using collocated temporary and permanent ports appeared to be independent of the type of port. The variability between collocated temporary and permanent ports was much less than the spatial variability between different locations within a single residential duplex. The agreement of the majority of VOC and radon concentrations, 0–36% relative percent difference, and 2–19% relative standard deviation respectively, of each sub-sl
Oxidative particle mixtures for groundwater treatment
Siegrist, Robert L.; Murdoch, Lawrence C.
2000-01-01
The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.
Armored Enzyme Nanoparticles for Remediation of Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.
2005-09-01
The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides;more » or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation.« less
A study was conducted (1) to assess the capability of groundpenetrating radar (GPR) to identify natural subsurface features, detect man-made objects burled in the soil, and both detect and define the extent of contaminated soil or ground water due to a toxic spill, and (2) to det...
In-Situ Contained And Of Volatile Soil Contaminants
Varvel, Mark Darrell
2005-12-27
The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.
In-Situ Containment and Extraction of Volatile Soil Contaminants
Varvel, Mark Darrell
2005-12-27
The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
This is the third volume of this comprehensive report of the inventory of radiological and nonradiological contaminants in waste buried or projected to be buried in the subsurface disposal area of the Idaho National Engineering Laboratory. Appendix B contains a complete printout of contaminant inventory and other information from the CIDRA Database and is presented in volumes 2 and 3 of the report.
Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K
2015-04-01
Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shiller, A. M.; Joung, D.; Wade, T.
2011-12-01
A significant concern associated with oil spills is the toxicity associated with the polycyclic aromatic hydrocarbon (PAH) component. Ratios of various PAH's have also been used as indicators of oil sources. During a late May/early June cruise, 57 samples for PAH analysis were collected in the vicinity of the Deepwater Horizon wellhead. Most samples were from the previously reported sub-surface oil plume, centered near 1100 m depth. PAH concentrations ranged up to 117 μg/L and rapidly diminished in the subsurface with distance from the wellhead. The Macondo well oil was observed to be rich in naphthalenes. Within a few km of the wellhead, the percentage of methyl-naphthalenes in the sub-surface plume was generally higher than in the source, suggesting preferential solubilization of this low molecular weight fraction. However, the percentage rapidly decreased away from the well also suggesting rapid destruction or removal of the naphthalenes. The pyrogenic index (Wang et al.) was <0.05 for all samples, indicating a petroleum origin. For a few samples, some other PAH ratios (e.g., MP/P and P/A ratios) suggested a combustion origin. However, these ratios also tended to vary both with percent methyl-naphthalenes and distance from the wellhead, suggesting anomalous ratios originating from solubilization/degradation effects. We also obtained a more limited set of surface water samples, generally avoiding the most contaminated areas as well as areas of oil burning. For these surface water samples, similar trends were observed as at depth, probably resulting from selective volatilization and photo-degradation. Overall, the data illustrate how environmental factors lead both to reduced concentrations and fractionation of the PAH's.
Bagwell, Christopher E; Liu, Xuaduan; Wu, Liyou; Zhou, Jizhong
2006-03-01
The impact of legacy nuclear waste on the compositional diversity and distribution of sulfate-reducing bacteria in a heavily contaminated subsurface aquifer was examined. dsrAB clone libraries were constructed and restriction fragment length polymorphism (RFLP) analysis used to evaluate genetic variation between sampling wells. Principal component analysis identified nickel, nitrate, technetium, and organic carbon as the primary variables contributing to well-to-well geochemical variability, although comparative sequence analysis showed the sulfate-reducing bacteria community structure to be consistent throughout contaminated and uncontaminated regions of the aquifer. Only 3% of recovered dsrAB gene sequences showed apparent membership to the Deltaproteobacteria. The remainder of recovered sequences may represent novel, deep-branching lineages that, to our knowledge, do not presently contain any cultivated members; although corresponding phylotypes have recently been reported from several different marine ecosystems. These findings imply resiliency and adaptability of sulfate-reducing bacteria to extremes in environmental conditions, although the possibility for horizontal transfer of dsrAB is also discussed.
STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.
Burton, James S.; ,
1985-01-01
This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NNSA /NSO
The Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 204 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 204 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of six Corrective Action Sites (CASs) which include: 01-34-01, Underground Instrument House Bunker; 02-34-01, Instrument Bunker; 03-34-01, Underground Bunker; 05-18-02, Chemical Explosives Storage; 05-33-01, Kay Blockhouse; 05-99-02, Explosive Storage Bunker.more » Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for Corrective Action Unit 204 collectively include radionuclides, beryllium, high explosives, lead, polychlorinated biphenyls, total petroleum hydrocarbons, silver, warfarin, and zinc phosphide. The primary question for the investigation is: ''Are existing data sufficient to evaluate appropriate corrective actions?'' To address this question, resolution of two decision statements is required. Decision I is to ''Define the nature of contamination'' by identifying any contamination above preliminary action levels (PALs); Decision II is to ''Determine the extent of contamination identified above PALs. If PALs are not exceeded, the investigation is completed. If PALs are exceeded, then Decision II must be resolved. In addition, data will be obtained to support waste management decisions. Field activities will include radiological land area surveys, geophysical surveys to identify any subsurface metallic and nonmetallic debris, field screening for applicable contaminants of potential concern, collection and analysis of surface and subsurface soil samples from biased locations, and step-out sampling to define the extent of contamination, as necessary. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.« less
Sampling colloids and colloid-associated contaminants in ground water
Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.
1993-01-01
It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in “background” wells, colloid-size distributions, ground-water geochemistry, and colloid surface characteristics.
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.
The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions.more » this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, O.R.; Siegrist, R.L.; Mitchell, T.J.
1993-11-01
Fine-textured soils and sediments contaminated by trichloroethylene (TCE) and other chlorinated organics present a serious environmental restoration challenge at US Department of Energy (DOE) sites. DOE and Martin Marietta Energy Systems, Inc. initiated a research and demonstration project at Oak Ridge National Laboratory. The goal of the project was to demonstrate a process for closure and environmental restoration of the X-231B Solid Waste Management Unit at the DOE Portsmouth Gaseous Diffusion Plant. The X-231B Unit was used from 1976 to 1983 as a land disposal site for waste oils and solvents. Silt and clay deposits beneath the unit were contaminatedmore » with volatile organic compounds and low levels of radioactive substances. The shallow groundwater was also contaminated, and some contaminants were at levels well above drinking water standards. This document begins with a summary of the subsurface physical and contaminant characteristics obtained from investigative studies conducted at the X-231B Unit prior to January 1992 (Sect. 2). This is then followed by a description of the sample collection and analysis methods used during the baseline sampling conducted in January 1992 (Sect. 3). The results of this sampling event were used to develop spatial models for VOC contaminant distribution within the X-231B Unit.« less
Impact of Moisture Content and Grain Size on Hydrocarbon Diffusion in Porous Media
NASA Astrophysics Data System (ADS)
McLain, A. A.; Ho, C. K.
2001-12-01
Diffusion of hydrocarbon vapors in porous media can play an important role in our ability to characterize subsurface contaminants such as trichloroethylene (TCE). For example, traditional monitoring methods often rely on direct sampling of contaminated soils or vapor. These samples may be influenced by the diffusion of vapors away from the contaminant source term, such as non-aqueous-phase TCE liquid. In addition, diffusion of hydrocarbon vapors can also impact the migration and dispersion of the contaminant in the subsurface. Therefore, understanding the diffusion rates and vapor transport processes of hydrocarbons in variably-saturated, heterogeneous porous media will assist in the characterization and detection of these subsurface contaminants. The purpose of this study was to investigate the impact of soil heterogeneity and water-moisture content on the diffusion processes for TCE. A one-dimensional column experiment was used to monitor the rates of vapor diffusion through sand. Experiments were performed with different average water-moisture contents and different grain sizes. On one end of the column, a reservoir cap is used to encase the TCE, providing a constant vapor boundary condition while sealing the end. The other end of the column contains a novel microchemical sensor. The sensor employs a polymer-absorption resistor (chemiresistor) that reversibly swells and increases in resistance when exposed to hydrocarbons. Once calibrated, the chemiresistors can be used to passively monitor vapor concentrations. This unique method allows the detection of in-situ vapor concentrations without disturbing the local environment. Results are presented in the form of vapor-concentration breakthrough curves as detected by the sensor. The shape of the breakthrough curve is dependent on several key parameters, including the length of the column and parameters (e.g., water-moisture content and grain-size) that affect the effective diffusion coefficient of TCE in air. Comparisons are made between theoretical and observed breakthrough curves to evaluate the diffusion of TCE and other relevant physical processes (e.g., air-water partitioning of TCE). The relative impact of water-moisture content and grain size on the diffusion of TCE vapor in porous media is also addressed. The authors thank Bob Hughes, who developed the chemiresistor sensors, and Chad Davis, who assisted with the calibrations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.
Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion.
Wilson, Jordan L; Samaranayake, V A; Limmer, Matt A; Burken, Joel G
2018-01-01
Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman's correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with minimal equipment at the PCE Southeast Contamination Site was sufficient to delineate vapor intrusion potential in the study area and offered comparable delineation to traditional sub-slab sampling performed at 140 properties over a period of approximately 2 years.
Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion
Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Burken, Joel G.
2018-01-01
Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman’s correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with minimal equipment at the PCE Southeast Contamination Site was sufficient to delineate vapor intrusion potential in the study area and offered comparable delineation to traditional sub-slab sampling performed at 140 properties over a period of approximately 2 years.
Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion
2018-01-01
Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman’s correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with minimal equipment at the PCE Southeast Contamination Site was sufficient to delineate vapor intrusion potential in the study area and offered comparable delineation to traditional sub-slab sampling performed at 140 properties over a period of approximately 2 years. PMID:29451904
MURMoT. Design and Application of Microbial Uranium Reduction Monitoring Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeffler, Frank E.
2014-12-31
Uranium (U) contamination in the subsurface is a major remediation challenge at many DOE sites. Traditional site remedies present enormous costs to DOE; hence, enhanced bioremediation technologies (i.e., biostimulation and bioaugmentation) combined with monitoring efforts are being considered as cost-effective corrective actions to address subsurface contamination. This research effort improved understanding of the microbial U reduction process and developed new tools for monitoring microbial activities. Application of these tools will promote science-based site management decisions that achieve contaminant detoxification, plume control, and long-term stewardship in the most efficient manner. The overarching hypothesis was that the design, validation and application ofmore » a suite of new molecular and biogeochemical tools advance process understanding, and improve environmental monitoring regimes to assess and predict in situ U immobilization. Accomplishments: This project (i) advanced nucleic acid-based approaches to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-detoxifying bacteria; (ii) developed proteomics workflows for detection of metal reduction biomarker proteins in laboratory cultures and contaminated site groundwater; (iii) developed and demonstrated the utility of U isotopic fractionation using high precision mass spectrometry to quantify U(VI) reduction for a range of reduction mechanisms and environmental conditions; and (iv) validated the new tools using field samples from U-contaminated IFRC sites, and demonstrated their prognostic and diagnostic capabilities in guiding decision making for environmental remediation and long-term site stewardship.« less
Contamination investigation in a karst region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentowski, J.E.
1993-03-01
A series of springs in the karst region of north central Kentucky appeared to have been contaminated. These springs are within 1/2 mile of two sinkholes which were filled-in as permitted landfills for inert waste and then developed into an industrial park. A pre-remedial site inspection was performed under the authority of the Superfund laws in late 1989. A preliminary site visit included site reconnaissance and geologic field work to locate the springs. A review of historical serial photos aided in the planning the investigation program consisting of magnetic and soil gas surveys and the taking environmental soil and watermore » samples. The soil gas survey indicated potential soil sampling locations. Seventeen surface and subsurface soil samples were taken. Eleven water samples were taken from various springs, rivers and the local public water supply. The analytical results from soil samples taken over the largest sinkhole matched nine inorganic and eleven volatile organic compounds also found in the spring water and sediment samples. The springs are roughly on strike with major fracture systems reported in the literature. The success of this investigation emphasizes the importance of proper geologic consideration for contaminant monitoring in karst regions.« less
Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.
1982-05-01
The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses formore » workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.« less
Environmental projects. Volume 14: Removal of contaminated soil and debris
NASA Technical Reports Server (NTRS)
Kushner, Len
1992-01-01
Numerous diverse activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of six parabolic dish antennas. Some of these activities can result in possible spills or leakages of hazardous materials and wastes stored both above ground in steel drums and below ground in underground storage tanks (UST's). These possible leaks or spills, along with the past practice of burial of solid debris and waste in trenches and pits, could cause local subsurface contamination of the soil. In 1987, the Jet Propulsion Laboratory (JPL), retained Engineering-Science, Inc. (E-S), Pasadena, California, to identify the specific local areas within the GDSCC with subsurface soil contamination. The E-S study determined that some of the soils at the Apollo Site and the Mars Site were contaminated with hydrocarbons, while soil at a nonhazardous waste dumpsite at the Mojave Base site was contaminated with copper. This volume is a JPL-expanded version of the PE209 E-S report, and it also reports that all subsurface contaminated soils at the GDSCC were excavated, removed, and disposed of in an environmentally acceptable way, and the excavations were backfilled and covered in accordance with accepted Federal, State, and local environmental rules and regulations.
Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.
1997-01-14
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.
Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.
1997-01-01
The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.
Characterization of nZVI mobility in a field scale test.
Kocur, Chris M; Chowdhury, Ahmed I; Sakulchaicharoen, Nataphan; Boparai, Hardiljeet K; Weber, Kela P; Sharma, Prabhakar; Krol, Magdalena M; Austrins, Leanne; Peace, Christopher; Sleep, Brent E; O'Carroll, Denis M
2014-01-01
Nanoscale zerovalent iron (nZVI) particles were injected into a contaminated sandy subsurface area in Sarnia, Ontario. The nZVI was synthesized on site, creating a slurry of 1 g/L nanoparticles using the chemical precipitation method with sodium borohydride (NaBH4) as the reductant in the presence of 0.8% wt. sodium carboxymethylcellulose (CMC) polymer to form a stable suspension. Individual nZVI particles formed during synthesis had a transmission electron microscopy (TEM) quantified particle size of 86.0 nm and dynamic light scattering (DLS) quantified hydrodynamic diameter for the CMC and nZVI of 624.8 nm. The nZVI was delivered to the subsurface via gravity injection. Peak normalized total Fe breakthrough of 71% was observed 1m from the injection well and remained above 50% for the 24 h injection period. Samples collected from a monitoring well 1 m from the injection contained nanoparticles with TEM-measured particle diameter of 80.2 nm and hydrodynamic diameter of 562.9 nm. No morphological changes were discernible between the injected nanoparticles and nanoparticles recovered from the monitoring well. Energy dispersive X-ray spectroscopy (EDS) was used to confirm the elemental composition of the iron nanoparticles sampled from the downstream monitoring well, verifying the successful transport of nZVI particles. This study suggests that CMC stabilized nZVI can be transported at least 1 m to the contaminated source zone at significant Fe(0) concentrations for reaction with target contaminants.
Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.
2005-01-01
During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a pushpoint sampler as a highly effective tool for mapping the extent of contaminated subsurface plumes, determining their constituents and loadings, and performing technical studies that may be relevant to bioremediation and other activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ITLV.
1999-03-01
The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: Perform video surveys of the discharge and outfall lines. Collect samples of material in the septic tanks. Conduct exploratory trenching to locate and inspect subsurface components. Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. Drill boreholes and collect subsurface soil samples if required. Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.
2006-05-09
99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samplesmore » and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.« less
Planetary protection and the search for life beneath the surface of Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Planetary protection and the search for life beneath the surface of Mars.
Mancinelli, Rocco L
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Agriculture and wildlife: ecological implications of subsurface irrigation drainage
A. Dennis Lemly
1994-01-01
Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...
The Marskhod Egyptian Drill Project
NASA Astrophysics Data System (ADS)
Shaltout, M. A. M.
We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.
Liao, Qing; Deng, Yaping; Shi, Xiaoqing; Sun, Yuanyuan; Duan, Weidong; Wu, Jichun
2018-03-03
Precise delineation of contaminant plume distribution is essential for effective remediation of contaminated sites. Traditional in situ investigation methods like direct-push (DP) sampling are accurate, but are usually intrusive and costly. Electrical resistivity tomography (ERT) method, as a non-invasive geophysical technique to map spatiotemporal changes in resistivity of the subsurface, is becoming increasingly popular in environmental science. However, the resolution of ERT for delineation of contaminant plumes still remains controversial. In this study, ERT and DP technique were both conducted at a real inorganic contaminated site. The reliability of the ERT method was validated by the direct comparisons of their investigation results that the resistivity acquired by ERT method is in accordance with the total dissolved solid concentration in groundwater and the overall variation of the total iron content in soil obtained by DP technique. After testifying the applicability of ERT method for contaminant identification, the extension of contaminant plume at the study site was revealed by supplementary ERT surveys conducted subsequently in the surrounding area of the contaminant source zone.
Corrective action investigation plan: Cactus Spring Waste Trenches. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This Correction Action Investigation Plan (CAIP) contains environmental sample collection objectives and logic for the Corrective Action Unit No. 426, which includes the Cactus Spring Waste Trenches, located at the Tonopah Test Range. The purpose of this investigation is to generate sufficient data to establish the types of waste buried in the trenches, identify the presence and nature of contamination, determine the vertical extent of contaminant migration below the Cactus Spring Waste Trenches, and determine the appropriate course of action for the site. The potential courses of action for the site are clean closure, closure in place (with or withoutmore » remediation), or no further action. The scope of this investigation will include drilling and collecting subsurface samples from within and below the trenches. Sampling locations will be biased toward the areas most likely to be contaminated. The Cactus Spring Waste Trenches Site is identified as one of three potential locations for buried, radioactively contaminated materials from the Double Tracks Test. This test was the first of four storage-transportation tests conducted in 1963 as part of Operation Roller Coaster. The experiment involved the use of live animals to assess the inhalation intake of a plutonium aerosol.« less
Martinez, Robert J.; Wu, Cindy H.; Beazley, Melanie J.; Andersen, Gary L.; Conrad, Mark E.; Hazen, Terry C.; Taillefert, Martial; Sobecky, Patricia A.
2014-01-01
Background Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. Methodology/Principal Findings Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC) Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P) or glycerol-3-phosphate (G3P)] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P) and 20 day (G3P) amended treatments, maximum phosphate (PO4 3−) concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5) treatments and greatest with G3P (pH 6.8) treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%–50% and 3%–17% of total detected Archaea and Bacteria, respectively. Conclusions/Significance This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium, strategies that harness microbial phosphate metabolism to promote uranium phosphate precipitation could offer an alternative approach for in situ sequestration. PMID:24950228
Bai, Chunmei; Li, Yusong
2014-08-01
Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bai, Chunmei; Li, Yusong
2014-08-01
Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.
NASA Astrophysics Data System (ADS)
McNew, C.; Wang, C.; Kocis, T. N.; Murphy, N. P.; Dahlke, H. E.
2017-12-01
Though our understanding of contaminant behavior in the subsurface has improved, our ability to measure and predict complex contaminant transport pathways at hillslope to watershed scales is still lacking. By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labeled micro- and nanoparticles for use in a myriad of environmental systems. Control of the fabrication procedure allows us to produce particles of custom size, charge, and surface functionality to mimic the transport properties of the particulate contaminant or colloid of interest. The use of custom sequenced DNA allows for the fabrication of an enormous number of unique particle labels (approximately 1.61 x 1060 unique sequences) and the ability to discern between varied spatial and temporal applications, or the transport effect of varied particle size, charge, or surface properties. To date, this technology has been utilized to study contaminant transport from lab to field scales, including surface and open channel flow applications, transport in porous media, soil retention, and even subglacial flow pathways. Here, we present the technology for production and detection of the DNA-labeled particles along with the results from a current hillslope study at the Sierra Foothills Research and Extension Center (SFREC). This field study utilizes spatial and temporal variations in DNA-labeled particle applications to identify subsurface pollutant transport pathways through the four distinct soil horizons present at the SFREC site. Results from this and previous studies highlight the tremendous potential of the DNA-labeled particle technology for studying contaminant transport through the subsurface.
Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinman, Donald K; Bramblett, Richard L; Hertzog, Russel C
2012-06-25
Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.
Pilot-Scale Demonstration of In-Situ Chemical Oxidation ...
A pilot-scale in situ chemical oxidation (ISCO) demonstration, involving subsurface injections of sodium permanganate (NaMnO4), was performed at the US Marine Corp Recruit Depot (MCRD), site 45 (Parris Island (PI), SC). The ground water was originally contaminated with perchloroethylene (PCE) (also known as tetrachloroethylene), a chlorinated solvent used in dry cleaner operations. High resolution site characterization involved multiple iterations of soil core sampling and analysis. Nested micro-wells and conventional wells were also used to sample and analyze ground water for PCE and decomposition products (i.e., trichloroethyelene (TCE), dichloroethylene (c-DCE, t-DCE), and vinyl chloride (VC)), collectively referred to as chlorinated volatile organic compounds (CVOC). This characterization methodology was used to develop and refine the conceptual site model and the ISCO design, not only by identifying CVOC contamination but also by eliminating uncontaminated portions of the aquifer from further ISCO consideration. Direct-push injection was selected as the main method of NaMnO4 delivery due to its flexibility and low initial capital cost. Site impediments to ISCO activities in the source area involved subsurface utilities, including a high pressure water main, a high voltage power line, a communication line, and sanitary and stormwater sewer lines. Utility markings were used in conjunction with careful planning and judicious selection of injection locations. A
Effect of subsurface heterogeneity on free-product recovery from unconfined aquifers
NASA Astrophysics Data System (ADS)
Kaluarachchi, Jagath J.
1996-03-01
Free-product record system designs for light-hydrocarbon-contaminated sites were investigated to evaluate the effects of subsurface heterogeneity using a vertically integrated three-phase flow model. The input stochastic variable of the areal flow analysis was the log-intrinsic permeability and it was generated using the Turning Band method. The results of a series of hypothetical field-scale simulations showed that subsurface heterogeneity has a substantial effect on free-product recovery predictions. As the heterogeneity increased, the recoverable oil volume decreased and the residual trapped oil volume increased. As the subsurface anisotropy increased, these effects together with free- and total-oil contaminated areas were further enhanced. The use of multiple-stage water pumping was found to be insignificant compared to steady uniform pumping due to reduced recovery efficiency and increased residual oil volume. This observation was opposite to that produced under homogeneous scenarios. The effect of subsurface heterogeneity was enhanced at relatively low water pumping rates. The difference in results produced by homogeneous and heterogeneous simulations was substantial, indicating greater attention should be paid in modeling free-product recovery systems with appropriate subsurface heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin
2011-06-15
The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where themore » subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising 50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Koji; Sasaki, S.; Kumai, M.
Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium inmore » the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (authors)« less
A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.
NASA Astrophysics Data System (ADS)
Stoker, C. R.
2003-12-01
Most familiar life forms on Earth live in the surface biosphere where liquid water, sunlight, and the essential chemical elements for life are abundant. However, such environments are not found on Mars or anywhere else in the solar system. On Mars, the surface environmental conditions of pressure and temperature prevent formation of liquid water. Furthermore, conditions at the Martian surface are unfavorable to life due to intense ultraviolet radiation and strong oxidizing compounds that destroy organic compounds. However, subsurface liquid water on Mars has been predicted on theoretical grounds. The recent discovery of near surface ground ice by the Mars Odyssey mission, and the abundant evidence for recent Gully features observed by the Mars Global Surveyor mission strengthen the case for subsurface liquid water on Mars. Thus, the strategy for searching for life on Mars points to drilling to the depth of liquid water, bringing samples to the surface and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. The MARTE (Mars Astrobiology Research and Technology Experiment) project is a field experiment focused on searching for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Rio Tinto, a river in southwestern Spain while also demonstrating technology relevant to searching for a subsurface biosphere on Mars. The Tinto river is located in the Iberian Pyrite belt, one of the largest deposits of sulfide minerals in the world. The surface (river) system is an acidic extreme environment produced and maintained by microbes that metabolize sulfide minerals and produce sulfuric acid as a byproduct. Evidence suggests that the river is a surface manifestation of an underground biochemical reactor. Organisms found in the river are capable of chemoautotrophic metabolism using sulfide and ferric iron mineral substrates, suggesting these organisms could thrive in groundwater which is the source of the Rio Tinto. The MARTE project will simulate the search for subsurface life on Mars using a drilling system developed for future Mars flight to accomplish subsurface access. Augmenting the drill are robotic systems for extracting the cores from the drill head and performing analysis using a suite of instruments to understand the composition, mineralogy, presence of organics, and to search for life signatures in subsurface samples. A robotic bore-hole inspection system will characterize borehole properties in situ. A Mars drilling mission simulation including remote operation of the drilling, sample handling, and instruments and interpretation of results by a remote science team will be performed. This simulated mission will be augmented by manual methods of drilling, sample handling, and sample analysis to fully document the subsurface, prevent surface microbial contamination, identify subsurface biota, and compare what can be learned with robotically-operated instruments. The first drilling campaign in the MARTE project takes place in September 2003 and is focused on characterizing the microbiology of the subsurface at Rio Tinto using conventional drilling, sample handling and laboratory analysis techniques. Lessons learned from this "ground truth" drilling campaign will guide the development of robotic systems and instruments needed for searching for life underground on Mars.
Wilcox, Jeffrey D; Johnson, Kathy M
2016-10-01
Tree cores were collected and analyzed for trichloroethylene (TCE) on a private property between a former electroplating facility in Asheville, North Carolina (USA), and a contaminated wetland/spring complex. TCE was detected in 16 of 31 trees, the locations of which were largely consistent with a "plume core" delineated by a more detailed subsurface investigation nearly 2 years later. Concentrations in tree cores and nearby soil borings were not correlated, perhaps due to heterogeneities in both geologic and tree root structure, spatial and temporal variability in transpiration rates, or interferences caused by other contaminants at the site. Several tree cores without TCE provided evidence for significantly lower TCE concentrations in shallow groundwater along the margins of the contaminated spring complex in an area with limited accessibility. This study demonstrates that tree core analyses can complement a more extensive subsurface investigation, particularly in residential or ecologically sensitive areas.
Williams, Kenneth H; Bargar, John R; Lloyd, Jonathan R; Lovley, Derek R
2013-06-01
Adding organic electron donors to stimulate microbial reduction of highly soluble U(VI) to less soluble U(IV) is a promising strategy for immobilizing uranium in contaminated subsurface environments. Studies suggest that diagnosing the in situ physiological status of the subsurface community during uranium bioremediation with environmental transcriptomic and proteomic techniques can identify factors potentially limiting U(VI) reduction activity. Models which couple genome-scale in silico representations of the metabolism of key microbial populations with geochemical and hydrological models may be able to predict the outcome of bioremediation strategies and aid in the development of new approaches. Concerns remain about the long-term stability of sequestered U(IV) minerals and the release of co-contaminants associated with Fe(III) oxides, which might be overcome through targeted delivery of electrons to select microorganisms using in situ electrodes. Copyright © 2012 Elsevier Ltd. All rights reserved.
In planta passive sampling devices for assessing subsurface chlorinated solvents.
Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G
2014-06-01
Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernandez de Vera, Natalia; Beaujean, Jean; Jamin, Pierre; Nguyen, Frédéric; Dahan, Ofer; Vanclooster, Marnik; Brouyère, Serge
2014-05-01
In order to improve risk characterization and remediation measures for soil and groundwater contamination, there is a need to improve in situ vadose zone characterization. However, most available technologies have been developed in the context of agricultural soils. Such methodologies are not applicable at industrial sites, where soils and contamination differ in origin and composition. In addition, most technologies are applicable only in the first meters of soils, leaving deeper vadose zones with lack of information, in particular on field scale heterogeneity. In order to overcome such difficulties, a vadose zone experiment has been setup at a former industrial site in Belgium. Industrial activities carried out on site left a legacy of soil and groundwater contamination in BTEX, PAH, cyanide and heavy metals. The experiment comprises the combination of two techniques: the Vadose Zone Monitoring System (VMS) and cross-hole geophysics. The VMS allows continuous measurements of water content and temperature at different depths of the vadose zone. In addition, it provides the possibility of pore water sampling at different depths. The system is formed by a flexible sleeve containing monitoring units along its depth which is installed in a slanted borehole. The flexible sleeve contains three types of monitoring units in the vadose zone: Time Domain Transmissometry (TDT), which allows water content measurements; Vadose Sampling Ports (VSP), used for collecting water samples coming from the matrix; the Fracture Samplers (FS), which are used for retrieving water samples from the fractures. Cross-hole geophysics techniques consist in the injection of an electrical current using electrodes installed in vertical boreholes. From measured potential differences, detailed spatial patterns about electrical properties of the subsurface can be inferred. Such spatial patterns are related with subsurface heterogeneities, water content and solute concentrations. Two VMS were installed in two slanted boreholes on site, together with four vertical boreholes containing electrodes for geophysical measurements. Currently the site is being monitored under natural recharge conditions. Initial results show the reaction of the vadose zone to rainfall events, as well as chemical evolution of soil water with depth.
NASA Astrophysics Data System (ADS)
Xu, Z.; Bassett, S.; Hu, B. X.; Dyer, S.
2016-12-01
Five periods of increased electrical conductivity have been found in the karst conduits supplying one of the largest first magnitude springs in Florida with water. Numerous well-developed conduit networks are distributed in the Woodville Karst Plain (WKP), Florida and connected to the Gulf of Mexico. A composite analysis of precipitation and electric conductivity data provides strong evidence that the increases in conductivity are directly tied to seawater intrusion moving inland and traveling 14 miles against the prevailing regional hydraulic gradient from from Spring Creek Spring Complex (SCSC), a group of submarine springs at the Gulf Coast. A geochemical analysis of samples from the spring vent rules out anthropogenic contamination and upwelling regional recharge from the deep aquifer as sources of the rising conductivity. The interpretation is supported by the conceptual model established by prior researchers working to characterize the study area. This abstract documented the first and longest case of seawater intrusion in the WKP, and also indicates significant possibility of seawater contamination through subsurface conduit networks in a coastal karst aquifer.
Use of geostatistics for remediation planning to transcend urban political boundaries.
Milillo, Tammy M; Sinha, Gaurav; Gardella, Joseph A
2012-11-01
Soil remediation plans are often dictated by areas of jurisdiction or property lines instead of scientific information. This study exemplifies how geostatistically interpolated surfaces can substantially improve remediation planning. Ordinary kriging, ordinary co-kriging, and inverse distance weighting spatial interpolation methods were compared for analyzing surface and sub-surface soil sample data originally collected by the US EPA and researchers at the University at Buffalo in Hickory Woods, an industrial-residential neighborhood in Buffalo, NY, where both lead and arsenic contamination is present. Past clean-up efforts estimated contamination levels from point samples, but parcel and agency jurisdiction boundaries were used to define remediation sites, rather than geostatistical models estimating the spatial behavior of the contaminants in the soil. Residents were understandably dissatisfied with the arbitrariness of the remediation plan. In this study we show how geostatistical mapping and participatory assessment can make soil remediation scientifically defensible, socially acceptable, and economically feasible. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Menard, J.; Sangillo, J.; Savain, A.; McNamara, K. M.
2004-01-01
The presence of water-ice in the Martian subsurface is a subject of much debate and excited speculation. Recent results from the gammaray spectrometer (GRS) on board NASA's Mars Odyssey spacecraft indicate the presence of large amounts of hydrogen in regions of predicted ice stability. The combination of chemistry, low gravitational field (3.71 m/s(exp 2)) and a surface pressure of about 6.36 mbar at the mean radius, place limits on the stability of H2O on the surface, however, results from the GRS indicate that the hydrogen rich phase may be present at a depth as shallow as one meter in some locations on Mars. The potential for water on Mars leads directly to the speculation that life may once have existed there, since liquid water is the unifying factor for environments known to support life on Earth. Lubricant-free drilling has been considered as a means of obtaining water-rich subsurface samples on Mars, and two recent white papers sponsored by the Mars Program have attempted to identify the problems associated with this goal. The two major issues identified were: the engineering challenges of drilling into a water-soil mixture where phase changes may occur; and the potential to compromise the integrity of in-situ scientific analysis due to contamination, volatilization, and mineralogical or chemical changes as a result of processing. This study is a first attempt to simulate lubricantfree drilling into JSC Mars-1 simulant containing up to 50% water by weight. The goal is to address the following: 1) Does sample processing cause reactions or changes in mineralogy which will compromise the interpretation of scientific measurements conducted on the surface? 2) Does the presence of water-ice in the sample complicate (1)? 3) Do lubricant-free drilling and processing leave trace contaminants which may compromise our understanding of sample composition? 4) How does the torque/power required for drilling change as a function of water content and does this lead to unexpected thermal effects?
