An Experimental Study on the Iso-Content-Based Angle Similarity Measure.
ERIC Educational Resources Information Center
Zhang, Jin; Rasmussen, Edie M.
2002-01-01
Retrieval performance of the iso-content-based angle similarity measure within the angle, distance, conjunction, disjunction, and ellipse retrieval models is compared with retrieval performance of the distance similarity measure and the angle similarity measure. Results show the iso-content-based angle similarity measure achieves satisfactory…
An integrated content and metadata based retrieval system for art.
Lewis, Paul H; Martinez, Kirk; Abas, Fazly Salleh; Fauzi, Mohammad Faizal Ahmad; Chan, Stephen C Y; Addis, Matthew J; Boniface, Mike J; Grimwood, Paul; Stevenson, Alison; Lahanier, Christian; Stevenson, James
2004-03-01
A new approach to image retrieval is presented in the domain of museum and gallery image collections. Specialist algorithms, developed to address specific retrieval tasks, are combined with more conventional content and metadata retrieval approaches, and implemented within a distributed architecture to provide cross-collection searching and navigation in a seamless way. External systems can access the different collections using interoperability protocols and open standards, which were extended to accommodate content based as well as text based retrieval paradigms. After a brief overview of the complete system, we describe the novel design and evaluation of some of the specialist image analysis algorithms including a method for image retrieval based on sub-image queries, retrievals based on very low quality images and retrieval using canvas crack patterns. We show how effective retrieval results can be achieved by real end-users consisting of major museums and galleries, accessing the distributed but integrated digital collections.
Content-based image retrieval on mobile devices
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Abdullah, Shafaq; Kiranyaz, Serkan; Gabbouj, Moncef
2005-03-01
Content-based image retrieval area possesses a tremendous potential for exploration and utilization equally for researchers and people in industry due to its promising results. Expeditious retrieval of desired images requires indexing of the content in large-scale databases along with extraction of low-level features based on the content of these images. With the recent advances in wireless communication technology and availability of multimedia capable phones it has become vital to enable query operation in image databases and retrieve results based on the image content. In this paper we present a content-based image retrieval system for mobile platforms, providing the capability of content-based query to any mobile device that supports Java platform. The system consists of light-weight client application running on a Java enabled device and a server containing a servlet running inside a Java enabled web server. The server responds to image query using efficient native code from selected image database. The client application, running on a mobile phone, is able to initiate a query request, which is handled by a servlet in the server for finding closest match to the queried image. The retrieved results are transmitted over mobile network and images are displayed on the mobile phone. We conclude that such system serves as a basis of content-based information retrieval on wireless devices and needs to cope up with factors such as constraints on hand-held devices and reduced network bandwidth available in mobile environments.
Visual Based Retrieval Systems and Web Mining--Introduction.
ERIC Educational Resources Information Center
Iyengar, S. S.
2001-01-01
Briefly discusses Web mining and image retrieval techniques, and then presents a summary of articles in this special issue. Articles focus on Web content mining, artificial neural networks as tools for image retrieval, content-based image retrieval systems, and personalizing the Web browsing experience using media agents. (AEF)
Complex Event Processing for Content-Based Text, Image, and Video Retrieval
2016-06-01
NY): Wiley- Interscience; 2000. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. New York (NY...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval
World Wide Web Based Image Search Engine Using Text and Image Content Features
NASA Astrophysics Data System (ADS)
Luo, Bo; Wang, Xiaogang; Tang, Xiaoou
2003-01-01
Using both text and image content features, a hybrid image retrieval system for Word Wide Web is developed in this paper. We first use a text-based image meta-search engine to retrieve images from the Web based on the text information on the image host pages to provide an initial image set. Because of the high-speed and low cost nature of the text-based approach, we can easily retrieve a broad coverage of images with a high recall rate and a relatively low precision. An image content based ordering is then performed on the initial image set. All the images are clustered into different folders based on the image content features. In addition, the images can be re-ranked by the content features according to the user feedback. Such a design makes it truly practical to use both text and image content for image retrieval over the Internet. Experimental results confirm the efficiency of the system.
New frontiers for intelligent content-based retrieval
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.
2001-01-01
In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.
New frontiers for intelligent content-based retrieval
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.
2000-12-01
In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.
A content-based news video retrieval system: NVRS
NASA Astrophysics Data System (ADS)
Liu, Huayong; He, Tingting
2009-10-01
This paper focus on TV news programs and design a content-based news video browsing and retrieval system, NVRS, which is convenient for users to fast browsing and retrieving news video by different categories such as political, finance, amusement, etc. Combining audiovisual features and caption text information, the system automatically segments a complete news program into separate news stories. NVRS supports keyword-based news story retrieval, category-based news story browsing and generates key-frame-based video abstract for each story. Experiments show that the method of story segmentation is effective and the retrieval is also efficient.
Evaluation of contents-based image retrieval methods for a database of logos on drug tablets
NASA Astrophysics Data System (ADS)
Geradts, Zeno J.; Hardy, Huub; Poortman, Anneke; Bijhold, Jurrien
2001-02-01
In this research an evaluation has been made of the different ways of contents based image retrieval of logos of drug tablets. On a database of 432 illicitly produced tablets (mostly containing MDMA), we have compared different retrieval methods. Two of these methods were available from commercial packages, QBIC and Imatch, where the implementation of the contents based image retrieval methods are not exactly known. We compared the results for this database with the MPEG-7 shape comparison methods, which are the contour-shape, bounding box and region-based shape methods. In addition, we have tested the log polar method that is available from our own research.
The effects of retrieval ease on health issue judgments: implications for campaign strategies.
Chang, Chingching
2010-12-01
This paper examines the effects of retrieving information about a health ailment on judgments of the perceived severity of the disease and self-efficacy regarding prevention and treatment. The literature on metacognition suggests that recall tasks render two types of information accessible: the retrieved content, and the subjective experience of retrieving the content. Both types of information can influence judgments. Content-based thinking models hold that the more instances of an event people can retrieve, the higher they will estimate the frequency of the event to be. In contrast, experience-based thinking models suggest that when people experience difficulty in retrieving information regarding an event, they rate the event as less likely to occur. In the first experiment, ease of retrieval was manipulated by asking participants to list either a high or low number of consequences of an ailment. As expected, retrieval difficulty resulted in lower perceived disease severity. In the second experiment, ease of retrieval was manipulated by varying the number of disease prevention or treatment measures participants attempted to list. As predicted, retrieval difficulty resulted in lower self-efficacy regarding prevention and treatment. In experiment three, when information regarding a health issue was made accessible by exposure to public service announcements (PSAs), ease-of-retrieval effects were attenuated. Finally, in experiment four, exposure to PSAs encouraged content-based judgments when the issue was of great concern.
Audio-based queries for video retrieval over Java enabled mobile devices
NASA Astrophysics Data System (ADS)
Ahmad, Iftikhar; Cheikh, Faouzi Alaya; Kiranyaz, Serkan; Gabbouj, Moncef
2006-02-01
In this paper we propose a generic framework for efficient retrieval of audiovisual media based on its audio content. This framework is implemented in a client-server architecture where the client application is developed in Java to be platform independent whereas the server application is implemented for the PC platform. The client application adapts to the characteristics of the mobile device where it runs such as screen size and commands. The entire framework is designed to take advantage of the high-level segmentation and classification of audio content to improve speed and accuracy of audio-based media retrieval. Therefore, the primary objective of this framework is to provide an adaptive basis for performing efficient video retrieval operations based on the audio content and types (i.e. speech, music, fuzzy and silence). Experimental results approve that such an audio based video retrieval scheme can be used from mobile devices to search and retrieve video clips efficiently over wireless networks.
Content-aware network storage system supporting metadata retrieval
NASA Astrophysics Data System (ADS)
Liu, Ke; Qin, Leihua; Zhou, Jingli; Nie, Xuejun
2008-12-01
Nowadays, content-based network storage has become the hot research spot of academy and corporation[1]. In order to solve the problem of hit rate decline causing by migration and achieve the content-based query, we exploit a new content-aware storage system which supports metadata retrieval to improve the query performance. Firstly, we extend the SCSI command descriptor block to enable system understand those self-defined query requests. Secondly, the extracted metadata is encoded by extensible markup language to improve the universality. Thirdly, according to the demand of information lifecycle management (ILM), we store those data in different storage level and use corresponding query strategy to retrieval them. Fourthly, as the file content identifier plays an important role in locating data and calculating block correlation, we use it to fetch files and sort query results through friendly user interface. Finally, the experiments indicate that the retrieval strategy and sort algorithm have enhanced the retrieval efficiency and precision.
Content-based TV sports video retrieval using multimodal analysis
NASA Astrophysics Data System (ADS)
Yu, Yiqing; Liu, Huayong; Wang, Hongbin; Zhou, Dongru
2003-09-01
In this paper, we propose content-based video retrieval, which is a kind of retrieval by its semantical contents. Because video data is composed of multimodal information streams such as video, auditory and textual streams, we describe a strategy of using multimodal analysis for automatic parsing sports video. The paper first defines the basic structure of sports video database system, and then introduces a new approach that integrates visual stream analysis, speech recognition, speech signal processing and text extraction to realize video retrieval. The experimental results for TV sports video of football games indicate that the multimodal analysis is effective for video retrieval by quickly browsing tree-like video clips or inputting keywords within predefined domain.
Improved image retrieval based on fuzzy colour feature vector
NASA Astrophysics Data System (ADS)
Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.
2013-03-01
One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.
Kingfisher: a system for remote sensing image database management
NASA Astrophysics Data System (ADS)
Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.
2003-04-01
At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.
Retrieval of the atmospheric compounds using a spectral optical thickness information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ioltukhovski, A.A.
A spectral inversion technique for retrieval of the atmospheric gases and aerosols contents is proposed. This technique based upon the preliminary measurement or retrieval of the spectral optical thickness. The existence of a priori information about the spectral cross sections for some of the atmospheric components allows to retrieve the relative contents of these components in the atmosphere. Method of smooth filtration makes possible to estimate contents of atmospheric aerosols with known cross sections and to filter out other aerosols; this is done independently from their relative contribution to the optical thickness.
Content-Based Medical Image Retrieval
NASA Astrophysics Data System (ADS)
Müller, Henning; Deserno, Thomas M.
This chapter details the necessity for alternative access concepts to the currently mainly text-based methods in medical information retrieval. This need is partly due to the large amount of visual data produced, the increasing variety of medical imaging data and changing user patterns. The stored visual data contain large amounts of unused information that, if well exploited, can help diagnosis, teaching and research. The chapter briefly reviews the history of image retrieval and its general methods before technologies that have been developed in the medical domain are focussed. We also discuss evaluation of medical content-based image retrieval (CBIR) systems and conclude with pointing out their strengths, gaps, and further developments. As examples, the MedGIFT project and the Image Retrieval in Medical Applications (IRMA) framework are presented.
A content-based retrieval of mammographic masses using the curvelet descriptor
NASA Astrophysics Data System (ADS)
Narváez, Fabian; Díaz, Gloria; Gómez, Francisco; Romero, Eduardo
2012-03-01
Computer-aided diagnosis (CAD) that uses content based image retrieval (CBIR) strategies has became an important research area. This paper presents a retrieval strategy that automatically recovers mammography masses from a virtual repository of mammographies. Unlike other approaches, we do not attempt to segment masses but instead we characterize the regions previously selected by an expert. These regions are firstly curvelet transformed and further characterized by approximating the marginal curvelet subband distribution with a generalized gaussian density (GGD). The content based retrieval strategy searches similar regions in a database using the Kullback-Leibler divergence as the similarity measure between distributions. The effectiveness of the proposed descriptor was assessed by comparing the automatically assigned label with a ground truth available in the DDSM database.1 A total of 380 masses with different shapes, sizes and margins were used for evaluation, resulting in a mean average precision rate of 89.3% and recall rate of 75.2% for the retrieval task.
Landmark Image Retrieval by Jointing Feature Refinement and Multimodal Classifier Learning.
Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun; Ma, Shuai; Xiaoming Zhang; Senzhang Wang; Zhoujun Li; Shuai Ma; Ma, Shuai; Zhang, Xiaoming; Wang, Senzhang; Li, Zhoujun
2018-06-01
Landmark retrieval is to return a set of images with their landmarks similar to those of the query images. Existing studies on landmark retrieval focus on exploiting the geometries of landmarks for visual similarity matches. However, the visual content of social images is of large diversity in many landmarks, and also some images share common patterns over different landmarks. On the other side, it has been observed that social images usually contain multimodal contents, i.e., visual content and text tags, and each landmark has the unique characteristic of both visual content and text content. Therefore, the approaches based on similarity matching may not be effective in this environment. In this paper, we investigate whether the geographical correlation among the visual content and the text content could be exploited for landmark retrieval. In particular, we propose an effective multimodal landmark classification paradigm to leverage the multimodal contents of social image for landmark retrieval, which integrates feature refinement and landmark classifier with multimodal contents by a joint model. The geo-tagged images are automatically labeled for classifier learning. Visual features are refined based on low rank matrix recovery, and multimodal classification combined with group sparse is learned from the automatically labeled images. Finally, candidate images are ranked by combining classification result and semantic consistence measuring between the visual content and text content. Experiments on real-world datasets demonstrate the superiority of the proposed approach as compared to existing methods.
Sharma, Harshita; Alekseychuk, Alexander; Leskovsky, Peter; Hellwich, Olaf; Anand, R S; Zerbe, Norman; Hufnagl, Peter
2012-10-04
Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923.
2012-01-01
Background Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. Methods The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. Results The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. Conclusion The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923. PMID:23035717
Content Based Image Retrieval based on Wavelet Transform coefficients distribution
Lamard, Mathieu; Cazuguel, Guy; Quellec, Gwénolé; Bekri, Lynda; Roux, Christian; Cochener, Béatrice
2007-01-01
In this paper we propose a content based image retrieval method for diagnosis aid in medical fields. We characterize images without extracting significant features by using distribution of coefficients obtained by building signatures from the distribution of wavelet transform. The research is carried out by computing signature distances between the query and database images. Several signatures are proposed; they use a model of wavelet coefficient distribution. To enhance results, a weighted distance between signatures is used and an adapted wavelet base is proposed. Retrieval efficiency is given for different databases including a diabetic retinopathy, a mammography and a face database. Results are promising: the retrieval efficiency is higher than 95% for some cases using an optimization process. PMID:18003013
Content-based retrieval of historical Ottoman documents stored as textual images.
Saykol, Ediz; Sinop, Ali Kemal; Güdükbay, Ugur; Ulusoy, Ozgür; Cetin, A Enis
2004-03-01
There is an accelerating demand to access the visual content of documents stored in historical and cultural archives. Availability of electronic imaging tools and effective image processing techniques makes it feasible to process the multimedia data in large databases. In this paper, a framework for content-based retrieval of historical documents in the Ottoman Empire archives is presented. The documents are stored as textual images, which are compressed by constructing a library of symbols occurring in a document, and the symbols in the original image are then replaced with pointers into the codebook to obtain a compressed representation of the image. The features in wavelet and spatial domain based on angular and distance span of shapes are used to extract the symbols. In order to make content-based retrieval in historical archives, a query is specified as a rectangular region in an input image and the same symbol-extraction process is applied to the query region. The queries are processed on the codebook of documents and the query images are identified in the resulting documents using the pointers in textual images. The querying process does not require decompression of images. The new content-based retrieval framework is also applicable to many other document archives using different scripts.
Grilli, Matthew D
2017-11-01
Identity representations are higher-order knowledge structures that organise autobiographical memories on the basis of personality and role-based themes of one's self-concept. In two experiments, the extent to which different types of personal semantic content are reflected in these higher-order networks of memories was investigated. Healthy, young adult participants generated identity representations that varied in remoteness of formation and verbally reflected on these themes in an open-ended narrative task. The narrative responses were scored for retrieval of episodic, experience-near personal semantic and experience-far (i.e., abstract) personal semantic contents. Results revealed that to reflect on remotely formed identity representations, experience-far personal semantic contents were retrieved more than experience-near personal semantic contents. In contrast, to reflect on recently formed identity representations, experience-near personal semantic contents were retrieved more than experience-far personal semantic contents. Although episodic memory contents were retrieved less than both personal semantic content types to reflect on remotely formed identity representations, this content type was retrieved at a similar frequency as experience-far personal semantic content to reflect on recently formed identity representations. These findings indicate that the association of personal semantic content to identity representations is robust and related to time since acquisition of these knowledge structures.
NASA Technical Reports Server (NTRS)
Coddington, Odele; Pilewskie, Peter; Schmidt, K. Sebastian; McBride, Patrick J.; Vukicevic, Tomislava
2013-01-01
This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (tau), droplet effective radius (r(sub e)), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for tau between 5 and 60 and r(sub e) less than approximately 20 nm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of tau from 5 to 10 and r(sub e) less than 10 nm, with maximum sensitivity obtained for an overhead sun.
NASA Astrophysics Data System (ADS)
Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro
2015-03-01
This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.
Content-based video retrieval by example video clip
NASA Astrophysics Data System (ADS)
Dimitrova, Nevenka; Abdel-Mottaleb, Mohamed
1997-01-01
This paper presents a novel approach for video retrieval from a large archive of MPEG or Motion JPEG compressed video clips. We introduce a retrieval algorithm that takes a video clip as a query and searches the database for clips with similar contents. Video clips are characterized by a sequence of representative frame signatures, which are constructed from DC coefficients and motion information (`DC+M' signatures). The similarity between two video clips is determined by using their respective signatures. This method facilitates retrieval of clips for the purpose of video editing, broadcast news retrieval, or copyright violation detection.
Validating a Geographical Image Retrieval System.
ERIC Educational Resources Information Center
Zhu, Bin; Chen, Hsinchun
2000-01-01
Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…
Latent Semantic Analysis as a Method of Content-Based Image Retrieval in Medical Applications
ERIC Educational Resources Information Center
Makovoz, Gennadiy
2010-01-01
The research investigated whether a Latent Semantic Analysis (LSA)-based approach to image retrieval can map pixel intensity into a smaller concept space with good accuracy and reasonable computational cost. From a large set of M computed tomography (CT) images, a retrieval query found all images for a particular patient based on semantic…
NASA Astrophysics Data System (ADS)
Du, Hongbo; Al-Jubouri, Hanan; Sellahewa, Harin
2014-05-01
Content-based image retrieval is an automatic process of retrieving images according to image visual contents instead of textual annotations. It has many areas of application from automatic image annotation and archive, image classification and categorization to homeland security and law enforcement. The key issues affecting the performance of such retrieval systems include sensible image features that can effectively capture the right amount of visual contents and suitable similarity measures to find similar and relevant images ranked in a meaningful order. Many different approaches, methods and techniques have been developed as a result of very intensive research in the past two decades. Among many existing approaches, is a cluster-based approach where clustering methods are used to group local feature descriptors into homogeneous regions, and search is conducted by comparing the regions of the query image against those of the stored images. This paper serves as a review of works in this area. The paper will first summarize the existing work reported in the literature and then present the authors' own investigations in this field. The paper intends to highlight not only achievements made by recent research but also challenges and difficulties still remaining in this area.
Deeply learnt hashing forests for content based image retrieval in prostate MR images
NASA Astrophysics Data System (ADS)
Shah, Amit; Conjeti, Sailesh; Navab, Nassir; Katouzian, Amin
2016-03-01
Deluge in the size and heterogeneity of medical image databases necessitates the need for content based retrieval systems for their efficient organization. In this paper, we propose such a system to retrieve prostate MR images which share similarities in appearance and content with a query image. We introduce deeply learnt hashing forests (DL-HF) for this image retrieval task. DL-HF effectively leverages the semantic descriptiveness of deep learnt Convolutional Neural Networks. This is used in conjunction with hashing forests which are unsupervised random forests. DL-HF hierarchically parses the deep-learnt feature space to encode subspaces with compact binary code words. We propose a similarity preserving feature descriptor called Parts Histogram which is derived from DL-HF. Correlation defined on this descriptor is used as a similarity metric for retrieval from the database. Validations on publicly available multi-center prostate MR image database established the validity of the proposed approach. The proposed method is fully-automated without any user-interaction and is not dependent on any external image standardization like image normalization and registration. This image retrieval method is generalizable and is well-suited for retrieval in heterogeneous databases other imaging modalities and anatomies.
Three-dimensional spatiotemporal features for fast content-based retrieval of focal liver lesions.
Roy, Sharmili; Chi, Yanling; Liu, Jimin; Venkatesh, Sudhakar K; Brown, Michael S
2014-11-01
Content-based image retrieval systems for 3-D medical datasets still largely rely on 2-D image-based features extracted from a few representative slices of the image stack. Most 2 -D features that are currently used in the literature not only model a 3-D tumor incompletely but are also highly expensive in terms of computation time, especially for high-resolution datasets. Radiologist-specified semantic labels are sometimes used along with image-based 2-D features to improve the retrieval performance. Since radiological labels show large interuser variability, are often unstructured, and require user interaction, their use as lesion characterizing features is highly subjective, tedious, and slow. In this paper, we propose a 3-D image-based spatiotemporal feature extraction framework for fast content-based retrieval of focal liver lesions. All the features are computer generated and are extracted from four-phase abdominal CT images. Retrieval performance and query processing times for the proposed framework is evaluated on a database of 44 hepatic lesions comprising of five pathological types. Bull's eye percentage score above 85% is achieved for three out of the five lesion pathologies and for 98% of query lesions, at least one same type of lesion is ranked among the top two retrieved results. Experiments show that the proposed system's query processing is more than 20 times faster than other already published systems that use 2-D features. With fast computation time and high retrieval accuracy, the proposed system has the potential to be used as an assistant to radiologists for routine hepatic tumor diagnosis.
NASA Astrophysics Data System (ADS)
Chandakkar, Parag S.; Venkatesan, Ragav; Li, Baoxin
2013-02-01
Diabetic retinopathy (DR) is a vision-threatening complication from diabetes mellitus, a medical condition that is rising globally. Unfortunately, many patients are unaware of this complication because of absence of symptoms. Regular screening of DR is necessary to detect the condition for timely treatment. Content-based image retrieval, using archived and diagnosed fundus (retinal) camera DR images can improve screening efficiency of DR. This content-based image retrieval study focuses on two DR clinical findings, microaneurysm and neovascularization, which are clinical signs of non-proliferative and proliferative diabetic retinopathy. The authors propose a multi-class multiple-instance image retrieval framework which deploys a modified color correlogram and statistics of steerable Gaussian Filter responses, for retrieving clinically relevant images from a database of DR fundus image database.
ERIC Educational Resources Information Center
Haga, Hirohide; Kaneda, Shigeo
2005-01-01
This article describes the survey of the usability of a novel content-based video retrieval system. This system combines video streaming and an electronic bulletin board system (BBS). Comments submitted to the BBS are used to index video data. Following the development of the prototype system an experimental survey with ten subjects was performed.…
A similarity learning approach to content-based image retrieval: application to digital mammography.
El-Naqa, Issam; Yang, Yongyi; Galatsanos, Nikolas P; Nishikawa, Robert M; Wernick, Miles N
2004-10-01
In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the user's query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the user's notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for CBIR; 2) the learning-based framework can significantly outperform a simple distance-based similarity metric; 3) the use of the hierarchical two-stage network can improve retrieval performance; and 4) relevance feedback can be effectively incorporated into this learning framework to achieve improvement in retrieval precision based on online interaction with users; and 5) the retrieved images by the network can have predicting value for the disease condition of the query.
New model for distributed multimedia databases and its application to networking of museums
NASA Astrophysics Data System (ADS)
Kuroda, Kazuhide; Komatsu, Naohisa; Komiya, Kazumi; Ikeda, Hiroaki
1998-02-01
This paper proposes a new distributed multimedia data base system where the databases storing MPEG-2 videos and/or super high definition images are connected together through the B-ISDN's, and also refers to an example of the networking of museums on the basis of the proposed database system. The proposed database system introduces a new concept of the 'retrieval manager' which functions an intelligent controller so that the user can recognize a set of image databases as one logical database. A user terminal issues a request to retrieve contents to the retrieval manager which is located in the nearest place to the user terminal on the network. Then, the retrieved contents are directly sent through the B-ISDN's to the user terminal from the server which stores the designated contents. In this case, the designated logical data base dynamically generates the best combination of such a retrieving parameter as a data transfer path referring to directly or data on the basis of the environment of the system. The generated retrieving parameter is then executed to select the most suitable data transfer path on the network. Therefore, the best combination of these parameters fits to the distributed multimedia database system.
Multiple Object Retrieval in Image Databases Using Hierarchical Segmentation Tree
ERIC Educational Resources Information Center
Chen, Wei-Bang
2012-01-01
The purpose of this research is to develop a new visual information analysis, representation, and retrieval framework for automatic discovery of salient objects of user's interest in large-scale image databases. In particular, this dissertation describes a content-based image retrieval framework which supports multiple-object retrieval. The…
Content-based image retrieval for interstitial lung diseases using classification confidence
NASA Astrophysics Data System (ADS)
Dash, Jatindra Kumar; Mukhopadhyay, Sudipta; Prabhakar, Nidhi; Garg, Mandeep; Khandelwal, Niranjan
2013-02-01
Content Based Image Retrieval (CBIR) system could exploit the wealth of High-Resolution Computed Tomography (HRCT) data stored in the archive by finding similar images to assist radiologists for self learning and differential diagnosis of Interstitial Lung Diseases (ILDs). HRCT findings of ILDs are classified into several categories (e.g. consolidation, emphysema, ground glass, nodular etc.) based on their texture like appearances. Therefore, analysis of ILDs is considered as a texture analysis problem. Many approaches have been proposed for CBIR of lung images using texture as primitive visual content. This paper presents a new approach to CBIR for ILDs. The proposed approach makes use of a trained neural network (NN) to find the output class label of query image. The degree of confidence of the NN classifier is analyzed using Naive Bayes classifier that dynamically takes a decision on the size of the search space to be used for retrieval. The proposed approach is compared with three simple distance based and one classifier based texture retrieval approaches. Experimental results show that the proposed technique achieved highest average percentage precision of 92.60% with lowest standard deviation of 20.82%.
Toward privacy-preserving JPEG image retrieval
NASA Astrophysics Data System (ADS)
Cheng, Hang; Wang, Jingyue; Wang, Meiqing; Zhong, Shangping
2017-07-01
This paper proposes a privacy-preserving retrieval scheme for JPEG images based on local variance. Three parties are involved in the scheme: the content owner, the server, and the authorized user. The content owner encrypts JPEG images for privacy protection by jointly using permutation cipher and stream cipher, and then, the encrypted versions are uploaded to the server. With an encrypted query image provided by an authorized user, the server may extract blockwise local variances in different directions without knowing the plaintext content. After that, it can calculate the similarity between the encrypted query image and each encrypted database image by a local variance-based feature comparison mechanism. The authorized user with the encryption key can decrypt the returned encrypted images with plaintext content similar to the query image. The experimental results show that the proposed scheme not only provides effective privacy-preserving retrieval service but also ensures both format compliance and file size preservation for encrypted JPEG images.
Breast Histopathological Image Retrieval Based on Latent Dirichlet Allocation.
Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu
2017-07-01
In the field of pathology, whole slide image (WSI) has become the major carrier of visual and diagnostic information. Content-based image retrieval among WSIs can aid the diagnosis of an unknown pathological image by finding its similar regions in WSIs with diagnostic information. However, the huge size and complex content of WSI pose several challenges for retrieval. In this paper, we propose an unsupervised, accurate, and fast retrieval method for a breast histopathological image. Specifically, the method presents a local statistical feature of nuclei for morphology and distribution of nuclei, and employs the Gabor feature to describe the texture information. The latent Dirichlet allocation model is utilized for high-level semantic mining. Locality-sensitive hashing is used to speed up the search. Experiments on a WSI database with more than 8000 images from 15 types of breast histopathology demonstrate that our method achieves about 0.9 retrieval precision as well as promising efficiency. Based on the proposed framework, we are developing a search engine for an online digital slide browsing and retrieval platform, which can be applied in computer-aided diagnosis, pathology education, and WSI archiving and management.
Content-based image retrieval by matching hierarchical attributed region adjacency graphs
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.
2004-05-01
Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.
NASA Astrophysics Data System (ADS)
Jiao, Q.; Liu, L.; Zhang, B.
2017-12-01
Leaf chlorophyll content is an important indicator of crop growth condition that determines final crop yield. A lot of research on remote sensing of leaf chlorophyll content were based on reflectance data acquired from nadir direction. However, reflectance data at nadir may be affected by soil background. In fact, many satellite sensors with capability of chlorophyll retrieval, like the 68.5 degrees field-of-view MERIS, have produced large multiangular data. This study tries to assess the anisotropic effect on the retrieval of leaf chlorophyll content using field hyperspectral data of wheat canopy. The field multi-angle observation experiment of winter wheat was carried out in April 2017 in Xiaotangshan agriculture demonstration study site in Beijing. Field canopy spectra and leaf chlorophyll content of winter wheat were measured. The most used indices for chlorophyll content retrieval, such as CIred-edge, REP, MTCI, MCARI/OSAVI[705,750], TCARI/OSAVI[705,750], were calculated based on the filed multiangular reflectance. The ratio index TCARI/OSAVI owned the best results in estimating leaf chlorophyll content (R2 of 0.62) among all the selected indices, when using the top-of-canopy reflectance at nadir. The determination coefficient of the relationship of TCARI/OSAVI with chlorophyll content reached its peak (R2 of 0.70) at angle of 15 degrees, and the minimum R2 value of only 0.25 at angle of 60 degrees. The MTCI got the peak of determination coefficient (R2 of 0.63) at angle of 15 degrees and the minimum value (R2 of 0.57) for 60 degrees. Our results showed the MTCI could keep a more satisfactory correlation with leaf chlorophyll content of winter wheat, however the mean values of the MTCI basically decreased as the observation angle increases. This work shows the strong anisotropic effects of top-of-canopy reflectance which influences most of selected popular chlorophyll indices. If spectral index selection is proper, multiangular remote sensing could produce higher accuracy for leaf chlorophyll content retrieval than only using nadir observation. Multi-angular remote sensing has the potential of leaf chlorophyll content retrieval for diagnosis of crop nitrogen stress or water stress.
Image/text automatic indexing and retrieval system using context vector approach
NASA Astrophysics Data System (ADS)
Qing, Kent P.; Caid, William R.; Ren, Clara Z.; McCabe, Patrick
1995-11-01
Thousands of documents and images are generated daily both on and off line on the information superhighway and other media. Storage technology has improved rapidly to handle these data but indexing this information is becoming very costly. HNC Software Inc. has developed a technology for automatic indexing and retrieval of free text and images. This technique is demonstrated and is based on the concept of `context vectors' which encode a succinct representation of the associated text and features of sub-image. In this paper, we will describe the Automated Librarian System which was designed for free text indexing and the Image Content Addressable Retrieval System (ICARS) which extends the technique from the text domain into the image domain. Both systems have the ability to automatically assign indices for a new document and/or image based on the content similarities in the database. ICARS also has the capability to retrieve images based on similarity of content using index terms, text description, and user-generated images as a query without performing segmentation or object recognition.
Content-based cell pathology image retrieval by combining different features
NASA Astrophysics Data System (ADS)
Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong
2004-04-01
Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.
Application of new type of distributed multimedia databases to networked electronic museum
NASA Astrophysics Data System (ADS)
Kuroda, Kazuhide; Komatsu, Naohisa; Komiya, Kazumi; Ikeda, Hiroaki
1999-01-01
Recently, various kinds of multimedia application systems have actively been developed based on the achievement of advanced high sped communication networks, computer processing technologies, and digital contents-handling technologies. Under this background, this paper proposed a new distributed multimedia database system which can effectively perform a new function of cooperative retrieval among distributed databases. The proposed system introduces a new concept of 'Retrieval manager' which functions as an intelligent controller so that the user can recognize a set of distributed databases as one logical database. The logical database dynamically generates and performs a preferred combination of retrieving parameters on the basis of both directory data and the system environment. Moreover, a concept of 'domain' is defined in the system as a managing unit of retrieval. The retrieval can effectively be performed by cooperation of processing among multiple domains. Communication language and protocols are also defined in the system. These are used in every action for communications in the system. A language interpreter in each machine translates a communication language into an internal language used in each machine. Using the language interpreter, internal processing, such internal modules as DBMS and user interface modules can freely be selected. A concept of 'content-set' is also introduced. A content-set is defined as a package of contents. Contents in the content-set are related to each other. The system handles a content-set as one object. The user terminal can effectively control the displaying of retrieved contents, referring to data indicating the relation of the contents in the content- set. In order to verify the function of the proposed system, a networked electronic museum was experimentally built. The results of this experiment indicate that the proposed system can effectively retrieve the objective contents under the control to a number of distributed domains. The result also indicate that the system can effectively work even if the system becomes large.
Evolving discriminators for querying video sequences
NASA Astrophysics Data System (ADS)
Iyengar, Giridharan; Lippman, Andrew B.
1997-01-01
In this paper we present a framework for content based query and retrieval of information from large video databases. This framework enables content based retrieval of video sequences by characterizing the sequences using motion, texture and colorimetry cues. This characterization is biologically inspired and results in a compact parameter space where every segment of video is represented by an 8 dimensional vector. Searching and retrieval is done in real- time with accuracy in this parameter space. Using this characterization, we then evolve a set of discriminators using Genetic Programming Experiments indicate that these discriminators are capable of analyzing and characterizing video. The VideoBook is able to search and retrieve video sequences with 92% accuracy in real-time. Experiments thus demonstrate that the characterization is capable of extracting higher level structure from raw pixel values.
Mobile medical visual information retrieval.
Depeursinge, Adrien; Duc, Samuel; Eggel, Ivan; Müller, Henning
2012-01-01
In this paper, we propose mobile access to peer-reviewed medical information based on textual search and content-based visual image retrieval. Web-based interfaces designed for limited screen space were developed to query via web services a medical information retrieval engine optimizing the amount of data to be transferred in wireless form. Visual and textual retrieval engines with state-of-the-art performance were integrated. Results obtained show a good usability of the software. Future use in clinical environments has the potential of increasing quality of patient care through bedside access to the medical literature in context.
Ma, Ling; Liu, Xiabi; Gao, Yan; Zhao, Yanfeng; Zhao, Xinming; Zhou, Chunwu
2017-02-01
This paper proposes a new method of content based medical image retrieval through considering fused, context-sensitive similarity. Firstly, we fuse the semantic and visual similarities between the query image and each image in the database as their pairwise similarities. Then, we construct a weighted graph whose nodes represent the images and edges measure their pairwise similarities. By using the shortest path algorithm over the weighted graph, we obtain a new similarity measure, context-sensitive similarity measure, between the query image and each database image to complete the retrieval process. Actually, we use the fused pairwise similarity to narrow down the semantic gap for obtaining a more accurate pairwise similarity measure, and spread it on the intrinsic data manifold to achieve the context-sensitive similarity for a better retrieval performance. The proposed method has been evaluated on the retrieval of the Common CT Imaging Signs of Lung Diseases (CISLs) and achieved not only better retrieval results but also the satisfactory computation efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil
2018-01-25
Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.
Development of a web-based video management and application processing system
NASA Astrophysics Data System (ADS)
Chan, Shermann S.; Wu, Yi; Li, Qing; Zhuang, Yueting
2001-07-01
How to facilitate efficient video manipulation and access in a web-based environment is becoming a popular trend for video applications. In this paper, we present a web-oriented video management and application processing system, based on our previous work on multimedia database and content-based retrieval. In particular, we extend the VideoMAP architecture with specific web-oriented mechanisms, which include: (1) Concurrency control facilities for the editing of video data among different types of users, such as Video Administrator, Video Producer, Video Editor, and Video Query Client; different users are assigned various priority levels for different operations on the database. (2) Versatile video retrieval mechanism which employs a hybrid approach by integrating a query-based (database) mechanism with content- based retrieval (CBR) functions; its specific language (CAROL/ST with CBR) supports spatio-temporal semantics of video objects, and also offers an improved mechanism to describe visual content of videos by content-based analysis method. (3) Query profiling database which records the `histories' of various clients' query activities; such profiles can be used to provide the default query template when a similar query is encountered by the same kind of users. An experimental prototype system is being developed based on the existing VideoMAP prototype system, using Java and VC++ on the PC platform.
Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-10-23
A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.
Plant Leaf Chlorophyll Content Retrieval Based on a Field Imaging Spectroscopy System
Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin
2014-01-01
A field imaging spectrometer system (FISS; 380–870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%–35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector. PMID:25341439
Content based image retrieval using local binary pattern operator and data mining techniques.
Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan
2015-01-01
Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.
NASA Astrophysics Data System (ADS)
Solli, Martin; Lenz, Reiner
In this paper we describe how to include high level semantic information, such as aesthetics and emotions, into Content Based Image Retrieval. We present a color-based emotion-related image descriptor that can be used for describing the emotional content of images. The color emotion metric used is derived from psychophysical experiments and based on three variables: activity, weight and heat. It was originally designed for single-colors, but recent research has shown that the same emotion estimates can be applied in the retrieval of multi-colored images. Here we describe a new approach, based on the assumption that perceived color emotions in images are mainly affected by homogenous regions, defined by the emotion metric, and transitions between regions. RGB coordinates are converted to emotion coordinates, and for each emotion channel, statistical measurements of gradient magnitudes within a stack of low-pass filtered images are used for finding interest points corresponding to homogeneous regions and transitions between regions. Emotion characteristics are derived for patches surrounding each interest point, and saved in a bag-of-emotions, that, for instance, can be used for retrieving images based on emotional content.
Developing an A Priori Database for Passive Microwave Snow Water Retrievals Over Ocean
NASA Astrophysics Data System (ADS)
Yin, Mengtao; Liu, Guosheng
2017-12-01
A physically optimized a priori database is developed for Global Precipitation Measurement Microwave Imager (GMI) snow water retrievals over ocean. The initial snow water content profiles are derived from CloudSat Cloud Profiling Radar (CPR) measurements. A radiative transfer model in which the single-scattering properties of nonspherical snowflakes are based on the discrete dipole approximate results is employed to simulate brightness temperatures and their gradients. Snow water content profiles are then optimized through a one-dimensional variational (1D-Var) method. The standard deviations of the difference between observed and simulated brightness temperatures are in a similar magnitude to the observation errors defined for observation error covariance matrix after the 1D-Var optimization, indicating that this variational method is successful. This optimized database is applied in a Bayesian retrieval snow water algorithm. The retrieval results indicated that the 1D-Var approach has a positive impact on the GMI retrieved snow water content profiles by improving the physical consistency between snow water content profiles and observed brightness temperatures. Global distribution of snow water contents retrieved from the a priori database is compared with CloudSat CPR estimates. Results showed that the two estimates have a similar pattern of global distribution, and the difference of their global means is small. In addition, we investigate the impact of using physical parameters to subset the database on snow water retrievals. It is shown that using total precipitable water to subset the database with 1D-Var optimization is beneficial for snow water retrievals.
Web image retrieval using an effective topic and content-based technique
NASA Astrophysics Data System (ADS)
Lee, Ching-Cheng; Prabhakara, Rashmi
2005-03-01
There has been an exponential growth in the amount of image data that is available on the World Wide Web since the early development of Internet. With such a large amount of information and image available and its usefulness, an effective image retrieval system is thus greatly needed. In this paper, we present an effective approach with both image matching and indexing techniques that improvise on existing integrated image retrieval methods. This technique follows a two-phase approach, integrating query by topic and query by example specification methods. In the first phase, The topic-based image retrieval is performed by using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. This technique consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. In the second phase, we use query by example specification to perform a low-level content-based image match in order to retrieve smaller and relatively closer results of the example image. From this, information related to the image feature is automatically extracted from the query image. The main objective of our approach is to develop a functional image search and indexing technique and to demonstrate that better retrieval results can be achieved.
ERIC Educational Resources Information Center
Kurtz, Michael J.; Eichorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Demleitner, Markus; Murray, Stephen S.; Jones, Michael L. W.; Gay, Geri K.; Rieger, Robert H.; Millman, David; Bruggemann-Klein, Anne; Klein, Rolf; Landgraf, Britta; Wang, James Ze; Li, Jia; Chan, Desmond; Wiederhold, Gio; Pitti, Daniel V.
1999-01-01
Includes six articles that discuss a digital library for astronomy; comparing evaluations of digital collection efforts; cross-organizational access management of Web-based resources; searching scientific bibliographic databases based on content-based relations between documents; semantics-sensitive retrieval for digital picture libraries; and…
Minimizing the semantic gap in biomedical content-based image retrieval
NASA Astrophysics Data System (ADS)
Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.
2010-03-01
A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.
Spachos, Dimitris; Mylläri, Jarkko; Giordano, Daniela; Dafli, Eleni; Mitsopoulou, Evangelia; Schizas, Christos N; Pattichis, Constantinos; Nikolaidou, Maria
2015-01-01
Background The mEducator Best Practice Network (BPN) implemented and extended standards and reference models in e-learning to develop innovative frameworks as well as solutions that enable specialized state-of-the-art medical educational content to be discovered, retrieved, shared, and re-purposed across European Institutions, targeting medical students, doctors, educators and health care professionals. Scenario-based evaluation for usability testing, complemented with data from online questionnaires and field notes of users’ performance, was designed and utilized for the evaluation of these solutions. Objective The objective of this work is twofold: (1) to describe one instantiation of the mEducator BPN solutions (mEducator3.0 - “MEdical Education LINnked Arena” MELINA+) with a focus on the metadata schema used, as well as on other aspects of the system that pertain to usability and acceptance, and (2) to present evaluation results on the suitability of the proposed metadata schema for searching, retrieving, and sharing of medical content and with respect to the overall usability and acceptance of the system from the target users. Methods A comprehensive evaluation methodology framework was developed and applied to four case studies, which were conducted in four different countries (ie, Greece, Cyprus, Bulgaria and Romania), with a total of 126 participants. In these case studies, scenarios referring to creating, sharing, and retrieving medical educational content using mEducator3.0 were used. The data were collected through two online questionnaires, consisting of 36 closed-ended questions and two open-ended questions that referred to mEducator 3.0 and through the use of field notes during scenario-based evaluations. Results The main findings of the study showed that even though the informational needs of the mEducator target groups were addressed to a satisfactory extent and the metadata schema supported content creation, sharing, and retrieval from an end-user perspective, users faced difficulties in achieving a shared understanding of the meaning of some metadata fields and in correctly managing the intellectual property rights of repurposed content. Conclusions The results of this evaluation impact researchers, medical professionals, and designers interested in using similar systems for educational content sharing in medical and other domains. Recommendations on how to improve the search, retrieval, identification, and obtaining of medical resources are provided, by addressing issues of content description metadata, content description procedures, and intellectual property rights for re-purposed content. PMID:26453250
Combining textual and visual information for image retrieval in the medical domain.
Gkoufas, Yiannis; Morou, Anna; Kalamboukis, Theodore
2011-01-01
In this article we have assembled the experience obtained from our participation in the imageCLEF evaluation task over the past two years. Exploitation on the use of linear combinations for image retrieval has been attempted by combining visual and textual sources of images. From our experiments we conclude that a mixed retrieval technique that applies both textual and visual retrieval in an interchangeably repeated manner improves the performance while overcoming the scalability limitations of visual retrieval. In particular, the mean average precision (MAP) has increased from 0.01 to 0.15 and 0.087 for 2009 and 2010 data, respectively, when content-based image retrieval (CBIR) is performed on the top 1000 results from textual retrieval based on natural language processing (NLP).
NASA Astrophysics Data System (ADS)
Mueller, Wolfgang; Mueller, Henning; Marchand-Maillet, Stephane; Pun, Thierry; Squire, David M.; Pecenovic, Zoran; Giess, Christoph; de Vries, Arjen P.
2000-10-01
While in the area of relational databases interoperability is ensured by common communication protocols (e.g. ODBC/JDBC using SQL), Content Based Image Retrieval Systems (CBIRS) and other multimedia retrieval systems are lacking both a common query language and a common communication protocol. Besides its obvious short term convenience, interoperability of systems is crucial for the exchange and analysis of user data. In this paper, we present and describe an extensible XML-based query markup language, called MRML (Multimedia Retrieval markup Language). MRML is primarily designed so as to ensure interoperability between different content-based multimedia retrieval systems. Further, MRML allows researchers to preserve their freedom in extending their system as needed. MRML encapsulates multimedia queries in a way that enable multimedia (MM) query languages, MM content descriptions, MM query engines, and MM user interfaces to grow independently from each other, reaching a maximum of interoperability while ensuring a maximum of freedom for the developer. For benefitting from this, only a few simple design principles have to be respected when extending MRML for one's fprivate needs. The design of extensions withing the MRML framework will be described in detail in the paper. MRML has been implemented and tested for the CBIRS Viper, using the user interface Snake Charmer. Both are part of the GNU project and can be downloaded at our site.
Integrated approach to multimodal media content analysis
NASA Astrophysics Data System (ADS)
Zhang, Tong; Kuo, C.-C. Jay
1999-12-01
In this work, we present a system for the automatic segmentation, indexing and retrieval of audiovisual data based on the combination of audio, visual and textural content analysis. The video stream is demultiplexed into audio, image and caption components. Then, a semantic segmentation of the audio signal based on audio content analysis is conducted, and each segment is indexed as one of the basic audio types. The image sequence is segmented into shots based on visual information analysis, and keyframes are extracted from each shot. Meanwhile, keywords are detected from the closed caption. Index tables are designed for both linear and non-linear access to the video. It is shown by experiments that the proposed methods for multimodal media content analysis are effective. And that the integrated framework achieves satisfactory results for video information filtering and retrieval.
Image Location Estimation by Salient Region Matching.
Qian, Xueming; Zhao, Yisi; Han, Junwei
2015-11-01
Nowadays, locations of images have been widely used in many application scenarios for large geo-tagged image corpora. As to images which are not geographically tagged, we estimate their locations with the help of the large geo-tagged image set by content-based image retrieval. In this paper, we exploit spatial information of useful visual words to improve image location estimation (or content-based image retrieval performances). We proposed to generate visual word groups by mean-shift clustering. To improve the retrieval performance, spatial constraint is utilized to code the relative position of visual words. We proposed to generate a position descriptor for each visual word and build fast indexing structure for visual word groups. Experiments show the effectiveness of our proposed approach.
A Holistic, Similarity-Based Approach for Personalized Ranking in Web Databases
ERIC Educational Resources Information Center
Telang, Aditya
2011-01-01
With the advent of the Web, the notion of "information retrieval" has acquired a completely new connotation and currently encompasses several disciplines ranging from traditional forms of text and data retrieval in unstructured and structured repositories to retrieval of static and dynamic information from the contents of the surface and deep Web.…
Wave optics-based LEO-LEO radio occultation retrieval
NASA Astrophysics Data System (ADS)
Benzon, Hans-Henrik; Høeg, Per
2016-06-01
This paper describes the theory for performing retrieval of radio occultations that use probing frequencies in the XK and KM band. Normally, radio occultations use frequencies in the L band, and GPS satellites are used as the transmitting source, and the occultation signals are received by a GPS receiver on board a Low Earth Orbit (LEO) satellite. The technique is based on the Doppler shift imposed, by the atmosphere, on the signal emitted from the GPS satellite. Two LEO satellites are assumed in the occultations discussed in this paper, and the retrieval is also dependent on the decrease in the signal amplitude caused by atmospheric absorption. The radio wave transmitter is placed on one of these satellites, while the receiver is placed on the other LEO satellite. One of the drawbacks of normal GPS-based radio occultations is that external information is needed to calculate some of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high-frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval chain is therefore a wave optics-based retrieval chain, and it is therefore possible to process measurements that include multipath. In this paper simulated LEO to LEO radio occultations based on five different frequencies are used. The five frequencies are placed in the XK or KM frequency band. This new wave optics-based retrieval chain is used on a number of examples, and the retrieved atmospheric parameters are compared to the parameters from a global European Centre for Medium-Range Weather Forecasts analysis model. This model is used in a forward propagator that simulates the electromagnetic field amplitudes and phases at the receiver on board the LEO satellite. LEO-LEO cross-link radio occultations using high frequencies are a relatively new technique, and the possibilities and advantages of the technique still need to be investigated. The retrieval of this type of radio occultations is considerably more complicated than standard GPS to LEO radio occultations, because the attenuation of the probing radio waves is used in the retrieval and the atmospheric parameters are found using a least squares solver. The best algorithms and the number of probing frequencies that is economically viable must also be determined. This paper intends to answer some of these questions using end-to-end simulations.
Creating and indexing teaching files from free-text patient reports.
Johnson, D. B.; Chu, W. W.; Dionisio, J. D.; Taira, R. K.; Kangarloo, H.
1999-01-01
Teaching files based on real patient data can enhance the education of students, staff and other colleagues. Although information retrieval system can index free-text documents using keywords, these systems do not work well where content bearing terms (e.g., anatomy descriptions) frequently appears. This paper describes a system that uses multi-word indexing terms to provide access to free-text patient reports. The utilization of multi-word indexing allows better modeling of the content of medical reports, thus improving retrieval performance. The method used to select indexing terms as well as early evaluation of retrieval performance is discussed. PMID:10566473
ERIC Educational Resources Information Center
Porter, Brandi
2009-01-01
Millennial students make up a large portion of undergraduate students attending colleges and universities, and they have a variety of online resources available to them to complete academically related information searches, primarily Web based and library-based online information retrieval systems. The content, ease of use, and required search…
Enabling search over encrypted multimedia databases
NASA Astrophysics Data System (ADS)
Lu, Wenjun; Swaminathan, Ashwin; Varna, Avinash L.; Wu, Min
2009-02-01
Performing information retrieval tasks while preserving data confidentiality is a desirable capability when a database is stored on a server maintained by a third-party service provider. This paper addresses the problem of enabling content-based retrieval over encrypted multimedia databases. Search indexes, along with multimedia documents, are first encrypted by the content owner and then stored onto the server. Through jointly applying cryptographic techniques, such as order preserving encryption and randomized hash functions, with image processing and information retrieval techniques, secure indexing schemes are designed to provide both privacy protection and rank-ordered search capability. Retrieval results on an encrypted color image database and security analysis of the secure indexing schemes under different attack models show that data confidentiality can be preserved while retaining very good retrieval performance. This work has promising applications in secure multimedia management.
Mobile object retrieval in server-based image databases
NASA Astrophysics Data System (ADS)
Manger, D.; Pagel, F.; Widak, H.
2013-05-01
The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.
NASA Astrophysics Data System (ADS)
Xiong, Wei; Qiu, Bo; Tian, Qi; Mueller, Henning; Xu, Changsheng
2005-04-01
Medical image retrieval is still mainly a research domain with a large variety of applications and techniques. With the ImageCLEF 2004 benchmark, an evaluation framework has been created that includes a database, query topics and ground truth data. Eleven systems (with a total of more than 50 runs) compared their performance in various configurations. The results show that there is not any one feature that performs well on all query tasks. Key to successful retrieval is rather the selection of features and feature weights based on a specific set of input features, thus on the query task. In this paper we propose a novel method based on query topic dependent image features (QTDIF) for content-based medical image retrieval. These feature sets are designed to capture both inter-category and intra-category statistical variations to achieve good retrieval performance in terms of recall and precision. We have used Gaussian Mixture Models (GMM) and blob representation to model medical images and construct the proposed novel QTDIF for CBIR. Finally, trained multi-class support vector machines (SVM) are used for image similarity ranking. The proposed methods have been tested over the Casimage database with around 9000 images, for the given 26 image topics, used for imageCLEF 2004. The retrieval performance has been compared with the medGIFT system, which is based on the GNU Image Finding Tool (GIFT). The experimental results show that the proposed QTDIF-based CBIR can provide significantly better performance than systems based general features only.
