Lucassen, Friedrich; Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A
2017-01-01
Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture.
Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A.
2017-01-01
Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture. PMID:28594902
Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon
NASA Astrophysics Data System (ADS)
Ding, T. P.; Zhou, J. X.; Wan, D. F.; Chen, Z. Y.; Wang, C. Y.; Zhang, F.
2008-03-01
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from -2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ 30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ 30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO 2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo ( αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ 30Si value from roots to stem, including larger ratio of dissolved H 4SiO 4 to precipitated SiO 2 in roots than in stem. There is a positive correlation between the δ 30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor ( αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO 2 contents and δ 30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ 30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ 30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.
NASA Astrophysics Data System (ADS)
Minitti, Michelle E.; Rutherford, Malcolm J.; Taylor, Bruce E.; Dyar, M. Darby; Schultz, Peter H.
2008-02-01
Kaersutitic amphiboles found within a subset of the Martian meteorites have low water contents and variably heavy hydrogen isotope compositions. In order to assess if impact shock-induced devolatilization and hydrogen isotope fractionation were determining factors in these water and isotopic characteristics of the Martian kaersutites, we conducted impact shock experiments on samples of Gore Mountain amphibolite in the Ames Vertical Gun Range (AVGR). A parallel shock experiment conducted on an anorthosite sample indicated that contamination of shocked samples by the AVGR hydrogen propellant was unlikely. Petrographic study of the experimental amphibolite shock products indicates that only ˜ 10% of the shock products experienced levels of damage equivalent to those found in the most highly shocked kaersutite-bearing Martian meteorites (30-35 GPa). Ion microprobe studies of highly shocked hornblende from the amphibolite exhibited elevated water contents (ΔH 2O ˜ 0.1 wt.%) and enriched hydrogen isotope compositions (Δ D ˜ + 10‰) relative to unshocked hornblende. Water and hydrogen isotope analyses of tens of milligrams of unshocked, moderately shocked, and highly shocked hornblende samples by vacuum extraction/uranium reduction and isotope ratio mass spectrometry (IRMS), respectively, are largely consistent with analyses of single grains from the ion microprobe. The mechanisms thought to have produced the excess water in most of the shocked hornblendes are shock-induced reduction of hornblende Fe and/or irreversible adsorption of hydrogen. Addition of the isotopically enriched Martian atmosphere to the Martian meteorite kaersutites via these mechanisms could explain their enriched and variable isotopic compositions. Alternatively, regrouping the water extraction and IRMS analyses on the basis of isotopic composition reveals a small, but consistent, degree of impact-induced devolatilization (˜ 0.1 wt.% H 2O) and H isotope enrichment (Δ D ˜ + 10‰). Extrapolating the shock signature of the regrouped data to grains that experienced Martian meteorite-like shock pressures suggests that shock-induced water losses and hydrogen isotope enrichments could approach 1 wt.% H 2O and Δ D = + 100‰, respectively. If these values are valid, then impact shock effects could explain a substantial fraction of the low water contents and variable hydrogen isotope compositions of the Martian meteorite kaersutites.
Crock, J.G.; Seal, R.R.; Gough, L.P.; Weber-Scannell, P.
2003-01-01
We report the results of the elemental and stable isotopic analyses, as well as the composition of stomach contents, of Arctic grayling (Thymallus arcticus), an ecologically important resident freshwater sport and subsistence fish in the Fortymile River Mining District of the Interior Highlands Ecoregion in eastern Alaska. These data are presented here as a data compilation with minimal interpretation or discussion. Further analyses of the data will be presented elsewhere. The study area has been mined for placer gold for over a century and is currently experiencing renewed mineral exploration activity. The results for the analysis of 40 inorganic elements are reported for grayling muscle (fillet) tissue, liver tissue, and stomach contents from 34 individuals caught at 11 sites within the watershed. The 11 sites were classified as occurring within the following lithologies: metavolcanic (7 sites), metasedimentary (3 sites), and granitic intrusion (1 site). This information (along with fish tissue stable isotope data) is critical in the assessment of the influence of regional lithology on the fish chemical composition, especially the trace metal content. We report the nitrogen, carbon, and sulfur stable isotope composition of muscle samples. Nitrogen isotopes appear homogeneous (d15N = 7.6 to 9.7 permil) whereas carbon and sulfur isotope compositions of the same samples span a range from d 13C = ?33.1 to ?25.8 permil, and d 34S = ?8.4 to 8.2 permil. Stomach content material was examined for the occurrence and frequency of macroinvertebrate composition and diversity in three individual fish. Results showed a high degree of diversity with 9 to 15 invertebrate taxa; both aquatic and terrestrial forms were represented.
Hydrogen Isotopic Systematics of Nominally Anhydrous Phases in Martian Meteorites
NASA Astrophysics Data System (ADS)
Tucker, Kera
Hydrogen isotope compositions of the martian atmosphere and crustal materials can provide unique insights into the hydrological and geological evolution of Mars. While the present-day deuterium-to-hydrogen ratio (D/H) of the Mars atmosphere is well constrained (~6 times that of terrestrial ocean water), that of its deep silicate interior (specifically, the mantle) is less so. In fact, the hydrogen isotope composition of the primordial martian mantle is of great interest since it has implications for the origin and abundance of water on that planet. Martian meteorites could provide key constraints in this regard, since they crystallized from melts originating from the martian mantle and contain phases that potentially record the evolution of the H 2O content and isotopic composition of the interior of the planet over time. Examined here are the hydrogen isotopic compositions of Nominally Anhydrous Phases (NAPs) in eight martian meteorites (five shergottites and three nakhlites) using Secondary Ion Mass Spectrometry (SIMS). This study presents a total of 113 individual analyses of H2O contents and hydrogen isotopic compositions of NAPs in the shergottites Zagami, Los Angeles, QUE 94201, SaU 005, and Tissint, and the nakhlites Nakhla, Lafayette, and Yamato 000593. The hydrogen isotopic variation between and within meteorites may be due to one or more processes including: interaction with the martian atmosphere, magmatic degassing, subsolidus alteration (including shock), and/or terrestrial contamination. Taking into consideration the effects of these processes, the hydrogen isotope composition of the martian mantle may be similar to that of the Earth. Additionally, this study calculated upper limits on the H2O contents of the shergottite and nakhlite parent melts based on the measured minimum H2O abundances in their maskelynites and pyroxenes, respectively. These calculations, along with some petrogenetic assumptions based on previous studies, were subsequently used to infer the H2O contents of the mantle source reservoirs of the depleted shergottites (200-700 ppm) and the nakhlites (10-100 ppm). This suggests that mantle source of the nakhlites is systematically drier than that of the depleted shergottites, and the upper mantle of Mars may have preserved significant heterogeneity in its H2O content. Additionally, this range of H2O contents is not dissimilar to the range observed for the Earth's upper mantle.
FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains
NASA Technical Reports Server (NTRS)
Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.
2011-01-01
Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.
NASA Astrophysics Data System (ADS)
Rollion-Bard, Claire; Saulnier, Ségolène; Vigier, Nathalie; Schumacher, Aimryc; Chaussidon, Marc; Lécuyer, Christophe
2016-04-01
Magnesium content in the ocean is ≈ 1290 ppm and is one of the most abundant elements. It is involved in the carbon cycle via the dissolution and precipitation of carbonates, especially Mg-rich carbonates as dolomites. The Mg/Ca ratio of the ocean is believed to have changed through time. The causes of these variations, i.e. hydrothermal activity change or enhanced precipitation of dolomite, could be constrained using the magnesium isotope composition (δ26Mg) of carbonates. Brachiopods, as marine environmental proxies, have the advantage to occur worldwide in a depth range from intertidal to abyssal, and have been found in the geological record since the Cambrian. Moreover, as their shell is in low-Mg calcite, they are quite resistant to diagenetic processes. Here we report δ26Mg, δ18O, δ13C values along with trace element contents of one modern brachiopod specimen (Terebratalia transversa) and one fossil specimen (Terebratula scillae, 2.3 Ma). We combined δ26Mg values with oxygen and carbon isotope compositions and trace element contents to look for possible shell geochemical heterogeneities in order to investigate the processes that control the Mg isotope composition of brachiopod shells. We also evaluate the potential of brachiopods as a proxy of past seawater δ26Mg values. The two investigated brachiopod shells present the same range of δ26Mg variation (up to 2 ‰)). This variation cannot be ascribed to changes in environmental parameters, i.e. temperature or pH. As previously observed, the primary layer of calcite shows the largest degree of oxygen and carbon isotope disequilibrium relative to seawater. In contrast, the δ26Mg value of this layer is comparable to that of the secondary calcite layer value. In both T. scillae and T. transversa, negative trends are observable between magnesium isotopic compositions and oxygen and carbon isotopic compositions. These trends, combined to linear relationships between δ26Mg values and REE contents, are best explained by kinetic effects linked to changes in growth rate during the brachiopod life. The innermost calcite layer of T. transversa is in isotopic equilibrium for both oxygen and magnesium and could therefore be the best target for reconstructing past δ26Mg values of seawater.
NASA Astrophysics Data System (ADS)
Gu, Xiaoyan; Deloule, Etienne; France, Lydéric; Ingrin, Jannick
2016-11-01
The modal, chemical, and isotopic compositions of mantle peridotite are largely modified by metasomatic processes, which may affect them repeatedly. Xenoliths are commonly used to characterize those metasomatic processes along with the structure, and chemical and isotopic compositions of mantle domains. Nevertheless, the original mantle signatures born by mantle xenoliths are potentially obscured by the interactions occurring between the host magma and the xenolith itself. Here we attempt to identify to which degree the original Li content and isotopic composition, as well as other trace element contents of mantle xenoliths, can be modified by interaction with the host magma. Peridotite xenoliths that have suffered extensive exchange with the entraining magma were sampled in the solidified lava lake of Allègre, Southern French Massif Central, in order to decipher the signature related to peridotite-melt interaction, and to further unravel the evolution of the sub-continental lithospheric mantle. In-situ trace element analyses of clinopyroxene (Cpx) were performed via LA-ICP-MS, and the Li content and isotopic composition of pyroxene and olivine (Ol) via SIMS. Negative HFSE anomalies (Ti/Eu ratios as low as 437) and markedly high LREE/HREE ratios ((La/Yb)N as high as 79) are characteristic of mantle metasomatism at depth. Lithium isotope systematics indicates that at least two different metasomatic events affected the peridotite. Exceptionally high Li contents in Cpx (up to 50 ppm) and slight Li enrichment of Ol rims are ascribed to diffusive Li influx with a positive δ7Li value (+ 3.2‰) from the host magma after entrainment. Conversely, Ol cores preserve extremely light Li isotopic compositions (δ7Li as low as - 25‰) with high Li contents (up to 4.4 ppm) compared to normal mantle, indicating a metasomatic event that occurred before xenolith entrainment. The negative δ7Li signature of this early metasomatism may be related to subduction-related fluids released during the Variscan orogeny. Trace element distributions in minerals reveal that the HFSE and REE composition of Cpx and the negative δ7Li signature in Ol cores were not acquired simultaneously. Therefore at least three successive metasomatic events affected the Allegre peridotites, as revealed through the use of detailed in-situ Li isotopic analyses to trace melt-rock interactions.
Isotopic modeling of the sub-cloud evaporation effect in precipitation.
Salamalikis, V; Argiriou, A A; Dotsika, E
2016-02-15
In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic composition hardly changes even at high temperatures while at drier and warm conditions the enrichment of (18)Ο reaches up to 20‰, depending on the raindrop size and the initial meteorological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Jódar, Jorge; Custodio, Emilio; Lambán, Luis Javier; Martos-Rosillo, Sergio; Herrera-Lameli, Christian; Sapriza-Azuri, Gonzalo
2016-12-15
The time series of stable water isotope composition relative to meteorological stations and springs located in the high mountainous zone of the Ordesa and Monte Perdido National Park are analyzed in order to study how the seasonal isotopic content of precipitation propagates through the hydrogeological system in terms of the aquifer recharge zone elevation and transit time. The amplitude of the seasonal isotopic composition of precipitation and the mean isotopic content in rainfall vary along a vertical transect, with altitudinal slopes for δ 18 O of 0.9‰/km for seasonal amplitude and -2.2‰/km for isotopic content. The main recharge zone elevation for the sampled springs is between 1950 and 2600m·a.s.l. The water transit time for the sampled springs ranges from 1.1 to 4.5yr, with an average value of 1.85yr and a standard deviation of 0.8yr. The hydrological system tends to behave as a mixing reservoir. Copyright © 2016 Elsevier B.V. All rights reserved.
Calcium Isotopic Compositions of Forearc Sediments from DSDP Site 144
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zhu, H.; Nan, X.; Li, X.; Huang, F.
2016-12-01
It is important to investigate calcium isotopic compositions of reservoirs of the Earth for better application of Ca isotopes into studies of a variety of geochemical problems. Because Ca isotopic compositions for igneous rocks and carbonates are increasingly reported, this maybe bring new requirements on carefully understanding the isotopic compositions of subducted marine sediments. Marine sediments mainly contains carbonates and clays, controlling the compositions of slab-derived materials which are added to the mantle wedge. Obviously, it could have different elemental and calcium isotopic compositions with marine carbonate. Thus, it could also put biases on calcium isotopic signatures of basalts resulted from recycling oceanic carbonate into the mantle. Here, we report calcium isotopic compositions of 17 sediment samples from Deep Sea Drilling Project (DSDP) site 144 (09°27.23' N, 54°20.52' W) which is located about 400 km north of Surinam on the northern flank of the Demerara Rise with a water depth of 2957 meters. These samples have CaO contents ranging from 14.56 wt.% to 41.46 wt.% with an average of 29.61 ± 18.21 (2SD), δ44/40Ca ranges from 0.19 to 0.58 (relative to SRM915a) with an average of 0.40 ± 0.22 (2SD). These carbonate-rich sediments can be used to represent an endmember with high CaO content and low δ44/40Ca, which could modify chemical composition of the upper mantle and subduction zone lavas if they are recycled to the convective mantle during subduction. The positive linear correlation between CaO and δ44/40Ca in the sediments cannot be explained by a simple mixing between marine carbonate and clay. Instead, δ44/40Ca of these samples roughly increase from the Upper Cretaceous to the Early Oligocene, which might reflect the evolution of calcium isotopic compositions of seawater through time.
Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?
Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew
2011-01-01
Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.
Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean
Chan, L.-H.; Hein, J.R.