Historical disposal practices of chlorinated solvents have resulted in the widespread contamination of ground-water resources. These ground-water contaminants exist in the subsurface as free products, residual and vapor phases, and in solution. The remediation of these contamin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy, C.A.; Looney, B.B.; Dougherty, J.M.
1991-05-01
The Savannah River Site is the location of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration at sites contaminated with volatile organic contaminants. This demonstration utilizes directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. Phase I of the Integrated Demonstration focused on the application and development of in-situ air stripping technologies to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The objective of this report is to provide baseline information on the geology, geochemistry, hydrology, and microbiology of themore » demonstration site prior to the test. The distribution of contaminants in soils and sediments in the saturated zone and groundwater is emphasized. These data will be combined with data collected after the demonstration in order to evaluate the effectiveness of in-situ air stripping. New technologies for environmental characterization that were evaluated include depth discrete groundwater sampling (HydroPunch) and three-dimensional modeling of contaminant data.« less
Wettstein, Felix E; Kasteel, Roy; Garcia Delgado, Maria F; Hanke, Irene; Huntscha, Sebastian; Balmer, Marianne E; Poiger, Thomas; Bucheli, Thomas D
2016-08-24
Pesticide transport from seed dressings toward subsurface tile drains is still poorly understood. We monitored the neonicotinoid insecticides imidacloprid and thiamethoxam from sugar beet seed dressings in flow-proportional drainage water samples, together with spray applications of bromide and the herbicide S-metolachlor in spring and the fungicides epoxiconazole and kresoxim-methyl in summer. Event-driven, high first concentration maxima up to 2830 and 1290 ng/L for thiamethoxam and imidacloprid, respectively, were followed by an extended period of tailing and suggested preferential flow. Nevertheless, mass recoveries declined in agreement with the degradation and sorption properties collated in the groundwater ubiquity score, following the order bromide (4.9%), thiamethoxam (1.2%), imidacloprid (0.48%), kresoxim-methyl acid (0.17%), S-metolachlor (0.032%), epoxiconazole (0.013%), and kresoxim-methyl (0.003%), and indicated increased leaching from seed dressings compared to spray applications. Measured concentrations and mass recoveries indicate that subsurface tile drains contribute to surface water contamination with neonicotinoids from seed dressings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nikolla; Sahajpal, Rahul
Chromium-contaminated subsurface sites are common throughout the globe. In this chapter the discussion will be focused on one Cr-contaminated, i.e., Hanford site, WA, USA. The chapter summarizes the work conducted at this site to study contaminant Cr6+ fate and behavior under conditions imposed by different waste chemistries ranging from acidic to hyperalkaline. The objectives of this chapter are to present an overview of different aspects of Cr interaction with minerals; present evidence of similar and contrasting Cr6+ reactions, processes and attenuation mechanisms operating in subsurface environments under different conditions imposed by acidic, neutral and alkaline waste liquids; provide inputs tomore » conceptual Cr geochemical models (either site specific or general and suitable for many contaminated sites); present ideas on potential remedial measures. The insights presented and discussed in this chapter should be useful for other Cr contaminated sites across the world.« less
Three-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (3DFATMIC) Model
This model simulates subsurface flow, fate and transport of contaminants that are undergoing chemical or biological transformations. The model is applicable to transient conditions in both saturated and unsaturated zones.
Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model
This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.
Kaufman, Martin M; Murray, Kent S; Rogers, Daniel T
2003-01-01
A model is created for assessing the redevelopment potential of brownfields. The model is derived from a space and time conceptual framework that identifies and measures the surface and subsurface risk factors present at brownfield sites. The model then combines these factors with a contamination extent multiplier at each site to create an index of redevelopment potential. Results from the application of the model within an urbanized watershed demonstrate clear differences between the redevelopment potential present within five different near-surface geologic units, with those units containing clay being less vulnerable to subsurface contamination. With and without the extent multiplier, the total risk present at the brownfield sites within all the geologic units is also strongly correlated to the actual costs of remediation. Thus, computing the total surface and subsurface risk within a watershed can help guide the remediation efforts at broad geographic scales, and prioritize the locations for redevelopment.
Chapman, Melinda J.; Clark, Timothy W.; Williams, John H.
2013-01-01
Geologic mapping, the collection of borehole geophysical logs and images, and passive diffusion bag sampling were conducted by the U.S. Geological Survey North Carolina Water Science Center in the vicinity of the GMH Electronics Superfund site near Roxboro, North Carolina, during March through October 2011. The study purpose was to assist the U.S. Environmental Protection Agency in the development of a conceptual groundwater model for the assessment of current contaminant distribution and future migration of contaminants. Data compilation efforts included geologic mapping of more than 250 features, including rock type and secondary joints, delineation of more than 1,300 subsurface features (primarily fracture orientations) in 15 open borehole wells, and the collection of passive diffusion-bag samples from 42 fracture zones at various depths in the 15 wells.
Annual Reporting of Monitoring at Morrill, Kansas in 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, Lorraine M.
In September 2005, the CCC/USDA initiated periodic sampling of groundwater, in accord with a program (Argonne 2005b) approved by the KDHE (2005), to monitor carbon tetrachloride concentrations in the groundwater. Under the KDHE-approved monitoring plan (Argonne 2005b), groundwater was sampled twice yearly for VOCs analyses through 2011. During the initial two years of monitoring, analysis for selected geochemical parameters was also conducted to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. Consistently low levels of dissolved oxygen (DO) and oxidation-reduction potential (ORP) at monitoring well MW1D (in the deepest portion of themore » contaminated aquifer) and the presence of chloroform (the primary degradation product of carbon tetrachloride) suggested that some degree of reductive dechlorination was occurring.« less
Environmental Electrokinetics for a sustainable subsurface.
Lima, A T; Hofmann, A; Reynolds, D; Ptacek, C J; Van Cappellen, P; Ottosen, L M; Pamukcu, S; Alshawabekh, A; O'Carroll, D M; Riis, C; Cox, E; Gent, D B; Landis, R; Wang, J; Chowdhury, A I A; Secord, E L; Sanchez-Hachair, A
2017-08-01
Soil and groundwater are key components in the sustainable management of the subsurface environment. Source contamination is one of its main threats and is commonly addressed using established remediation techniques such as in-situ chemical oxidation (ISCO), in-situ chemical reduction (ISCR; most notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control contaminants in higher permeability subsurface materials such as sands, but achieve only limited success at sites where low permeability soils, such as silts and clays, prevail. Electrokinetics (EK), a soil remediation technique mostly recognized in in-situ treatment of low permeability soils, has, for the last decade, been combined with more conventional techniques and can significantly enhance the performance of several of these remediation technologies, including ISCO, ISCR, EISB and phytoremediation. Herein, we discuss the use of emerging EK techniques in tandem with conventional remediation techniques, to achieve improved remediation performance. Furthermore, we highlight new EK applications that may come to play a role in the sustainable treatment of the contaminated subsurface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paul, J. H.; Rose, J. B.; Brown, J.; Shinn, E. A.; Miller, S.; Farrah, S. R.
1995-01-01
Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys. PMID:16535046
Paul, J H; Rose, J B; Brown, J; Shinn, E A; Miller, S; Farrah, S R
1995-06-01
Domestic wastewater disposal practices in the Florida Keys are primarily limited to on-site disposal systems such as septic tanks, injection wells, and illegal cesspits. Poorly treated sewage is thus released into the highly porous subsurface Key Largo limestone matrix. To investigate the fate and transport of sewage in the subsurface environment and the potential for contamination of marine surface waters, we employed bacteriophages as tracers in a domestic septic system and a simulated injection well in Key Largo, Florida. Transport of bacteriophage (Phi)HSIC-1 from the septic tank to adjacent surface canal waters and outstanding marine waters occurred in as little as 11 and 23 h, respectively. Transport of the Salmonella phage PRD1 from the simulated injection well to a canal adjacent to the injection site occurred in 11.2 h. Estimated rates of migration of viral tracers ranged from 0.57 to 24.2 m/h, over 500-fold greater than flow rates measured previously by subsurface flow meters in similar environments. These results suggest that current on-site disposal practices can lead to contamination of the subsurface and surface marine waters in the Keys.
NASA Astrophysics Data System (ADS)
Reed, D. T.; Swanson, J.; Khaing, H.; Deo, R.; Rittmann, B.
2009-12-01
The fate and potential mobility of plutonium in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium is the near-surface contaminant of concern at several DOE sites and continues to be the contaminant of concern for the permanent disposal of nuclear waste. The mobility of plutonium is highly dependent on its redox distribution at its contamination source and along its potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. The redox distribution of plutonium in the presence of facultative metal reducing bacteria (specifically Shewanella and Geobacter species) was established in a concurrent experimental and modeling study under aerobic and anaerobic conditions. Pu(VI), although relatively soluble under oxidizing conditions at near-neutral pH, does not persist under a wide range of the oxic and anoxic conditions investigated in microbiologically active systems. Pu(V) complexes, which exhibit high chemical toxicity towards microorganisms, are relatively stable under oxic conditions but are reduced by metal reducing bacteria under anaerobic conditions. These facultative metal-reducing bacteria led to the rapid reduction of higher valent plutonium to form Pu(III/IV) species depending on nature of the starting plutonium species and chelating agents present in solution. Redox cycling of these lower oxidation states is likely a critical step in the formation of pseudo colloids that may lead to long-range subsurface transport. The CCBATCH biogeochemical model is used to explain the redox mechanisms and final speciation of the plutonium oxidation state distributions observed. These results for microbiologically active systems are interpreted in the context of their importance in defining the overall migration of plutonium in the subsurface.
Stamm, John F.; Hoogestraat, Galen K.
2012-01-01
The headwaters of the Cheyenne and Belle Fourche Rivers drain the Black Hills of South Dakota and Wyoming, an area that has been affected by mining and ore-milling operations since the discovery of gold in 1875. A tributary to the Belle Fourche River is Whitewood Creek, which drains the area of the Homestake Mine, a gold mine that operated from 1876 to 2001. Tailings discharged into Whitewood Creek contained arsenopyrite, an arsenic-rich variety of pyrite associated with gold ore, and mercury used as an amalgam during the gold-extraction process. Approximately 18 percent of the tailings that were discharged remain in fluvial deposits on the flood plain along Whitewood Creek, and approximately 25 percent remain in fluvial deposits on the flood plain along the Belle Fourche River, downstream from Whitewood Creek. In 1983, a 29-kilometer (18-mile) reach of Whitewood Creek and the adjacent flood plain was included in the U.S. Environmental Protection Agency's National Priority List of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, commonly referred to as a "Superfund site." Listing of this reach of Whitewood Creek was primarily in response to arsenic toxicity of fluvial deposits on the flood plain. Lands along the lower Cheyenne River were transferred to adjoining States and Tribes in response to the Water Resources Development Act (WRDA) of 1999. An amendment in 2000 to WRDA required a study of sediment contamination of the Cheyenne River. In response to the WRDA amendment, the U.S. Geological Survey completed field sampling of reference sites (not affected by mine-tailing disposal) along the lower Belle Fourche and lower Cheyenne Rivers. Reference sites were located on stream terraces that were elevated well above historical stream stages to ensure no contamination from historical mining activity. Sampling of potentially contaminated sites was performed on transects of the active flood plain and adjacent terraces that could potentially be inundated during high-flow events. Sampling began in 2009 and was completed in 2010. A total of 74 geochemical samples were collected from fluvial deposits at reference sites, and 473 samples were collected from potentially contaminated sites. Sediment samples collected were analyzed for 23 metals, including arsenic and mercury. Sequential replicate, split duplicate, and field quality-control samples were analyzed for quality assurance of data-collection methods. The metal concentrations in sediment samples and location information are presented in this report in electronic format (Microsoft Excel), along with non-parametric summary statistics of those data. Cross-sectional topography is graphed with arsenic and mercury concentrations on transects at the potentially contaminated sites. The mean arsenic concentration in reference sediment samples was 8 milligrams per kilogram (mg/kg), compared to 250, 650, and 76 mg/kg for potentially contaminated sediment samples at the surface of the middle Belle Fourche River site, the subsurface of the middle Belle Fourche River site, and the surface of the lower Cheyenne River site, respectively. The mean mercury concentration in reference sediment samples was 16 micrograms per kilogram (μg/kg), compared to 130, 370, and 71 μg/kg for potentially contaminated sediment samples at the surface of the middle Belle Fourche River site, the subsurface of the middle Belle Fourche River site, and the surface of the lower Cheyenne River site, respectively.
Field Degassing as a New Sampling Method for 14C Analyses in Old Groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokochi, Reika; Bernier, Ryan; Purtschert, Roland
Radiocarbon ( 14C) activity in groundwater can be used to determine subsurface residence time up to ~40 kyr, providing crucial information on dynamic properties of groundwater and on paleoclimate. However, commonly applied sampling methods for dissolved inorganic carbon (DIC- 14C) are prone to low level of modern atmospheric contamination, resulting in underestimation of groundwater ages that cluster around 30–40 kyr. We extract CO 2 gas from groundwater using a device originally developed for studies of noble gas radionuclides. Carbon is collected in the gas phase, eliminating the possibility of fostering microbial activities and aqueous chemical reactions during sample storage. Thismore » method collects CO 2- 14C and radiokrypton ( 81Kr and 85Kr) samples simultaneously. The presence of any shorter-lived 85Kr is used to evaluate the degree of atmospheric contamination during sampling or mixing of young groundwater. Most groundwater samples showed lower CO 2- 14C activities than those of DIC- 14C, presumably due to the absence of atmospheric contamination. Samples with 81Kr age exceeding 150 kyr have no detectable CO 2- 14C except where mixing sources of young groundwater is suspected. Furthermore these field data serve as confirmations for the reliability of the newly presented sample collection and CO 2- 14C method, and for the outstanding roles of radiokrypton isotopes in characterizing old groundwater.« less
Field Degassing as a New Sampling Method for 14C Analyses in Old Groundwater
Yokochi, Reika; Bernier, Ryan; Purtschert, Roland; ...
2017-09-07
Radiocarbon ( 14C) activity in groundwater can be used to determine subsurface residence time up to ~40 kyr, providing crucial information on dynamic properties of groundwater and on paleoclimate. However, commonly applied sampling methods for dissolved inorganic carbon (DIC- 14C) are prone to low level of modern atmospheric contamination, resulting in underestimation of groundwater ages that cluster around 30–40 kyr. We extract CO 2 gas from groundwater using a device originally developed for studies of noble gas radionuclides. Carbon is collected in the gas phase, eliminating the possibility of fostering microbial activities and aqueous chemical reactions during sample storage. Thismore » method collects CO 2- 14C and radiokrypton ( 81Kr and 85Kr) samples simultaneously. The presence of any shorter-lived 85Kr is used to evaluate the degree of atmospheric contamination during sampling or mixing of young groundwater. Most groundwater samples showed lower CO 2- 14C activities than those of DIC- 14C, presumably due to the absence of atmospheric contamination. Samples with 81Kr age exceeding 150 kyr have no detectable CO 2- 14C except where mixing sources of young groundwater is suspected. Furthermore these field data serve as confirmations for the reliability of the newly presented sample collection and CO 2- 14C method, and for the outstanding roles of radiokrypton isotopes in characterizing old groundwater.« less
Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport
NASA Astrophysics Data System (ADS)
Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.
2011-12-01
Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.
INNOVATIVE PROCESSES FOR RECLAMATION OF CONTAMINATED SUBSURFACE ENVIRONMENTS
Research to better assess the capabilities and limitations of fixed-film bioreactors for removing selected organic contaminants from ground water or from contaminated vapor streams produced by air stripping of polluted ground water and by soil venting operations is described. ...
EVALUATING MONITORED NATURAL ATTENUATION FOR RADIONUCLIDE AND INORGANIC CONTAMINANTS IN GROUNDWATER
Monitored Natural Attenuation (MNA) for inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing a technical refer...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, Robin; Peyton, Brent M.; Apel, William A.
2014-01-29
Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less
Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...
INDOOR AIR CONCENTRATION UNIT CONVERSIONS
Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...
ON-LINE CALCULATOR: VAPOR INTRUSION MODELING
Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which may migrate through subsurface soils and may enter the indoor air of overlying build...
EXPOSURE ASSESSMENT MODELING FOR HYDROCARBON SPILLS INTO THE SUBSURFACE
Hydrocarbons which enter the subsurface through spills or leaks may create serious, long-lived ground-water contamination problems. onventional finite difference and finite element models of multiphase, multicomponent flow often have extreme requirements for both computer time an...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleman, S.E.
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.
Subsurface fate and transport of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol
Barber, L.B.; Meyer, M.T.; LeBlanc, D.R.; Kolpin, Dana W.; Radley, Paul; Chapelle, F.; Rubio, F.
2008-01-01
Subsurface fate and transport of the antibiotic sulfamethoxazole (SX), the non-ionic surfactant degradation product 4-nonylphenol (NP), and the sex hormone 17β-estradiol (E2) were evaluated in a plume of contaminated groundwater at Cape Cod, Massachusetts, USA. The plume is the result of 60 years of wastewater treatment plant effluent disposal into rapid infiltration beds. Natural-gradient, in situ tracer experiments were used to evaluate subsurface transport of SX, NP, and E2 (injected at 300, 530, and 0.55 µg/L, respectively) relative to the conservative tracer bromide. Two geochemical zones were evaluated: (1) uncontaminated groundwater overlying the plume, and (2) contaminated groundwater within the plume that has recently become oxic after decades of anoxic conditions. The uncontaminated groundwater is characterized by a microbial community unacclimated to treated wastewater, whereas the contaminated groundwater is characterized by microbes acclimated to wastewater contaminants. Results from the tracer tests in both zones showed that the antibiotic SX was co-transported with the conservative tracer bromide, with little retardation or mass removal. In contrast, NP and E2, which are more hydrophobic and biodegradable, showed sorption (relative retardation factors ranged up to 5.9) and mass loss at both the uncontaminated and contaminated sites.
Effect of Co-Contaminants Uranium and Nitrate on Iodine Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, James E.; Lee, Brady D.; Lawter, Amanda R.
The objective of this study is to evaluate the significance of co-contaminants on the migration and transformation of iodine species in the Hanford subsurface environment. These impacts are relevant because remedies that target individual contaminants like iodine, may not only impact the fate and transport of other contaminants in the subsurface, but also inhibit the effectiveness of a targeted remedy. For example, iodine (as iodate) co-precipitates with calcite, and has been identified as a potential remedy because it immobilizes iodine. Since uranium also co-precipitates with calcite in field sediments, the presence of uranium may also inhibit iodine co-precipitation. Another potentiallymore » significant impact from co-existing contaminants is iodine and nitrate. The presence of nitrate has been shown to promote biogeochemical reduction of iodate to iodide, thereby increasing iodine species subsurface mobility (as iodide exhibits less sorption). Hence, this study reports on both laboratory batch and column experiments that investigated a) the change in iodate uptake mass and rate of uptake into precipitating calcite due to the presence of differing amounts of uranium, b) the amount of change of the iodate bio-reduction rate due to the presence of differing nitrate concentrations, and c) whether nitrite can reduce iodate in the presence of microbes and/or minerals acting as catalysts.« less
Brooks, G.A.; Olyphant, G.A.; Harper, D.
1991-01-01
In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine. ?? 1991 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Brooks, Glenn A.; Olyphant, Greg A.; Harper, Denver
1991-07-01
In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine.
Monitored Natural Attenuation (MNA) for radionuclides and inorganic contaminants is dependent on naturally occurring processes in the subsurface that act without human intervention to reduce the mass, toxicity, mobility, volume or concentration of contaminants. EPA is developing ...
Vroblesky, Don A.; Casey, Clifton C.
2007-01-01
The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used innovative sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report evaluates a new type of pore-water sampler developed for this investigation to examine the subsurface contamination beneath the drainage ditch. The new type of pore-water sampler appears to be an effective approach for long-term monitoring of ground water in the sand and organic-rich mud beneath the drainage ditch.
Augmented In Situ Subsurface Bioremediation Process™BIO-REM, Inc. - Demonstration Bulletin
The Augmented In Situ Subsurface Bioremediation Process™ developed by BIO-REM, Inc., uses microaerophilic bacteria and micronutrients (H-10) and surface tension depressants/penetrants for the treatment of hydrocarbon contaminated soils and groundwater. The bacteria utilize hydroc...
Natural attenuation remediation is based on the intrinsic attenuation capacities of the subsurface. Geochemistry of the subsurface controls the fate, transport, transformation, and bioavailability of contaminants. This paper demonstrates that interfacial reactions (e.g., adsorp...
Kanti Sen, Tushar; Khilar, Kartic C
2006-02-28
In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.
White, D; Lapworth, D J; Stuart, M E; Williams, P J
2016-08-15
It has long been known that groundwaters beneath urban areas carry a fingerprint from urban activities but finding a consistent tracer for anthropogenic influence has proved elusive. The varied sources of urban contaminants means that a single consistent and inexpensive means of tracing the fate of urban contaminants is not generally possible and multiple tracers are often required to understand the contaminant sources and pathways in these complex systems. This study has utilized a combination of micro-organic (MO) contaminants and inorganic hydrochemistry to trace recharge pathways and quantify the variability of groundwater quality in multi-level piezometers in the city of Doncaster, UK. A total of 23 MOs were detected during this study, with more compounds consistently detected during higher groundwater table conditions highlighting the importance of sampling under different hydrological conditions. Four of the compounds detected are EU Water Framework Directive priority substances: atrazine, simazine, naphthalene and DEHP, with a maximum concentration of 0.18, 0.03, 0.2, 16μg/l respectively. Our study shows that the burden of the banned pesticide atrazine persists in the Sherwood Sandstone and is detected at two of the three study sites. Emerging contaminants are seen throughout the borehole profiles and provide insights into transient pathways for contaminant migration in the sub-surface. Long term changes in inorganic hydrochemistry show possible changes in contaminant input or the dissolution of minerals. Nitrate was detected above 50mg/l but on the whole nitrate concentrations have declined in the intervening years either due to a reduction of nitrate application at the surface or a migration of peak nitrate concentrations laterally or to greater depth. This study shows that multiple tracers together with multi-level piezometers can give a better resolution of contaminant pathways and variable flow regimes within the relatively uncomplicated aquifer of the Sherwood Sandstone compared with single long screened wells. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Performance Evaluations of Pump-and-Treat Remediations
Recent research has led to a better understanding of the complex chemical and physical processes controlling the movement of contaminants through the subsurface, and the ability to pump such contaminants...
Vroblesky, Don A.; Willey, Richard E.; Clifford, Scott; Murphy, James J.
2008-01-01
This study examined volatile organic compound concentrations in cores from trees and shrubs for use as indicators of vadose-zone contamination or potential vapor intrusion by volatile organic compounds into buildings at the Durham Meadows Superfund Site, Durham, Connecticut. The study used both (1) real-time tree- and shrub-core analysis, which involved field heating the core samples for 5 to 10 minutes prior to field analysis, and (2) delayed analysis, which involved allowing the gases in the cores to equilibrate with the headspace gas in the sample vials unheated for 1 to 2 days prior to analysis. General correspondence was found between the two approaches, indicating that preheating and field analysis of vegetation cores is a viable approach to real-time monitoring of subsurface volatile organic compounds. In most cases, volatile organic compounds in cores from trees and shrubs at the Merriam Manufacturing Company property showed a general correspondence to the distribution of volatile organic compounds detected in a soil-gas survey, despite the fact that most of the soil-gas survey data in close proximity to the relevant trees were collected about 3 years prior to the tree-core collection. Most of the trees cored at the Durham Meadows Superfund Site, outside of the Merriam Manufacturing Company property, contained no volatile organic compounds and were in areas where indoor air sampling and soil-gas sampling showed little or no volatile organic compound concentrations. An exception was tree DM11, which contained barely detectable concentrations of trichloroethene near a house where previous investigations found low concentrations of trichloroethene (0.13 to 1.2 parts per billion by volume) in indoor air and 7.7 micrograms per liter of trichloroethene in the ground water. The barely detectable concentration of trichloroethene in tree DM11 and the lack of volatile organic compound detection in nearby tree DM10 (adjacent to the well having 7.7 micrograms of trichloroethene) may be attributable to the relatively large depth to water (17.6 feet), the relatively low soil-vapor trichloroethene concentration, and the large amount of rainfall during and preceding the tree-coring event. The data indicate that real-time and delayed analyses of tree cores are viable approaches to examining subsurface volatile organic compound soil-gas or vadose-zone contamination at the Durham Meadows Superfund Site and other similar sites. Thus, the methods may have application for determining the potential for vapor intrusion into buildings.
Vroblesky, Don A.; Casey, Clifton C.
2007-01-01
The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used newly developed sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report uses data from a new type of pore-water sampler developed for this investigation and other methods to examine the subsurface contamination beneath the drainage ditch. Analysis of ground water from the samplers indicated that chlorobenzenes (maximum detected concentration of 160 micrograms per liter) are present in the ground water beneath the ditch. The concentrations of dissolved oxygen in the samples (less than 0.05-0.4 milligram per liter) showed that the ground water beneath and near the ditch is anaerobic, indicating that substantial chlorobenzene biodegradation in the aquifer beneath the ditch is unlikely. Probable alternative mechanisms of chlorobenzene removal in the ground water beneath the drainage ditch include sorption onto the organic-rich sediment and contaminant depletion by cattails through uptake, sorption, and localized soil aeration.
Containment of subsurface contaminants
Corey, John C.
1994-01-01
A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.
Kansa, Edward J.; Anderson, Brian L.; Wijesinghe, Ananda M.; Viani, Brian E.
1999-01-01
This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.
Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site
NASA Astrophysics Data System (ADS)
Warren, Ean; Bekins, Barbara A.
2018-04-01
Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site.
Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site.
Warren, Ean; Bekins, Barbara A
2018-04-01
Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site. Published by Elsevier B.V.
Catchings, R.D.; Gandhok, G.; Goldman, M.R.
2001-01-01
The former George Air Force Base (GAFB), now known as the Southern California Logistics Airport (SCLA), is located in the town of Adelanto, approximately 100 km northeast of Los Angeles, California (Fig. 1). In this report, we present acquisition parameters, data, and interpretations of seismic images that were acquired in the OU-1 area of GAFB during July 1999 (Fig. 2). GAFB is scheduled for conversion to civilian use, however, during its years as an Air Force base, trichlorethylene (TCE) was apparently introduced into the subsurface as a result of spills during normal aircraft maintenance operations. To comply with congressional directives, TCE contaminant removal has been ongoing since the early-tomid 1990s. However, only a small percentage of the TCE believed to have been introduced into the subsurface has been recovered, due largely to difficulty in locating the TCE within the subsurface. Because TCE migrates within the subsurface by ground water movement, attempts to locate the TCE contaminants in the subsurface have employed an array of ground-water monitoring and extraction wells. These wells primarily sample within a shallow-depth (~40 m) aquifer system. Cores obtained from the monitoring and extraction wells indicate that the aquifer, which is composed of sand and gravel channels, is bounded by aquitards composed largely of clay and other fine-grained sediments. Based on well logs, the aquifer is about 3 to 5 m thick along the seismic profiles. A more thorough understanding of the lateral variations in the depth and thickness of the aquifer system may be a key to finding and removing the remaining TCE. However, due to its complex depositional and tectonic history, the structural and stratigraphic sequences are not easily characterized. An indication of the complex nature of the structure and stratigraphy is the appreciable variation in stratigraphic sequences observed in some monitoring wells that are only a few tens of meters apart. To better characterize the shallow (upper 100 m) stratigraphy beneath GAFB, the US Environmental Protection Agency (USEPA) contracted the US Geological Survey (USGS) to acquire three seismic reflection/refraction profiles within an area known as Operational Unit #1 (OU-1). The principal objective of the seismic survey was to laterally characterize the subsurface with respect to structure and stratigraphy. In particular, we desired to (1) laterally “map” stratigraphic units (particularly aquifer layers) that were previously identified in monitoring wells within the OU-1 area and (2) identify structures, such as faults and folds, that affect the movement of ground water. Knowledge of lateral variations in stratigraphic units and structures that may affect those units is useful in constructing ground-water flow models, which aid in identifying possible TCE migration paths within the subsurface. Stratigraphic and structural characterization may also be useful in identifying surface locations and target depths for future wells (Catchings et al., 1996). Proper siting of wells is important because a welldefined aquifer is apparently not present in all locations at GAFB, as indicated by lithologic logs from existing wells (Montgomery Watson, 1995). Proper depth placement of monitoring and extraction wells is important because wells that are too shallow will not sample within the aquifer, and wells that are too deep risk puncturing the aquitard and allowing contaminants to flow to deeper levels.
Application of 4D resistivity image profiling to detect DNAPLs plume.
NASA Astrophysics Data System (ADS)
Liu, H.; Yang, C.; Tsai, Y.
2008-12-01
In July 1993, the soil and groundwater of the factory of Taiwan , Miaoli was found to be contaminated by dichloroethane, chlorobenzene and other hazardous solvents. The contaminants were termed to be dense non-aqueous phase liquids (DNAPLs). The contaminated site was neglected for the following years until May 1998, the Environment Protection Agency of Miaoli ordered the company immediately take an action for treatment of the contaminated site. Excavating and exposing the contaminated soil was done at the previous waste DNAPL dumped area. In addition, more than 53 wells were drilled around the pool with a maximum depth of 12 m where a clayey layer was found. Continuous pumping the groundwater and monitoring the concentration of residual DNAPL contained in the well water samples have done in different stages of remediation. However, it is suspected that the DNAPL has existed for a long time, therefore the contaminants might dilute but remnants of a DNAPL plume that are toxic to humans still remain in the soil and migrate to deeper aquifers. A former contaminated site was investigated using the 2D, 3D and 4D resisitivity image technique, with aims of determining buried contaminant geometry. This paper emphasizes the use of resistivity image profiling (RIP) method to map the limit of this DNAPL waste disposal site where the records of operations are not variations. A significant change in resistivity values was detected between known polluted and non-polluted subsurface; a high resistivity value implies that the subsurface was contaminated by DNAPL plume. The results of the survey serve to provide insight into the sensitivity of RIP method for detecting DNAPL plumes within the shallow subsurface, and help to provide valuable information related to monitoring the possible migration path of DNAPL plume in the past. According to the formerly studies in this site, affiliation by excavates with pumps water remediation had very long time, Therefore this research was used iron nanoparticles with pumps water remediation ways. The survey lines use the same length and the same position of the different time observation. The survey lines monitors the iron nanoparticles and pollution flow direction with remediation effect. By used the iron nanoparticles and pumping water remediation ways, the DNAPL plumes had eminent changed. Iron nanoparticles granule is smaller than the micron iron, Therefore the reaction rate was quite quick at the iron nanoparticles and pumps, but the ferric oxide can cause the electronic resistivity to elevate produces after the response. Pumps water rectifies may remove the ferric oxide to cause the electronic resistivity to reduce. The iron nanoparticles and pollution response is extremely obviously of the Resistivity Image Profile.
Fabrication of an optical component
Nichols, Michael A.; Aikens, David M.; Camp, David W.; Thomas, Ian M.; Kiikka, Craig; Sheehan, Lynn M.; Kozlowski, Mark R.