NASA Astrophysics Data System (ADS)
Acton, Scott T.; Gilliam, Andrew D.; Li, Bing; Rossi, Adam
2008-02-01
Improvised explosive devices (IEDs) are common and lethal instruments of terrorism, and linking a terrorist entity to a specific device remains a difficult task. In the effort to identify persons associated with a given IED, we have implemented a specialized content based image retrieval system to search and classify IED imagery. The system makes two contributions to the art. First, we introduce a shape-based matching technique exploiting shape, color, and texture (wavelet) information, based on novel vector field convolution active contours and a novel active contour initialization method which treats coarse segmentation as an inverse problem. Second, we introduce a unique graph theoretic approach to match annotated printed circuit board images for which no schematic or connectivity information is available. The shape-based image retrieval method, in conjunction with the graph theoretic tool, provides an efficacious system for matching IED images. For circuit imagery, the basic retrieval mechanism has a precision of 82.1% and the graph based method has a precision of 98.1%. As of the fall of 2007, the working system has processed over 400,000 case images.
Everaert, Jonas; Koster, Ernst H W
2015-10-01
Emotional biases in attention modulate encoding of emotional material into long-term memory, but little is known about the role of such attentional biases during emotional memory retrieval. The present study investigated how emotional biases in memory are related to attentional allocation during retrieval. Forty-nine individuals encoded emotionally positive and negative meanings derived from ambiguous information and then searched their memory for encoded meanings in response to a set of retrieval cues. The remember/know/new procedure was used to classify memories as recollection-based or familiarity-based, and gaze behavior was monitored throughout the task to measure attentional allocation. We found that a bias in sustained attention during recollection-based, but not familiarity-based, retrieval predicted subsequent memory bias toward positive versus negative material following encoding. Thus, during emotional memory retrieval, attention affects controlled forms of retrieval (i.e., recollection) but does not modulate relatively automatic, familiarity-based retrieval. These findings enhance understanding of how distinct components of attention regulate the emotional content of memories. Implications for theoretical models and emotion regulation are discussed. (c) 2015 APA, all rights reserved).
A novel methodology for querying web images
NASA Astrophysics Data System (ADS)
Prabhakara, Rashmi; Lee, Ching Cheng
2005-01-01
Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.
A novel methodology for querying web images
NASA Astrophysics Data System (ADS)
Prabhakara, Rashmi; Lee, Ching Cheng
2004-12-01
Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.
[Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].
Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han
2014-11-01
Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.
A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.
Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe
2012-04-01
We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.
Medical Image Retrieval: A Multimodal Approach
Cao, Yu; Steffey, Shawn; He, Jianbiao; Xiao, Degui; Tao, Cui; Chen, Ping; Müller, Henning
2014-01-01
Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system. PMID:26309389
Kurtz, Camille; Depeursinge, Adrien; Napel, Sandy; Beaulieu, Christopher F.; Rubin, Daniel L.
2014-01-01
Computer-assisted image retrieval applications can assist radiologists by identifying similar images in archives as a means to providing decision support. In the classical case, images are described using low-level features extracted from their contents, and an appropriate distance is used to find the best matches in the feature space. However, using low-level image features to fully capture the visual appearance of diseases is challenging and the semantic gap between these features and the high-level visual concepts in radiology may impair the system performance. To deal with this issue, the use of semantic terms to provide high-level descriptions of radiological image contents has recently been advocated. Nevertheless, most of the existing semantic image retrieval strategies are limited by two factors: they require manual annotation of the images using semantic terms and they ignore the intrinsic visual and semantic relationships between these annotations during the comparison of the images. Based on these considerations, we propose an image retrieval framework based on semantic features that relies on two main strategies: (1) automatic “soft” prediction of ontological terms that describe the image contents from multi-scale Riesz wavelets and (2) retrieval of similar images by evaluating the similarity between their annotations using a new term dissimilarity measure, which takes into account both image-based and ontological term relations. The combination of these strategies provides a means of accurately retrieving similar images in databases based on image annotations and can be considered as a potential solution to the semantic gap problem. We validated this approach in the context of the retrieval of liver lesions from computed tomographic (CT) images and annotated with semantic terms of the RadLex ontology. The relevance of the retrieval results was assessed using two protocols: evaluation relative to a dissimilarity reference standard defined for pairs of images on a 25-images dataset, and evaluation relative to the diagnoses of the retrieved images on a 72-images dataset. A normalized discounted cumulative gain (NDCG) score of more than 0.92 was obtained with the first protocol, while AUC scores of more than 0.77 were obtained with the second protocol. This automatical approach could provide real-time decision support to radiologists by showing them similar images with associated diagnoses and, where available, responses to therapies. PMID:25036769
Words, concepts, or both: optimal indexing units for automated information retrieval.
Hersh, W. R.; Hickam, D. H.; Leone, T. J.
1992-01-01
What is the best way to represent the content of documents in an information retrieval system? This study compares the retrieval effectiveness of five different methods for automated (machine-assigned) indexing using three test collections. The consistently best methods are those that use indexing based on the words that occur in the available text of each document. Methods used to map text into concepts from a controlled vocabulary showed no advantage over the word-based methods. This study also looked at an approach to relevance feedback which showed benefit for both word-based and concept-based methods. PMID:1482951
Novel Algorithm for Classification of Medical Images
NASA Astrophysics Data System (ADS)
Bhushan, Bharat; Juneja, Monika
2010-11-01
Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.
Sivakamasundari, J; Natarajan, V
2015-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Automated segmentation of blood vessel is vital for periodic screening and timely diagnosis. An attempt has been made to generate continuous retinal vasculature for the design of Content Based Image Retrieval (CBIR) application. The typical normal and abnormal retinal images are preprocessed to improve the vessel contrast. The blood vessels are segmented using evolutionary based Harmony Search Algorithm (HSA) combined with Otsu Multilevel Thresholding (MLT) method by best objective functions. The segmentation results are validated with corresponding ground truth images using binary similarity measures. The statistical, textural and structural features are obtained from the segmented images of normal and DR affected retina and are analyzed. CBIR in medical image retrieval applications are used to assist physicians in clinical decision-support techniques and research fields. A CBIR system is developed using HSA based Otsu MLT segmentation technique and the features obtained from the segmented images. Similarity matching is carried out between the features of query and database images using Euclidean Distance measure. Similar images are ranked and retrieved. The retrieval performance of CBIR system is evaluated in terms of precision and recall. The CBIR systems developed using HSA based Otsu MLT and conventional Otsu MLT methods are compared. The retrieval performance such as precision and recall are found to be 96% and 58% for CBIR system using HSA based Otsu MLT segmentation. This automated CBIR system could be recommended for use in computer assisted diagnosis for diabetic retinopathy screening.
Audio-guided audiovisual data segmentation, indexing, and retrieval
NASA Astrophysics Data System (ADS)
Zhang, Tong; Kuo, C.-C. Jay
1998-12-01
While current approaches for video segmentation and indexing are mostly focused on visual information, audio signals may actually play a primary role in video content parsing. In this paper, we present an approach for automatic segmentation, indexing, and retrieval of audiovisual data, based on audio content analysis. The accompanying audio signal of audiovisual data is first segmented and classified into basic types, i.e., speech, music, environmental sound, and silence. This coarse-level segmentation and indexing step is based upon morphological and statistical analysis of several short-term features of the audio signals. Then, environmental sounds are classified into finer classes, such as applause, explosions, bird sounds, etc. This fine-level classification and indexing step is based upon time- frequency analysis of audio signals and the use of the hidden Markov model as the classifier. On top of this archiving scheme, an audiovisual data retrieval system is proposed. Experimental results show that the proposed approach has an accuracy rate higher than 90 percent for the coarse-level classification, and higher than 85 percent for the fine-level classification. Examples of audiovisual data segmentation and retrieval are also provided.
Supervised learning of tools for content-based search of image databases
NASA Astrophysics Data System (ADS)
Delanoy, Richard L.
1996-03-01
A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.
NASA Astrophysics Data System (ADS)
Cho, Hyun-chong; Hadjiiski, Lubomir; Sahiner, Berkman; Chan, Heang-Ping; Paramagul, Chintana; Helvie, Mark; Nees, Alexis V.
2012-03-01
We designed a Content-Based Image Retrieval (CBIR) Computer-Aided Diagnosis (CADx) system to assist radiologists in characterizing masses on ultrasound images. The CADx system retrieves masses that are similar to a query mass from a reference library based on computer-extracted features that describe texture, width-to-height ratio, and posterior shadowing of a mass. Retrieval is performed with k nearest neighbor (k-NN) method using Euclidean distance similarity measure and Rocchio relevance feedback algorithm (RRF). In this study, we evaluated the similarity between the query and the retrieved masses with relevance feedback using our interactive CBIR CADx system. The similarity assessment and feedback were provided by experienced radiologists' visual judgment. For training the RRF parameters, similarities of 1891 image pairs obtained from 62 masses were rated by 3 MQSA radiologists using a 9-point scale (9=most similar). A leave-one-out method was used in training. For each query mass, 5 most similar masses were retrieved from the reference library using radiologists' similarity ratings, which were then used by RRF to retrieve another 5 masses for the same query. The best RRF parameters were chosen based on three simulated observer experiments, each of which used one of the radiologists' ratings for retrieval and relevance feedback. For testing, 100 independent query masses on 100 images and 121 reference masses on 230 images were collected. Three radiologists rated the similarity between the query and the computer-retrieved masses. Average similarity ratings without and with RRF were 5.39 and 5.64 on the training set and 5.78 and 6.02 on the test set, respectively. The average Az values without and with RRF were 0.86+/-0.03 and 0.87+/-0.03 on the training set and 0.91+/-0.03 and 0.90+/-0.03 on the test set, respectively. This study demonstrated that RRF improved the similarity of the retrieved masses.
Semantic-based surveillance video retrieval.
Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve
2007-04-01
Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.
MPEG-7 audio-visual indexing test-bed for video retrieval
NASA Astrophysics Data System (ADS)
Gagnon, Langis; Foucher, Samuel; Gouaillier, Valerie; Brun, Christelle; Brousseau, Julie; Boulianne, Gilles; Osterrath, Frederic; Chapdelaine, Claude; Dutrisac, Julie; St-Onge, Francis; Champagne, Benoit; Lu, Xiaojian
2003-12-01
This paper reports on the development status of a Multimedia Asset Management (MAM) test-bed for content-based indexing and retrieval of audio-visual documents within the MPEG-7 standard. The project, called "MPEG-7 Audio-Visual Document Indexing System" (MADIS), specifically targets the indexing and retrieval of video shots and key frames from documentary film archives, based on audio-visual content like face recognition, motion activity, speech recognition and semantic clustering. The MPEG-7/XML encoding of the film database is done off-line. The description decomposition is based on a temporal decomposition into visual segments (shots), key frames and audio/speech sub-segments. The visible outcome will be a web site that allows video retrieval using a proprietary XQuery-based search engine and accessible to members at the Canadian National Film Board (NFB) Cineroute site. For example, end-user will be able to ask to point on movie shots in the database that have been produced in a specific year, that contain the face of a specific actor who tells a specific word and in which there is no motion activity. Video streaming is performed over the high bandwidth CA*net network deployed by CANARIE, a public Canadian Internet development organization.
Term-Weighting Approaches in Automatic Text Retrieval.
ERIC Educational Resources Information Center
Salton, Gerard; Buckley, Christopher
1988-01-01
Summarizes the experimental evidence that indicates that text indexing systems based on the assignment of appropriately weighted single terms produce retrieval results superior to those obtained with more elaborate text representations, and provides baseline single term indexing models with which more elaborate content analysis procedures can be…
Video and image retrieval beyond the cognitive level: the needs and possibilities
NASA Astrophysics Data System (ADS)
Hanjalic, Alan
2000-12-01
The worldwide research efforts in the are of image and video retrieval have concentrated so far on increasing the efficiency and reliability of extracting the elements of image and video semantics and so on improving the search and retrieval performance at the cognitive level of content abstraction. At this abstraction level, the user is searching for 'factual' or 'objective' content such as image showing a panorama of San Francisco, an outdoor or an indoor image, a broadcast news report on a defined topic, a movie dialog between the actors A and B or the parts of a basketball game showing fast breaks, steals and scores. These efforts, however, do not address the retrieval applications at the so-called affective level of content abstraction where the 'ground truth' is not strictly defined. Such applications are, for instance, those where subjectivity of the user plays the major role, e.g. the task of retrieving all images that the user 'likes most', and those that are based on 'recognizing emotions' in audiovisual data. Typical examples are searching for all images that 'radiate happiness', identifying all 'sad' movie fragments and looking for the 'romantic landscapes', 'sentimental' movie segments, 'movie highlights' or 'most exciting' moments of a sport event. This paper discusses the needs and possibilities for widening the current scope of research in the area of image and video search and retrieval in order to enable applications at the affective level of content abstraction.
Video and image retrieval beyond the cognitive level: the needs and possibilities
NASA Astrophysics Data System (ADS)
Hanjalic, Alan
2001-01-01
The worldwide research efforts in the are of image and video retrieval have concentrated so far on increasing the efficiency and reliability of extracting the elements of image and video semantics and so on improving the search and retrieval performance at the cognitive level of content abstraction. At this abstraction level, the user is searching for 'factual' or 'objective' content such as image showing a panorama of San Francisco, an outdoor or an indoor image, a broadcast news report on a defined topic, a movie dialog between the actors A and B or the parts of a basketball game showing fast breaks, steals and scores. These efforts, however, do not address the retrieval applications at the so-called affective level of content abstraction where the 'ground truth' is not strictly defined. Such applications are, for instance, those where subjectivity of the user plays the major role, e.g. the task of retrieving all images that the user 'likes most', and those that are based on 'recognizing emotions' in audiovisual data. Typical examples are searching for all images that 'radiate happiness', identifying all 'sad' movie fragments and looking for the 'romantic landscapes', 'sentimental' movie segments, 'movie highlights' or 'most exciting' moments of a sport event. This paper discusses the needs and possibilities for widening the current scope of research in the area of image and video search and retrieval in order to enable applications at the affective level of content abstraction.
Occam's razor: supporting visual query expression for content-based image queries
NASA Astrophysics Data System (ADS)
Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.
2005-01-01
This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).
Occam"s razor: supporting visual query expression for content-based image queries
NASA Astrophysics Data System (ADS)
Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.
2004-12-01
This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).
A multi-tiered architecture for content retrieval in mobile peer-to-peer networks.
DOT National Transportation Integrated Search
2012-01-01
In this paper, we address content retrieval in Mobile Peer-to-Peer (P2P) Networks. We design a multi-tiered architecture for content : retrieval, where at Tier 1, we design a protocol for content similarity governed by a parameter that trades accu...
ERIC Educational Resources Information Center
Cornell Univ., Ithaca, NY. Dept. of Computer Science.
Four papers are included in Part One of the eighteenth report on Salton's Magical Automatic Retriever of Texts (SMART) project. The first paper: "Content Analysis in Information Retrieval" by S. F. Weiss presents the results of experiments aimed at determining the conditions under which content analysis improves retrieval results as well…
Hepatic CT image query using Gabor features
NASA Astrophysics Data System (ADS)
Zhao, Chenguang; Cheng, Hongyan; Zhuang, Tiange
2004-07-01
A retrieval scheme for liver computerize tomography (CT) images based on Gabor texture is presented. For each hepatic CT image, we manually delineate abnormal regions within liver area. Then, a continuous Gabor transform is utilized to analyze the texture of the pathology bearing region and extract the corresponding feature vectors. For a given sample image, we compare its feature vector with those of other images. Similar images with the highest rank are retrieved. In experiments, 45 liver CT images are collected, and the effectiveness of Gabor texture for content based retrieval is verified.
Combination of image descriptors for the exploration of cultural photographic collections
NASA Astrophysics Data System (ADS)
Bhowmik, Neelanjan; Gouet-Brunet, Valérie; Bloch, Gabriel; Besson, Sylvain
2017-01-01
The rapid growth of image digitization and collections in recent years makes it challenging and burdensome to organize, categorize, and retrieve similar images from voluminous collections. Content-based image retrieval (CBIR) is immensely convenient in this context. A considerable number of local feature detectors and descriptors are present in the literature of CBIR. We propose a model to anticipate the best feature combinations for image retrieval-related applications. Several spatial complementarity criteria of local feature detectors are analyzed and then engaged in a regression framework to find the optimal combination of detectors for a given dataset and are better adapted for each given image; the proposed model is also useful to optimally fix some other parameters, such as the k in k-nearest neighbor retrieval. Three public datasets of various contents and sizes are employed to evaluate the proposal, which is legitimized by improving the quality of retrieval notably facing classical approaches. Finally, the proposed image search engine is applied to the cultural photographic collections of a French museum, where it demonstrates its added value for the exploration and promotion of these contents at different levels from their archiving up to their exhibition in or ex situ.
Information content of OCO-2 oxygen A-band channels for retrieving marine liquid cloud properties
NASA Astrophysics Data System (ADS)
Richardson, Mark; Stephens, Graeme L.
2018-03-01
Information content analysis is used to select channels for a marine liquid cloud retrieval using the high-spectral-resolution oxygen A-band instrument on NASA's Orbiting Carbon Observatory-2 (OCO-2). Desired retrieval properties are cloud optical depth, cloud-top pressure and cloud pressure thickness, which is the geometric thickness expressed in hectopascals. Based on information content criteria we select a micro-window of 75 of the 853 functioning OCO-2 channels spanning 763.5-764.6 nm and perform a series of synthetic retrievals with perturbed initial conditions. We estimate posterior errors from the sample standard deviations and obtain ±0.75 in optical depth and ±12.9 hPa in both cloud-top pressure and cloud pressure thickness, although removing the 10 % of samples with the highest χ2 reduces posterior error in cloud-top pressure to ±2.9 hPa and cloud pressure thickness to ±2.5 hPa. The application of this retrieval to real OCO-2 measurements is briefly discussed, along with limitations and the greatest caution is urged regarding the assumption of a single homogeneous cloud layer, which is often, but not always, a reasonable approximation for marine boundary layer clouds.
Corrugated Waveguide Mode Content Analysis Using Irradiance Moments
Jawla, Sudheer K.; Shapiro, Michael A.; Idei, Hiroshi; Temkin, Richard J.
2015-01-01
We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes. PMID:25821260
Content Management Middleware for the Support of Distributed Teaching
ERIC Educational Resources Information Center
Tsalapatas, Hariklia; Stav, John B.; Kalantzis, Christos
2004-01-01
eCMS is a web-based federated content management system for the support of distributed teaching based on an open, distributed middleware architecture for the publication, discovery, retrieval, and integration of educational material. The infrastructure supports the management of both standalone material and structured courses, as well as the…
NASA Technical Reports Server (NTRS)
Olson, William S.
1990-01-01
A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.
A Knowledge-Based Approach to Retrieving Teaching Materials for Context-Aware Learning
ERIC Educational Resources Information Center
Shih, Wen-Chung; Tseng, Shian-Shyong
2009-01-01
With the rapid development of wireless communication and sensor technologies, ubiquitous learning has become a promising solution to educational problems. In context-aware ubiquitous learning environments, it is required that learning content is retrieved according to environmental contexts, such as learners' location. Also, a learning content…
Content-based analysis of news video
NASA Astrophysics Data System (ADS)
Yu, Junqing; Zhou, Dongru; Liu, Huayong; Cai, Bo
2001-09-01
In this paper, we present a schema for content-based analysis of broadcast news video. First, we separate commercials from news using audiovisual features. Then, we automatically organize news programs into a content hierarchy at various levels of abstraction via effective integration of video, audio, and text data available from the news programs. Based on these news video structure and content analysis technologies, a TV news video Library is generated, from which users can retrieve definite news story according to their demands.
Enhancements in medicine by integrating content based image retrieval in computer-aided diagnosis
NASA Astrophysics Data System (ADS)
Aggarwal, Preeti; Sardana, H. K.
2010-02-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. With cad, radiologists use the computer output as a "second opinion" and make the final decisions. Retrieving images is a useful tool to help radiologist to check medical image and diagnosis. The impact of contentbased access to medical images is frequently reported but existing systems are designed for only a particular context of diagnosis. The challenge in medical informatics is to develop tools for analyzing the content of medical images and to represent them in a way that can be efficiently searched and compared by the physicians. CAD is a concept established by taking into account equally the roles of physicians and computers. To build a successful computer aided diagnostic system, all the relevant technologies, especially retrieval need to be integrated in such a manner that should provide effective and efficient pre-diagnosed cases with proven pathology for the current case at the right time. In this paper, it is suggested that integration of content-based image retrieval (CBIR) in cad can bring enormous results in medicine especially in diagnosis. This approach is also compared with other approaches by highlighting its advantages over those approaches.
NASA Technical Reports Server (NTRS)
Olson, William S.; Raymond, William H.
1990-01-01
The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals.
Set-relevance determines the impact of distractors on episodic memory retrieval.
Kwok, Sze Chai; Shallice, Tim; Macaluso, Emiliano
2014-09-01
We investigated the interplay between stimulus-driven attention and memory retrieval with a novel interference paradigm that engaged both systems concurrently on each trial. Participants encoded a 45-min movie on Day 1 and, on Day 2, performed a temporal order judgment task during fMRI. Each retrieval trial comprised three images presented sequentially, and the task required participants to judge the temporal order of the first and the last images ("memory probes") while ignoring the second image, which was task irrelevant ("attention distractor"). We manipulated the content relatedness and the temporal proximity between the distractor and the memory probes, as well as the temporal distance between two probes. Behaviorally, short temporal distances between the probes led to reduced retrieval performance. Distractors that at encoding were temporally close to the first probe image reduced these costs, specifically when the distractor was content unrelated to the memory probes. The imaging results associated the distractor probe temporal proximity with activation of the right ventral attention network. By contrast, the precuneus was activated for high-content relatedness between distractors and probes and in trials including a short distance between the two memory probes. The engagement of the right ventral attention network by specific types of distractors suggests a link between stimulus-driven attention control and episodic memory retrieval, whereas the activation pattern of the precuneus implicates this region in memory search within knowledge/content-based hierarchies.
NASA Astrophysics Data System (ADS)
Burton, Sharon P.; Chemyakin, Eduard; Liu, Xu; Knobelspiesse, Kirk; Stamnes, Snorre; Sawamura, Patricia; Moore, Richard H.; Hostetler, Chris A.; Ferrare, Richard A.
2016-11-01
There is considerable interest in retrieving profiles of aerosol effective radius, total number concentration, and complex refractive index from lidar measurements of extinction and backscatter at several wavelengths. The combination of three backscatter channels plus two extinction channels (3β + 2α) is particularly important since it is believed to be the minimum configuration necessary for the retrieval of aerosol microphysical properties and because the technological readiness of lidar systems permits this configuration on both an airborne and future spaceborne instrument. The second-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β + 2α measurements since 2012. The planned NASA Aerosol/Clouds/Ecosystems (ACE) satellite mission also recommends the 3β + 2α combination.Here we develop a deeper understanding of the information content and sensitivities of the 3β + 2α system in terms of aerosol microphysical parameters of interest. We use a retrieval-free methodology to determine the basic sensitivities of the measurements independent of retrieval assumptions and constraints. We calculate information content and uncertainty metrics using tools borrowed from the optimal estimation methodology based on Bayes' theorem, using a simplified forward model look-up table, with no explicit inversion. The forward model is simplified to represent spherical particles, monomodal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, the given simplified aerosol scenario is applicable as a best case for all existing retrievals in the absence of additional constraints. Retrieval-dependent errors due to mismatch between retrieval assumptions and true atmospheric aerosols are not included in this sensitivity study, and neither are retrieval errors that may be introduced in the inversion process. The choice of a simplified model adds clarity to the understanding of the uncertainties in such retrievals, since it allows for separately assessing the sensitivities and uncertainties of the measurements alone that cannot be corrected by any potential or theoretical improvements to retrieval methodology but must instead be addressed by adding information content.The sensitivity metrics allow for identifying (1) information content of the measurements vs. a priori information; (2) error bars on the retrieved parameters; and (3) potential sources of cross-talk or "compensating" errors wherein different retrieval parameters are not independently captured by the measurements. The results suggest that the 3β + 2α measurement system is underdetermined with respect to the full suite of microphysical parameters considered in this study and that additional information is required, in the form of additional coincident measurements (e.g., sun-photometer or polarimeter) or a priori retrieval constraints. A specific recommendation is given for addressing cross-talk between effective radius and total number concentration.
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques. PMID:29694429
Jabeen, Safia; Mehmood, Zahid; Mahmood, Toqeer; Saba, Tanzila; Rehman, Amjad; Mahmood, Muhammad Tariq
2018-01-01
For the last three decades, content-based image retrieval (CBIR) has been an active research area, representing a viable solution for retrieving similar images from an image repository. In this article, we propose a novel CBIR technique based on the visual words fusion of speeded-up robust features (SURF) and fast retina keypoint (FREAK) feature descriptors. SURF is a sparse descriptor whereas FREAK is a dense descriptor. Moreover, SURF is a scale and rotation-invariant descriptor that performs better in the case of repeatability, distinctiveness, and robustness. It is robust to noise, detection errors, geometric, and photometric deformations. It also performs better at low illumination within an image as compared to the FREAK descriptor. In contrast, FREAK is a retina-inspired speedy descriptor that performs better for classification-based problems as compared to the SURF descriptor. Experimental results show that the proposed technique based on the visual words fusion of SURF-FREAK descriptors combines the features of both descriptors and resolves the aforementioned issues. The qualitative and quantitative analysis performed on three image collections, namely Corel-1000, Corel-1500, and Caltech-256, shows that proposed technique based on visual words fusion significantly improved the performance of the CBIR as compared to the feature fusion of both descriptors and state-of-the-art image retrieval techniques.
Medical image retrieval system using multiple features from 3D ROIs
NASA Astrophysics Data System (ADS)
Lu, Hongbing; Wang, Weiwei; Liao, Qimei; Zhang, Guopeng; Zhou, Zhiming
2012-02-01
Compared to a retrieval using global image features, features extracted from regions of interest (ROIs) that reflect distribution patterns of abnormalities would benefit more for content-based medical image retrieval (CBMIR) systems. Currently, most CBMIR systems have been designed for 2D ROIs, which cannot reflect 3D anatomical features and region distribution of lesions comprehensively. To further improve the accuracy of image retrieval, we proposed a retrieval method with 3D features including both geometric features such as Shape Index (SI) and Curvedness (CV) and texture features derived from 3D Gray Level Co-occurrence Matrix, which were extracted from 3D ROIs, based on our previous 2D medical images retrieval system. The system was evaluated with 20 volume CT datasets for colon polyp detection. Preliminary experiments indicated that the integration of morphological features with texture features could improve retrieval performance greatly. The retrieval result using features extracted from 3D ROIs accorded better with the diagnosis from optical colonoscopy than that based on features from 2D ROIs. With the test database of images, the average accuracy rate for 3D retrieval method was 76.6%, indicating its potential value in clinical application.
A Sieving ANN for Emotion-Based Movie Clip Classification
NASA Astrophysics Data System (ADS)
Watanapa, Saowaluk C.; Thipakorn, Bundit; Charoenkitkarn, Nipon
Effective classification and analysis of semantic contents are very important for the content-based indexing and retrieval of video database. Our research attempts to classify movie clips into three groups of commonly elicited emotions, namely excitement, joy and sadness, based on a set of abstract-level semantic features extracted from the film sequence. In particular, these features consist of six visual and audio measures grounded on the artistic film theories. A unique sieving-structured neural network is proposed to be the classifying model due to its robustness. The performance of the proposed model is tested with 101 movie clips excerpted from 24 award-winning and well-known Hollywood feature films. The experimental result of 97.8% correct classification rate, measured against the collected human-judges, indicates the great potential of using abstract-level semantic features as an engineered tool for the application of video-content retrieval/indexing.
SIFT Meets CNN: A Decade Survey of Instance Retrieval.
Zheng, Liang; Yang, Yi; Tian, Qi
2018-05-01
In the early days, content-based image retrieval (CBIR) was studied with global features. Since 2003, image retrieval based on local descriptors (de facto SIFT) has been extensively studied for over a decade due to the advantage of SIFT in dealing with image transformations. Recently, image representations based on the convolutional neural network (CNN) have attracted increasing interest in the community and demonstrated impressive performance. Given this time of rapid evolution, this article provides a comprehensive survey of instance retrieval over the last decade. Two broad categories, SIFT-based and CNN-based methods, are presented. For the former, according to the codebook size, we organize the literature into using large/medium-sized/small codebooks. For the latter, we discuss three lines of methods, i.e., using pre-trained or fine-tuned CNN models, and hybrid methods. The first two perform a single-pass of an image to the network, while the last category employs a patch-based feature extraction scheme. This survey presents milestones in modern instance retrieval, reviews a broad selection of previous works in different categories, and provides insights on the connection between SIFT and CNN-based methods. After analyzing and comparing retrieval performance of different categories on several datasets, we discuss promising directions towards generic and specialized instance retrieval.
MediaNet: a multimedia information network for knowledge representation
NASA Astrophysics Data System (ADS)
Benitez, Ana B.; Smith, John R.; Chang, Shih-Fu
2000-10-01
In this paper, we present MediaNet, which is a knowledge representation framework that uses multimedia content for representing semantic and perceptual information. The main components of MediaNet include conceptual entities, which correspond to real world objects, and relationships among concepts. MediaNet allows the concepts and relationships to be defined or exemplified by multimedia content such as images, video, audio, graphics, and text. MediaNet models the traditional relationship types such as generalization and aggregation but adds additional functionality by modeling perceptual relationships based on feature similarity. For example, MediaNet allows a concept such as car to be defined as a type of a transportation vehicle, but which is further defined and illustrated through example images, videos and sounds of cars. In constructing the MediaNet framework, we have built on the basic principles of semiotics and semantic networks in addition to utilizing the audio-visual content description framework being developed as part of the MPEG-7 multimedia content description standard. By integrating both conceptual and perceptual representations of knowledge, MediaNet has potential to impact a broad range of applications that deal with multimedia content at the semantic and perceptual levels. In particular, we have found that MediaNet can improve the performance of multimedia retrieval applications by using query expansion, refinement and translation across multiple content modalities. In this paper, we report on experiments that use MediaNet in searching for images. We construct the MediaNet knowledge base using both WordNet and an image network built from multiple example images and extracted color and texture descriptors. Initial experimental results demonstrate improved retrieval effectiveness using MediaNet in a content-based retrieval system.
HealthTrust: a social network approach for retrieving online health videos.
Fernandez-Luque, Luis; Karlsen, Randi; Melton, Genevieve B
2012-01-31
Social media are becoming mainstream in the health domain. Despite the large volume of accurate and trustworthy health information available on social media platforms, finding good-quality health information can be difficult. Misleading health information can often be popular (eg, antivaccination videos) and therefore highly rated by general search engines. We believe that community wisdom about the quality of health information can be harnessed to help create tools for retrieving good-quality social media content. To explore approaches for extracting metrics about authoritativeness in online health communities and how these metrics positively correlate with the quality of the content. We designed a metric, called HealthTrust, that estimates the trustworthiness of social media content (eg, blog posts or videos) in a health community. The HealthTrust metric calculates reputation in an online health community based on link analysis. We used the metric to retrieve YouTube videos and channels about diabetes. In two different experiments, health consumers provided 427 ratings of 17 videos and professionals gave 162 ratings of 23 videos. In addition, two professionals reviewed 30 diabetes channels. HealthTrust may be used for retrieving online videos on diabetes, since it performed better than YouTube Search in most cases. Overall, of 20 potential channels, HealthTrust's filtering allowed only 3 bad channels (15%) versus 8 (40%) on the YouTube list. Misleading and graphic videos (eg, featuring amputations) were more commonly found by YouTube Search than by searches based on HealthTrust. However, some videos from trusted sources had low HealthTrust scores, mostly from general health content providers, and therefore not highly connected in the diabetes community. When comparing video ratings from our reviewers, we found that HealthTrust achieved a positive and statistically significant correlation with professionals (Pearson r₁₀ = .65, P = .02) and a trend toward significance with health consumers (r₇ = .65, P = .06) with videos on hemoglobinA(1c), but it did not perform as well with diabetic foot videos. The trust-based metric HealthTrust showed promising results when used to retrieve diabetes content from YouTube. Our research indicates that social network analysis may be used to identify trustworthy social media in health communities.
Chlorophyll content retrieval from hyperspectral remote sensing imagery.
Yang, Xiguang; Yu, Ying; Fan, Wenyi
2015-07-01
Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.
NASA Astrophysics Data System (ADS)
Müller, Henning; Kalpathy-Cramer, Jayashree; Kahn, Charles E., Jr.; Hersh, William
2009-02-01
Content-based visual information (or image) retrieval (CBIR) has been an extremely active research domain within medical imaging over the past ten years, with the goal of improving the management of visual medical information. Many technical solutions have been proposed, and application scenarios for image retrieval as well as image classification have been set up. However, in contrast to medical information retrieval using textual methods, visual retrieval has only rarely been applied in clinical practice. This is despite the large amount and variety of visual information produced in hospitals every day. This information overload imposes a significant burden upon clinicians, and CBIR technologies have the potential to help the situation. However, in order for CBIR to become an accepted clinical tool, it must demonstrate a higher level of technical maturity than it has to date. Since 2004, the ImageCLEF benchmark has included a task for the comparison of visual information retrieval algorithms for medical applications. In 2005, a task for medical image classification was introduced and both tasks have been run successfully for the past four years. These benchmarks allow an annual comparison of visual retrieval techniques based on the same data sets and the same query tasks, enabling the meaningful comparison of various retrieval techniques. The datasets used from 2004-2007 contained images and annotations from medical teaching files. In 2008, however, the dataset used was made up of 67,000 images (along with their associated figure captions and the full text of their corresponding articles) from two Radiological Society of North America (RSNA) scientific journals. This article describes the results of the medical image retrieval task of the ImageCLEF 2008 evaluation campaign. We compare the retrieval results of both visual and textual information retrieval systems from 15 research groups on the aforementioned data set. The results show clearly that, currently, visual retrieval alone does not achieve the performance necessary for real-world clinical applications. Most of the common visual retrieval techniques have a MAP (Mean Average Precision) of around 2-3%, which is much lower than that achieved using textual retrieval (MAP=29%). Advanced machine learning techniques, together with good training data, have been shown to improve the performance of visual retrieval systems in the past. Multimodal retrieval (basing retrieval on both visual and textual information) can achieve better results than purely visual, but only when carefully applied. In many cases, multimodal retrieval systems performed even worse than purely textual retrieval systems. On the other hand, some multimodal retrieval systems demonstrated significantly increased early precision, which has been shown to be a desirable behavior in real-world systems.
Content-Based Management of Image Databases in the Internet Age
ERIC Educational Resources Information Center
Kleban, James Theodore
2010-01-01
The Internet Age has seen the emergence of richly annotated image data collections numbering in the billions of items. This work makes contributions in three primary areas which aid the management of this data: image representation, efficient retrieval, and annotation based on content and metadata. The contributions are as follows. First,…
ERIC Educational Resources Information Center
Kim, Deok-Hwan; Chung, Chin-Wan
2003-01-01
Discusses the collection fusion problem of image databases, concerned with retrieving relevant images by content based retrieval from image databases distributed on the Web. Focuses on a metaserver which selects image databases supporting similarity measures and proposes a new algorithm which exploits a probabilistic technique using Bayesian…
Simulation of snow and soil water content as a basis for satellite retrievals
USDA-ARS?s Scientific Manuscript database
It is not yet possible to determine whether the snow has changed over time despite collection of passive microwave data for more than thirty years. Physically-based, but computationally simple snow and soil models have been coupled to form the basis of a data assimilation system for retrievals of sn...
Chinese Brush Calligraphy Character Retrieval and Learning
ERIC Educational Resources Information Center
Zhuang, Yueting; Zhang, Xiafen; Lu, Weiming; Wu, Fei
2007-01-01
Chinese brush calligraphy is a valuable civilization legacy and a high art of scholarship. It is still popular in Chinese banners, newspaper mastheads, university names, and celebration gifts. There are Web sites that try to help people enjoy and learn Chinese calligraphy. However, there lacks advanced services such as content-based retrieval or…
Using deep learning for content-based medical image retrieval
NASA Astrophysics Data System (ADS)
Sun, Qinpei; Yang, Yuanyuan; Sun, Jianyong; Yang, Zhiming; Zhang, Jianguo
2017-03-01
Content-Based medical image retrieval (CBMIR) is been highly active research area from past few years. The retrieval performance of a CBMIR system crucially depends on the feature representation, which have been extensively studied by researchers for decades. Although a variety of techniques have been proposed, it remains one of the most challenging problems in current CBMIR research, which is mainly due to the well-known "semantic gap" issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human[1]. Recent years have witnessed some important advances of new techniques in machine learning. One important breakthrough technique is known as "deep learning". Unlike conventional machine learning methods that are often using "shallow" architectures, deep learning mimics the human brain that is organized in a deep architecture and processes information through multiple stages of transformation and representation. This means that we do not need to spend enormous energy to extract features manually. In this presentation, we propose a novel framework which uses deep learning to retrieval the medical image to improve the accuracy and speed of a CBIR in integrated RIS/PACS.
Content-based retrieval using MPEG-7 visual descriptor and hippocampal neural network
NASA Astrophysics Data System (ADS)
Kim, Young Ho; Joung, Lyang-Jae; Kang, Dae-Seong
2005-12-01
As development of digital technology, many kinds of multimedia data are used variously and requirements for effective use by user are increasing. In order to transfer information fast and precisely what user wants, effective retrieval method is required. As existing multimedia data are impossible to apply the MPEG-1, MPEG-2 and MPEG-4 technologies which are aimed at compression, store and transmission. So MPEG-7 is introduced as a new technology for effective management and retrieval for multimedia data. In this paper, we extract content-based features using color descriptor among the MPEG-7 standardization visual descriptor, and reduce feature data applying PCA(Principal Components Analysis) technique. We remodel the cerebral cortex and hippocampal neural networks as a principle of a human's brain and it can label the features of the image-data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in Dentate gyrus region and remove the noise through the auto-associate- memory step in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term or short-term memory learned by neuron. Hippocampal neural network makes neuron of the neural network separate and combine dynamically, expand the neuron attaching additional information using the synapse and add new features according to the situation by user's demand. When user is querying, it compares feature value stored in long-term memory first and it learns feature vector fast and construct optimized feature. So the speed of index and retrieval is fast. Also, it uses MPEG-7 standard visual descriptors as content-based feature value, it improves retrieval efficiency.
Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L
2018-01-01
The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.
Value-Based Caching in Information-Centric Wireless Body Area Networks
Al-Turjman, Fadi M.; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
We propose a resilient cache replacement approach based on a Value of sensed Information (VoI) policy. To resolve and fetch content when the origin is not available due to isolated in-network nodes (fragmentation) and harsh operational conditions, we exploit a content caching approach. Our approach depends on four functional parameters in sensory Wireless Body Area Networks (WBANs). These four parameters are: age of data based on periodic request, popularity of on-demand requests, communication interference cost, and the duration for which the sensor node is required to operate in active mode to capture the sensed readings. These parameters are considered together to assign a value to the cached data to retain the most valuable information in the cache for prolonged time periods. The higher the value, the longer the duration for which the data will be retained in the cache. This caching strategy provides significant availability for most valuable and difficult to retrieve data in the WBANs. Extensive simulations are performed to compare the proposed scheme against other significant caching schemes in the literature while varying critical aspects in WBANs (e.g., data popularity, cache size, publisher load, connectivity-degree, and severe probabilities of node failures). These simulation results indicate that the proposed VoI-based approach is a valid tool for the retrieval of cached content in disruptive and challenging scenarios, such as the one experienced in WBANs, since it allows the retrieval of content for a long period even while experiencing severe in-network node failures. PMID:28106817
Menon, K Venugopal; Kumar, Dinesh; Thomas, Tessamma
2014-02-01
Study Design Preliminary evaluation of new tool. Objective To ascertain whether the newly developed content-based image retrieval (CBIR) software can be used successfully to retrieve images of similar cases of adolescent idiopathic scoliosis (AIS) from a database to help plan treatment without adhering to a classification scheme. Methods Sixty-two operated cases of AIS were entered into the newly developed CBIR database. Five new cases of different curve patterns were used as query images. The images were fed into the CBIR database that retrieved similar images from the existing cases. These were analyzed by a senior surgeon for conformity to the query image. Results Within the limits of variability set for the query system, all the resultant images conformed to the query image. One case had no similar match in the series. The other four retrieved several images that were matching with the query. No matching case was left out in the series. The postoperative images were then analyzed to check for surgical strategies. Broad guidelines for treatment could be derived from the results. More precise query settings, inclusion of bending films, and a larger database will enhance accurate retrieval and better decision making. Conclusion The CBIR system is an effective tool for accurate documentation and retrieval of scoliosis images. Broad guidelines for surgical strategies can be made from the postoperative images of the existing cases without adhering to any classification scheme.
The influence of sea fog inhomogeneity on its microphysical characteristics retrieval
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Gong, Fang; He, Xianqiang
2008-10-01
A study on the effect of sea fog inhomogeneity on its microphysical parameters retrieval is presented. On the condition that the average liquid water content is linear vertically and the power spectrum spectral index sets 2.0, we generate a 3D sea fog fields by controlling the total liquid water contents greater than 0.04g/m3 based on the iterative method for generating scaling log-normal random field with an energy spectrum and a fragmentized cloud algorithm. Based on the fog field, the radiance at the wavelengths of 0.67 and 1.64 μm are simulated with 3D radiative transfer model SHDOM, and then the fog optical thickness and effective particle radius are simultaneously retrieved using the generic look-up-table AVHRR cloud algorithm. By comparing those fog optical thickness and effective particle radius, the influence of sea fog inhomogeneity on its properties retrieval is discussed. It exhibits the system bias when inferring sea fog physical properties from satellite measurements based on the assumption of plane parallel homogeneous atmosphere. And the bias depends on the solar zenith angel. The optical thickness is overrated while the effective particle radius is under-estimated at two solar zenith angle 30° and 60°. Those results show that it is necessary for sea fog true characteristics retrieval to develop a new algorithm using the 3D radiative transfer.
NASA Astrophysics Data System (ADS)
Antani, Sameer K.; Natarajan, Mukil; Long, Jonathan L.; Long, L. Rodney; Thoma, George R.
2005-04-01
The article describes the status of our ongoing R&D at the U.S. National Library of Medicine (NLM) towards the development of an advanced multimedia database biomedical information system that supports content-based image retrieval (CBIR). NLM maintains a collection of 17,000 digitized spinal X-rays along with text survey data from the Second National Health and Nutritional Examination Survey (NHANES II). These data serve as a rich data source for epidemiologists and researchers of osteoarthritis and musculoskeletal diseases. It is currently possible to access these through text keyword queries using our Web-based Medical Information Retrieval System (WebMIRS). CBIR methods developed specifically for biomedical images could offer direct visual searching of these images by means of example image or user sketch. We are building a system which supports hybrid queries that have text and image-content components. R&D goals include developing algorithms for robust image segmentation for localizing and identifying relevant anatomy, labeling the segmented anatomy based on its pathology, developing suitable indexing and similarity matching methods for images and image features, and associating the survey text information for query and retrieval along with the image data. Some highlights of the system developed in MATLAB and Java are: use of a networked or local centralized database for text and image data; flexibility to incorporate new research work; provides a means to control access to system components under development; and use of XML for structured reporting. The article details the design, features, and algorithms in this third revision of this prototype system, CBIR3.
NASA Astrophysics Data System (ADS)
Zhang, Baocheng
2016-07-01
The high sampling rate along with the global coverage of ground-based receivers makes Global Positioning System (GPS) data particularly ideal for sensing the Earth's ionosphere. Retrieval of slant total electron content measurements (TECMs) constitutes a key first step toward extracting various ionospheric parameters from GPS data. Within the ionospheric community, the interpretation of TECM is widely recognized as the slant total electron content along the satellite receiver line of sight, biased by satellite and receiver differential code biases (DCBs). The Carrier-to-Code Leveling (CCL) has long been used as a geometry-free method for retrieving TECM, mainly because of its simplicity and effectiveness. In fact, however, the CCL has proven inaccurate as it may give rise to TECM very susceptible to so-called leveling errors. With the goal of attaining more accurate TECM retrieval, we report in this contribution two other methods than the CCL, namely, the Precise Point Positioning (PPP) and the Array-aided PPP (A-PPP). The PPP further exploits the International GPS Service (IGS) orbit and clock products and turns out to be a geometry-based method. The A-PPP is designed to retrieve TECM from an array of colocated receivers, taking advantage of the broadcast orbit and clock products. Moreover, A-PPP also takes into account the fact that the ionospheric effects measured from one satellite to all colocated receivers ought to be the same, thus leading to the estimability of interreceiver DCB. We perform a comparative study of the formal precision and the empirical accuracy of the TECM that are retrieved, respectively, by three methods from the same set of GPS data. Results of such a study can be used to assess the actual performance of the three methods. In addition, we check the temporal stability in A-PPP-derived interreceiver DCB estimates over time periods ranging from 1 to 3 days.
Informative Top-k Retrieval for Advanced Skill Management
NASA Astrophysics Data System (ADS)
Colucci, Simona; di Noia, Tommaso; Ragone, Azzurra; Ruta, Michele; Straccia, Umberto; Tinelli, Eufemia
The paper presents a knowledge-based framework for skills and talent management based on an advanced matchmaking between profiles of candidates and available job positions. Interestingly, informative content of top-k retrieval is enriched through semantic capabilities. The proposed approach allows to: (1) express a requested profile in terms of both hard constraints and soft ones; (2) provide a ranking function based also on qualitative attributes of a profile; (3) explain the resulting outcomes (given a job request, a motivation for the obtained score of each selected profile is provided). Top-k retrieval allows to select most promising candidates according to an ontology formalizing the domain knowledge. Such a knowledge is further exploited to provide a semantic-based explanation of missing or conflicting features in retrieved profiles. They also indicate additional profile characteristics emerging by the retrieval procedure for a further request refinement. A concrete case study followed by an exhaustive experimental campaign is reported to prove the approach effectiveness.
Triple-frequency radar retrievals of snowfall properties from the OLYMPEX field campaign
NASA Astrophysics Data System (ADS)
Leinonen, J. S.; Lebsock, M. D.; Sy, O. O.; Tanelli, S.
2017-12-01
Retrieval of snowfall properties with radar is subject to significant errors arising from the uncertainties in the size and structure of snowflakes. Recent modeling and theoretical studies have shown that multi-frequency radars can potentially constrain the microphysical properties and thus reduce the uncertainties in the retrieved snow water content. So far, there have only been limited efforts to leverage the theoretical advances in actual snowfall retrievals. In this study, we have implemented an algorithm that retrieves the snowfall properties from triple-frequency radar data using the radar scattering properties from a combination of snowflake scattering databases, which were derived using numerical scattering methods. Snowflake number concentration, characteristic size and density are derived using a combination of optimal estimation and Kalman smoothing; the snow water content and other bulk properties are then derived from these. The retrieval framework is probabilistic and thus naturally provides error estimates for the retrieved quantities. We tested the retrieval algorithm using data from the APR3 airborne radar flown onboard the NASA DC-8 aircraft during the Olympic Mountain Experiment (OLYMPEX) in late 2015. We demonstrated consistent retrieval of snow properties and smooth transition from single- and dual-frequency retrievals to using all three frequencies simultaneously. The error analysis shows that the retrieval accuracy is improved when additional frequencies are introduced. We also compare the findings to in situ measurements of snow properties as well as measurements by polarimetric ground-based radar.
Hierarchical content-based image retrieval by dynamic indexing and guided search
NASA Astrophysics Data System (ADS)
You, Jane; Cheung, King H.; Liu, James; Guo, Linong
2003-12-01
This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.
Self-adaptive relevance feedback based on multilevel image content analysis
NASA Astrophysics Data System (ADS)
Gao, Yongying; Zhang, Yujin; Fu, Yu
2001-01-01
In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.
Self-adaptive relevance feedback based on multilevel image content analysis
NASA Astrophysics Data System (ADS)
Gao, Yongying; Zhang, Yujin; Fu, Yu
2000-12-01
In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-05-27
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness ( τ ), effective radius ( r eff ), and cloud-top height ( h ). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
Tourassi, Georgia D; Harrawood, Brian; Singh, Swatee; Lo, Joseph Y; Floyd, Carey E
2007-01-01
The purpose of this study was to evaluate image similarity measures employed in an information-theoretic computer-assisted detection (IT-CAD) scheme. The scheme was developed for content-based retrieval and detection of masses in screening mammograms. The study is aimed toward an interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammographic locations that are either visually suspicious or indicated as suspicious by other cuing CAD systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammographic locations using a knowledge database of mass and normal cases. In this study, eight entropy-based similarity measures were compared with respect to retrieval precision and detection accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was then validated on a separate database for false positive reduction of progressively more challenging visual cues generated by an existing, in-house mass detection system. The study showed that the image similarity measures fall into one of two categories; one category is better suited to the retrieval of semantically similar cases while the second is more effective with knowledge-based decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD scheme yielded a substantial reduction in false-positive detections while maintaining high detection rate for malignant masses.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
Comparing features sets for content-based image retrieval in a medical-case database
NASA Astrophysics Data System (ADS)
Muller, Henning; Rosset, Antoine; Vallee, Jean-Paul; Geissbuhler, Antoine
2004-04-01
Content-based image retrieval systems (CBIRSs) have frequently been proposed for the use in medical image databases and PACS. Still, only few systems were developed and used in a real clinical environment. It rather seems that medical professionals define their needs and computer scientists develop systems based on data sets they receive with little or no interaction between the two groups. A first study on the diagnostic use of medical image retrieval also shows an improvement in diagnostics when using CBIRSs which underlines the potential importance of this technique. This article explains the use of an open source image retrieval system (GIFT - GNU Image Finding Tool) for the retrieval of medical images in the medical case database system CasImage that is used in daily, clinical routine in the university hospitals of Geneva. Although the base system of GIFT shows an unsatisfactory performance, already little changes in the feature space show to significantly improve the retrieval results. The performance of variations in feature space with respect to color (gray level) quantizations and changes in texture analysis (Gabor filters) is compared. Whereas stock photography relies mainly on colors for retrieval, medical images need a large number of gray levels for successful retrieval, especially when executing feedback queries. The results also show that a too fine granularity in the gray levels lowers the retrieval quality, especially with single-image queries. For the evaluation of the retrieval peformance, a subset of the entire case database of more than 40,000 images is taken with a total of 3752 images. Ground truth was generated by a user who defined the expected query result of a perfect system by selecting images relevant to a given query image. The results show that a smaller number of gray levels (32 - 64) leads to a better retrieval performance, especially when using relevance feedback. The use of more scales and directions for the Gabor filters in the texture analysis also leads to improved results but response time is going up equally due to the larger feature space. CBIRSs can be of great use in managing large medical image databases. They allow to find images that might otherwise be lost for research and publications. They also give students students the possibility to navigate within large image repositories. In the future, CBIR might also become more important in case-based reasoning and evidence-based medicine to support the diagnostics because first studies show good results.
Visual Semantic Based 3D Video Retrieval System Using HDFS.