2007-01-01
To test the feasibility of using lithium isotopes in marine ferromanganese deposits as an indicator of paleoceanographic conditions and seawater composition, we analyzed samples from a variety of tectonic environments in the global ocean. Hydrogenetic, hydrothermal, mixed hydrogenetic–hydrothermal, and hydrogenetic–diagenetic samples were subjected to a two-step leaching and dissolution procedure to extract first the loosely bound Li and then the more tightly bound Li in the Mn oxide and Fe oxyhydroxide. Total leachable Li contents vary from 2 by coulombic force. Hence, the abundant Li in hydrothermal deposits is mainly associated with the dominant phase, MnO2. The surface of amorphous FeOOH holds a slightly positive charge and attracts little Li, as demonstrated by data for hydrothermal Fe oxyhydroxide. Loosely sorbed Li in both hydrogenetic crusts and hydrothermal deposits exhibit Li isotopic compositions that resemble that of modern seawater. We infer that the hydrothermally derived Li scavenged onto the surface of MnO2 freely exchanged with ambient seawater, thereby losing its original isotopic signature. Li in the tightly bound sites is always isotopically lighter than that in the loosely bound fraction, suggesting that the isotopic fractionation occurred during formation of chemical bonds in the oxide and oxyhydroxide structures. Sr isotopes also show evidence of re-equilibration with seawater after deposition. Because of their mobility, Li and Sr in the ferromanganese crusts do not faithfully record secular variations in the isotopic compositions of seawater. However, Li content can be a useful proxy for the hydrothermal history of ocean basins. Based on the Li concentrations of the globally distributed hydrogenetic and hydrothermal samples, we estimate a scavenging flux of Li that is insignificant compared to the hydrothermal flux and river input to the ocean.
The relation between isotopic composition of argon and carbon in natural gases
NASA Technical Reports Server (NTRS)
Gavrilov, Y. Y.; Zhurov, Y. A.; Teplinskiy, G. I.
1977-01-01
The methods and results of determination of the argon and carbon isotope compositions of hydrocarbon gases of Mezozoic complexes of Western Siberia are presented. Based on the Ar-36, Ar-40, C-12, C-13 content of the various deposits and on the presumed mechanisms of entry of these isotopes into the deposits, it is concluded that formation of natural gas in some deposits included vertical migration from a lower complex.
On the origin and composition of Theia: Constraints from new models of the Giant Impact
NASA Astrophysics Data System (ADS)
Meier, M. M. M.; Reufer, A.; Wieler, R.
2014-11-01
Knowing the isotopic composition of Theia, the proto-planet which collided with the Earth in the Giant Impact that formed the Moon, could provide interesting insights on the state of homogenization of the inner Solar System at the late stages of terrestrial planet formation. We use the known isotopic and modeled chemical compositions of the bulk silicate mantles of Earth and Moon and combine them with different Giant Impact models, to calculate the possible ranges of isotopic composition of Theia in O, Si, Ti, Cr, Zr and W in each model. We compare these ranges to the isotopic composition of carbonaceous chondrites, Mars, and other Solar System materials. In the absence of post-impact isotopic re-equilibration, the recently proposed high angular momentum models of the Giant Impact ("impact-fission", Cúk, M., Stewart, S.T. [2012]. Science 338, 1047; and "merger", Canup, R.M. [2012]. Science 338, 1052) allow - by a narrow margin - for a Theia similar to CI-chondrites, and Mars. The "hit-and-run" model (Reufer, A., Meier, M.M.M., Benz, W., Wieler, R. [2012]. Icarus 221, 296-299) allows for a Theia similar to enstatite-chondrites and other Earth-like materials. If the Earth and Moon inherited their different mantle FeO contents from the bulk mantles of the proto-Earth and Theia, the high angular momentum models cannot explain the observed difference. However, both the hit-and-run as well as the classical or "canonical" Giant Impact model naturally explain this difference as the consequence of a simple mixture of two mantles with different FeO. Therefore, the simplest way to reconcile the isotopic similarity, and FeO dissimilarity, of Earth and Moon is a Theia with an Earth-like isotopic composition and a higher (∼20%) mantle FeO content.
Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale
NASA Technical Reports Server (NTRS)
Hayes, J. M.; Takigiku, Ray; Ocampo, Ruben; Callot, Enry J.; Albrecht, Pierre
1987-01-01
It is shown here that the carbon isotopic compositions of biomarkers from the Eocene Messel shale, accumulated 47 + or - 2 million years ago in anaerobic waters at the bottom of a lake, allow identification of specific sources for some materials and reconstruction of carbon flows within the lake and its sediments. The C-13 content of organic matter synthesized by lacustrine primary producers can be estimated from the observed C-13 content of the geoporphyrins derived from their chlorophylls. Total organic material in the shale is depleted in C-13 by six parts per thousand relative to that input. This difference cannot be explained by selective loss of components enriched in C-13, nor, as shown by isotopic compositions of other biomarkers, by inputs from land plants surrounding the lake or from methanogenic bacteria.
Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis
NASA Astrophysics Data System (ADS)
Pratt, D.; Orlowski, N.; McDonnell, J.
2016-12-01
The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.
NASA Technical Reports Server (NTRS)
Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.
1978-01-01
Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.
NASA Astrophysics Data System (ADS)
Bizimis, Michael; Sen, Gautam; Salters, Vincent J. M.
2004-01-01
We present a detailed geochemical investigation on the Hf, Nd and Sr isotope compositions and trace and major element contents of clinopyroxene mineral separates from spinel lherzolite xenoliths from the island of Oahu, Hawaii. These peridotites are believed to represent the depleted oceanic lithosphere beneath Oahu, which is a residue of a MORB-related melting event some 80-100 Ma ago at a mid-ocean ridge. Clinopyroxenes from peridotites from the Salt Lake Crater (SLC) show a large range of Hf isotopic compositions, from ɛHf=12.2 (similar to the Honolulu volcanics series) to extremely radiogenic, ɛHf=65, at nearly constant 143Nd/ 144Nd ratios ( ɛNd=7-8). None of these samples show any isotopic evidence for interaction with Koolau-type melts. A single xenolith from the Pali vent is the only sample with Hf and Nd isotopic compositions that falls within the MORB field. The Hf isotopes correlate positively with the degree of depletion in the clinopyroxene (e.g. increasing Mg#, Cr#, decreasing Ti and heavy REE contents), but also with increasing Zr and Hf depletions relative to the adjacent REE in a compatibility diagram. The Lu/Hf isotope systematics of the SLC clinopyroxenes define apparent ages of 500 Ma or older and these compositions cannot be explained by mixing between any type of Hawaiian melts and the depleted Pacific lithosphere. Metasomatism of an ancient (e.g. 1 Ga or older) depleted peridotite protolith can, in principle, explain these apparent ages and the Nd-Hf isotope decoupling, but requires that the most depleted samples were subject to the least amount of metasomatism. Alternatively, the combined isotope, trace and major element compositions of these clinopyroxenes are best described by metasomatism of the 80-100 Ma depleted oceanic lithosphere by melts products of extensive mantle-melt interaction between Honolulu Volcanics-type melts and the depleted lithosphere.
NASA Astrophysics Data System (ADS)
Chen, Lie-Meng; Teng, Fang-Zhen; Song, Xie-Yan; Hu, Rui-Zhong; Yu, Song-Yue; Zhu, Dan; Kang, Jian
2018-04-01
Magnesium isotopic compositions of olivine, clinopyroxene, and ilmenite from the Baima intrusion, SW China, for the first time, are investigated to constrain the magnitude and mechanisms of Mg isotope fractionation among cumulus minerals in layered mafic intrusions and to evaluate their geological implications. Olivine and clinopyroxene have limited Mg isotope variations, with δ26Mg ranging from -0.33 to +0.05‰ and from -0.29 to -0.13‰, respectively, similar to those of mantle xenolithic peridotites. By contrast, ilmenites display extremely large Mg isotopic variation, with δ26Mg ranging from -0.50 to +1.90‰. The large inter-mineral fractionations of Mg isotopes between ilmenite and silicates may reflect both equilibrium and kinetic processes. A few ilmenites have lighter Mg isotopic compositions than coexisting silicates and contain high MgO contents without compositional zoning, indicating equilibrium fractionation. The implication is that the light Mg isotopic compositions of lunar high-Ti basalts may result from an isotopically light source enriched in cumulate ilmenites. On the other hand, most ilmenites have heavy Mg isotopic compositions, coupled with high MgO concentration and chemical zoning, which can be quantitatively modeled by kinetic Mg isotope fractionations induced by subsolidus Mg-Fe exchange between ilmenite and ferromagnesian silicates during the cooling of the Baima intrusion. The extensive occurrence of kinetic Mg isotope fractionation in ilmenites implies the possibility of widespread compositional disequilibrium among igneous minerals in magma chambers. Consequently, disequilibrium effects need to be considered in studies of basaltic magma evolution, magma chamber processes, and magmatic Fe-Ti oxide ore genesis.
Walraven, N; van Os, B J H; Klaver, G Th; Middelburg, J J; Davies, G R
2014-02-15
In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ((206)Pb/(207)Pb=1.12-1.14) differs from the deeper soil samples ((206)Pb/(207)Pb=1.20-1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. (206)Pb/(207)Pb ratios demonstrate that the roadside soils were polluted to a depth of ~15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ~15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths >15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of >15 cm. The Pb isotope composition of the groundwater ((206)Pb/(207)Pb=1.135-1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ~30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m(-2)y(-1). Assuming that the downward Pb flux is constant over time, it is calculated that 35-90% of the atmospherically delivered Pb has migrated to the groundwater. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawasaki, Noriyuki; Simon, Steven B.; Grossman, Lawrence; Sakamoto, Naoya; Yurimoto, Hisayoshi
2018-01-01
TS34 is a Type B1 Ca-Al-rich inclusion (CAI) from the Allende CV3 chondrite, consisting of spinel, melilite, Ti-Al-rich clinopyroxene (fassaite) and minor anorthite in an igneous texture. Oxygen and magnesium isotopic compositions were measured by secondary ion mass spectrometry in spots of known chemical composition in all major minerals in TS34. Using the sequence of formation from dynamic crystallization experiments and from chemical compositions of melilite and fassaite, the oxygen isotopic evolution of the CAI melt was established. Oxygen isotopic compositions of the constituent minerals plot along the carbonaceous chondrite anhydrous mineral line. The spinel grains are uniformly 16O-rich (Δ17O = -22.7 ± 1.7‰, 2SD), while the melilite grains are uniformly 16O-poor (Δ17O = -2.8 ± 1.8‰) irrespective of their åkermanite content and thus their relative time of crystallization. The fassaite crystals exhibit growth zoning overprinting poorly-developed sector zoning; they generally grow from Ti-rich to Ti-poor compositions. The fassaite crystals also show continuous variations in Δ17O along the inferred directions of crystal growth, from 16O-poor (Δ17O ∼ -3‰) to 16O-rich (Δ17O ∼ -23‰), covering the full range of oxygen isotopic compositions observed in TS34. The early-crystallized 16O-poor fassaite and the melilite are in oxygen isotope equilibrium and formed simultaneously. The correlation of oxygen isotopic compositions with Ti content in the fassaite imply that the oxygen isotopic composition of the CAI melt evolved from 16O-poor to 16O-rich during fassaite crystallization, presumably due to oxygen isotope exchange with a surrounding 16O-rich nebular gas. Formation of spinel, the liquidus phase in melts of this composition, predates crystallization of all other phases, so its 16O-rich composition is a relic of an earlier stage. Anorthite exhibits oxygen isotopic compositions between Δ17O ∼ -2‰ and -9‰, within the range of those of fassaite, indicating co-crystallization of these two minerals during the earliest to intermediate stage of fassaite growth. The melilite and fassaite yield an 26Al-26Mg mineral isochron with an initial value of (26Al/27Al)0 = (5.003 ± 0.075) × 10-5, corresponding to a relative age of 0.05 ± 0.02 Myr from the canonical Al-Mg age of CAIs. These data demonstrate that both 16O-rich and 16O-poor reservoirs existed in the solar nebula at least ∼0.05 Myr after the birth of the Solar System.
Microscale Variations in the 13C Content of the Murchison Meteorite
NASA Astrophysics Data System (ADS)
Romanek, C.; Gibson, E.; Socki, R.; Burkett, P. J.
1993-07-01
Heretofore unresolved micrometer-scale carbon isotopic zonation in the Murchison meteorite (CM3) is documented using a laser microprobe mass spectrometer. High-resolution isotopic gradients and heterogeneities between high- and low-temperature textural components help to constrain the processes that have shaped the physiochemical character of this carbonaceous chondrite. Previous bulk samples of Murchison yield an average delta ^13C value of - 5.7 +/- 4.3 per mil [1] while individual components such as micrometer-sized mineral separates (e.g., C(sub)graphite , C(sub)diamond, and SiC), acid- soluble extracts (e.g., CaCO3 and polar hydrocarbons), and insoluble residues (e.g., polycyclic aromatic hydrocarbons) are isotopically diverse (delta ^13C of -1000 to 29,000 per mil). While these studies shed light on the origin and occurrence of C-bearing phases, they fail to constrain intrinsic spatial isotopic heterogeneities. The power of the laser microprobe lies in the fact that in situ chemical and isotopic compositions are measured simultaneously for volatiles extracted from extremely small sample volumes (i.e., 0.025 mm^3 for 5 wt% C). Nd-YAG laser irradiation (1.06 micrometers) is directed onto texturally defined targets (>=50 micrometers wide) from which solid material is volatilized. Condensible gaseous phases are collected in a variable-temperature cold trap while the more volatile species (CH4 and CO) are quantified using an ion trap mass spectrometer. All gases are then converted to CO2 in a CuO furnace (containing Pt) held at 600 degrees C and analyzed for carbon and oxygen isotope ratios. The concentration and isotopic composition of condensed species are determined by stepped sublimation of unstable components and conversion to CO2. Preliminary isotopic analyses of the total volatile C content (i.e., bulk microanalysis) from distinct textural components at least 0.05 mm^3 in volume are described below. The most ^13C-depleted components within Murchison reside within the cores of chondrules and/or aggregates. Three typical cores were analyzed, with an average bulk composition of -21.0 +/- 0.5 per mil (n = 7). The bulk ^13C content of C-bearing phases increases monotonically outward in all directions within 100 to 200 micrometers of each core (i.e., within dust mantles) to a constant matrix value of -12.5 +/- 0.5 per mil (n = 40). The most isotopically enriched textural component found in Murchison is a regolith breccia clast without chondrules that has an average bulk delta ^13C value of -10 +/-0.5 per mil (n = 5). The clast was originally detectable only under cathodoluminescence, but with the aid of the laser microprobe it is now characterized by an unusually low volatile content and enriched ^13C composition. In general, the most isotopically enriched components also produce the lowest yield of gas (normalized to sampling volume). This trend of isotopic enrichment from chondrule to matrix has been documented previously for oxygen isotopes in carbonaceous chondrites [2]. Carbon isotopic gradients and heterogeneities within Murchison reflect fundamental changes in the chemical speciation and/or isotopic content of the main C-bearing components (i.e., acid-soluble and insoluble hydrocarbon fractions) within the meteorite. Perhaps core interiors and dust mantles are responding to environmental changes reflected in the speciation of C-bearing species distributed within the solar nebula or the parent body. Inverse correlations between hydrocarbon atomic mass number and ^13C abundance in the acid-soluble [3] and insoluble residues [4] of Murchison have been documented. Alternatively, micrometer-scale isotopic gradients may reflect fundamental changes in the isotopic composition of individual C-bearing species through time. Enrichments may represent kinetically controlled processes related to hydrocarbon formation. In contrast, assuming an equilibrium fractionation mechanism, isotopic enrichments may record a temperature-dependent component to hydrocarbon delta ^13C values. These opposing alternatives will be discussed in light of the isotopic composition of individual C-bearing components volatilized from tightly constrained sample volumes within Murchison. References: [1] Kerridge J. F. (1985) GCA, 49, 1707-1714. [2] Clayton R. N. and Mayeda T. K. (1984) EPSL, 67, 151-161. [3] Yuen G. et al. (1984) Nature, 307, 254. [4] Gilmour I. et al. (1991) Meteoritics, 26, 337-338.