2000-01-01
A method for forming optical parts used in laser optical systems such as high energy lasers, high average power lasers, semiconductor capital equipment and medical devices. The optical parts will not damage during the operation of high power lasers in the ultra-violet light range. A blank is first ground using a fixed abrasive grinding method to remove the subsurface damage formed during the fabrication of the blank. The next step grinds and polishes the edges and forms bevels to reduce the amount of fused-glass contaminants in the subsequent steps. A loose abrasive grind removes the subsurface damage formed during the fixed abrasive or "blanchard" removal process. After repolishing the bevels and performing an optional fluoride etch, the surface of the blank is polished using a zirconia slurry. Any subsurface damage formed during the loose abrasive grind will be removed during this zirconia polish. A post polish etch may be performed to remove any redeposited contaminants. Another method uses a ceria polishing step to remove the subsurface damage formed during the loose abrasive grind. However, any residual ceria may interfere with the optical properties of the finished part. Therefore, the ceria and other contaminants are removed by performing either a zirconia polish after the ceria polish or a post ceria polish etch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE /NV
1999-03-26
The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used inmore » combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. A limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from four of the septic tanks and if radiological field screening levels are exceeded. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform video surveys of the discharge and outfall lines. (2) Collect samples of material in the septic tanks. (3) Conduct exploratory trenching to locate and inspect subsurface components. (4) Collect subsurface soil samples in areas of the collection system including the septic tanks and outfall end of distribution boxes. (5) Collect subsurface soil samples underlying the leachfield distribution pipes via trenching. (6) Collect surface and near- surface samples near potential locations of the Acid Sewer Outfall if Septic Waste System 5 Leachfield cannot be located. (7) Field screen samples for volatile organic compounds, total petroleum hydrocarbons, and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, and total petroleum hydrocarbons (oil/ diesel range organics). Limited number of samples will be analyzed for gamma- emitting radionuclides and isotopic uranium from particular septic tanks and if radiological field screening levels are exceeded. (10) Collect samples from native soils beneath the distribution system and analyze for geotechnical/ hydrologic parameters. (11) Collect and analyze bioassessment samples at the discretion of the Site Supervisor if total petroleum hydrocarbons exceed field- screening levels.« less
NASA Astrophysics Data System (ADS)
O'Shea, Francis; Spencer, Kate; Brasington, James
2014-05-01
Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted in the field to determine the presence, location and extent of the sub-surface contaminant plume. Although XRF analysis has gained acceptance in the study of in-situ metal contamination (Kalnicky and Singhvi 2001; Martin Peinado et al. 2010) field moisture content and sample heterogeneity can suppress X-ray signals. Therefore, sediment samples were also collected and returned to the laboratory and analysed by ICP OES for comparison. Both wet and dry certified reference materials were also analysed in the laboratory using XRF and ICP OES to observe the impact of moisture content and to produce a correction factor allowing quantitative data to be collected in the field. In-situ raw XRF data identified the location of contamination plumes in the field in agreement with ICP data, although the data were systematically suppressed compared to ICP data, under-estimating the levels of contamination. Applying a correction factor for moisture content provided accurate measurements of concentration. The use of field portable XRF with the application of a moisture content correction factor enables the rapid screening of sediment fronting coastal landfill sites, goes some way towards providing a national baseline dataset and can contribute to the development of risk assessments.
Continuous Passive Sampling of Solutes from Agricultural Subsurface Drainage Tubes
NASA Astrophysics Data System (ADS)
Lindblad Vendelboe, Anders; de Jonge, Hubert; Rozemeijer, Joachim; Wollesen de Jonge, Lis
2015-04-01
Agricultural subsurface tube drain systems play an important role in water and solute transport. One study, focusing on lowland agricultural catchments, showed that subsurface tube drainage contributed up to 80% of the annual discharge and 90% of the annual NO3 load from agricultural fields to the receiving water bodies. Knowledge of e.g. nutrient loads and drainage volumes, based on measurements and modelling, are important for adequate water quality management. Despite the importance of tube drain transport of solutes, monitoring data are scarce. This scarcity is a result of the existing monitoring techniques for flow and contaminant load from tube drains being expensive and labor-extensive. The study presented here aimed at developing a cheap, simple, and robust method to monitor solute loads from tube drains. The method is based on the newly developed Flowcap, which can be attached to existing tube drain outlets and can measure total flow, contaminant load and flow-averaged concentrations of solutes in the drainage. The Flowcap builds on the existing Sorbicell principle, a passive sampling system that measures average concentrations over longer periods of time (days to months) for various compounds. The Sorbicell consists of two compartments permeable to water. One compartment contains an adsorbent and one contains a tracer. When water passes through the Sorbicell the compound of interest is absorbed while a tracer is released. Using the tracer loss to calculate the volume of water that has passed the Sorbicell it is possible to calculate the average concentration of the compound. When mounting Sorbicells in the Flowcap, a flow-proportional part of the drainage is sampled from the main stream. To accommodate the wide range of drainage flow rates two Flowcaps with different capacities were tested in the laboratory: one with a capacity of 25 L min-1 (Q25) and one with a capacity of 256 L min-1 (Q256). In addition, Sorbicells with two different hydraulic resistances were tested, again to accommodate a large range of potential drainage flows rates. The experiment was continued until the Sorbicell's capacity was exhausted, which gave experimentation times from 6 to 34 days, while continuously changing the drainage flow rate to simulate field drainage conditions, and to test the range of the Flowcap. The laboratory testing yielded a very good linear correlation between drainage flow rates and Sorbicell sampling rates, giving r = 0.99 for both the Q25 and the Q256 Flowcap. The Sorbicells in this experiment were designed to measure NO3, but the Flowcap can be used with any Sorbicell and thus be used to measure any compound of interest. The Flowcap does not need housing, electricity, or maintenance and continuously register drainage volumes and contaminant loads for periods up to one month. This, in addition to the low cost of the monitoring system, enables large-scale monitoring of contaminant loads via tube drains, giving valuable data for the improvement of contaminant transport models. Further, these data will help select and evaluate the different mitigation option to improve water quality.
MODELING MULTIPHASE ORGANIC CHEMICAL TRANSPORT IN SOILS AND GROUND WATER
Subsurface contamination due to immiscible organic liquids is a widespread problem which poses a serious threat to ground-water resources. n order to understand the movement of such materials in the subsurface, a mathematical model was developed for multiphase flow and multicompo...
EFFECT OF FENTON'S REAGENT ON SUBSURFACE MICROBIOLOGY AND BIODEGRADATION CAPACITY
Microcosm studies were conducted to determine the effect of Fenton's reagent on subsurface microbiology and biodegradation capacity in a DNAPL (PCE/TCE) contaminated aquifer previously treated with the reagent. Groundwater pH declined from 5 to 2.4 immediately after the treatmen...
Tillage impact on herbicide loss by surface runoff and lateral subsurface flow
USDA-ARS?s Scientific Manuscript database
There is worldwide interest in conservation tillage practices because they can reduce surface runoff, agrichemical, and sediment loss from farm fields. Since these practices typically increase infiltration, their use may increase subsurface transport of water-soluble contaminants. Thus, to assess lo...
SYNTHESIS REPORT ON FIVE DENSE, NONAQUEOUS-PHASE LIQUID (DNAPL) REMEDIATION PROJECTS
Dense non-aqueous phase liquid (DNAPL) poses a difficult problem for subsurface remediation because it serves as a continuing source to dissolved phase ground water contamination and is difficult to remove from interstitial pore space or bedrock fractures in the subsurface. Numer...
RESEARCH ACTIVITIES AT U.S. GOVERNMENT AGENCIES IN SUBSURFACE REACTIVE TRANSPORT MODELING
The fate of contaminants in the environment is controlled by both chemical reactions and transport phenomena in the subsurface. Our ability to understand the significance of these processes over time requires an accurate conceptual model that incorporates the various mechanisms ...
Surfactant enhanced subsurface remediation is being evaluated as an innovative technology to expedite contaminant extraction from the subsurface. Regulatory approval of this technology will likely be enhanced by use of surfactants with FDA direct food additive status ("edible" su...
POTENTIAL INDICATORS FOR THE ASSESSMENT OF ARSENIC NATURAL ATTENUATION IN THE SUBSURFACE
Arsenic is a priority pollutant found in soil and ground water contaminated by arsenic pesticides and industrial wastes. Assessing the natural attenuation capacity of the subsurface for arsenic is a key step leading to successful site remediation. Chemical reactions between arsen...
Sutton, Nora B; Kalisz, Mariusz; Krupanek, Janusz; Marek, Jan; Grotenhuis, Tim; Smidt, Hauke; de Weert, Jasperien; Rijnaarts, Huub H M; van Gaans, Pauline; Keijzer, Thomas
2014-02-18
While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.
Microcosm studies of subsurface PAH-degrading bacteria from a former manufactured gas plant
NASA Astrophysics Data System (ADS)
Durant, Neal D.; Wilson, Liza P.; Bouwer, Edward J.
1995-01-01
A study was conducted to evaluate the potential for natural in situ biodegradation of polycyclic aromatic hydrocarbons (PAH's) in the subsurface at the site of a former manufactured gas plant. Fifty-seven samples of unconsolidated subsurface sediments were aseptically obtained from five boreholes across the site. Bacteria capable of aerobically degrading PAH's without an acclimation period were detected throughout shallow (2.7 m) and deep (24.7 m) areas of the subsurface in both relatively clean (<20 μg L -1 naphthalene) and contaminated (4400 μg L -1 naphthalene) zones. Significant ( p < 0.05) quantities of naphthalene (8±3% to 43±7%) and/or phenanthrene (3±1% to 31±3%) were mineralized in sediment-groundwater microcosms during 4 weeks of aerobic incubation at 22°C. Three samples out of 11 were able to aerobically mineralize significant quantities of benzene (6±2% to 24±1%). Of 11 samples tested for anaerobic mineralization, naphthalene biodegradation (7±1% to 13±2%) in the presence of N03 was observed in two samples. Compound removals were first order with respect to substrate concentration during the first 10-15 days of incubation. Compound biodegradation plateaued in the later stages of incubation (15-40 days), most likely from diminishing bioavailability and nutrient and oxygen depletion. Population densities in the sediments were typically low, with viable aerobic counts ranging from 0 to 10 5 CFU gdw -1, viable anaerobic counts ranging from 0 to 104 CFU gdw -1, and total counts (AODC) usually 10-fold greater than viable counts. Total counts exhibited a strong ( p < 0.01) positive correlation with sample grain size. Viable aerobic and anaerobic populations commonly occurred in the same sample, suggesting the presence of facultative anaerobes. Bacteria were metabolically active in samples from groundwaters with low pH (3.7) and high naphthalene concentrations (11,000 μg L -1). Data from these enumeration and microcosm studies suggest that natural in situ biodegradation is occurring at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, R.; Hazen, T.C.; Joyner, D.C.
2011-04-15
Immunomagnetic separation (IMS) has proved highly efficient for recovering microorganisms from heterogeneous samples. Current investigation targeted the separation of viable cells of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Streptavidin-coupled paramagnetic beads and biotin labeled antibodies raised against surface antigens of this microorganism were used to capture D. vulgaris cells in both bioreactor grown laboratory samples and from extremely low-biomass environmental soil and subsurface drilling samples. Initial studies on detection, recovery efficiency and viability for IMS were performed with laboratory grown D. vulgaris cells using various cell densities. Efficiency of cell isolation and recovery (i.e., release of the microbial cells from themore » beads following separation) was followed by microscopic imaging and acridine orange direct counts (AODC). Excellent recovery efficiency encouraged the use of IMS to capture Desulfovibrio spp. cells from low-biomass environmental samples. The environmental samples were obtained from a radionuclide-contaminated site in Germany and the chromium (VI)-contaminated Hanford site, an ongoing bioremediation project of the U.S. Department of Energy. Field deployable IMS technology may greatly facilitate environmental sampling and bioremediation process monitoring and enable transcriptomics and proteomics/metabolomics-based studies directly on cells collected from the field.« less
2015-05-01
challenging component of assessing human health risks associated with contaminated soil and groundwater since the late 1990s, during which time...and analysis. 1.3 REGULATORY DRIVERS Regulatory guidance for assessment and management of risks associated with VI has been issued by at least 27...requirements to assess potential human health risks , and this possibility exists where VOCs are present in the subsurface near occupied buildings
NASA Astrophysics Data System (ADS)
Mouser, P. J.; Rizzo, D. M.; Druschel, G.; O'Grady, P.; Stevens, L.
2005-12-01
This interdisciplinary study integrates hydrochemical and genome-based data to estimate the redox processes occurring at long-term monitoring sites. Groundwater samples have been collected from a well-characterized landfill-leachate contaminated aquifer in northeastern New York. Primers from the 16S rDNA gene were used to amplify Bacteria and Archaea in groundwater taken from monitoring wells located in clean, fringe, and contaminated locations within the aquifer. PCR-amplified rDNA were digested with restriction enzymes to evaluate terminal restriction fragment length polymorphism (T-RFLP) community profiles. The rDNA was cloned, sequenced, and partial sequences were matched against known organisms using the NCBI Blast database. Phylogenetic trees and bootstrapping were used to identify classifications of organisms and compare the communities from clean, fringe, and contaminated locations. We used Artificial Neural Network (ANN) models to incorporate microbial data with hydrochemical information for improving our understanding of subsurface processes.
Recent field and experimental research has shown that certain classes of subsurface contaminants can biodegrade at many sites. A number of site specific factors influences the rate of biodegradation, which helps determine the ultimate extent of contamination at these sites. The...
76 FR 5370 - Potential Addition of Vapor Intrusion Component to the Hazard Ranking System
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... structures through the subsurface environment and thus, enabling sites with vapor intrusion contamination to... contamination to be included in an HRS evaluation. Presented below is background information on the HRS, its... facility, the potential for contamination of drinking water supplies, direct human contact, destruction of...
NASA Astrophysics Data System (ADS)
Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.
2013-12-01
Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and IP surveys are performed regularly to monitor the stimulated biodegradation and progress of remediation until soil cleanup. Microbial activity is characterized by CO2 production increase and δ13C isotopic deviation, in the produced CO2 measured by infrared laser spectroscopy, and by an evolution of electrical conductivity and IP responses in correlation with microbiological and chemical analyses.
Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
This report contains papers presented at the seventh Technical Meeting of the U.S. Geological Survey (USGS), Toxic Substances Hydrology (Toxics) Program. The meeting was held March 8-12, 1999, in Charleston, South Carolina. Toxics Program Technical Meetings are held periodically to provide a forum for presentation and discussion of results of recent research activities.The objectives of these meetings are to:Present recent research results to essential stakeholders,Encourage synthesis and integrated interpretations among scientists with different expertise who are working on a contamination issue, andPromote exchange of ideas among scientists working on different projects and issues within the Toxics Program.The Proceedings is published in three volumes. Volume 1 contains papers that report on results of research on contamination from hard-rock mining. Results include research on contamination from hard rock mining in arid southwest alluvial basins, research on hard rock mining in mountainous terrain, and progress from the USGS Abandoned Mine Lands Initiative. This Initiative is designed to develop a watershed-based approach to characterize and remediate contamination from abandoned mine lands and transfer technologies to Federal land management agencies and stakeholders.Volume 2 contains papers on contamination of hydrologic systems and related ecosystems. The papers discuss research on the response of estuarine ecosystems to contamination from human activities. They include research on San Francisco Bay; mercury contamination of aquatic ecosystems; and investigation of the occurrence, distribution, and fate of agricultural chemicals in the Mississippi River Basin. This volume also contains results on development and reconnaissance testing of new methods to detect emerging contaminants in environmental samples.Volume 3 contains papers on subsurface contamination from point sources. The papers discuss research on: hydrocarbons and fuel oxygenates at gasoline release sites; ground-water contamination by crude oil; complex contaminant mixtures from treated wastewater discharges; waste disposal and subsurface transport of contaminants in arid environments; ground water and surface water affected by municipal landfill leachate; natural attenuation of chlorinated solvents; and characterizing flow and transport in fractured rock aquifers.In all, the more than 175 papers contained in this proceedings reflect the contributions of more than 350 scientists who are co-authors. These scientists are from across the USGS, as well as from universities, other Federal and State agencies, and industry.
Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
This report contains papers presented at the seventh Technical Meeting of the U.S. Geological Survey (USGS), Toxic Substances Hydrology (Toxics) Program. The meeting was held March 8-12, 1999, in Charleston, South Carolina. Toxics Program Technical Meetings are held periodically to provide a forum for presentation and discussion of results of recent research activities.The objectives of these meetings are to:Present recent research results to essential stakeholders,Encourage synthesis and integrated interpretations among scientists with different expertise who are working on a contamination issue, andPromote exchange of ideas among scientists working on different projects and issues within the Toxics Program.The Proceedings is published in three volumes. Volume 1 contains papers that report on results of research on contamination from hard-rock mining. Results include research on contamination from hard rock mining in arid southwest alluvial basins, research on hard rock mining in mountainous terrain, and progress from the USGS Abandoned Mine Lands Initiative. This Initiative is designed to develop a watershed-based approach to characterize and remediate contamination from abandoned mine lands and transfer technologies to Federal land management agencies and stakeholders.Volume 2 contains papers on contamination of hydrologic systems and related ecosystems. The papers discuss research on the response of estuarine ecosystems to contamination from human activities. They include research on San Francisco Bay; mercury contamination of aquatic ecosystems; and investigation of the occurrence, distribution, and fate of agricultural chemicals in the Mississippi River Basin. This volume also contains results on development and reconnaissance testing of new methods to detect emerging contaminants in environmental samples.Volume 3 contains papers on subsurface contamination from point sources. The papers discuss research on: hydrocarbons and fuel oxygenates at gasoline release sites; ground-water contamination by crude oil; complex contaminant mixtures from treated wastewater discharges; waste disposal and subsurface transport of contaminants in arid environments; ground water and surface water affected by municipal landfill leachate; natural attenuation of chlorinated solvents; and characterizing flow and transport in fractured rock aquifers.In all, the more than 175 papers contained in this proceedings reflect the contributions of more than 350 scientists who are co-authors. These scientists are from across the USGS, as well as from universities, other Federal and State agencies, and industry.
Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
This report contains papers presented at the seventh Technical Meeting of the U.S. Geological Survey (USGS), Toxic Substances Hydrology (Toxics) Program. The meeting was held March 8-12, 1999, in Charleston, South Carolina. Toxics Program Technical Meetings are held periodically to provide a forum for presentation and discussion of results of recent research activities.The objectives of these meetings are to:Present recent research results to essential stakeholders,Encourage synthesis and integrated interpretations among scientists with different expertise who are working on a contamination issue, andPromote exchange of ideas among scientists working on different projects and issues within the Toxics Program.The Proceedings is published in three volumes. Volume 1 contains papers that report on results of research on contamination from hard-rock mining. Results include research on contamination from hard rock mining in arid southwest alluvial basins, research on hard rock mining in mountainous terrain, and progress from the USGS Abandoned Mine Lands Initiative. This Initiative is designed to develop a watershed-based approach to characterize and remediate contamination from abandoned mine lands and transfer technologies to Federal land management agencies and stakeholders.Volume 2 contains papers on contamination of hydrologic systems and related ecosystems. The papers discuss research on the response of estuarine ecosystems to contamination from human activities. They include research on San Francisco Bay; mercury contamination of aquatic ecosystems; and investigation of the occurrence, distribution, and fate of agricultural chemicals in the Mississippi River Basin. This volume also contains results on development and reconnaissance testing of new methods to detect emerging contaminants in environmental samples.Volume 3 contains papers on subsurface contamination from point sources. The papers discuss research on: hydrocarbons and fuel oxygenates at gasoline release sites; ground-water contamination by crude oil; complex contaminant mixtures from treated wastewater discharges; waste disposal and subsurface transport of contaminants in arid environments; ground water and surface water affected by municipal landfill leachate; natural attenuation of chlorinated solvents; and characterizing flow and transport in fractured rock aquifers.In all, the more than 175 papers contained in this proceedings reflect the contributions of more than 350 scientists who are co-authors. These scientists are from across the USGS, as well as from universities, other Federal and State agencies, and industry.
ANAEROBIC BIOTRANSFORMATION OF CONTAMINANTS IN THE SUBSURFACE
Anaerobic conditions predominate in contaminated aquifers and are not uncommon in noncontaminated areas. Comparatively little is known about degradative processes and nutrient cycling under anaerobic conditions. However, it is apparent these processes are fundamentally differen...
Brick, Thomas; Primrose, Beryl; Chandrasekhar, R; Roy, Sheela; Muliyil, Jayaprakash; Kang, Gagandeep
2004-10-01
Water contamination, at source and during household storage, is a major cause of enterically transmitted infections in developing countries. This study assessed contamination of the municipal water in a south Indian town, which obtains its water intermittently from a surface lake and by pumping subsurface water from a dry river bed, and monitored microbial contamination during household storage. All samples of the 'treated' municipal water were contaminated when freshly pumped, and on household storage, 25/37 (67%) showed increased contamination during storage periods from 1 to 9 days. Household storage in brass, but not in containers of other materials significantly decreased contamination of water (p = 0.04). This was confirmed in the laboratory by testing water seeded with 10(3) to 10(5) Escherichia coli per 100 ml stored in containers of different materials (p < 0.01). Despite the requirements for provision of safe drinking water in municipal areas, in practice the water supplied in Vellore is contaminated and current household storage practices increase the level of contamination in at least two-thirds of households. The implementation of locally appropriate point-of-use disinfection and safe household storage practices in developing countries is an urgent need to ensure a safe, reliable year-round supply in areas where clean water is not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copland, John R.
This Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report (CCM/CME Report) has been prepared by the U.S. Department of Energy (DOE) and Sandia Corporation (Sandia) to meet requirements under the Sandia National Laboratories-New Mexico (SNL/NM) Compliance Order on Consent (the Consent Order). The Consent Order, entered into by the New Mexico Environment Department (NMED), DOE, and Sandia, became effective on April 29, 2004. The Consent Order identified the Tijeras Arroyo Groundwater (TAG) Area of Concern (AOC) as an area of groundwater contamination requiring further characterization and corrective action. This report presents an updated Conceptual Site Model (CSM)more » of the TAG AOC that describes the contaminant release sites, the geological and hydrogeological setting, and the distribution and migration of contaminants in the subsurface. The dataset used for this report includes the analytical results from groundwater samples collected through December 2015.« less
SEQUESTRATION OF SUBSURFACE ELEMENTAL MERCURY (HG0)
Elemental mercury (Hg0) is a metal with a number of atypical properties, which has resulted in its use in myriad anthropogenic processes. However, these same properties have also led to severe local subsurface contamination at many places where it has been used. As...
Evaluation of positron emission tomography as a method to visualize subsurface microbial processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinsella K.; Schlyer D.; Kinsella, K.
2012-01-18
Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils weremore » seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.« less
Donohue, Shane; McCarthy, Valerie; Rafferty, Patrick; Orr, Alison; Flynn, Raymond
2015-08-01
Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected. Copyright © 2015 Elsevier B.V. All rights reserved.
Containment of subsurface contaminants
Corey, J.C.
1994-09-06
A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.
Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.
1999-05-25
This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.
McCarthy, Kathleen A.; Lilly, Michael R.; Braddock, Joan F.; Hinzman, Larry D.
1998-01-01
Natural attenuation processes include biological degradation, by which microorganisms break down contaminants into simpler product compounds; adsorption of contaminants to soil particles, which decreases the mass of contaminants dissolved in ground water; and dispersion, which decreases dissolved contaminant concentrations through dilution. The primary objectives of this study are to (1) assess the degree to which such natural processes are attenuating chlorinated-hydrocarbon contamination in ground water, and (2) evaluate the effects of ground-water/surface-water interactions on natural-attenuation processes in the area of the former East and West Quartermasters Fueling Systems for Fort Wainwright, Alaska. The study will include investigations of the hydrologic, geochemical, and microbiological processes occurring at this site that influence the transport and fate of chlorinated hydrocarbons in ground water. To accomplish these objectives, a data-collection program has been initiated that includes measurements of water-table elevations and the stage of the Chena River; measurements of vertical temperature profiles within the subsurface; characterization of moisture distribution and movement in the unsaturated zone; collection of ground-water samples for determination of both organic and inorganic chemical constituents; and collection of ground-water samples for enumeration of microorganisms and determination of their potential to mineralize contaminants. We will use results from the data-collection program described above to refine our conceptual model of hydrology and contaminant attenuation at this site. Measurements of water-table elevations and river stage will help us to understand the magnitude and direction of ground-water flow and how changes in the stage of the Chena River affect ground-water flow. Because ambient ground water and surface water typically have different temperature characteristics, temperature monitoring will likely provide further insight into ground-water/surface-water interactions in the subsurface. Characterization of the unsaturated zone will improve our understanding of interactions among ground water, the unsaturated zone, and the atmosphere. The interactions likely of importance to this study include the migration of water, dissolved contaminants, nutrients, and gases (oxygen, carbon dioxide, and methane) between the saturated and unsaturated zones. We will use the results of ground-water chemical analyses to determine the spatial and temporal distribution of (1) chlorinated-hydrocarbon contaminants and their degradation products, (2) oxidation-reduction indicators, (3) nutrients, and (4) major ground-water ions. These water-quality data will provide insight into ground-water flow directions, interactions between ground water and surface water, attenuation of contaminant concentrations caused by dispersion, and intrinsic microbiological processes. Microbiological analyses will indicate whether microorganisms at the site are capable of degrading the contaminants of interest, and will allow us to estimate their potential to attenuate existing contamination. Physical and chemical data interpreted as part of the analysis of ground water and surface water mixing will improve our understanding of the relationship between water quality and contaminant source mixing.
NASA Astrophysics Data System (ADS)
Bartelt-Hunt, Shannon; Snow, Daniel D.; Damon-Powell, Teyona; Miesbach, David
2011-04-01
Wastewater impoundments at concentrated animal feeding operations (CAFOs) represent a potential source of veterinary pharmaceuticals and steroid hormone contamination to shallow groundwater. This study investigates the occurrence of seventeen veterinary pharmaceuticals and thirteen steroid hormones and hormone metabolites in lagoons and adjacent groundwater at operating swine and beef cattle facilities. These sites were chosen because subsurface geology and previous monitoring of nitrate, ammonia and chloride levels in shallow ground water strongly indicated direct infiltration, and as such represent worst cases for ground water contamination by waste water. Pharmaceutical compounds detected in samples obtained from cattle facilities include sulfamerazine; sulfamethazine; erythromycin; monensin; tiamulin; and sulfathiazole. Lincomycin; ractopamine; sulfamethazine; sulfathiazole; erythromycin; tiamulin and sulfadimethoxine were detected in wastewater samples obtained from swine facilities. Steroid hormones were detected less frequently than veterinary pharmaceuticals in this study. Estrone, testosterone, 4-androstenedione, and androsterone were detected in wastewater impoundments at concentrations ranging from 30 to 3600 ng/L, while only estrone and testosterone were detected in groundwater samples at concentrations up to 390 ng/L. The co-occurrence of veterinary pharmaceutical and steroid hormone contamination in groundwater at these locations and the correlation between pharmaceutical occurrence in lagoon wastewater and hydraulically downgradient groundwater indicates that groundwater underlying some livestock wastewater impoundments is susceptible to contamination by veterinary pharmaceuticals and steroid hormones originating in wastewater lagoons.
Snow, Mathew S; Clark, Sue B; Morrison, Samuel S; Watrous, Matthew G; Olson, John E; Snyder, Darin C
2015-10-01
Aeolian and pluvial processes represent important mechanisms for the movement of actinides and fission products at the Earth's surface. Soil samples taken in the early 1970's near a Department of Energy radioactive waste disposal site (the Subsurface Disposal Area, SDA, located in southeastern Idaho) provide a case study for studying the mechanisms and characteristics of environmental actinide and (137)Cs transport in an arid environment. Multi-component mixing models suggest actinide contamination within 2.5 km of the SDA can be described by mixing between 2 distinct SDA end members and regional nuclear weapons fallout. The absence of chemical fractionation between (241)Am and (239+240)Pu with depth for samples beyond the northeastern corner and lack of (241)Am in-growth over time (due to (241)Pu decay) suggest mechanical transport and mixing of discrete contaminated particles under arid conditions. Occasional samples northeast of the SDA (the direction of the prevailing winds) contain anomalously high concentrations of Pu with (240)Pu/(239)Pu isotopic ratios statistically identical to those in the northeastern corner. Taken together, these data suggest flooding resulted in mechanical transport of contaminated particles into the area between the SDA and a flood containment dike in the northeastern corner, following which subsequent contamination spreading in the northeastern direction resulted from wind transport of discrete particles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Environmental Measurement-While-Drilling system for real-time field screening of contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, G.J.; Normann, R.A.; Bishop, L.B.
Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ``steer`` the drill bit in or out hazardous zones. During measurement-while-drilling,more » down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P; Czerwinski, Ken; Russell, Charles E
2010-07-13
This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moser, Duane P.; Bruckner, Jim; Fisher, Jen
2010-09-01
This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse andmore » divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.« less
Modeling dissolution and volatilization of LNAPL sources migrating on the groundwater table.
Kim, Jeongkon; Corapcioglu, M Yavuz
2003-08-01
A vertically averaged two-dimensional model was developed to describe areal spreading and migration of light nonaqueous-phase liquids (LNAPLs) introduced into the subsurface by spills or leaks from underground storage tanks. The NAPL transport model was coupled with two-dimensional contaminant transport models to predict contamination of soil gas and groundwater resulting from a LNAPL migrating on the water table. Numerical solutions were obtained by using the finite-difference method. Simulations and sensitivity analyses were conducted with a LNAPL of pure benzene to study LNAPL migration and groundwater contamination. The model was applied to subsurface contamination by jet fuel. Results indicated that LNAPL migration were affected mostly by volatilization. The generation and movement of the dissolved plume was affected by the geology of the site and the free-product plume. Most of the spilled mass remained as a free LNAPL phase 20 years after the spill. The migration of LNAPL for such a long period resulted in the contamination of both groundwater and a large volume of soil.
Modeling and risk assessment of a 30-Year-old subsurface radioactive-liquid drain field
NASA Astrophysics Data System (ADS)
Dawson, Lon A.; Pohl, Phillip I.
1997-11-01
The contamination from a 30-year-old radioactive liquid drain field was assessed for movement in the subsurface and potential risks to humans. This assessment included determining field concentrations of cesium 137 (137Cs) and other inorganic contaminants and modeling of the flow and transport of the liquid waste that was sent to the drain field. The field investigation detected no contamination deeper than 15 feet (4.6 m) from the bottom of the drain field. Prediction of the water content of the vadose zone showed no saturated conditions for times greater than 10 years after the known infiltration. Sensitivity analysis of the modeling parameters showed the equilibrium sorption coefficient to be the most important factor in predicting the contaminant plumes. Calibration of modeling results with field data gave a 137Cs sorption coefficient that is within the range of values found in the literature. The risk assessment for the site showed that the contamination poses no significant risk to human health.
VERTICAL PROFILING OF VOCS IN GROUNDWATER AND SOIL VAPORS TO EVALUATE THE RISK OF VAPOR INTRUSION
The Draft EPA Subsurface Vapor Intrusion Guidance Document was established to address the incremental increases in exposures and risks from subsurface contaminants that may be intruding into indoor air@. The document utilizes attenuation factors based on indoor air/soil gas or i...
Tetrachloroethylene (PCE), typically used as a dry cleaning solvent, is a predominant contaminant in the subsurface at Superfund Sites. PCE is a dense non-aqueous phase liquid (DNAPL) that migrates downward into the earth, leaving behind areas of residual saturation and free prod...
Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to devel...
GROUND WATER TECHNICAL SUPPORT CENTER
EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...
An analysis of a mixed convection associated with thermal heating in contaminated porous media.
Krol, Magdalena M; Johnson, Richard L; Sleep, Brent E
2014-11-15
The occurrence of subsurface buoyant flow during thermal remediation was investigated using a two dimensional electro-thermal model (ETM). The model incorporated electrical current flow associated with electrical resistance heating, energy and mass transport, and density dependent water flow. The model was used to examine the effects of heating on sixteen subsurface scenarios with different applied groundwater fluxes and soil permeabilities. The results were analyzed in terms of the ratio of Rayleigh to thermal Peclet numbers (the buoyancy ratio). It was found that when the buoyancy number was greater than unity and the soil permeability greater than 10(-12) m(2), buoyant flow and contaminant transport were significant. The effects of low permeability layers and electrode placement on heat and mass transport were also investigated. Heating under a clay layer led to flow stagnation zones resulting in the accumulation of contaminant mass and transport into the low permeability layer. The results of this study can be used to develop dimensionless number-based guidelines for site management during subsurface thermal activities. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCray, J.E.; Boving, T.B.; Brusseau, M.L.