Kumar, C Ranjith; Suguna, S
2016-08-01
This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L 2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.
'SON-GO-KU' : a dream of automated library
NASA Astrophysics Data System (ADS)
Sato, Mamoru; Kishimoto, Juji
In the process of automating libraries, the retrieval of books through the browsing of shelves is being overlooked. The telematic library is a document based DBMS which can deliver the content of books by simulating the browsing process. The retrieval actually simulates the process a person would use in selecting a book in a real library, where a visual presentation using a graphic display is substituted. The characteristics of prototype system "Son-Go-Ku" for such retrieval implemented in 1988 are mentioned.
Social Image Tag Ranking by Two-View Learning
NASA Astrophysics Data System (ADS)
Zhuang, Jinfeng; Hoi, Steven C. H.
Tags play a central role in text-based social image retrieval and browsing. However, the tags annotated by web users could be noisy, irrelevant, and often incomplete for describing the image contents, which may severely deteriorate the performance of text-based image retrieval models. In order to solve this problem, researchers have proposed techniques to rank the annotated tags of a social image according to their relevance to the visual content of the image. In this paper, we aim to overcome the challenge of social image tag ranking for a corpus of social images with rich user-generated tags by proposing a novel two-view learning approach. It can effectively exploit both textual and visual contents of social images to discover the complicated relationship between tags and images. Unlike the conventional learning approaches that usually assumes some parametric models, our method is completely data-driven and makes no assumption about the underlying models, making the proposed solution practically more effective. We formulate our method as an optimization task and present an efficient algorithm to solve it. To evaluate the efficacy of our method, we conducted an extensive set of experiments by applying our technique to both text-based social image retrieval and automatic image annotation tasks. Our empirical results showed that the proposed method can be more effective than the conventional approaches.
NASA Astrophysics Data System (ADS)
Taira, Ricky K.; Wong, Clement; Johnson, David; Bhushan, Vikas; Rivera, Monica; Huang, Lu J.; Aberle, Denise R.; Cardenas, Alfonso F.; Chu, Wesley W.
1995-05-01
With the increase in the volume and distribution of images and text available in PACS and medical electronic health-care environments it becomes increasingly important to maintain indexes that summarize the content of these multi-media documents. Such indices are necessary to quickly locate relevant patient cases for research, patient management, and teaching. The goal of this project is to develop an intelligent document retrieval system that allows researchers to request for patient cases based on document content. Thus we wish to retrieve patient cases from electronic information archives that could include a combined specification of patient demographics, low level radiologic findings (size, shape, number), intermediate-level radiologic findings (e.g., atelectasis, infiltrates, etc.) and/or high-level pathology constraints (e.g., well-differentiated small cell carcinoma). The cases could be distributed among multiple heterogeneous databases such as PACS, RIS, and HIS. Content- based retrieval systems go beyond the capabilities of simple key-word or string-based retrieval matching systems. These systems require a knowledge base to comprehend the generality/specificity of a concept (thus knowing the subclasses or related concepts to a given concept) and knowledge of the various string representations for each concept (i.e., synonyms, lexical variants, etc.). We have previously reported on a data integration mediation layer that allows transparent access to multiple heterogeneous distributed medical databases (HIS, RIS, and PACS). The data access layer of our architecture currently has limited query processing capabilities. Given a patient hospital identification number, the access mediation layer collects all documents in RIS and HIS and returns this information to a specified workstation location. In this paper we report on our efforts to extend the query processing capabilities of the system by creation of custom query interfaces, an intelligent query processing engine, and a document-content index that can be generated automatically (i.e., no manual authoring or changes to the normal clinical protocols).
Exploring context and content links in social media: a latent space method.
Qi, Guo-Jun; Aggarwal, Charu; Tian, Qi; Ji, Heng; Huang, Thomas S
2012-05-01
Social media networks contain both content and context-specific information. Most existing methods work with either of the two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach over the state-of-the-art multimedia retrieval techniques.
The Comprehensive Microbial Resource.
Peterson, J D; Umayam, L A; Dickinson, T; Hickey, E K; White, O
2001-01-01
One challenge presented by large-scale genome sequencing efforts is effective display of uniform information to the scientific community. The Comprehensive Microbial Resource (CMR) contains robust annotation of all complete microbial genomes and allows for a wide variety of data retrievals. The bacterial information has been placed on the Web at http://www.tigr.org/CMR for retrieval using standard web browsing technology. Retrievals can be based on protein properties such as molecular weight or hydrophobicity, GC-content, functional role assignments and taxonomy. The CMR also has special web-based tools to allow data mining using pre-run homology searches, whole genome dot-plots, batch downloading and traversal across genomes using a variety of datatypes.
Method for indexing and retrieving manufacturing-specific digital imagery based on image content
Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.
2004-06-15
A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.
Video content analysis of surgical procedures.
Loukas, Constantinos
2018-02-01
In addition to its therapeutic benefits, minimally invasive surgery offers the potential for video recording of the operation. The videos may be archived and used later for reasons such as cognitive training, skills assessment, and workflow analysis. Methods from the major field of video content analysis and representation are increasingly applied in the surgical domain. In this paper, we review recent developments and analyze future directions in the field of content-based video analysis of surgical operations. The review was obtained from PubMed and Google Scholar search on combinations of the following keywords: 'surgery', 'video', 'phase', 'task', 'skills', 'event', 'shot', 'analysis', 'retrieval', 'detection', 'classification', and 'recognition'. The collected articles were categorized and reviewed based on the technical goal sought, type of surgery performed, and structure of the operation. A total of 81 articles were included. The publication activity is constantly increasing; more than 50% of these articles were published in the last 3 years. Significant research has been performed for video task detection and retrieval in eye surgery. In endoscopic surgery, the research activity is more diverse: gesture/task classification, skills assessment, tool type recognition, shot/event detection and retrieval. Recent works employ deep neural networks for phase and tool recognition as well as shot detection. Content-based video analysis of surgical operations is a rapidly expanding field. Several future prospects for research exist including, inter alia, shot boundary detection, keyframe extraction, video summarization, pattern discovery, and video annotation. The development of publicly available benchmark datasets to evaluate and compare task-specific algorithms is essential.
Greifeneder, Rainer; Müller, Patrick; Stahlberg, Dagmar; Van den Bos, Kees; Bless, Herbert
2011-01-01
Procedural justice concerns play a critical role in economic settings, politics, and other domains of human life. Despite the vast evidence corroborating their relevance, considerably less is known about how procedural justice judgments are formed. Whereas earlier theorizing focused on the systematic integration of content information, the present contribution provides a new perspective on the formation of justice judgments by examining the influence of accessibility experiences. Specifically, we hypothesize that procedural justice judgments may be formed based on the ease or difficulty with which justice-relevant information comes to mind. Three experiments corroborate this prediction in that procedures were evaluated less positively when the retrieval of associated unfair aspects was easy compared to difficult. Presumably this is because when it feels easy (difficult) to retrieve unfair aspects, these are perceived as frequent (infrequent), and hence the procedure as unjust (just). In addition to demonstrating that ease-of-retrieval may influence justice judgments, the studies further revealed that reliance on accessibility experiences is high in conditions of personal certainty. We suggest that this is because personal uncertainty fosters systematic processing of content information, whereas personal certainty may invite less taxing judgmental strategies such as reliance on ease-of-retrieval.
Hyperspectral remote sensing image retrieval system using spectral and texture features.
Zhang, Jing; Geng, Wenhao; Liang, Xi; Li, Jiafeng; Zhuo, Li; Zhou, Qianlan
2017-06-01
Although many content-based image retrieval systems have been developed, few studies have focused on hyperspectral remote sensing images. In this paper, a hyperspectral remote sensing image retrieval system based on spectral and texture features is proposed. The main contributions are fourfold: (1) considering the "mixed pixel" in the hyperspectral image, endmembers as spectral features are extracted by an improved automatic pixel purity index algorithm, then the texture features are extracted with the gray level co-occurrence matrix; (2) similarity measurement is designed for the hyperspectral remote sensing image retrieval system, in which the similarity of spectral features is measured with the spectral information divergence and spectral angle match mixed measurement and in which the similarity of textural features is measured with Euclidean distance; (3) considering the limited ability of the human visual system, the retrieval results are returned after synthesizing true color images based on the hyperspectral image characteristics; (4) the retrieval results are optimized by adjusting the feature weights of similarity measurements according to the user's relevance feedback. The experimental results on NASA data sets can show that our system can achieve comparable superior retrieval performance to existing hyperspectral analysis schemes.
Content-based intermedia synchronization
NASA Astrophysics Data System (ADS)
Oh, Dong-Young; Sampath-Kumar, Srihari; Rangan, P. Venkat
1995-03-01
Inter-media synchronization methods developed until now have been based on syntactic timestamping of video frames and audio samples. These methods are not fully appropriate for the synchronization of multimedia objects which may have to be accessed individually by their contents, e.g. content-base data retrieval. We propose a content-based multimedia synchronization scheme in which a media stream is viewed as hierarchial composition of smaller objects which are logically structured based on the contents, and the synchronization is achieved by deriving temporal relations among logical units of media object. content-based synchronization offers several advantages such as, elimination of the need for time stamping, freedom from limitations of jitter, synchronization of independently captured media objects in video editing, and compensation for inherent asynchronies in capture times of video and audio.
A neotropical Miocene pollen database employing image-based search and semantic modeling.
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W; Jaramillo, Carlos; Shyu, Chi-Ren
2014-08-01
Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery.
Content Based Lecture Video Retrieval Using Speech and Video Text Information
ERIC Educational Resources Information Center
Yang, Haojin; Meinel, Christoph
2014-01-01
In the last decade e-lecturing has become more and more popular. The amount of lecture video data on the "World Wide Web" (WWW) is growing rapidly. Therefore, a more efficient method for video retrieval in WWW or within large lecture video archives is urgently needed. This paper presents an approach for automated video indexing and video…
VidCat: an image and video analysis service for personal media management
NASA Astrophysics Data System (ADS)
Begeja, Lee; Zavesky, Eric; Liu, Zhu; Gibbon, David; Gopalan, Raghuraman; Shahraray, Behzad
2013-03-01
Cloud-based storage and consumption of personal photos and videos provides increased accessibility, functionality, and satisfaction for mobile users. One cloud service frontier that is recently growing is that of personal media management. This work presents a system called VidCat that assists users in the tagging, organization, and retrieval of their personal media by faces and visual content similarity, time, and date information. Evaluations for the effectiveness of the copy detection and face recognition algorithms on standard datasets are also discussed. Finally, the system includes a set of application programming interfaces (API's) allowing content to be uploaded, analyzed, and retrieved on any client with simple HTTP-based methods as demonstrated with a prototype developed on the iOS and Android mobile platforms.
Content-based management service for medical videos.
Mendi, Engin; Bayrak, Coskun; Cecen, Songul; Ermisoglu, Emre
2013-01-01
Development of health information technology has had a dramatic impact to improve the efficiency and quality of medical care. Developing interoperable health information systems for healthcare providers has the potential to improve the quality and equitability of patient-centered healthcare. In this article, we describe an automated content-based medical video analysis and management service that provides convenience and ease in accessing the relevant medical video content without sequential scanning. The system facilitates effective temporal video segmentation and content-based visual information retrieval that enable a more reliable understanding of medical video content. The system is implemented as a Web- and mobile-based service and has the potential to offer a knowledge-sharing platform for the purpose of efficient medical video content access.
NASA Astrophysics Data System (ADS)
Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Luo, Juhua; Chen, Pengfei
2016-11-01
Timely and accurate assessment of canopy nitrogen content (CNC) provides valuable insight into rapid and real-time nitrogen status monitoring in crops. A semi-empirical approach based on spectral index was extensively used for nitrogen content estimation. However, in many cases, due to specific vegetation types or local conditions, the applicability and robustness of established spectral indices for nitrogen retrieval were limited. The objective of this study was to investigate the optimal spectral index for winter wheat (Triticum aestivum L.) CNC estimation using Pushbroom Hyperspectral Imager (PHI) airborne hyperspectral data. Data collected from two different field experiments that were conducted during the major growth stages of winter wheat in 2002 and 2003 were used. Our results showed that a significant linear relationship existed between nitrogen and chlorophyll content at the canopy level, and it was not affected by cultivars, growing conditions and nutritional status of winter wheat. Nevertheless, it varied with growth stages. Periods around heading stage mainly worsened the relationship and CNC estimation, and CNC assessment for growth stages before and after heading could improve CNC retrieval accuracy to some extent. CNC assessment with PHI airborne hyperspectra suggested that spectral indices based on red-edge band including narrowband and broadband CIred-edge, NDVI-like and ND705 showed convincing results in CNC retrieval. NDVI-like and ND705 were sensitive to detect CNC changes less than 5 g/m2, narrowband and broadband CIred-edge were sensitive to a wide range of CNC variations. Further evaluation of CNC retrieval using field measured hyperspectra indicated that NDVI-like was robust and exhibited the highest accuracy in CNC assessment, and spectral indices (CIred-edge and CIgreen) that established on narrow or broad bands showed no obvious difference in CNC assessment. Overall, our study suggested that NDVI-like was the optimal indicator for winter wheat CNC retrieval.
NASA Astrophysics Data System (ADS)
Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.
2014-12-01
We developed an optimal estimation (OE)-based method using infrared (IR) observations to retrieve ice cloud optical thickness (COT), cloud effective radius (CER), and cloud top height (CTH) simultaneously. The OE-based retrieval is coupled with a fast IR radiative transfer model (RTM) that simulates observations of different sensors, and corresponding Jacobians in cloudy atmospheres. Ice cloud optical properties are calculated using the MODIS Collection 6 (C6) ice crystal habit (severely roughened hexagonal column aggregates). The OE-based method can be applied to various IR space-borne and airborne sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the enhanced MODIS Airborne Simulator (eMAS), by optimally selecting IR bands with high information content. Four major error sources (i.e., the measurement error, fast RTM error, model input error, and pre-assumed ice crystal habit error) are taken into account in our OE retrieval method. We show that measurement error and fast RTM error have little impact on cloud retrievals, whereas errors from the model input and pre-assumed ice crystal habit significantly increase retrieval uncertainties when the cloud is optically thin. Comparisons between the OE-retrieved ice cloud properties and other operational cloud products (e.g., the MODIS C6 and CALIOP cloud products) are shown.
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2018-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
NASA Technical Reports Server (NTRS)
Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping
2016-01-01
An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.
HealthTrust: A Social Network Approach for Retrieving Online Health Videos
Karlsen, Randi; Melton, Genevieve B
2012-01-01
Background Social media are becoming mainstream in the health domain. Despite the large volume of accurate and trustworthy health information available on social media platforms, finding good-quality health information can be difficult. Misleading health information can often be popular (eg, antivaccination videos) and therefore highly rated by general search engines. We believe that community wisdom about the quality of health information can be harnessed to help create tools for retrieving good-quality social media content. Objectives To explore approaches for extracting metrics about authoritativeness in online health communities and how these metrics positively correlate with the quality of the content. Methods We designed a metric, called HealthTrust, that estimates the trustworthiness of social media content (eg, blog posts or videos) in a health community. The HealthTrust metric calculates reputation in an online health community based on link analysis. We used the metric to retrieve YouTube videos and channels about diabetes. In two different experiments, health consumers provided 427 ratings of 17 videos and professionals gave 162 ratings of 23 videos. In addition, two professionals reviewed 30 diabetes channels. Results HealthTrust may be used for retrieving online videos on diabetes, since it performed better than YouTube Search in most cases. Overall, of 20 potential channels, HealthTrust’s filtering allowed only 3 bad channels (15%) versus 8 (40%) on the YouTube list. Misleading and graphic videos (eg, featuring amputations) were more commonly found by YouTube Search than by searches based on HealthTrust. However, some videos from trusted sources had low HealthTrust scores, mostly from general health content providers, and therefore not highly connected in the diabetes community. When comparing video ratings from our reviewers, we found that HealthTrust achieved a positive and statistically significant correlation with professionals (Pearson r 10 = .65, P = .02) and a trend toward significance with health consumers (r 7 = .65, P = .06) with videos on hemoglobinA1 c, but it did not perform as well with diabetic foot videos. Conclusions The trust-based metric HealthTrust showed promising results when used to retrieve diabetes content from YouTube. Our research indicates that social network analysis may be used to identify trustworthy social media in health communities. PMID:22356723
TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury
NASA Astrophysics Data System (ADS)
Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo
2010-03-01
Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.
Xu, Dong; Yan, Shuicheng; Tao, Dacheng; Lin, Stephen; Zhang, Hong-Jiang
2007-11-01
Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for human gait recognition and content-based image retrieval (CBIR). In this paper, we present extensions of our recently proposed marginal Fisher analysis (MFA) to address these problems. For human gait recognition, we first present a direct application of MFA, then inspired by recent advances in matrix and tensor-based dimensionality reduction algorithms, we present matrix-based MFA for directly handling 2-D input in the form of gray-level averaged images. For CBIR, we deal with the relevance feedback problem by extending MFA to marginal biased analysis, in which within-class compactness is characterized only by the distances between each positive sample and its neighboring positive samples. In addition, we present a new technique to acquire a direct optimal solution for MFA without resorting to objective function modification as done in many previous algorithms. We conduct comprehensive experiments on the USF HumanID gait database and the Corel image retrieval database. Experimental results demonstrate that MFA and its extensions outperform related algorithms in both applications.
Using background knowledge for picture organization and retrieval
NASA Astrophysics Data System (ADS)
Quintana, Yuri
1997-01-01
A picture knowledge base management system is described that is used to represent, organize and retrieve pictures from a frame knowledge base. Experiments with human test subjects were conducted to obtain further descriptions of pictures from news magazines. These descriptions were used to represent the semantic content of pictures in frame representations. A conceptual clustering algorithm is described which organizes pictures not only on the observable features, but also on implicit properties derived from the frame representations. The algorithm uses inheritance reasoning to take into account background knowledge in the clustering. The algorithm creates clusters of pictures using a group similarity function that is based on the gestalt theory of picture perception. For each cluster created, a frame is generated which describes the semantic content of pictures in the cluster. Clustering and retrieval experiments were conducted with and without background knowledge. The paper shows how the use of background knowledge and semantic similarity heuristics improves the speed, precision, and recall of queries processed. The paper concludes with a discussion of how natural language processing of can be used to assist in the development of knowledge bases and the processing of user queries.
Active retrieval facilitates across-episode binding by modulating the content of memory
Bridge, Donna J.; Voss, Joel L.
2014-01-01
The contents of memory can be updated when information from the current episode is bound with content retrieved from previous episodes. Little is known regarding factors that determine the memory content that is subject to this across-episode binding. We tested whether across-episode binding preferentially occurs for memory content that is currently “active” and identified relevant neural correlates. After studying objects at specific locations on scene backgrounds, subjects performed one of two retrieval tasks for the objects on different scene backgrounds. In an active condition, subjects recalled object locations, whereas subjects merely dragged objects to predetermined locations in a passive condition. Immediately following each object-location retrieval event, a novel face appeared on a blank screen. We hypothesized that the original episode content would be active in memory during face encoding in the active condition, but not in the passive condition (despite seeing the same content in both conditions). A ramification of the active condition would thus be preferential binding of original episode content to novel faces, with no such across-episode binding in the passive condition. Indeed, memory for faces was better when tested on the original background scenes in the active relative to passive condition, indicating that original episode content was bound with the active condition faces, whereas this occurred to a lesser extent for the passive condition faces. Likewise, early-onset negative ERP effects reflected binding of the face to the original episode content in the active but not the passive condition. In contrast, binding in the passive condition occurred only when faces were physically displayed on the original scenes during recognition testing, and a very similar early-onset negative ERP effect signaled binding in this condition. ERP correlates of binding were thus similar for across-episode and within-episode binding (and were distinct from other encoding and retrieval ERP signals in both cases), indicating that active retrieval modulated when binding occurred, not the nature of the binding process per se. These results suggest that active retrieval promotes binding of new information with contents of memory, whereas without active retrieval, these unrelated pieces of information might be bound only when they are physically paired. PMID:25173711
Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A
2012-09-01
Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.
Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey
NASA Astrophysics Data System (ADS)
Suhasini, Pallikonda Sarah; Sri Rama Krishna, K.; Murali Krishna, I. V.
2017-02-01
Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.
a Clustering-Based Approach for Evaluation of EO Image Indexing
NASA Astrophysics Data System (ADS)
Bahmanyar, R.; Rigoll, G.; Datcu, M.
2013-09-01
The volume of Earth Observation data is increasing immensely in order of several Terabytes a day. Therefore, to explore and investigate the content of this huge amount of data, developing more sophisticated Content-Based Information Retrieval (CBIR) systems are highly demanded. These systems should be able to not only discover unknown structures behind the data, but also provide relevant results to the users' queries. Since in any retrieval system the images are processed based on a discrete set of their features (i.e., feature descriptors), study and assessment of the structure of feature space, build by different feature descriptors, is of high importance. In this paper, we introduce a clustering-based approach to study the content of image collections. In our approach, we claim that using both internal and external evaluation of clusters for different feature descriptors, helps to understand the structure of feature space. Moreover, the semantic understanding of users about the images also can be assessed. To validate the performance of our approach, we used an annotated Synthetic Aperture Radar (SAR) image collection. Quantitative results besides the visualization of feature space demonstrate the applicability of our approach.
An end to end secure CBIR over encrypted medical database.
Bellafqira, Reda; Coatrieux, Gouenou; Bouslimi, Dalel; Quellec, Gwenole
2016-08-01
In this paper, we propose a new secure content based image retrieval (SCBIR) system adapted to the cloud framework. This solution allows a physician to retrieve images of similar content within an outsourced and encrypted image database, without decrypting them. Contrarily to actual CBIR approaches in the encrypted domain, the originality of the proposed scheme stands on the fact that the features extracted from the encrypted images are themselves encrypted. This is achieved by means of homomorphic encryption and two non-colluding servers, we however both consider as honest but curious. In that way an end to end secure CBIR process is ensured. Experimental results carried out on a diabetic retinopathy database encrypted with the Paillier cryptosystem indicate that our SCBIR achieves retrieval performance as good as if images were processed in their non-encrypted form.
Scalable ranked retrieval using document images
NASA Astrophysics Data System (ADS)
Jain, Rajiv; Oard, Douglas W.; Doermann, David
2013-12-01
Despite the explosion of text on the Internet, hard copy documents that have been scanned as images still play a significant role for some tasks. The best method to perform ranked retrieval on a large corpus of document images, however, remains an open research question. The most common approach has been to perform text retrieval using terms generated by optical character recognition. This paper, by contrast, examines whether a scalable segmentation-free image retrieval algorithm, which matches sub-images containing text or graphical objects, can provide additional benefit in satisfying a user's information needs on a large, real world dataset. Results on 7 million scanned pages from the CDIP v1.0 test collection show that content based image retrieval finds a substantial number of documents that text retrieval misses, and that when used as a basis for relevance feedback can yield improvements in retrieval effectiveness.
Efficient Caption-Based Retrieval of Multimedia Information
1993-10-09
in the design of transportable natural language interfaces. Artifcial Intelligence , 32 (1987), 173-243. - 13- (101 Jones, M. and Eisner, J. A...systems for multimedia data . They exploit captions on the data and perform natural-language processing of them and English retrieval requests. Some...content analysis of the data is also performed to obtain additional descriptive information. The key to getting this approach to work is sufficiently
The Comprehensive Microbial Resource
Peterson, Jeremy D.; Umayam, Lowell A.; Dickinson, Tanja; Hickey, Erin K.; White, Owen
2001-01-01
One challenge presented by large-scale genome sequencing efforts is effective display of uniform information to the scientific community. The Comprehensive Microbial Resource (CMR) contains robust annotation of all complete microbial genomes and allows for a wide variety of data retrievals. The bacterial information has been placed on the Web at http://www.tigr.org/CMR for retrieval using standard web browsing technology. Retrievals can be based on protein properties such as molecular weight or hydrophobicity, GC-content, functional role assignments and taxonomy. The CMR also has special web-based tools to allow data mining using pre-run homology searches, whole genome dot-plots, batch downloading and traversal across genomes using a variety of datatypes. PMID:11125067
Estimating chlorophyll content of spartina alterniflora at leaf level using hyper-spectral data
NASA Astrophysics Data System (ADS)
Wang, Jiapeng; Shi, Runhe; Liu, Pudong; Zhang, Chao; Chen, Maosi
2017-09-01
Spartina alterniflora, one of most successful invasive species in the world, was firstly introduced to China in 1979 to accelerate sedimentation and land formation via so-called "ecological engineering", and it is now widely distributed in coastal saltmarshes in China. A key question is how to retrieve chlorophyll content to reflect growth status, which has important implication of potential invasiveness. In this work, an estimation model of chlorophyll content of S. alterniflora was developed based on hyper-spectral data in the Dongtan Wetland, Yangtze Estuary, China. The spectral reflectance of S. alterniflora leaves and their corresponding chlorophyll contents were measured, and then the correlation analysis and regression (i.e., linear, logarithmic, quadratic, power and exponential regression) method were established. The spectral reflectance was transformed and the feature parameters (i.e., "san bian", "lv feng" and "hong gu") were extracted to retrieve the chlorophyll content of S. alterniflora . The results showed that these parameters had a large correlation coefficient with chlorophyll content. On the basis of the correlation coefficient, mathematical models were established, and the models of power and exponential based on SDb had the least RMSE and larger R2 , which had a good performance regarding the inversion of chlorophyll content of S. alterniflora.
Structure Modulates Similarity-Based Interference in Sluicing: An Eye Tracking study
Harris, Jesse A.
2015-01-01
In cue-based content-addressable approaches to memory, a target and its competitors are retrieved in parallel from memory via a fast, associative cue-matching procedure under a severely limited focus of attention. Such a parallel matching procedure could in principle ignore the serial order or hierarchical structure characteristic of linguistic relations. I present an eye tracking while reading experiment that investigates whether the sentential position of a potential antecedent modulates the strength of similarity-based interference, a well-studied effect in which increased similarity in features between a target and its competitors results in slower and less accurate retrieval overall. The manipulation trades on an independently established Locality bias in sluiced structures to associate a wh-remnant (which ones) in clausal ellipsis with the most local correlate (some wines), as in The tourists enjoyed some wines, but I don't know which ones. The findings generally support cue-based parsing models of sentence processing that are subject to similarity-based interference in retrieval, and provide additional support to the growing body of evidence that retrieval is sensitive to both the structural position of a target antecedent and its competitors, and the specificity or diagnosticity of retrieval cues. PMID:26733893
NASA Astrophysics Data System (ADS)
Bell, A.; Tang, G.; Yang, P.; Wu, D.
2017-12-01
Due to their high spatial and temporal coverage, cirrus clouds have a profound role in regulating the Earth's energy budget. Variability of their radiative, geometric, and microphysical properties can pose significant uncertainties in global climate model simulations if not adequately constrained. Thus, the development of retrieval methodologies able to accurately retrieve ice cloud properties and present associated uncertainties is essential. The effectiveness of cirrus cloud retrievals relies on accurate a priori understanding of ice radiative properties, as well as the current state of the atmosphere. Current studies have implemented information content theory analyses prior to retrievals to quantify the amount of information that should be expected on parameters to be retrieved, as well as the relative contribution of information provided by certain measurement channels. Through this analysis, retrieval algorithms can be designed in a way to maximize the information in measurements, and therefore ensure enough information is present to retrieve ice cloud properties. In this study, we present such an information content analysis to quantify the amount of information to be expected in retrievals of cirrus ice water path and particle effective diameter using sub-millimeter and thermal infrared radiometry. Preliminary results show these bands to be sensitive to changes in ice water path and effective diameter, and thus lend confidence their ability to simultaneously retrieve these parameters. Further quantification of sensitivity and the information provided from these bands can then be used to design and optimal retrieval scheme. While this information content analysis is employed on a theoretical retrieval combining simulated radiance measurements, the methodology could in general be applicable to any instrument or retrieval approach.
Gaps in content-based image retrieval
NASA Astrophysics Data System (ADS)
Deserno, Thomas M.; Antani, Sameer; Long, Rodney
2007-03-01
Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potentially strong impact in diagnostics, research, and education. Research successes that are increasingly reported in the scientific literature, however, have not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed without sufficient analytical reasoning to the inability of these applications in overcoming the "semantic gap". The semantic gap divides the high-level scene analysis of humans from the low-level pixel analysis of computers. In this paper, we suggest a more systematic and comprehensive view on the concept of gaps in medical CBIR research. In particular, we define a total of 13 gaps that address the image content and features, as well as the system performance and usability. In addition to these gaps, we identify 6 system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application. To illustrate the a posteriori use of our conceptual system, we apply it, initially, to the classification of three medical CBIR implementations: the content-based PACS approach (cbPACS), the medical GNU image finding tool (medGIFT), and the image retrieval in medical applications (IRMA) project. We show that systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Loehnert, U.; Maahn, M.
2015-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds
NASA Astrophysics Data System (ADS)
Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.
2014-12-01
More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.
Managing biomedical image metadata for search and retrieval of similar images.
Korenblum, Daniel; Rubin, Daniel; Napel, Sandy; Rodriguez, Cesar; Beaulieu, Chris
2011-08-01
Radiology images are generally disconnected from the metadata describing their contents, such as imaging observations ("semantic" metadata), which are usually described in text reports that are not directly linked to the images. We developed a system, the Biomedical Image Metadata Manager (BIMM) to (1) address the problem of managing biomedical image metadata and (2) facilitate the retrieval of similar images using semantic feature metadata. Our approach allows radiologists, researchers, and students to take advantage of the vast and growing repositories of medical image data by explicitly linking images to their associated metadata in a relational database that is globally accessible through a Web application. BIMM receives input in the form of standard-based metadata files using Web service and parses and stores the metadata in a relational database allowing efficient data query and maintenance capabilities. Upon querying BIMM for images, 2D regions of interest (ROIs) stored as metadata are automatically rendered onto preview images included in search results. The system's "match observations" function retrieves images with similar ROIs based on specific semantic features describing imaging observation characteristics (IOCs). We demonstrate that the system, using IOCs alone, can accurately retrieve images with diagnoses matching the query images, and we evaluate its performance on a set of annotated liver lesion images. BIMM has several potential applications, e.g., computer-aided detection and diagnosis, content-based image retrieval, automating medical analysis protocols, and gathering population statistics like disease prevalences. The system provides a framework for decision support systems, potentially improving their diagnostic accuracy and selection of appropriate therapies.
Simultenious binary hash and features learning for image retrieval
NASA Astrophysics Data System (ADS)
Frantc, V. A.; Makov, S. V.; Voronin, V. V.; Marchuk, V. I.; Semenishchev, E. A.; Egiazarian, K. O.; Agaian, S.
2016-05-01
Content-based image retrieval systems have plenty of applications in modern world. The most important one is the image search by query image or by semantic description. Approaches to this problem are employed in personal photo-collection management systems, web-scale image search engines, medical systems, etc. Automatic analysis of large unlabeled image datasets is virtually impossible without satisfactory image-retrieval technique. It's the main reason why this kind of automatic image processing has attracted so much attention during recent years. Despite rather huge progress in the field, semantically meaningful image retrieval still remains a challenging task. The main issue here is the demand to provide reliable results in short amount of time. This paper addresses the problem by novel technique for simultaneous learning of global image features and binary hash codes. Our approach provide mapping of pixel-based image representation to hash-value space simultaneously trying to save as much of semantic image content as possible. We use deep learning methodology to generate image description with properties of similarity preservation and statistical independence. The main advantage of our approach in contrast to existing is ability to fine-tune retrieval procedure for very specific application which allow us to provide better results in comparison to general techniques. Presented in the paper framework for data- dependent image hashing is based on use two different kinds of neural networks: convolutional neural networks for image description and autoencoder for feature to hash space mapping. Experimental results confirmed that our approach has shown promising results in compare to other state-of-the-art methods.
Content Recognition and Context Modeling for Document Analysis and Retrieval
ERIC Educational Resources Information Center
Zhu, Guangyu
2009-01-01
The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval.…
Ontology-Based Annotation of Learning Object Content
ERIC Educational Resources Information Center
Gasevic, Dragan; Jovanovic, Jelena; Devedzic, Vladan
2007-01-01
The paper proposes a framework for building ontology-aware learning object (LO) content. Previously ontologies were exclusively employed for enriching LOs' metadata. Although such an approach is useful, as it improves retrieval of relevant LOs from LO repositories, it does not enable one to reuse components of a LO, nor to incorporate an explicit…
Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Dutta, Anirvan; Garg, Mandeep; Khandelwal, Niranjan
2017-02-01
Visual information of similar nodules could assist the budding radiologists in self-learning. This paper presents a content-based image retrieval (CBIR) system for pulmonary nodules, observed in lung CT images. The reported CBIR systems of pulmonary nodules cannot be put into practice as radiologists need to draw the boundary of nodules during query formation and feature database creation. In the proposed retrieval system, the pulmonary nodules are segmented using a semi-automated technique, which requires a seed point on the nodule from the end-user. The involvement of radiologists in feature database creation is also reduced, as only a seed point is expected from radiologists instead of manual delineation of the boundary of the nodules. The performance of the retrieval system depends on the accuracy of the segmentation technique. Several 3D features are explored to improve the performance of the proposed retrieval system. A set of relevant shape and texture features are considered for efficient representation of the nodules in the feature space. The proposed CBIR system is evaluated for three configurations such as configuration-1 (composite rank of malignancy "1","2" as benign and "4","5" as malignant), configuration-2 (composite rank of malignancy "1","2", "3" as benign and "4","5" as malignant), and configuration-3 (composite rank of malignancy "1","2" as benign and "3","4","5" as malignant). Considering top 5 retrieved nodules and Euclidean distance metric, the precision achieved by the proposed method for configuration-1, configuration-2, and configuration-3 are 82.14, 75.91, and 74.27 %, respectively. The performance of the proposed CBIR system is close to the most recent technique, which is dependent on radiologists for manual segmentation of nodules. A computer-aided diagnosis (CAD) system is also developed based on CBIR paradigm. Performance of the proposed CBIR-based CAD system is close to performance of the CAD system using support vector machine.
A neotropical Miocene pollen database employing image-based search and semantic modeling1
Han, Jing Ginger; Cao, Hongfei; Barb, Adrian; Punyasena, Surangi W.; Jaramillo, Carlos; Shyu, Chi-Ren
2014-01-01
• Premise of the study: Digital microscopic pollen images are being generated with increasing speed and volume, producing opportunities to develop new computational methods that increase the consistency and efficiency of pollen analysis and provide the palynological community a computational framework for information sharing and knowledge transfer. • Methods: Mathematical methods were used to assign trait semantics (abstract morphological representations) of the images of neotropical Miocene pollen and spores. Advanced database-indexing structures were built to compare and retrieve similar images based on their visual content. A Web-based system was developed to provide novel tools for automatic trait semantic annotation and image retrieval by trait semantics and visual content. • Results: Mathematical models that map visual features to trait semantics can be used to annotate images with morphology semantics and to search image databases with improved reliability and productivity. Images can also be searched by visual content, providing users with customized emphases on traits such as color, shape, and texture. • Discussion: Content- and semantic-based image searches provide a powerful computational platform for pollen and spore identification. The infrastructure outlined provides a framework for building a community-wide palynological resource, streamlining the process of manual identification, analysis, and species discovery. PMID:25202648
USDA-ARS?s Scientific Manuscript database
Estimation of vegetation water content (VWC) by shortwave infrared remote sensing improves soil moisture retrievals. The largest unknown for predicting VWC is stem water content; for woodlands, stem water content is expected to be proportional to stem height. Airborne imagery were acquired and photo...
USDA-ARS?s Scientific Manuscript database
Estimation of vegetation water content (VWC) by shortwave infrared remote sensing improves soil moisture retrievals. The largest unknown for predicting VWC is stem water content, which is assumed to be allometrically related to canopy water content. From forest science, stem volume is linearly relat...
Vision Systems with the Human in the Loop
NASA Astrophysics Data System (ADS)
Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard
2005-12-01
The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.
Welter, Petra; Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno, Thomas M
2011-01-01
It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process.
Riesmeier, Jörg; Fischer, Benedikt; Grouls, Christoph; Kuhl, Christiane; Deserno (né Lehmann), Thomas M
2011-01-01
It is widely accepted that content-based image retrieval (CBIR) can be extremely useful for computer-aided diagnosis (CAD). However, CBIR has not been established in clinical practice yet. As a widely unattended gap of integration, a unified data concept for CBIR-based CAD results and reporting is lacking. Picture archiving and communication systems and the workflow of radiologists must be considered for successful data integration to be achieved. We suggest that CBIR systems applied to CAD should integrate their results in a picture archiving and communication systems environment such as Digital Imaging and Communications in Medicine (DICOM) structured reporting documents. A sample DICOM structured reporting template adaptable to CBIR and an appropriate integration scheme is presented. The proposed CBIR data concept may foster the promulgation of CBIR systems in clinical environments and, thereby, improve the diagnostic process. PMID:21672913
Wu, Ling; Liu, Xiang-Nan; Zhou, Bo-Tian; Liu, Chuan-Hao; Li, Lu-Feng
2012-12-01
This study analyzed the sensitivities of three vegetation biochemical parameters [chlorophyll content (Cab), leaf water content (Cw), and leaf area index (LAI)] to the changes of canopy reflectance, with the effects of each parameter on the wavelength regions of canopy reflectance considered, and selected three vegetation indices as the optimization comparison targets of cost function. Then, the Cab, Cw, and LAI were estimated, based on the particle swarm optimization algorithm and PROSPECT + SAIL model. The results showed that retrieval efficiency with vegetation indices as the optimization comparison targets of cost function was better than that with all spectral reflectance. The correlation coefficients (R2) between the measured and estimated values of Cab, Cw, and LAI were 90.8%, 95.7%, and 99.7%, and the root mean square errors of Cab, Cw, and LAI were 4.73 microg x cm(-2), 0.001 g x cm(-2), and 0.08, respectively. It was suggested that to adopt vegetation indices as the optimization comparison targets of cost function could effectively improve the efficiency and precision of the retrieval of biochemical parameters based on PROSPECT + SAIL model.
Active retrieval facilitates across-episode binding by modulating the content of memory.
Bridge, Donna J; Voss, Joel L
2014-10-01
The contents of memory can be updated when information from the current episode is bound with content retrieved from previous episodes. Little is known regarding factors that determine the memory content that is subject to this across-episode binding. We tested whether across-episode binding preferentially occurs for memory content that is currently "active" and identified relevant neural correlates. After studying objects at specific locations on scene backgrounds, subjects performed one of two retrieval tasks for the objects on different scene backgrounds. In an active condition, subjects recalled object locations, whereas subjects merely dragged objects to predetermined locations in a passive condition. Immediately following each object-location retrieval event, a novel face appeared on a blank screen. We hypothesized that the original episode content would be active in memory during face encoding in the active condition, but not in the passive condition (despite seeing the same content in both conditions). A ramification of the active condition would thus be preferential binding of original episode content to novel faces, with no such across-episode binding in the passive condition. Indeed, memory for faces was better when tested on the original background scenes in the active relative to passive condition, indicating that original episode content was bound with the active condition faces, whereas this occurred to a lesser extent for the passive condition faces. Likewise, early-onset negative ERP effects reflected binding of the face to the original episode content in the active but not the passive condition. In contrast, binding in the passive condition occurred only when faces were physically displayed on the original scenes during recognition testing, and a very similar early-onset negative ERP effect signaled binding in this condition. ERP correlates of binding were thus similar for across-episode and within-episode binding (and were distinct from other encoding and retrieval ERP signals in both cases), indicating that active retrieval modulated when binding occurred, not the nature of the binding process per se. These results suggest that active retrieval promotes binding of new information with contents of memory, whereas without active retrieval, these unrelated pieces of information might be bound only when they are physically paired. Copyright © 2014 Elsevier Ltd. All rights reserved.
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.
Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa
2017-03-01
Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.
Retrieval evaluation and distance learning from perceived similarity between endomicroscopy videos.
André, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas
2011-01-01
Evaluating content-based retrieval (CBR) is challenging because it requires an adequate ground-truth. When the available groundtruth is limited to textual metadata such as pathological classes, retrieval results can only be evaluated indirectly, for example in terms of classification performance. In this study we first present a tool to generate perceived similarity ground-truth that enables direct evaluation of endomicroscopic video retrieval. This tool uses a four-points Likert scale and collects subjective pairwise similarities perceived by multiple expert observers. We then evaluate against the generated ground-truth a previously developed dense bag-of-visual-words method for endomicroscopic video retrieval. Confirming the results of previous indirect evaluation based on classification, our direct evaluation shows that this method significantly outperforms several other state-of-the-art CBR methods. In a second step, we propose to improve the CBR method by learning an adjusted similarity metric from the perceived similarity ground-truth. By minimizing a margin-based cost function that differentiates similar and dissimilar video pairs, we learn a weight vector applied to the visual word signatures of videos. Using cross-validation, we demonstrate that the learned similarity distance is significantly better correlated with the perceived similarity than the original visual-word-based distance.
Skin image retrieval using Gabor wavelet texture feature.
Ou, X; Pan, W; Zhang, X; Xiao, P
2016-12-01
Skin imaging plays a key role in many clinical studies. We have used many skin imaging techniques, including the recently developed capacitive contact skin imaging based on fingerprint sensors. The aim of this study was to develop an effective skin image retrieval technique using Gabor wavelet transform, which can be used on different types of skin images, but with a special focus on skin capacitive contact images. Content-based image retrieval (CBIR) is a useful technology to retrieve stored images from database by supplying query images. In a typical CBIR, images are retrieved based on colour, shape, texture, etc. In this study, texture feature is used for retrieving skin images, and Gabor wavelet transform is used for texture feature description and extraction. The results show that the Gabor wavelet texture features can work efficiently on different types of skin images. Although Gabor wavelet transform is slower compared with other image retrieval techniques, such as principal component analysis (PCA) and grey-level co-occurrence matrix (GLCM), Gabor wavelet transform is the best for retrieving skin capacitive contact images and facial images with different orientations. Gabor wavelet transform can also work well on facial images with different expressions and skin cancer/disease images. We have developed an effective skin image retrieval method based on Gabor wavelet transform, that it is useful for retrieving different types of images, namely digital colour face images, digital colour skin cancer and skin disease images, and particularly greyscale skin capacitive contact images. Gabor wavelet transform can also be potentially useful for face recognition (with different orientation and expressions) and skin cancer/disease diagnosis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Astrophysics Data System (ADS)
Chmiel, P.; Ganzha, M.; Jaworska, T.; Paprzycki, M.
2017-10-01
Nowadays, as a part of systematic growth of volume, and variety, of information that can be found on the Internet, we observe also dramatic increase in sizes of available image collections. There are many ways to help users browsing / selecting images of interest. One of popular approaches are Content-Based Image Retrieval (CBIR) systems, which allow users to search for images that match their interests, expressed in the form of images (query by example). However, we believe that image search and retrieval could take advantage of semantic technologies. We have decided to test this hypothesis. Specifically, on the basis of knowledge captured in the CBIR, we have developed a domain ontology of residential real estate (detached houses, in particular). This allows us to semantically represent each image (and its constitutive architectural elements) represented within the CBIR. The proposed ontology was extended to capture not only the elements resulting from image segmentation, but also "spatial relations" between them. As a result, a new approach to querying the image database (semantic querying) has materialized, thus extending capabilities of the developed system.
A spatiotemporal decomposition strategy for personal home video management
NASA Astrophysics Data System (ADS)
Yi, Haoran; Kozintsev, Igor; Polito, Marzia; Wu, Yi; Bouguet, Jean-Yves; Nefian, Ara; Dulong, Carole
2007-01-01
With the advent and proliferation of low cost and high performance digital video recorder devices, an increasing number of personal home video clips are recorded and stored by the consumers. Compared to image data, video data is lager in size and richer in multimedia content. Efficient access to video content is expected to be more challenging than image mining. Previously, we have developed a content-based image retrieval system and the benchmarking framework for personal images. In this paper, we extend our personal image retrieval system to include personal home video clips. A possible initial solution to video mining is to represent video clips by a set of key frames extracted from them thus converting the problem into an image search one. Here we report that a careful selection of key frames may improve the retrieval accuracy. However, because video also has temporal dimension, its key frame representation is inherently limited. The use of temporal information can give us better representation for video content at semantic object and concept levels than image-only based representation. In this paper we propose a bottom-up framework to combine interest point tracking, image segmentation and motion-shape factorization to decompose the video into spatiotemporal regions. We show an example application of activity concept detection using the trajectories extracted from the spatio-temporal regions. The proposed approach shows good potential for concise representation and indexing of objects and their motion in real-life consumer video.
Understanding human quality judgment in assessing online forum contents for thread retrieval purpose
NASA Astrophysics Data System (ADS)
Ismail, Zuriati; Salim, Naomie; Huspi, Sharin Hazlin
2017-10-01
Compared to traditional materials or journals, user-generated contents are not peer-reviewed. Lack of quality control and the explosive growth of web contents make the task of finding quality information on the web especially critical. The existence of new facilities for producing web contents such as forum makes this issue more significant. This study focuses on online forums threads or discussion, where the forums contain valuable human-generated information in a form of discussions. Due to the unique structure of the online forum pages, special techniques are required to organize and search for information in these forums. Quality biased retrieval is a retrieval approach that search for relevant document and prioritized higher quality documents. Despite major concern of quality content and recent development of quality biased retrieval, there is an urgent need to understand how quality content is being judged, for retrieval and performance evaluation purposes. Furthermore, even though there are various studies on the quality of information, there is no standard framework that has been established. The primary aim of this paper is to contribute to the understanding of human quality judgment in assessing online forum contents. The foundation of this study is to compare and evaluate different frameworks (for quality biased retrieval and information quality). This led to the finding that many quality dimensions are redundant and some dimensions are understood differently between different studies. We conducted a survey on crowdsourcing community to measure the importance of each quality dimensions found in various frameworks. Accuracy and ease of understanding are among top important dimensions while threads popularity and contents manipulability are among least important dimensions. This finding is beneficial in evaluating contents of online forum.
A similarity measure method combining location feature for mammogram retrieval.
Wang, Zhiqiong; Xin, Junchang; Huang, Yukun; Li, Chen; Xu, Ling; Li, Yang; Zhang, Hao; Gu, Huizi; Qian, Wei
2018-05-28
Breast cancer, the most common malignancy among women, has a high mortality rate in clinical practice. Early detection, diagnosis and treatment can reduce the mortalities of breast cancer greatly. The method of mammogram retrieval can help doctors to find the early breast lesions effectively and determine a reasonable feature set for image similarity measure. This will improve the accuracy effectively for mammogram retrieval. This paper proposes a similarity measure method combining location feature for mammogram retrieval. Firstly, the images are pre-processed, the regions of interest are detected and the lesions are segmented in order to get the center point and radius of the lesions. Then, the method, namely Coherent Point Drift, is used for image registration with the pre-defined standard image. The center point and radius of the lesions after registration are obtained and the standard location feature of the image is constructed. This standard location feature can help figure out the location similarity between the image pair from the query image to each dataset image in the database. Next, the content feature of the image is extracted, including the Histogram of Oriented Gradients, the Edge Direction Histogram, the Local Binary Pattern and the Gray Level Histogram, and the image pair content similarity can be calculated using the Earth Mover's Distance. Finally, the location similarity and content similarity are fused to form the image fusion similarity, and the specified number of the most similar images can be returned according to it. In the experiment, 440 mammograms, which are from Chinese women in Northeast China, are used as the database. When fusing 40% lesion location feature similarity and 60% content feature similarity, the results have obvious advantages. At this time, precision is 0.83, recall is 0.76, comprehensive indicator is 0.79, satisfaction is 96.0%, mean is 4.2 and variance is 17.7. The results show that the precision and recall of this method have obvious advantage, compared with the content-based image retrieval.
NASA Technical Reports Server (NTRS)
Moghaddam, Mahta
1995-01-01
In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.
A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF
Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan
2016-01-01
With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101
Multivariate analysis: A statistical approach for computations
NASA Astrophysics Data System (ADS)
Michu, Sachin; Kaushik, Vandana
2014-10-01
Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.
Logic-Based Retrieval: Technology for Content-Oriented and Analytical Querying of Patent Data
NASA Astrophysics Data System (ADS)
Klampanos, Iraklis Angelos; Wu, Hengzhi; Roelleke, Thomas; Azzam, Hany
Patent searching is a complex retrieval task. An initial document search is only the starting point of a chain of searches and decisions that need to be made by patent searchers. Keyword-based retrieval is adequate for document searching, but it is not suitable for modelling comprehensive retrieval strategies. DB-like and logical approaches are the state-of-the-art techniques to model strategies, reasoning and decision making. In this paper we present the application of logical retrieval to patent searching. The two grand challenges are expressiveness and scalability, where high degree of expressiveness usually means a loss in scalability. In this paper we report how to maintain scalability while offering the expressiveness of logical retrieval required for solving patent search tasks. We present logical retrieval background, and how to model data-source selection and results' fusion. Moreover, we demonstrate the modelling of a retrieval strategy, a technique by which patent professionals are able to express, store and exchange their strategies and rationales when searching patents or when making decisions. An overview of the architecture and technical details complement the paper, while the evaluation reports preliminary results on how query processing times can be guaranteed, and how quality is affected by trading off responsiveness.
Karlsson, Kristina; Sikström, Sverker; Willander, Johan
2013-01-01
The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues.
Karlsson, Kristina; Sikström, Sverker; Willander, Johan
2013-01-01
The semantic content, or the meaning, is the essence of autobiographical memories. In comparison to previous research, which has mainly focused on the phenomenological experience and the age distribution of retrieved events, the present study provides a novel view on the retrieval of event information by quantifying the information as semantic representations. We investigated the semantic representation of sensory cued autobiographical events and studied the modality hierarchy within the multimodal retrieval cues. The experiment comprised a cued recall task, where the participants were presented with visual, auditory, olfactory or multimodal retrieval cues and asked to recall autobiographical events. The results indicated that the three different unimodal retrieval cues generate significantly different semantic representations. Further, the auditory and the visual modalities contributed the most to the semantic representation of the multimodally retrieved events. Finally, the semantic representation of the multimodal condition could be described as a combination of the three unimodal conditions. In conclusion, these results suggest that the meaning of the retrieved event information depends on the modality of the retrieval cues. PMID:24204561
NASA Astrophysics Data System (ADS)
Lehmann, Thomas M.; Guld, Mark O.; Thies, Christian; Fischer, Benedikt; Keysers, Daniel; Kohnen, Michael; Schubert, Henning; Wein, Berthold B.
2003-05-01
Picture archiving and communication systems (PACS) aim to efficiently provide the radiologists with all images in a suitable quality for diagnosis. Modern standards for digital imaging and communication in medicine (DICOM) comprise alphanumerical descriptions of study, patient, and technical parameters. Currently, this is the only information used to select relevant images within PACS. Since textual descriptions insufficiently describe the great variety of details in medical images, content-based image retrieval (CBIR) is expected to have a strong impact when integrated into PACS. However, existing CBIR approaches usually are limited to a distinct modality, organ, or diagnostic study. In this state-of-the-art report, we present first results implementing a general approach to content-based image retrieval in medical applications (IRMA) and discuss its integration into PACS environments. Usually, a PACS consists of a DICOM image server and several DICOM-compliant workstations, which are used by radiologists for reading the images and reporting the findings. Basic IRMA components are the relational database, the scheduler, and the web server, which all may be installed on the DICOM image server, and the IRMA daemons running on distributed machines, e.g., the radiologists" workstations. These workstations can also host the web-based front-ends of IRMA applications. Integrating CBIR and PACS, a special focus is put on (a) location and access transparency for data, methods, and experiments, (b) replication transparency for methods in development, (c) concurrency transparency for job processing and feature extraction, (d) system transparency at method implementation time, and (e) job distribution transparency when issuing a query. Transparent integration will have a certain impact on diagnostic quality supporting both evidence-based medicine and case-based reasoning.