Modelling and intepreting the isotopic composition of water vapour in convective updrafts
NASA Astrophysics Data System (ADS)
Bolot, M.; Legras, B.; Moyer, E. J.
2012-08-01
The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.
Modelling and interpreting the isotopic composition of water vapour in convective updrafts
NASA Astrophysics Data System (ADS)
Bolot, M.; Legras, B.; Moyer, E. J.
2013-08-01
The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.
Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea
NASA Astrophysics Data System (ADS)
Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.
2015-08-01
In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.
Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M
2013-12-01
During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zhang, Tongwei; Krooss, Bernhard M.
2001-08-01
Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated. Compared with the carbon isotopic composition of the source methane (δ13C1 = -39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff -δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed. The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous ;semi-infinite; shale caprock over a period of 10 Ma. In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas. The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.
Variability of 13C-labeling in plant leaves.
Nguyen Tu, Thanh Thuy; Biron, Philippe; Maseyk, Kadmiel; Richard, Patricia; Zeller, Bernd; Quénéa, Katell; Alexis, Marie; Bardoux, Gérard; Vaury, Véronique; Girardin, Cyril; Pouteau, Valérie; Billiou, Daniel; Bariac, Thierry
2013-09-15
Plant tissues artificially labeled with (13)C are increasingly used in environmental studies to unravel biogeochemical and ecophysiological processes. However, the variability of (13)C-content in labeled tissues has never been carefully investigated. Hence, this study aimed at documenting the variability of (13)C-content in artificially labeled leaves. European beech and Italian ryegrass were subjected to long-term (13)C-labeling in a controlled-environment growth chamber. The (13)C-content of the leaves obtained after several months labeling was determined by isotope ratio mass spectrometry. The (13)C-content of the labeled leaves exhibited inter- and intra-leaf variability much higher than those naturally occurring in unlabeled plants, which do not exceed a few per mil. This variability was correlated with labeling intensity: the isotope composition of leaves varied in ranges of ca 60‰ and 90‰ for experiments that led to average leaf (13)C-content of ca +15‰ and +450‰, respectively. The reported variability of isotope composition in (13)C-enriched leaves is critical, and should be taken into account in subsequent experimental investigations of environmental processes using (13)C-labeled plant tissues. Copyright © 2013 John Wiley & Sons, Ltd.
Dobson, P.F.; O'Neil, J.R.
1987-01-01
Measurements of stable isotope compositions and water contents of boninite series volcanic rocks from the island of Chichi-jima, Bonin Islands, Japan, confirm that a large amount (1.6-2.4 wt.%) of primary water was present in these unusual magmas. An enrichment of 0.6??? in 18O during differentiation is explained by crystallization of 18O-depleted mafic phases. Silicic glasses have elevated ??18O values and relatively low ??D values indicating that they were modified by low-temperature alteration and hydration processes. Mafic glasses, on the other hand, have for the most part retained their primary isotopic signatures since Eocene time. Primary ??D values of -53 for boninite glasses are higher than those of MORB and suggest that the water was derived from subducted oceanic lithosphere. ?? 1987.
Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.
2005-01-01
The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.
The Chlorine Isotope Composition of Earth’s Mantle
NASA Astrophysics Data System (ADS)
Bonifacie, M.; Jendrzejewski, N.; Agrinier, P.; Humler, E.; Coleman, M.; Javoy, M.
2008-03-01
Chlorine stable isotope compositions (δ37Cl) of 22 mid-ocean ridge basalts (MORBs) correlate with Cl content. The high-δ37Cl, Cl-rich basalts are highly contaminated by Cl-rich materials (seawater, brines, or altered rocks). The low-δ37Cl, Cl-poor basalts approach the composition of uncontaminated, mantle-derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB-source mantle has δ37Cl ≤ 1.6 per mil (‰), which is significantly lower than that of surface reservoirs (~ 0‰). This isotopic difference between the surface and deep Earth results from net Cl isotopic fractionation (associated with removal of Cl from the mantle and its return by subduction over Earth history) and/or the addition (to external reservoirs) of a late volatile supply that is 37Cl-enriched.
Shen, Bing; Jacobsen, Benjamin; Lee, Cin-Ty A.; Yin, Qing-Zhu; Morton, Douglas M.
2009-01-01
Continental crust is too Si-rich and Mg-poor to derive directly from mantle melting, which generates basaltic rather than felsic magmas. Converting basalt to more felsic compositions requires a second step involving Mg loss, which is thought to be dominated by internal igneous differentiation. However, igneous differentiation alone may not be able to generate granites, the most silicic endmember making up the upper continental crust. Here, we show that granites from the eastern Peninsular Ranges Batholith (PRB) in southern California are isotopically heavy in Mg compared with PRB granodiorites and canonical mantle. Specifically, Mg isotopes correlate positively with Si content and O, Sr, and Pb isotopes and negatively with Mg content. The elevated Sr and Pb isotopes require that a component in the source of the granitic magmas to be ancient preexisting crust making up the prebatholithic crustal basement, but the accompanying O and Mg isotope fractionations suggest that this prebatholithic crust preserved a signature of low-temperature alteration. The protolith of this basement rock may have been the residue of chemical weathering, which progressively leached Mg from the residue, leaving the remaining Mg highly fractionated in terms of its isotopic signature. Our observations indicate that ancient continental crust preserves the isotopic signature of compositional modification by chemical weathering. PMID:19920171
Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.
2006-01-01
Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of fossil fuels, and possibly lead from other anthropogenic sources (e.g., pesticides), could account for Pb isotope variations in the soil profiles. In agricultural regions, our preliminary data show that the extensive use of arsenical pesticides and herbicides can be a significant anthropogenic source of arsenic and lead to stream sediments and soils.
NASA Astrophysics Data System (ADS)
Westerlund, K. J.; Shirey, S. B.; Richardson, S. H.; Carlson, R. W.; Gurney, J. J.; Harris, J. W.
2006-09-01
An extensive study of peridotitic sulfide inclusion bearing diamonds and their prospective harzburgitic host rocks from the 53 Ma Panda kimberlite pipe, Ekati Mine, NWT Canada, has been undertaken with the Re-Os system to establish their age and petrogenesis. Diamonds with peridotitic sulfide inclusions have poorly aggregated nitrogen (<30% N as B centers) at N contents of 200-800 ppm which differs from that of chromite and silicate bearing diamonds and indicates residence in the cooler portion of the Slave craton lithospheric mantle. For most of the sulfide inclusions, relatively low Re contents (average 0.457 ppm) and high Os contents (average 339 ppm) lead to extremely low 187Re/188Os, typically << 0.05. An age of 3.52 ± 0.17 Ga (MSWD = 0.46) and a precise initial 187Os/188Os of 0.1093 ± 0.0001 are given by a single regression of 11 inclusions from five diamonds that individually provide coincident internal isochrons. This initial Os isotopic composition is 6% enriched in 187Os over 3.5 Ga chondritic or primitive mantle. Sulfide inclusions with less radiogenic initial Os isotopic compositions reflect isotopic heterogeneity in diamond forming fluids. The harzburgites have even lower initial 187Os/188Os than the sulfide inclusions, some approaching the isotopic composition of 3.5 Ga chondritic mantle. In several cases isotopically distinct sulfides occur in different growth zones of the same diamond. This supports a model where C-O-H-S fluids carrying a radiogenic Os signature were introduced into depleted harzburgite and produced diamonds containing sulfides conforming to the 3.5 Ga isochron. Reaction of this fluid with harzburgite led to diamonds with less radiogenic inclusions while elevating the Os isotope ratios of some harzburgites. Subduction is a viable way of introducing such fluids. This implies a role for subduction in creating early continental nuclei at 3.5 Ga and generating peridotitic diamonds.
Taran, Katarzyna; Frączek, Tomasz; Sikora-Szubert, Anita; Sitkiewicz, Anna; Młynarski, Wojciech; Kobos, Józef; Paneth, Piotr
2016-01-01
The paper describes a novel approach to investigating Wilms' tumour (nephroblastoma) biology at the atomic level. Isotope Ratio Mass Spectrometry (IRMS) was used to directly assess the isotope ratios of nitrogen and carbon in 84 Wilms' tumour tissue samples from 28 cases representing the histological spectrum of nephroblastoma. Marked differences in nitrogen and carbon isotope ratios were found between nephroblastoma histological types and along the course of cancer disease, with a breakout in isotope ratio of the examined elements in tumour tissue found between stages 2 and 3. Different isotopic compositions with regard to nitrogen and carbon content were observed in blastemal Wilms' tumour, with and without focal anaplasia, and in poorly- and well-differentiated epithelial nephroblastoma. This first assessment of nitrogen and carbon isotope ratio reveals the previously unknown part of Wilms' tumour biology and represents a potential novel biomarker, allowing for a highly individual approach to treating cancer. Furthermore, this method of estimating isotopic composition appears to be the most sensitive tool yet for cancer tissue evaluation, and a valuable complement to established cancer study methods with prospective clinical impact. PMID:27732932
Modes of planetary-scale Fe isotope fractionation
NASA Astrophysics Data System (ADS)
Schoenberg, Ronny; von Blanckenburg, Friedhelm
2006-12-01
A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the Fe isotope composition of lithospheric mantle xenoliths are representative for an undisturbed melt source, and second, HED and SNC meteorites, representing melting products of 4Vesta and Mars silicate mantles would be expected to show a similar fractionation towards heavy isotope compositions. This is not observed. Four international granitoid standards with SiO 2 contents between 60 and 70 wt.% yield δ56Fe/ 54Fe values between 0.118‰ and 0.132‰. An investigation of the alpine Bergell igneous rock suite revealed a positive correlation between Fe isotope compositions and SiO 2 contents — from gabbros and tonalites ( δ56Fe/ 54Fe ≈ 0.03 to 0.09‰) to granodiorites and silicic dykes ( δ56Fe/ 54Fe ≈ 0.14 to 0.23‰). Although in this suite δ56Fe/ 54Fe correlates with δ18O values and radiogenic isotopes, open-system behavior to explain the heavy iron is not undisputed. This is because an obvious assimilant with the required heavy Fe isotope composition has so far not been identified. Alternatively, the relatively heavy granite compositions might be obtained by fractional crystallisation of the melt. Ultimately, further detailed studies on natural rocks and the experimental determination of mineral/melt fractionation factors at magmatic conditions are required to unravel whether or not iron isotope fractionation takes place during partial mantle melting and crystal fractionation.
Dong, Hao; Luo, Donghui; Xian, Yanping; Luo, Haiying; Guo, Xindong; Li, Chao; Zhao, Mouming
2016-04-27
According to the AOAC 998.12 method, honey is considered to contain significant C-4 sugars with a C-4 sugar content of >7%, which are naturally identified as the adulteration. However, the authenticity of honey with a C-4 sugar content of <0% calculated by the above method has been rarely investigated. A new procedure to determine δ(13)C values of honey, corresponding extracted protein and individual sugars (sucrose, glucose, and fructose), δ(2)H and δ(18)O values, sucrose content, and reducing sugar content of honey using an elemental analyzer and liquid chromatography coupled to isotope ratio mass spectroscopy, was first developed to demonstrate the authenticity of honey with a C-4 sugar content of <0%. For this purpose, 800 commercial honey samples were analyzed. A quite similar pattern on the pentagonal radar plot (isotopic compositions) between honey with -7 < C-4 sugar content (%) < 0 and 0 < C-4 sugar content (%) < 7 indicated that honey with -7 < C-4 sugar content (%) < 0 could be identified to be free of C-4 sugars as well. A very strong correlation is also observed between δ(13)C honey values and δ(13)C protein values of both honey groups. For the δ(18)O value, the C-4 sugar content (%) < -7 group has lower (p < 0.05) values (16.30‰) compared to other honey, which could be a useful parameter for adulterated honey with a C-4 sugar content (%) < -7. The use of isotopic compositions and some systematic differences permits the honey with a C-4 sugar content of <0% to be reliably detected. The developed procedure in this study first and successfully provided favorable evidence in authenticity identification of honey with a C-4 sugar content of <0%.
Montaña, C G; Schalk, C M
2018-04-01
The isotopic (δ 13 C and δ 15 N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ 13 C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ 15 N-enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources. © 2018 The Fisheries Society of the British Isles.
Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds
NASA Astrophysics Data System (ADS)
Stachel, T.; Harris, J. W.; Aulbach, S.; Deines, P.
Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions (δ13C: peridotitic -5.4 to -2.2‰ eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side (δ13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (>=1,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards isotopic heavier compositions suggests a common carbon source, which may have inherited an isotopic heavy composition from a component consisting of subducted carbonates.