2000-12-31
Reagents that enhance the aqueous solubility of nonaqueous phase organic liquid (NAPL) contaminants are under investigation for use in enhanced subsurface remediation technologies. Cyclodextrin, a glucose-based molecule, is such a reagent. In this paper, laboratory experiments and numerical model simulations are used to evaluate and understand the potential remediation performance of cyclodextrin. Physical properties of cyclodextrin solutions such as density, viscosity, and NAPL-aqueous interfacial tension are measured. Their analysis indicates that no serious obstacles exist related to fluid properties that would prevent the use of cyclodextrin solutions for subsurface NAPL remediation. Cyclodextrin-enhanced solubilization for a large suite of typical groundmore » water contaminants is measured in the laboratory, and the results are related to the physiochemical properties of the organic compounds. The most-hydrophobic contaminants experience a larger relative solubility enhancement than the less-hydrophobic contaminants but have lower aqueous-phase apparent solubilities. Numerical model simulations of enhanced-solubilization flushing of NAPL-contaminated soil demonstrate that the more-hydrophilic compounds exhibit the greatest mass-removal relates due to their greater apparent solubilities, and thus are initially more effectively removed from soil by enhanced-solubilization-flushing reagents. However, the relatively more hydrophobic contaminants exhibit a greater improvement in contaminant mass-removal (compared with water flushing) than that exhibited for the relatively hydrophilic contaminants.« less
2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-02-01
Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed asmore » being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.« less
Shirazi, Elham; Pennell, Kelly G
2017-12-13
Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Timothy C.; Wellman, Dawn M.
2015-06-26
Electrical resistivity tomography (ERT) has been widely used in environmental applications to study processes associated with subsurface contaminants and contaminant remediation. Anthropogenic alterations in subsurface electrical conductivity associated with contamination often originate from highly industrialized areas with significant amounts of buried metallic infrastructure. The deleterious influence of such infrastructure on imaging results generally limits the utility of ERT where it might otherwise prove useful for subsurface investigation and monitoring. In this manuscript we present a method of accurately modeling the effects of buried conductive infrastructure within the forward modeling algorithm, thereby removing them from the inversion results. The method ismore » implemented in parallel using immersed interface boundary conditions, whereby the global solution is reconstructed from a series of well-conditioned partial solutions. Forward modeling accuracy is demonstrated by comparison with analytic solutions. Synthetic imaging examples are used to investigate imaging capabilities within a subsurface containing electrically conductive buried tanks, transfer piping, and well casing, using both well casings and vertical electrode arrays as current sources and potential measurement electrodes. Results show that, although accurate infrastructure modeling removes the dominating influence of buried metallic features, the presence of metallic infrastructure degrades imaging resolution compared to standard ERT imaging. However, accurate imaging results may be obtained if electrodes are appropriately located.« less
MANUAL: ALTERNATIVE METHODS FOR FLUID DELIVERY AND RECOVERY
Controlling subsurface fluids is among the highest priorities in rnanaging sites with in situ contamination. Some applications direct fluid movement continually inward towards the site, whereas others attempt to recover contaminants and, ultimately, close the site. Both these...
FIELD-DRIVEN APPROACHES TO SUBSURFACE CONTAMINANT TRANSPORT MODELING.
Observations from field sites provide a means for prioritizing research activities. In the case of petroleum releases, observations may include spiking of concentration distributions that may be related to water table fluctuation, co-location of contaminant plumes with geochemi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leidy, V.A.; Morris, E.E.
1991-01-01
Shallow groundwater flow systems in karst terrain of northwestern Boone County, Arkansas, are particularly susceptible to contamination. The potential for groundwater contamination probably is greater in the northern one-half of the study area where there are more photolineaments and presumably subsurface fractures. Groundwater samples from 17 springs discharging from the Boone Formation and 17 wells completed in the Cotter Dolomite were analyzed to determine ambient groundwater quality and to document water quality variations. The chemical constituents in groundwater generally did not exceed US Environmental Protection Agency primary or secondary maximum contaminant levels. However, fecal coliform and fecal streptococcus bacteria weremore » detected in most springs and in three wells. One spring, located near an abandoned wood-treatment plant (a designated Superfund site), had maximum iron, manganese, lead, and pentachlorophenol concentration that exceeded US Environmental Protection Agency's primary or secondary maximum contamination levels for drinking water. Water samples collected from selected springs emerging from the Boone Formation exhibited an overall decrease in specific conductance and total alkalinity, calcium, magnesium, sodium, and chloride concentrations and an overall increase in nitrate, fecal coliform, and fecal streptococcus bacteria concentrations 3 to 8 hours after a rainstorm.« less
Khare, Peeyush
2017-09-01
This paper investigates the groundwater quality in six major districts of Madhya Pradesh in central India, namely, Balaghat, Chhindwara, Dhar, Jhabua, Mandla, and Seoni during the 2010-2011 sampling campaign, and discusses improvements made in the supplied water quality between the years 2011 and 2017. Groundwater is the main source of water for a combined rural population of over 7 million in these districts. Its contamination could have a huge impact on public health. We analyzed the data collected from a large-scale water sampling campaign carried out by the Public Health Engineering Department (PHED), Government of Madhya Pradesh between 2010 and 2011 during which all rural tube wells and dug wells were sampled in these six districts. Eight hundred thirty-one dug wells and 47,606 tube wells were sampled in total and were analyzed for turbidity, hardness, iron, nitrate, fluoride, chloride, and sulfate ion concentrations. Our study found water in 21 out of the 228 dug wells in Chhindwara district unfit for drinking due to fluoride contamination while all dug wells in Balaghat had fluoride within the permissible limit. Twenty-six of the 56 dug wells and 4825 of the 9390 tube wells in Dhar district exceeded the permissible limit for nitrate while 100% dug wells in Balaghat, Seoni, and Chhindwara had low levels of nitrate. Twenty-four of the 228 dug wells and 1669 of 6790 tube wells in Chhindwara had high iron concentration. The median pH value in both dug wells and tube wells varied between 6 and 8 in all six districts. Still, a significant number of tube wells exceeded a pH of 8.5 especially in Mandla and Seoni districts. In conclusion, this study shows that parts of inhabited rural Madhya Pradesh were potentially exposed to contaminated subsurface water during 2010-2011. The analysis has been correlated with rural health survey results wherever available to estimate the visible impact. We next highlight that the quality of drinking water has enormously improved since 2011 in all six districts as a result of rigorous treatment of extracted subsurface water on the ground before supplying to rural habitations as well as efficient distribution from healthy wells. Our research could provide impetus to the state government to develop innovative solutions for improving groundwater quality in these areas as existing solutions are largely protective techniques. We have identified specific ions responsible for groundwater contamination in different districts which would allow the development of district specific effective mitigation strategies.
Visual probes and methods for placing visual probes into subsurface areas
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.
2004-11-23
Visual probes and methods for placing visual probes into subsurface areas in either contaminated or non-contaminated sites are described. In one implementation, the method includes driving at least a portion of a visual probe into the ground using direct push, sonic drilling, or a combination of direct push and sonic drilling. Such is accomplished without providing an open pathway for contaminants or fugitive gases to reach the surface. According to one implementation, the invention includes an entry segment configured for insertion into the ground or through difficult materials (e.g., concrete, steel, asphalt, metals, or items associated with waste), at least one extension segment configured to selectively couple with the entry segment, at least one push rod, and a pressure cap. Additional implementations are contemplated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2000-04-18
The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediationmore » under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.« less
NASA Astrophysics Data System (ADS)
Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian
2015-04-01
The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is taken into account for the numerical simulations. Hence, the simulations are performed with the code OpenGeoSys, which is especially suited for simulating coupled thermal, hydraulic and geochemical processes. The scenario simulations show an increase in the source zone emission of TCE at higher temperatures, which is primarily due to the focusing of the groundwater flow in the area of higher temperatures within the source zone and to a lesser part to an increase in TCE solubility. On the other hand, a widening of the contaminant plume and enlargement of the area for TCE biodegradation is induced, which leads to an increase in biodegradation of the chlorinated hydrocarbons. In combination almost no change in the overall ratio of degraded to emitted TCE is found, which shows that the seasonal heat storage is not negatively influencing the present TCE contamination under these assumptions. The results of this work serve to support the risk assessment for the interaction between heat storage and contaminations in the shallow subsurface and show positive interactions as well as possible conflicts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boston, H.L.; Ashwood, T.L.; Borders, D.M.
1992-02-01
This field sampling and analysis (S & A) plan has been developed as part of the Department of Energy`s (DOE`s) remedial investigation (RI) of Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL) located in Oak Ridge, Tennessee. The S & A plan has been written in support of the remedial investigation (RI) plan for WAG 2 (ORNL 1990). WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the ORNL main plant area, White Oak Lake (WOL), White Oak Creek embayment (WOCE) on the Clinch River, and the associated floodplain and subsurface environment (Fig.more » 1.1). The WOC system is the surface drainage for the major ORNL WAGs and has been exposed to a diversity of contaminants from operations and waste disposal activities in the WOC watershed. WAG 2 acts as a conduit through which hydrologic fluxes carry contaminants from upgradient areas to the Clinch River. Water, sediment, soil, and biota in WAG 2 are contaminated and continue to receive contaminants from upgradient WAGs. This document describes the following: an overview of the RI plan, background information for the WAG 2 system, and objectives of the S & A plan; the scope and implementation of the first 2 years of effort of the S & A plan and includes recent information about contaminants of concern, organization of S & A activities, interactions with other programs, and quality assurance specific to the S & A activities; provides details of the field sampling plans for sediment, surface water, groundwater, and biota, respectively; and describes the sample tracking and records management plan.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... surface soils, subsurface soils, structures and groundwater within the boundaries of these parcels. In... soils, subsurface soils, structures and groundwater within the boundaries of the non-ETA part of PIN 05... additional contaminated groundwater and soil within the Site. On November 25, 2005 EPA partially deleted the...
PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL
Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...
Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...
Measurement of water saturation in porous media is essential for many types of studies including subsurface water flow, subsurface colloids transport and contaminant remediation to name a few. Water saturation (S) in porous media is dependent on the capillary pressure (Pc) which,...
Vapor intrusion is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), in soil gas from the subsurface to indoor air. Vapor intrusion happens because there are pressure and concentration differentials between indoor air and soil gas. Indoor ...
Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to deve...
Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media
Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...
Lawter, Amanda R; Qafoku, Nikolla P; Asmussen, R Matthew; Kukkadapu, Ravi K; Qafoku, Odeta; Bacon, Diana H; Brown, Christopher F
2018-04-01
Despite the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in this intermediate zone. After rocks reacted with CO 2 -acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2 -reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2 -laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew; ...
2018-01-04
In spite of the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in thismore » intermediate zone. Furthermore, after rocks reacted with CO 2-acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.« less
Fong, Theng-Theng; Mansfield, Linda S.; Wilson, David L.; Schwab, David J.; Molloy, Stephanie L.; Rose, Joan B.
2007-01-01
Background A groundwater-associated outbreak affected approximately 1,450 residents and visitors of South Bass Island, Ohio, between July and September 2004. Objectives To examine the microbiological quality of groundwater wells located on South Bass Island, we sampled 16 wells that provide potable water to public water systems 15–21 September 2004. Methods We tested groundwater wells for fecal indicators, enteric viruses and bacteria, and protozoa (Cryptosporidium and Giardia). The hydrodynamics of Lake Erie were examined to explore the possible surface water–groundwater interactions. Results All wells were positive for both total coliform and Escherichia coli. Seven wells tested positive for enterococci and Arcobacter (an emerging bacterial pathogen), and F+-specific coliphage was present in four wells. Three wells were positive for all three bacterial indicators, coliphages, and Arcobacter; adenovirus DNA was recovered from two of these wells. We found a cluster of the most contaminated wells at the southeast side of the island. Conclusions Massive groundwater contamination on the island was likely caused by transport of microbiological contaminants from wastewater treatment facilities and septic tanks to the lake and the subsurface, after extreme precipitation events in May–July 2004. This likely raised the water table, saturated the subsurface, and along with very strong Lake Erie currents on 24 July, forced a surge in water levels and rapid surface water–groundwater interchange throughout the island. Landsat images showed massive influx of organic material and turbidity surrounding the island before the peak of the outbreak. These combinations of factors and information can be used to examine vulnerabilities in other coastal systems. Both wastewater and drinking water issues are now being addressed by the Ohio Environmental Protection Agency and the Ohio Department of Health. PMID:17589591
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawter, Amanda R.; Qafoku, Nikolla P.; Asmussen, R. Matthew
In spite of the numerous studies on changes within the reservoir following CO 2 injection and the effects of CO 2 release into overlying aquifers, little or no literature is available on the effect of CO 2 release on rock between the storage reservoirs and subsurface. This is important, because the interactions that occur in this zone between the CO 2 storage reservoir and the subsurface may have a significant impact on risk analysis for CO 2 storage projects. To address this knowledge gap, relevant rock materials, temperatures and pressures were used to study mineralogical and elemental changes in thismore » intermediate zone. Furthermore, after rocks reacted with CO 2-acidified 0.01 M NaCl, liquid analysis showed an increase of major elements (e.g., Ca and Mg) and variable concentrations of potential contaminants (e.g., Sr and Ba); lower aqueous concentrations of these elements were observed in N 2 control experiments, likely due to differences in pH between the CO 2 and N 2 experiments. In experiments with As/Cd and/or organic spikes, representing potential contaminants in the CO 2 plume originating in the storage reservoir, most or all of these contaminants were removed from the aqueous phase. SEM and Mössbauer spectroscopy results showed the formation of new minerals and Fe oxides in some CO 2-reacted samples, indicating potential for contaminant removal through mineral incorporation or adsorption onto Fe oxides. These experiments show the interactions between the CO 2-laden plume and the rock between storage reservoirs and overlying aquifers have the potential to affect the level of risk to overlying groundwater, and should be considered during site selection and risk evaluation.« less
Monitored Natural Attenuation For Inorganic Contaminants In Ground Water - Technical Issues
Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...
IDENTIFICATION AND COMPILATION OF UNSATURATED/VADOSE ZONE MODELS
Many ground-water contamination problems are derived from sources at or near the soil surface. Consequently, the physical and (bio-)chemical behavior of contaminants in the shallow subsurface is of critical importance to the development of protection and remediation strategies. M...
USING SUBSURFACE TRANSPORT RESEARCH TO ACHIEVE AGENCY OUTCOMES
Gasoline leaks from underground storage tanks can cause ground water contamination because there are a number of organic chemicals in gasoline. These chemicals have varying properties that influence how far contamination extends from the release. Research on transport of these ...
Ground Water Discharges (EPA's Underground Injection ...
2017-07-06
Most ground water used for drinking occurs near the earth's surface and is easily contaminated. Of major concern is the potential contamination of underground sources of drinking water by any of the hundreds of thousands of subsurface wastewater disposal injection wells nationwide.
BIOENHANCED IN-WELL VAPOR STRIPPING TO TREAT TRICHLOROETHYLENE(TCE)
Removal of chlorinated solvent contaminants at their subsurface source is one of the most challenging problems for remediation of these prevalent contaminants. Here, the solvents are generally present as dense non-aqueous phase liquids (DNAPLs). The potential for applicatio...
Mass Flux Measurements of Arsenic in Groundwater (Battelle Conference)
Concentration trends of arsenic are typically used to evaluate the performance of remediation efforts designed to mitigate arsenic contamination in groundwater. A complementary approach would be to track changes in mass flux of the contaminant through the subsurface, for exampl...
Control of Subsurface Contaminant Migration by Vertical Engineered Barriers
This Fact Sheet is intended to provide remedial project managers (RPMs), on-scene coordinators (OSCs), contractors, and other remediation stakeholders with a basic overview of hazardous waste containment systems constructed to prevent or limit the migration of contamination in gr...
Dendrochemistry of multiple releases of chlorinated solvents at a former industrial site
Jean Christophe Balouet; Joel G. Burken; Frank Karg; Don Vroblesky; Kevin T. Smith; Håkan Grudd; Anders Rindby; François Beaujard; Michel Chalot
2012-01-01
Trees can take up and assimilate contaminants from soil, subsurface, and groundwater. Contaminants in the transpiration stream can become bound or incorporated into the annual rings formed in trees of the temperate zones. The chemical analysis of precisely dated tree rings, called dendrochemistry, can be used to interpret past plant interactions with contaminants. This...
Crimi, Michelle; Quickel, Mark; Ko, Saebom
2009-02-27
In situ chemical oxidation using permanganate is an increasingly employed approach to organic contaminant remediation at hazardous waste sites. Manganese dioxide (MnO2) particles form as a by-product of the reaction of permanganate with contaminants and naturally-reduced subsurface materials. These particles are of interest because they have the potential to deposit in the subsurface and impact the flow regime in/around permanganate injection, including the well screen, filter pack, and the surrounding subsurface formation. Control of these particles can allow for improved oxidant injection and transport, and contact between the oxidant and contaminants of concern. Sodium hexametaphosphate (HMP) has previously been identified as a promising aid to stabilize MnO2 in solution when included in the oxidizing solution, increasing the potential to inhibit particle deposition and impact subsurface flow. The goal of the experimental studies described herein was to investigate the ability of HMP to prevent particle deposition in transport studies using four different types of porous media. Permanganate was delivered to a contaminant source zone (trichloroethylene) located within four different media types with variations in sand, clay, organic carbon, and iron oxides (as goethite) content. Deposition of MnO2 within the columns was quantified with distance from the source zone. Experiments were repeated in replicate columns with the inclusion of HMP directly with the oxidant delivery solution, and MnO2 deposition was again quantified. While total MnO2 deposition within the 60 cm columns did not change significantly with the addition of HMP, deposition within the contaminant source zone decreased by 25-85%, depending on the specific media type. The greatest differences in deposition were observed in the goethite-containing and clay-containing columns. Columns containing these two media types experienced completely plugged flow in the oxidant-only delivery systems; however, the addition of HMP prevented this plugging within the columns, increasing the oxidant throughput.
Researchers Mine Information from Next-Generation Subsurface Flow Simulations
Gedenk, Eric D.
2015-12-01
A research team based at Virginia Tech University leveraged computing resources at the US Department of Energy's (DOE's) Oak Ridge National Laboratory to explore subsurface multiphase flow phenomena that can't be experimentally observed. Using the Cray XK7 Titan supercomputer at the Oak Ridge Leadership Computing Facility, the team took Micro-CT images of subsurface geologic systems and created two-phase flow simulations. The team's model development has implications for computational research pertaining to carbon sequestration, oil recovery, and contaminant transport.
Review of potential subsurface permeable barrier emplacement and monitoring technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.
1994-02-01
This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, ormore » excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.« less
Feasibility study of tank leakage mitigation using subsurface barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treat, R.L.; Peters, B.B.; Cameron, R.J.
1994-09-21
The US Department of Energy (DOE) has established the Tank Waste Remediation System (TWRS) to satisfy manage and dispose of the waste currently stored in the underground storage tanks. The retrieval element of TWRS includes a work scope to develop subsurface impermeable barriers beneath SSTs. The barriers could serve as a means to contain leakage that may result from waste retrieval operations and could also support site closure activities by facilitating cleanup. Three types of subsurface barrier systems have emerged for further consideration: (1) chemical grout, (2) freeze walls, and (3) desiccant, represented in this feasibility study as a circulatingmore » air barrier. This report contains analyses of the costs and relative risks associated with combinations retrieval technologies and barrier technologies that from 14 alternatives. Eight of the alternatives include the use of subsurface barriers; the remaining six nonbarrier alternative are included in order to compare the costs, relative risks and other values of retrieval with subsurface barriers. Each alternative includes various combinations of technologies that can impact the risks associated with future contamination of the groundwater beneath the Hanford Site to varying degrees. Other potential risks associated with these alternatives, such as those related to accidents and airborne contamination resulting from retrieval and barrier emplacement operations, are not quantitatively evaluated in this report.« less
NASA Astrophysics Data System (ADS)
Oudega, Thomas James; Derx, Julia; van Driezum, Inge; Cisneros, Anibal; Sommer, Regina; Kirschner, Alexander; Farnleitner, Andreas; Blaschke, Alfred Paul
2017-04-01
Subsurface media are being used around the world as a means to mitigate microbial contamination, but vary widely in their ability to remove pathogens. To help to provide accurate risk assessments of microbial contamination of groundwaters, and establish safe setback distances between receiving waters and disposal fields, this study aims to use aquifer tracer tests to evaluate the ability of subsurface media to attenuate these pathogens. The novelty of this work is the use of a variety of different tracer substances (e.g. phages, spores, microspheres, conservative tracers) together in field experiments. This will be done by means of injecting these substances under a forced gradient in a sandy gravel aquifer in Lobau, Austria. The extraction of the tracers will be monitored in a pumping well at a distrance of 50m downgradient. This will be able to provide us with insight to the characteristics of microbial transport and how the microorganisms react to the subsurface in the study site. Subsequent numerical modelling of the experiments can tell us more about quantification of subsurface processes such as attachment/detachment, inactivation and die-off of these substances. The first field experiment with conservative tracers (NaCl) has been carried out in December 2016, and subsequent tests are being planned for the next months.
System for the removal of contaminant soil-gas vapors
Weidner, Jerry R.; Downs, Wayne C.; Kaser, Timothy G.; Hall, H. James
1997-01-01
A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources.
System for the removal of contaminant soil-gas vapors
Weidner, J.R.; Downs, W.C.; Kaser, T.G.; Hall, H.J.
1997-12-16
A system extracts contaminated vapors from soil or other subsurface regions by using changes in barometric pressure to operate sensitive check valves that control air entry and removal from wells in the ground. The system creates an efficient subterranean flow of air through a contaminated soil plume and causes final extraction of the contaminants from the soil to ambient air above ground without any external energy sources. 4 figs.
Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej
2016-04-01
Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. Copyright © 2016 Elsevier B.V. All rights reserved.
Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality.
Tashakor, Mahsa; Modabberi, Soroush; van der Ent, Antony; Echevarria, Guillaume
2018-05-08
This study focused on the influence of ultramafic terrains on soil and surface water environmental chemistry in Peninsular Malaysia and in the State of Sabah also in Malaysia. The sampling included 27 soils from four isolated outcrops at Cheroh, Bentong, Bukit Rokan, and Petasih from Peninsular Malaysia and sites near Ranau in Sabah. Water samples were also collected from rivers and subsurface waters interacting with the ultramafic bodies in these study sites. Physico-chemical parameters (including pH, EC, CEC) as well as the concentration of major and trace elements were measured in these soils and waters. Geochemical indices (geoaccumulation index, enrichment factor, and concentration factor) were calculated. Al 2 O 3 and Fe 2 O 3 had relatively high concentrations in the samples. A depletion in MgO, CaO, and Na 2 O was observed as a result of leaching in tropical climate, and in relation to weathering and pedogenesis processes. Chromium, Ni, and Co were enriched and confirmed by the significant values obtained for Igeo, EF, and CF, which correspond to the extreme levels of contamination for Cr and high to moderate levels of contamination for Ni and Co. The concentrations of Cr, Ni, and Co in surface waters did not reflect the local geochemistry and were within the permissible ranges according to WHO and INWQS standards. Subsurface waters were strongly enriched by these elements and exceeded these standards. The association between Cr and Ni was confirmed by factor analysis. The unexpected enrichment of Cu in an isolated component can be explained by localized mineralization in Sabah.
NASA Astrophysics Data System (ADS)
Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej
2016-04-01
Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.
ModBack - simplified contaminant source zone delineation using backtracking
NASA Astrophysics Data System (ADS)
Thielsch, K.; Herold, M.; Ptak, T.
2012-12-01
Contaminated groundwater poses a serious threat to drinking water resources all over the world. Even though contaminated water might be detected in observation wells, a proper clean up is often only successful if the source of the contamination is detected and subsequently removed, contained or remediated. The high costs of groundwater remediation could be possibly significantly reduced if, from the outset, a focus is placed on source zone detection. ModBack combines several existing modelling tools in one easy to use GIS-based interface helping to delineate potential contaminant source zones in the subsurface. The software is written in Visual Basic 3.5 and uses the ArcObjects library to implement all required GIS applications. It can run without modification on any Microsoft Windows based PC with sufficient RAM and at least Microsoft .NET Framework 3.5. Using ModBack requires additional installation of the following software: Processing Modflow Pro 7.0, ModPath, CSTREAM (Bayer-Raich et al., 2003), Golden Software Surfer and Microsoft Excel. The graphical user interface of ModBack is separated into four blocks of procedures dealing with: data input, groundwater modelling, backtracking and analyses. Geographical data input includes all georeferenced information pertaining to the study site. Information on subsurface contamination is gathered either by conventional sampling of monitoring wells or by conducting integral pumping tests at control planes with a specific sampling scheme. Hydraulic data from these pumping tests together with all other available information are then used to set up a groundwater flow model of the study site, which provides the flow field for transport simulations within the subsequent contamination backtracking procedures, starting from the defined control planes. The backtracking results are then analysed within ModBack. The potential areas of contamination source presence or absence are determined based on the procedure used by Jarsjö et al. (2005). The contaminant plume length can be estimated using plume length statistics, first order rate degradation equations or calculations based on site specific hydraulic and chemical parameters. Furthermore, an analytical tool is included to identify the distribution of contaminants across a control plane. All relevant output can be graphically displayed and saved as vector data to be later used in GIS software. ModBack has been already used to delimit the zones of source presence or absence at several test sites. With ModBack, a tool is now available which enables environmental consultants, engineers and environmental agencies to delineate possible sources of contamination already at the planning stage of site investigation and remediation measures, helping to significantly reduce costs of contaminated site management. Bayer-Raich, M., Jarsjö, J., Holder, T. and Ptak, T. (2003): "Numerical estimations of contaminant mass flow rate based on concentration measurements in pumping wells", ModelCare 2002: A Few Steps Closer to Reality, IAHS Publication No. 277, 10-16. Jarsjö, J., Bayer-Raich, M., Ptak, T. (2005): "Monitoring groundwater contamination and delineating source zones at industrial sites: Uncertainty analyses using integral pumping tests", Journal of Contaminant Hydrology, 79, 107-134
Geoelectrical mapping of the Soil and Groundwater Contaminated Site: Case Study from Taiwan
NASA Astrophysics Data System (ADS)
Liu, H. C.; Lin, C. P.; Wang, T. P.
2016-12-01
In recent years, geophysical technology has been widely used in soil and groundwater investigation and remediation of contaminated sites assessments in Taiwan, such technology can securely work in either small or large sampler areas, and collect data from the traditional one-dimensional data to two-dimensional and three-dimensional data. In other words, geophysical technology helps provide more information to assist the data interpretation, and improves the overall effectiveness of soil and groundwater contamination surveys. Electrical Resistivity Tomography (ERT) is one of useful geophysical technology to the soil and groundwater contaminated sites. By estimating the groundwater flow direction and distribution of contaminations, we could establish monitoring or sampling wells in potential pollution areas. ERT survey could delineate the contaminated areas with high concentrations in relatively simple sites. Even in the seriously DNAPL leakage cases, it is possible to directly detect the DNAPL pool. In this study, we presented the investigation outcomes of electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) at the DNAPLs-impacted site. Evaluation of ERT/GPR technique deployment in detecting buried DNAPLs and assessment of remediation efforts are also discussed. Results indicated zones with anomalously high resistivity to be associated with contaminated DNAPLs presence. Resistivity maps clearly outlined the subsurface distribution and the possible migration path of DNAPLs.
NASA Astrophysics Data System (ADS)
Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.
2012-12-01
Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.
Optimization of remediation strategies using vadose zone monitoring systems
NASA Astrophysics Data System (ADS)
Dahan, Ofer
2016-04-01
In-situ bio-remediation of the vadose zone depends mainly on the ability to change the subsurface hydrological, physical and chemical conditions in order to enable development of specific, indigenous, pollutants degrading bacteria. As such the remediation efficiency is much dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. These conditions are usually determined in laboratory experiments where parameters such as the chemical composition of the soil water solution, redox potential and water content of the sediment are fully controlled. Usually, implementation of desired optimal degradation conditions in deep vadose zone at full scale field setups is achieved through infiltration of water enriched with chemical additives on the land surface. It is assumed that deep percolation into the vadose zone would create chemical conditions that promote biodegradation of specific compounds. However, application of water with specific chemical conditions near land surface dose not necessarily results in promoting of desired chemical and hydraulic conditions in deep sections of the vadose zone. A vadose-zone monitoring system (VMS) that was recently developed allows continuous monitoring of the hydrological and chemical properties of deep sections of the unsaturated zone. The VMS includes flexible time-domain reflectometry (FTDR) probes which allow continuous monitoring of the temporal variation of the vadose zone water content, and vadose-zone sampling ports (VSPs) which are designed to allow frequent sampling of the sediment pore-water and gas at multiple depths. Implementation of the vadose zone monitoring system in sites that undergoes active remediation provides real time information on the actual chemical and hydrological conditions in the vadose zone as the remediation process progresses. Up-to-date the system has been successfully implemented in several studies on water flow and contaminant transport in the unsaturated zone including enhanced bioremediation of contaminated deep vadose zone (40 m depth). Manipulating subsurface conditions for enhanced bioremediation was demonstrated through two remediation projects. One site is characterized by 20 m deep vadose zone that is contaminated with gasoline products and the other is a 40 m deep vadose zone that is contaminated with perchlorate. In both cases temporal variation of the sediment water content as well as the variations in the vadose zone chemical and isotopic composition allowed real time detection of water flow velocities, contaminants transport rates and bio-degradation degree. Results and conclusions from each wetting cycle were used to improve the following wetting cycles in order to optimize contaminants degradation conditions while minimizing leaching of contaminants to the groundwater.
1981-10-01
Geography 3-1 Topography 3-. Drainage 3-1 ii Page Surface Geology 3-3 Barrier Sediments 3-3 Myrtle Beach Backbarrier Sediments 3-3 soils 3-5 Subsurface...Beach AFB Surface Drainage and Surface Water Sampling Points 3-2 3.2 Myrtle Beach AFB Surface Soils 3-4 3.3 Myrtle Beach AFB Location of Geologic Cross...has created a potential contamination problem. This situation is compounded by the site’s sandy soil and shallow ground water table. b.) Weathering Pit
Franke, Christiane; Rechenburg, Andrea; Baumanns, Susanne; Willkomm, Marlene; Christoffels, Ekkehard; Exner, Martin; Kistemann, Thomas
2009-05-01
Different land use patterns were investigated for their potential as non-point sources of coliphage emissions into surface waters. Water samples were taken regularly at five locations in the upper reaches of the river Swist, Germany. Samples of surface and subsurface run-off were taken within the same catchment area after rainfall events using a newly developed device that made it possible to collect current concentrations of the effluent compounds. The water quality was examined for the occurrence of somatic coliphages and F(+)-specific RNA-bacteriophages as well as for various bacteria over the period of a hydrological year. The potential of various bacteria as indicators for the occurrence of phages was evaluated using statistical correlations. The load of coliphages varied depending on the land use type, but it did not differ as much as the bacterial parameters. River sections in intensively used areas turned out to be more contaminated than in less intensively used regions. The concentrations of phages from surface and subsurface run-off in most samples were quite low for all land use types and did not show conspicuous variations of surface and subsurface run-off within one land use type. Therefore, high concentrations of phages in river water cannot be explained only by non-point effluent from open ground. Following consideration of the statistical results, conventional indicator bacteria seem not to be reliable indicator organisms for coliphages and subsequently for human pathogen viruses. The detected concentrations of coliphages in several water samples of river sections surrounded by intensively used areas underpin an existing health risk in the use of river water for e.g. recreational activities or irrigation.
Permeable reactive barriers (PRBs) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented ...
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
10 CFR 20.1406 - Minimization of contamination.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Minimization of contamination. 20.1406 Section 20.1406 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiological Criteria for... subsurface, in accordance with the existing radiation protection requirements in subpart B and radiological...