Recommending Education Materials for Diabetic Questions Using Information Retrieval Approaches
Wang, Yanshan; Shen, Feichen; Liu, Sijia; Rastegar-Mojarad, Majid; Wang, Liwei
2017-01-01
Background Self-management is crucial to diabetes care and providing expert-vetted content for answering patients’ questions is crucial in facilitating patient self-management. Objective The aim is to investigate the use of information retrieval techniques in recommending patient education materials for diabetic questions of patients. Methods We compared two retrieval algorithms, one based on Latent Dirichlet Allocation topic modeling (topic modeling-based model) and one based on semantic group (semantic group-based model), with the baseline retrieval models, vector space model (VSM), in recommending diabetic patient education materials to diabetic questions posted on the TuDiabetes forum. The evaluation was based on a gold standard dataset consisting of 50 randomly selected diabetic questions where the relevancy of diabetic education materials to the questions was manually assigned by two experts. The performance was assessed using precision of top-ranked documents. Results We retrieved 7510 diabetic questions on the forum and 144 diabetic patient educational materials from the patient education database at Mayo Clinic. The mapping rate of words in each corpus mapped to the Unified Medical Language System (UMLS) was significantly different (P<.001). The topic modeling-based model outperformed the other retrieval algorithms. For example, for the top-retrieved document, the precision of the topic modeling-based, semantic group-based, and VSM models was 67.0%, 62.8%, and 54.3%, respectively. Conclusions This study demonstrated that topic modeling can mitigate the vocabulary difference and it achieved the best performance in recommending education materials for answering patients’ questions. One direction for future work is to assess the generalizability of our findings and to extend our study to other disease areas, other patient education material resources, and online forums. PMID:29038097
Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector
NASA Astrophysics Data System (ADS)
Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu
2018-02-01
Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.
Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments.
García-Olalla, Oscar; Alegre, Enrique; Fernández-Robles, Laura; Fidalgo, Eduardo; Saikia, Surajit
2018-04-25
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments.
Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments
García-Olalla, Oscar; Saikia, Surajit
2018-01-01
Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments. PMID:29693590
NASA Astrophysics Data System (ADS)
Bamidis, Panagiotis D.; Kaldoudi, Eleni; Pattichis, Costas
Although there is an abundance of medical educational content available in individual EU academic institutions, this is not widely available or easy to discover and retrieve, due to lack of standardized content sharing mechanisms. The mEducator EU project will face this lack by implementing and experimenting between two different sharing mechanisms, namely, one based one mashup technologies, and one based on semantic web services. In addition, the mEducator best practice network will critically evaluate existing standards and reference models in the field of e-learning in order to enable specialized state-of-the-art medical educational content to be discovered, retrieved, shared, repurposed and re-used across European higher academic institutions. Educational content included in mEducator covers and represents the whole range of medical educational content, from traditional instructional teaching to active learning and experiential teaching/studying approaches. It spans the whole range of types, from text to exam sheets, algorithms, teaching files, computer programs (simulators or games) and interactive objects (like virtual patients and electronically traced anatomies), while it covers a variety of topics. In this paper, apart from introducing the relevant project concepts and strategies, emphasis is also placed on the notion of (dynamic) user-generated content, its advantages and peculiarities, as well as, gaps in current research and technology practice upon its embedding into existing standards.
NASA Astrophysics Data System (ADS)
Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.
2018-05-01
Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn't involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.
Exploring access to scientific literature using content-based image retrieval
NASA Astrophysics Data System (ADS)
Deserno, Thomas M.; Antani, Sameer; Long, Rodney
2007-03-01
The number of articles published in the scientific medical literature is continuously increasing, and Web access to the journals is becoming common. Databases such as SPIE Digital Library, IEEE Xplore, indices such as PubMed, and search engines such as Google provide the user with sophisticated full-text search capabilities. However, information in images and graphs within these articles is entirely disregarded. In this paper, we quantify the potential impact of using content-based image retrieval (CBIR) to access this non-text data. Based on the Journal Citations Report (JCR), the journal Radiology was selected for this study. In 2005, 734 articles were published electronically in this journal. This included 2,587 figures, which yields a rate of 3.52 figures per article. Furthermore, 56.4% of these figures are composed of several individual panels, i.e. the figure combines different images and/or graphs. According to the Image Cross-Language Evaluation Forum (ImageCLEF), the error rate of automatic identification of medical images is about 15%. Therefore, it is expected that, by applying ImageCLEF-like techniques, already 95.5% of articles could be retrieved by means of CBIR. The challenge for CBIR in scientific literature, however, is the use of local texture properties to analyze individual image panels in composite illustrations. Using local features for content-based image representation, 8.81 images per article are available, and the predicted correctness rate may increase to 98.3%. From this study, we conclude that CBIR may have a high impact in medical literature research and suggest that additional research in this area is warranted.
Data augmentation-assisted deep learning of hand-drawn partially colored sketches for visual search
Muhammad, Khan; Baik, Sung Wook
2017-01-01
In recent years, image databases are growing at exponential rates, making their management, indexing, and retrieval, very challenging. Typical image retrieval systems rely on sample images as queries. However, in the absence of sample query images, hand-drawn sketches are also used. The recent adoption of touch screen input devices makes it very convenient to quickly draw shaded sketches of objects to be used for querying image databases. This paper presents a mechanism to provide access to visual information based on users’ hand-drawn partially colored sketches using touch screen devices. A key challenge for sketch-based image retrieval systems is to cope with the inherent ambiguity in sketches due to the lack of colors, textures, shading, and drawing imperfections. To cope with these issues, we propose to fine-tune a deep convolutional neural network (CNN) using augmented dataset to extract features from partially colored hand-drawn sketches for query specification in a sketch-based image retrieval framework. The large augmented dataset contains natural images, edge maps, hand-drawn sketches, de-colorized, and de-texturized images which allow CNN to effectively model visual contents presented to it in a variety of forms. The deep features extracted from CNN allow retrieval of images using both sketches and full color images as queries. We also evaluated the role of partial coloring or shading in sketches to improve the retrieval performance. The proposed method is tested on two large datasets for sketch recognition and sketch-based image retrieval and achieved better classification and retrieval performance than many existing methods. PMID:28859140
NASA Astrophysics Data System (ADS)
Eweys, Omar Ali; Elwan, Abeer A.; Borham, Taha I.
2017-12-01
This manuscript proposes an approach for estimating soil moisture content over corn fields using C-band SAR data acquired by RADARSAT-2 satellite. An image based approach is employed to remove the vegetation contribution to the satellite signals. In particular, the absolute difference between like and cross polarized signals (ADLC) is employed for segmenting the canopy growth cycle into tiny stages. Each stage is represented by a Cumulative Distribution Function (CDF) of the like polarized signals. For periods of bare soils and vegetation cover, CDFs are compared and the vegetation contribution is quantified. The portion which represent the soil contributions (σHHsoil°) to the satellite signals; are employed for inversely running Oh model and the water cloud model for estimating soil moisture, canopy water content and canopy height respectively. The proposed approach shows satisfactory performance where high correlation of determination (R2) is detected between the field observations and the corresponding retrieved soil moisture, canopy water content and canopy height (R2 = 0.64, 0.97 and 0.98 respectively). Soil moisture retrieval is associated with root mean square error (RMSE) of 0.03 m3 m-3 while estimating canopy water content and canopy height have RMSE of 0.38 kg m-2 and 0.166 m respectively.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-04-06
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators-depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance-to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O₂-A and O₂-B bands (111.4% and 77.1% in the O₂-A band; and 27.5% and 32.6% in the O₂-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R² = 0.91 for Damm vs. SCOPE SIF; R² = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence.
Ni, Zhuoya; Liu, Zhigang; Li, Zhao-Liang; Nerry, Françoise; Huo, Hongyuan; Sun, Rui; Yang, Peiqi; Zhang, Weiwei
2016-01-01
Significant research progress has recently been made in estimating fluorescence in the oxygen absorption bands, however, quantitative retrieval of fluorescence data is still affected by factors such as atmospheric effects. In this paper, top-of-atmosphere (TOA) radiance is generated by the MODTRAN 4 and SCOPE models. Based on simulated data, sensitivity analysis is conducted to assess the sensitivities of four indicators—depth_absorption_band, depth_nofs-depth_withfs, radiance and Fs/radiance—to atmospheric parameters (sun zenith angle (SZA), sensor height, elevation, visibility (VIS) and water content) in the oxygen absorption bands. The results indicate that the SZA and sensor height are the most sensitive parameters and that variations in these two parameters result in large variations calculated as the variation value/the base value in the oxygen absorption depth in the O2-A and O2-B bands (111.4% and 77.1% in the O2-A band; and 27.5% and 32.6% in the O2-B band, respectively). A comparison of fluorescence retrieval using three methods (Damm method, Braun method and DOAS) and SCOPE Fs indicates that the Damm method yields good results and that atmospheric correction can improve the accuracy of fluorescence retrieval. Damm method is the improved 3FLD method but considering atmospheric effects. Finally, hyperspectral airborne images combined with other parameters (SZA, VIS and water content) are exploited to estimate fluorescence using the Damm method and 3FLD method. The retrieval fluorescence is compared with the field measured fluorescence, yielding good results (R2 = 0.91 for Damm vs. SCOPE SIF; R2 = 0.65 for 3FLD vs. SCOPE SIF). Five types of vegetation, including ailanthus, elm, mountain peach, willow and Chinese ash, exhibit consistent associations between the retrieved fluorescence and field measured fluorescence. PMID:27058542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourassi, Georgia D.; Harrawood, Brian; Singh, Swatee
The purpose of this study was to evaluate image similarity measures employed in an information-theoretic computer-assisted detection (IT-CAD) scheme. The scheme was developed for content-based retrieval and detection of masses in screening mammograms. The study is aimed toward an interactive clinical paradigm where physicians query the proposed IT-CAD scheme on mammographic locations that are either visually suspicious or indicated as suspicious by other cuing CAD systems. The IT-CAD scheme provides an evidence-based, second opinion for query mammographic locations using a knowledge database of mass and normal cases. In this study, eight entropy-based similarity measures were compared with respect to retrievalmore » precision and detection accuracy using a database of 1820 mammographic regions of interest. The IT-CAD scheme was then validated on a separate database for false positive reduction of progressively more challenging visual cues generated by an existing, in-house mass detection system. The study showed that the image similarity measures fall into one of two categories; one category is better suited to the retrieval of semantically similar cases while the second is more effective with knowledge-based decisions regarding the presence of a true mass in the query location. In addition, the IT-CAD scheme yielded a substantial reduction in false-positive detections while maintaining high detection rate for malignant masses.« less
NASA Astrophysics Data System (ADS)
Rusli, Stephanie P.; Donovan, David P.; Russchenberg, Herman W. J.
2017-12-01
Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.
NASA Astrophysics Data System (ADS)
Burton, S. P.; Liu, X.; Chemyakin, E.; Hostetler, C. A.; Stamnes, S.; Moore, R.; Sawamura, P.; Ferrare, R. A.; Knobelspiesse, K. D.
2015-12-01
There is considerable interest in retrieving aerosol effective radius, number concentration and refractive index from lidar measurements of extinction and backscatter at several wavelengths. The 3 backscatter + 2 extinction (3β+2α) combination is particularly important since the planned NASA Aerosol-Clouds-Ecosystem (ACE) mission recommends this combination of measurements. The 2nd-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β+2α measurements since 2012. Here we develop a deeper understanding of the information content and sensitivities of the 3β+2α system in terms of aerosol microphysical parameters of interest. We determine best case results using a retrieval-free methodology. We calculate information content and uncertainty metrics from Optimal Estimation techniques using only a simplified forward model look-up table, with no explicit inversion. Simplifications include spherical particles, mono-modal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, our results are applicable as a best case for all existing retrievals. Retrieval-dependent errors due to mismatch between the assumptions and true atmospheric aerosols are not included. The sensitivity metrics allow for identifying (1) information content of the measurements versus a priori information; (2) best-case error bars on the retrieved parameters; and (3) potential sources of cross-talk or "compensating" errors wherein different retrieval parameters are not independently captured by the measurements. These results suggest that even in the best case, this retrieval system is underdetermined. Recommendations are given for addressing cross-talk between effective radius and number concentration. A potential solution to the under-determination problem is a combined active (lidar) and passive (polarimeter) retrieval, which is the subject of a new funded NASA project by our team.
Content Classification and Context-Based Retrieval System for E-Learning
ERIC Educational Resources Information Center
Mittal, Ankush; Krishnan, Pagalthivarthi V.; Altman, Edward
2006-01-01
A recent focus in web based learning systems has been the development of reusable learning materials that can be delivered as personalized courses depending of a number of factors such as the user's background, his/her learning preferences, current knowledge based on previous assessments, or previous browsing patterns. The student is often…
Al-Nawashi, Malek; Al-Hazaimeh, Obaida M; Saraee, Mohamad
2017-01-01
Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-02-16
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer cloud using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulusmore » under stratocumulus, where cloud water path is retrieved with an error of 31 g m −2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the northeast Pacific. Here, retrieved cloud water path agrees well with independent 3-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m −2.« less
Content-based histopathology image retrieval using CometCloud.
Qi, Xin; Wang, Daihou; Rodero, Ivan; Diaz-Montes, Javier; Gensure, Rebekah H; Xing, Fuyong; Zhong, Hua; Goodell, Lauri; Parashar, Manish; Foran, David J; Yang, Lin
2014-08-26
The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. In this paper, we present a set of newly developed CBIR algorithms and validate them using two different pathology applications, which are regularly evaluated in the practice of pathology. Comparative experimental results demonstrate excellent performance throughout the course of a set of systematic studies. Additionally, we present and evaluate a framework to enable the execution of these algorithms across distributed resources. We show how parallel searching of content-wise similar images in the dataset significantly reduces the overall computational time to ensure the practical utility of the proposed CBIR algorithms.
Photopolarimetric Retrievals of Snow Properties
NASA Technical Reports Server (NTRS)
Ottaviani, M.; van Diedenhoven, B.; Cairns, B.
2015-01-01
Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.
A mathematical model of neuro-fuzzy approximation in image classification
NASA Astrophysics Data System (ADS)
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
Echterhoff, Gerald; Hirst, William
2006-06-01
Extant research shows that people use retrieval ease, a feeling-based cue, to judge how well they remember life periods. Extending this approach, we investigated the role of retrieval ease in memory judgments for single events. In Experiment 1, participants who were asked to recall many memories of an everyday event (New Year's Eve) rated retrieval as more difficult and judged their memory as worse than did participants asked to recall only a few memories. In Experiment 2, this ease-of-retrieval effect was found to interact with the shocking character of the remembered event: There was no effect when the event was highly shocking (i.e., learning about the attacks of September 11, 2001), whereas an effect was found when the event was experienced as less shocking (due either to increased distance to "9/11" or to the nonshocking nature of the event itself). Memory vividness accounted for additional variance in memory judgments, indicating an independent contribution of content-based cues in judgments of event memories.
An architecture for diversity-aware search for medical web content.
Denecke, K
2012-01-01
The Web provides a huge source of information, also on medical and health-related issues. In particular the content of medical social media data can be diverse due to the background of an author, the source or the topic. Diversity in this context means that a document covers different aspects of a topic or a topic is described in different ways. In this paper, we introduce an approach that allows to consider the diverse aspects of a search query when providing retrieval results to a user. We introduce a system architecture for a diversity-aware search engine that allows retrieving medical information from the web. The diversity of retrieval results is assessed by calculating diversity measures that rely upon semantic information derived from a mapping to concepts of a medical terminology. Considering these measures, the result set is diversified by ranking more diverse texts higher. The methods and system architecture are implemented in a retrieval engine for medical web content. The diversity measures reflect the diversity of aspects considered in a text and its type of information content. They are used for result presentation, filtering and ranking. In a user evaluation we assess the user satisfaction with an ordering of retrieval results that considers the diversity measures. It is shown through the evaluation that diversity-aware retrieval considering diversity measures in ranking could increase the user satisfaction with retrieval results.
NASA Astrophysics Data System (ADS)
Phan, Raymond; Androutsos, Dimitrios
2008-01-01
In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.
MPEG-7 based video annotation and browsing
NASA Astrophysics Data System (ADS)
Hoeynck, Michael; Auweiler, Thorsten; Wellhausen, Jens
2003-11-01
The huge amount of multimedia data produced worldwide requires annotation in order to enable universal content access and to provide content-based search-and-retrieval functionalities. Since manual video annotation can be time consuming, automatic annotation systems are required. We review recent approaches to content-based indexing and annotation of videos for different kind of sports and describe our approach to automatic annotation of equestrian sports videos. We especially concentrate on MPEG-7 based feature extraction and content description, where we apply different visual descriptors for cut detection. Further, we extract the temporal positions of single obstacles on the course by analyzing MPEG-7 edge information. Having determined single shot positions as well as the visual highlights, the information is jointly stored with meta-textual information in an MPEG-7 description scheme. Based on this information, we generate content summaries which can be utilized in a user-interface in order to provide content-based access to the video stream, but further for media browsing on a streaming server.
Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing.
Fan, Jianping; Luo, Hangzai; Elmagarmid, Ahmed K
2004-07-01
Digital video now plays an important role in medical education, health care, telemedicine and other medical applications. Several content-based video retrieval (CBVR) systems have been proposed in the past, but they still suffer from the following challenging problems: semantic gap, semantic video concept modeling, semantic video classification, and concept-oriented video database indexing and access. In this paper, we propose a novel framework to make some advances toward the final goal to solve these problems. Specifically, the framework includes: 1) a semantic-sensitive video content representation framework by using principal video shots to enhance the quality of features; 2) semantic video concept interpretation by using flexible mixture model to bridge the semantic gap; 3) a novel semantic video-classifier training framework by integrating feature selection, parameter estimation, and model selection seamlessly in a single algorithm; and 4) a concept-oriented video database organization technique through a certain domain-dependent concept hierarchy to enable semantic-sensitive video retrieval and browsing.
Indexing and retrieval of multimedia objects at different levels of granularity
NASA Astrophysics Data System (ADS)
Faudemay, Pascal; Durand, Gwenael; Seyrat, Claude; Tondre, Nicolas
1998-10-01
Intelligent access to multimedia databases for `naive user' should probably be based on queries formulation by `intelligent agents'. These agents should `understand' the semantics of the contents, learn user preferences and deliver to the user a subset of the source contents, for further navigation. The goal of such systems should be to enable `zero-command' access to the contents, while keeping the freedom of choice of the user. Such systems should interpret multimedia contents in terms of multiple audiovisual objects (from video to visual or audio object), and on actions and scenarios.
Multimedia content description framework
NASA Technical Reports Server (NTRS)
Bergman, Lawrence David (Inventor); Mohan, Rakesh (Inventor); Li, Chung-Sheng (Inventor); Smith, John Richard (Inventor); Kim, Michelle Yoonk Yung (Inventor)
2003-01-01
A framework is provided for describing multimedia content and a system in which a plurality of multimedia storage devices employing the content description methods of the present invention can interoperate. In accordance with one form of the present invention, the content description framework is a description scheme (DS) for describing streams or aggregations of multimedia objects, which may comprise audio, images, video, text, time series, and various other modalities. This description scheme can accommodate an essentially limitless number of descriptors in terms of features, semantics or metadata, and facilitate content-based search, index, and retrieval, among other capabilities, for both streamed or aggregated multimedia objects.
NASA Astrophysics Data System (ADS)
Gururaj, C.; Jayadevappa, D.; Tunga, Satish
2018-02-01
Medical field has seen a phenomenal improvement over the previous years. The invention of computers with appropriate increase in the processing and internet speed has changed the face of the medical technology. However there is still scope for improvement of the technologies in use today. One of the many such technologies of medical aid is the detection of afflictions of the eye. Although a repertoire of research has been accomplished in this field, most of them fail to address how to take the detection forward to a stage where it will be beneficial to the society at large. An automated system that can predict the current medical condition of a patient after taking the fundus image of his eye is yet to see the light of the day. Such a system is explored in this paper by summarizing a number of techniques for fundus image features extraction, predominantly hard exudate mining, coupled with Content Based Image Retrieval to develop an automation tool. The knowledge of the same would bring about worthy changes in the domain of exudates extraction of the eye. This is essential in cases where the patients may not have access to the best of technologies. This paper attempts at a comprehensive summary of the techniques for Content Based Image Retrieval (CBIR) or fundus features image extraction, and few choice methods of both, and an exploration which aims to find ways to combine these two attractive features, and combine them so that it is beneficial to all.
NASA Astrophysics Data System (ADS)
Gururaj, C.; Jayadevappa, D.; Tunga, Satish
2018-06-01
Medical field has seen a phenomenal improvement over the previous years. The invention of computers with appropriate increase in the processing and internet speed has changed the face of the medical technology. However there is still scope for improvement of the technologies in use today. One of the many such technologies of medical aid is the detection of afflictions of the eye. Although a repertoire of research has been accomplished in this field, most of them fail to address how to take the detection forward to a stage where it will be beneficial to the society at large. An automated system that can predict the current medical condition of a patient after taking the fundus image of his eye is yet to see the light of the day. Such a system is explored in this paper by summarizing a number of techniques for fundus image features extraction, predominantly hard exudate mining, coupled with Content Based Image Retrieval to develop an automation tool. The knowledge of the same would bring about worthy changes in the domain of exudates extraction of the eye. This is essential in cases where the patients may not have access to the best of technologies. This paper attempts at a comprehensive summary of the techniques for Content Based Image Retrieval (CBIR) or fundus features image extraction, and few choice methods of both, and an exploration which aims to find ways to combine these two attractive features, and combine them so that it is beneficial to all.
CAMEL: concept annotated image libraries
NASA Astrophysics Data System (ADS)
Natsev, Apostol; Chadha, Atul; Soetarman, Basuki; Vitter, Jeffrey S.
2001-01-01
The problem of content-based image searching has received considerable attention in the last few years. Thousands of images are now available on the Internet, and many important applications require searching of images in domains such as E-commerce, medical imaging, weather prediction, satellite imagery, and so on. Yet, content-based image querying is still largely unestablished as a mainstream field, nor is it widely used by search engines. We believe that two of the major hurdles for this poor acceptance are poor retrieval quality and usability.
CAMEL: concept annotated image libraries
NASA Astrophysics Data System (ADS)
Natsev, Apostol; Chadha, Atul; Soetarman, Basuki; Vitter, Jeffrey S.
2000-12-01
The problem of content-based image searching has received considerable attention in the last few years. Thousands of images are now available on the Internet, and many important applications require searching of images in domains such as E-commerce, medical imaging, weather prediction, satellite imagery, and so on. Yet, content-based image querying is still largely unestablished as a mainstream field, nor is it widely used by search engines. We believe that two of the major hurdles for this poor acceptance are poor retrieval quality and usability.
Hippocampal activation during retrieval of spatial context from episodic and semantic memory.
Hoscheidt, Siobhan M; Nadel, Lynn; Payne, Jessica; Ryan, Lee
2010-10-15
The hippocampus, a region implicated in the processing of spatial information and episodic memory, is central to the debate concerning the relationship between episodic and semantic memory. Studies of medial temporal lobe amnesic patients provide evidence that the hippocampus is critical for the retrieval of episodic but not semantic memory. On the other hand, recent neuroimaging studies of intact individuals report hippocampal activation during retrieval of both autobiographical memories and semantic information that includes historical facts, famous faces, and categorical information, suggesting that episodic and semantic memory may engage the hippocampus during memory retrieval in similar ways. Few studies have matched episodic and semantic tasks for the degree to which they include spatial content, even though spatial content may be what drives hippocampal activation during semantic retrieval. To examine this issue, we conducted a functional magnetic resonance imaging (fMRI) study in which retrieval of spatial and nonspatial information was compared during an episodic and semantic recognition task. Results show that the hippocampus (1) participates preferentially in the retrieval of episodic memories; (2) is also engaged by retrieval of semantic memories, particularly those that include spatial information. These data suggest that sharp dissociations between episodic and semantic memory may be overly simplistic and that the hippocampus plays a role in the retrieval of spatial content whether drawn from a memory of one's own life experiences or real-world semantic knowledge. Published by Elsevier B.V.
Techniques for Soundscape Retrieval and Synthesis
NASA Astrophysics Data System (ADS)
Mechtley, Brandon Michael
The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This dissertation examines the application of several computational tools in the realms of digital signal processing, multimedia information retrieval, and computer music synthesis to the analysis of the soundscape. Namely, these tools include a) an open source software library, Sirens, which can be used for the segmentation of long environmental field recordings into individual sonic events and compare these events in terms of acoustic content, b) a graph-based retrieval system that can use these measures of acoustic similarity and measures of semantic similarity using the lexical database WordNet to perform both text-based retrieval and automatic annotation of environmental sounds, and c) new techniques for the dynamic, realtime parametric morphing of multiple field recordings, informed by the geographic paths along which they were recorded.
A memory learning framework for effective image retrieval.
Han, Junwei; Ngan, King N; Li, Mingjing; Zhang, Hong-Jiang
2005-04-01
Most current content-based image retrieval systems are still incapable of providing users with their desired results. The major difficulty lies in the gap between low-level image features and high-level image semantics. To address the problem, this study reports a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of our framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experiments on a collection of 10,000 general-purpose images demonstrate the effectiveness of the proposed framework.
Feature hashing for fast image retrieval
NASA Astrophysics Data System (ADS)
Yan, Lingyu; Fu, Jiarun; Zhang, Hongxin; Yuan, Lu; Xu, Hui
2018-03-01
Currently, researches on content based image retrieval mainly focus on robust feature extraction. However, due to the exponential growth of online images, it is necessary to consider searching among large scale images, which is very timeconsuming and unscalable. Hence, we need to pay much attention to the efficiency of image retrieval. In this paper, we propose a feature hashing method for image retrieval which not only generates compact fingerprint for image representation, but also prevents huge semantic loss during the process of hashing. To generate the fingerprint, an objective function of semantic loss is constructed and minimized, which combine the influence of both the neighborhood structure of feature data and mapping error. Since the machine learning based hashing effectively preserves neighborhood structure of data, it yields visual words with strong discriminability. Furthermore, the generated binary codes leads image representation building to be of low-complexity, making it efficient and scalable to large scale databases. Experimental results show good performance of our approach.
User-oriented evaluation of a medical image retrieval system for radiologists.
Markonis, Dimitrios; Holzer, Markus; Baroz, Frederic; De Castaneda, Rafael Luis Ruiz; Boyer, Célia; Langs, Georg; Müller, Henning
2015-10-01
This article reports the user-oriented evaluation of a text- and content-based medical image retrieval system. User tests with radiologists using a search system for images in the medical literature are presented. The goal of the tests is to assess the usability of the system, identify system and interface aspects that need improvement and useful additions. Another objective is to investigate the system's added value to radiology information retrieval. The study provides an insight into required specifications and potential shortcomings of medical image retrieval systems through a concrete methodology for conducting user tests. User tests with a working image retrieval system of images from the biomedical literature were performed in an iterative manner, where each iteration had the participants perform radiology information seeking tasks and then refining the system as well as the user study design itself. During these tasks the interaction of the users with the system was monitored, usability aspects were measured, retrieval success rates recorded and feedback was collected through survey forms. In total, 16 radiologists participated in the user tests. The success rates in finding relevant information were on average 87% and 78% for image and case retrieval tasks, respectively. The average time for a successful search was below 3 min in both cases. Users felt quickly comfortable with the novel techniques and tools (after 5 to 15 min), such as content-based image retrieval and relevance feedback. User satisfaction measures show a very positive attitude toward the system's functionalities while the user feedback helped identifying the system's weak points. The participants proposed several potentially useful new functionalities, such as filtering by imaging modality and search for articles using image examples. The iterative character of the evaluation helped to obtain diverse and detailed feedback on all system aspects. Radiologists are quickly familiar with the functionalities but have several comments on desired functionalities. The analysis of the results can potentially assist system refinement for future medical information retrieval systems. Moreover, the methodology presented as well as the discussion on the limitations and challenges of such studies can be useful for user-oriented medical image retrieval evaluation, as user-oriented evaluation of interactive system is still only rarely performed. Such interactive evaluations can be limited in effort if done iteratively and can give many insights for developing better systems. Copyright © 2015. Published by Elsevier Ireland Ltd.
Küper, Kristina
2018-01-01
Episodic memory retrieval is assumed to be associated with the tonic cognitive state of retrieval mode. Despite extensive research into the neurophysiological correlates of retrieval mode, as of yet, relatively little is known about its functional significance. The present event-related potential (ERP) study was aimed at examining the impact of retrieval mode on the specificity of memory content retrieved in the course of familiarity and recollection processes. In two experiments, participants performed a recognition memory inclusion task in which they had to distinguish identically repeated and re-colored versions of study items from new items. In Experiment 1, participants had to alternate between the episodic memory task and a semantic task requiring a natural/artificial decision. In Experiment 2, the two tasks were instead performed in separate blocks. ERPs locked to the preparatory cues in the test phases indicated that participants did not establish retrieval mode on switch trials in Experiment 1. In the absence of retrieval mode, neither type of studied item elicited ERP correlates of familiarity-based retrieval (FN400). Recollection-related late positive complex (LPC) old/new effects emerged only for identically repeated but not for conceptually identical but perceptually changed versions of study items. With blocked retrieval in Experiment 2, both types of old items instead elicited equivalent FN400 and LPC old/new effects. The LPC data indicate that retrieval mode may play an important role in the successful recollection of conceptual stimulus information. The FN400 results additionally suggest that task switching may have a detrimental effect on familiarity-based memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.
Bäuml, Karl-Heinz T; Holterman, Christoph; Abel, Magdalena
2014-11-01
The testing effect refers to the finding that retrieval practice in comparison to restudy of previously encoded contents can improve memory performance and reduce time-dependent forgetting. Naturally, long retention intervals include both wake and sleep delay, which can influence memory contents differently. In fact, sleep immediately after encoding can induce a mnemonic benefit, stabilizing and strengthening the encoded contents. We investigated in a series of 5 experiments whether sleep influences the testing effect. After initial study of categorized item material (Experiments 1, 2, and 4A), paired associates (Experiment 3), or educational text material (Experiment 4B), subjects were asked to restudy encoded contents or engage in active retrieval practice. A final recall test was conducted after a 12-hr delay that included diurnal wakefulness or nocturnal sleep. The results consistently showed typical testing effects after the wake delay. However, these testing effects were reduced or even eliminated after sleep, because sleep benefited recall of restudied items but left recall of retrieved items unaffected. The findings are consistent with the bifurcation model of the testing effect (Kornell, Bjork, & Garcia, 2011), according to which the distribution of memory strengths across items is shifted differentially by retrieving and restudying, with retrieval strengthening items to a much higher degree than restudy does. On the basis of this model, most of the retrieved items already fall above recall threshold in the absence of sleep, so additional sleep-induced strengthening may not improve recall of retrieved items any further. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.
2007-03-01
This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.
Mood and the reliance on the ease of retrieval heuristic.
Ruder, Markus; Bless, Herbert
2003-07-01
Four studies investigate the relationship between individuals' mood and their reliance on the ease retrieval heuristic. Happy participants were consistently more likely to rely on the ease of retrieval heuristic, whereas sad participants were more likely to rely on the activated content. Additional analyses indicate that this pattern is not due to a differential recall (Experiment 2) and that happy participants ceased to rely on the ease of retrieval when the diagnosticity of this information was called into question (Experiment 3). Experiment 4 shows that reliance on the ease of retrieval heuristic resulted in faster judgments than reliance on content, with the former but not the latter being a function of the amount of activated information.
NASA Astrophysics Data System (ADS)
Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.
2018-04-01
This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.
Xu, Yingying; Lin, Lanfen; Hu, Hongjie; Wang, Dan; Zhu, Wenchao; Wang, Jian; Han, Xian-Hua; Chen, Yen-Wei
2018-01-01
The bag of visual words (BoVW) model is a powerful tool for feature representation that can integrate various handcrafted features like intensity, texture, and spatial information. In this paper, we propose a novel BoVW-based method that incorporates texture and spatial information for the content-based image retrieval to assist radiologists in clinical diagnosis. This paper presents a texture-specific BoVW method to represent focal liver lesions (FLLs). Pixels in the region of interest (ROI) are classified into nine texture categories using the rotation-invariant uniform local binary pattern method. The BoVW-based features are calculated for each texture category. In addition, a spatial cone matching (SCM)-based representation strategy is proposed to describe the spatial information of the visual words in the ROI. In a pilot study, eight radiologists with different clinical experience performed diagnoses for 20 cases with and without the top six retrieved results. A total of 132 multiphase computed tomography volumes including five pathological types were collected. The texture-specific BoVW was compared to other BoVW-based methods using the constructed dataset of FLLs. The results show that our proposed model outperforms the other three BoVW methods in discriminating different lesions. The SCM method, which adds spatial information to the orderless BoVW model, impacted the retrieval performance. In the pilot trial, the average diagnosis accuracy of the radiologists was improved from 66 to 80% using the retrieval system. The preliminary results indicate that the texture-specific features and the SCM-based BoVW features can effectively characterize various liver lesions. The retrieval system has the potential to improve the diagnostic accuracy and the confidence of the radiologists.
Image retrieval for identifying house plants
NASA Astrophysics Data System (ADS)
Kebapci, Hanife; Yanikoglu, Berrin; Unal, Gozde
2010-02-01
We present a content-based image retrieval system for plant identification which is intended for providing users with a simple method to locate information about their house plants. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging. We studied the suitability of various well-known color, texture and shape features for this problem, as well as introducing some new ones. The features are extracted from the general plant region that is segmented from the background using the max-flow min-cut technique. Results on a database of 132 different plant images show promise (in about 72% of the queries, the correct plant image is retrieved among the top-15 results).
Recommending Education Materials for Diabetic Questions Using Information Retrieval Approaches.
Zeng, Yuqun; Liu, Xusheng; Wang, Yanshan; Shen, Feichen; Liu, Sijia; Rastegar-Mojarad, Majid; Wang, Liwei; Liu, Hongfang
2017-10-16
Self-management is crucial to diabetes care and providing expert-vetted content for answering patients' questions is crucial in facilitating patient self-management. The aim is to investigate the use of information retrieval techniques in recommending patient education materials for diabetic questions of patients. We compared two retrieval algorithms, one based on Latent Dirichlet Allocation topic modeling (topic modeling-based model) and one based on semantic group (semantic group-based model), with the baseline retrieval models, vector space model (VSM), in recommending diabetic patient education materials to diabetic questions posted on the TuDiabetes forum. The evaluation was based on a gold standard dataset consisting of 50 randomly selected diabetic questions where the relevancy of diabetic education materials to the questions was manually assigned by two experts. The performance was assessed using precision of top-ranked documents. We retrieved 7510 diabetic questions on the forum and 144 diabetic patient educational materials from the patient education database at Mayo Clinic. The mapping rate of words in each corpus mapped to the Unified Medical Language System (UMLS) was significantly different (P<.001). The topic modeling-based model outperformed the other retrieval algorithms. For example, for the top-retrieved document, the precision of the topic modeling-based, semantic group-based, and VSM models was 67.0%, 62.8%, and 54.3%, respectively. This study demonstrated that topic modeling can mitigate the vocabulary difference and it achieved the best performance in recommending education materials for answering patients' questions. One direction for future work is to assess the generalizability of our findings and to extend our study to other disease areas, other patient education material resources, and online forums. ©Yuqun Zeng, Xusheng Liu, Yanshan Wang, Feichen Shen, Sijia Liu, Majid Rastegar Mojarad, Liwei Wang, Hongfang Liu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 16.10.2017.
Content Based Image Retrieval and Information Theory: A General Approach.
ERIC Educational Resources Information Center
Zachary, John; Iyengar, S. S.; Barhen, Jacob
2001-01-01
Proposes an alternative real valued representation of color based on the information theoretic concept of entropy. A theoretical presentation of image entropy is accompanied by a practical description of the merits and limitations of image entropy compared to color histograms. Results suggest that image entropy is a promising approach to image…
Retrieving the unretrievable in electronic imaging systems: emotions, themes, and stories
NASA Astrophysics Data System (ADS)
Joergensen, Corinne
1999-05-01
New paradigms such as 'affective computing' and user-based research are extending the realm of facets traditionally addressed in IR systems. This paper builds on previous research reported to the electronic imaging community concerning the need to provide access to more abstract attributes of images than those currently amenable to a variety of content-based and text-based indexing techniques. Empirical research suggest that, for visual materials, in addition to standard bibliographic data and broad subject, and in addition to such visually perceptual attributes such as color, texture, shape, and position or focal point, additional access points such as themes, abstract concepts, emotions, stories, and 'people-related' information such as social status would be useful in image retrieval. More recent research demonstrates that similar results are also obtained with 'fine arts' images, which generally have no access provided for these types of attributes. Current efforts to match image attributes as revealed in empirical research with those addressed both in current textural and content-based indexing systems are discussed, as well as the need for new representations for image attributes and for collaboration among diverse communities of researchers.
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
Multispectral information for gas and aerosol retrieval from TANSO-FTS instrument
NASA Astrophysics Data System (ADS)
Herbin, H.; Labonnote, L. C.; Dubuisson, P.
2012-11-01
The Greenhouse gases Observing SATellite (GOSAT) mission and in particular TANSO-FTS instrument has the advantage to measure simultaneously the same field of view in different spectral ranges with a high spectral resolution. These features are promising to improve, not only, gaseous retrieval in clear sky or scattering atmosphere, but also to retrieve aerosol parameters. Therefore, this paper is dedicated to an Information Content (IC) analysis of potential synergy between thermal infrared, shortwave infrared and visible, in order to obtain a more accurate retrieval of gas and aerosol. The latter is based on Shannon theory and used a sophisticated radiative transfer algorithm developed at "Laboratoire d'Optique Atmosphérique", dealing with multiple scattering. This forward model can be relied to an optimal estimation method, which allows simultaneously retrieving gases profiles and aerosol granulometry and concentration. The analysis of the information provided by the spectral synergy is based on climatology of dust, volcanic ash and biomass burning aerosols. This work was conducted in order to develop a powerful tool that allows retrieving simultaneously not only the gas concentrations but also the aerosol characteristics by selecting the so called "best channels", i.e. the channels that bring most of the information concerning gas and aerosol. The methodology developed in this paper could also be used to define the specifications of future high spectral resolution mission to reach a given accuracy on retrieved parameters.
Wavelet optimization for content-based image retrieval in medical databases.
Quellec, G; Lamard, M; Cazuguel, G; Cochener, B; Roux, C
2010-04-01
We propose in this article a content-based image retrieval (CBIR) method for diagnosis aid in medical fields. In the proposed system, images are indexed in a generic fashion, without extracting domain-specific features: a signature is built for each image from its wavelet transform. These image signatures characterize the distribution of wavelet coefficients in each subband of the decomposition. A distance measure is then defined to compare two image signatures and thus retrieve the most similar images in a database when a query image is submitted by a physician. To retrieve relevant images from a medical database, the signatures and the distance measure must be related to the medical interpretation of images. As a consequence, we introduce several degrees of freedom in the system so that it can be tuned to any pathology and image modality. In particular, we propose to adapt the wavelet basis, within the lifting scheme framework, and to use a custom decomposition scheme. Weights are also introduced between subbands. All these parameters are tuned by an optimization procedure, using the medical grading of each image in the database to define a performance measure. The system is assessed on two medical image databases: one for diabetic retinopathy follow up and one for screening mammography, as well as a general purpose database. Results are promising: a mean precision of 56.50%, 70.91% and 96.10% is achieved for these three databases, when five images are returned by the system. Copyright 2009 Elsevier B.V. All rights reserved.
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval
Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G.; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei
2016-01-01
Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency. PMID:27688597
Dictionary Pruning with Visual Word Significance for Medical Image Retrieval.
Zhang, Fan; Song, Yang; Cai, Weidong; Hauptmann, Alexander G; Liu, Sidong; Pujol, Sonia; Kikinis, Ron; Fulham, Michael J; Feng, David Dagan; Chen, Mei
2016-02-12
Content-based medical image retrieval (CBMIR) is an active research area for disease diagnosis and treatment but it can be problematic given the small visual variations between anatomical structures. We propose a retrieval method based on a bag-of-visual-words (BoVW) to identify discriminative characteristics between different medical images with Pruned Dictionary based on Latent Semantic Topic description. We refer to this as the PD-LST retrieval. Our method has two main components. First, we calculate a topic-word significance value for each visual word given a certain latent topic to evaluate how the word is connected to this latent topic. The latent topics are learnt, based on the relationship between the images and words, and are employed to bridge the gap between low-level visual features and high-level semantics. These latent topics describe the images and words semantically and can thus facilitate more meaningful comparisons between the words. Second, we compute an overall-word significance value to evaluate the significance of a visual word within the entire dictionary. We designed an iterative ranking method to measure overall-word significance by considering the relationship between all latent topics and words. The words with higher values are considered meaningful with more significant discriminative power in differentiating medical images. We evaluated our method on two public medical imaging datasets and it showed improved retrieval accuracy and efficiency.
TRECVID: the utility of a content-based video retrieval evaluation
NASA Astrophysics Data System (ADS)
Hauptmann, Alexander G.
2006-01-01
TRECVID, an annual retrieval evaluation benchmark organized by NIST, encourages research in information retrieval from digital video. TRECVID benchmarking covers both interactive and manual searching by end users, as well as the benchmarking of some supporting technologies including shot boundary detection, extraction of semantic features, and the automatic segmentation of TV news broadcasts. Evaluations done in the context of the TRECVID benchmarks show that generally, speech transcripts and annotations provide the single most important clue for successful retrieval. However, automatically finding the individual images is still a tremendous and unsolved challenge. The evaluations repeatedly found that none of the multimedia analysis and retrieval techniques provide a significant benefit over retrieval using only textual information such as from automatic speech recognition transcripts or closed captions. In interactive systems, we do find significant differences among the top systems, indicating that interfaces can make a huge difference for effective video/image search. For interactive tasks efficient interfaces require few key clicks, but display large numbers of images for visual inspection by the user. The text search finds the right context region in the video in general, but to select specific relevant images we need good interfaces to easily browse the storyboard pictures. In general, TRECVID has motivated the video retrieval community to be honest about what we don't know how to do well (sometimes through painful failures), and has focused us to work on the actual task of video retrieval, as opposed to flashy demos based on technological capabilities.
ERIC Educational Resources Information Center
Albro, Elizabeth; Williams, Joanna P.; Wijekumar, Kausalai; Meyer, Bonnie J. F.; Harris, Karen R.
2015-01-01
Content area reading comprehension and writing have been a challenge for children in the U.S. schools for many years as evidenced by state and national assessments. One promising solution to the problem is text structure based instruction that promotes strategic selection, encoding, retrieval, and use of information for myriads of activities…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less
NASA Astrophysics Data System (ADS)
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.
2017-06-01
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.
Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...
2017-06-09
Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less
A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer
NASA Astrophysics Data System (ADS)
Liu, Yuli; Buehler, Stefan; Liu, Heguang
2017-04-01
Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.
NASA Astrophysics Data System (ADS)
Borovski, A.; Postylyakov, O.; Elokhov, A.; Bruchkovski, I.
2017-11-01
An instrument for measuring atmospheric trace gases by DOAS method using scattered solar radiation was developed in A.M.Obukhov IAP RAS. The instrument layout is based on the lab Shamrock 303i spectrograph supplemented by 2-port radiation input system employing optical fiber. Optical ports may be used with a telescope with fixed field of view or with a scanning MAX-DOAS unit. MAX-DOAS unit port will be used for investigation of gas contents and profiles in the low troposphere. In September 2016 the IAP instrument participated in the CINDI-2 campaign, held in the Netherlands. CINDI 2 (2nd Cabauw Intercomparison of Nitrogen Dioxide Measuring Instruments) involves about 40 instruments quasi-synchronously performing DOAS measurements of NO2 and other trace gases. During the campaign the instrument ports had telescopes A and B with similar field of view of about 0.3°. Telescope A was always directed to the zenith. Telescope B was directed at 5° elevation angle. Two gratings were installed in the spectrometer. They provide different spectral resolution (FWHM 0.4 and 0.8 nm respectively) and spectral window width ( 70 and 140 nm respectively). During CINDI-2 campaign we performed test measurements in UV and visible wavelength ranges to investigate instrument stability and retrieval errors of NO2 and HCHO contents. We perform the preliminary error analysis of retrieval of the NO2 and HCHO differential slant column densities using spectra measured in four modes of the instrument basing on residual noise analysis in this paper. It was found that rotation of grating turret does not significantly affected on quality of NO2 DSCD retrieval from spectra which measured in visible spectral region. Influence of grating turret rotation is much more significant for gas DSCD retrieval from spectra which measured in UV spectral region. Standard deviation of retrieval error points to presence of some systematic error.
A General Uncertainty Quantification Methodology for Cloud Microphysical Property Retrievals
NASA Astrophysics Data System (ADS)
Tang, Q.; Xie, S.; Chen, X.; Zhao, C.
2014-12-01
The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program provides long-term (~20 years) ground-based cloud remote sensing observations. However, there are large uncertainties in the retrieval products of cloud microphysical properties based on the active and/or passive remote-sensing measurements. To address this uncertainty issue, a DOE Atmospheric System Research scientific focus study, Quantification of Uncertainties in Cloud Retrievals (QUICR), has been formed. In addition to an overview of recent progress of QUICR, we will demonstrate the capacity of an observation-based general uncertainty quantification (UQ) methodology via the ARM Climate Research Facility baseline cloud microphysical properties (MICROBASE) product. This UQ method utilizes the Karhunen-Loéve expansion (KLE) and Central Limit Theorems (CLT) to quantify the retrieval uncertainties from observations and algorithm parameters. The input perturbations are imposed on major modes to take into account the cross correlations between input data, which greatly reduces the dimension of random variables (up to a factor of 50) and quantifies vertically resolved full probability distribution functions of retrieved quantities. Moreover, this KLE/CLT approach has the capability of attributing the uncertainties in the retrieval output to individual uncertainty source and thus sheds light on improving the retrieval algorithm and observations. We will present the results of a case study for the ice water content at the Southern Great Plains during an intensive observing period on March 9, 2000. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Application of MPEG-7 descriptors for content-based indexing of sports videos
NASA Astrophysics Data System (ADS)
Hoeynck, Michael; Auweiler, Thorsten; Ohm, Jens-Rainer
2003-06-01
The amount of multimedia data available worldwide is increasing every day. There is a vital need to annotate multimedia data in order to allow universal content access and to provide content-based search-and-retrieval functionalities. Since supervised video annotation can be time consuming, an automatic solution is appreciated. We review recent approaches to content-based indexing and annotation of videos for different kind of sports, and present our application for the automatic annotation of equestrian sports videos. Thereby, we especially concentrate on MPEG-7 based feature extraction and content description. We apply different visual descriptors for cut detection. Further, we extract the temporal positions of single obstacles on the course by analyzing MPEG-7 edge information and taking specific domain knowledge into account. Having determined single shot positions as well as the visual highlights, the information is jointly stored together with additional textual information in an MPEG-7 description scheme. Using this information, we generate content summaries which can be utilized in a user front-end in order to provide content-based access to the video stream, but further content-based queries and navigation on a video-on-demand streaming server.
Fusion of Deep Learning and Compressed Domain features for Content Based Image Retrieval.
Liu, Peizhong; Guo, Jing-Ming; Wu, Chi-Yi; Cai, Danlin
2017-08-29
This paper presents an effective image retrieval method by combining high-level features from Convolutional Neural Network (CNN) model and low-level features from Dot-Diffused Block Truncation Coding (DDBTC). The low-level features, e.g., texture and color, are constructed by VQ-indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features (DL-TLCF) is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate (APR) and average recall rate (ARR), are employed to examine various datasets. As documented in the experimental results, the proposed schemes can achieve superior performance compared to the state-of-the-art methods with either low- or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
Fast, axis-agnostic, dynamically summarized storage and retrieval for mass spectrometry data.
Handy, Kyle; Rosen, Jebediah; Gillan, André; Smith, Rob
2017-01-01
Mass spectrometry, a popular technique for elucidating the molecular contents of experimental samples, creates data sets comprised of millions of three-dimensional (m/z, retention time, intensity) data points that correspond to the types and quantities of analyzed molecules. Open and commercial MS data formats are arranged by retention time, creating latency when accessing data across multiple m/z. Existing MS storage and retrieval methods have been developed to overcome the limitations of retention time-based data formats, but do not provide certain features such as dynamic summarization and storage and retrieval of point meta-data (such as signal cluster membership), precluding efficient viewing applications and certain data-processing approaches. This manuscript describes MzTree, a spatial database designed to provide real-time storage and retrieval of dynamically summarized standard and augmented MS data with fast performance in both m/z and RT directions. Performance is reported on real data with comparisons against related published retrieval systems.
Lievens, Hans; Vernieuwe, Hilde; Álvarez-Mozos, Jesús; De Baets, Bernard; Verhoest, Niko E.C.
2009-01-01
In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM) into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles. Moreover, it is found that soil moisture retrieval with C-band configuration generally is less sensitive to inaccuracies in roughness parameterization than retrieval with L-band configuration. PMID:22399956
Surface reflectance retrieval from imaging spectrometer data using three atmospheric codes
NASA Astrophysics Data System (ADS)
Staenz, Karl; Williams, Daniel J.; Fedosejevs, Gunar; Teillet, Phil M.
1994-12-01
Surface reflectance retrieval from imaging spectrometer data has become important for quantitative information extraction in many application areas. In order to calculate surface reflectance from remotely measured radiance, radiative transfer codes play an important role for removal of the scattering and gaseous absorption effects of the atmosphere. The present study evaluates surface reflectances retrieved from airborne visible/infrared imaging spectrometer (AVIRIS) data using three radiative transfer codes: modified 5S (M5S), 6S, and MODTRAN2. Comparisons of the retrieved surface reflectance with ground-based reflectance were made for different target types such as asphalt, gravel, grass/soil mixture (soccer field), and water (Sooke Lake). The results indicate that the estimation of the atmospheric water vapor content is important for an accurate surface reflectance retrieval regardless of the radiative transfer code used. For the present atmospheric conditions, a difference of 0.1 in aerosol optical depth had little impact on the retrieved surface reflectance. The performance of MODTRAN2 is superior in the gas absorption regions compared to M5S and 6S.
Partitioning medical image databases for content-based queries on a Grid.
Montagnat, J; Breton, V; E Magnin, I
2005-01-01
In this paper we study the impact of executing a medical image database query application on the grid. For lowering the total computation time, the image database is partitioned into subsets to be processed on different grid nodes. A theoretical model of the application complexity and estimates of the grid execution overhead are used to efficiently partition the database. We show results demonstrating that smart partitioning of the database can lead to significant improvements in terms of total computation time. Grids are promising for content-based image retrieval in medical databases.
A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers
NASA Astrophysics Data System (ADS)
Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley
2017-06-01
Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.