Kankan diamonds (Guinea) III: δ13C and nitrogen characteristics of deep diamonds
NASA Astrophysics Data System (ADS)
Stachel, T.; Harris, J. W.; Aulbach, S.; Deines, P.
2001-08-01
Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions (δ13C: peridotitic -5.4 to -2.2‰ eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side (δ13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (>=1,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards isotopic heavier compositions suggests a common carbon source, which may have inherited an isotopic heavy composition from a component consisting of subducted carbonates.
2H and 18O depletion of water close to organic surfaces
NASA Astrophysics Data System (ADS)
Chen, Guo; Auerswald, Karl; Schnyder, Hans
2016-06-01
Hydrophilic surfaces influence the structure of water close to them and may thus affect the isotope composition of water. Such an effect should be relevant and detectable for materials with large surface areas and low water contents. The relationship between the volumetric solid : water ratio and the isotopic fractionation between adsorbed water and unconfined water was investigated for the materials silage, hay, organic soil (litter), filter paper, cotton, casein and flour. Each of these materials was equilibrated via the gas phase with unconfined water of known isotopic composition to quantify the isotopic difference between adsorbed water and unconfined water. Across all materials, isotopic fractionation was significant (p<0.05) and negative (on average -0.91 ± 0.22 ‰ for 18/16O and -20.6 ± 2.4 ‰ for 2/1H at an average solid : water ratio of 0.9). The observed isotopic fractionation was not caused by solutes, volatiles or old water because the fractionation did not disappear for washed or oven-dried silage, the isotopic fractionation was also found in filter paper and cotton, and the fractionation was independent of the isotopic composition of the unconfined water. Isotopic fractionation became linearly more negative with increasing volumetric solid : water ratio and even exceeded -4 ‰ for 18/16O and -44 ‰ for 2/1H. This fractionation behaviour could be modelled by assuming two water layers: a thin layer that is in direct contact and influenced by the surface of the solid and a second layer of varying thickness depending on the total moisture content that is in equilibrium with the surrounding vapour. When we applied the model to soil water under grassland, the soil water extracted from 7 and 20 cm depth was significantly closer to local meteoric water than without correction for the surface effect. This study has major implications for the interpretation of the isotopic composition of water extracted from organic matter, especially when the volumetric solid : water ratio is larger than 0.5 or for processes occurring at the solid-water interface.
Carbon isotopic evidence for photosynthesis in Early Cambrian oceans
NASA Astrophysics Data System (ADS)
Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.
1997-06-01
Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.
Basov, A A; Bykov, I M; Baryshev, M G; Dzhimak, S S; Bykov, M I
2014-01-01
The article presents the results of the study of the deuterium (D) content in food products as well as the influence of deuterium depleted water (DDW) on the concentration of heavy hydrogen isotopes in the blood and lyophilized tissues of rats. The most significant difference in the content of D was found between potato and pork fat, which indexes the standard delta notation (δ) D in promille, related to the international standard SMOW (Standard Mean Ocean of Water) amounted to -83,2 per thousand and -250,7 per thousand, respectively (p<0,05). Among the investigated samples of water deuterium concentration ranged from -75,5 per thousand (Narzan) to +72,1 per thousand (Kubai), that indicates the ability of some food products to increase the concentration of heavy hydrogen atoms in the body. The data obtained in the experimental modeling of the diet of male Wistar rats in the age of 5-6 mo (weight 235 ± 16 g) using DDW (δD = -743,2 per thousand) instead of drinking water (δD = -37,0 per thousand) with identical mineral composition showed that after 2 weeks significant (p <0,05) formation of isotopic (deuterium-protium, D/H) gradient in the body is possible. Changing the direction of isotopic D/H gradient in laboratory animals in comparison with its physiological indicators (72-127 per thousand, "plasma>tissue") is due to different rates ofisotopic exchange reactions in plasma and tissues (liver, kidney, heart), which can be explained by entering into the composition of a modified diet of organic substrates with more than DDW concentration D, which are involved in the construction of cellular structures and eventually lead to a redistribution of D and change direction of D/H gradient "plasma
Elemental and iron isotopic composition of aerosols collected in a parking structure.
Majestic, Brian J; Anbar, Ariel D; Herckes, Pierre
2009-09-01
The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM)<2.5 microm in diameter (the fine fraction) and PM>2.5 microm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m(-3)) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be +0.15+/-0.03 per thousand and +0.18+/-0.03 per thousand for the PM<2.5 microm and PM>2.5 microm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average=+0.02 per thousand) and the ceramic brake linings (average=+0.65 per thousand). Differences in isotopic composition were also observed between the metallic (average=+0.18 per thousand) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.
Sedimentary organic molecules: Origins and information content
NASA Technical Reports Server (NTRS)
Hayes, J. M.; Freeman, K. H.
1991-01-01
To progress in the study of organic geochemistry, we must dissect the processes controlling the composition of sedimentary organic matter. Structurally, this has proven difficult. Individual biomarkers can often be recognized, but their contribution to total organic materials is small, and their presence does not imply that their biochemical cell mates have survived. We are finding, however, that a combination of structural and isotopic lines of evidence provides new information. A starting point is provided by the isotopic compositions of primary products (degradation products of chlorophylls, alkenones derived from coccoliths). We find strong evidence that the isotopic difference between primary carbonate and algal organic material can be interpreted in terms of the concentration of dissolved CO2. Moreover, the isotopic difference between primary and total organic carbon can be interpreted in terms of characteristic isotopic shifts imposed by secondary processes (responsive, for example, to O2 levels in the depositional environment. In favorable cases, isotopic compositions of a variety of secondary products can be interpreted in terms of flows of carbon, and, therefore, in terms of specific processes and environmental conditions within the depositional environment.
Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael; ...
2014-04-13
In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less
Keegan, Elizabeth; Kristo, Michael J; Colella, Michael; Robel, Martin; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Wong, Henri; Davis, Joel; Loi, Elaine; Reinhard, Mark; Hutcheon, Ian
2014-07-01
Early in 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. During the search of the laboratory, a small glass jar labelled "Gamma Source" and containing a green powder was discovered. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterise and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key 'nuclear forensic signatures' used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael
In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ann N.; Nittler, Larry R.; Alexander, Conel M. O'D.
2010-08-10
We report the identification of presolar silicates ({approx}177 ppm), presolar oxides ({approx}11 ppm), and one presolar SiO{sub 2} grain in the Allan Hills (ALHA) 77307 chondrite. Three grains having Si-isotopic compositions similar to SiC X and Z grains were also identified, though the mineral phases are unconfirmed. Similar abundances of presolar silicates ({approx}152 ppm) and oxides ({approx}8 ppm) were also uncovered in the primitive CR chondrite Queen Elizabeth Range (QUE) 99177, along with 13 presolar SiC grains and one presolar silicon nitride. The O-isotopic compositions of the presolar silicates and oxides indicate that most of the grains condensed in low-massmore » red giant and asymptotic giant branch stars. Interestingly, unlike presolar oxides, few presolar silicate grains have isotopic compositions pointing to low-metallicity, low-mass stars (Group 3). The {sup 18}O-rich (Group 4) silicates, along with the few Group 3 silicates that were identified, likely have origins in supernova outflows. This is supported by their O- and Si-isotopic compositions. Elemental compositions for 74 presolar silicate grains were determined by scanning Auger spectroscopy. Most of the grains have non-stoichiometric elemental compositions inconsistent with pyroxene or olivine, the phases commonly used to fit astronomical spectra, and have comparable Mg and Fe contents. Non-equilibrium condensation and/or secondary alteration could produce the high Fe contents. Transmission electron microscopic analysis of three silicate grains also reveals non-stoichiometric compositions, attributable to non-equilibrium or multistep condensation, and very fine scale elemental heterogeneity, possibly due to subsequent annealing. The mineralogies of presolar silicates identified in meteorites thus far seem to differ from those in interplanetary dust particles.« less
Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H.
1983-01-01
The isotopic compositions of the waters discharged from Parbati Valley geothermal areas indicate a higher altitude meteoric origin, with discharge temperatures reflecting variations in the depth of penetration of the waters to levels heated by the existence of a 'normal' geothermal gradient. On the basis of mixing models involving silica, tritium, discharge temperatures and chloride contents, deep equilibration temperatures of 120-140??C were obtained for Manikaran, possibly reaching 160??C at even greater depth. Geothermometers based on sulfate-water 18O exchange and gas reactions point to similar temperatures. Exceptionally high helium contents of the discharges correspond to apparent crustal residence times of the waters in the order of 10-100 Ma; relative nitrogen-argon contents support a largely meteoric origin of the waters with a possible fossil brine, but no detectable magmatic component. ?? 1983.
NASA Astrophysics Data System (ADS)
Ko, Ah-Ra; Ju, Se-Jong; Choi, Seok-Gwan; Shin, Kyung-Hoon
2016-09-01
To track the diet of minke whale ( Balaenoptera acutorostrata) in the East Sea (Japan Sea), a conjoint analysis of fatty acids and C and N stable isotopes was performed on blubber and skin from the whale and its potential prey. The total lipid content in the blubber of minke whales ranged from 37.9% to 82.7% of wet mass (mean ± SD, 63.1 ± 17.2%), with triacylglycerols being the dominant lipids (96.9%-99.2% of total lipids). The lipid and fatty acid (FA) contents were systematically stratified throughout the depth of the blubber layers; contents of the dominant monounsaturated FAs (MUFAs), including 18:1ω9 and 16:1ω7, increased from the innermost layer to the outermost layer, whereas contents of saturated FAs (SFAs) and polyunsaturated FAs (PUFAs) were higher in the innermost layer than in the outermost layer. This stratification is related to the different physiological roles of the blubber layers; e.g., thermoregulation, streaming, and buoyancy. A comparison of the FA compositions of the innermost layer of minke whales with those of potential prey indicates that FA compositions in the whales are similar to those of Pacific herring. In addition, stable isotope ratios (δ13C and δ15N) suggest that minke whale and Pacific herring have the same or similar diets. Therefore, the diets of minke whale from the East Sea (Japan Sea) could be inferred from information on the diet of the Pacific herring, although FA compositions and stable isotope ratios for Pacific herring would not exactly reflect the whale's diet. Although the very limited number of samples was used in this study, our preliminary findings are very promising to help understand the feeding ecology of minke whales in the East Sea (Japan Sea).
NASA Astrophysics Data System (ADS)
Huang, Jian; Huang, Fang; Wang, Zaicong; Zhang, Xingchao; Yu, Huimin
2017-08-01
To investigate the behavior of Cu isotopes during partial melting and melt percolation in the mantle, we have analyzed Cu isotopic compositions of a suite of well-characterized Paleozoic peridotites from the Balmuccia and Baldissero massifs in the Ivrea-Verbano Zone (IVZ, Northern Italy). Our results show that fresh lherzolites and harzburgites have a large variation of δ65Cu ranging from -0.133 to 0.379‰, which are negatively correlated with Al2O3 contents as well as incompatible platinum-group (e.g., Pd) and chalcophile element (e.g., Cu, S, Se, and Te) contents. The high δ65Cu can be explained by Cu isotope fractionation during partial melting of a sulfide-bearing peridotite source, with the light isotope (63Cu) preferentially entering the melts. The low δ65Cu can be attributed to precipitation of sulfides enriched in 63Cu during sulfur-saturated melt percolation. Replacive dunites from the Balmuccia massif display high δ65Cu from 0.544 to 0.610‰ with lower Re, Pd, S, Se, and Te contents and lower Pd/Ir ratios relative to lherzolites, which may result from dissolution of sulfides during interactions between S-undersaturated melts and lherzolites at high melt/rock ratios. Thus, our results suggest that partial melting and melt percolation largely account for the Cu isotopic heterogeneity of the upper mantle. The correlation between δ65Cu and Cu contents of the lherzolites and harzburgites was used to model Cu isotope fractionation during partial melting of a sulfide-bearing peridotite, because Cu is predominantly hosted in sulfide. The modelling results indicate an isotope fractionation factor of αmelt-peridotite = 0.99980-0.99965 (i.e., 103lnαmelt-peridotite = -0.20 to -0.35‰). In order to explain the Cu isotopic systematics of komatiites and mid-ocean ridge basalts reported previously, the estimated αmelt-peridotite was used to simulate Cu isotopic variations in melts generated by variable degrees of mantle melting. The results suggest that high degrees (>25%) of partial melting extracts nearly all source Cu and it cannot produce Cu isotope fractionation in komatiites relative to their mantle source, and that sulfide segregation during magma evolution have modified Cu isotopic compositions of mid-ocean ridge basalts.
NASA Astrophysics Data System (ADS)
Coogan, L. A.; Dosso, S. E.; Higgins, J. A.
2014-12-01
There are sharp rises in the Sr- and Li-isotopic composition of seawater at the Eocene-Oligocene boundary that are generally thought to be associated with Himalayan uplift and associated climatic changes and continental weathering variability. In modeling such data the norm is to hold the chemical fluxes associated with off-axis hydrothermal circulation through the oceanic crust constant while varying the river fluxes (and/or isotopic ratios). There is, however, no a priori reason to assume the chemical fluxes (or isotopic compositions) associated with off-axis hydrothermal systems should stay constant. Instead, changing environmental conditions (e.g. seawater composition and bottom water temperature) will lead to changes in these fluxes. An alternative model to explain the sharp rise in the Sr- and Li-isotopic composition of seawater at the Eocene-Oligocene boundary is cooling of the deep ocean. Decreased reaction rates in the oceanic crust, due to decreasing temperature, can be shown to lead to a decrease in the flux of unradiogenic Sr into the ocean. The magnitude matches, within uncertainty, that required to explain the increase in seawater Sr-isotopic composition [Coogan and Dosso, in review]. The story for Li is more uncertain. Two factors may lead to smaller effective fractionation factors between seawater and the (large) Li sink in the oceanic crust when bottom water is warmer: (i) higher temperature will decrease the isotopic fractionation factor; (ii) the more extensive fluid-rock reaction in the ocean crust when bottom water is warmer will make Li uptake by the oceanic crust more efficient. All other things being equal this will lead to a lower Li content of seawater. In turn, a lower Li content in seawater will mean that for a given Li-uptake rate by the crust the effective fractionation factor is smaller, due to Rayleigh distillation of Li-isotopes during fluid-rock reaction in the oceanic crust. In combination these factors predict a significant (many per mil), but poorly constrained, increase in the Li-isotopic composition of the ocean due to cooling bottom water. Models of many geochemical species, including carbon [Coogan and Gillis, 2013], should include environmentally dependent fluxes from off-axis hydrothermal systems.