10 CFR 20.1406 - Minimization of contamination.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Minimization of contamination. 20.1406 Section 20.1406 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiological Criteria for... subsurface, in accordance with the existing radiation protection requirements in subpart B and radiological...
TOXICITY OF AROMATIC AEROBIC BIOTRANSFORMATION PRODUCTS OF TOLUENE TO HELA CELLS
Petroleum contamination of groundwater is widely recognized as a serious environmental problem. Toluene (methylbenzene) occurs naturally in crude oil and is commonly found as a contaminant in the subsurface as a result of waste disposal and storage activities. Biological transf...
NASA Astrophysics Data System (ADS)
Popescu (Hoştuc), Ioana-Carmen; Filip, Petru; Humelnicu, Doina; Humelnicu, Ionel; Scott, Thomas Bligh; Crane, Richard Andrew
2013-11-01
Carboxy-methyl-cellulose (CMC), a common "delivery vehicle" for the subsurface deployment of iron nanoparticles (INP) has been tested in the current work for the removal of aqueous uranium from synthetic water samples. A comparison of the removal of aqueous uranium from solutions using carboxy-methyl-cellulose with and without iron nanoparticles (CMC-INP and CMC, respectively) was tested over a 48 h reaction period. Analysis of liquid samples using spectrophotometry determined a maximum sorption capacity of uranium, Qmax, of 185.18 mg/g and 322.58 mg/g for CMC and CMC-INP respectively, providing strong evidence of an independent aqueous uranium removal ability exhibited by CMC. The results point out that CMC provides an additional capacity for aqueous uranium removal. Further tests are required to determine whether similar behaviour will be observed for other aqueous contaminant species and if the presence of CMC within a INP slurry inhibits or aids the reactivity, reductive capacity and affinity of INP for aqueous contaminant removal.
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.; Hubbell, Joel M.; Sisson, James B.
2005-09-06
A suction lysimeter for sampling subsurface liquids includes a lysimeter casing having a drive portion, a reservoir portion, and a tip portion, the tip portion including a membrane through which subsurface liquids may be sampled; a fluid conduit coupled in fluid flowing relation relative to the membrane, and which in operation facilitates the delivery of the sampled subsurface liquids from the membrane to the reservoir portion; and a plurality of tubes coupled in fluid flowing relation relative to the reservoir portion, the tubes in operation facilitating delivery of the sampled subsurface liquids from the reservoir portion for testing. A method of sampling subsurface liquids comprises using this lysimeter.
Ion Signature Technology, Inc. (IST) will develop and market a collection and analysis system that will retrieve soil-bound pollutants as well as soluble and non-soluble contaminants from groundwater as the probe is pushed by cone penetrometry of Geoprobe into the subsurface. ...
Subsurface Agricultural Irrigation Drainage: The Need for Regulation
A. Dennis Lemly
1993-01-01
Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the...
Ortiz-Bernad, Irene; Anderson, Robert T.; Vrionis, Helen A.; Lovley, Derek R.
2004-01-01
Vanadium can be an important contaminant in groundwaters impacted by mining activities. In order to determine if microorganisms of the Geobacteraceae, the predominant dissimilatory metal reducers in many subsurface environments, were capable of reducing vanadium(V), Geobacter metallireducens was inoculated into a medium in which acetate was the electron donor and vanadium(V) was the sole electron acceptor. Reduction of vanadium(V) resulted in the production of vanadium(IV), which subsequently precipitated. Reduction of vanadium(V) was associated with cell growth with a generation time of 15 h. No vanadium(V) was reduced and no precipitate was formed in heat-killed or abiotic controls. Acetate was the most effective of all the electron donors evaluated. When acetate was injected into the subsurface to enhance the growth and activity of Geobacteraceae in an aquifer contaminated with uranium and vanadium, vanadium was removed from the groundwater even more effectively than uranium. These studies demonstrate that G. metallireducens can grow via vanadium(V) respiration and that stimulating the activity of Geobacteraceae, and hence vanadium(V) reduction, can be an effective strategy for in situ immobilization of vanadium in contaminated subsurface environments. PMID:15128571
Balkhair, Khaled S.
2015-01-01
Increasing lack of potable water in arid countries leads to the use of treated wastewater for crop production. However, the use of inappropriate irrigation practices could result in a serious contamination risk to plants, soils, and groundwater with sewage water. This research was initiated in view to the increasing danger of vegetable crops and groundwater contamination with pathogenic bacteria due to wastewater land application. The research was designed to study: (1) the effect of treated wastewater irrigation on the yield and microbial contamination of the radish plant under field conditions; (2) contamination of the agricultural soil profile with fecal coliform bacteria. Effluent from a domestic wastewater treatment plant (100%) in Jeddah city, Saudi Arabia, was diluted to 80% and 40% with the groundwater of the experimental site constituting three different water qualities plus groundwater as control. Radish plant was grown in two consecutive seasons under two drip irrigation systems and four irrigation water qualities. Upon harvesting, plant weight per ha, total bacterial, fecal coliform, fecal streptococci were detected per 100 g of dry matter and compared with the control. The soil profile was also sampled at an equal distance of 3 cm from soil surface for fecal coliform detection. The results indicated that the yield increased significantly under the subsurface irrigation system and the control water quality compared to surface irrigation system and other water qualities. There was a considerable drop in the count of all bacteria species under the subsurface irrigation system compared to surface irrigation. The bacterial count/g of the plant shoot system increased as the percentage of wastewater in the irrigation water increased. Most of the fecal coliform bacteria were deposited in the first few centimeters below the column inlet and the profile exponentially decreased with increasing depth. PMID:26858571
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This decision document (Record of Decision), presents the selected Remedial Action for the Operable Unit Two for the T H Agriculture & Nutrition (THAN) Site, Albany, Georgia. The second operable unit addresses the source of the contamination on the eastern parcel of the Site. The major components of the selected remedy for operable unit two include: the excavation of all soil contaminated with organics necessary to meet performance standards; the staging and preconditioning of soil for low temperature thermal desorption treatment; the treatment of excavated soil by low temperature thermal desorption; the placement of treated, decontaminated soil back to themore » site; periodic sampling of treated soil during the treatment process to verify the effectiveness of the remedy; air monitoring to ensure safety of nearby residents and workers; groundwater monitoring to ensure that metals contaminated remaining in the subsurface soil will not result in contaminated groundwater migrating offsite in concentrations which exceed groundwater protection standards; and deed restrictions to prevent residential use of the property.« less
Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface
2008-08-01
seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER
Subsurface agricultural irrigation drainage: the need for regulation.
Lemly, A D
1993-04-01
Subsurface drainage resulting from irrigated agriculture is a toxic threat to fish and wildlife resources throughout the western United States. Studies by the U.S. Department of the Interior show that migratory waterfowl have been poisoned by drainwater contaminants on at least six national wildlife refuges. Allowing this poisoning to continue is a violation of the Migratory Bird Treaty Act under U.S. Federal law. Critical wetlands and waterfowl populations are threatened in both the Pacific and Central flyways. The public is also at risk and health warnings have been issued in some locations. Subsurface irrigation drainage is a complex effluent containing toxic concentrations of trace elements, salts, and nitrogenous compounds. Some of the contaminants are classified by the U.S. Environmental Protection Agency (EPA) as priority pollutants and they can be present in concentrations that exceed EPA's criteria for toxic waste. The on-farm drainage systems used to collect and transport this wastewater provide point-source identification as well as a mechanism for toxics control through the National Pollutant Discharge Elimination System (NPDES) permit process. A four-step approach is presented for dealing with irrigation drainage in an environmentally sound manner. This regulatory strategy is very similar to those commonly used for industrial discharges and includes site evaluation, contaminant reduction through NPDES, and compliance monitoring. The EPA must recognize subsurface irrigation drainage as a specific class of pollution subject to regulation under the NPDES process. Active involvement by EPA is necessary to ensure that adequate controls on this wastewater are implemented.
Permeable reactive barriers (PRB's) are an alternative in-situ approach for remediating contaminated groundwater that combine subsurface fluid flow management with a passive chemical treatment zone. PRB's are being selected with increased frequency at waste sites (more than 40 f...
Permeable reactive barriers (PRB's) are an emerging, alternative in-situ approach for remediating groundwater contamination that combine subsurface fluid flow management with a passive chemical treatment zone. The few pilot and commercial installations which have been implemented...
DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.
Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...
TRANSPORT AND FATE OF CONTAMINANTS IN THE SUBSURFACE
This publication is based on a series of t.technology Transfer seminars that were conducted in 1987 and 1988. The document provides an overview of many of the issues associated with the physical, chemical and biological processes that control contaminant transport in the subsurfa...
10 CFR 20.1406 - Minimization of contamination.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Minimization of contamination. 20.1406 Section 20.1406 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiological Criteria for..., including the subsurface, in accordance with the existing radiation protection requirements in Subpart B and...
A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...
The impacts of uncertainty and variability in groundwater-driven health risk assessment. (Invited)
NASA Astrophysics Data System (ADS)
Maxwell, R. M.
2010-12-01
Potential human health risk from contaminated groundwater is becoming an important, quantitative measure used in management decisions in a range of applications from Superfund to CO2 sequestration. Quantitatively assessing the potential human health risks from contaminated groundwater is challenging due to the many coupled processes, uncertainty in transport parameters and the variability in individual physiology and behavior. Perspective on human health risk assessment techniques will be presented and a framework used to predict potential, increased human health risk from contaminated groundwater will be discussed. This framework incorporates transport of contaminants through the subsurface from source to receptor and health risks to individuals via household exposure pathways. The subsurface is shown subject to both physical and chemical heterogeneity which affects downstream concentrations at receptors. Cases are presented where hydraulic conductivity can exhibit both uncertainty and spatial variability in addition to situations where hydraulic conductivity is the dominant source of uncertainty in risk assessment. Management implications, such as characterization and remediation will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Commencement Bay, South Tacoma Field site occupies 260 acres of land located in the southwestern section of the city of Tacoma in Pierce County, Washington. The South Tacoma Field site poses a public health hazard to trespassers who repeatedly ingest contaminated surface soils, surface water, and sediment during recreational activities at the site. Exposure to the contaminants arsenic, copper, lead, manganese, as well as polychlorinated biphenyl and polycyclic aromatic hydrocarbon compounds may have occurred in the past, may be presently occurring, and may occur in the future, which could result in noncarcinogenic and carcinogenic health effects. Potentially, the sitemore » can pose a public health hazard through exposure to groundwater and subsurface soil contaminants that could cause adverse health effects. Additionally, should contruction/excavation uncover contaminated subsurface soils, workers as well as recreationalists/trespassers may be exposed.« less
Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site.
Gidarakos, E; Aivalioti, M
2007-11-19
This paper presents the course and the remediation results of a 4-year application of bioslurping technology on the subsurface of a Greek petroleum refinery, which is still under full operation and has important and complicated subsurface contamination problems, mainly due to the presence of light non-aqueous phase liquids (LNAPL). About 55 wells are connected to the central bioslurping unit, while a mobile bioslurping unit is also used whenever and wherever is necessary. Moreover, there are about 120 additional wells for the monitoring of the subsurface of the facilities that cover a total area of 1,000,000 m(2). An integrated monitoring program has also been developed and applied on the site, including frequent LNAPL layer depth and thickness measurements, conduction of bail-down and recovery tests, sampling and chemical analysis of the free oil phase, etc., so as to evaluate the remediation technique's efficiency and ensure a prompt tracing of any new potential leak. Despite the occurrence of new leaks within the last 4 years and the observed entrapment of LNAPL in the vadoze zone, bioslurping has managed to greatly restrict the original plume within certain and relatively small parts of the refinery facilities.
Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frothingham, David; Andrews, Shawn; Barker, Michelle
2013-07-01
At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets.more » In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggiero, C. E.; Twary, S. N.; Deladurantaye, E.
2003-01-01
In recognition of the need for a safe, effective technology for long term Pu/Th/Actinide stabilization or removal from soils, we have begun an investigation of the potential for phytoremediation (phytostabilization and/or phytoextraction) of Pu and other actinide soil contaminants at DOE sites using phytosiderophore producing plants, and are investigating the contribution of phytosiderophores to actinide mobility in the subsurface environment. Phytoremediation and Phytostabilization have been proven to be a cost-effective, safe, efficient, and publicly acceptable technology for clean up and/or stabilization of contaminant metals . However, no phyto-based technologies have been developed for stabilization or removal of plutonium from soilsmore » and groundwater, and very few have been investigated for other actinides . Current metal-phytostabilization and phytoremediation techniques, predominately based around lead, nickel, and other soft-metal phytoextraction, will almost certainly be inadequate for plutonium due its distinct chemical properties . Phytosiderophore-based phytoremediation may provide technically and financially practical methods for remediation and long-term stewardship of soils that have low to moderate, near surface actinide contamination . We plan to demonstrate potential benefits of phytosiderophore-producing plants for long-term actinide contaminant stabilization by the plant's prevention of soil erosion and actinide migration through hydraulic control and/or through actinide removal through phytoextraction . We may also show possible harm caused by these plants through increased presence of actinide chelators that could increase actinide mobilization and migration in the subsurface environment. This information can then be directly applied by either removal of harmful plants, or be used to develop plant-based soil stabilization/remediation technologies .« less
SOIL AND SEDIMENT SAMPLING METHODS | Science ...
The EPA Office of Solid Waste and Emergency Response's (OSWER) Office of Superfund Remediation and Technology Innovation (OSRTI) needs innovative methods and techniques to solve new and difficult sampling and analytical problems found at the numerous Superfund sites throughout the United States. Inadequate site characterization and a lack of knowledge of surface and subsurface contaminant distributions hinders EPA's ability to make the best decisions on remediation options and to conduct the most effective cleanup efforts. To assist OSWER, NERL conducts research to improve their capability to more accurately, precisely, and efficiently characterize Superfund, RCRA, LUST, oil spills, and brownfield sites and to improve their risk-based decision making capabilities, research is being conducted on improving soil and sediment sampling techniques and improving the sampling and handling of volatile organic compound (VOC) contaminated soils, among the many research programs and tasks being performed at ESD-LV.Under this task, improved sampling approaches and devices will be developed for characterizing the concentration of VOCs in soils. Current approaches and devices used today can lose up to 99% of the VOCs present in the sample due inherent weaknesses in the device and improper/inadequate collection techniques. This error generally causes decision makers to markedly underestimate the soil VOC concentrations and, therefore, to greatly underestimate the ecological
Lysimeter methods and apparatus
Clark, Don T.; Erickson, Eugene E.; Casper, William L.; Everett, David M.; Hubbell, Joel M.; Sisson, James B.
2004-12-07
A suction lysimeter for sampling subsurface liquids includes a lysimeter casing having a drive portion, a reservoir portion, and a tip portion, the tip portion including a membrane through which subsurface liquids may be sampled; a fluid conduit coupled in fluid flowing relation relative to the membrane, and which in operation facilitates the delivery of the sampled subsurface liquids from the membrane to the reservoir portion; and a plurality of tubes coupled in fluid flowing relation relative to the reservoir portion, the tubes in operation facilitating delivery of the sampled subsurface liquids from the reservoir portion for testing. A method of sampling subsurface liquids comprises using this lysimeter.
DETERMINATION OF TRANSFORMATION RATES OF CHIRAL PESTICIDES AND PCBS IN SOIL AND SEDIMENT MICROCOSMS
Risk Based Corrective Action (RBCA) has gained widespread acceptance as a favorable approach to remediating contaminated sites. The use of RBCA methods often requires computer-based modeling to assess the fate and transport of hazardous contaminants in subsurface environments, a...
Tracer transport in soils and shallow groundwater: model abstraction with modern tools
USDA-ARS?s Scientific Manuscript database
Vadose zone controls contaminant transport from the surface to groundwater, and modeling transport in vadose zone has become a burgeoning field. Exceedingly complex models of subsurface contaminant transport are often inefficient. Model abstraction is the methodology for reducing the complexity of a...
MICROBIAL PROCESSES AFFECTING MONITORED NATURAL ATTENUATION OF CONTAMINANTS IN THE SUBSURFACE
Among the alternatives considered for the remediation of soil and ground water at hazardous wastes sites are the use of natural processes to reduce or remove the contaminants of concern. Under favorable conditions, the use of natural attenuation can result in significant cost sa...
Aleer, Sam; Adetutu, Eric M; Weber, John; Ball, Andrew S; Juhasz, Albert L
2014-04-01
In situ bioremediation is potentially a cost effective treatment strategy for subsurface soils contaminated with petroleum hydrocarbons, however, limited information is available regarding the impact of soil spatial heterogeneity on bioremediation efficacy. In this study, we assessed issues associated with hydrocarbon biodegradation and soil spatial heterogeneity (samples designated as FTF 1, 5 and 8) from a site in which in situ bioremediation was proposed for hydrocarbon removal. Test pit activities showed similarities in FTF soil profiles with elevated hydrocarbon concentrations detected in all soils at 2 m below ground surface. However, PCR-DGGE-based cluster analysis showed that the bacterial community in FTF 5 (at 2 m) was substantially different (53% dissimilar) and 2-3 fold more diverse than communities in FTF 1 and 8 (with 80% similarity). When hydrocarbon degrading potential was assessed, differences were observed in the extent of (14)C-benzene mineralisation under aerobic conditions with FTF 5 exhibiting the highest hydrocarbon removal potential compared to FTF 1 and 8. Further analysis indicated that the FTF 5 microbial community was substantially different from other FTF samples and dominated by putative hydrocarbon degraders belonging to Pseudomonads, Xanthomonads and Enterobacteria. However, hydrocarbon removal in FTF 5 under anaerobic conditions with nitrate and sulphate electron acceptors was limited suggesting that aerobic conditions were crucial for hydrocarbon removal. This study highlights the importance of assessing available microbial capacity prior to bioremediation and shows that the site's spatial heterogeneity can adversely affect the success of in situ bioremediation unless area-specific optimizations are performed. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu
2014-05-01
A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.
A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments
NASA Astrophysics Data System (ADS)
Fay, E. L.; Knight, R. J.; Grunewald, E. D.
2016-12-01
Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.
Gihring, Thomas M.; Zhang, Gengxin; Brandt, Craig C.; Brooks, Scott C.; Campbell, James H.; Carroll, Susan; Criddle, Craig S.; Green, Stefan J.; Jardine, Phil; Kostka, Joel E.; Lowe, Kenneth; Mehlhorn, Tonia L.; Overholt, Will; Watson, David B.; Yang, Zamin; Wu, Wei-Min; Schadt, Christopher W.
2011-01-01
Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H2 production during EVO degradation appeared to stimulate NO3−, Fe(III), U(VI), and SO42− reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms. PMID:21764967
Gihring, Thomas M; Zhang, Gengxin; Brandt, Craig C; Brooks, Scott C; Campbell, James H; Carroll, Susan; Criddle, Craig S; Green, Stefan J; Jardine, Phil; Kostka, Joel E; Lowe, Kenneth; Mehlhorn, Tonia L; Overholt, Will; Watson, David B; Yang, Zamin; Wu, Wei-Min; Schadt, Christopher W
2011-09-01
Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H(2) production during EVO degradation appeared to stimulate NO(3)(-), Fe(III), U(VI), and SO(4)(2-) reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.
Ashwal, L.D.; Wooden, J.L.; Emslie, R.F.
1986-01-01
We report Sr, Nd and Pb isotopic compositions of mid-Proterozoic anorthosites and related rocks (1.45-1.65 Ga) and of younger olivine diabase dikes (1.4 Ga) from two complexes on either side of the Grenville Front in Labrador. Anorthositic or diabasic samples from the Mealy Mountains (Grenville Province) and Harp Lake (Nain-Churchill Provinces) complexes have very similar major, minor and trace element compositions, but distinctly different isotopic signatures. All Mealy Mountains samples have ISr = 0.7025-0.7033, ??{lunate}Nd = +0.6 to +5.6 and Pb isotopic compositions consistent with derivation from a mantle source depleted with respect to Nd/Sm and Rb/Sr. Pb isotopic compositions for the Mealy Mountains samples are slightly more radiogenic than model mantle compositions. All Harp Lake samples have ISr = 0.7032-0.7066, ??{lunate}Nd = -0.3 to -4.4 and variable, but generally unradiogenic 207Pb 204Pb and 206Pb 204Pb compared to model mantle, suggesting mixing between a mantle-derived component and a U-depleted crustal contaminant. Crustal contaminants are probably a variety of Archean high-grade quartzofeldspathic gneisses with low U/Pb ratios and include a component that must be isotopically similar to the early Archean (>3.6 Ga) Uivak gneisses of Labrador or the Amitsoq gneisses of west Greenland. This would imply that the ancient gneiss complex of coastal Labrador and Greenland is larger than indicated by present surface exposure and may extend in the subsurface as far west as the Labrador Trough. If Harp Lake and Mealy Mountains samples were subjected to the same degree of contamination, as suggested by their chemical similarities, then the Mealy contaminants must be much younger, probably early or middle Proterozoic in age. The Labrador segment of the Grenville Front, therefore, appears to coincide with the southern margin of the Archean North Atlantic craton and may represent a pre mid-Proterozoic suture. ?? 1986.
Reducing Contingency through Sampling at the Luckey FUSRAP Site - 13186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frothingham, David; Barker, Michelle; Buechi, Steve
2013-07-01
Typically, the greatest risk in developing accurate cost estimates for the remediation of hazardous, toxic, and radioactive waste sites is the uncertainty in the estimated volume of contaminated media requiring remediation. Efforts to address this risk in the remediation cost estimate can result in large cost contingencies that are often considered unacceptable when budgeting for site cleanups. Such was the case for the Luckey Formerly Utilized Sites Remedial Action Program (FUSRAP) site near Luckey, Ohio, which had significant uncertainty surrounding the estimated volume of site soils contaminated with radium, uranium, thorium, beryllium, and lead. Funding provided by the American Recoverymore » and Reinvestment Act (ARRA) allowed the U.S. Army Corps of Engineers (USACE) to conduct additional environmental sampling and analysis at the Luckey Site between November 2009 and April 2010, with the objective to further delineate the horizontal and vertical extent of contaminated soils in order to reduce the uncertainty in the soil volume estimate. Investigative work included radiological, geophysical, and topographic field surveys, subsurface borings, and soil sampling. Results from the investigative sampling were used in conjunction with Argonne National Laboratory's Bayesian Approaches for Adaptive Spatial Sampling (BAASS) software to update the contaminated soil volume estimate for the site. This updated volume estimate was then used to update the project cost-to-complete estimate using the USACE Cost and Schedule Risk Analysis process, which develops cost contingencies based on project risks. An investment of $1.1 M of ARRA funds for additional investigative work resulted in a reduction of 135,000 in-situ cubic meters (177,000 in-situ cubic yards) in the estimated base volume estimate. This refinement of the estimated soil volume resulted in a $64.3 M reduction in the estimated project cost-to-complete, through a reduction in the uncertainty in the contaminated soil volume estimate and the associated contingency costs. (authors)« less
Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N
2016-03-01
Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.
Kuras, Oliver; Wilkinson, Paul B; Meldrum, Philip I; Oxby, Lucy S; Uhlemann, Sebastian; Chambers, Jonathan E; Binley, Andrew; Graham, James; Smith, Nicholas T; Atherton, Nick
2016-10-01
A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae
2018-01-15
Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (<0.063- and <2-mm) was utilized in two monitoring wells: DH1 (located close to the injection and extraction wells for in-situ soil flushing) and DH2 (located beyond sheet piles placed to block the transport of leaked diesel). Total petroleum hydrocarbon (TPH) concentrations and biogeochemical properties were monitored both in soil and groundwater for six months. A shift occurred in the groundwater type from Ca-HCO 3 to Na-Cl due to seawater intrusion during intense pumping, while the concentrations of Ni, Cu, Co, V, Cr, and Se increased substantially following surfactant (TWEEN 80) injection. The in-situ sampler with fine particles was more sensitive to variations in conditions during the remedial soil flushing process. In both wells, soil TPH concentrations in the <0.063-mm fraction were much higher than those in the <2-mm fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermal etching of silver: Influence of rolling defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ollivier, M., E-mail: o.maelig@imperial.ac.uk
2016-08-15
Silver is well known to be thermally etched in an oxygen-rich atmosphere and has been extensively studied in the laboratory to understand thermal etching and to limit its effect when this material is used as a catalyst. Yet, in many industrial applications the surface of rolled silver sheets is used without particular surface preparation. Here, it is shown by combining FIB-tomography, FIB-SIMS and analytical SEM that the kinetics of thermal etch pitting are significantly faster on rolled Ag surfaces than on polished surfaces. This occurs due to range of interacting phenomena including (i) the reaction of subsurface carbon-contamination with dissolvedmore » oxygen to form pores that grow to intersect the surface, (ii) surface reconstruction around corrosion pits and surface scratches, and (iii) sublimation at low pressure and high temperature. A method to identify subsurface pores is developed to show that the pores have (111) and (100) internal facets and may be filled with a gas coming from the chemical reaction of oxygen and carbon contamination. - Highlights: Thermal etching of industrial silver sheets vs. polished silver sheets Effect of annealing atmosphere on the thermal etching of silver: surface and subsurface characterization Link between etch pitting and defects induced by rolling. FIB-tomography coupled with EBSD for determining crystal planes of the facets of subsurface pores. FIB-SIMS characterization to probe the gas confined inside subsurface pores.« less
It is well known that the fate and transport of contaminants in the subsurface are controlled by complex processes including advection, dispersion-diffusion, and chemical reactions. However, the interplay between the physical transport processes and chemical reactions, and their...
Comparison of contaminant transport in agricultural drainage water and urban stormwater runoff
USDA-ARS?s Scientific Manuscript database
Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts including hypoxia and harmful algal blooms. The main objective of this long-term study was to quantify and compare contaminant transport from a subsurface-drain...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd Arbogast; Steve Bryant; Clint N. Dawson
1998-08-31
This report describes briefly the work of the Center for Subsurface Modeling (CSM) of the University of Texas at Austin (and Rice University prior to September 1995) on the Partnership in Computational Sciences Consortium (PICS) project entitled Grand Challenge Problems in Environmental Modeling and Remediation: Groundwater Contaminant Transport.
Pilot-scale vadose zone microbial biobarriers removed nitrate leaching from a cattle corral
USDA-ARS?s Scientific Manuscript database
activities that involve animal wastes can result in the contamination of subsurface soils by nitrates. In saturated or nearly saturated soils microbial biobarriers are a common method used to remove contaminants from water. This field study was conducted beneath a cattle pen in northeast Colorado a...
A wide variety of in situ subsurface remediation strategies have been developed to mitigate contamination by chlorinated solvent dense non-aqueous phase liquids (DNAPLS) and metals. Geochemical methods include: zerovalent iron emplacement, various electrolytic applications, elec...
Site characterization of subsurface contaminant transport is often hampered by a lack of knowledge of site heterogeneity and temporal variations in hydrogeochemistry. Two case studies are reviewed to illustrate the utility of macro-scale mapping information along with spatially-...
Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding
NASA Astrophysics Data System (ADS)
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-07-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-01-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
REGUERA, GEMMA
2014-01-16
One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilmsmore » than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.« less
Khadam, Ibrahim; Kaluarachchi, Jagath J
2003-07-01
Decision analysis in subsurface contamination management is generally carried out through a traditional engineering economic viewpoint. However, new advances in human health risk assessment, namely, the probabilistic risk assessment, and the growing awareness of the importance of soft data in the decision-making process, require decision analysis methodologies that are capable of accommodating non-technical and politically biased qualitative information. In this work, we discuss the major limitations of the currently practiced decision analysis framework, which evolves around the definition of risk and cost of risk, and its poor ability to communicate risk-related information. A demonstration using a numerical example was conducted to provide insight on these limitations of the current decision analysis framework. The results from this simple ground water contamination and remediation scenario were identical to those obtained from studies carried out on existing Superfund sites, which suggests serious flaws in the current risk management framework. In order to provide a perspective on how these limitations may be avoided in future formulation of the management framework, more matured and well-accepted approaches to decision analysis in dam safety and the utility industry, where public health and public investment are of great concern, are presented and their applicability in subsurface remediation management is discussed. Finally, in light of the success of the application of risk-based decision analysis in dam safety and the utility industry, potential options for decision analysis in subsurface contamination management are discussed.
USGS Toxic Substances Hydrology Program, 2010
Buxton, Herbert T.
2010-01-01
The U.S. Geological Survey (USGS) Toxic Substances Hydrology Program adapts research priorities to address the most important contamination issues facing the Nation and to identify new threats to environmental health. The Program investigates two major types of contamination problems: * Subsurface Point-Source Contamination, and * Watershed and Regional Contamination. Research objectives include developing remediation methods that use natural processes, characterizing and remediating contaminant plumes in fractured-rock aquifers, identifying new environmental contaminants, characterizing new and understudied pesticides in common pesticide-use settings, explaining mercury methylation and bioaccumulation, and developing approaches for remediating watersheds affected by active and historic mining.
Ground water contamination by crude oil near Bemidji, Minnesota
Delin, G.N.; Essaid, H.I.; Cozzarelli, I.M.; Lahvis, M.H.; Bekins, B.A.
1998-01-01
Ground-water contamination by crude oil, and other petroleum-based liquids, is a widespread problem. An average of 83 crude-oil spills occurred per year during 1994-96 in the United States, each spilling about 50,000 barrels of crude oil (U.S. Office of Pipeline Safety, electronic commun., 1997). An understanding of the fate of organic contaminants (such as oil and gasoline) in the subsurface is needed to design innovative and cost-effective remedial solutions at contaminated sites.
Wijesekara, Hasintha Rangana; De Silva, Sunethra Nalin; Wijesundara, Dharani Thanuja De Silva; Basnayake, Bendict Francis Antony; Vithanage, Meththika Suharshini
2015-01-01
This study presents the use of direct current resistivity techniques (DCRT) for investigation and characterization of leachate-contaminated subsurface environment of an open solid waste dumpsite at Kandy, Sri Lanka. The particular dumpsite has no liner and hence the leachate flows directly to the nearby river via subsurface and surface channels. For the identification of possible subsurface flow paths and the direction of the leachate, DCRT (two-dimensional, three-dimensional and vertical electrical sounding) have been applied. In addition, the physico-chemical parameters such as pH, electrical conductivity (EC), alkalinity, hardness, chloride, chemical oxygen demand (COD) and total organic carbon (TOC) of leachate collected from different points of the solid waste dumping area and leachate drainage channel were analysed. Resistivity data confirmed that the leachate flow is confined to the near surface and no separate plume is observed in the downstream area, which may be due to the contamination distribution in the shallow overburden thickness. The stratigraphy with leachate pockets and leachate plume movements was well demarcated inside the dumpsite via low resistivity zones (1-3 Ωm). The recorded EC, alkalinity, hardness and chloride contents in leachate were averaged as 14.13 mS cm⁻¹, 3236, 2241 and 320 mg L⁻¹, respectively, which confirmed the possible causes for low resistivity values. This study confirms that DCRT can be effectively utilized to assess the subsurface characteristics of the open dumpsites to decide on corridor placement and depth of permeable reactive barriers to reduce the groundwater contamination.
NASA Astrophysics Data System (ADS)
Gesels, Julie; Orban, Philippe; Popescu, Cristina; Knöller, Kay; Brouyère, Serge
2014-05-01
The alluvial aquifer of the Meuse River is contaminated at regional scale in the urbanized and industrialized area of Liège in Belgium with different types of contaminants, in particular inorganics such as sulfate, nitrate and ammonium. The sources of those contaminants are numerous: brownfields, urban waste water, subsurface acid mine drainage from former coal mines, atmospheric deposits related to pollutants emissions in the atmosphere... Sulfate, nitrate and ammonium are both typical pollutants of the aquifer and tracers of the possible pollution sources. According to the European legislation on water, groundwater resources should reach a good quality status before 2015. However, an exemption can be obtained if it may be unfeasible or unreasonably expensive to achieve good status. In this case, groundwater quality objectives and management plans can be adapted to these specific conditions. To obtain such an exemption for the Meuse alluvial aquifer, it is required to demonstrate that the poor qualitative status is caused by acid mine drainage, or by widespread historical atmospheric deposition from industries, and not by recent anthropogenic contamination from the urban and industrial context. In this context, a detailed hydrogeochemical characterization of groundwater has been performed, with the aim of determining the origin of the inorganic contaminations and the main processes contributing to poor groundwater quality. A large hydrochemical sampling campaign was performed, based on 71 selected representative sampling locations, to better characterize the different vectors (end-members) of contamination of the alluvial aquifer and their respective contribution to groundwater contamination in the area. Groundwater samples were collected and analyzed for major and minor compounds and metallic trace elements. The analyses also include stable isotopes in water, sulfate, nitrate, ammonium, boron and strontium. Different hydrogeochemical approaches are combined to obtain a global understanding of the hydrogeochemical processes at regional scale. Hydrochemical interpretations are based on classical diagrams (e.g. Piper), spatial distribution maps, geochemical equations, multivariate statistics and isotopic analyses. With this combined approach, the location of the contaminant sources and most contaminated sectors of the alluvial aquifer together with a better understanding of geochemical processes involved are obtained.
Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana
McDougal, Robert R.; Smith, Bruce D.
2000-01-01
The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of ground water flow, and with water quality data from monitoring wells in and around the tailings. The electrical geophysical data suggests there has been vertical migration of high dissolved solids. A DC sounding made on a nearby granite outcrop to the north of the mine showed that the shallow conductivity is on the order of 5 millisiemens/m. Granite underlying the mine tailings, with similar electrical properties as the outcropping area, may be more than 30 meters deep.
Yang, Yong; Liu, Yongzhong; Yu, Bo; Ding, Tian
2016-06-01
Volatile contaminants may migrate with carbon dioxide (CO2) injection or leakage in subsurface formations, which leads to the risk of the CO2 storage and the ecological environment. This study aims to develop an analytical model that could predict the contaminant migration process induced by CO2 storage. The analytical model with two moving boundaries is obtained through the simplification of the fully coupled model for the CO2-aqueous phase -stagnant phase displacement system. The analytical solutions are confirmed and assessed through the comparison with the numerical simulations of the fully coupled model. Then, some key variables in the analytical solutions, including the critical time, the locations of the dual moving boundaries and the advance velocity, are discussed to present the characteristics of contaminant migration in the multi-phase displacement system. The results show that these key variables are determined by four dimensionless numbers, Pe, RD, Sh and RF, which represent the effects of the convection, the dispersion, the interphase mass transfer and the retention factor of contaminant, respectively. The proposed analytical solutions could be used for tracking the migration of the injected CO2 and the contaminants in subsurface formations, and also provide an analytical tool for other solute transport in multi-phase displacement system. Copyright © 2016 Elsevier B.V. All rights reserved.
Casas-Zapata, Juan C; Ríos, Karina; Florville-Alejandre, Tomás R; Morató, Jordi; Peñuela, Gustavo
2013-01-01
This study investigates the effects of chlorothalonil (CLT) on chemical oxygen demand (COD) and dissolved organic carbon (DOC) in pilot-scale horizontal subsurface flow constructed wetlands (HSSFCW) planted with Phragmites australis. Physicochemical parameters of influent and effluent water samples, microbial population counting methods and statistical analysis were used to evaluate the influence of CLT on organic matter removal efficiency. The experiments were conducted on four planted replicate wetlands (HSSFCW-Pa) and one unplanted control wetland (HSSFCW-NPa). The wetlands exhibited high average organic matter removal efficiencies (HSSFCW-Pa: 80.6% DOC, 98.0% COD; HSSFCW-NPa: 93.2% DOC, 98.4% COD). The addition of CLT did not influence organic removal parameters. In all cases CLT concentrations in the effluent occurred in concentrations lower than the detection limit of the analytical method. Microbial population counts from HSSFCW-Pa showed significant correlations among different microbial groups and with different physicochemical variables. The apparent independence of organic matter removal and CLT inputs, along with the CLT depletion observed in effluent samples demonstrated that HSSFCW are a viable technology for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT.
NASA Astrophysics Data System (ADS)
Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.
2015-12-01
Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment cores spanning the upper CRB. Early findings from Rifle, CO indicate elevated abundances of ammonia-oxidizers seem to correlate with elevated uranium concentrations emphasizing the critical need to understand how nitrogen-cycling organisms influence subsurface U redox chemistry and mobility.
NASA Astrophysics Data System (ADS)
Jin, Minquan; Delshad, Mojdeh; Dwarakanath, Varadarajan; McKinney, Daene C.; Pope, Gary A.; Sepehrnoori, Kamy; Tilburg, Charles E.; Jackson, Richard E.
1995-05-01
In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypothetical two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer tests results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, M.; Delshad, M.; Dwarakanath, V.
1995-05-01
In this paper we present a partitioning interwell tracer test (PITT) technique for the detection, estimation, and remediation performance assessment of the subsurface contaminated by nonaqueous phase liquids (NAPLs). We demonstrate the effectiveness of this technique by examples of experimental and simulation results. The experimental results are from partitioning tracer experiments in columns packed with Ottawa sand. Both the method of moments and inverse modeling techniques for estimating NAPL saturation in the sand packs are demonstrated. In the simulation examples we use UTCHEM, a comprehensive three-dimensional, chemical flood compositional simulator developed at the University of Texas, to simulate a hypotheticalmore » two-dimensional aquifer with properties similar to the Borden site contaminated by tetrachloroethylene (PCE), and we show how partitioning interwell tracer tests can be used to estimate the amount of PCE contaminant before remedial action and as the remediation process proceeds. Tracer test results from different stages of remediation are compared to determine the quantity of PCE removed and the amount remaining. Both the experimental (small-scale) and simulation (large-scale) results demonstrate that PITT can be used as an innovative and effective technique to detect and estimate the amount of residual NAPL and for remediation performance assessment in subsurface formations. 43 refs., 10 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Osinowo, Olawale Olakunle; Falufosi, Michael Oluseyi; Omiyale, Eniola Oluwatosin
2018-04-01
This study attempts to establish the level of contamination caused by the decomposition of wastes by defining the lateral distribution and the vertical limit of leachate induced zone of anomalous conductivity distribution within the subsurface through the analyses of Electromagnetic (EM) and Electrical Resistivity Tomography (ERT) data, generated from the integrated geophysical survey over Awotan landfill dumpsite, in Ibadan, southwest Nigeria. Nine (9) EM and ERT profiles each were established within and around the Awotan landfill site. EM data were acquire at 5 m station interval using 10 m, 20 m and 40 m inter-coil spacings, while ERT stations were occupied at 2 m electrode spacing using dipole-dipole electrode configuration. The near perfect agreement between the two sets of data generated from the EM and ERT surveys over the Awotan landfill site as well as the subsurface imaging ability of these geophysical methods to delineate the region of elevated contamination presented in the form of anomalously high apparent ground conductivity and low subsurface resistivity distribution, suggest the importance of integrating electromagnetic and electrical resistivity investigation techniques for environmental studies and more importantly for selecting appropriate landfill dump site location such with ability to retain the generated contaminants and thus prevent environmental pollution.
Hasenmueller, N.R.; Buehler, M.A.; Krothe, N.C.; Comer, J.B.; Branam, T.D.; Ennis, M.V.; Smith, R.T.; Zamani, D.D.; Hahn, L.; Rybarczyk, J.P.
2006-01-01
The Spring Mill Lake watershed is located in the Mitchell Plateau, a karst area that developed on Mississippian carbonates in southern Indiana. Spring Mill Lake is a reservoir built in the late 1930s and is located in Spring Mill State Park. Within the park, groundwater from subsurface conduits issues as natural springs and then flows in surface streams to the lake. From 1998 to 2002, surface and subsurface hydrology and water quality were investigated to determine the types and sources of potential contaminants entering the lake. Water samples collected during base flow and a February 2000 storm event were analyzed for selected cations, anions, trace elements, selected U.S. Environmental Protection Agency (EPA) primary and secondary drinkingwater contaminants, nitrogen isotopes, suspended solids, Escherichia coli, and pesticides. All of the water samples met the EPA drinking-water standards for inorganic constituents, except those collected at five sites in August 1999 during a drought. Nitrate nitrogen (NO3-N) concentrations were highest during base-flow conditions and displayed a dilutional trend during peak-flow periods. The NO3-N concentrations in water samples collected during the 2001 spring fertilizer applications tended to increase from early to late spring. All of the ??15N values were low, which is indicative of either an inorganic source or soil organic matter. Storm discharge contained increased concentrations of total suspended solids; thus, storms are responsible for most of the sediment accumulation in the lake. E. coli levels in 24% of the samples analyzed contained a most probable number (MPN) greater than 235/100 mL, which is the maximum acceptable level set for recreational waters in Indiana. E. coli does appear to be a potential health risk, particularly at Rubble spring. The sources of E. coli found at this spring may include barnyard runoff from a horse barn or wastes from a wastewater treatment facility. The pesticides atrazine, metolachlor, acetochlor, and simazine were detected during the spring of 2001. Atrazine, metolachlor, acetochlor, and simazine are used to suppress weeds during corn and soybean production. Additional sources of atrazine and simazine may result from application to right-of-ways, orchards, and managed forest areas. ?? 2006 Geological Society of America.
NASA Astrophysics Data System (ADS)
Angulo-Jaramillo, R.; Winiarski, T.; Goutaland, D.; Lassabatere, L.
2009-12-01
Stormwater infiltration basins have become a common alternative practice to traditional stormwater pipe networks in urban areas. They are often built in permeable subsurface soils (Urban Vadose Zone, URVAZO), such as alluvial deposits. These sedimentary deposits are highly heterogeneous and generate preferential flow paths that may cause either rapid or non-uniform transport of contaminants at great depths. The understanding of how subsurface vadose zone heterogeneities transfer contaminant and fluid flow to the aquifer still remains a challenge in urban hydrology. Indeed, urban stormwater may contain pollutants that can contaminate either soil or groundwater. The aim of this study is to evaluate the role of the lithological heterogeneity of a glaciofluvial deposit underlying an urban infiltration basin on the link between water flow and heavy metals retention. A trench wall (14m length x 3m depth) was exposed by excavating the glaciofluvial formation. By a hydrogeophysical approach based on a sedimentary structural units and in situ hydraulic characterization (Beerkan tests), a realistic hydrostratigraphic 2D model was defined. The trench was sampled on nine vertical sections of 1.5m length, with ten samples per vertical section following each lithofacies. A total of 90 samples were analyzed. Coarse (mechanical sieving) and fine (laser diffraction) particle size distribution analysis, as well as the concentration of three replicates of Pb, Cu, Zn and organic matter (OM) was measured for each sample. The principal component analysis shows a strong correlation between metal concentration and the lithofacies. This hydrostratigraphic model was implemented in the finite element program Hydrus2D. The soil heterogeneity exerts an impact on the heterogeneity of the water content field under slightly saturated conditions, as they induce capillary barrier effects. These capillary barrier effects may generate water accumulation in some lithofacies overlying matrix-free gravel; they lead to lateral flow patterns known as funneled flows. Knowledge of the geometry (orientation, dip) at the structural scale is therefore a prerequisite for evaluating the preferential flow paths. They can explain that the silt fraction may come from colloidal migration through the vadose zone. The use of coupled water-geochemical transfer models enables us to advance assumptions helping the comprehension of principal hydrogeochemical process in the urban vadose zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois
2010-12-10
The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity.more » Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.« less
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.
Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less
AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANN, F.M.
2007-07-10
The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation andmore » closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year).« less
Metallic, or zero-valence-state, iron is being incorporated into permeable reactive subsurface barriers for remediating a variety of contaminant plume types. The remediation occurs via reductive processes that are associated with surface corrosion of the iron metal. Reaction rate...
The biodegradation of organic contaminants in the subsurface has become a major focus of attention, in part, due to the tremendous interest in applying in situ biodegradation and natural attenuation approaches for site remediation. The biodegradation and trans...
The Idaho National Engineering & Environmental Lab (INEEL) was charged by DOE EM to develop a complex-wide science and technology roadmap for the characterization, modeling and simulation of the fate and transport of contamination in the vadose zone. Various types of hazardous, r...
Tackling the Challenge of Deep Vadose Zone Remediation at the Hanford Site
NASA Astrophysics Data System (ADS)
Morse, J. G.; Wellman, D. M.; Gephart, R.
2010-12-01
The Central Plateau of the Hanford Site in Washington State contains some 800 waste disposal sites where 1.7 trillion liters of contaminated water was once discharged into the subsurface. Most of these sites received liquids from the chemical reprocessing of spent uranium fuel to recover plutonium. In addition, 67 single shell tanks have leaked or are suspected to have leaked 3.8 million liters of high alkali and aluminate rich cesium-contaminated liquids into the sediment. Today, this inventory of subsurface contamination contains an estimated 550,000 curies of radioactivity and 150 million kg (165,000 tons) of metals and hazardous chemicals. Radionuclides range from mobile 99Tc to more immobilized 137Cs, 241Am, uranium, and plutonium. A significant fraction of these contaminants likely remain within the deep vadose zone. Plumes of groundwater containing tritium, nitrate, 129I and other contaminants have migrated through the vadose zone and now extend outward from the Central Plateau to the Columbia River. During most of Hanford Site history, subsurface studies focused on groundwater monitoring and characterization to support waste management decisions. Deep vadose zone studies were not a priority because waste practices relied upon that zone to buffer contaminant releases into the underlying aquifer. Remediation of the deep vadose zone is now central to Hanford Site cleanup because these sediments can provide an ongoing source of contamination to the aquifer and therefore to the Columbia River. However, characterization and remediation of the deep vadose zone pose some unique challenges. These include sediment thickness; contaminant depth; coupled geohydrologic, geochemical, and microbial processes controlling contaminant spread; limited availability and effectiveness of traditional characterization tools and cleanup remedies; and predicting contaminant behavior and remediation performance over long time periods and across molecular to field scales. The U.S Department of Energy recognizes these challenges and is committed to a sustained, focused effort of continuing to apply existing technologies where feasible while investing and developing in new innovative, field-demonstrated capabilities supporting longer-term basic and applied research to establish the technical underpinning for solving intractable deep vadose zone problems and implementing final remedies. This approach will rely upon Multi-Project Teams focusing on coordinated projects across multiple DOE offices, programs, and site contractors plus the facilitation of basic and applied research investments through implementing a Deep Vadose Zone Applied Field Research Center and other scientific studies.
Detachment of particulate iron sulfide during shale-water interaction
NASA Astrophysics Data System (ADS)
Emmanuel, S.; Kreisserman, Y.
2017-12-01
Hydraulic fracturing, a commonly used technique to extract oil and gas from shales, is controversial in part because of the threat it poses to water resources. The technique involves the injection into the subsurface of large amounts of fluid, which can become contaminated by fluid-rock interaction. The dissolution of pyrite is thought to be a primary pathway for the contamination of fracturing fluids with toxic elements, such as arsenic and lead. In this study, we use direct observations with atomic force microscopy to show that the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment of embedded pyrite grains. To simulate the way fluid interacts with a fractured shale surface, we also reacted rock samples in a flow-through cell, and used environmental scanning electron microscopy to compare the surfaces before and after interaction with water. Crucially, our results show that the flux of particulate iron sulfide into the fluid may be orders of magnitude higher than the flux of pyrite from chemical dissolution. This result suggests that mechanical detachment of pyrite grains could be the dominant mode by which arsenic and other inorganic elements are mobilized in the subsurface. Thus, during hydraulic fracturing operations and in groundwater systems containing pyrite, the transport of many toxic species may be controlled by the transport of colloidal iron sulfide particles.
Lipp, E K; Farrah, S A; Rose, J B
2001-04-01
The goals of this study were to assess watersheds impacted by high densities of OSDS (onsite sewage disposal systems) for evidence of fecal contamination and evaluate the occurrence of human pathogens in coastal waters off west Florida. Eleven stations (representing six watersheds) were intensively sampled for microbial indicators of fecal pollution (fecal coliform bacteria, enterococci, Clostridium perfringens and coliphage) and the human enteric pathogens, Cryptosporidium, Giardia, and enteroviruses during the summer rainy season (May-September 1996). Levels of all indicators ranged between < 5 and > 4000 CFU/100 ml. Cryptosporidium and Giardia were detected infrequently (6.8% and 2.3% of samples tested positive, respectively). Conversely, infectious enteroviruses were detected at low levels in 5 of the 6 watersheds sampled. Using cluster analysis, sites were grouped into two categories, high and low risks, based on combined levels of indicators. These results suggest that stations of highest pollution risk were located within areas of high OSDS densities. Furthermore, data indicate a subsurface transport of contaminated water to surface waters. The high prevalence of enteroviruses throughout the study area suggests a chronic pollution problem and potential risk to recreational swimmers in and around Sarasota Bay.
NASA Technical Reports Server (NTRS)
Gorevan, S. P.; Wilson, J.; Bartlett, P.; Powderly, J.; Lawrence, D.; Elphic, R.; Mungas, G.; McCullough, E.; Stoker, C.; Cannon, H.
2004-01-01
Since the 1960s, claims have been made that water ice deposits should exist in permanently shadowed craters near both lunar poles. Recent interpretations of data from the Lunar Prospector-Neutron Spectrometer (LP- NS) confirm that significant concentrations of hydrogen exist, probably in the form of water ice, in the permanently shadowed polar cold traps. Yet, due to the large spatial resolution (45-60 Ian) of the LP-NS measurements relative to these shadowed craters (approx.5-25 km), these data offer little certainty regarding the precise location, form or distribution of these deposits. Even less is known about how such deposits of water ice might effect lunar regolith physical properties relevant to mining, excavation, water extraction and construction. These uncertainties will need to be addressed in order to validate fundamental lunar In Situ Resource Utilization (ISRU) precepts by 2011. Given the importance of the in situ utilization of water and other resources to the future of space exploration a need arises for the advanced deployment of a robotic and reconfigurable system for physical properties and resource reconnaissance. Based on a collection of high-TRL. designs, the Subsurface Analyzer and Sample Handler (SASH) addresses these needs, particularly determining the location and form of water ice and the physical properties of regolith. SASH would be capable of: (1) subsurface access via drilling, on the order of 3-10 meters into both competent targets (ice, rock) and regolith, (2) down-hole analysis through drill string embedded instrumentation and sensors (Neutron Spectrometer and Microscopic Imager), enabling water ice identification and physical properties measurements; (3) core and unconsolidated sample acquisition from rock and regolith; (4) sample handling and processing, with minimized contamination, sample containerization and delivery to a modular instrument payload. This system would be designed with three mission enabling goals, including: (1) a self-contained, low power, low mass, "black box'' configuration for operations from a lander, various classes of rovers or a surface-based platform with human assistance or robotic anchoring mechanisms; (2) reconfigurable and scalable sample handling for delivery to various types of instrumentation, depending on mission requirements; and (3) the use of advanced automation control and diagnostic techniques that will afford local human deployed, remote teleoperation and fully autonomous intelligent operations. Though a great deal of technology has been advanced toward these objectives, the SASH system faces significant design challenges, including the low gravity environment, various levels of autonomy in operations, radiation exposure, dust contamination, and temperature extremes and deltas. Significant input from the scientific and engineering communities, as well as a significant environmental testing program, will be required to guide the design process.
Travel Times of Water Derived from Three Naturally Occurring Cosmogenic Radioactive Isotopes
NASA Astrophysics Data System (ADS)
Visser, Ate; Thaw, Melissa; Deinhart, Amanda; Bibby, Richard; Esser, Brad
2017-04-01
Hydrological travel times are studied on scales that span six orders of magnitude, from daily event water in stream flow to pre-Holocene groundwater in wells. Groundwater vulnerability to contamination, groundwater surface water interactions and catchment response are often focused on "modern" water that recharged after the introduction of anthropogenic tritium in precipitation in 1953. Shorter residence times are expected in smaller catchments, resulting in immediate vulnerability to contamination. We studied a small (4.6 km2) alpine (1660-2117 m) catchment in a Mediterranean climate (8 ˚ C, 1200 mm/yr) in the California Sierra Nevada to assess subsurface storage and investigate the response to the recent California drought. We analyzed a combination of three cosmogenic radioactive isotopes with half-lives varying from 87 days (sulfur-35), 2.6 years (sodium-22) to 12.3 years (tritium) in precipitation and stream samples. Tritium samples (1 L) are analyzed by noble gas mass spectrometry after helium-3 accumulation. Samples for sulfur-35 and sodium-22 are collected by processing 20-1000 L of water through an anion and cation exchange column in-situ. Sulfur-35 is analyzed by liquid scintillation counting after chemical purification and precipitation. Sodium-22 is analyzed by gamma counting after eluting the cations into a 4L Marinelli beaker. Monthly collected precipitation samples show variability of deposition rate for tritium and sulfur-35. Sodium-22 levels in cumulative yearly precipitation samples are consistent with recent studies in the US and Japan. The observed variability of deposition rates complicates direct estimation of stream water age fractions. The level and variability of tritium in monthly stream samples indicate a mean residence time on the order of 10 years and only small contributions of younger water during high flow conditions. Estimates of subsurface storage are in agreement with estimates from geophysical studies. Detections of sodium-22 confirm a small fraction of younger (< 5 years) water. Low concentrations of sulfur-35 suggest very small contributions of same-year snowmelt or precipitation. Results from two contrasting years (severe drought in 2015 and near-normal conditions in 2016) illustrate travel time responses to hydrological conditions and further characterize the catchment properties. Combined analysis of three cosmogenic tracers provides a unique insight into the functioning of the catchment and constrains the volume of subsurface water storage. Short-lived naturally occurring radioactive isotopes sulfur-35 and sodium-22 are especially useful for vulnerability assessment of springs and karst systems where a contribution of very young water is expected. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-717377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartman, Brandy N.; Qafoku, Nikolla
2016-03-09
Uranium (U) contaminated subsurface systems are common on a global scale mainly because of its essential role in the production of plutonium for nuclear weapons and other nuclear energy and research activities. Studying the behavior and fate of U in these systems is challenging because of heterogeneities of different types (i.e., physical, chemical and mineralogical) and a complex network of often time-dependent hydrological, biological and chemical reactions and processes that occur sequentially or simultaneously, affecting and/or controlling U mobility. A U contaminated site, i.e., the Integrated Field Research Challenge site in Rifle, CO, USA (a former U mill site) ismore » the focus of this discussion. The overall objectives of this chapter are to 1) provide an overview of the contamination levels (U and other co-contaminants) at this field site; 2) review and discuss different aspects of mineral-U contaminant interactions in reduced and oxidized environments, and in the presence of co-contaminants; 3) present results from a systematic macroscopic, microscopic, and spectroscopic study as an example of the current research efforts and the state-of-knowledge in this important research area; and 4) offer insightful conclusive remarks and future research needs about reactions and processes that control U and other contaminants’ fate and behavior under hydraulically saturated conditions. The implications and applications presented in this chapter are valid for U contaminated sites across the world.« less
Fractal topography and subsurface water flows from fluvial bedforms to the continental shield
Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.
2007-01-01
Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.
Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.
Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott
2012-11-01
Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.
Implications of Polishing Techniques in Quantitative X-Ray Microanalysis
Rémond, Guy; Nockolds, Clive; Phillips, Matthew; Roques-Carmes, Claude
2002-01-01
Specimen preparation using abrasives results in surface and subsurface mechanical (stresses, strains), geometrical (roughness), chemical (contaminants, reaction products) and physical modifications (structure, texture, lattice defects). The mechanisms involved in polishing with abrasives are presented to illustrate the effects of surface topography, surface and subsurface composition and induced lattice defects on the accuracy of quantitative x-ray microanalysis of mineral materials with the electron probe microanalyzer (EPMA). PMID:27446758
Nimmo, John R.; Rousseau, Joseph P.; Perkins, Kim S.; Stollenwerk, Kenneth G.; Glynn, Pierre D.; Bartholomay, Roy C.; Knobel, LeRoy L.
2004-01-01
Questions of major importance for subsurface contaminant transport at the Idaho National Engineering and Environmental Laboratory (INEEL) include (i) travel times to the aquifer, both average or typical values and the range of values to be expected, and (ii) modes of contaminant transport, especially sorption processes. The hydraulic and geochemical framework within which these questions are addressed is dominated by extreme heterogeneity in a vadose zone and aquifer consisting of interbedded basalts and sediments. Hydraulically, major issues include diverse possible types of flow pathways, extreme anisotropy, preferential flow, combined vertical and horizontal flow, and temporary saturation or perching. Geochemically, major issues include contaminant mobility as influenced by redox conditions, the concentration of organic and inorganic complexing solutes and other local variables, the interaction with infiltrating waters and with the contaminant source environment, and the aqueous speciation of contaminants such as actinides. Another major issue is the possibility of colloid transport, which inverts some of the traditional concepts of mobility, as sorbed contaminants on mobile colloids may be transported with ease compared with contaminants that are not sorbed. With respect to the goal of minimizing aquifer concentrations of contaminants, some characteristics of the vadose zone are essentially completely favorable. Examples include the great thickness (200 m) of the vadose zone, and the presence of substantial quantities of fine sediments that can retard contaminant transport both hydraulically and chemically. Most characteristics, however, have both favorable and unfavorable aspects. For example, preferential flow, as promoted by several notable features of the vadose zone at the INEEL, can provide fast, minimally sorbing pathways for contaminants to reach the aquifer easily, but it also leads to a wide dispersal of contaminants in a large volume of subsurface material, thus increasing the opportunity for dilution and sorption.
Antolino, Dominick J.; Chapman, Melinda J.
2017-01-06
The U.S. Geological Survey South Atlantic Water Science Center collected borehole geophysical logs and images and continuous water-level data near the GMH Electronics National Priorities List Superfund site near Roxboro, North Carolina, during December 2012 through July 2015. Previous work by the U.S. Geological Survey South Atlantic Water Science Center at the site involved the collection of borehole geophysical log data in 15 wells, in addition to surface geologic mapping and passive diffusion bag sampling. In a continued effort to assist the U.S. Environmental Protection Agency in developing a conceptual groundwater model to assess current contaminant distribution and future migration of contaminants, more than 900 subsurface features (primarily fracture orientations) in 10 open borehole wells were delineated and continuous water-level data information from 14 monitoring wells within close proximity of the initially drilled boreholes was collected to observe any induced water-level fluctuations during drilling operations
Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong
2012-01-01
The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.
NASA Astrophysics Data System (ADS)
Padilla-Crespo, E.; Loeffler, F. E.
2011-12-01
Reductive dechlorination plays a major role in the transformation and detoxification of chlorinated solvents, including chlorinated ethenes. Molecular biological tools are being applied at contaminated sites in order to assess the process-specific biomarkers that impact site performance, and to monitor the progress of bioremediation approaches. The few current biomarker genes in use provide an incomplete picture of the reductively dechlorinating bacterial community; this is a limitation for implementing enhanced bioremediation and monitored natural attenuation as cleanup strategies at chlorinated solvent contaminated sites. Reductively dehalogenating organisms, particularly Dehalococcoides (Dhc) strains, possess multiple reductive dehalogenase (RDase) genes, which are promising targets to specifically monitor dehalogenation processes of interest. Dehalococcoides populations in two highly enriched cultures (RC and KS) have been implicated in the reductive dechlorination of dechlorination of 1,2-dichloropropane (1,2-D), a widespread halogenated organic pollutant, to the non-toxic propene. Using a combined approach of transcription, expression and molecular analysis a new biomarker linked to 1,2-dichloropropane has been identified in Dhc strains RC and KS providing for the first time, convincing evidence of a specific RDase implicated in 1,2-D dechlorination to propene. Further analyses imply that new biomarker is in a "mobile DNA segment", a genomic island (GI) of horizontal gene transfer origin. A valid quantitative PCR approach was designed to detect and enumerate this gene in cultures and environmental samples; this will be a useful to bioremediation practitioners to more efficiently implement reductive dechlorination as a remediation tool. The new biomarker has been identified in fresh water sediment samples from different geographical locations in Europe, North and South America. Further research aims to shed light on RDase gene dissemination and the adaptation of dehalospiring populations in subsurface environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickliff, D.S.; Solomon, D.K.; Farrow, N.D.
Solid Waste Storage Area (SWSA) 5 is known to be a significant source of contaminants, especially tritium ({sup 3}H), to the White Oak Creek (WOC) watershed. For example, Solomon et al. (1991) estimated the total {sup 3}H discharge in Melton Branch (most of which originates in SWSA 5) for the 1988 water year to be 1210 Ci. A critical issue for making decisions concerning remedial actions at SWSA 5 is knowing whether the annual contaminant discharge is increasing or decreasing. Because (1) the magnitude of the annual contaminant discharge is highly correlated to the amount of annual precipitation (Solomon etmore » al., 1991) and (2) a significant lag may exist between the time of peak contaminant release from primary sources (i.e., waste trenches) and the time of peak discharge into streams, short-term stream monitoring by itself is not sufficient for predicting future contaminant discharges. In this study we use {sup 3}H to examine the link between contaminant release from primary waste sources and contaminant discharge into streams. By understanding and quantifying subsurface transport processes, realistic predictions of future contaminant discharge, along with an evaluation of the effectiveness of remedial action alternatives, will be possible. The objectives of this study are (1) to characterize the subsurface movement of contaminants (primarily {sup 3}H) with an emphasis on the effects of matrix diffusion; (2) to determine the relative strength of primary vs secondary sources; and (3) to establish a methodology capable of determining whether the {sup 3}H discharge from SWSA 5 to streams is increasing or decreasing.« less
Preliminary investigation of processes that affect source term identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickliff, D.S.; Solomon, D.K.; Farrow, N.D.
Solid Waste Storage Area (SWSA) 5 is known to be a significant source of contaminants, especially tritium ({sup 3}H), to the White Oak Creek (WOC) watershed. For example, Solomon et al. (1991) estimated the total {sup 3}H discharge in Melton Branch (most of which originates in SWSA 5) for the 1988 water year to be 1210 Ci. A critical issue for making decisions concerning remedial actions at SWSA 5 is knowing whether the annual contaminant discharge is increasing or decreasing. Because (1) the magnitude of the annual contaminant discharge is highly correlated to the amount of annual precipitation (Solomon etmore » al., 1991) and (2) a significant lag may exist between the time of peak contaminant release from primary sources (i.e., waste trenches) and the time of peak discharge into streams, short-term stream monitoring by itself is not sufficient for predicting future contaminant discharges. In this study we use {sup 3}H to examine the link between contaminant release from primary waste sources and contaminant discharge into streams. By understanding and quantifying subsurface transport processes, realistic predictions of future contaminant discharge, along with an evaluation of the effectiveness of remedial action alternatives, will be possible. The objectives of this study are (1) to characterize the subsurface movement of contaminants (primarily {sup 3}H) with an emphasis on the effects of matrix diffusion; (2) to determine the relative strength of primary vs secondary sources; and (3) to establish a methodology capable of determining whether the {sup 3}H discharge from SWSA 5 to streams is increasing or decreasing.« less
Paul, J H; Rose, J B; Jiang, S; Kellogg, C; Shinn, E A
1995-01-01
Sewage waste disposal facilities in the Florida Keys include septic tanks and individual package plants in place of municipal collection facilities in most locations. In Key Largo, both facilities discharge into the extremely porous Key Largo limestone. To determine whether there was potential contamination of the subsurface aquifer and nearby coastal surface waters by such waste disposal practices, we examined the presence of microbial indicators commonly found in sewage (fecal coliforms, Clostridium perfringens, and enterococci) and aquatic microbial parameters (viral direct counts, bacterial direct counts, chlorophyll a, and marine vibriophage) in injection well effluent, monitoring wells that followed a transect from onshore to offshore, and surface waters above these wells in two separate locations in Key Largo in August 1993 and March 1994. Effluent and waters from onshore shallow monitoring wells (1.8- to 3.7-m depth) contained two or all three of the fecal indicators in all three samples taken, whereas deeper wells (10.7- to 12.2-m depth) at these same sites contained few or none. The presence of fecal indicators was found in two of five nearshore wells (i.e., those that were < or = 1.8 miles [< or = 2.9 km] from shore), whereas offshore wells (> or = 2.1 to 5.7 miles [< or = 3.4 to 9.2 km] from shore) showed little sign of contamination. Indicators were also found in surface waters in a canal in Key Largo and in offshore surface waters in March but not in August. Collectively, these results suggest that fecal contamination of the shallow onshore aquifer, parts of the nearshore aquifer, and certain surface waters has occurred.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793943
Effects of Jet Fuel Spills on the Microbial Community of Soil †
Song, Hong-Gyu; Bartha, Richard
1990-01-01
Hydrocarbon residues, microbial numbers, and microbial activity were measured and correlated in loam soil contaminated by jet fuel spills resulting in 50 and 135 mg of hydrocarbon g of soil−1. Contaminated soil was incubated at 27°C either as well-aerated surface soil or as poorly aerated subsurface soil. In the former case, the effects of bioremediation treatment on residues, microbial numbers, and microbial activity were also assessed. Hydrocarbon residues were measured by quantitative gas chromatography. Enumerations included direct counts of metabolically active bacteria, measurement of mycelial length, plate counts of aerobic heterotrophs, and most probable numbers of hydrocarbon degraders. Activity was assessed by fluorescein diacetate (FDA) hydrolysis. Jet fuel disappeared much more rapidly from surface soil than it did from subsurface soil. In surface soil, microbial numbers and mycelial length were increased by 2 to 2.5 orders of magnitude as a result of jet fuel contamination alone and by 3 to 4 orders of magnitude as a result of the combination of jet fuel contamination and bioremediation. FDA hydrolysis was stimulated by jet fuel and bioremediation, but was inhibited by jet fuel alone. The latter was traced to an inhibition of the FDA assay by jet fuel biodegradation products. In subsurface soil, oxygen limitation strongly attenuated microbial responses to jet fuel. An increase in the most probable numbers of hydrocarbon degraders was accompanied by a decline in other aerobic heterotrophs, so that total plate counts changed little. The correlations between hydrocarbon residues, microbial numbers, and microbial activity help in elucidating microbial contributions to jet fuel elimination from soil. PMID:16348138
NASA Astrophysics Data System (ADS)
Abdoulhalik, Antoifi; Ahmed, Ashraf A.