Depeursinge, Adrien; Vargas, Alejandro; Gaillard, Frédéric; Platon, Alexandra; Geissbuhler, Antoine; Poletti, Pierre-Alexandre; Müller, Henning
2012-01-01
Clinical workflows and user interfaces of image-based computer-aided diagnosis (CAD) for interstitial lung diseases in high-resolution computed tomography are introduced and discussed. Three use cases are implemented to assist students, radiologists, and physicians in the diagnosis workup of interstitial lung diseases. In a first step, the proposed system shows a three-dimensional map of categorized lung tissue patterns with quantification of the diseases based on texture analysis of the lung parenchyma. Then, based on the proportions of abnormal and normal lung tissue as well as clinical data of the patients, retrieval of similar cases is enabled using a multimodal distance aggregating content-based image retrieval (CBIR) and text-based information search. The global system leads to a hybrid detection-CBIR-based CAD, where detection-based and CBIR-based CAD show to be complementary both on the user's side and on the algorithmic side. The proposed approach is in accordance with the classical workflow of clinicians searching for similar cases in textbooks and personal collections. The developed system enables objective and customizable inter-case similarity assessment, and the performance measures obtained with a leave-one-patient-out cross-validation (LOPO CV) are representative of a clinical usage of the system.
NASA Astrophysics Data System (ADS)
Löwe, Peter; Plank, Margret; Ziedorn, Frauke
2015-04-01
In data driven research, the access to citation and preservation of the full triad consisting of journal article, research data and -software has started to become good scientific practice. To foster the adoption of this practice the significance of software tools has to be acknowledged, which enable scientists to harness auxiliary audiovisual content in their research work. The advent of ubiquitous computer-based audiovisual recording and corresponding Web 2.0 hosting platforms like Youtube, Slideshare and GitHub has created new ecosystems for contextual information related to scientific software and data, which continues to grow both in size and variety of content. The current Web 2.0 platforms lack capabilities for long term archiving and scientific citation, such as persistent identifiers allowing to reference specific intervals of the overall content. The audiovisual content currently shared by scientists ranges from commented howto-demonstrations on software handling, installation and data-processing, to aggregated visual analytics of the evolution of software projects over time. Such content are crucial additions to the scientific message, as they ensure that software-based data-processing workflows can be assessed, understood and reused in the future. In the context of data driven research, such content needs to be accessible by effective search capabilities, enabling the content to be retrieved and ensuring that the content producers receive credit for their efforts within the scientific community. Improved multimedia archiving and retrieval services for scientific audiovisual content which meet these requirements are currently implemented by the scientific library community. This paper exemplifies the existing challenges, requirements, benefits and the potential of the preservation, accessibility and citability of such audiovisual content for the Open Source communities based on the new audiovisual web service TIB|AV Portal of the German National Library of Science and Technology. The web-based portal allows for extended search capabilities based on enhanced metadata derived by automated video analysis. By combining state-of-the-art multimedia retrieval techniques such as speech-, text-, and image recognition with semantic analysis, content-based access to videos at the segment level is provided. Further, by using the open standard Media Fragment Identifier (MFID), a citable Digital Object Identifier is displayed for each video segment. In addition to the continuously growing footprint of contemporary content, the importance of vintage audiovisual information needs to be considered: This paper showcases the successful application of the TIB|AV-Portal in the preservation and provision of a newly discovered version of a GRASS GIS promotional video produced by US Army -Corps of Enginers Laboratory (US-CERL) in 1987. The video is provides insight into the constraints of the very early days of the GRASS GIS project, which is the oldest active Free and Open Source Software (FOSS) GIS project which has been active for over thirty years. GRASS itself has turned into a collaborative scientific platform and a repository of scientific peer-reviewed code and algorithm/knowledge hub for future generation of scientists [1]. This is a reference case for future preservation activities regarding semantic-enhanced Web 2.0 content from geospatial software projects within Academia and beyond. References: [1] Chemin, Y., Petras V., Petrasova, A., Landa, M., Gebbert, S., Zambelli, P., Neteler, M., Löwe, P.: GRASS GIS: a peer-reviewed scientific platform and future research Repository, Geophysical Research Abstracts, Vol. 17, EGU2015-8314-1, 2015 (submitted)
Interactive classification and content-based retrieval of tissue images
NASA Astrophysics Data System (ADS)
Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof
2002-11-01
We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.
Biomedical information retrieval across languages.
Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger
2007-06-01
This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting.
Hybrid Histogram Descriptor: A Fusion Feature Representation for Image Retrieval.
Feng, Qinghe; Hao, Qiaohong; Chen, Yuqi; Yi, Yugen; Wei, Ying; Dai, Jiangyan
2018-06-15
Currently, visual sensors are becoming increasingly affordable and fashionable, acceleratingly the increasing number of image data. Image retrieval has attracted increasing interest due to space exploration, industrial, and biomedical applications. Nevertheless, designing effective feature representation is acknowledged as a hard yet fundamental issue. This paper presents a fusion feature representation called a hybrid histogram descriptor (HHD) for image retrieval. The proposed descriptor comprises two histograms jointly: a perceptually uniform histogram which is extracted by exploiting the color and edge orientation information in perceptually uniform regions; and a motif co-occurrence histogram which is acquired by calculating the probability of a pair of motif patterns. To evaluate the performance, we benchmarked the proposed descriptor on RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. Experimental results suggest that the proposed descriptor is more effective and robust than ten recent fusion-based descriptors under the content-based image retrieval framework. The computational complexity was also analyzed to give an in-depth evaluation. Furthermore, compared with the state-of-the-art convolutional neural network (CNN)-based descriptors, the proposed descriptor also achieves comparable performance, but does not require any training process.
Using an image-extended relational database to support content-based image retrieval in a PACS.
Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M
2005-12-01
This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.
Progressive content-based retrieval of image and video with adaptive and iterative refinement
NASA Technical Reports Server (NTRS)
Li, Chung-Sheng (Inventor); Turek, John Joseph Edward (Inventor); Castelli, Vittorio (Inventor); Chen, Ming-Syan (Inventor)
1998-01-01
A method and apparatus for minimizing the time required to obtain results for a content based query in a data base. More specifically, with this invention, the data base is partitioned into a plurality of groups. Then, a schedule or sequence of groups is assigned to each of the operations of the query, where the schedule represents the order in which an operation of the query will be applied to the groups in the schedule. Each schedule is arranged so that each application of the operation operates on the group which will yield intermediate results that are closest to final results.
Method for the reduction of image content redundancy in large image databases
Tobin, Kenneth William; Karnowski, Thomas P.
2010-03-02
A method of increasing information content for content-based image retrieval (CBIR) systems includes the steps of providing a CBIR database, the database having an index for a plurality of stored digital images using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the images. A visual similarity parameter value is calculated based on a degree of visual similarity between features vectors of an incoming image being considered for entry into the database and feature vectors associated with a most similar of the stored images. Based on said visual similarity parameter value it is determined whether to store or how long to store the feature vectors associated with the incoming image in the database.
The remains of the day in dissociative amnesia.
Staniloiu, Angelica; Markowitsch, Hans J
2012-04-10
Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia-a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called "internal coherence of life".
NASA Astrophysics Data System (ADS)
Garay, M. J.; Bull, M. A.; Witek, M. L.; Diner, D. J.; Seidel, F.
2017-12-01
Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. A major, multi-year development effort has led to the release of updated operational MISR Level 2 aerosol and land surface retrieval products. The spatial resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23, present validation of the aerosol product, and describe some of the applications enabled by these product updates.
The Remains of the Day in Dissociative Amnesia
Staniloiu, Angelica; Markowitsch, Hans J.
2012-01-01
Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia—a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called “internal coherence of life”. PMID:24962768
XCO2 retrieval error over deserts near critical surface albedo
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Shia, Run-Lie; Sander, Stanley P.; Yung, Yuk L.
2016-02-01
Large retrieval errors in column-weighted CO2 mixing ratio (XCO2) over deserts are evident in the Orbiting Carbon Observatory 2 version 7 L2 products. We argue that these errors are caused by the surface albedo being close to a critical surface albedo (αc). Over a surface with albedo close to αc, increasing the aerosol optical depth (AOD) does not change the continuum radiance. The spectral signature caused by changing the AOD is identical to that caused by changing the absorbing gas column. The degeneracy in the retrievals of AOD and XCO2 results in a loss of degrees of freedom and information content. We employ a two-stream-exact single scattering radiative transfer model to study the physical mechanism of XCO2 retrieval error over a surface with albedo close to αc. Based on retrieval tests over surfaces with different albedos, we conclude that over a surface with albedo close to αc, the XCO2 retrieval suffers from a significant loss of accuracy. We recommend a bias correction approach that has significantly improved the XCO2 retrieval from the California Laboratory for Atmospheric Remote Sensing data in the presence of aerosol loading.
An ambiguity of information content and error in an ill-posed satellite inversion
NASA Astrophysics Data System (ADS)
Koner, Prabhat
According to Rodgers (2000, stochastic approach), the averaging kernel (AK) is the representational matrix to understand the information content in a scholastic inversion. On the other hand, in deterministic approach this is referred to as model resolution matrix (MRM, Menke 1989). The analysis of AK/MRM can only give some understanding of how much regularization is imposed on the inverse problem. The trace of the AK/MRM matrix, which is the so-called degree of freedom from signal (DFS; stochastic) or degree of freedom in retrieval (DFR; deterministic). There are no physical/mathematical explanations in the literature: why the trace of the matrix is a valid form to calculate this quantity? We will present an ambiguity between information and error using a real life problem of SST retrieval from GOES13. The stochastic information content calculation is based on the linear assumption. The validity of such mathematics in satellite inversion will be questioned because it is based on the nonlinear radiative transfer and ill-conditioned inverse problems. References: Menke, W., 1989: Geophysical data analysis: discrete inverse theory. San Diego academic press. Rodgers, C.D., 2000: Inverse methods for atmospheric soundings: theory and practice. Singapore :World Scientific.
NASA Astrophysics Data System (ADS)
Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo
2017-10-01
This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.
PubMed related articles: a probabilistic topic-based model for content similarity
Lin, Jimmy; Wilbur, W John
2007-01-01
Background We present a probabilistic topic-based model for content similarity called pmra that underlies the related article search feature in PubMed. Whether or not a document is about a particular topic is computed from term frequencies, modeled as Poisson distributions. Unlike previous probabilistic retrieval models, we do not attempt to estimate relevance–but rather our focus is "relatedness", the probability that a user would want to examine a particular document given known interest in another. We also describe a novel technique for estimating parameters that does not require human relevance judgments; instead, the process is based on the existence of MeSH ® in MEDLINE ®. Results The pmra retrieval model was compared against bm25, a competitive probabilistic model that shares theoretical similarities. Experiments using the test collection from the TREC 2005 genomics track shows a small but statistically significant improvement of pmra over bm25 in terms of precision. Conclusion Our experiments suggest that the pmra model provides an effective ranking algorithm for related article search. PMID:17971238
Stiers, Peter; Falbo, Luciana; Goulas, Alexandros; van Gog, Tamara; de Bruin, Anique
2016-05-15
Monitoring of learning is only accurate at some time after learning. It is thought that immediate monitoring is based on working memory, whereas later monitoring requires re-activation of stored items, yielding accurate judgements. Such interpretations are difficult to test because they require reverse inference, which presupposes specificity of brain activity for the hidden cognitive processes. We investigated whether multivariate pattern classification can provide this specificity. We used a word recall task to create single trial examples of immediate and long term retrieval and trained a learning algorithm to discriminate them. Next, participants performed a similar task involving monitoring instead of recall. The recall-trained classifier recognized the retrieval patterns underlying immediate and long term monitoring and classified delayed monitoring examples as long-term retrieval. This result demonstrates the feasibility of decoding cognitive processes, instead of their content. Copyright © 2016 Elsevier Inc. All rights reserved.
Intelligent distributed medical image management
NASA Astrophysics Data System (ADS)
Garcia, Hong-Mei C.; Yun, David Y.
1995-05-01
The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.
Till, Benedikt; Niederkrotenthaler, Thomas
2014-08-01
The Internet provides a variety of resources for individuals searching for suicide-related information. Structured content-analytic approaches to assess intercultural differences in web contents retrieved with method-related and help-related searches are scarce. We used the 2 most popular search engines (Google and Yahoo/Bing) to retrieve US-American and Austrian search results for the term suicide, method-related search terms (e.g., suicide methods, how to kill yourself, painless suicide, how to hang yourself), and help-related terms (e.g., suicidal thoughts, suicide help) on February 11, 2013. In total, 396 websites retrieved with US search engines and 335 websites from Austrian searches were analyzed with content analysis on the basis of current media guidelines for suicide reporting. We assessed the quality of websites and compared findings across search terms and between the United States and Austria. In both countries, protective outweighed harmful website characteristics by approximately 2:1. Websites retrieved with method-related search terms (e.g., how to hang yourself) contained more harmful (United States: P < .001, Austria: P < .05) and fewer protective characteristics (United States: P < .001, Austria: P < .001) compared to the term suicide. Help-related search terms (e.g., suicidal thoughts) yielded more websites with protective characteristics (United States: P = .07, Austria: P < .01). Websites retrieved with U.S. search engines generally had more protective characteristics (P < .001) than searches with Austrian search engines. Resources with harmful characteristics were better ranked than those with protective characteristics (United States: P < .01, Austria: P < .05). The quality of suicide-related websites obtained depends on the search terms used. Preventive efforts to improve the ranking of preventive web content, particularly regarding method-related search terms, seem necessary. © Copyright 2014 Physicians Postgraduate Press, Inc.
ERIC Educational Resources Information Center
Gray, Stephen J.; Gallo, David A.
2015-01-01
People can use a content-specific recapitulation strategy to trigger memories (i.e., mentally reinstating encoding conditions), but how people deploy this strategy is unclear. Is recapitulation naturally used to guide all recollection attempts, or is it only used selectively, after retrieving incomplete information that requires additional…
Using Retrieval Practice and Metacognitive Skills to Improve Content Learning
ERIC Educational Resources Information Center
Littrell-Baez, Megan K.; Friend, Angela; Caccamise, Donna; Okochi, Christine
2015-01-01
Classroom tests have been traditionally used to assess student growth and content mastery. However, a wealth of research in cognitive and educational psychology has demonstrated that retrieval practice (testing) as a form of low-stakes, rather than traditional high-stakes testing, can also be used as an effective pedagogical tool, improving…
NASA Astrophysics Data System (ADS)
Medina, H.; Romano, N.; Chirico, G. B.
2012-12-01
We present a dual Kalman Filter (KF) approach for retrieving states and parameters controlling soil water dynamics in a homogenous soil column by using near-surface state observations. The dual Kalman filter couples a standard KF algorithm for retrieving the states and an unscented KF algorithm for retrieving the parameters. We examine the performance of the dual Kalman Filter applied to two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil matric pressure head (h). We use a synthetic time-series series of true states and noise corrupted observations and a synthetic time-series of meteorological forcing. The performance analyses account for the effect of the input parameters, the observation depth and the assimilation frequency as well as the relationship between the retrieved states and the assimilated variables. We show that the identifiability of the parameters is strongly conditioned by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. State identifiability is instead efficient even with a relatively coarse time-resolution of the assimilated observation. The accuracy of the retrieved states exhibits limited sensitivity to the observation depth and the assimilation frequency.
AOIPS data base management systems support for GARP data sets
NASA Technical Reports Server (NTRS)
Gary, J. P.
1977-01-01
A data base management system is identified, developed to provide flexible access to data sets produced by GARP during its data systems tests. The content and coverage of the data base are defined and a computer-aided, interactive information storage and retrieval system, implemented to facilitate access to user specified data subsets, is described. The computer programs developed to provide the capability were implemented on the highly interactive, minicomputer-based AOIPS and are referred to as the data retrieval system (DRS). Implemented as a user interactive but menu guided system, the DRS permits users to inventory the data tape library and create duplicate or subset data sets based on a user selected window defined by time and latitude/longitude boundaries. The DRS permits users to select, display, or produce formatted hard copy of individual data items contained within the data records.
Bridge, Donna J.; Cohen, Neal J.; Voss, Joel L.
2017-01-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. Following retrieval of one object in a multi-object array, viewing was strategically directed away from the retrieved object toward non-retrieved objects, such that exploration was directed towards to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval whereas frontoparietal activity varied with strategic viewing patterns deployed following retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations. PMID:28471729
A Novel Navigation Paradigm for XML Repositories.
ERIC Educational Resources Information Center
Azagury, Alain; Factor, Michael E.; Maarek, Yoelle S.; Mandler, Benny
2002-01-01
Discusses data exchange over the Internet and describes the architecture and implementation of an XML document repository that promotes a navigation paradigm for XML documents based on content and context. Topics include information retrieval and semistructured documents; and file systems as information storage infrastructure, particularly XMLFS.…
Dialog detection in narrative video by shot and face analysis
NASA Astrophysics Data System (ADS)
Kroon, B.; Nesvadba, J.; Hanjalic, A.
2007-01-01
The proliferation of captured personal and broadcast content in personal consumer archives necessitates comfortable access to stored audiovisual content. Intuitive retrieval and navigation solutions require however a semantic level that cannot be reached by generic multimedia content analysis alone. A fusion with film grammar rules can help to boost the reliability significantly. The current paper describes the fusion of low-level content analysis cues including face parameters and inter-shot similarities to segment commercial content into film grammar rule-based entities and subsequently classify those sequences into so-called shot reverse shots, i.e. dialog sequences. Moreover shot reverse shot specific mid-level cues are analyzed augmenting the shot reverse shot information with dialog specific descriptions.
Damarell, Raechel A; Tieman, Jennifer J; Sladek, Ruth M
2013-07-02
PubMed translations of OvidSP Medline search filters offer searchers improved ease of access. They may also facilitate access to PubMed's unique content, including citations for the most recently published biomedical evidence. Retrieving this content requires a search strategy comprising natural language terms ('textwords'), rather than Medical Subject Headings (MeSH). We describe a reproducible methodology that uses a validated PubMed search filter translation to create a textword-only strategy to extend retrieval to PubMed's unique heart failure literature. We translated an OvidSP Medline heart failure search filter for PubMed and established version equivalence in terms of indexed literature retrieval. The PubMed version was then run within PubMed to identify citations retrieved by the filter's MeSH terms (Heart failure, Left ventricular dysfunction, and Cardiomyopathy). It was then rerun with the same MeSH terms restricted to searching on title and abstract fields (i.e. as 'textwords'). Citations retrieved by the MeSH search but not the textword search were isolated. Frequency analysis of their titles/abstracts identified natural language alternatives for those MeSH terms that performed less effectively as textwords. These terms were tested in combination to determine the best performing search string for reclaiming this 'lost set'. This string, restricted to searching on PubMed's unique content, was then combined with the validated PubMed translation to extend the filter's performance in this database. The PubMed heart failure filter retrieved 6829 citations. Of these, 834 (12%) failed to be retrieved when MeSH terms were converted to textwords. Frequency analysis of the 834 citations identified five high frequency natural language alternatives that could improve retrieval of this set (cardiac failure, cardiac resynchronization, left ventricular systolic dysfunction, left ventricular diastolic dysfunction, and LV dysfunction). Together these terms reclaimed 157/834 (18.8%) of lost citations. MeSH terms facilitate precise searching in PubMed's indexed subset. They may, however, work less effectively as search terms prior to subject indexing. A validated PubMed search filter can be used to develop a supplementary textword-only search strategy to extend retrieval to PubMed's unique content. A PubMed heart failure search filter is available on the CareSearch website (http://www.caresearch.com.au) providing access to both indexed and non-indexed heart failure evidence.
Diversification of visual media retrieval results using saliency detection
NASA Astrophysics Data System (ADS)
Muratov, Oleg; Boato, Giulia; De Natale, Franesco G. B.
2013-03-01
Diversification of retrieval results allows for better and faster search. Recently there has been proposed different methods for diversification of image retrieval results mainly utilizing text information and techniques imported from natural language processing domain. However, images contain visual information that is impossible to describe in text and the use of visual features is inevitable. Visual saliency is information about the main object of an image implicitly included by humans while creating visual content. For this reason it is naturally to exploit this information for the task of diversification of the content. In this work we study whether visual saliency can be used for the task of diversification and propose a method for re-ranking image retrieval results using saliency. The evaluation has shown that the use of saliency information results in higher diversity of retrieval results.
Specific findings on ice crystal microphysical properties from in-situ observation
NASA Astrophysics Data System (ADS)
Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2017-04-01
This study focuses on microphysical properties of ice particles populating high ice water content areas in Mesoscale Convective Systems (MCS). These clouds have been extensively sampled during the High Altitude Ice Crystal - High Ice Water Content international projects (HAIC-HIWC, Dezitter et al. 2013, Strapp et al. 2015) with the objective of characterizing ice particle properties such as size distribution, radar reflectivity and ice water content. The in-situ data collected during these campaigns at different temperature levels and in different type of MCS (oceanic, continental) make the HAIC-HIWC data set a unique opportunity to study ice particle microphysical properties. Recently, a new approach to retrieve ice particle mass from in-situ measurements has been developed: a forward model that relates ice particles' mass to Particle Size Distribution (PSD) and Ice Water Content (IWC) is formulated as a linear system of equations and the retrieval process consists in solving the inverse problem with numerical optimization tools (Coutris et al. 2016). In this study, this new method is applied to HAIC-HIWC data set and main outcomes are discussed. First, the method is compared to a classical power-law based method using data from one single flight performed in Darwin area on February, 7th 2014. The observed differences in retrieved quantities such as ice particle mass, ice water content or median mass diameter, highlight the potential benefit of abandoning the power law simplistic assumption. The method is then applied to data measured at different cloud temperatures ranging from -40°C to -10°C during several flights of both Darwin 2014 and Cayenne 2015 campaigns. Specific findings about ice microphysical properties such as variations of effective density with particle size and the influence of cloud temperature on particle effective density are presented.
Fielding, M. D.; Chiu, J. C.; Hogan, R. J.; ...
2015-07-02
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievalsmore » using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m -2. The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m -2.« less
Bridge, Donna J; Cohen, Neal J; Voss, Joel L
2017-08-01
Memory can profoundly influence new learning, presumably because memory optimizes exploration of to-be-learned material. Although hippocampus and frontoparietal networks have been implicated in memory-guided exploration, their specific and interactive roles have not been identified. We examined eye movements during fMRI scanning to identify neural correlates of the influences of memory retrieval on exploration and learning. After retrieval of one object in a multiobject array, viewing was strategically directed away from the retrieved object toward nonretrieved objects, such that exploration was directed toward to-be-learned content. Retrieved objects later served as optimal reminder cues, indicating that exploration caused memory to become structured around the retrieved content. Hippocampal activity was associated with memory retrieval, whereas frontoparietal activity varied with strategic viewing patterns deployed after retrieval, thus providing spatiotemporal dissociation of memory retrieval from memory-guided learning strategies. Time-lagged fMRI connectivity analyses indicated that hippocampal activity predicted frontoparietal activity to a greater extent for a condition in which retrieval guided exploration occurred than for a passive control condition in which exploration was not influenced by retrieval. This demonstrates network-level interaction effects specific to influences of memory on strategic exploration. These findings show how memory guides behavior during learning and demonstrate distinct yet interactive hippocampal-frontoparietal roles in implementing strategic exploration behaviors that determine the fate of evolving memory representations.
A Theory of Term Importance in Automatic Text Analysis.
ERIC Educational Resources Information Center
Salton, G.; And Others
Most existing automatic content analysis and indexing techniques are based on work frequency characteristics applied largely in an ad hoc manner. Contradictory requirements arise in this connection, in that terms exhibiting high occurrence frequencies in individual documents are often useful for high recall performance (to retrieve many relevant…
2002-01-01
to the OODBMS approach. The ORDBMS approach produced such research prototypes as Postgres [155], and Starburst [67] and commercial products such as...Kemnitz. The POSTGRES Next-Generation Database Management System. Communications of the ACM, 34(10):78–92, 1991. [156] Michael Stonebreaker and Dorothy
A Tropospheric Emission Spectrometer HDO/H2O Retrieval Simulator for Climate Models
NASA Technical Reports Server (NTRS)
Field, R. D.; Risi, C.; Schmidt, G. A.; Worden, J.; Voulgarakis, A.; LeGrande, A. N.; Sobel, A. H.; Healy, R. J.
2012-01-01
Retrievals of the isotopic composition of water vapor from the Aura Tropospheric Emission Spectrometer (TES) have unique value in constraining moist processes in climate models. Accurate comparison between simulated and retrieved values requires that model profiles that would be poorly retrieved are excluded, and that an instrument operator be applied to the remaining profiles. Typically, this is done by sampling model output at satellite measurement points and using the quality flags and averaging kernels from individual retrievals at specific places and times. This approach is not reliable when the model meteorological conditions influencing retrieval sensitivity are different from those observed by the instrument at short time scales, which will be the case for free-running climate simulations. In this study, we describe an alternative, categorical approach to applying the instrument operator, implemented within the NASA GISS ModelE general circulation model. Retrieval quality and averaging kernel structure are predicted empirically from model conditions, rather than obtained from collocated satellite observations. This approach can be used for arbitrary model configurations, and requires no agreement between satellite-retrieved and model meteorology at short time scales. To test this approach, nudged simUlations were conducted using both the retrieval-based and categorical operators. Cloud cover, surface temperature and free-tropospheric moisture content were the most important predictors of retrieval quality and averaging kernel structure. There was good agreement between the D fields after applying the retrieval-based and more detailed categorical operators, with increases of up to 30 over the ocean and decreases of up to 40 over land relative to the raw model fields. The categorical operator performed better over the ocean than over land, and requires further refinement for use outside of the tropics. After applying the TES operator, ModelE had D biases of 8 over ocean and 34 over land compared to TES D, which were less than the biases using raw model D fields.
Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery
NASA Astrophysics Data System (ADS)
Borel, Christoph
2009-05-01
In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.
Gray, Stephen J; Gallo, David A
2015-01-01
People can use a content-specific recapitulation strategy to trigger memories (i.e., mentally reinstating encoding conditions), but how people deploy this strategy is unclear. Is recapitulation naturally used to guide all recollection attempts, or is it only used selectively, after retrieving incomplete information that requires additional monitoring? According to a retrieval orientation model, people use recapitulation whenever they search memory for specific information, regardless of what information might come to mind. In contrast, according to a postretrieval monitoring model, people selectively engage recapitulation only after retrieving ambiguous information in order to evaluate this information and guide additional retrieval attempts. We tested between these models using a criterial recollection task, and by manipulating the strength of ambiguous information associated with to-be-rejected foils (i.e., familiarity or noncriterial information). Replicating prior work, foil rejections were greater when people attempted to recollect targets studied at a semantic level (deep test) compared to an orthographic level (shallow test), implicating more accurate retrieval monitoring. To investigate the role of a recapitulation strategy in this monitoring process, a final test assessed memory for the foils that were earlier processed on these recollection tests. Performance on this foil recognition test suggested that people had engaged in more elaborative content-specific recapitulation when initially tested for deep compared to shallow recollections, and critically, this elaboration effect did not interact with the experimental manipulation of foil strength. These results support the retrieval orientation model, whereby a recapitulation strategy was used to orient retrieval toward specific information during every recollection attempt. PsycINFO Database Record (c) 2015 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Sa, Qila; Wang, Zhihui
2018-03-01
At present, content-based video retrieval (CBVR) is the most mainstream video retrieval method, using the video features of its own to perform automatic identification and retrieval. This method involves a key technology, i.e. shot segmentation. In this paper, the method of automatic video shot boundary detection with K-means clustering and improved adaptive dual threshold comparison is proposed. First, extract the visual features of every frame and divide them into two categories using K-means clustering algorithm, namely, one with significant change and one with no significant change. Then, as to the classification results, utilize the improved adaptive dual threshold comparison method to determine the abrupt as well as gradual shot boundaries.Finally, achieve automatic video shot boundary detection system.
Spatial Paradigm for Information Retrieval and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
The SPIRE system consists of software for visual analysis of primarily text based information sources. This technology enables the content analysis of text documents without reading all the documents. It employs several algorithms for text and word proximity analysis. It identifies the key themes within the text documents. From this analysis, it projects the results onto a visual spatial proximity display (Galaxies or Themescape) where items (documents and/or themes) visually close to each other are known to have content which is close to each other. Innovative interaction techniques then allow for dynamic visual analysis of large text based information spaces.
SPIRE1.03. Spatial Paradigm for Information Retrieval and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, K.J.; Bohn, S.; Crow, V.
The SPIRE system consists of software for visual analysis of primarily text based information sources. This technology enables the content analysis of text documents without reading all the documents. It employs several algorithms for text and word proximity analysis. It identifies the key themes within the text documents. From this analysis, it projects the results onto a visual spatial proximity display (Galaxies or Themescape) where items (documents and/or themes) visually close to each other are known to have content which is close to each other. Innovative interaction techniques then allow for dynamic visual analysis of large text based information spaces.
[Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].
Yang, Xi-guang; Fan, Wen-yi; Yu, Ying
2010-11-01
The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.
Prototypes for Content-Based Image Retrieval in Clinical Practice
Depeursinge, Adrien; Fischer, Benedikt; Müller, Henning; Deserno, Thomas M
2011-01-01
Content-based image retrieval (CBIR) has been proposed as key technology for computer-aided diagnostics (CAD). This paper reviews the state of the art and future challenges in CBIR for CAD applied to clinical practice. We define applicability to clinical practice by having recently demonstrated the CBIR system on one of the CAD demonstration workshops held at international conferences, such as SPIE Medical Imaging, CARS, SIIM, RSNA, and IEEE ISBI. From 2009 to 2011, the programs of CADdemo@CARS and the CAD Demonstration Workshop at SPIE Medical Imaging were sought for the key word “retrieval” in the title. The systems identified were analyzed and compared according to the hierarchy of gaps for CBIR systems. In total, 70 software demonstrations were analyzed. 5 systems were identified meeting the criterions. The fields of application are (i) bone age assessment, (ii) bone fractures, (iii) interstitial lung diseases, and (iv) mammography. Bridging the particular gaps of semantics, feature extraction, feature structure, and evaluation have been addressed most frequently. In specific application domains, CBIR technology is available for clinical practice. While system development has mainly focused on bridging content and feature gaps, performance and usability have become increasingly important. The evaluation must be based on a larger set of reference data, and workflow integration must be achieved before CBIR-CAD is really established in clinical practice. PMID:21892374
Ontology of gaps in content-based image retrieval.
Deserno, Thomas M; Antani, Sameer; Long, Rodney
2009-04-01
Content-based image retrieval (CBIR) is a promising technology to enrich the core functionality of picture archiving and communication systems (PACS). CBIR has a potential for making a strong impact in diagnostics, research, and education. Research as reported in the scientific literature, however, has not made significant inroads as medical CBIR applications incorporated into routine clinical medicine or medical research. The cause is often attributed (without supporting analysis) to the inability of these applications in overcoming the "semantic gap." The semantic gap divides the high-level scene understanding and interpretation available with human cognitive capabilities from the low-level pixel analysis of computers, based on mathematical processing and artificial intelligence methods. In this paper, we suggest a more systematic and comprehensive view of the concept of "gaps" in medical CBIR research. In particular, we define an ontology of 14 gaps that addresses the image content and features, as well as system performance and usability. In addition to these gaps, we identify seven system characteristics that impact CBIR applicability and performance. The framework we have created can be used a posteriori to compare medical CBIR systems and approaches for specific biomedical image domains and goals and a priori during the design phase of a medical CBIR application, as the systematic analysis of gaps provides detailed insight in system comparison and helps to direct future research.
Fahmy, Gamal; Black, John; Panchanathan, Sethuraman
2006-06-01
Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.
Sparks, Rachel; Madabhushi, Anant
2016-01-01
Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensional representation of the high dimensional image descriptor space to avoid the curse of dimensionality. ML schemes are computationally expensive, requiring an eigenvalue decomposition (EVD) for every new query image to learn its low dimensional representation. We present out-of-sample extrapolation utilizing semi-supervised ML (OSE-SSL) to learn the low dimensional representation without recomputing the EVD for each query image. OSE-SSL incorporates semantic information, partial class label, into a ML scheme such that the low dimensional representation co-localizes semantically similar images. In the context of prostate histopathology, gland morphology is an integral component of the Gleason score which enables discrimination between prostate cancer aggressiveness. Images are represented by shape features extracted from the prostate gland. CBIR with OSE-SSL for prostate histology obtained from 58 patient studies, yielded an area under the precision recall curve (AUPRC) of 0.53 ± 0.03 comparatively a CBIR with Principal Component Analysis (PCA) to learn a low dimensional space yielded an AUPRC of 0.44 ± 0.01. PMID:27264985
Decoding the content of recollection within the core recollection network and beyond.
Thakral, Preston P; Wang, Tracy H; Rugg, Michael D
2017-06-01
Recollection - retrieval of qualitative information about a past event - is associated with enhanced neural activity in a consistent set of neural regions (the 'core recollection network') seemingly regardless of the nature of the recollected content. Here, we employed multi-voxel pattern analysis (MVPA) to assess whether retrieval-related functional magnetic resonance imaging (fMRI) activity in core recollection regions - including the hippocampus, angular gyrus, medial prefrontal cortex, retrosplenial/posterior cingulate cortex, and middle temporal gyrus - contain information about studied content and thus demonstrate retrieval-related 'reinstatement' effects. During study, participants viewed objects and concrete words that were subjected to different encoding tasks. Test items included studied words, the names of studied objects, or unstudied words. Participants judged whether the items were recollected, familiar, or new by making 'remember', 'know', and 'new' responses, respectively. The study history of remembered test items could be reliably decoded using MVPA in most regions, as well as from the dorsolateral prefrontal cortex, a region where univariate recollection effects could not be detected. The findings add to evidence that members of the core recollection network, as well as at least one neural region where mean signal is insensitive to recollection success, carry information about recollected content. Importantly, the study history of recognized items endorsed with a 'know' response could be decoded with equal accuracy. The results thus demonstrate a striking dissociation between mean signal and multi-voxel indices of recollection. Moreover, they converge with prior findings in suggesting that, as it is operationalized by classification-based MVPA, reinstatement is not uniquely a signature of recollection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS
NASA Astrophysics Data System (ADS)
Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing
2018-02-01
Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.
Extracting semantics from audio-visual content: the final frontier in multimedia retrieval.
Naphade, M R; Huang, T S
2002-01-01
Multimedia understanding is a fast emerging interdisciplinary research area. There is tremendous potential for effective use of multimedia content through intelligent analysis. Diverse application areas are increasingly relying on multimedia understanding systems. Advances in multimedia understanding are related directly to advances in signal processing, computer vision, pattern recognition, multimedia databases, and smart sensors. We review the state-of-the-art techniques in multimedia retrieval. In particular, we discuss how multimedia retrieval can be viewed as a pattern recognition problem. We discuss how reliance on powerful pattern recognition and machine learning techniques is increasing in the field of multimedia retrieval. We review the state-of-the-art multimedia understanding systems with particular emphasis on a system for semantic video indexing centered around multijects and multinets. We discuss how semantic retrieval is centered around concepts and context and the various mechanisms for modeling concepts and context.
Active learning methods for interactive image retrieval.
Gosselin, Philippe Henri; Cord, Matthieu
2008-07-01
Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.
Retrieving relevant time-course experiments: a study on Arabidopsis microarrays.
Şener, Duygu Dede; Oğul, Hasan
2016-06-01
Understanding time-course regulation of genes in response to a stimulus is a major concern in current systems biology. The problem is usually approached by computational methods to model the gene behaviour or its networked interactions with the others by a set of latent parameters. The model parameters can be estimated through a meta-analysis of available data obtained from other relevant experiments. The key question here is how to find the relevant experiments which are potentially useful in analysing current data. In this study, the authors address this problem in the context of time-course gene expression experiments from an information retrieval perspective. To this end, they introduce a computational framework that takes a time-course experiment as a query and reports a list of relevant experiments retrieved from a given repository. These retrieved experiments can then be used to associate the environmental factors of query experiment with the findings previously reported. The model is tested using a set of time-course Arabidopsis microarrays. The experimental results show that relevant experiments can be successfully retrieved based on content similarity.
NASA Astrophysics Data System (ADS)
Bircher, Simone; Richaume, Philippe; Mahmoodi, Ali; Mialon, Arnaud; Fernandez-Moran, Roberto; Wigneron, Jean-Pierre; Demontoux, François; Jonard, François; Weihermüller, Lutz; Andreasen, Mie; Rautiainen, Kimmo; Ikonen, Jaakko; Schwank, Mike; Drusch, Mattias; Kerr, Yann H.
2017-04-01
From the passive L-band microwave radiometer onboard the Soil Moisture and Ocean Salinity (SMOS) space mission global surface soil moisture data is retrieved every 2 - 3 days. Thus far, the empirical L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model applied in the SMOS soil moisture retrieval algorithm is exclusively calibrated over test sites in dry and temperate climate zones. Furthermore, the included dielectric mixing model relating soil moisture to relative permittivity accounts only for mineral soils. However, soil moisture monitoring over the higher Northern latitudes is crucial since these regions are especially sensitive to climate change. A considerable positive feedback is expected if thawing of these extremely organic soils supports carbon decomposition and release to the atmosphere. Due to differing structural characteristics and thus varying bound water fractions, the relative permittivity of organic material is lower than that of the most mineral soils at a given water content. This assumption was verified by means of L-band relative permittivity laboratory measurements of organic and mineral substrates from various sites in Denmark, Finland, Scotland and Siberia using a resonant cavity. Based on these data, a simple empirical dielectric model for organic soils was derived and implemented in the SMOS Soil Moisture Level 2 Prototype Processor (SML2PP). Unfortunately, the current SMOS retrieved soil moisture product seems to show unrealistically low values compared to in situ soil moisture data collected from organic surface layers in North America, Europe and the Tibetan Plateau so that the impact of the dielectric model for organic soils cannot really be tested. A simplified SMOS processing scheme yielding higher soil moisture levels has recently been proposed and is presently under investigation. Furthermore, recalibration of the model parameters accounting for vegetation and roughness effects that were thus far only evaluated using the default dielectric model for mineral soils is ongoing for the "organic" L-MEB version. Additionally, in order to decide where a soil moisture retrieval using the "organic" dielectric model should be triggered, information on soil organic matter content in the soil surface layer has to be considered in the retrieval algorithm. For this purpose, SoilGrids (www.soilgrids.org) providing soil organic carbon content (SOCC) in g/kg is under study. A SOCC threshold based on the relation between the SoilGrids' SOCC and the presence of organic soil surface layers (relevant to alter the microwave L-band emissions from the land surface) in the SoilGrids' source soil profile information has to be established. In this communication, we present the current status of the above outlined studies with the objective to advance towards an improved soil moisture retrieval for organic-rich soils from SMOS passive microwave L-band observations.
User-Centric Multi-Criteria Information Retrieval
NASA Technical Reports Server (NTRS)
Wolfe, Shawn R.; Zhang, Yi
2009-01-01
Information retrieval models usually represent content only, and not other considerations, such as authority, cost, and recency. How could multiple criteria be utilized in information retrieval, and how would it affect the results? In our experiments, using multiple user-centric criteria always produced better results than a single criteria.
Integration of Information Retrieval and Database Management Systems.
ERIC Educational Resources Information Center
Deogun, Jitender S.; Raghavan, Vijay V.
1988-01-01
Discusses the motivation for integrating information retrieval and database management systems, and proposes a probabilistic retrieval model in which records in a file may be composed of attributes (formatted data items) and descriptors (content indicators). The details and resolutions of difficulties involved in integrating such systems are…
Case retrieval in medical databases by fusing heterogeneous information.
Quellec, Gwénolé; Lamard, Mathieu; Cazuguel, Guy; Roux, Christian; Cochener, Béatrice
2011-01-01
A novel content-based heterogeneous information retrieval framework, particularly well suited to browse medical databases and support new generation computer aided diagnosis (CADx) systems, is presented in this paper. It was designed to retrieve possibly incomplete documents, consisting of several images and semantic information, from a database; more complex data types such as videos can also be included in the framework. The proposed retrieval method relies on image processing, in order to characterize each individual image in a document by their digital content, and information fusion. Once the available images in a query document are characterized, a degree of match, between the query document and each reference document stored in the database, is defined for each attribute (an image feature or a metadata). A Bayesian network is used to recover missing information if need be. Finally, two novel information fusion methods are proposed to combine these degrees of match, in order to rank the reference documents by decreasing relevance for the query. In the first method, the degrees of match are fused by the Bayesian network itself. In the second method, they are fused by the Dezert-Smarandache theory: the second approach lets us model our confidence in each source of information (i.e., each attribute) and take it into account in the fusion process for a better retrieval performance. The proposed methods were applied to two heterogeneous medical databases, a diabetic retinopathy database and a mammography screening database, for computer aided diagnosis. Precisions at five of 0.809 ± 0.158 and 0.821 ± 0.177, respectively, were obtained for these two databases, which is very promising.
Comparison of Effects of Different Forms of Presentation on the Recall and Retrieval of Information.
ERIC Educational Resources Information Center
Jonassen, David H.; Pace, Ann Jaffe
A study compared the relative effects of typographically cued or mapped text, intact text with signaling, and intact text without signaling on the recall and retrieval of information from prose passages. (Signaling, a noncontent aspect of prose, emphasizes certain aspects of the semantic content or points out aspects of the structure of content.)…
ERIC Educational Resources Information Center
Bäuml, Karl-Heinz T.; Holterman, Christoph; Abel, Magdalena
2014-01-01
The testing effect refers to the finding that retrieval practice in comparison to restudy of previously encoded contents can improve memory performance and reduce time-dependent forgetting. Naturally, long retention intervals include both wake and sleep delay, which can influence memory contents differently. In fact, sleep immediately after…
Buckets: Smart Objects for Digital Libraries
NASA Technical Reports Server (NTRS)
Nelson, Michael L.
2001-01-01
Current discussion of digital libraries (DLs) is often dominated by the merits of the respective storage, search and retrieval functionality of archives, repositories, search engines, search interfaces and database systems. While these technologies are necessary for information management, the information content is more important than the systems used for its storage and retrieval. Digital information should have the same long-term survivability prospects as traditional hardcopy information and should be protected to the extent possible from evolving search engine technologies and vendor vagaries in database management systems. Information content and information retrieval systems should progress on independent paths and make limited assumptions about the status or capabilities of the other. Digital information can achieve independence from archives and DL systems through the use of buckets. Buckets are an aggregative, intelligent construct for publishing in DLs. Buckets allow the decoupling of information content from information storage and retrieval. Buckets exist within the Smart Objects and Dumb Archives model for DLs in that many of the functionalities and responsibilities traditionally associated with archives are pushed down (making the archives dumber) into the buckets (making them smarter). Some of the responsibilities imbued to buckets are the enforcement of their terms and conditions, and maintenance and display of their contents.
A model for enhancing Internet medical document retrieval with "medical core metadata".
Malet, G; Munoz, F; Appleyard, R; Hersh, W
1999-01-01
Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and MEDLINE-type content descriptions. The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines.
A Model for Enhancing Internet Medical Document Retrieval with “Medical Core Metadata”
Malet, Gary; Munoz, Felix; Appleyard, Richard; Hersh, William
1999-01-01
Objective: Finding documents on the World Wide Web relevant to a specific medical information need can be difficult. The goal of this work is to define a set of document content description tags, or metadata encodings, that can be used to promote disciplined search access to Internet medical documents. Design: The authors based their approach on a proposed metadata standard, the Dublin Core Metadata Element Set, which has recently been submitted to the Internet Engineering Task Force. Their model also incorporates the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary and Medline-type content descriptions. Results: The model defines a medical core metadata set that can be used to describe the metadata for a wide variety of Internet documents. Conclusions: The authors propose that their medical core metadata set be used to assign metadata to medical documents to facilitate document retrieval by Internet search engines. PMID:10094069
A Semantic Approach for Geospatial Information Extraction from Unstructured Documents
NASA Astrophysics Data System (ADS)
Sallaberry, Christian; Gaio, Mauro; Lesbegueries, Julien; Loustau, Pierre
Local cultural heritage document collections are characterized by their content, which is strongly attached to a territory and its land history (i.e., geographical references). Our contribution aims at making the content retrieval process more efficient whenever a query includes geographic criteria. We propose a core model for a formal representation of geographic information. It takes into account characteristics of different modes of expression, such as written language, captures of drawings, maps, photographs, etc. We have developed a prototype that fully implements geographic information extraction (IE) and geographic information retrieval (IR) processes. All PIV prototype processing resources are designed as Web Services. We propose a geographic IE process based on semantic treatment as a supplement to classical IE approaches. We implement geographic IR by using intersection computing algorithms that seek out any intersection between formal geocoded representations of geographic information in a user query and similar representations in document collection indexes.
Estimating surface soil moisture from SMAP observations using a Neural Network technique.
Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P
2018-01-01
A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.
ERIC Educational Resources Information Center
Filippidis, Stavros K.; Tsoukalas, Ioannis A.
2009-01-01
An adaptive educational system that uses adaptive presentation is presented. In this system fragments of different images present the same content and the system can choose the one most relevant to the user based on the sequential-global dimension of Felder-Silverman's learning style theory. In order to retrieve the learning style of each student…
Wang, Ling; Zhao, Geng-Xing; Zhu, Xi-Cun; Wang, Rui-Yan; Chang, Chun-Yan
2013-10-01
Taking Qixia City of Shandong, China as the study area, and based on the Landsat-5 TM and ALOS AVNIR-2 images, the canopy retrieval reflectance of apple trees at blossom stage was acquired. In combining with the measured reflectance of sample trees, the nitrogen-sensitive spectral indices were constructed and selected. By using the sensitive spectral indices as the independent variables, the nitrogen retrieval models were established, and the model with the best accuracy was used for spatial retrieve. The correlations between the spectral indices and the nitrogen nutritional status were in the order of canopy > leaf > flower. The sensitive indices were mainly composed of green, red, and near infrared bands. The accuracy of the retrieval models was in the order of support vector regression > multi-variable stepwise regression > one-variable regression. The retrieval results based on different images were similar, and showed that the leaf nitrogen content was mainly of grades 3-4 (27-33 g x kg(-1)), and the canopy nitrogen nutrient indices were mainly of grades 2-4 (TM: 38-47 g x kg(-1); ALOS: 32-41 g x kg(-1)). The spatial distribution of the retrieval nitrogen nutritional status based on different images also showed the similar trend, i. e., the nitrogen nutritional status was higher in the north and south than that in the middle part of the study area, and the areas with the high grades of leaf nitrogen and canopy nitrogen were mainly located in Sujiadian Town and Songshan subdistrict in the northwest, Zangjiazhuang Town and Tingkou Town in the northeast, and Shewopo Town in the south, which were consistent with the distribution of the key towns for apple production in Qixia City. This study provided a feasible method for the acquisition of nitrogen nutritional status of apple trees on macroscopic scale, and also, provided reference for other similar remote sensing retrievals.
A Multimodal Search Engine for Medical Imaging Studies.
Pinho, Eduardo; Godinho, Tiago; Valente, Frederico; Costa, Carlos
2017-02-01
The use of digital medical imaging systems in healthcare institutions has increased significantly, and the large amounts of data in these systems have led to the conception of powerful support tools: recent studies on content-based image retrieval (CBIR) and multimodal information retrieval in the field hold great potential in decision support, as well as for addressing multiple challenges in healthcare systems, such as computer-aided diagnosis (CAD). However, the subject is still under heavy research, and very few solutions have become part of Picture Archiving and Communication Systems (PACS) in hospitals and clinics. This paper proposes an extensible platform for multimodal medical image retrieval, integrated in an open-source PACS software with profile-based CBIR capabilities. In this article, we detail a technical approach to the problem by describing its main architecture and each sub-component, as well as the available web interfaces and the multimodal query techniques applied. Finally, we assess our implementation of the engine with computational performance benchmarks.
The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission
NASA Technical Reports Server (NTRS)
Crisp, David
2003-01-01
A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Hongjuan; Wang, Zhipeng; Gong, Qiong; Wang, Danchen
2016-09-01
In optical interference-based encryption (IBE) scheme, the currently available methods have to employ the iterative algorithms in order to encrypt two images and retrieve cross-talk free decrypted images. In this paper, we shall show that this goal can be achieved via an analytical process if one of the two images is QR code. For decryption, the QR code is decrypted in the conventional architecture and the decryption has a noisy appearance. Nevertheless, the robustness of QR code against noise enables the accurate acquisition of its content from the noisy retrieval, as a result of which the primary QR code can be exactly regenerated. Thereafter, a novel optical architecture is proposed to recover the grayscale image by aid of the QR code. In addition, the proposal has totally eliminated the silhouette problem existing in the previous IBE schemes, and its effectiveness and feasibility have been demonstrated by numerical simulations.
Kherfi, Mohammed Lamine; Ziou, Djemel
2006-04-01
In content-based image retrieval, understanding the user's needs is a challenging task that requires integrating him in the process of retrieval. Relevance feedback (RF) has proven to be an effective tool for taking the user's judgement into account. In this paper, we present a new RF framework based on a feature selection algorithm that nicely combines the advantages of a probabilistic formulation with those of using both the positive example (PE) and the negative example (NE). Through interaction with the user, our algorithm learns the importance he assigns to image features, and then applies the results obtained to define similarity measures that correspond better to his judgement. The use of the NE allows images undesired by the user to be discarded, thereby improving retrieval accuracy. As for the probabilistic formulation of the problem, it presents a multitude of advantages and opens the door to more modeling possibilities that achieve a good feature selection. It makes it possible to cluster the query data into classes, choose the probability law that best models each class, model missing data, and support queries with multiple PE and/or NE classes. The basic principle of our algorithm is to assign more importance to features with a high likelihood and those which distinguish well between PE classes and NE classes. The proposed algorithm was validated separately and in image retrieval context, and the experiments show that it performs a good feature selection and contributes to improving retrieval effectiveness.
Information Retrieval and the Philosophy of Language.
ERIC Educational Resources Information Center
Blair, David C.
2003-01-01
Provides an overview of some of the main ideas in the philosophy of language that have relevance to the issues of information retrieval, focusing on the description of the intellectual content. Highlights include retrieval problems; recall and precision; words and meanings; context; externalism and the philosophy of language; and scaffolding and…
Intuitive color-based visualization of multimedia content as large graphs
NASA Astrophysics Data System (ADS)
Delest, Maylis; Don, Anthony; Benois-Pineau, Jenny
2004-06-01
Data visualization techniques are penetrating in various technological areas. In the field of multimedia such as information search and retrieval in multimedia archives, or digital media production and post-production, data visualization methodologies based on large graphs give an exciting alternative to conventional storyboard visualization. In this paper we develop a new approach to visualization of multimedia (video) documents based both on large graph clustering and preliminary video segmenting and indexing.
A medical digital library to support scenario and user-tailored information retrieval.
Chu, W W; Johnson, D B; Kangarloo, H
2000-06-01
Current large-scale information sources are designed to support general queries and lack the ability to support scenario-specific information navigation, gathering, and presentation. As a result, users are often unable to obtain desired specific information within a well-defined subject area. Today's information systems do not provide efficient content navigation, incremental appropriate matching, or content correlation. We are developing the following innovative technologies to remedy these problems: 1) scenario-based proxies, enabling the gathering and filtering of information customized for users within a pre-defined domain; 2) context-sensitive navigation and matching, providing approximate matching and similarity links when an exact match to a user's request is unavailable; 3) content correlation of documents, creating semantic links between documents and information sources; and 4) user models for customizing retrieved information and result presentation. A digital medical library is currently being constructed using these technologies to provide customized information for the user. The technologies are general in nature and can provide custom and scenario-specific information in many other domains (e.g., crisis management).