STABLE CARBON ISOTOPE BIOGEOCHEMISTRY OF A SHALLOW SAND AQUIFER CONTAMINATED WITH FUEL HYDROCARBONS
Ground-water chemistry and the stable C isotope composition ( 13CDIC) of dissolved C (DIC) were measured in a sand aquifer contaminated with JP-4 fuel hydrocarbons. Results show that ground water in the upgradient zone was characterized by DIC content of 14-20 mg C/L and 13CDIC...
NASA Astrophysics Data System (ADS)
Pierre, C.; Rouchy, J.; Blanc-Valleron, M.
2001-12-01
During Messinian times, the whole Mediterranean area was submitted to evaporitic conditions which ended by the "Lago-Mare" brackish episode before the reset of open marine conditions in the early Pliocene. These major paleoceanographic changes resulted from regional tectonic reorganizations and global climate changes at this critical time interval, both acting to modify drastically the physiography and the hydrological budget of the Mediterranean basins. There exist outcropping sections and a few deep-sea ODP cores which contain the complete and continuous sedimentary sequence of the Messinian-Pliocene boundary (MPB), making it possible to follow the paleoenvironmental changes at a high resolution scale. We compare here sedimentological and carbonate stable isotope records on three sections for which a high- resolution sampling was applied to the 2 meters thick interval including the MPB. In the Vera section from South Spain, there is no clear change in the carbonate content of the silty clay succession when crossing the MPB. The oxygen and carbon isotopic compositions of calcite both increase by 1 permil across a 40 cm-thick interval which corresponds to the Messinian-Pliocene transition. At ODP Site 968 from the eastern Levantine basin, there is an important sedimentary change between Messinian brown silty clays containing about 20 percent of carbonate and Pliocene gray nannofossil ooze which carbonate content averages 60 percent. Across this 10 cm-thick transitional interval, the oxygen and carbon isotopic compositions of bulk calcite both increase by 4.5 permil. In the Pissouri section from Cyprus, the uppermost Messinian reddish to brown marls with paleosoils are overlain by white Pliocene marls. The carbonate content increases from 20 percent to reach 60 percent across a 40 cm-thick transitional interval. Within this interval corresponding to the MPB, the oxygen and carbon isotopic compositions increase by 4 permil and 2 permil respectively. These results indicate that the MPB is recorded everywhere from W to E Mediterranean by significant and sharp increases in the oxygen and carbon isotopic compositions, which indicate that the early Pliocene marine flooding of the Mediterranean basins was a very abrupt event.
NASA Astrophysics Data System (ADS)
Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.
2017-12-01
Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.
Titanium stable isotope investigation of magmatic processes on the Earth and Moon
NASA Astrophysics Data System (ADS)
Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.
2016-09-01
We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.
NASA Technical Reports Server (NTRS)
Cameron, J. R.; Mazess, R. B.; Wilson, C. R.
1974-01-01
Research on the measurement of bone mineral content and body composition ranges from isotopic tracer methods and the adoption of clinical standards to osteoporosis therapy and the effects of nutritional factors on bone loss.
Préat, Alain R; de Jong, Jeroen T M; Mamet, Bernard L; Mattielli, Nadine
2008-08-01
The iron (Fe) isotopic composition of 17 Jurassic limestones from the Rosso Ammonitico of Verona (Italy) have been analyzed by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Such analysis allowed for the recognition of a clear iron isotopic fractionation (mean -0.8 per thousand, ranging between -1.52 to -0.06 per thousand) on a millimeter-centimeter scale between the red and grey facies of the studied formation. After gentle acid leaching, measurements of the Fe isotopic compositions gave delta(56)Fe values that were systematically lower in the red facies residues (median: -0.84 per thousand, range: -1.46 to +0.26 per thousand) compared to the grey facies residues (median: -0.08 per thousand, range: -0.34 to +0.23 per thousand). In addition, the red facies residues were characterized by a lighter delta(56)Fe signal relative to their corresponding leachates. These Fe isotopic fractionations could be a sensitive fingerprint of a biotic process; systematic isotopic differences between the red and grey facies residues, which consist of hematite and X-ray amorphous iron hydroxides, respectively, are hypothesized to have resulted from the oxidizing activity of iron bacteria and fungi in the red facies. The grey Fe isotopic data match the Fe isotopic signature of the terrestrial baseline established for igneous rocks and low-C(org) clastic sedimentary rocks. The Fe isotopic compositions of the grey laminations are consistent with the influx of detrital iron minerals and lack of microbial redox processes at the water-interface during deposition. Total Fe concentration measurements were performed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) (confirmed by concentration estimations obtained by MC-ICP-MS analyses of microdrilled samples) on five samples, and resultant values range between 0.30% (mean) in the grey facies and 1.31% (mean) in the red facies. No correlation was observed between bulk Fe content and pigmentation or between bulk Fe content and Fe isotopic compositions. The rapid transformation of the original iron oxyhydroxides to hematite could have preserved the original isotopic composition if it had occurred at about the same temperature. This paper supports the use of Fe isotopes as sensitive tracers of biological activities recorded in old sedimentary sequences that contain microfossils of iron bacteria and fungi. However, a careful interpretation of the iron isotopic fractionation in terms of biotic versus abiotic processes requires supporting data or direct observations to characterize the biological, (geo)chemical, or physical context in relation to the geologic setting. This will become even more pertinent when Fe isotopic studies are expanded to the interplanetary realm.
Triple Oxygen Isotope Constraints on Seawater δ18O and Temperature
NASA Astrophysics Data System (ADS)
Hayles, J.; Shen, B.; Homann, M.; Yeung, L.
2017-12-01
One point of contention among geoscientists is whether the 18O/16O ratio of seawater is roughly constant, or if it varies considerably throughout geologic time. On one hand, the oxygen isotope composition of the ocean is thought to be well buffered by high- and low-temperature interactions between seawater and seafloor rocks. If these interactions do not vary on billion-year timescales, the oxygen-isotope compositions of marine sedimentary rocks mostly relate to changes in seawater temperature and global ice volume. On the other hand, long-term cooling of the planetary interior would alter these water-rock interactions leading to a secular change in the oxygen isotope composition of seawater. Models suggest that this secular change would enrich seawater with heavy oxygen isotopes over time. In this study, we present new, high precision, triple-oxygen-isotope (18O/16O, 17O/16O) analyses of marine chert samples from 3.45 Ga to 460Ma. The results of these analyses are paired with a new theoretical quartz-water equilibrium curve and a simplified seawater model to provide possible pairings of δ'18O and Δ'17O for the water which these samples could have formed in equilibrium with. Analysis of the new sample data, in addition to published chert triple oxygen isotope compositions, shows a general trend of older chert samples being progressively incompatible with waters possessing a modern-like seawater triple oxygen isotope composition. Implications on constraining the secular evolution of seawater δ18O and temperature will be discussed.
Foley, Nora K.; Ayuso, Robert A.
1994-01-01
Pb isotope compositions from the late stage of the North Amethyst vein system and from the Bondholder and central and southern Creede mining districts are more radiogenic than the host volcanic rocks of the central cluster of the San Juan volcanic field. Our Pb isotope results indicate that early Au mineralization of the North Amethyst area may represent the product of an older and relatively local hydrothermal system distinct from that of the younger base metal and Ag mineralization found throughout the region. Fluids that deposited Au minerals may have derived their Pb isotope composition by a greater degree of interaction with shallow, relatively less radiogenic volcanic wall rocks. The younger, base metal and Ag-rich mineralization that overprints the Au mineralization in the North Amethyst area clearly has a more radiogenic isotopic signature, which implies that the later mineralization derived a greater component of its Pb from Proterozoic source rocks, or sediments derived from them.Paragenetically early sulfide-rich vein assemblages have the least radiogenic galenas and generally also have the highest Au contents. Thus, identification of paragenetically early vein assemblages with relatively unradiogenic Pb isotope compositions similar to those of the North Amethyst area provides an additional exploration tool for Au in the central San Juan Mountains area.
NASA Technical Reports Server (NTRS)
Loss, R. D.; Lugmair, G. W.; Davis, A. M.; Macpherson, G. J.
1994-01-01
The isotopic compositions of Mg, Ca, Ti, Cr, Zn, Sr, Ba, Nd, and Sm were measured in four relatively unaltered refractory inclusions from the Vigarano carbonaceous chondrite meteorite. Three of the inclusions (USNM 1623-2, 1623-3, and 1623-8) show similar Mg, Ca, Ti, and Cr isotopic compositions to those found in most inclusions in the Allende carbonaceous chondrite. This indicates that these Vigarano inclusions sampled the same isotopic reservoirs as the majority of the Allende inclusions that isotope signatures in the latter were not significantly modified by the secondary alteration that permeates most Allende inclusions. In contrast, inclusion 1623-5 has large deficits in Mg-26, Ca-48, and Ti-50 and small but distinct Cr-54, Zn-66, Sr-84, Ba-135, Ba-137, and Sm-144 anomalies. The magnitudes of these unusual anomalies in the refractory elements are within analytical uncertainty of those found in the Allende 'FUN" inclusion C1, yet 1623-5 has a very different bulk chemical composition from C1. The fact that 1623-5 and C1 have identical isotopic anomalies yet have significantly distinct major and trace element contents provide convincing evidence for the presence of isotopically distinct reservoirs in the early solar system.
NASA Astrophysics Data System (ADS)
Magdas, D. A.; Cristea, G.; Cordea, D. V.; Bot, A.; Puscas, R.; Radu, S.; Mirel, V.; Mihaiu, M.
2013-11-01
Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ18O and δ2H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also very important: in summer, milk water contains higher δ18O and δ2H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.
Thermal Diffusion Fractionation of Cr and V Isotope in Silicate Melt
NASA Astrophysics Data System (ADS)
Lin, X.; Lundstrom, C.
2017-12-01
Earth's mantle is isotopically heavy relative to chondrites for V, Cr and some other siderophile elements. A possible solution is that isotopic fractionation by thermal diffusion occurs in a thermal boundary layer between solid mantle and an underlying basal magma ocean (BMO:Labrosse et al.,2007). If so, isotopically light composition might partition into the core, resulting in a complimentary isotopically heavy solid mantle. To verify how much fractionation could happen in this process, piston cylinder experiment were conducted to investigate the fractionation of Cr and V isotope ratios in partially molten silicate under an imposed temperature gradient from 1650 °C to 1350 °C at 1 GPa for 10 to 50 hours to reach a steady state isotopic profile. The temperature profile for experiments was determined by the spinel-growth method at the same pressure and temperature. Experimental runs result in 100% glass at the hot end progressing to nearly 100 % olivine at the cold end. Major and minor element concentrations of run products show systematic changes with temperature. Glass MgO contents increase and Al2O3 and CaO contents decrease by several weight percent as temperature increases across the charge. These are well modeled using IRIDIUM (Boudreau 2003) to simulate the experiments. Isotopic composition measurements of Cr and V at different temperatures are in progress, providing the first determinations of thermal diffusion isotopic sensitivity, Ω (permil isotopic fractionation per temperature offset per mass unit) for these elements. These results will be compared with previously determined Ω for network formers and modifiers and used in a BMO-based thermal diffusion model for formation of Earth's isotopically heavy mantle.
NASA Astrophysics Data System (ADS)
Kanduč, Tjaša; Mechora, Špela; Stibilj, Vekoslava
2014-05-01
Polluted waters recharging from agriculture water systems into watersheds have influence on water quality and living habitat. Stable isotopes of carbon and nitrogen in combination with other minor and trace elements are often used to trace biogeochemical processes and contamination of water systems. The aim of the study was to assess state of environment with minor and trace elements and stable isotopes of C and N in selected Slovenian streams. Ten locations in Notranjska region, Slovenia, with different land use in the catchment (town, village, agricultural areas, farms, dairy farms), including reference point considered as non-polluted site, were sampled. Samples of water and aquatic moss F. antipyretica in Slovenian fresh waters were taken in all four seasons during years 2010 and 2012, but for stable isotope analyses of C and N only in three seasons during years 2010 and 2011. The water chemistry of investigated locations is dominated by hydrogen carbonate - calcium - magnesium, concentrations of nitrate seasonally range from 2.07 mg/l to 6.4 mg/l and at reference site does not exceed 1.3 mg/l. Total alkalinity of water at investigated locations ranges from 2.9 to 6.02 mM. The pH of investigated water range from 7.2 to 8.5, waters are saturated with oxygen (up to 134%) and conductivity ranges from 295 to 525 mikroS/cm, while at reference site conductivity is up to 180 mikroS/cm. The content of minor and trace elements in F. antipyretica ranged for Ni 4-38 mikrog/g, Zn 17-105 mikrog/g, Pb 2-28 mikrog/g, Cd 220-1953 ng/g, Cu 4-27 mikrog/g, Cr 4-49 mikrog/g, As 1-6 mikrog/g and Se 0.33-3.24 mikrog/g. The most polluted watershed was Pšata stream (agricultural areas, cattle farm) with highest values for Ni, Cr, Pb, Zn and As. The highest content of Se, was found in village (dairy farms) in Žerovniščica stream. The highest values were measured in February and October. Isotopic composition of dissolved inorganic carbon seasonally range from -13.3 to -8.1‰, and indicate waters dominated by degradation of organic matter and dissolution of carbonates. At the reference point average measured isotopic composition of dissolved inorganic carbon value is -2.7‰ which confirmed that this is a non-polluted site. Isotopic composition of carbon of F. antipyretica seasonally ranges from -45 to -32.9‰ and isotopic composition of nitrogen from -0.2‰ to 6.5‰, respectively. In comparison to C3 terrestrial plants F. antipyretica has more negative isotopic composition of carbon value, which is probably related with the difference in CO2 plant fixation and depends on isotopic composition of dissolved inorganic carbon in water, which is primarily controlled by geological composition and soil thickness in the watershed. Higher isotopic composition of nitrogen value found in F. antipyretica is related to agricultural activity in watershed, while at the reference site measured isotopic composition of nitrogen value is -4.1 ‰. From our study it is evident that isotopic composition of carbon and nitrogen is useful tracer of natural and anthropogenic inputs from terrestrial (fertilizing, sewage sludge) to water system.
NASA Astrophysics Data System (ADS)
Ostrander, C. M.; Kendall, B.; Roy, M.; Romaniello, S. J.; Nunn, S. J.; Gordon, G. W.; Olson, S. L.; Lyons, T. W.; Zheng, W.; Anbar, A. D.