2017-10-01
The main purpose of this work was to examine how aquifer layering impacts the ability of subsurface dams to retain seawater intrusion (SWI) and to clean up contaminated coastal aquifers using both experimental and numerical techniques. Four different layering configurations were investigated, including a homogeneous case (case H), and three different layered cases where a low permeability layer was set at the top of the aquifer (case LH), at the middle part of the aquifer as interlayer (case HLH), and at the lower part of the aquifer (case HL). The subsurface dam was able to retain the saltwater wedge associated with a drop of the hydraulic gradient from 0.0158 down to 0.0095 in all the cases, thereby achieving up to 78% reduction in the saltwater toe length. In cases LH and HLH, the start of the saltwater spillage was delayed compared to the homogeneous case, and the time taken for the freshwater zone to be fully contaminated (post-spillage) was twice and three times longer, respectively. By contrast, the existence of a low K layer at the bottom of the aquifer (case HL) considerably weakened the ability of dams to retain the intrusion, allowing for quicker saltwater spillage past the wall. The natural cleanup of SWI-contaminated coastal aquifers was, for the first time, evidenced in heterogeneous settings. Depending on the stratification pattern, the presence of stratified layers however prolonged the cleanup time to various degrees, compared to the homogeneous scenario, particularly in case HL, where the cleanup time was nearly 50% longer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Robert W.
2004-12-01
Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zonemore » systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).« less
Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage.
Kaspar, T C; Jaynes, D B; Parkin, T B; Moorman, T B
2007-01-01
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.
NASA Astrophysics Data System (ADS)
Zhong, L.; Szecsody, J.; Li, X.; Oostrom, M.; Truex, M.
2010-12-01
In many contamination sites, removal of contaminants by any active remediation efforts is not practical due to the high cost and technological limitations. Alternatively, in situ remediation is expected to be the most important remediation strategy. Delivery of reactive amendment to the contamination zone is essential for the reactions between the contaminants and remedial amendments to proceed in situ. It is a challenge to effectively deliver remedial amendment to the subsurface contamination source areas in both aquifer and vadose zone. In aquifer, heterogeneity induces fluid bypassing the low-permeability zones, resulting in certain contaminated areas inaccessible to the remedial amendment delivered by water injection, thus inhibiting the success of remedial operations. In vadose zone in situ remediation, conventional solution injection and infiltration for amendment delivery have difficulties to achieve successful lateral spreading and uniform distribution of the reactive media. These approaches also tend to displace highly mobile metal and radionuclide contaminants such as hexavalent chromium [Cr(VI)] and technetium (Tc-99), causing spreading of contaminations. Shear thinning fluid and aqueous foam can be applied to enhance the amendment delivery and improve in situ subsurface remediation efficiency under aquifer and vadose zone conditions, respectively. Column and 2-D flow cell experiments were conducted to demonstrate the enhanced delivery and improved remediation achieved by the application of shear thinning fluid and foam injection at the laboratory scale. Solutions of biopolymer xanthan gum were used as the shear thinning delivering fluids. Surfactant sodium lauryl ether sulfate (STEOL CS-330) was the foaming agent. The shear thinning fluid delivery (STFD) considerably improved the sweeping efficiency over a heterogeneous system and enhanced the non-aqueous liquid phase (NAPL) removal. The delivery of amendment into low-perm zones (LPZs) by STFD also increased the persistence of amendment solution in the LPZs after injection. Immobilization of Tc-99 was improved when a reductant was delivered by foam versus by water-based solution to contaminated vadose zone sediments. Foam delivery remarkably improved the lateral distribution of fluids compared to direct liquid injection. In heterogeneous vadose zone formation, foam injection increased the liquid flow in the high permeable zones into which very limited fluid was distributed during liquid infiltration, demonstrating improved amendment distribution uniformity in the heterogeneous system by foam delivery.
Revealing the Role of Microbes in Controlling Contaminants
Williams, Kenneth Hurst
2018-05-11
In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.
Revealing the Role of Microbes in Controlling Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kenneth Hurst
2015-04-02
In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.
Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R
2013-07-01
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.
Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R
2013-01-01
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey–predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies. PMID:23446832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.
2013-07-28
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growthmore » of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.« less
Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn
2010-01-01
The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.
Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced Subsurface Remediation.
Wang, Li; Peng, Libin; Xie, Liling; Deng, Peiyan; Deng, Dayi
2017-06-20
Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate. C 12 -MADS (sodium dodecyl diphenyl ether disulfonate, a representative divalent anionic surfactant) stands out as the most compatible surfactant. Batch treatability study with coal tar, an example of challenging scenarios for traditional ISCO, was then conducted. The results show that C 12 -MADS can significantly enhance not only the oxidation of polyaromatic hydrocarbons contained in coal tar but also oxidant utilization efficiency, indicating the potential of the proposed coupling process for the treatment of organic contaminants with low aqueous availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Kwicklis, Edward Michael; Birdsell, Kay Hanson
This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundarymore » calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.« less
NASA Astrophysics Data System (ADS)
Stirewalt, G. L.; Shepherd, J. C.
2003-12-01
Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams/liter) around the MPB and elevated nitrate (> 2000 milligrams/ liter) around storage ponds. Vertical connectivity was suggested between the TGWS and SGWS, while the DGWS appeared relatively isolated from the overlying aquifers. Lateral movement of uranium was also suggested over time. For example, lateral migration in the TGWS is suggested along a shallow depression in the bedrock surface trending south-southwest from the southwest corner of the MPB. Another pathway atop the buried bedrock surface, trending west-northwest from the MPB and partially reflected by current surface topography, suggested lateral migration of nitrate in the SGWS. Lateral movement of nitrate in the SGWS was also indicated north, south, and west of the largest storage pond. Definition of contaminant plume movement over time is particularly important for assessing direction and rate of migration and the potential need for preventive measures to control contamination of groundwater outside facility property lines. The 3D geospatial property models proved invaluable for visualizing and analyzing variations in subsurface uranium and nitrate contamination in space and time within and between the three aquifers at the site. The models were an exceptional visualization tool for illustrating extent, volume, and quantitative amounts of uranium and nitrate contamination in the subsurface to regulatory decision-makers in regard to site decommissioning issues, including remediation concerns, providing a perspective not possible to achieve with traditional 2D maps. The geohydrologic framework model provides a conceptual model for consideration in flow and transport analyses.
Samarajeewa, A D; Glasauer, S M; Lauzon, J D; O'Halloran, I P; Parkin, Gary W; Dunfield, K E
2012-05-01
A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens (Salmonella sp.) and indicator bacteria (Escherichia coli and Clostridium perfringens) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p < 0.05) reduced the movement of manure-based E. coli and C. perfringens to tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.
Advances in Multiphase Flow and Transport in the Subsurface Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
Advances in Multiphase Flow and Transport in the Subsurface Environment
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni; ...
2018-03-04
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
1989-01-01
presumed subsurface conditon; * more rapid mineralization of organics and secondary metabolites ; * decrease in the biochemical oxygen demand and the...additon of nitrate would result in the more rapid mineralization of organic carbon and secondary metabolites . This was illustrated in this study with...and water. The list is far from complete. Many denitrifying species, such as those from the genera Moraxella and Achromobacter , are commonly found in
Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater
NASA Astrophysics Data System (ADS)
Goltz, M. N.; Secody, R. E.; Huang, J.; Hatzinger, P. B.
2007-12-01
Perchlorate-contaminated groundwater is a significant national problem. An innovative technology was recently developed which uses a pair of dual-screened treatment wells to mix an electron donor into perchlorate- contaminated groundwater in order to effect in situ bioremediation of the perchlorate by indigenous perchlorate reducing bacteria (PRB) without the need to extract the contaminated water from the subsurface. The two treatment wells work in tandem to establish a groundwater recirculation zone in the subsurface. Electron donor is added and mixed into perchlorate-contaminated groundwater flowing through each well. The donor serves to stimulate biodegradation of the perchlorate by PRB in bioactive zones that form adjacent to the injection screens of the treatment wells. In this study, a model that simulates operation of the technology was calibrated using concentration data obtained from a field-scale technology evaluation project at a perchlorate-contaminated site. The model simulates transport of perchlorate, the electron donor (citrate, for this study), and competing electron acceptors (oxygen and nitrate) in the groundwater flow field induced by operation of the treatment well pair. A genetic algorithm was used to derive a set of best-fit model parameters to describe the perchlorate reduction kinetics in this field-scale evaluation project. The calibrated parameter values were then used to predict technology performance. The model qualitatively predicted the salient characteristics of the observed data. It appears the model may be a useful tool for designing and operating this technology at other perchlorate-contaminated sites.
Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fendorf, Scott
2016-04-05
Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of thismore » project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites—inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation mechanism may help to explain U retention in some geologic materials, improving our understanding of U-based geochronology and the redox status of ancient geochemical environments. Additionally, U(VI) may be incorporated within silicate minerals though encapsulation of U-bearing iron oxides, leading to a redox stable solid. Our research detailing previously unrecognized mechanism of U incorporation within sediment minerals may even lead to new approaches for in situ contamination remediation techniques, and will help refine models of U fate and transport in reduced subsurface zones.« less
Microbial populations in contaminant plumes
NASA Astrophysics Data System (ADS)
Haack, Sheridan K.; Bekins, Barbara A.
Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation. La biodégradation efficace des polluants souterrains requiert deux éléments: des populations microbiennes possédant les aptitudes nécessaires à la dégradation, et des conditions géochimiques et hydrologiques souterraines favorables. Des contraintes pratiques sur la conception et l'interprétation des expériences à la fois en microbiologie et en hydrogéologie ont conduit à une connaissance limitée des interactions entre les phénomènes hydrogéologiques et microbiologiques des environnements souterrains. Ces contraintes pratiques sont dues à des contradictions entre les échelles d'étude de l'hydrogéologie et de la microbiologie et à des limitations pratiques sur la capacitéà définir avec précision les populations microbiennes dans les échantillons. Cependant, des progrès dans l'application de méthodes d'échantillonnage à l'échelle locale et des approches pluridisciplinaires des études de terrain ont commencéà améliorer de façon significative notre compréhension des interactions hydrogéologiques et microbiologiques. De plus, les analyses moléculaires et sur les cultures des populations microbiennes présentes dans les panaches de pollution souterraine ont mis en évidence une adaptation significative de ces populations aux conditions environnementales du panache. Les résultats d'études récentes laissent penser que la variabilité des conditions géochimiques et hydrologiques souterraines influence significativement la structure des communautés microbiennes souterraines. Des recherches combinées sur les conditions de terrain et sur la structure des communautés microbiennes apportent les informations nécessaires à la compréhension des interactions entre les populations microbiennes souterraines, la géochimie du panache et la biodégradation du polluant. Para que la biodegradación de los contaminantes en el subsuelo sea eficiente se requiere: (1) una población microbiana con capacidad de degradación y (2) unas condiciones hidrológicas y geoquímicas favorables. Las restricciones de tipo práctico en los diseños y la interpretación de experimentos, tanto hidrogeológicos como microbiológicos, han dado lugar a un conocimiento limitado de la interrelación entre estas dos ciencias por lo que respecta al subsuelo. Estas restricciones incluyen: (1) inconsistencias entre las escalas de investigación en ambas ciencias (hidrogeología y microbiología) y (2) limitaciones prácticas para definir poblaciones microbianas en las muestras. Sin embargo, los avances en la aplicación de métodos de muestreo a pequeña escala y las investigaciones de campo con equipos interdisciplinares están mejorando significativamente el conocimiento de las interacciones entre hidrogeología y microbiología. Del mismo modo, los análisis moleculares y de cultivos sobre poblaciones microbianas en penachos contaminados han mostrado la adaptación de los microbios a las condiciones naturales. Estudios recientes sugieren que la variabilidad en las condiciones geoquímicas e hidrogeológicas del subsuelo afecta enormemente la estructura de la comunidad microbiana. Las investigaciones que combinan las condiciones del medio con la estructura de la comunidad microbiana proporcionarán el conocimiento necesario para entender las complejas relaciones entre las poblaciones microbianas subsuperficiales, la geoquímica de los penachos de contaminación y la biodegradación de los contaminantes.
Active cooling-based surface confinement system for thermal soil treatment
Aines, R.D.; Newmark, R.L.
1997-10-28
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.
Active cooling-based surface confinement system for thermal soil treatment
Aines, Roger D.; Newmark, Robin L.
1997-01-01
A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.
NASA Astrophysics Data System (ADS)
Mouser, P. J.; Wilkins, M. J.; Williams, K. H.; Smith, D. F.; Paša-Tolić, L.
2011-12-01
The availability and form of natural organic matter (NOM) strongly influences rates of microbial metabolism and associated redox processes in subsurface environments. This is an important consideration in metal-contaminated aquifers, such as the DOE's Rifle Integrated Field Research Challenge (IFRC) site, where naturally occurring suboxic conditions in groundwater may play an important function in controlling uranium mobility, and therefore the long-term stewardship of the site. Currently, the biophysiochemical processes surrounding the nature of the aquifer and its role in controlling the fate and transport of uranium are poorly understood. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) with electrospray ionization (ESI), we characterized dissolved organic matter (DOM) chemistry for three surface and groundwater sources at Rifle and assessed microbial utilization in batch incubation experiments. FT-ICR-MS uniquely offers ultrahigh mass measurement accuracy and resolving power for polar organics, in addition to enabling elemental composition assignments of these compounds. Samples were collected from the Colorado River, a shallow groundwater aquifer adjacent to the river, and a spring/seep discharge point upgradient from the aquifer. DOM was concentrated and purified from each source and analyzed using FT-ICR-MS with ESI. We identified between 6,000 and 7,000 formulae at each location, with the river sample having the smallest and the spring sample having the largest number of identified peaks. The groundwater and spring samples contained DOM with a large percentage of formulae containing nitrogen and sulfur species, while the river sample was dominated by carbon, hydrogen, and oxygen species. Less than 38% of the formulae were shared between any two samples, indicating a significant level of uniqueness across the samples. Unsaturated hydrocarbons, cellulose, and lipids were rapidly utilized by indigenous bacteria during a 24-day incubation period, and presumably transformed to more recalcitrant lignins and protein-type molecules. These findings indicate that FT-ICR-MS with ESI is an effective method for characterizing molecular-scale differences in DOM from complex environments. We also provide preliminary evidence that certain DOM fractions are more efficiently utilized by indigenous microbial communities and likely play an important role in controlling reducing conditions in heterogeneous subsurface environments.
Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site
Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich
2016-01-01
Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.
Remedial Investigation/Feasibility Study (RI/FS) Report, David Global Communications Site. Volume 2
1994-02-23
adequately and prevent continued contamiuation of the groundwater. Groundwater containment systems would inhibit off-site migration of groundwater.) Response...and treatment would inhibit offsite movement of groundwater contamination and serve to remediate subsurface contamination to levels accepted by the...would inhibit oft-site migration of groundwater.) 3. xvii Glossar• of Terms Please define the following: anaerobic dohaloqenatiou - halogen
In this paper, we describe the limitations of radius of influence (ROI) evaluation for venting design in more detail than has been done previously and propose an alternative method based on specification and attainment of critical pore-gas velocities in contaminated subsurface me...
Reaching 1 m deep on Mars: the Icebreaker drill.
Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J
2013-12-01
The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.
Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick
2015-01-01
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348
NASA Astrophysics Data System (ADS)
Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick
2015-10-01
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.
Lusher, Amy L; Tirelli, Valentina; O'Connor, Ian; Officer, Rick
2015-10-08
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.
Sequestration of arsenic in ombrotrophic peatlands
NASA Astrophysics Data System (ADS)
Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim
2014-05-01
Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.
Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taillefert, Martial
This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined thatmore » both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Robert W.; Fujita, Yoshiko; Ferris, F. Grant
2003-06-15
Radionuclide and metal contaminants such as 90Sr are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., 90Sr) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zonemore » systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the coprecipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).« less
Barber, Larry B.; Keefe, Steffanie H.; LeBlanc, Denis R.; Bradley, Paul M.; Chapelle, Francis H.; Meyer, Michael T.; Loftin, Keith A.; Koplin, Dana W.; Rubio, Fernando
2009-01-01
Organic wastewater contaminants (OWCs) were measured in samples collected from monitoring wells located along a 4.5-km transect of a plume of groundwater contaminated by 60 years of continuous rapid infiltration disposal of wastewater treatment plant effluent. Fifteen percent of the 212 OWCs analyzed were detected, including the antibiotic sulfamethoxazole (SX), the nonionic surfactant degradation product 4-nonylphenol (NP), the solvent tetrachloroethene (PCE), and the disinfectant 1,4-dichlorobenzene (DCB). Comparison of the 2005 sampling results to data collected from the same wells in 1985 indicates that PCE and DCB are transported more rapidly in the aquifer than NP, consistent with predictions based on compound hydrophobicity. Natural gradient in situ tracer experiments were conducted to evaluate the subsurface behavior of SX, NP, and the female sex hormone 17β-estradiol (E2) in two oxic zones in the aquifer: (1) a downgradient transition zone at the interface between the contamination plume and the overlying uncontaminated groundwater and (2) a contaminated zone located beneath the infiltration beds, which have not been loaded for 10 years. In both zones, breakthrough curves for the conservative tracer bromide (Br−) and SX were nearly coincident, whereas NP and E2 were retarded relative to Br− and showed mass loss. Retardation was greater in the contaminated zone than in the transition zone. Attenuation of NP and E2 in the aquifer was attributed to biotransformation, and oxic laboratory microcosm experiments using sediments from the transition and contaminated zones show that uniform-ring-labeled 14C 4-normal-NP was biodegraded more rapidly (30−60% recovered as 14CO2 in 13 days) than 4-14C E2 (20−90% recovered as 14CO2in 54 days). There was little difference in mineralization potential between sites.
Vapor intrusion occurs when there is a migration of volatile chemicals from contaminated groundwater or soil into an overlying building. Volatile chemicals can emit vapors that may migrate through subsurface soils and into indoor air spaces.
Hult, Marc F.
1987-01-01
Predictions of the evolution and ultimate geometry of contaminant plumes resulting from spills require quantitative descriptions of the rate of mass transfer from the organic fluid to ground water. Pfannkuch presents laboratory and field work that describe how the the rate of oil dissolution, and therefore the strength of the contaminant source, is controlled by fluctuations in ground-water velocity and water-table fluctuations.
Linking deposit morphology and clogging in subsurface remediation: Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, David C.
2013-12-11
Groundwater is a crucial resource for water supply, especially in arid and semiarid areas of the United States west of the 100th meridian. Accordingly, remediation of contaminated groundwater is an important application of science and technology, particularly for the U.S. Department of Energy (DOE), which oversees a number of groundwater remediation sites from Cold War era mining. Groundwater remediation is complex, because it depends on identifying, locating, and treating contaminants in the subsurface, where remediation reactions depend on interacting geological, hydrological, geochemical, and microbiological factors. Within this context, permeability is a fundamental concept, because it controls the rates and pathwaysmore » of groundwater flow. Colloid science is intimately related to permeability, because when colloids are present (particles with equivalent diameters between 1 nanometer and 10 micrometers), changes in hydrological or geochemical conditions can trigger a detrimental reduction in permeability called clogging. Accordingly, clogging is a major concern in groundwater remediation. Several lines of evidence suggest that clogging by colloids depends on (1) colloid deposition, and (2) deposit morphology, that is, the structure of colloid deposits, which can be quantified as a fractal dimension. This report describes research, performed under a 2-year, exploratory grant from the DOE’s Subsurface Biogeochemical Research (SBR) program. This research employed a novel laboratory technique to simultaneously measure flow, colloid deposition, deposit morphology, and permeability in a flow cell, and also collected field samples from wells at the DOE’s Old Rifle remediation site. Field results indicate that suspended solids at the Old Rifle site have fractal structures. Laboratory results indicate that clogging is associated with colloid deposits with smaller fractal dimensions, in accordance with previous studies on initially clean granular media. Preliminary modeling has identified the deposit radius of gyration as a candidate variable to account for clogging as a function of (1) colloid accumulation and (2) deposit morphology.« less
Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W
2017-02-01
The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer conditions and complex dumpsite conditions.
Leenheer, J.A.; Hsu, J.; Barber, L.B.
2001-01-01
In January 1999, wastewater influent and effluent from the pretreatment plant at the Stringfellow hazardous waste disposal site were sampled along with groundwater at six locations along the groundwater contaminant plume. The objectives of this sampling and study were to identify at the compound class level the unidentified 40-60% of wastewater organic contaminants, and to determine what organic compound classes were being removed by the wastewater pretreatment plant, and what organic compound classes persisted during subsurface waste migration. The unidentified organic wastes are primarily chlorinated aromatic sulfonic acids derived from wastes from DDT manufacture. Trace amounts of EDTA and NTA organic complexing agents were discovered along with carboxylate metabolites of the common alkylphenolpolyethoxylate plasticizers and nonionic surfactants. The wastewater pretreatment plant removed most of the aromatic chlorinated sulfonic acids that have hydrophobic neutral properties, but the p-chlorobenzenesulfonic acid which is the primary waste constituent passed through the pretreatment plant and was discharged in the treated wastewaters transported to an industrial sewer. During migration in groundwater, p-chlorobenzenesulfonic acid is removed by natural remediation processes. Wastewater organic contaminants have decreased 3- to 45-fold in the groundwater from 1985 to 1999 as a result of site remediation and natural remediation processes. The chlorinated aromatic sulfonic acids with hydrophobic neutral properties persist and have migrated into groundwater that underlies the adjacent residential community. Copyright ?? 2001 .
Karst hydrology and chemical contamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, M.S.
1993-01-01
Ground-water flow in karst aquifers is very different from flow in granular or fractured aquifers. Chemical contamination may be fed directly to a karst aquifer via overland flow to a sinkhole with little or no attenuation and may contaminate downgradient wells, springs, and sinkholes within a few hours or a few days. Contaminants may also become temporarily stored in the epikarstic zone for eventual release to the aquifer. Flood pulses may flush the contaminants to cause transiently higher levels of contamination in the aquifer and discharge points. The convergent nature of flow in karst aquifers may result in contaminants becomingmore » concentrated in conduits. Once contaminants have reached the subsurface conduits, they are likely to be rapidly transported to spring outlets. Traditional aquifer remediation techniques for contaminated aquifers are less applicable to karst aquifers.« less
Landmeyer, James E.; Miller, Scott; Campbell, Bruce G.; Vroblesky, Don A.; Gill, Amy C.; Clark, Athena P.
2011-01-01
Detection of the organic solvent perchloroethylene (PCE) in a shallow public-supply well in 1991 and exposure of workers in 1993 to solvent vapors during excavation activities to depths near the water table provided evidence that the shallow aquifer beneath the capital city of Montgomery, Alabama, was contaminated. Investigations conducted from 1993 to 1999 by State and Federal agencies confirmed the detection of PCE in the shallow aquifer, as well as the detection of the organic solvent trichloroethylene (TCE) and various inorganic compounds, but the source of the groundwater contamination was not determined. In May 2000 the U.S. Environmental Protection Agency proposed that the site, called the Capital City Plume (CCP) Site, be a candidate for the National Priorities List. Between 2000 and 2007, numerous site-investigation activities also did not determine the source of the groundwater contamination. In 2008, additional assessments were conducted at the CCP Site to investigate the potential source area, contamination pathway, and the probable release history of the chlorinated-solvent-contaminated groundwater. The assessments included the collection of (1) pore water in 2008 from the hyporheic zone of a creek using passive-diffusion bag samplers; (2) tissue samples in 2008 and 2009 from trees growing in areas of downtown Montgomery characterized by groundwater contamination and from trees growing in riparian zones along the Alabama River and Cypress Creek; and (3) groundwater samples in 2009 and 2010. The data collected were used to investigate the potential source area of contaminants detected in groundwater, the pathway of groundwater contamination, and constraints on the probable contaminant-release history. The data collected between 2008 and 2010 indicate that the PCE and TCE contamination of the shallow aquifer beneath the CCP Site most likely resulted from the past use and disposal of industrial wastewater from printing operations containing chlorinated solvents into the sanitary sewer and (or) stormwater systems of Montgomery. Moreover, chlorinated-solvent use and disposal occurred at least between the 1940s and 1970s at several locations occupied by printing operations. The data also indicate that PCE and TCE contamination continues to occur in the shallow subsurface near potential release areas and that PCE and TCE have been transported to the intermediate part of the shallow aquifer.
Matteucci, Federica; Ercole, Claudia; del Gallo, Maddalena
2015-01-01
Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo (“Val Vibrata”), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area. PMID:26388862
Allen, J.P.; Atekwana, E.A.; Duris, J.W.; Werkema, D.D.; Rossbach, S.
2007-01-01
The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueousphase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.
Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun
2014-01-01
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.
Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun
2014-01-01
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099
In situ chemical degradation of DNAPLS in contaminated soils and sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, D.D.; Korte, N.E.; Siegrist, R.L.
1996-08-01
An emerging approach to in situ treatment of organic contaminants is chemical degradation. The specific processes discussed in this chapter are in situ chemical oxidation using either hydrogen peroxide (H{sub 2}O{sub 2}) or potassium permanganate (KMnO{sub 4}) and in situ dechlorination of halogenated hydrocarbons using zero-valence base metals such as iron. These technologies are primarily chemical treatment processes, where the treatment goal is to manipulate the chemistry of the subsurface environment in such a manner that the contaminants of interest are destroyed and/or rendered non-toxic. Chemical properties that can be altered include pH, ionic strength, oxidation and reduction potential, andmore » chemical equilibria. In situ contaminant destruction processes alter or destroy contaminants in place and are typically applied to compounds that can be either converted to innocuous species such as CO{sub 2} and water, or can be degraded to species that are non-toxic or amenable to other in situ processes (i.e., bioremediation). With in situ chemical oxidation, the delivery and distribution of chemical reagents are critical to process effectiveness. In contrast, published approaches for the use of zero valence base metals suggest passive approaches in which the metals are used in a permeable reaction wall installed in situ in the saturated zone. Both types of processes are receiving increasing attention and are being applied both in technology demonstration and as final solutions to subsurface contaminant problems. 43 refs., 9 figs., 1 tab.« less
Monitoring of Gasoline-ethanol Degradation In Undisturbed Soil
NASA Astrophysics Data System (ADS)
Österreicher-Cunha, P.; Nunes, C. M. F.; Vargas, E. A.; Guimarães, J. R. D.; Costa, A.
Environmental contamination problems are greatly emphasised nowadays because of the direct threat they represent for human health. Traditional remediation methods fre- quently present low efficiency and high costs; therefore, biological treatment is being considered as an accessible and efficient alternative for soil and water remediation. Bioventing, commonly used to remediate petroleum hydrocarbon spills, stimulates the degradation capacity of indigenous microorganisms by providing better subsur- face oxygenation. In Brazil, gasoline and ethanol are mixed (78:22 v/v); some authors indicate that despite gasoline high degradability, its degradation in subsurface is hin- dered by the presence of much more rapidly degrading ethanol. Contaminant distribu- tion and degradation in the subsurface can be monitored by several physical, chemical and microbiological methodologies. This study aims to evaluate and follow the degra- dation of a gasoline-ethanol mixture in a residual undisturbed tropical soil from Rio de Janeiro. Bioventing was used to enhance microbial degradation. Shifts in bacte- rial culturable populations due to contamination and treatment effects were followed by conventional microbiology methods. Ground Penetrating Radar (GPR) measure- ments, which consist of the emission of electro-magnetic waves into the soil, yield a visualisation of contaminant degradation because of changes in soil conductivity due to microbial action on the pollutants. Chemical analyses will measure contaminant residue in soil. Our results disclosed contamination impact as well as bioventing stim- ulation on soil culturable heterotrophic bacterial populations. This multidisciplinary approach allows for a wider evaluation of processes occurring in soil.
Electrical imaging of subsurface nanoparticle propagation for in-situ groundwater remediation
NASA Astrophysics Data System (ADS)
Flores Orozco, Adrián; Gallistl, Jakob; Schmid, Doris; Micic Batka, Vesna; Bücker, Matthias; Hofmann, Thilo
2017-04-01
Application of nanoparticles has emerged as a promising in situ remediation technology for the remediation of contaminated groundwater, particularly for areas difficult to access by other remediation techniques. The performance of nanoparticle injections, as a foremost step within this technology, is usually assessed through the geochemical analysis of soil and groundwater samples. This approach is not well suited for a real-time monitoring, and often suffers from a poor spatio-temporal resolution and only provides information from areas close to the sampling points. To overcome these limitations we propose the application of non-invasive Induced Polarization (IP) imaging, a geophysical method that provides information on the electrical properties of the subsurface. The analysis of temporal changes in the electrical images allows tracking the propagation of the injected nanoparticle suspension and detection of the induced bio-geochemical changes in the subsurface. Here, we present IP monitoring results for data collected during the injection of Nano-Goethite particles (NGP) used for simulation of biodegradation of a BTEX plume (i.e., benzene, toluene, ethylbenzene, and xylene) at the Spolchemie II site, CZ. Frequency-domain IP measurements were collected parallel to the groundwater flow direction and centred on the NGP injection point. Pre-injection imaging results revealed high electrical conductivities (> 10 S/m) and negligible polarization effects in the BTEX-contaminated part of the saturated zone (below 5 m depth). The apparently contradictory observation - BTEX compounds are poor electrical conductors - can be explained by the release of carbonic acids (a metabolic by-product of the biodegradation of hydrocarbons), which leads to an increase of the electrical conductivity. Post-injection images revealed a significant decrease (> 50%) of the electrical conductivity, with even larger changes in the proximity of the injection points, most likely due to the relatively high resistivity of the NGP suspension. This is in line with geochemical data from both the injected NGP suspension and the groundwater samples. Furthermore, temporal changes in the IP images are consistent with variations in total iron concentration in groundwater (a proxy for the NGP concentration) as well as in situ groundwater parameters, such as pH and oxidation-reduction potential. Our results demonstrate the applicability of IP imaging for the real-time monitoring of nanoparticle injection, as well as of the accompanying geochemical changes. Part of this research is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 309517.