NASA Astrophysics Data System (ADS)
Schreier, M. M.
2017-12-01
The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.
A Dynamic Ubiquitous Learning Resource Model with Context and Its Effects on Ubiquitous Learning
ERIC Educational Resources Information Center
Chen, Min; Yu, Sheng Quan; Chiang, Feng Kuang
2017-01-01
Most ubiquitous learning researchers use resource recommendation and retrieving based on context to provide contextualized learning resources, but it is the kind of one-way context matching. Learners always obtain fixed digital learning resources, which present all learning contents in any context. This study proposed a dynamic ubiquitous learning…
A Framework for the Flexible Content Packaging of Learning Objects and Learning Designs
ERIC Educational Resources Information Center
Lukasiak, Jason; Agostinho, Shirley; Burnett, Ian; Drury, Gerrard; Goodes, Jason; Bennett, Sue; Lockyer, Lori; Harper, Barry
2004-01-01
This paper presents a platform-independent method for packaging learning objects and learning designs. The method, entitled a Smart Learning Design Framework, is based on the MPEG-21 standard, and uses IEEE Learning Object Metadata (LOM) to provide bibliographic, technical, and pedagogical descriptors for the retrieval and description of learning…
Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao
2014-01-01
A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919
2013-01-01
Background PubMed translations of OvidSP Medline search filters offer searchers improved ease of access. They may also facilitate access to PubMed’s unique content, including citations for the most recently published biomedical evidence. Retrieving this content requires a search strategy comprising natural language terms (‘textwords’), rather than Medical Subject Headings (MeSH). We describe a reproducible methodology that uses a validated PubMed search filter translation to create a textword-only strategy to extend retrieval to PubMed’s unique heart failure literature. Methods We translated an OvidSP Medline heart failure search filter for PubMed and established version equivalence in terms of indexed literature retrieval. The PubMed version was then run within PubMed to identify citations retrieved by the filter’s MeSH terms (Heart failure, Left ventricular dysfunction, and Cardiomyopathy). It was then rerun with the same MeSH terms restricted to searching on title and abstract fields (i.e. as ‘textwords’). Citations retrieved by the MeSH search but not the textword search were isolated. Frequency analysis of their titles/abstracts identified natural language alternatives for those MeSH terms that performed less effectively as textwords. These terms were tested in combination to determine the best performing search string for reclaiming this ‘lost set’. This string, restricted to searching on PubMed’s unique content, was then combined with the validated PubMed translation to extend the filter’s performance in this database. Results The PubMed heart failure filter retrieved 6829 citations. Of these, 834 (12%) failed to be retrieved when MeSH terms were converted to textwords. Frequency analysis of the 834 citations identified five high frequency natural language alternatives that could improve retrieval of this set (cardiac failure, cardiac resynchronization, left ventricular systolic dysfunction, left ventricular diastolic dysfunction, and LV dysfunction). Together these terms reclaimed 157/834 (18.8%) of lost citations. Conclusions MeSH terms facilitate precise searching in PubMed’s indexed subset. They may, however, work less effectively as search terms prior to subject indexing. A validated PubMed search filter can be used to develop a supplementary textword-only search strategy to extend retrieval to PubMed’s unique content. A PubMed heart failure search filter is available on the CareSearch website (http://www.caresearch.com.au) providing access to both indexed and non-indexed heart failure evidence. PMID:23819658
NASA Astrophysics Data System (ADS)
Yost, C. R.; Minnis, P.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Spangenberg, D.; Strapp, J. W.; Delanoë, J.; Protat, A.
2016-12-01
At least one hundred jet engine power loss events since the 1990s have been attributed to the phenomenon known as ice crystal icing (ICI). Ingestion of high concentrations of ice particles into aircraft engines is thought to cause these events, but it is clear that the use of current on-board weather radar systems alone is insufficient for detecting conditions that might cause ICI. Passive radiometers in geostationary orbit are valuable for monitoring systems that produce high ice water content (HIWC) and will play an important role in nowcasting, but are incapable of making vertically resolved measurements of ice particle concentration, i.e., ice water content (IWC). Combined radar, lidar, and in-situ measurements are essential for developing a skilled satellite-based HIWC nowcasting technique. The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) field campaigns in Darwin, Australia, and Cayenne, French Guiana, have produced a valuable dataset of in-situ total water content (TWC) measurements with which to study conditions that produce HIWC. The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) was used to derive cloud physical and optical properties such cloud top height, temperature, optical depth, and ice water path from multi-spectral satellite imagery acquired throughout the HAIC-HIWC campaigns. These cloud properties were collocated with the in-situ TWC measurements in order to characterize cloud properties in the vicinity of HIWC. Additionally, a database of satellite-derived overshooting cloud top (OT) detections was used to identify TWC measurements in close proximity to convective cores likely producing large concentrations of ice crystals. Certain cloud properties show some sensitivity to increasing TWC and a multivariate probabilistic indicator of HIWC was developed from these datasets. This paper describes the algorithm development and demonstrates the HIWC indicator with imagery from the HAIC-HIWC campaigns. Vertically resolved IWC retrievals from active sensors such as the Cloud Profiling Radar (CPR) on CloudSat and the Doppler Radar System Airborne (RASTA) provide IWC profiles with which to validate and potentially enhance the satellite-based HIWC indicator.
LandEx - Fast, FOSS-Based Application for Query and Retrieval of Land Cover Patterns
NASA Astrophysics Data System (ADS)
Netzel, P.; Stepinski, T.
2012-12-01
The amount of satellite-based spatial data is continuously increasing making a development of efficient data search tools a priority. The bulk of existing research on searching satellite-gathered data concentrates on images and is based on the concept of Content-Based Image Retrieval (CBIR); however, available solutions are not efficient and robust enough to be put to use as deployable web-based search tools. Here we report on development of a practical, deployable tool that searches classified, rather than raw image. LandEx (Landscape Explorer) is a GeoWeb-based tool for Content-Based Pattern Retrieval (CBPR) contained within the National Land Cover Dataset 2006 (NLCD2006). The USGS-developed NLCD2006 is derived from Landsat multispectral images; it covers the entire conterminous U.S. with the resolution of 30 meters/pixel and it depicts 16 land cover classes. The size of NLCD2006 is about 10 Gpixels (161,000 x 100,000 pixels). LandEx is a multi-tier GeoWeb application based on Open Source Software. Main components are: GeoExt/OpenLayers (user interface), GeoServer (OGC WMS, WCS and WPS server), and GRASS (calculation engine). LandEx performs search using query-by-example approach: user selects a reference scene (exhibiting a chosen pattern of land cover classes) and the tool produces, in real time, a map indicating a degree of similarity between the reference pattern and all local patterns across the U.S. Scene pattern is encapsulated by a 2D histogram of classes and sizes of single-class clumps. Pattern similarity is based on the notion of mutual information. The resultant similarity map can be viewed and navigated in a web browser, or it can download as a GeoTiff file for more in-depth analysis. The LandEx is available at http://sil.uc.edu
2013-01-01
Background The openEHR project and the closely related ISO 13606 standard have defined structures supporting the content of Electronic Health Records (EHRs). However, there is not yet any finalized openEHR specification of a service interface to aid application developers in creating, accessing, and storing the EHR content. The aim of this paper is to explore how the Representational State Transfer (REST) architectural style can be used as a basis for a platform-independent, HTTP-based openEHR service interface. Associated benefits and tradeoffs of such a design are also explored. Results The main contribution is the formalization of the openEHR storage, retrieval, and version-handling semantics and related services into an implementable HTTP-based service interface. The modular design makes it possible to prototype, test, replicate, distribute, cache, and load-balance the system using ordinary web technology. Other contributions are approaches to query and retrieval of the EHR content that takes caching, logging, and distribution into account. Triggering on EHR change events is also explored. A final contribution is an open source openEHR implementation using the above-mentioned approaches to create LiU EEE, an educational EHR environment intended to help newcomers and developers experiment with and learn about the archetype-based EHR approach and enable rapid prototyping. Conclusions Using REST addressed many architectural concerns in a successful way, but an additional messaging component was needed to address some architectural aspects. Many of our approaches are likely of value to other archetype-based EHR implementations and may contribute to associated service model specifications. PMID:23656624
Sundvall, Erik; Nyström, Mikael; Karlsson, Daniel; Eneling, Martin; Chen, Rong; Örman, Håkan
2013-05-09
The openEHR project and the closely related ISO 13606 standard have defined structures supporting the content of Electronic Health Records (EHRs). However, there is not yet any finalized openEHR specification of a service interface to aid application developers in creating, accessing, and storing the EHR content.The aim of this paper is to explore how the Representational State Transfer (REST) architectural style can be used as a basis for a platform-independent, HTTP-based openEHR service interface. Associated benefits and tradeoffs of such a design are also explored. The main contribution is the formalization of the openEHR storage, retrieval, and version-handling semantics and related services into an implementable HTTP-based service interface. The modular design makes it possible to prototype, test, replicate, distribute, cache, and load-balance the system using ordinary web technology. Other contributions are approaches to query and retrieval of the EHR content that takes caching, logging, and distribution into account. Triggering on EHR change events is also explored.A final contribution is an open source openEHR implementation using the above-mentioned approaches to create LiU EEE, an educational EHR environment intended to help newcomers and developers experiment with and learn about the archetype-based EHR approach and enable rapid prototyping. Using REST addressed many architectural concerns in a successful way, but an additional messaging component was needed to address some architectural aspects. Many of our approaches are likely of value to other archetype-based EHR implementations and may contribute to associated service model specifications.
Sensitivity of the RMI's MAGIC/Heliosat-2 method to relevant input data
NASA Astrophysics Data System (ADS)
Demain, C.; Journée, M.; Bertrand, C.
2013-01-01
Appropriate information on solar resources is very important for a variety of technological areas. Based on the potential of retrieving global horizontal irradiance from satellite data, an enhanced version of the Heliosat-2 method has been implemented at the Royal Meteorological Institute of Belgium to estimate surface solar irradiance over Belgium from Meteosat Second Generation at the SEVIRI spatial and temporal resolution. In this contribution, sensitivity of our retrieval scheme to surface albedo, atmospheric aerosol and water vapor contents is investigated. Results indicate that while the use of real-time information instead of climatological values can help to reduce to some extent the RMS error between satellite-retrieved and ground-measured solar irradiance, only the correction of the satellite-derived data with in situ measurements allows to significantly reduce the overall model bias.
Lin, Jimmy
2008-01-01
Background Graph analysis algorithms such as PageRank and HITS have been successful in Web environments because they are able to extract important inter-document relationships from manually-created hyperlinks. We consider the application of these techniques to biomedical text retrieval. In the current PubMed® search interface, a MEDLINE® citation is connected to a number of related citations, which are in turn connected to other citations. Thus, a MEDLINE record represents a node in a vast content-similarity network. This article explores the hypothesis that these networks can be exploited for text retrieval, in the same manner as hyperlink graphs on the Web. Results We conducted a number of reranking experiments using the TREC 2005 genomics track test collection in which scores extracted from PageRank and HITS analysis were combined with scores returned by an off-the-shelf retrieval engine. Experiments demonstrate that incorporating PageRank scores yields significant improvements in terms of standard ranked-retrieval metrics. Conclusion The link structure of content-similarity networks can be exploited to improve the effectiveness of information retrieval systems. These results generalize the applicability of graph analysis algorithms to text retrieval in the biomedical domain. PMID:18538027
The Influence of Retrieval Practice on Memory and Comprehension of Science Texts
ERIC Educational Resources Information Center
Hinze, Scott R.
2010-01-01
The testing effect, where retrieval practice aids performance on later tests, may be a powerful tool for improving learning and retention. Three experiments test the potentials and limitations of retrieval practice for retention and comprehension of the content of science texts. Experiment 1 demonstrated that cued recall of paragraphs, but not…
Requirements for benchmarking personal image retrieval systems
NASA Astrophysics Data System (ADS)
Bouguet, Jean-Yves; Dulong, Carole; Kozintsev, Igor; Wu, Yi
2006-01-01
It is now common to have accumulated tens of thousands of personal ictures. Efficient access to that many pictures can only be done with a robust image retrieval system. This application is of high interest to Intel processor architects. It is highly compute intensive, and could motivate end users to upgrade their personal computers to the next generations of processors. A key question is how to assess the robustness of a personal image retrieval system. Personal image databases are very different from digital libraries that have been used by many Content Based Image Retrieval Systems.1 For example a personal image database has a lot of pictures of people, but a small set of different people typically family, relatives, and friends. Pictures are taken in a limited set of places like home, work, school, and vacation destination. The most frequent queries are searched for people, and for places. These attributes, and many others affect how a personal image retrieval system should be benchmarked, and benchmarks need to be different from existing ones based on art images, or medical images for examples. The attributes of the data set do not change the list of components needed for the benchmarking of such systems as specified in2: - data sets - query tasks - ground truth - evaluation measures - benchmarking events. This paper proposed a way to build these components to be representative of personal image databases, and of the corresponding usage models.
Multimedia content analysis, management and retrieval: trends and challenges
NASA Astrophysics Data System (ADS)
Hanjalic, Alan; Sebe, Nicu; Chang, Edward
2006-01-01
Recent advances in computing, communications and storage technology have made multimedia data become prevalent. Multimedia has gained enormous potential in improving the processes in a wide range of fields, such as advertising and marketing, education and training, entertainment, medicine, surveillance, wearable computing, biometrics, and remote sensing. Rich content of multimedia data, built through the synergies of the information contained in different modalities, calls for new and innovative methods for modeling, processing, mining, organizing, and indexing of this data for effective and efficient searching, retrieval, delivery, management and sharing of multimedia content, as required by the applications in the abovementioned fields. The objective of this paper is to present our views on the trends that should be followed when developing such methods, to elaborate on the related research challenges, and to introduce the new conference, Multimedia Content Analysis, Management and Retrieval, as a premium venue for presenting and discussing these methods with the scientific community. Starting from 2006, the conference will be held annually as a part of the IS&T/SPIE Electronic Imaging event.
Retrieving Patent Information Online
ERIC Educational Resources Information Center
Kaback, Stuart M.
1978-01-01
This paper discusses patent information retrieval from online files in terms of types of questions, file contents, coverage, timeliness, and other file variations. CLAIMS, Derwent, WPI, APIPAT and Chemical Abstracts Service are described. (KP)
NASA Astrophysics Data System (ADS)
Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2016-04-01
A new method to retrieve cloud water content from in-situ measured 2D particle images from optical array probes (OAP) is presented. With the overall objective to build a statistical model of crystals' mass as a function of their size, environmental temperature and crystal microphysical history, this study presents the methodology to retrieve the mass of crystals sorted by size from 2D images using a numerical optimization approach. The methodology is validated using two datasets of in-situ measurements gathered during two airborne field campaigns held in Darwin, Australia (2014), and Cayenne, France (2015), in the frame of the High Altitude Ice Crystals (HAIC) / High Ice Water Content (HIWC) projects. During these campaigns, a Falcon F-20 research aircraft equipped with state-of-the art microphysical instrumentation sampled numerous mesoscale convective systems (MCS) in order to study dynamical and microphysical properties and processes of high ice water content areas. Experimentally, an isokinetic evaporator probe, referred to as IKP-2, provides a reference measurement of the total water content (TWC) which equals ice water content, (IWC) when (supercooled) liquid water is absent. Two optical array probes, namely 2D-S and PIP, produce 2D images of individual crystals ranging from 50 μm to 12840 μm from which particle size distributions (PSD) are derived. Mathematically, the problem is formulated as an inverse problem in which the crystals' mass is assumed constant over a size class and is computed for each size class from IWC and PSD data: PSD.m = IW C This problem is solved using numerical optimization technique in which an objective function is minimized. The objective function is defined as follows: 2 J(m)=∥P SD.m - IW C ∥ + λ.R (m) where the regularization parameter λ and the regularization function R(m) are tuned based on data characteristics. The method is implemented in two steps. First, the method is developed on synthetic crystal populations in order to evaluate the behavior of the iterative algorithm, the influence of data noise on the quality of the results, and to set up a regularization strategy. Therefore, 3D synthetic crystals have been generated and numerically processed to recreate the noise caused by 2D projections of randomly oriented 3D crystals and by the discretization of the PSD into size classes of predefined width. Subsequently, the method is applied to the experimental datasets and the comparison between the retrieved TWC (this methodology) and the measured ones (IKP-2 data) will enable the evaluation of the consistency and accuracy of the mass solution retrieved by the numerical optimization approach as well as preliminary assessment of the influence of temperature and dynamical parameters on crystals' masses.
Sutin, Angelina R.; Gillath, Omri
2009-01-01
In two studies, the present research tested the phenomenology and content of autobiographical memory as distinct mediators between attachment avoidance and anxiety and depressive symptoms. In Study 1, participants (N = 454) completed measures of attachment and depressive symptoms in one session, and retrieved and rated two self-defining memories of romantic relationships in a separate session. In Study 2, participants (N = 534) were primed with attachment security, attachment insecurity, or a control prime and then retrieved and rated a self-defining relationship memory. Memory phenomenology, specifically memory coherence and emotional intensity, mediated the association between attachment avoidance and depressive symptoms, whereas the negative affective content of the memory mediated the association between attachment anxiety and depressive symptoms. Priming attachment security led to retrieval of a more coherent relationship memory, whereas insecurity led to the retrieval of a more incoherent relationship memory. Discussion focuses on the construction and recollection of memories as underlying mechanisms of adult attachment and psychological distress, the importance of memory coherence, and the implications for counseling research and practice. PMID:20706555
NASA Astrophysics Data System (ADS)
Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.
2016-12-01
Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and validated with icing PIREPS. The initial validation is encouraging for single-layer cloud conditions. More work is needed to test and refine the method for global application in a wider range of cloud conditions. A brief overview of our current method, applications, verification, and plans for future work will be presented.
2011-01-01
Background Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education. Methods We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment. Results We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system. Conclusions The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer. PMID:22032775
Welter, Petra; Deserno, Thomas M; Fischer, Benedikt; Günther, Rolf W; Spreckelsen, Cord
2011-10-27
Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education. We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment. We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system. The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer.
Medial Temporal Lobe Contributions to Cued Retrieval of Items and Contexts
Hannula, Deborah E.; Libby, Laura A.; Yonelinas, Andrew P.; Ranganath, Charan
2013-01-01
Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model – namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. PMID:23466350
NASA Astrophysics Data System (ADS)
Ong, Swee Khai; Lim, Wee Keong; Soo, Wooi King
2013-04-01
Trademark, a distinctive symbol, is used to distinguish products or services provided by a particular person, group or organization from other similar entries. As trademark represents the reputation and credit standing of the owner, it is important to differentiate one trademark from another. Many methods have been proposed to identify, classify and retrieve trademarks. However, most methods required features database and sample sets for training prior to recognition and retrieval process. In this paper, a new feature on wavelet coefficients, the localized wavelet energy, is introduced to extract features of trademarks. With this, unsupervised content-based symmetrical trademark image retrieval is proposed without the database and prior training set. The feature analysis is done by an integration of the proposed localized wavelet energy and quadtree decomposed regional symmetrical vector. The proposed framework eradicates the dependence on query database and human participation during the retrieval process. In this paper, trademarks for soccer games sponsors are the intended trademark category. Video frames from soccer telecast are extracted and processed for this study. Reasonably good localization and retrieval results on certain categories of trademarks are achieved. A distinctive symbol is used to distinguish products or services provided by a particular person, group or organization from other similar entries.
A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images
NASA Astrophysics Data System (ADS)
Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.
2017-03-01
Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.
NASA Technical Reports Server (NTRS)
Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia
2015-01-01
Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.
Kurtz, Camille; Beaulieu, Christopher F.; Napel, Sandy; Rubin, Daniel L.
2014-01-01
Computer-assisted image retrieval applications could assist radiologist interpretations by identifying similar images in large archives as a means to providing decision support. However, the semantic gap between low-level image features and their high level semantics may impair the system performances. Indeed, it can be challenging to comprehensively characterize the images using low-level imaging features to fully capture the visual appearance of diseases on images, and recently the use of semantic terms has been advocated to provide semantic descriptions of the visual contents of images. However, most of the existing image retrieval strategies do not consider the intrinsic properties of these terms during the comparison of the images beyond treating them as simple binary (presence/absence) features. We propose a new framework that includes semantic features in images and that enables retrieval of similar images in large databases based on their semantic relations. It is based on two main steps: (1) annotation of the images with semantic terms extracted from an ontology, and (2) evaluation of the similarity of image pairs by computing the similarity between the terms using the Hierarchical Semantic-Based Distance (HSBD) coupled to an ontological measure. The combination of these two steps provides a means of capturing the semantic correlations among the terms used to characterize the images that can be considered as a potential solution to deal with the semantic gap problem. We validate this approach in the context of the retrieval and the classification of 2D regions of interest (ROIs) extracted from computed tomographic (CT) images of the liver. Under this framework, retrieval accuracy of more than 0.96 was obtained on a 30-images dataset using the Normalized Discounted Cumulative Gain (NDCG) index that is a standard technique used to measure the effectiveness of information retrieval algorithms when a separate reference standard is available. Classification results of more than 95% were obtained on a 77-images dataset. For comparison purpose, the use of the Earth Mover's Distance (EMD), which is an alternative distance metric that considers all the existing relations among the terms, led to results retrieval accuracy of 0.95 and classification results of 93% with a higher computational cost. The results provided by the presented framework are competitive with the state-of-the-art and emphasize the usefulness of the proposed methodology for radiology image retrieval and classification. PMID:24632078
Fast content-based image retrieval using dynamic cluster tree
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Sun, Jizhou; Wu, Rongteng; Zhang, Yaping
2008-03-01
A novel content-based image retrieval data structure is developed in present work. It can improve the searching efficiency significantly. All images are organized into a tree, in which every node is comprised of images with similar features. Images in a children node have more similarity (less variance) within themselves in relative to its parent. It means that every node is a cluster and each of its children nodes is a sub-cluster. Information contained in a node includes not only the number of images, but also the center and the variance of these images. Upon the addition of new images, the tree structure is capable of dynamically changing to ensure the minimization of total variance of the tree. Subsequently, a heuristic method has been designed to retrieve the information from this tree. Given a sample image, the probability of a tree node that contains the similar images is computed using the center of the node and its variance. If the probability is higher than a certain threshold, this node will be recursively checked to locate the similar images. So will its children nodes if their probability is also higher than that threshold. If no sufficient similar images were founded, a reduced threshold value would be adopted to initiate a new seeking from the root node. The search terminates when it found sufficient similar images or the threshold value is too low to give meaningful sense. Experiments have shown that the proposed dynamic cluster tree is able to improve the searching efficiency notably.
NASA Astrophysics Data System (ADS)
Ivanov, Victor; Borovski, Alexander; Postylyakov, Oleg
2017-10-01
Formaldehyde (HCHO) is involved in a lot of chemical reactions in the atmosphere. Taking into account that HCHO basically undergo by photolysis and reaction with hydroxyl radical within a few hours, short-lived VOCs and direct HCHO emissions can cause local HCHO enhancement over certain areas, and, hence, exceeding background level of HCHO can be examined as a local pollution of the atmosphere by VOCs or existence of a local HCHO source. Several retrieval algorithms applicable for DOAS measurements in cloudless were previously developed. In previous works we proposed a new algorithm applicable for the overcast conditions. The algorithm has the typical F-coefficient error of about 10% for winter season, about 5% for summer season, and varying from 15 to 45% for transition season if the atmospheric boundary layer is below the cloud base. In this paper we briefly present our results of the HCHO vertical column retrieval measured at Zvenigorod Scientific Station (ZSS) for overcast. ZSS (55°41'49''N, 36°46'29''E) is located in Moscow region in 38 km west from Moscow. Because Western winds prevail in this region, ZSS is a background station the most part of time. But in cases of Eastern wind, the air quality at ZSS is affected by Moscow megapolis, and polluted air masses formed above Moscow can reach station in a few hours. Due to the absence of alternative overcast data of HCHO, we compare our overcast data with the HCHO vertical content, which we obtained for clear sky. We investigate similarities and differences in their statistical behavior in different air mass. The average overcast HCHO data have similar to clear-sky HCHO positive temperature trends for all wind direction. We found that the average retrieved overcast HCHO contents are systematically greater than the clear-sky retrieval data. But the difference between data retrieved for the overcast and clear-sky conditions are different for Eastern and Western winds. This difference is about 0.5×1016 mol cm-2 for Western winds and about 1.2×1016 mol cm-2 for Eastern winds. We suppose that observed difference between the overcast and clear-sky formaldehyde data can be caused by dependence of chemical reactions leading to the HCHO destruction and the HCHO formation from Moscow anthropogenic predecessors on the cloudy conditions.
NASA Astrophysics Data System (ADS)
Nelson, R. R.; O'Dell, C.
2017-12-01
The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with high accuracy. This is only possible for measurements of scenes nearly free of optically thick clouds and aerosols. As some cloud or aerosol contamination will always be present, the OCO-2 retrieval algorithm includes clouds and aerosols as retrieved properties in its state vector. Information content analyses demonstrate that there are only 2-6 pieces of information about aerosols in the OCO-2 radiances. However, the upcoming OCO-2 algorithm (B8) attempts to retrieve 9 aerosol parameters; this over-fitting can hinder convergence and produce multiple solutions. In this work, we develop a simplified cloud and aerosol parameterization that intelligently reduces the number of retrieved parameters to 5 by only retrieving information about two aerosol layers: a lower tropospheric layer and an upper tropospheric / stratospheric layer. We retrieve the optical depth of each layer and the height of the lower tropospheric layer. Each of these layers contains a mixture of fine and coarse mode aerosol. In comparisons between OCO-2 XCO2 estimates and validation sources including TCCON, this scheme performs about as well as the more complicated OCO-2 retrieval algorithm, but has the potential benefits of more interpretable aerosol results, faster convergence, less nonlinearity, and greater throughput. We also investigate the dependence of our results on the optical properties of the fine and coarse mode aerosol types, such as their effective radii and the environmental relative humidity.
Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C
2007-01-01
A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.
Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris
2008-01-01
Recent neuroimaging studies have implicated the posterior parietal cortex in episodic memory retrieval, but there is uncertainty about its specific role. Research in the attentional domain has shown that superior parietal lobe (SPL) regions along the intraparietal sulcus are implicated in the voluntary orienting of attention to relevant aspects of the environment, whereas inferior parietal lobe (IPL) regions at the temporo-parietal junction mediate the automatic allocation of attention to task-relevant information. Here we propose that the SPL and the IPL play conceptually similar roles in episodic memory retrieval. We hypothesize that the SPL allocates top-down attention to memory retrieval, whereas the IPL mediates the automatic, bottom-up attentional capture by retrieved memory contents. By reviewing the existing fMRI literature, we show that the posterior intraparietal sulcus of SPL is consistently active when the need for top-down assistance to memory retrieval is supposedly maximal, e.g., for memories retrieved with low vs. high confidence, for familiar vs. recollected memories, for recognition of high vs. low frequency words. On the other hand, the supramarginal gyrus of IPL is consistently active when the attentional capture by memory contents is supposedly maximal, i.e., for strong vs. weak memories, for vividly recollected vs. familiar memories, for memories retrieved with high vs. low confidence. We introduce a model of episodic memory retrieval that characterizes contributions of posterior parietal cortex.
NASA Astrophysics Data System (ADS)
Zhang, Y. L.; Miller, J. R.; Chen, J. M.
2009-05-01
Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without differentiation between and within vegetation types for calculating the photosynthesis rate, we incorporated the spatial distribution of leaf nitrogen content in the model to estimate net primary productivity and evaportranspiration of boreal ecosystem. These regional estimates of carbon and water budgets with and without N mapping are compared, and the importance of this leaf biochemistry information derived from hyperspectral remote sensing in regional mapping of carbon and water fluxes is quantitatively assessed. Keywords: Remote Sensing, Leaf Nitrogen Content, Spatial Distribution, Carbon and Water Budgets, Estimation
Indexing the medical open access literature for textual and content-based visual retrieval.
Eggel, Ivan; Müller, Henning
2010-01-01
Over the past few years an increasing amount of scientific journals have been created in an open access format. Particularly in the medical field the number of openly accessible journals is enormous making a wide body of knowledge available for analysis and retrieval. Part of the trend towards open access publications can be linked to funding bodies such as the NIH1 (National Institutes of Health) and the Swiss National Science Foundation (SNF2) requiring funded projects to make all articles of funded research available publicly. This article describes an approach to make part of the knowledge of open access journals available for retrieval including the textual information but also the images contained in the articles. For this goal all articles of 24 journals related to medical informatics and medical imaging were crawled from the web pages of BioMed Central. Text and images of the PDF (Portable Document Format) files were indexed separately and a web-based retrieval interface allows for searching via keyword queries or by visual similarity queries. Starting point for a visual similarity query can be an image on the local hard disk that is uploaded or any image found via the textual search. Search for similar documents is also possible.
Global Contrast Based Salient Region Detection.
Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min
2015-03-01
Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.
Jiang, Jonathan H; Yue, Qing; Su, Hui; Reising, Steven C; Kangaslahti, Pekka P; Deal, William R; Schlecht, Erich T; Wu, Longtao; Evans, K Franklin
2017-08-01
This paper describes a forward radiative transfer model and retrieval system (FMRS) for the Tropospheric Water and cloud ICE (TWICE) CubeSat instrument. We use the FMRS to simulate radiances for the TWICE's 14 millimeter- and submillimeter-wavelength channels for a tropical atmospheric state produced by a Weather Research and Forecasting model simulation. We also perform simultaneous retrievals of cloud ice particle size, ice water content (IWC), water vapor content (H 2 O), and temperature from the simulated TWICE radiances using the FMRS. We show that the TWICE instrument is capable of retrieving ice particle size in the range of ~50-1000 μm in mass mean effective diameter with approximately 50% uncertainty. The uncertainties of other retrievals from TWICE are about 1 K for temperature, 50% for IWC, and 20% for H 2 O.
Yue, Qing; Su, Hui; Reising, Steven C.; Kangaslahti, Pekka P.; Deal, William R.; Schlecht, Erich T.; Wu, Longtao; Evans, K. Franklin
2017-01-01
Abstract This paper describes a forward radiative transfer model and retrieval system (FMRS) for the Tropospheric Water and cloud ICE (TWICE) CubeSat instrument. We use the FMRS to simulate radiances for the TWICE's 14 millimeter‐ and submillimeter‐wavelength channels for a tropical atmospheric state produced by a Weather Research and Forecasting model simulation. We also perform simultaneous retrievals of cloud ice particle size, ice water content (IWC), water vapor content (H2O), and temperature from the simulated TWICE radiances using the FMRS. We show that the TWICE instrument is capable of retrieving ice particle size in the range of ~50–1000 μm in mass mean effective diameter with approximately 50% uncertainty. The uncertainties of other retrievals from TWICE are about 1 K for temperature, 50% for IWC, and 20% for H2O. PMID:29104900
Forecast model applications of retrieved three dimensional liquid water fields
NASA Technical Reports Server (NTRS)
Raymond, William H.; Olson, William S.
1990-01-01
Forecasts are made for tropical storm Emily using heating rates derived from the SSM/I physical retrievals described in chapters 2 and 3. Average values of the latent heating rates from the convective and stratiform cloud simulations, used in the physical retrieval, are obtained for individual 1.1 km thick vertical layers. Then, the layer-mean latent heating rates are regressed against the slant path-integrated liquid and ice precipitation water contents to determine the best fit two parameter regression coefficients for each layer. The regression formulae and retrieved precipitation water contents are utilized to infer the vertical distribution of heating rates for forecast model applications. In the forecast model, diabatic temperature contributions are calculated and used in a diabatic initialization, or in a diabatic initialization combined with a diabatic forcing procedure. Our forecasts show that the time needed to spin-up precipitation processes in tropical storm Emily is greatly accelerated through the application of the data.
Cai, Jia; Tang, Yi
2018-02-01
Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Semantics-Based Intelligent Indexing and Retrieval of Digital Images - A Case Study
NASA Astrophysics Data System (ADS)
Osman, Taha; Thakker, Dhavalkumar; Schaefer, Gerald
The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they typically rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this chapter we present a semantically enabled image annotation and retrieval engine that is designed to satisfy the requirements of commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as presenting our initial thoughts on exploiting lexical databases for explicit semantic-based query expansion.
Interactive radiographic image retrieval system.
Kundu, Malay Kumar; Chowdhury, Manish; Das, Sudeb
2017-02-01
Content based medical image retrieval (CBMIR) systems enable fast diagnosis through quantitative assessment of the visual information and is an active research topic over the past few decades. Most of the state-of-the-art CBMIR systems suffer from various problems: computationally expensive due to the usage of high dimensional feature vectors and complex classifier/clustering schemes. Inability to properly handle the "semantic gap" and the high intra-class versus inter-class variability problem of the medical image database (like radiographic image database). This yields an exigent demand for developing highly effective and computationally efficient retrieval system. We propose a novel interactive two-stage CBMIR system for diverse collection of medical radiographic images. Initially, Pulse Coupled Neural Network based shape features are used to find out the most probable (similar) image classes using a novel "similarity positional score" mechanism. This is followed by retrieval using Non-subsampled Contourlet Transform based texture features considering only the images of the pre-identified classes. Maximal information compression index is used for unsupervised feature selection to achieve better results. To reduce the semantic gap problem, the proposed system uses a novel fuzzy index based relevance feedback mechanism by incorporating subjectivity of human perception in an analytic manner. Extensive experiments were carried out to evaluate the effectiveness of the proposed CBMIR system on a subset of Image Retrieval in Medical Applications (IRMA)-2009 database consisting of 10,902 labeled radiographic images of 57 different modalities. We obtained overall average precision of around 98% after only 2-3 iterations of relevance feedback mechanism. We assessed the results by comparisons with some of the state-of-the-art CBMIR systems for radiographic images. Unlike most of the existing CBMIR systems, in the proposed two-stage hierarchical framework, main importance is given on constructing efficient and compact feature vector representation, search-space reduction and handling the "semantic gap" problem effectively, without compromising the retrieval performance. Experimental results and comparisons show that the proposed system performs efficiently in the radiographic medical image retrieval field. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Finding knowledge translation articles in CINAHL.
Lokker, Cynthia; McKibbon, K Ann; Wilczynski, Nancy L; Haynes, R Brian; Ciliska, Donna; Dobbins, Maureen; Davis, David A; Straus, Sharon E
2010-01-01
The process of moving research into practice has a number of names including knowledge translation (KT). Researchers and decision makers need to be able to readily access the literature on KT for the field to grow and to evaluate the existing evidence. To develop and validate search filters for finding KT articles in the database Cumulative Index to Nursing and Allied Health (CINAHL). A gold standard database was constructed by hand searching and classifying articles from 12 journals as KT Content, KT Applications and KT Theory. Sensitivity, specificity, precision, and accuracy of the search filters. Optimized search filters had fairly low sensitivity and specificity for KT Content (58.4% and 64.9% respectively), while sensitivity and specificity increased for retrieving KT Application (67.5% and 70.2%) and KT Theory articles (70.4% and 77.8%). Search filter performance was suboptimal marking the broad base of disciplines and vocabularies used by KT researchers. Such diversity makes retrieval of KT studies in CINAHL difficult.
Learning semantic and visual similarity for endomicroscopy video retrieval.
Andre, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas
2012-06-01
Content-based image retrieval (CBIR) is a valuable computer vision technique which is increasingly being applied in the medical community for diagnosis support. However, traditional CBIR systems only deliver visual outputs, i.e., images having a similar appearance to the query, which is not directly interpretable by the physicians. Our objective is to provide a system for endomicroscopy video retrieval which delivers both visual and semantic outputs that are consistent with each other. In a previous study, we developed an adapted bag-of-visual-words method for endomicroscopy retrieval, called "Dense-Sift," that computes a visual signature for each video. In this paper, we present a novel approach to complement visual similarity learning with semantic knowledge extraction, in the field of in vivo endomicroscopy. We first leverage a semantic ground truth based on eight binary concepts, in order to transform these visual signatures into semantic signatures that reflect how much the presence of each semantic concept is expressed by the visual words describing the videos. Using cross-validation, we demonstrate that, in terms of semantic detection, our intuitive Fisher-based method transforming visual-word histograms into semantic estimations outperforms support vector machine (SVM) methods with statistical significance. In a second step, we propose to improve retrieval relevance by learning an adjusted similarity distance from a perceived similarity ground truth. As a result, our distance learning method allows to statistically improve the correlation with the perceived similarity. We also demonstrate that, in terms of perceived similarity, the recall performance of the semantic signatures is close to that of visual signatures and significantly better than those of several state-of-the-art CBIR methods. The semantic signatures are thus able to communicate high-level medical knowledge while being consistent with the low-level visual signatures and much shorter than them. In our resulting retrieval system, we decide to use visual signatures for perceived similarity learning and retrieval, and semantic signatures for the output of an additional information, expressed in the endoscopist own language, which provides a relevant semantic translation of the visual retrieval outputs.
Content-based video indexing and searching with wavelet transformation
NASA Astrophysics Data System (ADS)
Stumpf, Florian; Al-Jawad, Naseer; Du, Hongbo; Jassim, Sabah
2006-05-01
Biometric databases form an essential tool in the fight against international terrorism, organised crime and fraud. Various government and law enforcement agencies have their own biometric databases consisting of combination of fingerprints, Iris codes, face images/videos and speech records for an increasing number of persons. In many cases personal data linked to biometric records are incomplete and/or inaccurate. Besides, biometric data in different databases for the same individual may be recorded with different personal details. Following the recent terrorist atrocities, law enforcing agencies collaborate more than before and have greater reliance on database sharing. In such an environment, reliable biometric-based identification must not only determine who you are but also who else you are. In this paper we propose a compact content-based video signature and indexing scheme that can facilitate retrieval of multiple records in face biometric databases that belong to the same person even if their associated personal data are inconsistent. We shall assess the performance of our system using a benchmark audio visual face biometric database that has multiple videos for each subject but with different identity claims. We shall demonstrate that retrieval of relatively small number of videos that are nearest, in terms of the proposed index, to any video in the database results in significant proportion of that individual biometric data.
NASA Astrophysics Data System (ADS)
Blank, J.; Ungermann, J.; Guggenmoser, T.; Kaufmann, M.; Riese, M.
2012-04-01
The Gimballed Limb Observer for Radiance Imaging in the Atmosphere (GLORIA) is an aircraft based infrared limb-sounder. This presentation will give an overview of the retrieval techniques used for the analysis of data produced by the GLORIA instrument. For data processing, the JUelich RApid Spectral SImulation Code 2 (JURASSIC2) was developed. It consists of a set of programs to retrieve atmospheric profiles from GLORIA measurements. The GLORIA Michelson interferometer can run with a wide range of parameters. In the dynamics mode, spectra are generate with a medium spectral and a very high temporal and spatial resolution. Each sample can contain thousands of spectral lines for each contributing trace gas. In the JURASSIC retrieval code this is handled by using a radiative transport model based on the Emissivity Growth Approximation. Deciding which samples should be included in the retrieval is a non-trivial task and requires specific domain knowledge. To ease this problem we developed an automatic selection program by analysing the Shannon information content. By taking into account data for all relevant trace gases and instrument effects, optimal integrated spectral windows are computed. This includes considerations for cross-influence of trace gases, which has non-obvious consequence for the contribution of spectral samples. We developed methods to assess the influence of spectral windows on the retrieval. While we can not exhaustively search the whole range of possible spectral sample combinations, it is possible to optimize information content using a genetic algorithm. The GLORIA instrument is mounted with a viewing direction perpendicular to the flight direction. A gimbal frame makes it possible to move the instrument 45° to both direction. By flying on a circular path, it is possible to generate images of an area of interest from a wide range of angles. These can be analyzed in a 3D-tomographic fashion, which yields superior spatial resolution along line of site. Usually limb instruments have a resolution of several hundred kilometers. In studies we have shown to get a resolution of 35km in all horizontal directions. Even when only linear flight patterns can be realized, resolutions of ≈70km can be obtained. This technique can be used to observe features of the Upper Troposphere Lower Stratosphere (UTLS), where important mixing processes take place. Especially tropopause folds are difficult to image, as their main features need to be along line of flight when using common 1D approach.
Rapid Dynamic Assessment of Expertise to Improve the Efficiency of Adaptive Elearning
ERIC Educational Resources Information Center
Kalyuga, Slava; Sweller, John
2005-01-01
In this article we suggest a method of evaluating learner expertise based on assessment of the content of working memory and the extent to which cognitive load has been reduced by knowledge retrieved from long-term memory. The method was tested in an experiment with an elementary algebra tutor using a yoked control design. In the learner-adapted…
A User-Centered Approach to Adaptive Hypertext Based on an Information Relevance Model
NASA Technical Reports Server (NTRS)
Mathe, Nathalie; Chen, James
1994-01-01
Rapid and effective to information in large electronic documentation systems can be facilitated if information relevant in an individual user's content can be automatically supplied to this user. However most of this knowledge on contextual relevance is not found within the contents of documents, it is rather established incrementally by users during information access. We propose a new model for interactively learning contextual relevance during information retrieval, and incrementally adapting retrieved information to individual user profiles. The model, called a relevance network, records the relevance of references based on user feedback for specific queries and user profiles. It also generalizes such knowledge to later derive relevant references for similar queries and profiles. The relevance network lets users filter information by context of relevance. Compared to other approaches, it does not require any prior knowledge nor training. More importantly, our approach to adaptivity is user-centered. It facilitates acceptance and understanding by users by giving them shared control over the adaptation without disturbing their primary task. Users easily control when to adapt and when to use the adapted system. Lastly, the model is independent of the particular application used to access information, and supports sharing of adaptations among users.
Comparison of Various Similarity Measures for Average Image Hash in Mobile Phone Application
NASA Astrophysics Data System (ADS)
Farisa Chaerul Haviana, Sam; Taufik, Muhammad
2017-04-01
One of the main issue in Content Based Image Retrieval (CIBR) is similarity measures for resulting image hashes. The main key challenge is to find the most benefits distance or similarity measures for calculating the similarity in term of speed and computing costs, specially under limited computing capabilities device like mobile phone. This study we utilize twelve most common and popular distance or similarity measures technique implemented in mobile phone application, to be compared and studied. The results show that all similarity measures implemented in this study was perform equally under mobile phone application. This gives more possibilities for method combinations to be implemented for image retrieval.
Cue generation and memory construction in direct and generative autobiographical memory retrieval.
Harris, Celia B; O'Connor, Akira R; Sutton, John
2015-05-01
Theories of autobiographical memory emphasise effortful, generative search processes in memory retrieval. However recent research suggests that memories are often retrieved directly, without effortful search. We investigated whether direct and generative retrieval differed in the characteristics of memories recalled, or only in terms of retrieval latency. Participants recalled autobiographical memories in response to cue words. For each memory, they reported whether it was retrieved directly or generatively, rated its visuo-spatial perspective, and judged its accompanying recollective experience. Our results indicated that direct retrieval was commonly reported and was faster than generative retrieval, replicating recent findings. The characteristics of directly retrieved memories differed from generatively retrieved memories: directly retrieved memories had higher field perspective ratings and lower observer perspective ratings. However, retrieval mode did not influence recollective experience. We discuss our findings in terms of cue generation and content construction, and the implication for reconstructive models of autobiographical memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Medial temporal lobe contributions to cued retrieval of items and contexts.
Hannula, Deborah E; Libby, Laura A; Yonelinas, Andrew P; Ranganath, Charan
2013-10-01
Several models have proposed that different regions of the medial temporal lobes contribute to different aspects of episodic memory. For instance, according to one view, the perirhinal cortex represents specific items, parahippocampal cortex represents information regarding the context in which these items were encountered, and the hippocampus represents item-context bindings. Here, we used event-related functional magnetic resonance imaging (fMRI) to test a specific prediction of this model-namely, that successful retrieval of items from context cues will elicit perirhinal recruitment and that successful retrieval of contexts from item cues will elicit parahippocampal cortex recruitment. Retrieval of the bound representation in either case was expected to elicit hippocampal engagement. To test these predictions, we had participants study several item-context pairs (i.e., pictures of objects and scenes, respectively), and then had them attempt to recall items from associated context cues and contexts from associated item cues during a scanned retrieval session. Results based on both univariate and multivariate analyses confirmed a role for hippocampus in content-general relational memory retrieval, and a role for parahippocampal cortex in successful retrieval of contexts from item cues. However, we also found that activity differences in perirhinal cortex were correlated with successful cued recall for both items and contexts. These findings provide partial support for the above predictions and are discussed with respect to several models of medial temporal lobe function. Copyright © 2013 Elsevier Ltd. All rights reserved.
A novel biomedical image indexing and retrieval system via deep preference learning.
Pang, Shuchao; Orgun, Mehmet A; Yu, Zhezhou
2018-05-01
The traditional biomedical image retrieval methods as well as content-based image retrieval (CBIR) methods originally designed for non-biomedical images either only consider using pixel and low-level features to describe an image or use deep features to describe images but still leave a lot of room for improving both accuracy and efficiency. In this work, we propose a new approach, which exploits deep learning technology to extract the high-level and compact features from biomedical images. The deep feature extraction process leverages multiple hidden layers to capture substantial feature structures of high-resolution images and represent them at different levels of abstraction, leading to an improved performance for indexing and retrieval of biomedical images. We exploit the current popular and multi-layered deep neural networks, namely, stacked denoising autoencoders (SDAE) and convolutional neural networks (CNN) to represent the discriminative features of biomedical images by transferring the feature representations and parameters of pre-trained deep neural networks from another domain. Moreover, in order to index all the images for finding the similarly referenced images, we also introduce preference learning technology to train and learn a kind of a preference model for the query image, which can output the similarity ranking list of images from a biomedical image database. To the best of our knowledge, this paper introduces preference learning technology for the first time into biomedical image retrieval. We evaluate the performance of two powerful algorithms based on our proposed system and compare them with those of popular biomedical image indexing approaches and existing regular image retrieval methods with detailed experiments over several well-known public biomedical image databases. Based on different criteria for the evaluation of retrieval performance, experimental results demonstrate that our proposed algorithms outperform the state-of-the-art techniques in indexing biomedical images. We propose a novel and automated indexing system based on deep preference learning to characterize biomedical images for developing computer aided diagnosis (CAD) systems in healthcare. Our proposed system shows an outstanding indexing ability and high efficiency for biomedical image retrieval applications and it can be used to collect and annotate the high-resolution images in a biomedical database for further biomedical image research and applications. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Merlin, Guillaume; Riedi, Jérôme; Labonnote, Laurent C.; Cornet, Céline; Davis, Anthony B.; Dubuisson, Phillipe; Desmons, Marine; Ferlay, Nicolas; Parol, Frédéric
2016-10-01
Information content analyses on cloud top altitude (CTOP) and geometrical thickness (CGT) from multi-angular A-band measurements in the case of monolayer homogeneous clouds are conducted. In the framework of future multi-angular radiometer development, we compared the potential performances of the 3MI (Multi-viewing, Multi-channel and Multi-polarization Imaging) instrument developed by EUMETSAT, which is an extension of POLDER/PARASOL instrument and MSPI (Multiangle SpectroPolarimetric Imager) developed by NASA's Jet Propulsion Laboratory. Quantitative information content estimates were realized for thin, moderately opaque and opaque clouds for different surface albedo and viewing geometry configurations. Analyses show that retrieval of CTOP is possible with a high accuracy in most of the cases investigated. Retrieval of CGT is also possible for optically thick clouds above a black surface, at least when CGT > 1-2 km and for thin clouds for CGT > 2-3 km. However, for intermediate optical thicknesses (COT ≃ 4), we show that the retrieval of CGT is not simultaneously possible with CTOP. A comparison between 3MI and MSPI shows a higher information content for MSPI's measurements, traceable to a thinner filter inside the oxygen A-band, yielding higher signal-to-noise ratio for absorption estimation. Cases of cloud scenes above bright surfaces are more complex but it is shown that the retrieval of CTOP remains possible in almost all situations while the information content on CGT appears to be insufficient in many cases, particularly for COT < 4 and CGT < 2-3 km.
Emmerdinger, Kathrin J.; Kuhbandner, Christof
2018-01-01
Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the “testing effect”). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure. PMID:29881365
Emmerdinger, Kathrin J; Kuhbandner, Christof
2018-01-01
Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the "testing effect"). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure.
Multi-view information fusion for automatic BI-RADS description of mammographic masses
NASA Astrophysics Data System (ADS)
Narvaez, Fabián; Díaz, Gloria; Romero, Eduardo
2011-03-01
Most CBIR-based CAD systems (Content Based Image Retrieval systems for Computer Aided Diagnosis) identify lesions that are eventually relevant. These systems base their analysis upon a single independent view. This article presents a CBIR framework which automatically describes mammographic masses with the BI-RADS lexicon, fusing information from the two mammographic views. After an expert selects a Region of Interest (RoI) at the two views, a CBIR strategy searches similar masses in the database by automatically computing the Mahalanobis distance between shape and texture feature vectors of the mammography. The strategy was assessed in a set of 400 cases, for which the suggested descriptions were compared with the ground truth provided by the data base. Two information fusion strategies were evaluated, allowing a retrieval precision rate of 89.6% in the best scheme. Likewise, the best performance obtained for shape, margin and pathology description, using a ROC methodology, was reported as AUC = 0.86, AUC = 0.72 and AUC = 0.85, respectively.
Image Retrieval by Color Semantics with Incomplete Knowledge.
ERIC Educational Resources Information Center
Corridoni, Jacopo M.; Del Bimbo, Alberto; Vicario, Enrico
1998-01-01
Presents a system which supports image retrieval by high-level chromatic contents, the sensations that color accordances generate on the observer. Surveys Itten's theory of color semantics and discusses image description and query specification. Presents examples of visual querying. (AEF)
NASA Astrophysics Data System (ADS)
Ebrahimi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre
2018-02-01
The objective of this study was to exploit the synergy between SMOS and SMAP based on vegetation optical depth (VOD) to improve brightness temperature (TB) simulations and land surface soil moisture (SM) retrievals in arid regions of the world. In the current operational algorithm of SMAP (level 2), vegetation water content (VWC) is considered as a proxy to compute VOD which is calculated by an empirical conversion function of NDVI. Avoiding the empirical estimation of VOD, the SMOS algorithm is used to retrieve simultaneously SM and VOD from TB observations. The present study attempted to improve SMAP TB simulations and SM retrievals by benefiting from the advantages of the SMOS (L-MEB) algorithm. This was achieved by using a synergy method based on replacing the default value of SMAP VOD with the retrieved value of VOD from the SMOS multi angular and bi-polarization observations of TB. The insitu SM measurements, used as reference SM in this study, were obtained from the International Soil Moisture Network (ISMN) over 180 stations located in arid regions of the world. Furthermore, four stations were randomly selected to analyze the temporal variations in VOD and SM. Results of the synergy method showed that the accuracy of the TB simulations and SM retrievals was respectively improved at 144 and 124 stations (out of a total of 180 stations) in terms of coefficient of determination (R2) and unbiased root mean squared error (UbRMSE). Analyzing the temporal variations in VOD showed that the SMOS VOD, conversely to the SMAP VOD, can better illustrate the presence of herbaceous plants and may be a better indicator of the seasonal changes in the vegetation density and biomass over the year.