2016-12-01
Molybdenum (Mo) isotope compositions of Archean shales can provide important insights into ocean and atmosphere redox dynamics prior to the Great Oxidation Event (GOE). Unfortunately, the relatively limited Mo isotope database and small number of sample sets for Archean shales do not allow for in-depth reconstructions and specifically make it difficult to differentiate global from local effects. To accurately estimate the Mo isotope composition of Archean seawater and better investigate the systematics of local and global redox, more complete sample sets are needed. We carried out a Mo isotope analysis of the euxinic 2.65 Ga Roy Hill Shale sampled in two stratigraphically correlated cores, and revisited the well-studied euxinic 2.5 Ga Mt. McRae Shale in higher resolution. Our data show contrasting Mo isotope values in the 2.65 Ga Roy Hill Shale between near- and offshore depositional environments, with systematically heavier isotope values in the near-shore environment. High-resolution analysis of the Mt. McRae Shale yields oscillating Mo concentrations and isotope values at the cm- to dm-scale during the well-characterized "whiff of O2" interval, with the heaviest isotope values measured during euxinic deposition. Variations in the measured isotope values within each section are primarily associated with redox changes in the local depositional environment and amount of detrital content. Both non-quantitative removal of Mo associated with incorporation into non-euxinic sediments and large detrital Mo contributions shift some measured isotopic compositions toward lighter values. This is readily apparent in the near-shore Roy Hill Shale section and the Mt. McRae Shale, but may not fully explain variations observed in the offshore Roy Hill Shale deposit. Here, euxinic deposition is not accompanied by Mo enrichments or isotopic compositions as heavy as the near-shore equivalent, even after detrital correction. This disparity between the near- and offshore environment could signify spatial variation in the Mo isotope composition of 2.65 Ga seawater and highlights the need for multi-site and high-resolution studies in order to best assess paleoenvironmental conditions.
What controls silicon isotope fractionation during dissolution of diatom opal?
NASA Astrophysics Data System (ADS)
Wetzel, F.; de Souza, G. F.; Reynolds, B. C.
2014-04-01
The silicon isotope composition of opal frustules from photosynthesising diatoms is a promising tool for studying past changes in the marine silicon cycle, and indirectly that of carbon. Dissolution of this opal may be accompanied by silicon isotope fractionation that could disturb the pristine silicon isotope composition of diatom opal acquired in the surface ocean. It has previously been shown that dissolution of fresh and sediment trap diatom opal in seawater does fractionate silicon isotopes. However, as the mechanism of silicon isotope fractionation remained elusive, it is uncertain whether opal dissolution in general is associated with silicon isotope fractionation considering that opal chemistry and surface properties are spatially and temporally (i.e. opal of different age) diverse. In this study we dissolved sediment core diatom opal in 5 mM NaOH and found that this process is not associated with significant silicon isotope fractionation. Since no variability of the isotope effect was observed over a wide range of dissolution rates, we can rule out the suggestion that back-reactions had a significant influence on the net isotope effect. Similarly, we did not observe an impact of temperature, specific surface area, or degree of undersaturation on silicon isotope partitioning during dissolution, such that these can most likely also be ruled out as controlling factors. We discuss the potential impacts of the chemical composition of the dissolution medium and age of diatom opal on silicon isotope fractionation during dissolution. It appears most likely that the controlling mechanism of silicon isotope fractionation during dissolution is related to the reactivity, or potentially, aluminium content of the opal. Such a dependency would imply that silicon isotope fractionation during dissolution of diatom opal is spatially and temporally variable. However, since the isotope effects during dissolution are small, the silicon isotope composition of diatom opal appears to be robust against dissolution in the deep sea sedimentary environment.
Maldonado, F.; Budahn, J.R.; Peters, L.; Unruh, D.M.
2006-01-01
The geochronology, geochemistry, and isotopic compositions of basaltic flows erupted from the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra volcanic centres in central New Mexico indicate that each of these lavas had unique origins and that the predominant mantle involved in their production was an ocean-island basalt type. The basalts from Cat Hills (0.11 Ma) and Cat Mesa (3.0 Ma) are similar in major and trace element composition, but differences in MgO contents and Pb isotopic values are attributed to a small involvement of a lower crustal component in the genesis of the Cat Mesa rocks. The Cerro Verde rock is comparable in age (0.32 Ma) to the Cat Hills lavas, but it is more radiogenic in Sr and Nd, has higher MgO contents, and has a lower La/Yb ratio. This composition is explained by the melting of an enriched mantle source, but the involvement of another crustal component cannot be disregarded. The Wind Mesa rock is characterized by similar age (4.01 Ma) and MgO contents, but it has enriched rare-earth element contents compared with the Cat Mesa samples. These are attributed to a difference in the degree of partial melting of the Cat Mesa source. The Mesita Negra rock (8.11 Ma) has distinctive geochemical and isotopic compositions that suggest a different enriched mantle and that large amounts of a crustal component were involved in generating this magma. These data imply a temporal shift in magma source regions and crustal involvement, and have been previously proposed for Rio Grande rift lavas. ?? 2006 NRC Canada.
Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.
Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James
2014-12-16
Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (<-0.02 per mil), and (33)S enrichments in other magmatic iron meteorite groups. The (33)S depletions support the idea that differentiated planetesimals inherited sulfur that was photochemically derived from gases in the early inner solar system (<∼2 AU), and that bulk inner solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.
NASA Astrophysics Data System (ADS)
Kiselev, G. P.; Yakovlev, E. Yu.; Druzhinin, S. V.; Galkin, A. S.
2017-09-01
The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.
Speciation of strontium in particulates and sediments from the Mississippi River mixing zone
NASA Astrophysics Data System (ADS)
Xu, Yingfeng; Marcantonio, Franco
2004-06-01
Sequential extractions were performed on small amounts of particulate and sediment samples (6 to10 mg) from the Mississippi River mixing zone. The leachates were analyzed for Sr concentration and 87Sr/ 86Sr isotope ratio. Mn and Fe contents were also measured as their oxyhydroxides are potential carrier phases for Sr. The largest fraction of Sr in the solid phase (particulates and sediments) was found to be present in the residual, refractory fraction (>70% of total). By comparison with the corresponding sediment, particulates appear to have higher concentrations of nonresidual, labile Sr (30% vs. 15%). Carbonate components seem to play an important role as carriers for labile Sr in particulates and sediments. Changes in the composition and content of the solid phase may significantly modify both the 87Sr/ 86Sr isotope ratio of the total labile fractions and that of the bulk components. However, such modifications, under normal conditions, exert little measurable influence on the Sr isotope composition of the dissolved phase.
New approaches to the Moon's isotopic crisis
Melosh, H. J.
2014-01-01
Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth–Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. PMID:25114301
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertozzi, William; Hasty, Richard; Klimenko, Alexei
Four new technologies have been developed for use in non-intrusive inspection systems to detect nuclear materials, explosives and contraband. Nuclear Resonance Fluorescence (NRF) provides a three dimensional image of the isotopic content of a container. NRF determines the isotopic composition of a region and specifies the isotopic structure of the neighboring regions, thus providing the detailed isotopic composition of any threat. In transmission mode, NRF provides a two dimensional projection of the isotopic content of a container, much as standard X-ray radiography provides for density. The effective-Z method (EZ-3D) uses electromagnetic scattering processes to yield a three-dimensional map of themore » effective-Z and the density in a container. The EZ-3D method allows for a rapid discrimination based on effective Z and mass of materials such as those with high Z, as well as specifying regions of interest for other contraband. The energy spectrum of prompt neutrons from photon induced fission (PNPF) provides a unique identification of the presence of actinides and SNM. These four new technologies can be used independently or together to automatically determine the presence of hazardous materials or contraband. They can also be combined with other technologies to provide added specificity.« less
NASA Astrophysics Data System (ADS)
Yamaguchi, K. E.; Ikehara, M.; Hayama, H.; Takiguchi, S.; Masuda, S.; Ogura, C.; Fujita, S.; Kurihara, E.; Matsumoto, T.; Oshio, S.; Ishihata, K.; Fuchizawa, Y.; Noda, H.; Sakurai, U.; Yamane, T.; Morgan, J. V.; Gulick, S. P. S.
2017-12-01
The Chicxulub crater in the northern Yucatan Peninsula, Mexico was formed by the asteroid impact at the Cretaceous-Paleogene boundary (66.0 Ma). In early 2016 the IODP Exp. 364 successfully drilled the materials from the topographic peak ring within the crater that was previously identified by seismological observations. A continuous core was recovered. The 112m-thick uppermost part of the continuous core (505.7-1334.7 mbsf) is post-impact sediments, including the PETM, that are mainly composed of carbonate with intercalation of siliciclastics and variable contents of organic carbon. More than 300 samples from the post-impact section were finely powdered for a variety of geochemical analysis. Here we report their carbon and oxygen isotope compositions of the carbonate fraction (mostly in the lower part of the analyzed section) and carbon and nitrogen isotope compositions of organic matter (mostly in the middle-upper part of the analyzed section). Isotope mass spectrometer Isoprime was used for the former analysis, and EA-irMS (elemental analyzer - isotope ratio mass spectrometer) was used for the latter analysis, both at CMCR, Kochi Univ. Depth profile of oxygen isotope compositions of carbonate fraction is variable and somewhat similar to those of Zachos et al. (2001; Science). Carbon isotope compositions of carbonate and organic carbon in the lower part of the analyzed section exhibit some excursions that could correspond to the hyperthemals in the early Paleogene. Their variable nitrogen isotope compositions reflect temporal changes in the style of biogeochemical cycles involving denitrification and nitrogen fixation. Coupled temporal changes in the carbon isotope compositions of organic and carbonate carbon immediately after the K-Pg boundary might support a Strangelove ocean (Kump, 1991; Geology), however high export production (Ba/Ti, nannoplankton and calcisphere blooms, high planktic foram richness, and diverse and abundant micro- and macrobenthic organisms) at the base of the Danian limestone cored during Exp. 364 contradict a Strangelove Ocean.
The chlorine isotope composition of the moon and implications for an anhydrous mantle.
Sharp, Z D; Shearer, C K; McKeegan, K D; Barnes, J D; Wang, Y Q
2010-08-27
Arguably, the most striking geochemical distinction between Earth and the Moon has been the virtual lack of water (hydrogen) in the latter. This conclusion was recently challenged on the basis of geochemical data from lunar materials that suggest that the Moon's water content might be far higher than previously believed. We measured the chlorine isotope composition of Apollo basalts and glasses and found that the range of isotopic values [from -1 to +24 per mil (per thousand) versus standard mean ocean chloride] is 25 times the range for Earth. The huge isotopic spread is explained by volatilization of metal halides during basalt eruption--a process that could only occur if the Moon had hydrogen concentrations lower than those of Earth by a factor of approximately 10(4) to 10(5), implying that the lunar interior is essentially anhydrous.
The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood
Spiker, E. C.; Hatcher, P.G.
1987-01-01
Studies of modern and ancient buried wood show that there is a linear correlation between carbohydrate content and the stable carbon isotope composition as carbohydrates are preferentially degraded during early diagenesis. As the carbohydrate content decreases, the ??13C value of the degraded wood decreases 1 to 2 per mil, approaching the value of the residual lignin. These results indicate that carbohydrate degradation products are lost and not incorporated into the aromatic structure as lignin is selectively preserved during early diagenesis of wood. These results also indicate that attempts to quantify terrestrial inputs to modern sedimentary organic matter based on ??13C values should consider the possibility of a 1 to 2 per mil decrease in the ??13C value of degraded wood. ?? 1987.
Wang, Deli; Zhao, Zhiqi; Dai, Minhan
2014-02-15
This study examined the Pb content and Pb isotopic composition in a sediment core taken from the East China Sea (ECS) shelf, and it was observed that since 2003 the increasing anthropogenic Pb inputs have impacted as far as the ECS shelf sediments. The ECS shelf sediments were generally characterized with low bulk Pb contents (12.5-15.0 μg/g) and relatively lithogenic Pb isotopic signatures (both HCl-leached and residual fractions). However, elevated Pb records along with lighter Pb isotopic signals have occurred in the post-2003 sediments, as a result of a small but increasing anthropogenic Pb contribution from the heavily human perturbed coastal sediments due to the sharply increasing coal consumption in mainland China since 2003. Copyright © 2013 Elsevier Ltd. All rights reserved.
D. R. Bowling; W. J. Massman; S. M. Schaeffer; S. P. Burns; R. K. Monson; M. W. Williams
2009-01-01
Considerable research has recently been devoted to understanding biogeochemical processes under winter snow cover, leading to enhanced appreciation of the importance of many winter ecological processes. In this study, a comprehensive investigation of the stable carbon isotope composition (δ 13C) of CO2 within a high-elevation subalpine...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A.
Product origin is of great importance for consumers especially because its association in consumer's perception with food quality, freedom from disease or pollution. Stable isotope ratio analysis is a powerful technique in food authenticity and traceability control which has been introduced within the European wine industry to ensure authenticity of wine provenance and to detect adulteration. Isotopic ratios measurements have also been successfully to other food commodities like: fruit juices, honey and dairy foods. The δ{sup 18}O and δ{sup 2}H content in milk water reflects the isotope composition of the ground water drunk by animals. Seasonal effects are also verymore » important: in summer, milk water contains higher δ{sup 18}O and δ{sup 2}H values due to the fresh plants that are ate by animals. Relative carbon stable isotope abundances in total milk reflect the isotopic composition of the diet fed to the dairy cows. In this study the hydrogen, oxygen and carbon isotopic composition of 15 milk samples coming from a unit placed in the mountains of Transylvania was investigated. The distribution of the obtained isotopic values was than discussed taking into account that all the animals were feed with the same type of forage and consumed water was taken from the same source.« less
Chromium isotope heterogeneity in the mantle
NASA Astrophysics Data System (ADS)
Xia, Jiuxing; Qin, Liping; Shen, Ji; Carlson, Richard W.; Ionov, Dmitri A.; Mock, Timothy D.