Lead identification in soil surrounding a used lead acid battery smelter area in Banten, Indonesia
NASA Astrophysics Data System (ADS)
Adventini, N.; Santoso, M.; Lestiani, D. D.; Syahfitri, W. Y. N.; Rixson, L.
2017-06-01
A used lead acid battery smelter generates particulates containing lead that can contaminate the surrounding environment area. Lead is a heavy metal which is harmful to health if it enters the human body through soil, air, or water. An identification of lead in soil samples surrounding formal and informal used lead acid battery smelters area in Banten, Indonesia using EDXRF has been carried out. The EDXRF accuracy and precision evaluated from marine sediment IAEA 457 gave a good agreement to the certified value. A number of 16 soil samples from formal and informal areas and 2 soil samples from control area were taken from surface and subsurface soils. The highest lead concentrations from both lead smelter were approximately 9 folds and 11 folds higher than the reference and control samples. The assessment of lead contamination in soils described in Cf index was in category: moderately and strongly polluted by lead for formal and informal lead smelter. Daily lead intake of children in this study from all sites had exceeded the recommended dietary allowance. The HI values for adults and children living near both lead smelter areas were greater than the value of safety threshold 1. This study finding confirmed that there is a potential health risk for inhabitants surrounding the used lead acid battery smelter areas in Banten, Indonesia.
Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lively, J.W.
2012-07-01
The U.S. Nuclear Regulatory Commission (NRC) and other federal agencies currently approve the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) as guidance for licensees who are conducting final radiological status surveys in support of decommissioning. MARSSIM provides a method to demonstrate compliance with the applicable regulation by comparing residual radioactivity in surface soils with derived concentration guideline levels (DCGLs), but specifically discounts its applicability to subsurface soils. Many sites and facilities undergoing decommissioning contain subsurface soils that are potentially impacted by radiological constituents. In the absence of specific guidance designed to address the derivation of subsurface soil DCGLs andmore » compliance demonstration, decommissioning facilities have attempted to apply DCGLs and final status survey techniques designed specifically for surface soils to subsurface soils. The decision to apply surface soil limits and surface soil compliance metrics to subsurface soils typically results in significant over-excavation with associated cost escalation. MACTEC, Inc. has developed the overarching concepts and principles found in recent NRC decommissioning guidance in NUREG 1757 to establish a functional method to derive dose-based subsurface soil DCGLs. The subsurface soil method developed by MACTEC also establishes a rigorous set of criterion-based data evaluation metrics (with analogs to the MARSSIM methodology) that can be used to demonstrate compliance with the developed subsurface soil DCGLs. The method establishes a continuum of volume factors that relate the size and depth of a volume of subsurface soil having elevated concentrations of residual radioactivity with its ability to produce dose. The method integrates the subsurface soil sampling regime with the derivation of the subsurface soil DCGL such that a self-regulating optimization is naturally sought by both the responsible party and regulator. This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the traditional approach of applying surface soil DCGLs to subsurface soils. Furthermore, while yet untested, MACTEC believes that the concepts and methods embodied in this approach could readily be applied to other types of contamination found in subsurface soils. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, April Z.; Wan, Kai-tak
This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface,more » to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.« less
Armored Enzyme Nanoparticles for Remediation of Subsurface Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan S. Dordick; Jay Grate; Jungbae Kim
2007-02-19
The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides;more » or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation. Research at Rensselaer focused on the development of haloalkane dehalogenase as a critical enzyme in the dehalogenation of contaminated materials (ultimately trichloroethylene and related pollutants). A combination of bioinformatic investigation and experimental work was performed. The bioinformatics was focused on identifying a range of dehalogenase enzymes that could be obtained from the known proteomes of major microorganisms. This work identified several candidate enzymes that could be obtained through relatively straightforward gene cloning and expression approaches. The experimental work focused on the isolation of haloalkane dehalogenase from a Xanthobacter species followed by incorporating the enzyme into silicates to form biocatalytic silicates. These are the precursors of SENs. At the conclusion of the study, dehalogenase was incorporated into SENs, although the loading was low. This work supported a single Ph.D. student (Ms. Philippa Reeder) for two years. The project ended prior to her being able to perform substantive bioinformatics efforts that would identify more promising dehalogenase enzymes. The SEN synthesis, however, was demonstrated to be partially successful with dehalogenases. Further work would provide optimized dehalogenases in SENs for use in pollution remission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Findlay, Rick
The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of testing at formerly used nuclear sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The scope of this Fluid Management Plan (FMP) is to support the subsurface investigation at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447, Shoal - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Spring Range, southmore » of Highway 50, about 39 miles southeast of Fallon, Nevada. (Figure 1-1). This FMP will be used at the PSA in lieu of an individual discharge permit for each well or a general water pollution control permit for management of all fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells conducted by the Offsites Project. The FMP provides guidance for the management of fluids generated during investigation activities and provides the standards by which fluids may be discharged on site. Although the Nevada Division of Environmental Protection (NDEP), Bureau of Federal Facilities (BoFF) is not a signatory to this FMP, it is involved in the negotiation of the contents of this plan and approves the conditions contained within. The major elements of this FMP include: (1) establishment of a well-site operations strategy; (2) site design/layout; (3) monitoring of contamination indicators (monitoring program); (4) sump characterization (sump sampling program); (5) fluid management decision criteria and fluid disposition; and (6) reporting requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim Echelard
The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Offsites Project to characterize the risk posed to human health and the environment as a result of testing at formerly used nuclear sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The scope of this Fluid Management Plan (FMP) is to support the subsurface investigation at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447, Shoal-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Spring Range, south of Highwaymore » 50, about 39 miles southeast of Fallon, Nevada. (Figure 1-1). This FMP will be used at the PSA in lieu of an individual discharge permit for each well or a general water pollution control permit for management of all fluids produced during the drilling, construction, development, testing, experimentation, and/or sampling of wells conducted by the Offsites Project. The FMP provides guidance for the management of fluids generated during investigation activities and provides the standards by which fluids may be discharged on site. Although the Nevada Division of Environmental Protection (NDEP), Bureau of Federal Facilities (BoFF) is not a signatory to this FMP, it is involved in the negotiation of the contents of this plan and approves the conditions contained within. The major elements of this FMP include: (1) establishment of a well-site operations strategy; (2) site design/layout; (3) monitoring of contamination indicators (monitoring program); (4) sump characterization (sump sampling program); (5) fluid management decision criteria and fluid disposition; and (6) reporting requirements.« less
Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman
2018-02-23
The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.
McMahon, Peter B.; Caldwell, Rodney R.; Galloway, Joel M.; Valder, Joshua F.; Hunt, Andrew G.
2015-01-01
The quality and age of shallow groundwater in the Bakken Formation production area were characterized using data from 30 randomly distributed domestic wells screened in the upper Fort Union Formation. Comparison of inorganic and organic chemical concentrations to health based drinking-water standards, correlation analysis of concentrations with oil and gas well locations, and isotopic data give no indication that energy-development activities affected groundwater quality. It is important, however, to consider these results in the context of groundwater age. Most samples were recharged before the early 1950s and had 14C ages ranging from 30,000 years. Thus, domestic wells may not be as well suited for detecting contamination associated with recent surface spills as shallower wells screened near the water table. Old groundwater could be contaminated directly by recent subsurface leaks from imperfectly cemented oil and gas wells, but horizontal groundwater velocities calculated from 14C ages imply that the contaminants would still be less than 0.5 km from their source. For the wells sampled in this study, the median distance to the nearest oil and gas well was 4.6 km. Because of the slow velocities, a long-term commitment to groundwater monitoring in the upper Fort Union Formation is needed to assess the effects of energy development on groundwater quality. In conjunction with that effort, monitoring could be done closer to energy-development activities to increase the likelihood of early detection of groundwater contamination if it did occur.
In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey.
Wovkulich, Karen; Stute, Martin; Mailloux, Brian J; Keimowitz, Alison R; Ross, James; Bostick, Benjamin; Sun, Jing; Chillrud, Steven N
2014-09-25
Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949-1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m 2 ) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale.
Busch, J; Meißner, T; Potthoff, A; Bleyl, S; Georgi, A; Mackenzie, K; Trabitzsch, R; Werban, U; Oswald, S E
2015-10-01
The application of nanoscale zero-valent iron (nZVI) for subsurface remediation of groundwater contaminants is a promising new technology, which can be understood as alternative to the permeable reactive barrier technique using granular iron. Dechlorination of organic contaminants by zero-valent iron seems promising. Currently, one limitation to widespread deployment is the fast agglomeration and sedimentation of nZVI in colloidal suspensions, even more so when in soils and sediments, which limits the applicability for the treatment of sources and plumes of contamination. Colloid-supported nZVI shows promising characteristics to overcome these limitations. Mobility of Carbo-Iron Colloids (CIC) - a newly developed composite material based on finely ground activated carbon as a carrier for nZVI - was tested in a field application: In this study, a horizontal dipole flow field was established between two wells separated by 5.3m in a confined, natural aquifer. The injection/extraction rate was 500L/h. Approximately 1.2kg of CIC was suspended with the polyanionic stabilizer carboxymethyl cellulose. The suspension was introduced into the aquifer at the injection well. Breakthrough of CIC was observed visually and based on total particle and iron concentrations detected in samples from the extraction well. Filtration of water samples revealed a particle breakthrough of about 12% of the amount introduced. This demonstrates high mobility of CIC particles and we suggest that nZVI carried on CIC can be used for contaminant plume remediation by in-situ formation of reactive barriers. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.
2008-07-29
Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscositymore » of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.« less
Kress, Wade H.; Teeple, Andrew
2005-01-01
Forward modeling was used as an interpretative tool to relate the subsurface distribution of resistivity from four DC resistivity lines to known, assumed, and hypothetical information on subsurface lithologies. The final forward models were used as an estimate of the true resistivity structure for the field data. The forward models and the inversion results of the forward models show the depth, thickness, and extent of strata as well as the resistive anomalies occurring along the four lines and the displacement of strata resulting from the Pecore Fault along two of the four DC resistivity lines. Ten additional DC resistivity lines show similarly distributed shallow subsurface lithologies of silty sand and clay strata. Eight priority areas of resistive anomalies were identified for evaluation in future studies. The interpreted DC resistivity data allowed subsurface stratigraphy to be extrapolated between existing boreholes resulting in an improved understanding of lithologies that can influence contaminant migration.
NASA Astrophysics Data System (ADS)
Fiori, A.; Cvetkovic, V.; Dagan, G.; Attinger, S.; Bellin, A.; Dietrich, P.; Zech, A.; Teutsch, G.
2016-12-01
The emergence of stochastic subsurface hydrology stemmed from the realization that the random spatial variability of aquifer properties has a profound impact on solute transport. The last four decades witnessed a tremendous expansion of the discipline, many fundamental processes and principal mechanisms being identified. However, the research findings have not impacted significantly the application in practice, for several reasons which are discussed. The paper discusses the current status of stochastic subsurface hydrology, the relevance of the scientific results for applications and it also provides a perspective to a few possible future directions. In particular, we discuss how the transfer of knowledge can be facilitated by identifying clear goals for characterization and modeling application, relying on recent recent advances in research in these areas.
Processes affecting transport of uranium in a suboxic aquifer
Davis, J.A.; Curtis, G.P.; Wilkins, M.J.; Kohler, M.; Fox, P.; Naftz, D.L.; Lloyd, J.R.
2006-01-01
At the Naturita site in Colorado, USA, groundwaters were sampled and analyzed for chemical composition and by culture and culture-independent microbiological techniques. In addition, sediments were extracted with a dilute sodium carbonate solution to determine quantities of labile uranium within the sediments. Samples from the upgradient portion of the contaminated aquifer, where very little dissolved Fe(II) is found in the groundwater, have uranium content that is controlled by U(VI) adsorption and few metal-reducing bacteria are observed. In the extreme downgradient portion of the aquifer, where dissolved Fe(II) is observed, uranium content of the sediments includes significant quantities of reduced U(IV) and diverse populations of Fe(III)-reducing bacteria were present in the subsurface with the potential of reducing U(VI) to U(IV). ?? 2006 Elsevier Ltd. All rights reserved.
Simulation and validation of concentrated subsurface lateral flow paths in an agricultural landscape
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, H. S.
2009-08-01
The importance of soil water flow paths to the transport of nutrients and contaminants has long been recognized. However, effective means of detecting concentrated subsurface flow paths in a large landscape are still lacking. The flow direction and accumulation algorithm based on single-direction flow algorithm (D8) in GIS hydrologic modeling is a cost-effective way to simulate potential concentrated flow paths over a large area once relevant data are collected. This study tested the D8 algorithm for simulating concentrated lateral flow paths at three interfaces in soil profiles in a 19.5-ha agricultural landscape in central Pennsylvania, USA. These interfaces were (1) the interface between surface plowed layers of Ap1 and Ap2 horizons, (2) the interface with subsoil water-restricting clay layer where clay content increased to over 40%, and (3) the soil-bedrock interface. The simulated flow paths were validated through soil hydrologic monitoring, geophysical surveys, and observable soil morphological features. The results confirmed that concentrated subsurface lateral flow occurred at the interfaces with the clay layer and the underlying bedrock. At these two interfaces, the soils on the simulated flow paths were closer to saturation and showed more temporally unstable moisture dynamics than those off the simulated flow paths. Apparent electrical conductivity in the soil on the simulated flow paths was elevated and temporally unstable as compared to those outside the simulated paths. The soil cores collected from the simulated flow paths showed significantly higher Mn content at these interfaces than those away from the simulated paths. These results suggest that (1) the D8 algorithm is useful in simulating possible concentrated subsurface lateral flow paths if used with appropriate threshold value of contributing area and sufficiently detailed digital elevation model (DEM); (2) repeated electromagnetic surveys can reflect the temporal change of soil water storage and thus is a useful indicator of possible subsurface flow path over a large area; and (3) observable Mn distribution in soil profiles can be used as a simple indicator of water flow paths in soils and over the landscape; however, it does require sufficient soil sampling (by excavation or augering) to possibly infer landscape-scale subsurface flow paths. In areas where subsurface interface topography varies similarly with surface topography, surface DEM can be used to simulate potential subsurface lateral flow path reasonably so the cost associated with obtaining depth to subsurface water-restricting layer can be minimized.
Fredrickson, James K.; Zachara, John M.; Balkwill, David L.; Kennedy, David; Li, Shu-mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.
2004-01-01
Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 CFU g−1, but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 μCi of 137Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 μCi of 137Cs g−1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste. PMID:15240306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownlow, D.T.; Escude, S.; Johanneson, O.H.
The 1500 Area at Kelly Air Force Base (AFB) was the site of a subsurface release of approximately 1,000 gallons of JP-4 jet fuel. Preliminary studies found evidence of hydrocarbon contamination extending from 10 feet below ground surface (bgs) down to the shallow water table, at 20 to 25 feet bgs. In June of 1993, Kelly AFB authorized the installation and evaluation of a bioventing system at this site to aid in the cleanup of the hydrocarbon contaminated soils. The purpose of the bioventing system is to aerate subsurface soils within and immediately surrounding the release area, in order tomore » stimulate in-situ biological activity and enhance the natural bioremediation capacity of the soil. Augmenting oxygen to the indigenous soil microorganisms promotes the aerobic metabolism of fuel hydrocarbons in the soil. In vadose zone soils exhibiting relatively good permeability, bioventing has proven to be a highly cost effective remediation technology for treating fuel contaminated soils. In November, 1993, a Start-Up Test program consisting of an In-Situ Respiration Test (ISRT) and an Air Permeability Test was performed at the 1500 Area Spill Site.« less
NASA Astrophysics Data System (ADS)
Verardo, E.; Atteia, O.; Prommer, H.
2017-06-01
Organic pollutants such as solvents or petroleum products are widespread contaminants in soil and groundwater systems. In-situ bioremediation is a commonly used remediation technology to clean up the subsurface to eliminate the risks of toxic substances to reach potential receptors in surface waters or drinking water wells. This study discusses the development of a subsurface model to analyse the performance of an actively operating field-scale enhanced bioremediation scheme. The study site was affected by a mixed toluene, dihydromyrcenol (DHM), methanol, and i-propanol plume. A high-resolution, time-series of data was used to constrain the model development and calibration. The analysis shows that the observed failure of the treatment system is linked to an inefficient oxygen injection pattern. Moreover, the model simulations also suggest that additional contaminant spillages have occurred in 2012. Those additional spillages and their associated additional oxygen demand resulted in a significant increase in contaminant fluxes that remained untreated. The study emphasises the important role that reactive transport modelling can play in data analyses and for enhancing remediation efficiency.
Oxidation of aromatic contaminants coupled to microbial iron reduction
Lovley, D.R.; Baedecker, M.J.; Lonergan, D.J.; Cozzarelli, I.M.; Phillips, E.J.P.; Siegel, D.I.
1989-01-01
THE contamination of sub-surface water supplies with aromatic compounds is a significant environmental concern1,2. As these contaminated sub-surface environments are generally anaerobic, the microbial oxidation of aromatic compounds coupled to nitrate reduction, sulphate reduction and methane production has been studied intensively1-7. In addition, geochemical evidence suggests that Fe(III) can be an important electron acceptor for the oxidation of aromatic compounds in anaerobic groundwater. Until now, only abiological mechanisms for the oxidation of aromatic compounds with Fe(III) have been reported8-12. Here we show that in aquatic sediments, microbial activity is necessary for the oxidation of model aromatic compounds coupled to Fe(III) reduction. Furthermore, a pure culture of the Fe(III)-reducing bacterium GS-15 can obtain energy for growth by oxidizing benzoate, toluene, phenol or p-cresol with Fe(III) as the sole electron acceptor. These results extend the known physiological capabilities of Fe(III)-reducing organisms and provide the first example of an organism of any type which can oxidize an aromatic hydrocarbon anaerobically. ?? 1989 Nature Publishing Group.
Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.; ...
2017-03-21
In this study, environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on themore » order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 m of this site, with maximum 237Np concentrations on the order of 10 3 times greater than nuclear weapons testing fallout levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Mathew S.; Morrison, Samuel S.; Clark, Sue B.
2017-06-01
Environmental 237Np analyses are challenged by low 237Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237Np analytical approach employing the short lived 239Np (t1/2 = 2.3 days) as a chemical yield tracer followed by 237Np quantification using inductively coupled plasma-mass spectrometry. 239Np tracer is obtained via separation from a 243Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 watt “Walmart” microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 106more » and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237Np contamination within 600 meters of this site, with maximum 237Np concentrations on the order of 103 times greater than nuclear weapons testing fallout levels.« less
Snow, Mathew S; Morrison, Samuel S; Clark, Sue B; Olson, John E; Watrous, Matthew G
2017-06-01
Environmental 237 Np analyses are challenged by low 237 Np concentrations and lack of an available yield tracer; we report a rapid, inexpensive 237 Np analytical approach employing the short lived 239 Np (t 1/2 = 2.3 days) as a chemical yield tracer followed by 237 Np quantification using inductively coupled plasma-mass spectrometry. 239 Np tracer is obtained via separation from a 243 Am stock solution and standardized using gamma spectrometry immediately prior to sample processing. Rapid digestions using a commercial, 900 W "Walmart" microwave and Parr microwave vessels result in 99.8 ± 0.1% digestion yields, while chromatographic separations enable Np/U separation factors on the order of 10 6 and total Np yields of 95 ± 4% (2σ). Application of this method to legacy soil samples surrounding a radioactive disposal facility (the Subsurface Disposal Area at Idaho National Laboratory) reveal the presence of low level 237 Np contamination within 600 m of this site, with maximum 237 Np concentrations on the order of 10 3 times greater than nuclear weapons testing fallout levels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Natural water purification and water management by artificial groundwater recharge
Balke, Klaus-Dieter; Zhu, Yan
2008-01-01
Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624
Predictive assimilation framework to support contaminated site understanding and remediation
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Bianchi, M.; Hubbard, S. S.
2014-12-01
Subsurface system behavior at contaminated sites is driven and controlled by the interplay of physical, chemical, and biological processes occurring at multiple temporal and spatial scales. Effective remediation and monitoring planning requires an understanding of this complexity that is current, predictive (with some level of confidence) and actionable. We present and demonstrate a predictive assimilation framework (PAF). This framework automatically ingests, quality controls and stores near real-time environmental data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of the subsurface system. PAF is implemented as a cloud based software application which has five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result deliver and (5) orchestration. Access to and interaction with PAF is done through a standard browser. PAF is designed to be modular so that it can ingest and process different data streams dependent on the site. We will present an implementation of PAF which uses data from a highly instrumented site (the DOE Rifle Subsurface Biogeochemistry Field Observatory in Rifle, Colorado) for which PAF automatically ingests hydrological data and forward models groundwater flow in the saturated zone.
Natural water purification and water management by artificial groundwater recharge.
Balke, Klaus-Dieter; Zhu, Yan
2008-03-01
Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.
Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, John D.
2005-06-01
A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction,more » and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1. The nitrate-dependent U(IV) oxidizing microbial population in groundwaters is less numerous ranging from 0 cells mL-1 (Well FW300, Uncontaminated Background NABIR FRC) to 4.3 x 102 cells mL-1 (Well TPB16, Contaminated Area 2 NABIR FRC). The presence of nitrate-dependent U(IV) oxidizing bacteria supports our hypothesis that bacteria capable of anaerobic U(IV) oxidation are ubiquitous and indigenous to sedimentary and groundwater environments.« less
Using pre-screening methods for an effective and reliable site characterization at megasites.
Algreen, Mette; Kalisz, Mariusz; Stalder, Marcel; Martac, Eugeniu; Krupanek, Janusz; Trapp, Stefan; Bartke, Stephan
2015-10-01
This paper illustrates the usefulness of pre-screening methods for an effective characterization of polluted sites. We applied a sequence of site characterization methods to a former Soviet military airbase with likely fuel and benzene, toluene, ethylbenzene, and xylene (BTEX) contamination in shallow groundwater and subsoil. The methods were (i) phytoscreening with tree cores; (ii) soil gas measurements for CH4, O2, and photoionization detector (PID); (iii) direct-push with membrane interface probe (MIP) and laser-induced fluorescence (LIF) sensors; (iv) direct-push sampling; and (v) sampling from soil and from groundwater monitoring wells. Phytoscreening and soil gas measurements are rapid and inexpensive pre-screening methods. Both indicated subsurface pollution and hot spots successfully. The direct-push sensors yielded 3D information about the extension and the volume of the subsurface plume. This study also expanded the applicability of tree coring to BTEX compounds and tested the use of high-resolution direct-push sensors for light hydrocarbons. Comparison of screening results to results from conventional soil and groundwater sampling yielded in most cases high rank correlation and confirmed the findings. The large-scale application of non- or low-invasive pre-screening can be of help in directing and focusing the subsequent, more expensive investigation methods. The rapid pre-screening methods also yielded useful information about potential remediation methods. Overall, we see several benefits of a stepwise screening and site characterization scheme, which we propose in conclusion.
DNAPL SITE EVALUATION - Project Summary
Dense nonaqueous-phase liquids (DNAPLs), especially chlorinated solvents, are among the most prevalent subsurface contaminants identified in ground-water supplies and at waste disposal sites. There are several site-characterization issues specific to DNAPL sites including (a) the...
Geophysical Methods for Monitoring Soil Stabilization Processes
Soil stabilization involves methods used to turn unconsolidated and unstable soil into a stiffer, consolidated medium that could support engineered structures, alter permeability, change subsurface flow, or immobilize contamination through mineral precipitation. Among the variety...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M. S.
Savannah River National Laboratory analyzed samples from Tank 38H and Tank 43H to support Enrichment Control Program and Corrosion Control Program. The total uranium in the Tank 38H samples ranged from 20.5 to 34.0 mg/L while the Tank 43H samples ranged from 47.6 to 50.6 mg/L. The U-235 percentage ranged from 0.62% to 0.64% over the four samples. The total uranium and percent U-235 results appear consistent with previous Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and a somewhat higher concentration than previous sub-surfacemore » samples. The two Tank 43H samples show similar plutonium concentrations and are within the range of values measured on previous samples. The plutonium results may be biased high due to the presence of plutonium contamination in the blank samples from the cell sample preparations. The four samples analyzed show silicon concentrations ranging from 47.9 to 105 mg/L.« less
A Mars Sample Return Sample Handling System
NASA Technical Reports Server (NTRS)
Wilson, David; Stroker, Carol
2013-01-01
We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory alloy caps [5] if the heating does not affect the sample, or by crimping caps similar to bottle capping. We prefer cap sealing surfaces be external to the cup rim to prevent sample dust inside the cups interfering with sealing, or, contamination of the sample by Teflon seal elements (if adopted). Finally the sample collection rover, or a Fetch rover, selects cups with best choice samples and loads them into a sample tray, before delivering it to the Earth Return Vehicle (ERV) in the MSR Dragon capsule as described in [1] (Fig 1). This ensures best use of the MSR payload mass allowance. A 3 meter long jointed robot arm is extended from the Dragon capsule's crew hatch, retrieves the sample tray and inserts it into the sample canister payload located on the ERV stage. The robot arm has capacity to obtain grab samples in the event of a rover failure. The sample canister has a robot arm capture casting to enable capture by crewed or robot spacecraft when it returns to Earth orbit
Enzyme-Cascade Analysis of the Rio Tinto Subsurface Environment: A Biosensor Experiment
NASA Technical Reports Server (NTRS)
McKay, David S.; Lynch, Kennda; Wainwright, Norman; Child, Alice; Williams, Kendra; McKay, David; Amils, Ricardo; Gonzalez, Elena; Stoker, Carol
2004-01-01
The Portable Test System (PTS), designed & developed by Charles Rivers Laboratories, Inc. (Charleston, SC) is a portable instrument that was designed to perform analysis of enzymatic assays related to rapid assessment of microbial contamination (Wainwright, 2003). The enzymatic cascade of Limulus Amebocyte Lysate (LAL) is known to be one of the most sensitive techniques available for microbial detection, enabling the PTS to be evaluated as a potential life detection instrument for in situ Astrobiology missions. In the summer of 2003 the system was tested as a part of the Mars Astrobiology Research and Technology Experiment (MARTE) ground truth science campaign in the Rio Tinto Analogue environment near Nerva, Spain. The preliminary results show that the PTS analysis correlates well with the contamination control tests and the more traditional lab-based biological assays performed during the MARTE field mission. Further work will be conducted on this research during a second field campaign in 2004 and a technology demonstration of a prototype instrument that includes autonomous sample preparation will occur in 2005.
Delin, G.N.; Herkelrath, W.N.; Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
Ground water contamination by crude oil, and other petroleum-based liquids, is a widespread problem. An average of 83 crude-oil spills occurred per year during 1994-96 in the United States, each spilling an average of about 50,000 barrels of crude oil (U.S. Office of Pipeline Safety, electronic commun., 1997). An understanding of the fate of organic contaminants (such as oil and gasoline) in the subsurface is needed to design innovative and cost-effective remedial solutions at contaminated sites.
2005-01-01
PA Ozone (full scale) Silty sand underlain by fractured schist and shale Petroleum hydrocarbons Former Wood Treatment Site, Sonoma County , CA...Wood Treatment Site, Sonoma County , California Contaminant: Pentachlorophenol and creosote (i.e., PAHs) Oxidant: Ozone Regulatory Agency Contact...topography is essentially flat and paved, and the facility is located on northern Sonoma County , California. The site subsurface consists of very
US Air Force 1989 Research Initiation Program . Volume 1.
1992-06-25
microbial ecology of contaminated soils. 27-5 Thomas and coworkers (1989) studied microbial activity at a creosote waste site and demonstrated that...provide information essential for an understanding of the microbial ecology of contaminated soils, they do not address the microbiology of...substrates. Appl. Environ. Microbiol. 49:711-713. Thomas, J. M., M. D. Lee, M. J. Scott and C. H. Ward. 1989. Microbial ecology of the subsurface Lt an
Arsenic, microbes and contaminated aquifers
Oremland, Ronald S.; Stolz, John F.
2005-01-01
The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.
Improved Understanding of In Situ Chemical Oxidation Contaminant Oxidation Kinetics
2007-12-01
natural oxidant demand •OH hydroxide radical Ox oxidant O3 ozone PCE perchloroethylene HSO5− peroxymonosulfate PNDA p...properties (e.g., soil mineralogy , natural carbon content) affect oxidant mobility and stability in the subsurface, and develop a standardized natural...chlorinated ethenes For contaminant oxidation by activated S2O82−, it is more difficult to develop a general description of kobs vs. T because there are
NASA Astrophysics Data System (ADS)
Sylvan, J. B.; Morono, Y.; Grim, S.; Inagaki, F.; Edwards, K. J.
2013-12-01
One of the objectives of IODP Expedition 330, Louisville Seamount Trail, was to sample and learn about the subsurface biosphere in the Louisville Seamount Chain (LSC). Seamounts are volcanic constructs that are ubiquitous along the seafloor - models suggest there are >100,000 seamounts of >1 km in height globally (Wessel et al., 2010). Therefore, knowledge about microbiology in the LSC subsurface can broadly be interpreted as representative of much the seafloor. In addition, despite the fact that the vast majority of the sea floor is comprised of crust >10 Ma, the majority of work to date has focused on young sites with active hydrology. Our presentation summarizes work focusing on subsurface microbiology from two different LSC seamounts: holes U1374A (65-71 Ma) and U1376A (64 Ma). We here present data for microbial biomass in the LSC subsurface using a method we developed to quantify microbial biomass in subseafloor ocean crust. We also present results from pyrotag analysis of 15 samples from holes U1374A and holes U1376A, representing several different lithologies from 40-491 meters below seafloor (mbsf) in hole U1374A and from 29-174 mbsf in hole U1376A. Finally, we present preliminary analysis of metagenomic sequencing from three of the samples from Hole U1376A. Biomass was low in the subsurface of both seamounts, ranging from below detection to ~104 cells cm-3. Bacteria comprised >99% of the prokaryotic community in LSC subsurface samples, therefore, bacterial diversity was assessed through 454 pyrosequencing of the V4V6 region of the 16S rRNA gene. Rarefaction analysis indicates that bacterial communities from the LSC subsurface are low diversity, on the order of a few hundred operational taxonomic units per sample. The phyla Actinobacteria, Bacteroidetes, Firmicutes and the classes α-, β- and γ-Proteobacteria are most abundant in the LSC subsurface. Within these, the orders Actinomycetales, Sphingobacteriales, Bacillales and Burkholderiales are the most common. Samples from different lithologies in hole U1374A grouped together, indicating more similarity to each other than to samples from hole U1376A. However, samples from different lithologies in hole U1376A were not similar to other samples from the same site, indicating some differences in the microbial communities between the two seamounts. Preliminary analysis of the metagenomic data will provide further assessment of community structure and reveal likely metabolisms present in the LSC subsurface. Altogether, the biomass data, pyrotag analysis and metagenomic sequencing provide a well-balanced analysis of subsurface microbiology in an old oceanic crustal environment. Wessel, P., Sandwell, D. T. & Kim, S. S. (2010). The Global Seamount Census. Oceanography 23, 24-33.
NASA Astrophysics Data System (ADS)
Ngueleu Kamangou, S.; Cirpka, O. A.; Grathwohl, P.
2012-04-01
In many developing countries, the hygienic situation has improved by changing from surface-water bodies to groundwater as drinking water resource. However, failures have frequently been reported, presumably caused by wrong design of groundwater extraction (e.g., wells too close to open-water bodies, landfill leachates or agricultural areas). Moreover threat to groundwater pollution is enhanced when colloidal particles in the subsurface can act as carriers for adsorbing contaminants such as hydrophobic chlorinated organic contaminants. In this study, the main objective was to investigate the influence of particles in the size range of colloids on the subsurface transport of pesticides which are known to cause severe health problems. The model pesticide was gamma-hexachlorocyclohexane, a representative hydrophobic insecticide which is still used mainly in tropical countries. Colloid-facilitated transport was carried out by considering a first case where the adsorption of the contaminant to the particles is at equilibrium before getting simultaneously transported, and a second case where this equilibrium was not reached before their transport. Another focus besides colloid-facilitated transport was placed on the release of the contaminant from trapped colloids. Data analysis was done with the help of numerical modeling and the minimum model complexity needed to simulate such transports was examined.