NASA Technical Reports Server (NTRS)
Minnis, P.; Sun-Mack, S.; Bedka, K. M.; Yost, C. R.; Trepte, Q. Z.; Smith, W. L., Jr.; Painemal, D.; Chen, Y.; Palikonda, R.; Dong, X.;
2016-01-01
Validation is a key component of remote sensing that can take many different forms. The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) is applied to many different imager datasets including those from the geostationary satellites, Meteosat, Himiwari-8, INSAT-3D, GOES, and MTSAT, as well as from the low-Earth orbiting satellite imagers, MODIS, AVHRR, and VIIRS. While each of these imagers have similar sets of channels with wavelengths near 0.65, 3.7, 11, and 12 micrometers, many differences among them can lead to discrepancies in the retrievals. These differences include spatial resolution, spectral response functions, viewing conditions, and calibrations, among others. Even when analyzed with nearly identical algorithms, it is necessary, because of those discrepancies, to validate the results from each imager separately in order to assess the uncertainties in the individual parameters. This paper presents comparisons of various SatCORPS-retrieved cloud parameters with independent measurements and retrievals from a variety of instruments. These include surface and space-based lidar and radar data from CALIPSO and CloudSat, respectively, to assess the cloud fraction, height, base, optical depth, and ice water path; satellite and surface microwave radiometers to evaluate cloud liquid water path; surface-based radiometers to evaluate optical depth and effective particle size; and airborne in-situ data to evaluate ice water content, effective particle size, and other parameters. The results of comparisons are compared and contrasted and the factors influencing the differences are discussed.
Content-based image exploitation for situational awareness
NASA Astrophysics Data System (ADS)
Gains, David
2008-04-01
Image exploitation is of increasing importance to the enterprise of building situational awareness from multi-source data. It involves image acquisition, identification of objects of interest in imagery, storage, search and retrieval of imagery, and the distribution of imagery over possibly bandwidth limited networks. This paper describes an image exploitation application that uses image content alone to detect objects of interest, and that automatically establishes and preserves spatial and temporal relationships between images, cameras and objects. The application features an intuitive user interface that exposes all images and information generated by the system to an operator thus facilitating the formation of situational awareness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.
2013-05-22
Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on themore » cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.« less
A New Understanding for the Rain Rate retrieval of Attenuating Radars Measurement
NASA Astrophysics Data System (ADS)
Koner, P.; Battaglia, A.; Simmer, C.
2009-04-01
The retrieval of rain rate from the attenuated radar (e.g. Cloud Profiling Radar on board of CloudSAT in orbit since June 2006) is a challenging problem. ĹEcuyer and Stephens [1] underlined this difficulty (for rain rates larger than 1.5 mm/h) and suggested the need of additional information (like path-integrated attenuations (PIA) derived from surface reference techniques or precipitation water path estimated from co-located passive microwave radiometer) to constrain the retrieval. It is generally discussed based on the optimal estimation theory that there are no solutions without constraining the problem in a case of visible attenuation because there is no enough information content to solve the problem. However, when the problem is constrained by the additional measurement of PIA, there is a reasonable solution. This raises the spontaneous question: Is all information enclosed in this additional measurement? This also contradicts with the information theory because one measurement can introduce only one degree of freedom in the retrieval. Why is one degree of freedom so important in the above problem? This question cannot be explained using the estimation and information theories of OEM. On the other hand, Koner and Drummond [2] argued that the OEM is basically a regularization method, where a-priori covariance is used as a stabilizer and the regularization strength is determined by the choices of the a-priori and error covariance matrices. The regularization is required for the reduction of the condition number of Jacobian, which drives the noise injection from the measurement and inversion spaces to the state space in an ill-posed inversion. In this work, the above mentioned question will be discussed based on the regularization theory, error mitigation and eigenvalue mathematics. References 1. L'Ecuyer TS and Stephens G. An estimation based precipitation retrieval algorithm for attenuating radar. J. Appl. Met., 2002, 41, 272-85. 2. Koner PK, Drummond JR. A comparison of regularization techniques for atmospheric trace gases retrievals. JQSRT 2008; 109:514-26.
NASA Technical Reports Server (NTRS)
Koshak, William J.
2010-01-01
This viewgraph presentation describes the significant progress made in the flash-type discrimination algorithm development. The contents include: 1) Highlights of Progress for GLM-R3 Flash-Type discrimination Algorithm Development; 2) Maximum Group Area (MGA) Data; 3) Retrieval Errors from Simulations; and 4) Preliminary Global-scale Retrieval.
Document image retrieval through word shape coding.
Lu, Shijian; Li, Linlin; Tan, Chew Lim
2008-11-01
This paper presents a document retrieval technique that is capable of searching document images without OCR (optical character recognition). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.
ERIC Educational Resources Information Center
Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.
2011-01-01
Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…
NASA Astrophysics Data System (ADS)
Alexandrov, M. D.; Mishchenko, M. I.
2017-12-01
Accurate aerosol retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. We suggested to address this ill-posedness by flying a bistatic lidar system. Such a system would consist of formation flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and an additional platform hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar. Thus, bistatic lidar observations will be free of deficiencies affecting both monostatic lidar measurements (caused by the highly limited information content) and passive photopolarimetric measurements (caused by vertical integration and surface reflection).We present a preliminary aerosol retrieval algorithm for a bistatic lidar system consisting of a high spectral resolution lidar (HSRL) and an additional receiver flown in formation with it at a scattering angle of 165 degrees. This algorithm was applied to synthetic data generated using Mie-theory computations. The model/retrieval parameters in our tests were the effective radius and variance of the aerosol size distribution, complex refractive index of the particles, and their number concentration. Both mono- and bimodal aerosol mixtures were considered. Our algorithm allowed for definitive evaluation of error propagation from measurements to retrievals using a Monte Carlo technique, which involves random distortion of the observations and statistical characterization of the resulting retrieval errors. Our tests demonstrated that supplementing a conventional monostatic HSRL with an additional receiver dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols.
NASA-Langley Web-Based Operational Real-time Cloud Retrieval Products from Geostationary Satellites
NASA Technical Reports Server (NTRS)
Palikonda, Rabindra; Minnis, Patrick; Spangenberg, Douglas A.; Khaiyer, Mandana M.; Nordeen, Michele L.; Ayers, Jeffrey K.; Nguyen, Louis; Yi, Yuhong; Chan, P. K.; Trepte, Qing Z.;
2006-01-01
At NASA Langley Research Center (LaRC), radiances from multiple satellites are analyzed in near real-time to produce cloud products over many regions on the globe. These data are valuable for many applications such as diagnosing aircraft icing conditions and model validation and assimilation. This paper presents an overview of the multiple products available, summarizes the content of the online database, and details web-based satellite browsers and tools to access satellite imagery and products.
Data-Base Software For Tracking Technological Developments
NASA Technical Reports Server (NTRS)
Aliberti, James A.; Wright, Simon; Monteith, Steve K.
1996-01-01
Technology Tracking System (TechTracS) computer program developed for use in storing and retrieving information on technology and related patent information developed under auspices of NASA Headquarters and NASA's field centers. Contents of data base include multiple scanned still images and quick-time movies as well as text. TechTracS includes word-processing, report-editing, chart-and-graph-editing, and search-editing subprograms. Extensive keyword searching capabilities enable rapid location of technologies, innovators, and companies. System performs routine functions automatically and serves multiple users.
An overview of the Office of Space Flight satellite servicing program plan
NASA Technical Reports Server (NTRS)
Levin, George M.; Erwin, Harry O., Jr.
1987-01-01
A comprehensive program for the development of satellite servicing tools and techniques is being currently carried out by the Office of Space Flight. The program is based on a satellite servicing infrastructure formulated by analyzing satellite servicing requirements; the program is Shuttle-based and compatible with the Orbital Maneuvering Vehicle and Space Station. The content of the satellite servicing program is reviewed with reference to the tools, techniques, and procedures being developed for refueling (or consumables resupply), repairing, and retrieving.
Using Induction to Refine Information Retrieval Strategies
NASA Technical Reports Server (NTRS)
Baudin, Catherine; Pell, Barney; Kedar, Smadar
1994-01-01
Conceptual information retrieval systems use structured document indices, domain knowledge and a set of heuristic retrieval strategies to match user queries with a set of indices describing the document's content. Such retrieval strategies increase the set of relevant documents retrieved (increase recall), but at the expense of returning additional irrelevant documents (decrease precision). Usually in conceptual information retrieval systems this tradeoff is managed by hand and with difficulty. This paper discusses ways of managing this tradeoff by the application of standard induction algorithms to refine the retrieval strategies in an engineering design domain. We gathered examples of query/retrieval pairs during the system's operation using feedback from a user on the retrieved information. We then fed these examples to the induction algorithm and generated decision trees that refine the existing set of retrieval strategies. We found that (1) induction improved the precision on a set of queries generated by another user, without a significant loss in recall, and (2) in an interactive mode, the decision trees pointed out flaws in the retrieval and indexing knowledge and suggested ways to refine the retrieval strategies.
pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis.
Giannakopoulos, Theodoros
2015-01-01
Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library.
pyAudioAnalysis: An Open-Source Python Library for Audio Signal Analysis
Giannakopoulos, Theodoros
2015-01-01
Audio information plays a rather important role in the increasing digital content that is available today, resulting in a need for methodologies that automatically analyze such content: audio event recognition for home automations and surveillance systems, speech recognition, music information retrieval, multimodal analysis (e.g. audio-visual analysis of online videos for content-based recommendation), etc. This paper presents pyAudioAnalysis, an open-source Python library that provides a wide range of audio analysis procedures including: feature extraction, classification of audio signals, supervised and unsupervised segmentation and content visualization. pyAudioAnalysis is licensed under the Apache License and is available at GitHub (https://github.com/tyiannak/pyAudioAnalysis/). Here we present the theoretical background behind the wide range of the implemented methodologies, along with evaluation metrics for some of the methods. pyAudioAnalysis has been already used in several audio analysis research applications: smart-home functionalities through audio event detection, speech emotion recognition, depression classification based on audio-visual features, music segmentation, multimodal content-based movie recommendation and health applications (e.g. monitoring eating habits). The feedback provided from all these particular audio applications has led to practical enhancement of the library. PMID:26656189
BIRAM: a content-based image retrieval framework for medical images
NASA Astrophysics Data System (ADS)
Moreno, Ramon A.; Furuie, Sergio S.
2006-03-01
In the medical field, digital images are becoming more and more important for diagnostics and therapy of the patients. At the same time, the development of new technologies has increased the amount of image data produced in a hospital. This creates a demand for access methods that offer more than text-based queries for retrieval of the information. In this paper is proposed a framework for the retrieval of medical images that allows the use of different algorithms for the search of medical images by similarity. The framework also enables the search for textual information from an associated medical report and DICOM header information. The proposed system can be used for support of clinical decision making and is intended to be integrated with an open source picture, archiving and communication systems (PACS). The BIRAM has the following advantages: (i) Can receive several types of algorithms for image similarity search; (ii) Allows the codification of the report according to a medical dictionary, improving the indexing of the information and retrieval; (iii) The algorithms can be selectively applied to images with the appropriated characteristics, for instance, only in magnetic resonance images. The framework was implemented in Java language using a MS Access 97 database. The proposed framework can still be improved, by the use of regions of interest (ROI), indexing with slim-trees and integration with a PACS Server.
NASA Astrophysics Data System (ADS)
Sahoo, Swaroop
2011-12-01
The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio. This thesis also discusses Colorado State University's (CSU) participation in the European Space Agency (ESA)'s "Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapor Effects" (METAWAVE) experiment conducted in the fall of 2008. CSU deployed a ground-based network of three Compact Microwave Radiometers for Humidity profiling (CMR-Hs) in Rome to measure atmospheric brightness temperatures. These measurements were used to retrieve high-resolution 3-D atmospheric water vapor and its variation with time. High-resolution information about water vapor can be crucial for the mitigation of wet tropospheric path delay variations that limit the quality of Interferometric Synthetic Aperture Radar satellite interferograms. Three-dimensional water vapor retrieval makes use of radiative transfer theory, algebraic tomographic reconstruction and Bayesian optimal estimation coupled with Kalman filtering. In addition, spatial interpolation (kriging) is used to retrieve water vapor density at unsampled locations. 3-D humidity retrievals from Rome data with vertical and horizontal resolution of 0.5 km are presented. The water vapor retrieved from CMR-H measurements is compared with MM5 Mesoscale Model output, as well as with measurements from the Medium Resolution Imaging Spectrometer (MERIS) aboard ESA's ENVISAT and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.
Beyond Information Retrieval: Ways To Provide Content in Context.
ERIC Educational Resources Information Center
Wiley, Deborah Lynne
1998-01-01
Provides an overview of information retrieval from mainframe systems to Web search engines; discusses collaborative filtering, data extraction, data visualization, agent technology, pattern recognition, classification and clustering, and virtual communities. Argues that rather than huge data-storage centers and proprietary software, we need…
Practical life log video indexing based on content and context
NASA Astrophysics Data System (ADS)
Tancharoen, Datchakorn; Yamasaki, Toshihiko; Aizawa, Kiyoharu
2006-01-01
Today, multimedia information has gained an important role in daily life and people can use imaging devices to capture their visual experiences. In this paper, we present our personal Life Log system to record personal experiences in form of wearable video and environmental data; in addition, an efficient retrieval system is demonstrated to recall the desirable media. We summarize the practical video indexing techniques based on Life Log content and context to detect talking scenes by using audio/visual cues and semantic key frames from GPS data. Voice annotation is also demonstrated as a practical indexing method. Moreover, we apply body media sensors to record continuous life style and use body media data to index the semantic key frames. In the experiments, we demonstrated various video indexing results which provided their semantic contents and showed Life Log visualizations to examine personal life effectively.
Generating region proposals for histopathological whole slide image retrieval.
Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu; Shi, Jun
2018-06-01
Content-based image retrieval is an effective method for histopathological image analysis. However, given a database of huge whole slide images (WSIs), acquiring appropriate region-of-interests (ROIs) for training is significant and difficult. Moreover, histopathological images can only be annotated by pathologists, resulting in the lack of labeling information. Therefore, it is an important and challenging task to generate ROIs from WSI and retrieve image with few labels. This paper presents a novel unsupervised region proposing method for histopathological WSI based on Selective Search. Specifically, the WSI is over-segmented into regions which are hierarchically merged until the WSI becomes a single region. Nucleus-oriented similarity measures for region mergence and Nucleus-Cytoplasm color space for histopathological image are specially defined to generate accurate region proposals. Additionally, we propose a new semi-supervised hashing method for image retrieval. The semantic features of images are extracted with Latent Dirichlet Allocation and transformed into binary hashing codes with Supervised Hashing. The methods are tested on a large-scale multi-class database of breast histopathological WSIs. The results demonstrate that for one WSI, our region proposing method can generate 7.3 thousand contoured regions which fit well with 95.8% of the ROIs annotated by pathologists. The proposed hashing method can retrieve a query image among 136 thousand images in 0.29 s and reach precision of 91% with only 10% of images labeled. The unsupervised region proposing method can generate regions as predictions of lesions in histopathological WSI. The region proposals can also serve as the training samples to train machine-learning models for image retrieval. The proposed hashing method can achieve fast and precise image retrieval with small amount of labels. Furthermore, the proposed methods can be potentially applied in online computer-aided-diagnosis systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Development of a database for the verification of trans-ionospheric remote sensing systems
NASA Astrophysics Data System (ADS)
Leitinger, R.
2005-08-01
Remote sensing systems need verification by means of in-situ data or by means of model data. In the case of ionospheric occultation inversion, ionosphere tomography and other imaging methods on the basis of satellite-to-ground or satellite-to-satellite electron content, the availability of in-situ data with adequate spatial and temporal co-location is a very rare case, indeed. Therefore the method of choice for verification is to produce artificial electron content data with realistic properties, subject these data to the inversion/retrieval method, compare the results with model data and apply a suitable type of “goodness of fit” classification. Inter-comparison of inversion/retrieval methods should be done with sets of artificial electron contents in a “blind” (or even “double blind”) way. The set up of a relevant database for the COST 271 Action is described. One part of the database will be made available to everyone interested in testing of inversion/retrieval methods. The artificial electron content data are calculated by means of large-scale models that are “modulated” in a realistic way to include smaller scale and dynamic structures, like troughs and traveling ionospheric disturbances.
Implementing a DICOM-HL7 interface application
NASA Astrophysics Data System (ADS)
Fritz, Steven L.; Munjal, Sunita; Connors, James; Csipo, Deszu
1995-05-01
The DICOM standard, in addition to resolving certain problems with the ACR-NEMA 2.0 standard regarding network support and the clinical data dictionary, added new capabilities, in the form of study content notification and patient, study and results management services, intended to assist in interfacing between PACS and HIS or RIS systems. We have defined and implemented a mechanism that allows a DICOM application entity (AE) to interrogate an HL7 based RIS using DICOM services. The implementation involved development of a DICOM- HL7 gateway which converted between DICOM and HL7 messages to achieve the desired retrieval capability. This mechanism, based on the DICOM query/retrieve service, was used to interface a DeJarnette Research film digitizer to an IDXrad RIS at the University of Maryland Medical Systems hospital in Baltimore, Maryland. A C++ class library was developed for both DICOM and HL7 massaging, with several constructors used to convert between the two standards.
Use of controlled vocabularies to improve biomedical information retrieval tasks.
Pasche, Emilie; Gobeill, Julien; Vishnyakova, Dina; Ruch, Patrick; Lovis, Christian
2013-01-01
The high heterogeneity of biomedical vocabulary is a major obstacle for information retrieval in large biomedical collections. Therefore, using biomedical controlled vocabularies is crucial for managing these contents. We investigate the impact of query expansion based on controlled vocabularies to improve the effectiveness of two search engines. Our strategy relies on the enrichment of users' queries with additional terms, directly derived from such vocabularies applied to infectious diseases and chemical patents. We observed that query expansion based on pathogen names resulted in improvements of the top-precision of our first search engine, while the normalization of diseases degraded the top-precision. The expansion of chemical entities, which was performed on the second search engine, positively affected the mean average precision. We have shown that query expansion of some types of biomedical entities has a great potential to improve search effectiveness; therefore a fine-tuning of query expansion strategies could help improving the performances of search engines.
A new technique for fire risk estimation in the wildland urban interface
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Qu, J. J.; Hao, X.
A novel technique based on the physical variable of pre-ignition energy is proposed for assessing fire risk in the Grassland-Urban-Interface The physical basis lends meaning a site and season independent applicability possibilities for computing spread rates and ignition probabilities features contemporary fire risk indices usually lack The method requires estimates of grass moisture content and temperature A constrained radiative-transfer inversion scheme on MODIS NIR-SWIR reflectances which reduces solution ambiguity is used for grass moisture retrieval while MODIS land surface temperature emissivity products are used for retrieving grass temperature Subpixel urban contamination of the MODIS reflective and thermal signals over a Grassland-Urban-Interface pixel is corrected using periodic estimates of urban influence from high spatial resolution ASTER
Measurement of tag confidence in user generated contents retrieval
NASA Astrophysics Data System (ADS)
Lee, Sihyoung; Min, Hyun-Seok; Lee, Young Bok; Ro, Yong Man
2009-01-01
As online image sharing services are becoming popular, the importance of correctly annotated tags is being emphasized for precise search and retrieval. Tags created by user along with user-generated contents (UGC) are often ambiguous due to the fact that some tags are highly subjective and visually unrelated to the image. They cause unwanted results to users when image search engines rely on tags. In this paper, we propose a method of measuring tag confidence so that one can differentiate confidence tags from noisy tags. The proposed tag confidence is measured from visual semantics of the image. To verify the usefulness of the proposed method, experiments were performed with UGC database from social network sites. Experimental results showed that the image retrieval performance with confidence tags was increased.
NASA Astrophysics Data System (ADS)
Grassi, Davide; Sindoni, Giuseppe; D'Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico; Adriani, Alberto; Mura, Alessandro; Moriconi, Maria Luisa; Noschese, Raffaella; Cicchetti, Andrea; Piccioni, Giuseppe; Ignatiev, Nikolai; Maestri, Tiziano
2016-04-01
In this contribution, we detail the retrieval scheme that has been developed in the last few years for the analysis of the spectral data expected from the JIRAM experiment on board of the Juno NASA mission [1], beginning from the second half of 2016. Our focus is on the analysis of the thermal radiation in the 5 micron transparency window, in regions of lesser cloud opacity (namely, hot-spots). Moving from the preliminary analysis presented in Grassi et al., 2010 [2], a retrieval scheme has been developed and implemented as a complete end-to-end processing software. Performances in terms of fit quality and retrieval errors are discussed from tests on simulated spectra. Few examples of usage on VIMS-Cassini flyby data are also presented. Following the suggestion originally presented in Irwin et al., 1998 [3] for the analysis of the NIMS data, the state vector to be retrieved has been drastically simplified on physically sounding basis, aiming mostly to distinguish between the 'deep' content of minor gaseous component (water, ammonia, phosphine) and their relative humidity or fractional scale height in the upper troposphere. The retrieval code is based on a Bayesian scheme [4], complemented by a Metropolis algorithm plus simulated thermal annealing [5] for most problematic cases. The key parameters retrievable from JIRAM individual spectra are the ammonia and phosphine deep content, the water vapour relative humidity as well as the total aerosol opacity. We discuss in extent also the technical aspects related to the forward radiative transfer scheme: completeness of line databases used to generate correlated-k tables, comparison of different schemes for the treatment of aerosol scattering, assumption on clouds radiative properties and issues related to the analysis of dayside data. This work has been funded through ASI grants: I/010/10/0 and 2014-050-R.0. [1] Adriani et al., 2008 doi:10.1089/ast.2007.0167 [2] Grassi et al., 2010, doi: 10.1016/j.pss.2010.05.003 [3] Irwin et al., 1998, doi: 10.1029/98JE00948 [4] Rodgers, 2000, isbn: 9789810227401 [5] Press et al., 1996, isbn: 9780521574396
Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlaepfer, D.; Itten, K.I.; Borel, C.C.
1998-09-01
Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less
A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation
NASA Astrophysics Data System (ADS)
Kim, Seokhyeon; Parinussa, Robert M.; Liu, Yi. Y.; Johnson, Fiona M.; Sharma, Ashish
2015-08-01
A method for combining two microwave satellite soil moisture products by maximizing the temporal correlation with a reference data set has been developed. The method was applied to two global soil moisture data sets, Japan Aerospace Exploration Agency (JAXA) and Land Parameter Retrieval Model (LPRM), retrieved from the Advanced Microwave Scanning Radiometer 2 observations for the period 2012-2014. A global comparison revealed superior results of the combined product compared to the individual products against the reference data set of ERA-Interim volumetric water content. The global mean temporal correlation coefficient of the combined product with this reference was 0.52 which outperforms the individual JAXA (0.35) as well as the LPRM (0.45) product. Additionally, the performance was evaluated against in situ observations from the International Soil Moisture Network. The combined data set showed a significant improvement in temporal correlation coefficients in the validation compared to JAXA and minor improvements for the LPRM product.
Turning back the hands of time: autobiographical memories in dementia cued by a museum setting.
Miles, Amanda N; Fischer-Mogensen, Lise; Nielsen, Nadia H; Hermansen, Stine; Berntsen, Dorthe
2013-09-01
The current study examined the effects of cuing autobiographical memory retrieval in 12 older participants with dementia through immersion into a historically authentic environment that recreated the material and cultural context of the participants' youth. Participants conversed in either an everyday setting (control condition) or a museum setting furnished in early twentieth century style (experimental condition) while being presented with condition matched cues. Conversations were coded for memory content based on an adapted version of Levine, Svoboda, Hay, Winocur, and Moscovitch (2002) coding scheme. More autobiographical memories were recalled in the museum setting, and these memories were more elaborated, more spontaneous and included especially more internal (episodic) details compared to memories in the control condition. The findings have theoretical and practical implications by showing that the memories retrieved in the museum setting were both quantitatively and qualitatively different from memories retrieved during a control condition. Copyright © 2013 Elsevier Inc. All rights reserved.
Gross, Lydwine; Frouin, Robert; Dupouy, Cécile; André, Jean Michel; Thiria, Sylvie
2004-07-10
A neural network is developed to retrieve chlorophyll a concentration from marine reflectance by use of the five visible spectral bands of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The network, dedicated to the western equatorial Pacific Ocean, is calibrated with synthetic data that vary in terms of atmospheric content, solar zenith angle, and secondary pigments. Pigment variability is based on in situ data collected in the study region and is introduced through nonlinear modeling of phytoplankton absorption as a function of chlorophyll a, b, and c and photosynthetic and photoprotectant carotenoids. Tests performed on simulated yet realistic data show that chlorophyll a retrievals are substantially improved by use of the neural network instead of classical algorithms, which are sensitive to spectrally uncorrelated effects. The methodology is general, i.e., is applicable to regions other than the western equatorial Pacific Ocean.
Cortical reinstatement and the confidence and accuracy of source memory.
Thakral, Preston P; Wang, Tracy H; Rugg, Michael D
2015-04-01
Cortical reinstatement refers to the overlap between neural activity elicited during the encoding and the subsequent retrieval of an episode, and is held to reflect retrieved mnemonic content. Previous findings have demonstrated that reinstatement effects reflect the quality of retrieved episodic information as this is operationalized by the accuracy of source memory judgments. The present functional magnetic resonance imaging (fMRI) study investigated whether reinstatement-related activity also co-varies with the confidence of accurate source judgments. Participants studied pictures of objects along with their visual or spoken names. At test, they first discriminated between studied and unstudied pictures and then, for each picture judged as studied, they also judged whether it had been paired with a visual or auditory name, using a three-point confidence scale. Accuracy of source memory judgments- and hence the quality of the source-specifying information--was greater for high than for low confidence judgments. Modality-selective retrieval-related activity (reinstatement effects) also co-varied with the confidence of the corresponding source memory judgment. The findings indicate that the quality of the information supporting accurate judgments of source memory is indexed by the relative magnitude of content-selective, retrieval-related neural activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Bone age assessment by content-based image retrieval and case-based reasoning
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.
2011-03-01
Skeletal maturity is assessed visually by comparing hand radiographs to a standardized reference image atlas. Most common are the methods by Greulich & Pyle and Tanner & Whitehouse. For computer-aided diagnosis (CAD), local image regions of interest (ROI) such as the epiphysis or the carpal areas are extracted and evaluated. Heuristic approaches trying to automatically extract, measure and classify bones and distances between bones suffer from the high variability of biological material and the differences in bone development resulting from age, gender and ethnic origin. Content-based image retrieval (CBIR) provides a robust solution without delineating and measuring bones. In this work, epiphyseal ROIs (eROIS) of a hand radiograph are compared to previous cases with known age, mimicking a human observer. Leaving-one-out experiments are conducted on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the publicly available USC hand atlas. The similarity of the eROIs is assessed by a combination of cross-correlation, image distortion model, and Tamura texture features, yielding a mean error rate of 0.97 years and a variance of below 0.63 years. Furthermore, we introduce a publicly available online-demonstration system, where queries on the USC dataset as well as on uploaded radiographs are performed for instant CAD. In future, we plan to evaluate physician with CBIR-CAD against physician without CBIR-CAD rather than physician vs. CBIR-CAD.
Documents Similarity Measurement Using Field Association Terms.
ERIC Educational Resources Information Center
Atlam, El-Sayed; Fuketa, M.; Morita, K.; Aoe, Jun-ichi
2003-01-01
Discussion of text analysis and information retrieval and measurement of document similarity focuses on a new text manipulation system called FA (field association)-Sim that is useful for retrieving information in large heterogeneous texts and for recognizing content similarity in text excerpts. Discusses recall and precision, automatic indexing…
Image-based informatics for Preclinical Biomedical Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin Jr, Kenneth William; Aykac, Deniz; Price, Jeffery R
2006-01-01
In 2006, the New England Journal of Medicine selected medical imaging as one of the eleven most important innovations of the past 1,000 years, primarily due to its ability to allow physicians and researchers to visualize the very nature of disease. As a result of the broad-based adoption of micro imaging technologies, preclinical researchers today are generating terabytes of image data from both anatomic and functional imaging modes. In this paper we describe our early research to apply content-based image retrieval to index and manage large image libraries generated in the study of amyloid disease in mice. Amyloidosis is associatedmore » with diseases such as Alzheimer's, type 2 diabetes, and myeloma. In particular, we will focus on results to date in the area of small animal organ segmentation and description for CT, SPECT, and PET modes and present a small set of preliminary retrieval results for a specific disease state in kidney CT cross-sections.« less
Image-based Informatics for Preclinical Biomedical Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin Jr, Kenneth William; Aykac, Deniz; Muthusamy Govindasamy, Vijaya Priya
2006-01-01
In 2006, the New England Journal of Medicine selected medical imaging as one of the eleven most important innovations of the past 1,000 years, primarily due to its ability to allow physicians and researchers to visualize the very nature of disease. As a result of the broad-based adoption of micro imaging technologies, preclinical researchers today are generating terabytes of image data from both anatomic and functional imaging modes. In this paper we describe our early research to apply content-based image retrieval to index and manage large image libraries generated in the study of amyloid disease in mice. Amyloidosis is associatedmore » with diseases such as Alzheimer's, type 2 diabetes, chronic inflammation and myeloma. In particular, we will focus on results to date in the area of small animal organ segmentation and description for CT, SPECT, and PET modes and present a small set of preliminary retrieval results for a specific disease state in kidney CT crosssections.« less
Passage-Based Bibliographic Coupling: An Inter-Article Similarity Measure for Biomedical Articles
Liu, Rey-Long
2015-01-01
Biomedical literature is an essential source of biomedical evidence. To translate the evidence for biomedicine study, researchers often need to carefully read multiple articles about specific biomedical issues. These articles thus need to be highly related to each other. They should share similar core contents, including research goals, methods, and findings. However, given an article r, it is challenging for search engines to retrieve highly related articles for r. In this paper, we present a technique PBC (Passage-based Bibliographic Coupling) that estimates inter-article similarity by seamlessly integrating bibliographic coupling with the information collected from context passages around important out-link citations (references) in each article. Empirical evaluation shows that PBC can significantly improve the retrieval of those articles that biomedical experts believe to be highly related to specific articles about gene-disease associations. PBC can thus be used to improve search engines in retrieving the highly related articles for any given article r, even when r is cited by very few (or even no) articles. The contribution is essential for those researchers and text mining systems that aim at cross-validating the evidence about specific gene-disease associations. PMID:26440794
Annotating image ROIs with text descriptions for multimodal biomedical document retrieval
NASA Astrophysics Data System (ADS)
You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-01-01
Regions of interest (ROIs) that are pointed to by overlaid markers (arrows, asterisks, etc.) in biomedical images are expected to contain more important and relevant information than other regions for biomedical article indexing and retrieval. We have developed several algorithms that localize and extract the ROIs by recognizing markers on images. Cropped ROIs then need to be annotated with contents describing them best. In most cases accurate textual descriptions of the ROIs can be found from figure captions, and these need to be combined with image ROIs for annotation. The annotated ROIs can then be used to, for example, train classifiers that separate ROIs into known categories (medical concepts), or to build visual ontologies, for indexing and retrieval of biomedical articles. We propose an algorithm that pairs visual and textual ROIs that are extracted from images and figure captions, respectively. This algorithm based on dynamic time warping (DTW) clusters recognized pointers into groups, each of which contains pointers with identical visual properties (shape, size, color, etc.). Then a rule-based matching algorithm finds the best matching group for each textual ROI mention. Our method yields a precision and recall of 96% and 79%, respectively, when ground truth textual ROI data is used.
Passage-Based Bibliographic Coupling: An Inter-Article Similarity Measure for Biomedical Articles.
Liu, Rey-Long
2015-01-01
Biomedical literature is an essential source of biomedical evidence. To translate the evidence for biomedicine study, researchers often need to carefully read multiple articles about specific biomedical issues. These articles thus need to be highly related to each other. They should share similar core contents, including research goals, methods, and findings. However, given an article r, it is challenging for search engines to retrieve highly related articles for r. In this paper, we present a technique PBC (Passage-based Bibliographic Coupling) that estimates inter-article similarity by seamlessly integrating bibliographic coupling with the information collected from context passages around important out-link citations (references) in each article. Empirical evaluation shows that PBC can significantly improve the retrieval of those articles that biomedical experts believe to be highly related to specific articles about gene-disease associations. PBC can thus be used to improve search engines in retrieving the highly related articles for any given article r, even when r is cited by very few (or even no) articles. The contribution is essential for those researchers and text mining systems that aim at cross-validating the evidence about specific gene-disease associations.
Is there a need for biomedical CBIR systems in clinical practice? Outcomes from a usability study
NASA Astrophysics Data System (ADS)
Antani, Sameer; Xue, Zhiyun; Long, L. Rodney; Bennett, Deborah; Ward, Sarah; Thoma, George R.
2011-03-01
Articles in the literature routinely describe advances in Content Based Image Retrieval (CBIR) and its potential for improving clinical practice, biomedical research and education. Several systems have been developed to address particular needs, however, surprisingly few are found to be in routine practical use. Our collaboration with the National Cancer Institute (NCI) has identified a need to develop tools to annotate and search a collection of over 100,000 cervigrams and related, anonymized patient data. One such tool developed for a projected need for retrieving similar patient images is the prototype CBIR system, called CervigramFinder, which retrieves images based on the visual similarity of particular regions on the cervix. In this article we report the outcomes from a usability study conducted at a primary meeting of practicing experts. We used the study to not only evaluate the system for software errors and ease of use, but also to explore its "user readiness", and to identify obstacles that hamper practical use of such systems, in general. Overall, the participants in the study found the technology interesting and bearing great potential; however, several challenges need to be addressed before the technology can be adopted.
Global Interior Robot Localisation by a Colour Content Image Retrieval System
NASA Astrophysics Data System (ADS)
Chaari, A.; Lelandais, S.; Montagne, C.; Ahmed, M. Ben
2007-12-01
We propose a new global localisation approach to determine a coarse position of a mobile robot in structured indoor space using colour-based image retrieval techniques. We use an original method of colour quantisation based on the baker's transformation to extract a two-dimensional colour pallet combining as well space and vicinity-related information as colourimetric aspect of the original image. We conceive several retrieving approaches bringing to a specific similarity measure [InlineEquation not available: see fulltext.] integrating the space organisation of colours in the pallet. The baker's transformation provides a quantisation of the image into a space where colours that are nearby in the original space are also nearby in the output space, thereby providing dimensionality reduction and invariance to minor changes in the image. Whereas the distance [InlineEquation not available: see fulltext.] provides for partial invariance to translation, sight point small changes, and scale factor. In addition to this study, we developed a hierarchical search module based on the logic classification of images following rooms. This hierarchical module reduces the searching indoor space and ensures an improvement of our system performances. Results are then compared with those brought by colour histograms provided with several similarity measures. In this paper, we focus on colour-based features to describe indoor images. A finalised system must obviously integrate other type of signature like shape and texture.
Content-based image retrieval from a database of fracture images
NASA Astrophysics Data System (ADS)
Müller, Henning; Do Hoang, Phuong Anh; Depeursinge, Adrien; Hoffmeyer, Pierre; Stern, Richard; Lovis, Christian; Geissbuhler, Antoine
2007-03-01
This article describes the use of a medical image retrieval system on a database of 16'000 fractures, selected from surgical routine over several years. Image retrieval has been a very active domain of research for several years. It was frequently proposed for the medical domain, but only few running systems were ever tested in clinical routine. For the planning of surgical interventions after fractures, x-ray images play an important role. The fractures are classified according to exact fracture location, plus whether and to which degree the fracture is damaging articulations to see how complicated a reparation will be. Several classification systems for fractures exist and the classification plus the experience of the surgeon lead in the end to the choice of surgical technique (screw, metal plate, ...). This choice is strongly influenced by the experience and knowledge of the surgeons with respect to a certain technique. Goal of this article is to describe a prototype that supplies similar cases to an example to help treatment planning and find the most appropriate technique for a surgical intervention. Our database contains over 16'000 fracture images before and after a surgical intervention. We use an image retrieval system (GNU Image Finding Tool, GIFT) to find cases/images similar to an example case currently under observation. Problems encountered are varying illumination of images as well as strong anatomic differences between patients. Regions of interest are usually small and the retrieval system needs to focus on this region. Results show that GIFT is capable of supplying similar cases, particularly when using relevance feedback, on such a large database. Usual image retrieval is based on a single image as search target but for this application we have to select images by case as similar cases need to be found and not images. A few false positive cases often remain in the results but they can be sorted out quickly by the surgeons. Image retrieval can well be used for the planning of operations by supplying similar cases. A variety of challenges has been identified and partly solved (varying luminosity, small region of interested, case-based instead of image-based). This article mainly presents a case study to identify potential benefits and problems. Several steps for improving the system have been identified as well and will be described at the end of the paper.
Multiview Locally Linear Embedding for Effective Medical Image Retrieval
Shen, Hualei; Tao, Dacheng; Ma, Dianfu
2013-01-01
Content-based medical image retrieval continues to gain attention for its potential to assist radiological image interpretation and decision making. Many approaches have been proposed to improve the performance of medical image retrieval system, among which visual features such as SIFT, LBP, and intensity histogram play a critical role. Typically, these features are concatenated into a long vector to represent medical images, and thus traditional dimension reduction techniques such as locally linear embedding (LLE), principal component analysis (PCA), or laplacian eigenmaps (LE) can be employed to reduce the “curse of dimensionality”. Though these approaches show promising performance for medical image retrieval, the feature-concatenating method ignores the fact that different features have distinct physical meanings. In this paper, we propose a new method called multiview locally linear embedding (MLLE) for medical image retrieval. Following the patch alignment framework, MLLE preserves the geometric structure of the local patch in each feature space according to the LLE criterion. To explore complementary properties among a range of features, MLLE assigns different weights to local patches from different feature spaces. Finally, MLLE employs global coordinate alignment and alternating optimization techniques to learn a smooth low-dimensional embedding from different features. To justify the effectiveness of MLLE for medical image retrieval, we compare it with conventional spectral embedding methods. We conduct experiments on a subset of the IRMA medical image data set. Evaluation results show that MLLE outperforms state-of-the-art dimension reduction methods. PMID:24349277
An interference model of visual working memory.
Oberauer, Klaus; Lin, Hsuan-Yu
2017-01-01
The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
MPEG-7-based description infrastructure for an audiovisual content analysis and retrieval system
NASA Astrophysics Data System (ADS)
Bailer, Werner; Schallauer, Peter; Hausenblas, Michael; Thallinger, Georg
2005-01-01
We present a case study of establishing a description infrastructure for an audiovisual content-analysis and retrieval system. The description infrastructure consists of an internal metadata model and access tool for using it. Based on an analysis of requirements, we have selected, out of a set of candidates, MPEG-7 as the basis of our metadata model. The openness and generality of MPEG-7 allow using it in broad range of applications, but increase complexity and hinder interoperability. Profiling has been proposed as a solution, with the focus on selecting and constraining description tools. Semantic constraints are currently only described in textual form. Conformance in terms of semantics can thus not be evaluated automatically and mappings between different profiles can only be defined manually. As a solution, we propose an approach to formalize the semantic constraints of an MPEG-7 profile using a formal vocabulary expressed in OWL, which allows automated processing of semantic constraints. We have defined the Detailed Audiovisual Profile as the profile to be used in our metadata model and we show how some of the semantic constraints of this profile can be formulated using ontologies. To work practically with the metadata model, we have implemented a MPEG-7 library and a client/server document access infrastructure.
Regression techniques for oceanographic parameter retrieval using space-borne microwave radiometry
NASA Technical Reports Server (NTRS)
Hofer, R.; Njoku, E. G.
1981-01-01
Variations of conventional multiple regression techniques are applied to the problem of remote sensing of oceanographic parameters from space. The techniques are specifically adapted to the scanning multichannel microwave radiometer (SMRR) launched on the Seasat and Nimbus 7 satellites to determine ocean surface temperature, wind speed, and atmospheric water content. The retrievals are studied primarily from a theoretical viewpoint, to illustrate the retrieval error structure, the relative importances of different radiometer channels, and the tradeoffs between spatial resolution and retrieval accuracy. Comparisons between regressions using simulated and actual SMMR data are discussed; they show similar behavior.
Read, retrieve, connect and use: An intervention strategy for science and scientific literacy
NASA Astrophysics Data System (ADS)
Monahan, Kerryane T.
American students underachieve on local, state, national, and international assessments of science. Student performance on standardized assessments has driven numerous educational reforms including No Child Left Behind and Race to the Top with a resulting increased focus on student achievement. Local districts and schools struggle with how to improve student achievement in order to meet the requirements of state and federal legislation. International and national government officials extoll the value of science in driving the economic prosperity of a nation adding increased pressure to improve science scores in the United States. Moreover, to be effective decision-makers personally and within a democracy, citizens must be scientifically literate. Read, Retrieve, Connect and Use (RRCU) is an instructional strategy that combined state biology content standards, with the new Common Core Standards for Literacy in Science through evidenced-based literacy strategies recommended by the National Reading Panel. This study aimed to assess the efficacy of an intervention, RRCU to improve science content knowledge and literacy skills in Biology and Language Arts. The findings identified reading skill, as measured by FCAT Reading as predictive of Biology test scores indicating a close relationship between reading comprehension and the ability to learn and be assessed on science content knowledge. The data did not indicate RRCU was an effective means of improving student science content knowledge or literacy skills. However, teachers responded positively to the strategy as a means to reinforce content knowledge and support literacy skills. Future recommendations include improving the study design and expanding the use of the strategy to middle school to build a foundation of effective literacy skills students can use to cope with the depth and complexity of science content at the high school level.
Task Context and Organization in Free Recall
ERIC Educational Resources Information Center
Polyn, Sean M.; Norman, Kenneth A.; Kahana, Michael J.
2009-01-01
Prior work on organization in free recall has focused on the ways in which semantic and temporal information determine the order in which material is retrieved from memory. Tulving's theory of ecphory suggests that these organizational effects arise from the interaction of a retrieval cue with the contents of memory. Using the…
Retrieving Online Language Learning Resources: Classification and Quality
ERIC Educational Resources Information Center
Krajcso, Zita; Frimmel, Ulrike
2017-01-01
Foreign language teachers and learners use digital repositories frequently to find appropriate activities for their teaching and learning activities. The question is: How can content providers support them in finding exactly what they need and in retrieving high quality resources? This question has been discussed in the literature and in the…
Dow Jones News/Retrieval--An IndepthBxook.
ERIC Educational Resources Information Center
Dempsey, Tim
1984-01-01
This introduction to the nonbibliographic databases offered by the Dow Jones News/Retrieval Service describes file content and search strategies in four groups: Dow Jones Business and Economic News; Dow Jones Quotes (market prices for stocks and other securities); Financial and Investment Services; General News and Information Services. Examples…
NASA Astrophysics Data System (ADS)
Malenovsky, Zbynek; Homolova, Lucie; Janoutova, Ruzena; Landier, Lucas; Gastellu-Etchegorry, Jean-Philippe; Berthelot, Beatrice; Huck, Alexis
2016-08-01
In this study we investigated importance of the space- borne instrument Sentinel-2 red edge spectral bands and reconstructed red edge position (REP) for retrieval of the three eco-physiological plant parameters, leaf and canopy chlorophyll content and leaf area index (LAI), in case of maize agricultural fields and beech and spruce forest stands. Sentinel-2 spectral bands and REP of the investigated vegetation canopies were simulated in the Discrete Anisotropic Radiative Transfer (DART) model. Their potential for estimation of the plant parameters was assessed through training support vector regressions (SVR) and examining their P-vector matrices indicating significance of each input. The trained SVR were then applied on Sentinel-2 simulated images and the acquired estimates were cross-compared with results from high spatial resolution airborne retrievals. Results showed that contribution of REP was significant for canopy chlorophyll content, but less significant for leaf chlorophyll content and insignificant for leaf area index estimations. However, the red edge spectral bands contributed strongly to the retrievals of all parameters, especially canopy and leaf chlorophyll content. Application of SVR on Sentinel-2 simulated images demonstrated, in general, an overestimation of leaf chlorophyll content and an underestimation of LAI when compared to the reciprocal airborne estimates. In the follow-up investigation, we will apply the trained SVR algorithms on real Sentinel-2 multispectral images acquired during vegetation seasons 2015 and 2016.
Lange, Nicholas D; Buttaccio, Daniel R; Davelaar, Eddy J; Thomas, Rick P
2014-02-01
Research investigating top-down capture has demonstrated a coupling of working memory content with attention and eye movements. By capitalizing on this relationship, we have developed a novel methodology, called the memory activation capture (MAC) procedure, for measuring the dynamics of working memory content supporting complex cognitive tasks (e.g., decision making, problem solving). The MAC procedure employs briefly presented visual arrays containing task-relevant information at critical points in a task. By observing which items are preferentially fixated, we gain a measure of working memory content as the task evolves through time. The efficacy of the MAC procedure was demonstrated in a dynamic hypothesis generation task in which some of its advantages over existing methods for measuring changes in the contents of working memory over time are highlighted. In two experiments, the MAC procedure was able to detect the hypothesis that was retrieved and placed into working memory. Moreover, the results from Experiment 2 suggest a two-stage process following hypothesis retrieval, whereby the hypothesis undergoes a brief period of heightened activation before entering a lower activation state in which it is maintained for output. The results of both experiments are of additional general interest, as they represent the first demonstrations of top-down capture driven by participant-established WM content retrieved from long-term memory.
Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.
2015-01-01
We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different datasets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2 year dataset, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).
Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations
NASA Astrophysics Data System (ADS)
Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.
2015-06-01
We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data from a co-located Système d'Analyse par Observations Zénithales (SAOZ) spectrometer. The retrieved tropospheric VCDs are in good agreement with the different data sets with correlation coefficients and slopes close to or larger than 0.9. The potential of the presented ZS retrieval algorithm is further demonstrated by its successful application on a 2-year data set, acquired at the NDACC (Network for the Detection of Atmospheric Composition Change) station Observatoire de Haute Provence (OHP; Southern France).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guosheng
2013-03-15
Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term ofmore » condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.W.
1993-08-01
The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.
Word retrieval in picture descriptions produced by individuals with Alzheimer's disease
Kavé, Gitit; Goral, Mira
2016-01-01
What can tests of single-word production tell us about word retrieval in connected speech? We examined this question in 20 people with Alzheimer's disease (AD) and in 20 cognitively intact individuals. All participants completed tasks of picture naming and semantic fluency, and provided connected speech through picture descriptions. Picture descriptions were analyzed for total word output, percentages of content words, percentages of nouns, and percentages of pronouns out of all words, type-token ratio of all words and type-token ratio of nouns alone, mean frequency of all words and mean frequency of nouns alone, and mean word length. Individuals with AD performed worse than did cognitively intact individuals on the picture naming and semantic fluency tasks. They also produced a lower proportion of content words overall, a lower proportion of nouns, and a higher proportion of pronouns, as well as more frequent and shorter words on picture descriptions. Group differences in total word output and type-token ratios did not reach significance. Correlations between scores on tasks of single-word retrieval and measures of retrieval in picture descriptions emerged in the AD group but not in the control group. Scores on a picture naming task were associated with difficulties in word retrieval in connected speech in AD, while scores on a task of semantic verbal fluency were less useful in predicting measures of retrieval in context in this population. PMID:27171756
Content-based image retrieval with ontological ranking
NASA Astrophysics Data System (ADS)
Tsai, Shen-Fu; Tsai, Min-Hsuan; Huang, Thomas S.
2010-02-01
Images are a much more powerful medium of expression than text, as the adage says: "One picture is worth a thousand words." It is because compared with text consisting of an array of words, an image has more degrees of freedom and therefore a more complicated structure. However, the less limited structure of images presents researchers in the computer vision community a tough task of teaching machines to understand and organize images, especially when a limit number of learning examples and background knowledge are given. The advance of internet and web technology in the past decade has changed the way human gain knowledge. People, hence, can exchange knowledge with others by discussing and contributing information on the web. As a result, the web pages in the internet have become a living and growing source of information. One is therefore tempted to wonder whether machines can learn from the web knowledge base as well. Indeed, it is possible to make computer learn from the internet and provide human with more meaningful knowledge. In this work, we explore this novel possibility on image understanding applied to semantic image search. We exploit web resources to obtain links from images to keywords and a semantic ontology constituting human's general knowledge. The former maps visual content to related text in contrast to the traditional way of associating images with surrounding text; the latter provides relations between concepts for machines to understand to what extent and in what sense an image is close to the image search query. With the aid of these two tools, the resulting image search system is thus content-based and moreover, organized. The returned images are ranked and organized such that semantically similar images are grouped together and given a rank based on the semantic closeness to the input query. The novelty of the system is twofold: first, images are retrieved not only based on text cues but their actual contents as well; second, the grouping is different from pure visual similarity clustering. More specifically, the inferred concepts of each image in the group are examined in the context of a huge concept ontology to determine their true relations with what people have in mind when doing image search.
Enhanced Information Retrieval Using AJAX
NASA Astrophysics Data System (ADS)
Kachhwaha, Rajendra; Rajvanshi, Nitin
2010-11-01
Information Retrieval deals with the representation, storage, organization of, and access to information items. The representation and organization of information items should provide the user with easy access to the information with the rapid development of Internet, large amounts of digitally stored information is readily available on the World Wide Web. This information is so huge that it becomes increasingly difficult and time consuming for the users to find the information relevant to their needs. The explosive growth of information on the Internet has greatly increased the need for information retrieval systems. However, most of the search engines are using conventional information retrieval systems. An information system needs to implement sophisticated pattern matching tools to determine contents at a faster rate. AJAX has recently emerged as the new tool such the of information retrieval process of information retrieval can become fast and information reaches the use at a faster pace as compared to conventional retrieval systems.
Content based information retrieval in forensic image databases.
Geradts, Zeno; Bijhold, Jurrien
2002-03-01
This paper gives an overview of the various available image databases and ways of searching these databases on image contents. The developments in research groups of searching in image databases is evaluated and compared with the forensic databases that exist. Forensic image databases of fingerprints, faces, shoeprints, handwriting, cartridge cases, drugs tablets, and tool marks are described. The developments in these fields appear to be valuable for forensic databases, especially that of the framework in MPEG-7, where the searching in image databases is standardized. In the future, the combination of the databases (also DNA-databases) and possibilities to combine these can result in stronger forensic evidence.
The Relationship of Temporal Variations in SMAP Vegetation Optical Depth to Plant Hydraulic Behavior
NASA Astrophysics Data System (ADS)
Konings, A. G.
2016-12-01
The soil emissions measured by L-band radiometers such as that on the NASA Soil Moisture Active/Passive mission are modulated by vegetation cover as quantified by the soil scattering albedo and the vegetation optical depth (VOD). The VOD is linearly proportional to the total vegetation water content, which is dependent on both the biomass and relative water content of the plant. Biomass is expected to vary more slowly than water content. Variations in vegetation water content are highly informative as they are directly indicative of the degree of hydraulic stress (or lack thereof) experienced by the plant. However, robust retrievals are needed in order for SMAP VOD observations to be useful. This is complicated by the fact that multiple unknowns (soil moisture, VOD, and albedo) need to be determined from two highly correlated polarizations. This presentation will discuss the application to SMAP of a recently developed timeseries algorithm for VOD and albedo retrieval - the Multi-Temporal Dual Channel Algorithm MTDCA, and its interpretation for plant hydraulic applications. The MT-DCA is based on the assumption that, for consecutive overpasses at a given time of day, VOD varies more slowly than soil moisture. A two-overpass moving average can then be used to determine variations in VOD that are less sensitive to high-frequency noise than classical dual-channel algorithms. Seasonal variations of SMAP VOD are presented and compared to expected patterns based on rainfall and radiation seasonality. Taking advantage of the large diurnal variation (relative to the seasonal variation) of canopy water potention, diurnal variations (between 6AM and 6PM observations) of SMAP VOD are then used to calculate global variations in ecosystem-scale isohydricity - the degree of stomatal closure and xylem conductivity loss in response to water stress. Lastly, the effect of satellite sensing frequency and overpass time on water content across canopies of different height will be discussed.