2017-04-01
To better constrain the Cr isotopic composition of the silicate Earth and to investigate potential Cr isotopic fractionation during high temperature geological processes, we analyzed the Cr isotopic composition of different types of mantle xenoliths from diverse geologic settings: fertile to refractory off-craton spinel and garnet peridotites, pyroxenite veins, metasomatised spinel lherzolites and associated basalts from central Mongolia, spinel lherzolites and harzburgites from North China, as well as cratonic spinel and garnet peridotites from Siberia and southern Africa. The δ53CrNIST 979 values of the peridotites range from - 0.51 ± 0.04 ‰ (2SD) to + 0.75 ± 0.05 ‰ (2SD). The results show a slight negative correlation between δ53Cr and Al2O3 and CaO contents for most mantle peridotites, which may imply Cr isotopic fractionation during partial melting of mantle peridotites. However, highly variable Cr isotopic compositions measured in Mongolian peridotites cannot be caused by partial melting alone. Instead, the wide range in Cr isotopic composition of these samples most likely reflects kinetic fractionation during melt percolation. Chemical diffusion during melt percolation resulted in light Cr isotopes preferably entering into the melt. Two spinel websterite veins from Mongolia have extremely light δ53Cr values of - 1.36 ± 0.04 ‰ and - 0.77 ± 0.06 ‰, respectively, which are the most negative Cr isotopic compositions yet reported for mantle-derived rocks. These two websterite veins may represent crystallization products from the isotopically light melt that may also metasomatize some peridotites in the area. The δ53Cr values of highly altered garnet peridotites from southern Africa vary from - 0.35 ± 0.04 ‰ (2SD) to + 0.12 ± 0.04 ‰ (2SD) and increase with increasing LOI (Loss on Ignition), reflecting a shift of δ53Cr to more positive values by secondary alteration. The Cr isotopic composition of the pristine, fertile upper mantle is estimated as δ53Cr = - 0.14 ± 0.12 ‰, after corrections for the effects of partial melting and metasomatism. This value is in line with that estimated for the BSE (- 0.12 ± 0.10 ‰) previously.
Child, A W; Moore, B C; Vervoort, J D; Beutel, M W
2018-07-01
The upper Columbia River and associated valley systems are highly contaminated with metal wastes from nearby smelting operations in Trail, British Columbia, Canada (Teck smelter), and to a lesser extent, Northport, Washington, USA (Le Roi smelter). Previous studies have investigated depositional patterns of airborne emissions from these smelters, and documented the Teck smelter as the primary metal contamination source. However, there is limited research directed at whether these contaminants are bioavailable to aquatic organisms. This study investigates whether smelter derived contaminants are bioavailable to freshwater zooplankton. Trace metal (Zn, Cd, As, Sb, Pb and Hg) concentrations and Pb isotope compositions of zooplankton and sediment were measured in lakes ranging from 17 to 144 km downwind of the Teck smelter. Pb isotopic compositions of historic ores used by both smelters are uniquely less radiogenic than local geologic formations, so when zooplankton assimilate substantial amounts of smelter derived metals their compositions deviate from local baseline compositions toward ore compositions. Sediment metal concentrations and Pb isotope compositions in sediment follow significant (p < 0.001) negative exponential and sigmoidal patterns, respectively, as distance from the Teck smelting operation increases. Zooplankton As, Cd, and Sb contents were related to distance from the Teck smelter (p < 0.05), and zooplankton Pb isotope compositions suggest As, Cd, Sb and Pb from historic and current smelter emissions are biologically available to zooplankton. Zooplankton from lakes within 86 km of the Teck facility display isotopic evidence that legacy ore pollution is biologically available for assimilation. However, without water column data our study is unable to determine if legacy contaminants are remobilized from lake sediments, or erosional pathways from the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaunat, J.; Celle-Jeanton, H.; Huneau, F.; Dupuy, A.; Le Coustumer, P.
2013-07-01
A hydrochemical and isotopic survey of rainwater and groundwater has been carried out during almost two years on the Ursuya Mount in the northern Basque Country (southwestern France) with the aim of enhancing the understanding of the behaviour of this aquifer and more peculiarly the recharge mode of groundwater. The input signal of this aquifer is defined thanks to 112 rainwater samples. The computed meteoric water line (δD = 7.3 δ18O + 5.1; r = 0.96) is consistent with that defined in the European IAEA/WMO network stations. The weighted mean deuterium excess about 9.7‰ is really close to the value obtained for Atlantic precipitations and clearly demonstrates an oceanic major origin. The computations conducted on the chemical dataset show that the rainwater composition is controlled by four major factors: (1) a mixed source of anthropogenic pollution and crustal material; (2) a marine source; (3) an urban source; (4) an acid source. Further, the quantification of neutralizing potentials clearly revealed below cloud processes in which crustal and anthropogenic components are responsible for the neutralization of anions. Besides the major Atlantic origin of the recharge water, the chemical and isotopic content of the samples coupled with the corresponding air mass back trajectories revealed four major geographical origins of the components: (1) northwestern part of Atlantic Ocean and (2) Southwestern part of Atlantic Ocean. The oceanic influence in airmasses from these origins is highlighted by the stable isotopic content (weighted mean close to the Atlantic Ocean signature) and by the chemical concentrations dominated by sea salt elements. (3) Northern Europe with a continental influence shown by a light depletion on isotopic signal besides purely oceanic origin and a higher concentration of crustal and anthropogenic components. 4) Southeastern area (Southeastern Europe, Northern Africa and Mediterranean Sea) with an isotopic signature consistent with the Mediterranean one and a chemical composition clearly influenced by the industrial activities of this region. The dataset is confronted with the chemical and isotopic characteristics of groundwater in order to assess the recharge water signature of the aquifer of the Ursuya Mount. The groundwater isotopic signal is close to the defined LMWL, showing actual and local recharge. Nevertheless, a slightly difference is observed between the mean value of stable isotopic content in groundwater and in rainwater. The slightly depleted values of groundwater besides rainwater can be attributed to a preferential winter/autumn recharge. An altitudinal gradient about -0.11‰ δ18O/100 m is defined and both water-rock interactions and physicochemical processes fingerprint on the groundwater composition are characterised.
The origin of fluids in the salt beds of the Delaware Basin, New Mexico and Texas
O'Neil, J.R.; Johnson, C.M.; White, L.D.; Roedder, E.
1986-01-01
Oxygen and hydrogen isotope analyses have been made of (1) brines from several wells in the salt deposits of the Delaware Basin, (2) inclusion fluids in halite crystals from the ERDA No. 9 site, and (3) local ground waters of meteoric origin. The isotopic compositions indicate that the brines are genetically related and that they probably originated from the evaporation of paleo-ocean waters. Although highly variable in solute contents, the brines have rather uniform isotopic compositions. The stable isotope compositions of brine from the ERDA No. 6 site (826.3 m depth) and fluid inclusions from the ERDA No. 9 site are variable but remarkably regular and show that (1) mixing with old or modern meteoric waters has occurred, the extent of mixing apparently decreasing with depth, and (2) water in the ERDA No. 6 brine may have originated from the dehydration of gypsum. Alternatively, the data may reflect simple evaporation of meteoric water on a previously dry marine flat. Stable isotope compositions of all the waters analyzed indicate that there has been fairly extensive mixing with ground water throughout the area, but that no significant circulation has occurred. The conclusions bear importantly on the suitability of these salt beds and others as repositories for nuclear waste. ?? 1986.
NASA Astrophysics Data System (ADS)
Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team
2010-05-01
The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late Glacial (up to 22.0 per mil) are only sporadically reached down core. Compared to this, separated moss debris is remarkably 13C depleted with a minimum at 31.5 per mil. The nitrogen isotope ratios of glacial Laguna Potrok Aike sediments are lower (2.5 per mil) than those of the younger part of the record. The core catcher samples indicate several oscillations between 0.5 and 3.5 per mil. Data suggest a correlation between nitrogen isotopes and C/N ratios, but no linear relation between carbon isotopes and carbon content and an only weak relationship between carbon and nitrogen isotopes. Increasing nitrogen isotope values from 8000 cm downwards could probably be related to changed environmental conditions of Marine Isotope Stage 3 (MIS 3) compared to Marine Isotope Stage 2 (MIS 2). This will be further evaluated with higher resolution from the composite profile including a detailed study of discrete plant debris layers. References Haberzettl, T. et al. (2007). Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. The Holocene, 17: 297-310. Mayr, C. et al. (2009). Isotopic and geochemical fingerprints of environmental changes during the last 16,000 years on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina). Journal of Paleolimnology, 42: 81-102.
NASA Astrophysics Data System (ADS)
Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.
2017-01-01
The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.
NASA Astrophysics Data System (ADS)
Martin, Erwan; Bindeman, Ilya; Balan, Etienne; Palandri, Jim; Seligman, Angela; Villemant, Benoit
2016-04-01
The content, speciation and isotopic composition of water in volcanic glass have been used for decades as recorder of magma degassing or late glass rehydration processes. Magmatic or paleoclimate information are derived depending on the primary (magmatic) or meteoric (secondary) origin of water. In this study, we attempt to discriminate residual magmatic from secondary meteoric water in volcanic glass. Using samples from different geological settings and different climatic conditions, we show that the H-isotope composition and water content measured via a TC/EA-MAT253 system in volcanic glass alone are not always sufficient to provide clear distinction between magmatic and meteoric origin. However, it is quite easy to resolve δD evolution during post-deposit rehydration by meteoric water from magma degassing when volcanic glass have a δD <-100‰ or >-50‰ and [H2O]tot >1.5-2wt.%. Water speciation inferred from near-infrared spectroscopy also provides valuable information complementary to isotopic and total water measurements. During magma degassing (typically with [H2O]tot decreasing from 6wt.% to ~0wt.% water) H2O/OH is expected to decrease from 2 to close to 0. However, our dataset shows the opposite trend with an increase of H2O/OH from 2 to ~5. We interpret it as post deposit rehydration of the volcanic glass. Overall our results show that the discrimination of the water origin is essential to discuss magma degassing processes or paleoclimatic reconstitutions. The present study of hydrous glass supports the use of H-isotopes of volcanic glass to discuss paleoclimate reconstitution in a specific region. To this purpose, the volcanic glass has to be almost fully rehydrated in order to fingerprint the isotopic composition of the rehydration water. A sharp time constrain can be obtained if the full rehydration occurs quickly after the eruption. This is most likely to occur in meters thick volcanic pyroclast deposits that undergo slow cooling rates and thus can stay at few hundreds °C for a time long enough to ensure complete chemical reaction (few to hundreds of years) after the eruption but still short on a geological scale.
Zinc Isotopic Signatures of the Upper Continental Crust
NASA Astrophysics Data System (ADS)
Xia, Y.; Zhang, X.; Zhang, H.; Huang, F.
2016-12-01
To examine the Zn isotope systematics within the Upper Continental Crust (UCC), and isotope fractionation during chemical weathering in large spatial and temporal scales, we analyzed Zn isotopic compositions of loess, glacial diamictites, river sediments, and igneous rocks (samples in total 77). The Zn isotopic compositions (δ66Zn relative to JMC-Lyon) of loess display a limited variation (0.17‰ to 0.29‰), which is negatively correlated with Zn content and proxies for chemical weathering (e.g. CIA values), reflect the impact of chemical weathering. Glacial diamictites have more variable δ66Zn (0.09‰ to 0.48‰), but the average δ66Zn (0.29±0.03‰, 2SD) is similar to loess. δ66Zn of glacial diamictites correlate roughly negatively with CIA values, but have no correlation with Zn content, implying source heterogeneity and effect from chemical weathering. δ66Zn of A-type (0.39‰ to 0.45‰) and S-type (0.28‰ to 0.35‰) granites are both homogeneous, but the latter have systematically lighter δ66Zn. This may reflect no Zn isotopic fractionation during magmatic processes and involvement of isotopically light meta-sedimentary into the sources of S-type granites. Furthermore, δ66Zn in riverine sediments display a small variation from 0.23‰ to 0.37‰, while δ66Zn of the the shales vary from 0.14‰ to 0.53‰, which could result from a combination of processes, such as biological cycling and chemical weathering. Overall, our data suggest that incipient chemical weathering can fractionate Zn isotopes significantly, meanwhile, during this process, heavy Zn are released preferentially. The UCC is estimated to have an average δ66Zn of 0.30 ±0.03‰ (2SD) with data collected in this study, which is similar to the estimated value of Bulk Silicate Earth (0.28±0.05‰)[1] and mean dissolved riverine flux (0.33‰)[2], but distinctly lighter than the bulk composition of dissolved Zn in the ocean (0.51‰)[2]. [1] Chen et al., Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters 369, 34-42 (2013). [2] Little et al., The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta 125, 673-693 (2014).
Trace element distributions in primitive achondrites
NASA Technical Reports Server (NTRS)
Davis, Andrew M.; Prinz, Martin; Weisberg, Michael K.
1993-01-01
The primitive achondrites have approximately chondritic bulk chemical composition but achondritic textures. Clayton et al. show that nine of these meteorites, the acapulcoites and the lodranites, have similar oxygen isotopic compositions. The acapulcoites appear to be highly metamorphosed, but undifferentiated meteorites of chondritic composition; whereas, the lodranites appear to have lost a feldspathic partial melt. In order to learn more about metamorphic processes and partial melt removal, we have measured the trace element compositions of constituent phases of a number of primitive achondrites by ion microprobe. We have analyzed two acapulcoites, Acapulco and ALH81261 (paired with ALH77081), and three londranites, Lodran, LEW88280, and MAC88177. In addition, we analyzed LEW88663, which has the bulk composition, mineral chemistry, and oxygen isotopic composition of L-chondrites, but is metal-free and has an achondrite texture; and Divnoe, a plagioclase-poor, olivine-rich primitive achondrite with an oxygen isotopic composition similar to that of the group IAB iron meteorites. These meteorites show a variety of REE patterns in their constituent phases, and there are consistent differences between acapulcoites and lodranites that are consistent with removal of a LREE- and Eu-enriched melt that is apparently responsible for the low plagioclase content of lodranites.
Dolomite clumped isotope constraints on the oxygen isotope composition of the Phanerozoic Sea
NASA Astrophysics Data System (ADS)
Ryb, U.; Eiler, J. M.