Creating a classification of image types in the medical literature for visual categorization
NASA Astrophysics Data System (ADS)
Müller, Henning; Kalpathy-Cramer, Jayashree; Demner-Fushman, Dina; Antani, Sameer
2012-02-01
Content-based image retrieval (CBIR) from specialized collections has often been proposed for use in such areas as diagnostic aid, clinical decision support, and teaching. The visual retrieval from broad image collections such as teaching files, the medical literature or web images, by contrast, has not yet reached a high maturity level compared to textual information retrieval. Visual image classification into a relatively small number of classes (20-100) on the other hand, has shown to deliver good results in several benchmarks. It is, however, currently underused as a basic technology for retrieval tasks, for example, to limit the search space. Most classification schemes for medical images are focused on specific areas and consider mainly the medical image types (modalities), imaged anatomy, and view, and merge them into a single descriptor or classification hierarchy. Furthermore, they often ignore other important image types such as biological images, statistical figures, flowcharts, and diagrams that frequently occur in the biomedical literature. Most of the current classifications have also been created for radiology images, which are not the only types to be taken into account. With Open Access becoming increasingly widespread particularly in medicine, images from the biomedical literature are more easily available for use. Visual information from these images and knowledge that an image is of a specific type or medical modality could enrich retrieval. This enrichment is hampered by the lack of a commonly agreed image classification scheme. This paper presents a hierarchy for classification of biomedical illustrations with the goal of using it for visual classification and thus as a basis for retrieval. The proposed hierarchy is based on relevant parts of existing terminologies, such as the IRMA-code (Image Retrieval in Medical Applications), ad hoc classifications and hierarchies used in imageCLEF (Image retrieval task at the Cross-Language Evaluation Forum) and NLM's (National Library of Medicine) OpenI. Furtheron, mappings to NLM's MeSH (Medical Subject Headings), RSNA's RadLex (Radiological Society of North America, Radiology Lexicon), and the IRMA code are also attempted for relevant image types. Advantages derived from such hierarchical classification for medical image retrieval are being evaluated through benchmarks such as imageCLEF, and R&D systems such as NLM's OpenI. The goal is to extend this hierarchy progressively and (through adding image types occurring in the biomedical literature) to have a terminology for visual image classification based on image types distinguishable by visual means and occurring in the medical open access literature.
Natural language information retrieval in digital libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strzalkowski, T.; Perez-Carballo, J.; Marinescu, M.
In this paper we report on some recent developments in joint NYU and GE natural language information retrieval system. The main characteristic of this system is the use of advanced natural language processing to enhance the effectiveness of term-based document retrieval. The system is designed around a traditional statistical backbone consisting of the indexer module, which builds inverted index files from pre-processed documents, and a retrieval engine which searches and ranks the documents in response to user queries. Natural language processing is used to (1) preprocess the documents in order to extract content-carrying terms, (2) discover inter-term dependencies and buildmore » a conceptual hierarchy specific to the database domain, and (3) process user`s natural language requests into effective search queries. This system has been used in NIST-sponsored Text Retrieval Conferences (TREC), where we worked with approximately 3.3 GBytes of text articles including material from the Wall Street Journal, the Associated Press newswire, the Federal Register, Ziff Communications`s Computer Library, Department of Energy abstracts, U.S. Patents and the San Jose Mercury News, totaling more than 500 million words of English. The system have been designed to facilitate its scalability to deal with ever increasing amounts of data. In particular, a randomized index-splitting mechanism has been installed which allows the system to create a number of smaller indexes that can be independently and efficiently searched.« less
Structural scene analysis and content-based image retrieval applied to bone age assessment
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Brosig, André; Deserno, Thomas M.; Ott, Bastian; Günther, Rolf W.
2009-02-01
Radiological bone age assessment is based on global or local image regions of interest (ROI), such as epiphyseal regions or the area of carpal bones. Usually, these regions are compared to a standardized reference and a score determining the skeletal maturity is calculated. For computer-assisted diagnosis, automatic ROI extraction is done so far by heuristic approaches. In this work, we apply a high-level approach of scene analysis for knowledge-based ROI segmentation. Based on a set of 100 reference images from the IRMA database, a so called structural prototype (SP) is trained. In this graph-based structure, the 14 phalanges and 5 metacarpal bones are represented by nodes, with associated location, shape, as well as texture parameters modeled by Gaussians. Accordingly, the Gaussians describing the relative positions, relative orientation, and other relative parameters between two nodes are associated to the edges. Thereafter, segmentation of a hand radiograph is done in several steps: (i) a multi-scale region merging scheme is applied to extract visually prominent regions; (ii) a graph/sub-graph matching to the SP robustly identifies a subset of the 19 bones; (iii) the SP is registered to the current image for complete scene-reconstruction (iv) the epiphyseal regions are extracted from the reconstructed scene. The evaluation is based on 137 images of Caucasian males from the USC hand atlas. Overall, an error rate of 32% is achieved, for the 6 middle distal and medial/distal epiphyses, 23% of all extractions need adjustments. On average 9.58 of the 14 epiphyseal regions were extracted successfully per image. This is promising for further use in content-based image retrieval (CBIR) and CBIR-based automatic bone age assessment.
Advances in audio source seperation and multisource audio content retrieval
NASA Astrophysics Data System (ADS)
Vincent, Emmanuel
2012-06-01
Audio source separation aims to extract the signals of individual sound sources from a given recording. In this paper, we review three recent advances which improve the robustness of source separation in real-world challenging scenarios and enable its use for multisource content retrieval tasks, such as automatic speech recognition (ASR) or acoustic event detection (AED) in noisy environments. We present a Flexible Audio Source Separation Toolkit (FASST) and discuss its advantages compared to earlier approaches such as independent component analysis (ICA) and sparse component analysis (SCA). We explain how cues as diverse as harmonicity, spectral envelope, temporal fine structure or spatial location can be jointly exploited by this toolkit. We subsequently present the uncertainty decoding (UD) framework for the integration of audio source separation and audio content retrieval. We show how the uncertainty about the separated source signals can be accurately estimated and propagated to the features. Finally, we explain how this uncertainty can be efficiently exploited by a classifier, both at the training and the decoding stage. We illustrate the resulting performance improvements in terms of speech separation quality and speaker recognition accuracy.
Harvesting Intelligence in Multimedia Social Tagging Systems
NASA Astrophysics Data System (ADS)
Giannakidou, Eirini; Kaklidou, Foteini; Chatzilari, Elisavet; Kompatsiaris, Ioannis; Vakali, Athena
As more people adopt tagging practices, social tagging systems tend to form rich knowledge repositories that enable the extraction of patterns reflecting the way content semantics is perceived by the web users. This is of particular importance, especially in the case of multimedia content, since the availability of such content in the web is very high and its efficient retrieval using textual annotations or content-based automatically extracted metadata still remains a challenge. It is argued that complementing multimedia analysis techniques with knowledge drawn from web social annotations may facilitate multimedia content management. This chapter focuses on analyzing tagging patterns and combining them with content feature extraction methods, generating, thus, intelligence from multimedia social tagging systems. Emphasis is placed on using all available "tracks" of knowledge, that is tag co-occurrence together with semantic relations among tags and low-level features of the content. Towards this direction, a survey on the theoretical background and the adopted practices for analysis of multimedia social content are presented. A case study from Flickr illustrates the efficiency of the proposed approach.
Depolarization Lidar Determination Of Cloud-Base Microphysical Properties
NASA Astrophysics Data System (ADS)
Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S.; Siebesma, A. P.
2016-06-01
The links between multiple-scattering induced depolarization and cloud microphysical properties (e.g. cloud particle number density, effective radius, water content) have long been recognised. Previous efforts to use depolarization information in a quantitative manner to retrieve cloud microphysical cloud properties have also been undertaken but with limited scope and, arguably, success. In this work we present a retrieval procedure applicable to liquid stratus clouds with (quasi-)linear LWC profiles and (quasi-)constant number density profiles in the cloud-base region. This set of assumptions allows us to employ a fast and robust inversion procedure based on a lookup-table approach applied to extensive lidar Monte-Carlo multiple-scattering calculations. An example validation case is presented where the results of the inversion procedure are compared with simultaneous cloud radar observations. In non-drizzling conditions it was found, in general, that the lidar- only inversion results can be used to predict the radar reflectivity within the radar calibration uncertainty (2-3 dBZ). Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud base number considerations are also presented. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.
System for pathology categorization and retrieval in chest radiographs
NASA Astrophysics Data System (ADS)
Avni, Uri; Greenspan, Hayit; Konen, Eli; Sharon, Michal; Goldberger, Jacob
2011-03-01
In this paper we present an overview of a system we have been developing for the past several years for efficient image categorization and retrieval in large radiograph archives. The methodology is based on local patch representation of the image content, using a bag of visual words approach and similarity-based categorization with a kernel based SVM classifier. We show an application to pathology-level categorization of chest x-ray data, the most popular examination in radiology. Our study deals with pathology detection and identification of individual pathologies including right and left pleural effusion, enlarged heart and cases of enlarged mediastinum. The input from a radiologist provided a global label for the entire image (healthy/pathology), and the categorization was conducted on the entire image, with no need for segmentation algorithms or any geometrical rules. An automatic diagnostic-level categorization, even on such an elementary level as healthy vs pathological, provides a useful tool for radiologists on this popular and important examination. This is a first step towards similarity-based categorization, which has a major clinical implications for computer-assisted diagnostics.
A Bayesian approach to microwave precipitation profile retrieval
NASA Technical Reports Server (NTRS)
Evans, K. Franklin; Turk, Joseph; Wong, Takmeng; Stephens, Graeme L.
1995-01-01
A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. A multivariate lognormal prior probability distribution contains the covariance information about hydrometeor distribution that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrieval method is tested with data from the Advanced Microwave Precipitation Radiometer (10, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify the retrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysical information, and future improvements to the algorithm are suggested.
EPIC/DSCOVR's Oxygen Absorption Channels: A Cloud Profiling Information Content Analysis
NASA Astrophysics Data System (ADS)
Davis, A. B.; Merlin, G.; Labonnote, L. C.; Cornet, C.; Dubuisson, P.; Ferlay, N.; Parol, F.; Riedi, J.; Yang, Y.
2016-12-01
EPIC/DSCOVR has several spectral channels dedicated to cloud characterization, most notably O2 A- and B-band. Differential optical absorption spectroscopy (DOAS) ratios of in-band and reference channels are less prone to calibration error than the 4 individual signals. Using these ratios, we have replicated for mono-directional (quasi-backscattering) EPIC observations the recent cloud information content analysis by Merlin et al. (AMT-D,8:12709-12758,2015) that was focused on A-band-only but multi-angle observations by POLDER in the past, by AirMSPI in the present, and by 3MI and MAIA in the future. The methodology is based on extensive forward 1D radiative transfer (RT) computations using the ARTDECO model that implements a k-distribution technique for the absorbing (in-band) channels. These synthetic signals are combined into a Bayesian Rodgers-type framework for estimating posterior uncertainty on retrieved quantities. Recall that this formalism calls explicitly for: (1) estimates of instrument error, and (2) prior uncertainty on the retrieved quantities, to which we add (3) reasonable estimates of uncertainty in the non- or otherwise-retrieved properties. Wide ranges of cloud top heights (CTHs) and cloud geometrical thicknesses (CGTs) are examined for a representative selection of cloud optical thicknesses (COTs), solar angles, and surface reflectances. We found that CTH should be reliably retrieved from EPIC data under most circumstances as long as COT can be inferred from non-absorbing channels, and the bias from in-cloud absorption is removed. However, CGT will be hard to determine unless CTH is constrained by independent means. EPIC has several UV channels that could be brought to bear. These findings conflict those of Yang et al. (JQSRT,122:141-149,2013), so we also revisit that more preliminary study that did not account for a realistic level of residual instrument noise in the DOAS ratios. In conclusion, we believe that the present information content analysis will inform the EPIC/DSCOVR Level 2 algorithm development team about what cloud properties to target using the A/B-band channels, depending on the availability of other cloud information.
NASA Astrophysics Data System (ADS)
Steele-Dunne, Susan; Polo Bermejo, Jaime; Judge, Jasmeet; Bongiovanni, Tara; Chakrabarti, Subit; Liu, Pang-Wei; Bragdon, James; Hornbuckle, Brian
2017-04-01
Vegetation cover confounds soil moisture retrieval from both active and passive microwave remote sensing observations. Vegetation attenuates the signal from the soil as well as contributing to emission and scattering. The goal of this study was to characterize the vertical distribution of moisture within an agricultural canopy, to examine how this varies during the growing season and to determine the influence these changes have on emission and backscatter from the surface. To this end, an extensive campaign of destructive sampling was conducted in a rain-fed corn field at Buckeye, Iowa within the SMAPVEX16-IA study domain. The experiment duration extended from the beginning of IOP1 to the end of IOP2, i.e. from May 18 to August 16 2016. Destructive vegetation sampling was performed on most days upon which SMAP had both an ascending and a descending pass. On these days, destructive samples were collected at 6pm and 6pm unless the weather conditions were prohibitive. In addition to measuring the bulk vegetation water content for comparison to the SMAP retrieved VWC, the samples were split into leaves and stems. To study the vertical profiles, leaf moisture content was measured as a function of collar height and the stem was cut into 10cm sections. The influence of plant development on the bulk and profile VWC was clearly discernible in the observations. Diurnal variations in bulk VWC were relatively small due to moisture availability in the root zone. SMAP brightness temperatures, and tower-based observations from the University of Florida radiometer and radar systems were analyzed to investigate the impact of VWC variations on emission and backscatter. Dynamic variations in SMAP retrieved soil moisture were notably larger than those observed in-situ, particularly during the early growing season. This may be attributed to the difference between observed VWC and that used in the SMAP retrieval during the early growing season. Backscatter (and RVI) increased, as expected, in response to accumulating biomass, though retaining some sensitivity to soil moisture variations. Polarization-dependent diurnal differences of up to 2dB were observed in the backscatter from the fully grown corn canopy.
NASA Astrophysics Data System (ADS)
Mallepudi, Sri Abhishikth; Calix, Ricardo A.; Knapp, Gerald M.
2011-02-01
In recent years there has been a rapid increase in the size of video and image databases. Effective searching and retrieving of images from these databases is a significant current research area. In particular, there is a growing interest in query capabilities based on semantic image features such as objects, locations, and materials, known as content-based image retrieval. This study investigated mechanisms for identifying materials present in an image. These capabilities provide additional information impacting conditional probabilities about images (e.g. objects made of steel are more likely to be buildings). These capabilities are useful in Building Information Modeling (BIM) and in automatic enrichment of images. I2T methodologies are a way to enrich an image by generating text descriptions based on image analysis. In this work, a learning model is trained to detect certain materials in images. To train the model, an image dataset was constructed containing single material images of bricks, cloth, grass, sand, stones, and wood. For generalization purposes, an additional set of 50 images containing multiple materials (some not used in training) was constructed. Two different supervised learning classification models were investigated: a single multi-class SVM classifier, and multiple binary SVM classifiers (one per material). Image features included Gabor filter parameters for texture, and color histogram data for RGB components. All classification accuracy scores using the SVM-based method were above 85%. The second model helped in gathering more information from the images since it assigned multiple classes to the images. A framework for the I2T methodology is presented.
An active visual search interface for Medline.
Xuan, Weijian; Dai, Manhong; Mirel, Barbara; Wilson, Justin; Athey, Brian; Watson, Stanley J; Meng, Fan
2007-01-01
Searching the Medline database is almost a daily necessity for many biomedical researchers. However, available Medline search solutions are mainly designed for the quick retrieval of a small set of most relevant documents. Because of this search model, they are not suitable for the large-scale exploration of literature and the underlying biomedical conceptual relationships, which are common tasks in the age of high throughput experimental data analysis and cross-discipline research. We try to develop a new Medline exploration approach by incorporating interactive visualization together with powerful grouping, summary, sorting and active external content retrieval functions. Our solution, PubViz, is based on the FLEX platform designed for interactive web applications and its prototype is publicly available at: http://brainarray.mbni.med.umich.edu/Brainarray/DataMining/PubViz.
Shared decision making: empowering the bedside nurse.
Slack, Stephanie M; Boguslawski, Jean M; Eickhoff, Rachel M; Klein, Kristi A; Pepin, Teresa M; Schrandt, Kevin; Wise, Carrie A; Zylstra, Jody A
2005-12-01
Shared decision making is a process that has empowered specialty nurses at the Mayo Clinic in Rochester, MN, to solve a practice concern. Staff nurses recognized a lack of concise, collated information available that described what nurses need to know when caring for patients receiving chemotherapy. Many aspects of the administration process were knowledge and experience based and not easily retrievable. The Hematology/Oncology/Blood and Marrow Transplant Clinical Practice Committee identified this as a significant practice issue. Ideas were brainstormed regarding how to make the information available to nursing colleagues. The Chemotherapy Yellow Pages is a resource that was developed to facilitate the rapid retrieval of pertinent information for bedside nurses. The content of this article outlines a'model of shared decision making and the processes used to address and resolve the practice concern.
NASA Technical Reports Server (NTRS)
Russell, Philip B.; Bauman, Jill J.
2000-01-01
This SAGE II Science Team task focuses on the development of a multi-wavelength, multi- sensor Look-Up-Table (LUT) algorithm for retrieving information about stratospheric aerosols from global satellite-based observations of particulate extinction. The LUT algorithm combines the 4-wavelength SAGE II extinction measurements (0.385 <= lambda <= 1.02 microns) with the 7.96 micron and 12.82 micron extinction measurements from the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument, thus increasing the information content available from either sensor alone. The algorithm uses the SAGE II/CLAES composite spectra in month-latitude-altitude bins to retrieve values and uncertainties of particle effective radius R(sub eff), surface area S, volume V and size distribution width sigma(sub g).
Extraction of composite visual objects from audiovisual materials
NASA Astrophysics Data System (ADS)
Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal
1999-08-01
An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.
Science information systems: Archive, access, and retrieval
NASA Technical Reports Server (NTRS)
Campbell, William J.
1991-01-01
The objective of this research is to develop technology for the automated characterization and interactive retrieval and visualization of very large, complex scientific data sets. Technologies will be developed for the following specific areas: (1) rapidly archiving data sets; (2) automatically characterizing and labeling data in near real-time; (3) providing users with the ability to browse contents of databases efficiently and effectively; (4) providing users with the ability to access and retrieve system independent data sets electronically; and (5) automatically alerting scientists to anomalies detected in data.
Semantic Storyboard of Judicial Debates: A Novel Multimedia Summarization Environment
ERIC Educational Resources Information Center
Fersini, E.; Sartori, F.
2012-01-01
Purpose: The need of tools for content analysis, information extraction and retrieval of multimedia objects in their native form is strongly emphasized into the judicial domain: digital videos represent a fundamental informative source of events occurring during judicial proceedings that should be stored, organized and retrieved in short time and…
Information Storage and Retrieval Scientific Report No. ISR-22.
ERIC Educational Resources Information Center
Salton, Gerard
The twenty-second in a series, this report describes research in information organization and retrieval conducted by the Department of Computer Science at Cornell University. The report covers work carried out during the period summer 1972 through summer 1974 and is divided into four parts: indexing theory, automatic content analysis, feedback…
NASA Astrophysics Data System (ADS)
Coddington, O. M.; Vukicevic, T.; Schmidt, K. S.; Platnick, S.
2017-08-01
We rigorously quantify the probability of liquid or ice thermodynamic phase using only shortwave spectral channels specific to the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer, Visible Infrared Imaging Radiometer Suite, and the notional future Plankton, Aerosol, Cloud, ocean Ecosystem imager. The results show that two shortwave-infrared channels (2135 and 2250 nm) provide more information on cloud thermodynamic phase than either channel alone; in one case, the probability of ice phase retrieval increases from 65 to 82% by combining 2135 and 2250 nm channels. The analysis is performed with a nonlinear statistical estimation approach, the GEneralized Nonlinear Retrieval Analysis (GENRA). The GENRA technique has previously been used to quantify the retrieval of cloud optical properties from passive shortwave observations, for an assumed thermodynamic phase. Here we present the methodology needed to extend the utility of GENRA to a binary thermodynamic phase space (i.e., liquid or ice). We apply formal information content metrics to quantify our results; two of these (mutual and conditional information) have not previously been used in the field of cloud studies.
Dynamic storage in resource-scarce browsing multimedia applications
NASA Astrophysics Data System (ADS)
Elenbaas, Herman; Dimitrova, Nevenka
1998-10-01
In the convergence of information and entertainment there is a conflict between the consumer's expectation of fast access to high quality multimedia content through narrow bandwidth channels versus the size of this content. During the retrieval and information presentation of a multimedia application there are two problems that have to be solved: the limited bandwidth during transmission of the retrieved multimedia content and the limited memory for temporary caching. In this paper we propose an approach for latency optimization in information browsing applications. We proposed a method for flattening hierarchically linked documents in a manner convenient for network transport over slow channels to minimize browsing latency. Flattening of the hierarchy involves linearization, compression and bundling of the document nodes. After the transfer, the compressed hierarchy is stored on a local device where it can be partly unbundled to fit the caching limits at the local site while giving the user availability to the content.
Quantitative Measurements of Autobiographical Memory Content
Mainetti, Matteo; Ascoli, Giorgio A.
2012-01-01
Autobiographical memory (AM), subjective recollection of past experiences, is fundamental in everyday life. Nevertheless, characterization of the spontaneous occurrence of AM, as well as of the number and types of recollected details, remains limited. The CRAM (Cue-Recalled Autobiographical Memory) test (http://cramtest.info) adapts and combines the cue-word method with an assessment that collects counts of details recalled from different life periods. The SPAM (Spontaneous Probability of Autobiographical Memories) protocol samples introspection during everyday activity, recording memory duration and frequency. These measures provide detailed, naturalistic accounts of AM content and frequency, quantifying essential dimensions of recollection. AM content (∼20 details/recollection) decreased with the age of the episode, but less drastically than the probability of reporting remote compared to recent memories. AM retrieval was frequent (∼20/hour), each memory lasting ∼30 seconds. Testable hypotheses of the specific content retrieved in a fixed time from given life periods are presented. PMID:23028629
A hierarchical SVG image abstraction layer for medical imaging
NASA Astrophysics Data System (ADS)
Kim, Edward; Huang, Xiaolei; Tan, Gang; Long, L. Rodney; Antani, Sameer
2010-03-01
As medical imaging rapidly expands, there is an increasing need to structure and organize image data for efficient analysis, storage and retrieval. In response, a large fraction of research in the areas of content-based image retrieval (CBIR) and picture archiving and communication systems (PACS) has focused on structuring information to bridge the "semantic gap", a disparity between machine and human image understanding. An additional consideration in medical images is the organization and integration of clinical diagnostic information. As a step towards bridging the semantic gap, we design and implement a hierarchical image abstraction layer using an XML based language, Scalable Vector Graphics (SVG). Our method encodes features from the raw image and clinical information into an extensible "layer" that can be stored in a SVG document and efficiently searched. Any feature extracted from the raw image including, color, texture, orientation, size, neighbor information, etc., can be combined in our abstraction with high level descriptions or classifications. And our representation can natively characterize an image in a hierarchical tree structure to support multiple levels of segmentation. Furthermore, being a world wide web consortium (W3C) standard, SVG is able to be displayed by most web browsers, interacted with by ECMAScript (standardized scripting language, e.g. JavaScript, JScript), and indexed and retrieved by XML databases and XQuery. Using these open source technologies enables straightforward integration into existing systems. From our results, we show that the flexibility and extensibility of our abstraction facilitates effective storage and retrieval of medical images.
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-01-01
This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
NASA Astrophysics Data System (ADS)
Jia, S.; Kim, S. H.; Nghiem, S. V.; Kafatos, M.
2017-12-01
Live fuel moisture (LFM) is the water content of live herbaceous plants expressed as a percentage of the oven-dry weight of plant. It is a critical parameter in fire ignition in Mediterranean climate and routinely measured in sites selected by fire agencies across the U.S. Vegetation growing cycle, meteorological metrics, soil type, and topography all contribute to the seasonal and inter-annual variation of LFM, and therefore, the risk of wildfire. The optical remote sensing-based vegetation indices (VIs) have been used to estimate the LFM. Comparing to the VIs, microwave remote sensing products have advantages like less saturation effect in greenness and representing the water content of the vegetation cover. In this study, we established three models to evaluate the predictability of LFM in Southern California using MODIS NDVI, vegetation temperature condition index (VTCI) from downscaled Soil Moisture Active Passive (SMAP) products, and vegetation optical depth (VOD) derived by Land Parameter Retrieval Model. Other ancillary variables, such as topographic factors (aspects and slope) and meteorological metrics (air temperature, precipitation, and relative humidity), are also considered in the models. The model results revealed an improvement of LFM estimation from SMAP products and VOD, despite the uncertainties introduced in the downscaling and parameter retrieval. The estimation of LFM using remote sensing data can provide an assessment of wildfire danger better than current methods using NDVI-based growing seasonal index. Future study will test the VOD estimation from SMAP data using the multi-temporal dual channel algorithm (MT-DCA) and extend the LFM modeling to a regional scale.
Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayancsik, B.A.
1994-10-13
During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less
Remote Handled WIPP Canisters at Los Alamos National Laboratory Characterized for Retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, J.; Gonzales, W.
2007-07-01
The Los Alamos National Laboratory (LANL) is pursuing retrieval, transportation, and disposal of 16 remote handled transuranic waste canisters stored below ground in shafts since 1994. These canisters were retrievably stored in the shafts to await Nuclear Regulatory Commission certification of the Model Number RH-TRU 72B transportation cask and authorization of the Waste Isolation Pilot Plant (WIPP) to accept the canisters for disposal. Retrieval planning included radiological characterization and visual inspection of the canisters to confirm historical records, verify container integrity, determine proper personnel protection for the retrieval operations, provide radiological dose and exposure rate data for retrieval operations, andmore » to provide exterior radiological contamination data. The radiological characterization and visual inspection of the canisters was performed in May 2006. The effort required the development of remote techniques and equipment due to the potential for personnel exposure to radiological doses approaching 300 R/hr. Innovations included the use of two nested 1.5 meter (m) (5-feet [ft]) long concrete culvert pipes (1.1-m [42 inch (in.)] and 1.5-m [60-in] diameter, respectively) as radiological shielding and collapsible electrostatic dusting wands to collect radiological swipe samples from the annular space between the canister and shaft wall. Visual inspection indicated that the canisters are in good condition with little or no rust, the welded seams are intact, and ten of the canisters include hydrogen gas sampling equipment on the pintle that will have to be removed prior to retrieval. The visual inspection also provided six canister identification numbers that matched historical storage records. The exterior radiological data indicated alpha and beta contamination below LANL release criteria and radiological dose and exposure rates lower than expected based upon historical data and modeling of the canister contents. (authors)« less
NASA Astrophysics Data System (ADS)
Medina, H.; Romano, N.; Chirico, G. B.
2014-07-01
This study presents a dual Kalman filter (DSUKF - dual standard-unscented Kalman filter) for retrieving states and parameters controlling the soil water dynamics in a homogeneous soil column, by assimilating near-surface state observations. The DSUKF couples a standard Kalman filter for retrieving the states of a linear solver of the Richards equation, and an unscented Kalman filter for retrieving the parameters of the soil hydraulic functions, which are defined according to the van Genuchten-Mualem closed-form model. The accuracy and the computational expense of the DSUKF are compared with those of the dual ensemble Kalman filter (DEnKF) implemented with a nonlinear solver of the Richards equation. Both the DSUKF and the DEnKF are applied with two alternative state-space formulations of the Richards equation, respectively differentiated by the type of variable employed for representing the states: either the soil water content (θ) or the soil water matric pressure head (h). The comparison analyses are conducted with reference to synthetic time series of the true states, noise corrupted observations, and synthetic time series of the meteorological forcing. The performance of the retrieval algorithms are examined accounting for the effects exerted on the output by the input parameters, the observation depth and assimilation frequency, as well as by the relationship between retrieved states and assimilated variables. The uncertainty of the states retrieved with DSUKF is considerably reduced, for any initial wrong parameterization, with similar accuracy but less computational effort than the DEnKF, when this is implemented with ensembles of 25 members. For ensemble sizes of the same order of those involved in the DSUKF, the DEnKF fails to provide reliable posterior estimates of states and parameters. The retrieval performance of the soil hydraulic parameters is strongly affected by several factors, such as the initial guess of the unknown parameters, the wet or dry range of the retrieved states, the boundary conditions, as well as the form (h-based or θ-based) of the state-space formulation. Several analyses are reported to show that the identifiability of the saturated hydraulic conductivity is hindered by the strong correlation with other parameters of the soil hydraulic functions defined according to the van Genuchten-Mualem closed-form model.
Deliberate and Crisis Action Planning and Execution Segments Increment 2B (DCAPES Inc 2B)
2016-03-01
2016 Major Automated Information System Annual Report Deliberate and Crisis Action Planning and Execution Segments Increment 2B (DCAPES Inc 2B...Defense Acquisition Management Information Retrieval (DAMIR) UNCLASSIFIED DCAPES Inc 2B 2016 MAR UNCLASSIFIED 2 Table of Contents Common...Logistics DCAPES Inc 2B 2016 MAR UNCLASSIFIED 3 Lt Col Christopher Thrower 201 East Moore Drive Building 856, Room 154 Maxwell Air Force Base-Gunter
Placing User-Generated Content on the Map with Confidence
2014-11-03
Terms Theory,Algorithms Keywords Geographic information retrieval, Geolocation 1. INTRODUCTION We describe a method that places on the map short text...we collected using twitter4j, a Java library for the Twitter API . After filtering, there were 44,289 documents in the Twitter test set We evaluate how...Baldwin. Text-based twitter user geolocation prediction. J. Artif. Intell. Res.(JAIR), 49:451–500, 2014. [4] C. Hauff, B. Thomee, and M. Trevisiol
A Depolarisation Lidar Based Method for the Determination of Liquid-Cloud Microphysical Properties.
NASA Astrophysics Data System (ADS)
Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; De Roode, S. R.; Siebesma, P.
2014-12-01
The fact that polarisation lidars measure a multiple-scattering induced depolarisation signal in liquid clouds is well-known. The depolarisation signal depends on the lidar characteristics (e.g. wavelength and field-of-view) as well as the cloud properties (e.g. liquid water content (LWC) and cloud droplet number concentration (CDNC)). Previous efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear LWC profiles and (quasi-)constant CDNC in the cloud base region. Limiting the applicability of the procedure in this manner allows us to reduce the cloud variables to two parameters (namely liquid water content lapse-rate and the CDNC). This simplification, in turn, allows us to employ a robust optimal-estimation inversion using pre-computed look-up-tables produced using lidar Monte-Carlo multiple-scattering simulations. Here, we describe the theory behind the inversion procedure and apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data covering to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived CDNC are also presented. The results are seen to be consistent with previous studies based on aircraft-based in situ measurements.
A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties
NASA Astrophysics Data System (ADS)
Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S. R.; Siebesma, A. P.
2015-01-01
The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple scattering is well known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field of view) as well as the cloud macrophysical (e.g. cloud-base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud-droplet number density in the cloud-base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up tables produced using extensive lidar Monte Carlo (MC) multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation (LES) model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud-droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.
A Depolarisation lidar based method for the determination of liquid-cloud microphysical properties
NASA Astrophysics Data System (ADS)
Donovan, David; Klein Baltink, Henk; Henzing, Bas; de Roode, Stephen; Siebesma, Pier
2015-04-01
The fact that polarisation lidars measure a~depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. cloud base altitude) and microphysical (e.g. effective radius, liquid water content) properties. Efforts seeking to use depolarisation information in a~quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a~retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a~fixed distance above cloud-base). This simplification, in turn, allows us to employ a~fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a~range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2--3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a~comparison between ground-based aerosol number concentration and lidar-derived cloud droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.
NASA Technical Reports Server (NTRS)
Atlas, Robert (Technical Monitor); Joiner, Joanna; Vasikov, Alexander; Flittner, David; Gleason, James; Bhartia, P. K.
2002-01-01
Reliable cloud pressure estimates are needed for accurate retrieval of ozone and other trace gases using satellite-borne backscatter ultraviolet (buv) instruments such as the global ozone monitoring experiment (GOME). Cloud pressure can be derived from buv instruments by utilizing the properties of rotational-Raman scattering (RRS) and absorption by O2-O2. In this paper we estimate cloud pressure from GOME observations in the 355-400 nm spectral range using the concept of a Lambertian-equivalent reflectivity (LER) surface. GOME has full spectral coverage in this range at relatively high spectral resolution with a very high signal-to-noise ratio. This allows for much more accurate estimates of cloud pressure than were possible with its predecessors SBUV and TOMS. We also demonstrate the potential capability to retrieve chlorophyll content with full-spectral buv instruments. We compare our retrieved LER cloud pressure with cloud top pressures derived from the infrared ATSR instrument on the same satellite. The findings confirm results from previous studies that showed retrieved LER cloud pressures from buv observations are systematically higher than IR-derived cloud-top pressure. Simulations using Mie-scattering radiative transfer algorithms that include O2-O2 absorption and RRS show that these differences can be explained by increased photon path length within and below cloud.
Automatic medical image annotation and keyword-based image retrieval using relevance feedback.
Ko, Byoung Chul; Lee, JiHyeon; Nam, Jae-Yeal
2012-08-01
This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric-local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to each annotated keyword by combining probabilities of random forests with predefined body relation graph. To overcome the limitation of keyword-based image retrieval, we combine our image retrieval system with relevance feedback mechanism based on visual feature and pattern classifier. Compared with other annotation and relevance feedback algorithms, the proposed method shows both improved annotation performance and accurate retrieval results.
NASA Technical Reports Server (NTRS)
Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy
2011-01-01
Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.
Do, Bao H; Wu, Andrew; Biswal, Sandip; Kamaya, Aya; Rubin, Daniel L
2010-11-01
Storing and retrieving radiology cases is an important activity for education and clinical research, but this process can be time-consuming. In the process of structuring reports and images into organized teaching files, incidental pathologic conditions not pertinent to the primary teaching point can be omitted, as when a user saves images of an aortic dissection case but disregards the incidental osteoid osteoma. An alternate strategy for identifying teaching cases is text search of reports in radiology information systems (RIS), but retrieved reports are unstructured, teaching-related content is not highlighted, and patient identifying information is not removed. Furthermore, searching unstructured reports requires sophisticated retrieval methods to achieve useful results. An open-source, RadLex(®)-compatible teaching file solution called RADTF, which uses natural language processing (NLP) methods to process radiology reports, was developed to create a searchable teaching resource from the RIS and the picture archiving and communication system (PACS). The NLP system extracts and de-identifies teaching-relevant statements from full reports to generate a stand-alone database, thus converting existing RIS archives into an on-demand source of teaching material. Using RADTF, the authors generated a semantic search-enabled, Web-based radiology archive containing over 700,000 cases with millions of images. RADTF combines a compact representation of the teaching-relevant content in radiology reports and a versatile search engine with the scale of the entire RIS-PACS collection of case material. ©RSNA, 2010
Blurry-frame detection and shot segmentation in colonoscopy videos
NASA Astrophysics Data System (ADS)
Oh, JungHwan; Hwang, Sae; Tavanapong, Wallapak; de Groen, Piet C.; Wong, Johnny
2003-12-01
Colonoscopy is an important screening procedure for colorectal cancer. During this procedure, the endoscopist visually inspects the colon. Human inspection, however, is not without error. We hypothesize that colonoscopy videos may contain additional valuable information missed by the endoscopist. Video segmentation is the first necessary step for the content-based video analysis and retrieval to provide efficient access to the important images and video segments from a large colonoscopy video database. Based on the unique characteristics of colonoscopy videos, we introduce a new scheme to detect and remove blurry frames, and segment the videos into shots based on the contents. Our experimental results show that the average precision and recall of the proposed scheme are over 90% for the detection of non-blurry images. The proposed method of blurry frame detection and shot segmentation is extensible to the videos captured from other endoscopic procedures such as upper gastrointestinal endoscopy, enteroscopy, cystoscopy, and laparoscopy.
A new retrieval method for the ice water content of cirrus using data from the CloudSat and CALIPSO
NASA Astrophysics Data System (ADS)
Pan, Honglin; Bu, Lingbing; Kumar, K. Raghavendra; Gao, Haiyang; Huang, Xingyou; Zhang, Wentao
2017-08-01
The CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) are the members of satellite observation system of A-train to achieve the quasi-synchronization observation on the same orbit. With the help of active (CALIOP and CPR) and passive payloads from these two satellites, respectively, unprecedented detailed information of microphysical properties of ice cloud can be retrieved. The ice water content (IWC) is regarded as one of the most important microphysical characteristics of cirrus for its prominent role in cloud radiative forcing. In this paper, we proposed a new joint (Combination) retrieval method using the full advantages of different well established retrieval methods, namely the LIDAR method (for the region Lidar-only), the MWCR method (for the region Radar-only), and Wang method (for the region Lidar-Radar) proposed by Wang et al. (2002). In retrieval of cirrus IWC, empirical formulas of the exponential type were used for both thinner cirrus (detected by Lidar-only), thicker cirrus (detected by radar-only), and the part of cirrus detected by both, respectively. In the present study, the comparison of various methods verified that our proposed new joint method is more comprehensive, rational and reliable. Further, the retrieval information of cirrus is complete and accurate for the region that Lidar cannot penetrate and Radar is insensitive. On the whole, the retrieval results of IWC showed certain differences retrieved from the joint method, Ca&Cl, and ICARE which can be interpreted from the different hypothesis of microphysical characteristics and parameters used in the retrieval method. In addition, our joint method only uses the extinction coefficient and the radar reflectivity factor to calculate the IWC, which is simpler and reduces to some extent the accumulative error. In future studies, we will not only compare the value of IWC but also explore the detailed macrophysical and microphysical characteristics of cirrus.
Toward translational incremental similarity-based reasoning in breast cancer grading
NASA Astrophysics Data System (ADS)
Tutac, Adina E.; Racoceanu, Daniel; Leow, Wee-Keng; Müller, Henning; Putti, Thomas; Cretu, Vladimir
2009-02-01
One of the fundamental issues in bridging the gap between the proliferation of Content-Based Image Retrieval (CBIR) systems in the scientific literature and the deficiency of their usage in medical community is based on the characteristic of CBIR to access information by images or/and text only. Yet, the way physicians are reasoning about patients leads intuitively to a case representation. Hence, a proper solution to overcome this gap is to consider a CBIR approach inspired by Case-Based Reasoning (CBR), which naturally introduces medical knowledge structured by cases. Moreover, in a CBR system, the knowledge is incrementally added and learned. The purpose of this study is to initiate a translational solution from CBIR algorithms to clinical practice, using a CBIR/CBR hybrid approach. Therefore, we advance the idea of a translational incremental similarity-based reasoning (TISBR), using combined CBIR and CBR characteristics: incremental learning of medical knowledge, medical case-based structure of the knowledge (CBR), image usage to retrieve similar cases (CBIR), similarity concept (central for both paradigms). For this purpose, three major axes are explored: the indexing, the cases retrieval and the search refinement, applied to Breast Cancer Grading (BCG), a powerful breast cancer prognosis exam. The effectiveness of this strategy is currently evaluated over cases provided by the Pathology Department of Singapore National University Hospital, for the indexing. With its current accuracy, TISBR launches interesting perspectives for complex reasoning in future medical research, opening the way to a better knowledge traceability and a better acceptance rate of computer-aided diagnosis assistance among practitioners.
Information Content of Aerosol Retrievals in the Sunglint Region
NASA Technical Reports Server (NTRS)
Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.
2013-01-01
We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.
A depolarisation lidar based method for the determination of liquid-cloud microphysical properties
NASA Astrophysics Data System (ADS)
Donovan, D. P.; Klein Baltink, H.; Henzing, J. S.; de Roode, S. R.; Siebesma, A. P.
2014-09-01
The fact that polarisation lidars measure a depolarisation signal in liquid clouds due to the occurrence of multiple-scattering is well-known. The degree of measured depolarisation depends on the lidar characteristics (e.g. wavelength and receiver field-of-view) as well as the cloud macrophysical (e.g. liquid water content) and microphysical (e.g. effective radius) properties. Efforts seeking to use depolarisation information in a quantitative manner to retrieve cloud properties have been undertaken with, arguably, limited practical success. In this work we present a retrieval procedure applicable to clouds with (quasi-)linear liquid water content (LWC) profiles and (quasi-)constant cloud droplet number density in the cloud base region. Thus limiting the applicability of the procedure allows us to reduce the cloud variables to two parameters (namely the derivative of the liquid water content with height and the extinction at a fixed distance above cloud-base). This simplification, in turn, allows us to employ a fast and robust optimal-estimation inversion using pre-computed look-up-tables produced using extensive lidar Monte-Carlo multiple-scattering simulations. In this paper, we describe the theory behind the inversion procedure and successfully apply it to simulated observations based on large-eddy simulation model output. The inversion procedure is then applied to actual depolarisation lidar data corresponding to a range of cases taken from the Cabauw measurement site in the central Netherlands. The lidar results were then used to predict the corresponding cloud-base region radar reflectivities. In non-drizzling condition, it was found that the lidar inversion results can be used to predict the observed radar reflectivities with an accuracy within the radar calibration uncertainty (2-3 dBZ). This result strongly supports the accuracy of the lidar inversion results. Results of a comparison between ground-based aerosol number concentration and lidar-derived cloud droplet number densities are also presented and discussed. The observed relationship between the two quantities is seen to be consistent with the results of previous studies based on aircraft-based in situ measurements.
NASA Astrophysics Data System (ADS)
Merlin, G.; Riedi, J.; Labonnote, L. C.; Cornet, C.; Davis, A. B.; Dubuisson, P.; Desmons, M.; Ferlay, N.; Parol, F.
2015-12-01
The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere-surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1-2 km.
Tozzi, Alberto Eugenio; Buonuomo, Paola Sabrina; Ciofi degli Atti, Marta Luisa; Carloni, Emanuela; Meloni, Marco; Gamba, Fiorenza
2010-01-01
Information available on the Internet about immunizations may influence parents' perception about human papillomavirus (HPV) immunization and their attitude toward vaccinating their daughters. We hypothesized that the quality of information on HPV available on the Internet may vary with language and with the level of knowledge of parents. To this end we compared the quality of a sample of Web pages in Italian with a sample of Web pages in English. Five reviewers assessed the quality of Web pages retrieved with popular search engines using criteria adapted from the Good Information Practice Essential Criteria for Vaccine Safety Web Sites recommended by the World Health Organization. Quality of Web pages was assessed in the domains of accessibility, credibility, content, and design. Scores in these domains were compared through nonparametric statistical tests. We retrieved and reviewed 74 Web sites in Italian and 117 in English. Most retrieved Web pages (33.5%) were from private agencies. Median scores were higher in Web pages in English compared with those in Italian in the domain of accessibility (p < .01), credibility (p < .01), and content (p < .01). The highest credibility and content scores were those of Web pages from governmental agencies or universities. Accessibility scores were positively associated with content scores (p < .01) and with credibility scores (p < .01). A total of 16.2% of Web pages in Italian opposed HPV immunization compared with 6.0% of those in English (p < .05). Quality of information and number of Web pages opposing HPV immunization may vary with the Web site language. High-quality Web pages on HPV, especially from public health agencies and universities, should be easily accessible and retrievable with common Web search engines. Copyright 2010 Society for Adolescent Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian
2016-04-01
The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.
Kiesewetter, Jan; Fischer, Frank; Fischer, Martin R
2016-01-01
Is there evidence for expertise on collaboration and, if so, is there evidence for cross-domain application? Recall of stimuli was used to measure so-called internal collaboration scripts of novices and experts in two studies. Internal collaboration scripts refer to an individual's knowledge about how to interact with others in a social situation. METHOD— Ten collaboration experts and ten novices of the content domain social science were presented with four pictures of people involved in collaborative activities. The recall texts were coded, distinguishing between superficial and collaboration script information. RESULTS— Experts recalled significantly more collaboration script information (M = 25.20; SD = 5.88) than did novices (M = 13.80; SD = 4.47). Differences in superficial information were not found. Study 2 tested whether the differences found in Study 1 could be replicated. Furthermore, the cross-domain application of internal collaboration scripts was explored. METHOD— Twenty collaboration experts and 20 novices of the content domain medicine were presented with four pictures and four videos of their content domain and a video and picture of another content domain. All stimuli showed collaborative activities typical for the respective content domains. RESULTS— As in Study 1, experts recalled significantly more collaboration script information of their content domain (M = 71.65; SD = 33.23) than did novices (M = 54.25; SD = 15.01). For the novices, no differences were found for the superficial information nor for the retrieval of collaboration script information recalled after the other content domain stimuli. There is evidence for expertise on collaboration in memory tasks. The results show that experts hold substantially more collaboration script information than did novices. Furthermore, the differences between collaboration novices and collaboration experts occurred only in their own content domain, indicating that internal collaboration scripts are not easily stored and retrieved in memory tasks other than in the own content domain.
Kiesewetter, Jan; Fischer, Frank; Fischer, Martin R.
2016-01-01
Background Is there evidence for expertise on collaboration and, if so, is there evidence for cross-domain application? Recall of stimuli was used to measure so-called internal collaboration scripts of novices and experts in two studies. Internal collaboration scripts refer to an individual’s knowledge about how to interact with others in a social situation. Method—Study 1 Ten collaboration experts and ten novices of the content domain social science were presented with four pictures of people involved in collaborative activities. The recall texts were coded, distinguishing between superficial and collaboration script information. Results—Study 1 Experts recalled significantly more collaboration script information (M = 25.20; SD = 5.88) than did novices (M = 13.80; SD = 4.47). Differences in superficial information were not found. Study 2 Study 2 tested whether the differences found in Study 1 could be replicated. Furthermore, the cross-domain application of internal collaboration scripts was explored. Method—Study 2 Twenty collaboration experts and 20 novices of the content domain medicine were presented with four pictures and four videos of their content domain and a video and picture of another content domain. All stimuli showed collaborative activities typical for the respective content domains. Results—Study 2 As in Study 1, experts recalled significantly more collaboration script information of their content domain (M = 71.65; SD = 33.23) than did novices (M = 54.25; SD = 15.01). For the novices, no differences were found for the superficial information nor for the retrieval of collaboration script information recalled after the other content domain stimuli. Discussion There is evidence for expertise on collaboration in memory tasks. The results show that experts hold substantially more collaboration script information than did novices. Furthermore, the differences between collaboration novices and collaboration experts occurred only in their own content domain, indicating that internal collaboration scripts are not easily stored and retrieved in memory tasks other than in the own content domain. PMID:26866801
Freedman, S D; Scheele, G A
1994-03-23
The role of acid-base interactions during coordinated acinar and duct cell secretion in the exocrine pancreas is described. The sequence of acid-base events may be summarized as follows: (1) Sorting of secretory proteins and membrane components into the regulated secretory pathway of pancreatic acinar cells is triggered by acid- and calcium-induced aggregation and association mechanisms located in the trans-Golgi network. (2) Cholecystokinin-stimulated exocytosis in acinar cells releases the acidic contents of secretory granules into the acinar lumen. (3) Secretin-stimulated bicarbonate secretion from duct and duct-like cells neutralizes the acidic pH of exocytic contents, which leads to dissociation of protein aggregates and solubilization of (pro)enzymes within the acinar lumen. (4) Stimulated fluid secretion transports solubilized enzymes through the ductal system. (5) Further alkalinization of acinar lumen pH accelerates the enzymatic cleavage of the glycosyl phosphatidyl-inositol anchor associated with GP2 and thus releases the GP2/proteoglycan matrix from lumenal membranes, a process that appears to be required for vesicular retrieval of granule membranes from the apical plasma membrane and their reuse in the secretory process. We conclude that the central function of bicarbonate secretion by centroacinar and duct cells in the pancreas is to neutralize and then alkalinize the pH of the acinar lumen, sequential process that are required for (a) solubilization of secreted proteins and (b) cellular retrieval of granule membranes, respectively.
Content-based image retrieval applied to bone age assessment
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Brosig, André; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.
2010-03-01
Radiological bone age assessment is based on local image regions of interest (ROI), such as the epiphysis or the area of carpal bones. These are compared to a standardized reference and scores determining the skeletal maturity are calculated. For computer-aided diagnosis, automatic ROI extraction and analysis is done so far mainly by heuristic approaches. Due to high variations in the imaged biological material and differences in age, gender and ethnic origin, automatic analysis is difficult and frequently requires manual interactions. On the contrary, epiphyseal regions (eROIs) can be compared to previous cases with known age by content-based image retrieval (CBIR). This requires a sufficient number of cases with reliable positioning of the eROI centers. In this first approach to bone age assessment by CBIR, we conduct leaving-oneout experiments on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the USC hand atlas. The similarity of the eROIs is assessed by cross-correlation of 16x16 scaled eROIs. The effects of the number of eROIs, two age computation methods as well as the number of considered CBIR references are analyzed. The best results yield an error rate of 1.16 years and a standard deviation of 0.85 years. As the appearance of the hand varies naturally by up to two years, these results clearly demonstrate the applicability of the CBIR approach for bone age estimation.
NASA Astrophysics Data System (ADS)
Welter, Petra; Deserno, Thomas M.; Gülpers, Ralph; Wein, Berthold B.; Grouls, Christoph; Günther, Rolf W.
2010-03-01
The large and continuously growing amount of medical image data demands access methods with regards to content rather than simple text-based queries. The potential benefits of content-based image retrieval (CBIR) systems for computer-aided diagnosis (CAD) are evident and have been approved. Still, CBIR is not a well-established part of daily routine of radiologists. We have already presented a concept of CBIR integration for the radiology workflow in accordance with the Integrating the Healthcare Enterprise (IHE) framework. The retrieval result is composed as a Digital Imaging and Communication in Medicine (DICOM) Structured Reporting (SR) document. The use of DICOM SR provides interchange with PACS archive and image viewer. It offers the possibility of further data mining and automatic interpretation of CBIR results. However, existing standard templates do not address the domain of CBIR. We present a design of a SR template customized for CBIR. Our approach is based on the DICOM standard templates and makes use of the mammography and chest CAD SR templates. Reuse of approved SR sub-trees promises a reliable design which is further adopted to the CBIR domain. We analyze the special CBIR requirements and integrate the new concept of similar images into our template. Our approach also includes the new concept of a set of selected images for defining the processed images for CBIR. A commonly accepted pre-defined template for the presentation and exchange of results in a standardized format promotes the widespread application of CBIR in radiological routine.
Compact binary hashing for music retrieval
NASA Astrophysics Data System (ADS)
Seo, Jin S.
2014-03-01
With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.