2017-12-01
The δ18O value of the Phanerozoic Sea has been debated several decades, largely motivated by an 8‰ increase in δ18O of sedimentary carbonates between the Cambrian and the present. Some previous studies have interpreted this increase to be a primary depositional signal, resulting from an increase in the 18O content of ocean water over time, or from a decrease in ocean temperature increasing the oxygen isotope fractionation between seawater and carbonates. In contrast, other studies have interpreted lower δ18O compositions as the products of diagenetic alteration at elevated burial temperatures. Here, we show that the Phanerozoic dolomite δ18O record overlaps with that of well-preserved calcite fossils, and use carbonate clumped isotope measurements of Cambrian to Pleistocene dolomites to calculate their formation temperatures and the isotopic compositions of their parent-waters. The observed variation in dolomite δ18O is largely explained by dolomite formation at burial temperatures of up to 158°C. The δ18O values of dolomite parent-waters range -2 to +12‰ and are correlated with formation temperatures. Such correlation is consistent with the modification of seawater (0±2‰, VSMOW) toward isotopically heavier compositions through water-rock reactions at elevated burial temperatures. The similarity between the dolomite and calcite δ18O records, and published clumped isotope-based calculations of water compositions, suggests that like dolomite, temporal variations of the calcite δ18O record may also be largely driven by diagenetic alteration. Finally, the relationship we observe between temperature of dolomitization and d18O of dolomite suggests platform carbonates generally undergo dolomitization through reaction with modified marine waters, and that there is no evidence those waters were ever significantly lower in d18O than the modern ocean.
Teng, F.-Z.; Wadhwa, M.; Helz, R.T.
2007-01-01
To investigate whether magnesium isotopes are fractionated during basalt differentiation, we have performed high-precision Mg isotopic analyses by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) on a set of well-characterized samples from Kilauea Iki lava lake, Hawaii, USA. Samples from the Kilauea Iki lava lake, produced by closed-system crystal-melt fractionation, range from olivine-rich cumulates to highly differentiated basalts with MgO content ranging from 2.37 to 26.87??wt.%. Our results demonstrate that although these basalts have diverse chemical compositions, mineralogies, crystallization temperatures and degrees of differentiation, their Mg isotopic compositions display no measurable variation within the limits of our external precision (average ??26Mg = - 0.36 ?? 0.10 and ??25Mg = - 0.20 ?? 0.07; uncertainties are 2SD). This indicates that Mg isotopic fractionation during crystal-melt fractionation at temperatures of ??? 1055????C is undetectable at the level of precision of the current investigation. Calculations based on our data suggest that at near-magmatic temperatures the maximum fractionation in the 26Mg/24Mg ratio between olivine and melt is 0.07???. Two additional oceanic basalts, two continental basalts (BCR-1 and BCR-2), and two primitive carbonaceous chondrites (Allende and Murchison) analyzed in this study have Mg isotopic compositions similar to the Kilauea Iki lava lake samples. In contrast to a recent report [U. Wiechert, A.N. Halliday, Non-chondritic magnesium and the origins of the inner terrestrial planets, Earth and Planetary Science Letters 256 (2007) 360-371], the results presented here suggest that the Bulk Silicate Earth has a chondritic Mg isotopic composition. ?? 2007.
Alkali elemental and potassium isotopic compositions of Semarkona chondrules
Alexander, C.M. O'D.; Grossman, J.N.
2005-01-01
We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.
Understanding the Marine Chromium Isotope Record from Modern and Ancient Carbonates
NASA Astrophysics Data System (ADS)
Parkinson, I. J.; Bonnand, P.; James, R. H.; Fairchild, I. J.; Dixon, S.
2011-12-01
Chromium isotopes may provide a powerful tool for reconstructing the redox state of ancient seawater because Cr isotope fractionation is large (up to 7% in δ53Cr) during the reduction of Cr(VI) to Cr(III) in natural waters [1]. Recent studies have demonstrated that although Cr(VI) is predicted to be the thermodynamically stable form in seawater (as CrO42-), significant amounts (5-20%) of Cr(III) may also be present in surface waters [2]. Therefore the δ53Cr of seawater could vary by up to 2%. Marine carbonates potentially provide a means to extracting information about the Cr isotopic composition of seawater in the geological past and we have developed a high-precision double-spike technique for analysing Cr isotopes in carbonates [3]. The δ53Cr of modern Bahamas Bank carbonates (+0.76%) is broadly consistent with these carbonates recording a seawater Cr signature. Moreover, these pure carbonates contain significant amounts of Cr (1-4 ppm), which indicates that Cr is strongly partitioned into calcium carbonate. Therefore carbonates are likely to provide a faithful record of the δ53Cr composition of seawater. Shallow marine carbonates from the Phanerozoic range in δ53Cr from +0.76 to +1.8%, and some Neoproterozoic carbonates also have heavy Cr isotopic compositions of +0.5 to +1.0 %. Such compositions may reflect changes in the inputs of Cr to the oceans and/or changes in the redox state of the oceans. However, to interpret Cr isotopic compositions in ancient carbonates additionally requires a careful assessment of their trace element contents. This study aims to demonstrate how a combination of redox sensitive trace elements, such as Ce, and Cr isotopes allow an assessment of the marine chromium isotope record. [1] Ellis et al., 2002, Science, 295, 2060-2062. [2] Connolly et al., 2006, Deep Sea Res. Part I, 2006 53, 1975-1988. [3] P. Bonnand, et al., 2011, J. Anal. At. Spectr., 26, 528-535.
Clark, Dennis A.; Izbicki, John A.; Johnson, Russell D.; Land, Michael
2009-01-01
This report presents data on the physical and hydraulic properties of unsaturated alluvial deposits and on the chemical and isotopic composition of water collected at two recharge sites in the western part of the Mojave Desert, near Victorville, California, from 2001 to 2006. Unsaturated-zone monitoring sites were installed adjacent to the two recharge ponds using the ODEX air-hammer and air rotary method to depths of about 460 feet and 269 feet below land surface. Each of the two unsaturated-zone monitoring sites included a water-table well, matric-potential sensors, and suction-cup lysimeters installed in a single bore hole. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 400 samples of cores and cuttings was determined. Water from suction-cup lysimeters also was analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of groundwater from the two water-table wells are reported along with chemical and isotopic composition of the surface water in the recharge ponds.
NASA Astrophysics Data System (ADS)
Roskosz, M.; Amet, Q.; Fitoussi, C.; Laporte, D.; Hu, M. Y.; Alp, E. E.
2016-12-01
Metal-silicate differentiation was recently addressed through the insight of the isotopic composition of siderophile elements (mainly Fe, Si and Cr isotopes) of planetary and extraterrestrial bodies. A key limitation of this approach is however the knowledge of equilibrium fractionation factors between coexisting phases (metal alloys, silicates and sulfides) used to interpret data on natural samples. These properties are difficult to determine experimentally. In this context, tin is generally classified as a chalcophile element but it is also siderophile and volatile. We applied a synchrotron-based method to circumvent difficulties related to determination of equilibrium isotope fractionation. The nuclear resonant inelastic x-ray scattering (NRIXS) was used to measure the phonon excitation spectrum and then to derive the force constant and finally the fractionation factors of Sn-bearing geomaterials. Spectroscopic measurements were carried out at room pressure at Sector 30-ID (APS, USA). A range of Fe-Ni alloys, rhyolitic and basaltic glasses and iron sulfides containing isotopically enriched 119Sn were synthesized. The tin content and the redox conditions prevailing during the synthesis were varied. The data evaluation was carried out using PHOENIX and SciPhon programs. A strong effect of both the redox state and the tin content was measured. In addition, the composition of the silicate glasses was found to be another important factor determining the tin isotope metal-silicate-sulfide fractionation factors. Our results are consistent with trends previously observed in the case of iron isotopes [1,2]. We will discuss the implications of our experimental results in terms of tin isotope planetary signatures. References: [1] Dauphas et al. (2014), EPSL, 398, 127-140; [2] Roskosz et al. (2015), GCA, 169, 184-199.
Bates, A.L.; Spiker, E. C.
1992-01-01
The cross-sectional radius of a 3-m (diam.) brown coal gymnospermous log of Miocene age, previously analyzed for carbohydrate and lignin methoxyl content by solid-state 13C nuclear magnetic resonance spectroscopy, was examined using stable carbon isotopic ratios in order to determine if the isotopic composition could be related to chemical changes or to radial position. This study found a possible relationship between ??13C-values and radial position; however, these changes cannot be linked to carbohydrate content and are probably attributable to changing growth conditions during the lifetime of the tree. An apparent linear relationship between the changes in carbohydrate content after sodium para-periodate treatment and corresponding changes in the ??13C-values indicates constant isotopic fractionation between lignin and carbohydrates along the cross-sectional radius. This result indicates that diagenesis has not produced any significant change in the lignin-carbohydrate carbon isotopic fractionation or, alternatively, that diagenesis has erased any fractionation pattern that once existed. A sample of fresh wood from another gymnospermous species was analyzed by the same methods and found to have lignin-carbohydrate carbon isotopic fractionation significantly different from that of the Miocene log section samples, suggesting that differences may be species-related or that the complex mixture of carbohydrates in the fresh wood was isotopically different from that of the degraded wood, and the whole Miocene log was uniformly altered. ?? 1992.
Water drives the deuterium content of the methane emitted from plants
NASA Astrophysics Data System (ADS)
Vigano, I.; Holzinger, R.; Keppler, F.; Greule, M.; Brand, W. A.; Geilmann, H.; van Weelden, H.; Röckmann, T.
2010-07-01
The spatial distribution of the deuterium content of precipitation has a well-established latitudinal variation that is reflected in organic molecules in plants growing at different locations. Some laboratory and field studies have already shown that the deuterium content of methane emitted from methanogens can be partially related to δD variations of the water in the surrounding environment. Here we present a similar relation for the methane emitted from plant biomass under UV radiation. To show this relation, we determined the hydrogen isotopic composition of methane released from leaves of a range of plants grown with water of different deuterium content (δD = -130‰ to +115‰). The plant leaves were irradiated with UV light and the CH 4 isotopic composition was measured by continuous flow isotope ratio mass spectrometry (CF-IRMS). Furthermore, the deuterium content of bulk biomass and of the methoxyl (OCH 3) groups of the biomass was measured. The D/H ratio successively decreases from bulk biomass (δD = -106‰ to -50‰) via methoxyl groups (δD = -310‰ to -115‰) to the CH 4 emitted (δD = -581‰ to -196‰). The range of isotope ratios in bulk biomass and OCH 3 groups is smaller than in the water used to grow the plants. Methoxyl groups, which contain only non-exchangeable hydrogen, can be used to assess the fraction of external water that was incorporated before OCH 3 groups were formed. Surprisingly, the CH 4 formed under UV irradiation has a wider isotopic range than the OCH 3 groups. Although the precise production pathway cannot be fully determined, the presented experiments indicate that methoxyl groups are not the only source substrate for CH 4, but that other sources, including very depleted ones, must contribute. The main limitation to the interpretation of the data is the possible influence of exchangeable water, which could not be quantified. Future studies should include measurements of leaf water and avoid interaction between different plants via the gas phase. Despite these deficiencies, the results suggest that the deuterium content of the methane generated from plants under UV irradiation is closely linked to δD in precipitation. This dependency, which should also exist for other biogenic methane sources could be evaluated with global isotope models.
Stable Isotope Applications for Understanding Shark Ecology in the Northeast Pacific Ocean.
Reum, Jonathan C P; Williams, Gregory D; Harvey, Chris J
Stable isotopes are used to address a wide range of ecological questions and can help researchers and managers better understand the movement and trophic ecology of sharks. Here, we review how shark studies from the Northeast Pacific Ocean (NEP) have employed stable isotopes to estimate trophic level and diet composition and infer movement and habitat-use patterns. To date, the number of NEP shark studies that have used stable isotopes is limited, suggesting that the approach is underutilized. To aid shark researchers in understanding the strengths and limitations of the approach, we provide a brief overview of carbon and nitrogen stable isotope trophic discrimination properties (e.g., change in δ 15 N between predator and prey), tissue sample preparation methods specific to elasmobranchs, and methodological considerations for the estimation of trophic level and diet composition. We suggest that stable isotopes are a potentially powerful tool for addressing basic questions about shark ecology and are perhaps most valuable when combined and analysed with other data types (e.g., stomach contents, tagging data, or other intrinsic biogeochemical markers). © 2017 Elsevier Ltd. All rights reserved.
New approaches to the Moon's isotopic crisis.
Melosh, H J
2014-09-13
Recent comparisons of the isotopic compositions of the Earth and the Moon show that, unlike nearly every other body known in the Solar System, our satellite's isotopic ratios are nearly identical to the Earth's for nearly every isotopic system. The Moon's chemical make-up, however, differs from the Earth's in its low volatile content and perhaps in the elevated abundance of oxidized iron. This surprising situation is not readily explained by current impact models of the Moon's origin and offers a major clue to the Moon's formation, if we only could understand it properly. Current ideas to explain this similarity range from assuming an impactor with the same isotopic composition as the Earth to postulating a pure ice impactor that completely vaporized upon impact. Several recent proposals follow from the suggestion that the Earth-Moon system may have lost a great deal of angular momentum during early resonant interactions. The isotopic constraint may be the most stringent test yet for theories of the Moon's origin. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Kump, Lee R.
2014-01-01
Considerable geological, geochemical, paleontological, and isotopic evidence exists to support the hypothesis that the atmospheric oxygen level rose from an Archean baseline of essentially zero to modern values in two steps roughly 2.3 billion and 0.8–0.6 billion years ago (Ga). The first step in oxygen content, the Great Oxidation Event, was likely a threshold response to diminishing reductant input from Earth’s interior. Here I provide an alternative to previous suggestions that the second step was the result of the establishment of the first terrestrial fungal–lichen ecosystems. The consumption of oxygen by aerobes respiring this new source of organic matter in soils would have necessitated an increase in the atmospheric oxygen content to compensate for the reduced delivery of oxygen to the weathering environment below the organic-rich upper soil layer. Support for this hypothesis comes from the observed spread toward more negative carbon isotope compositions in Neoproterozoic (1.0–0.542 Ga) and younger limestones altered under the influence of ground waters, and the positive correlation between the carbon isotope composition and oxygen content of modern ground waters in contact with limestones. Thus, the greening of the planet’s land surfaces forced the atmospheric oxygen level to a new, higher equilibrium state. PMID:25225378
Isotopic compositions and sources of nitrate in ground water from western Salt River Valley, Arizona
Gellenbeck, D.J.
1994-01-01
Isotopic and chemical compositions of ground water from western Salt River Valley near Phoenix, Arizona, were used to develop identification tech- niques for sources of nitrate in ground water. Four possible sources of nitrate were studied: dairies and feedlots, sewage-treatment plants, agricultural activities, and natural source. End members that represent these sources were analyzed for a variety of chemical and isotopic constituents; contents of the end-member and the ground water were compared to identify nitrate from these sources. Nitrate from dairies and feedlots was identified by delta 15N values higher than +9.0 per mil. Nitrate from sewage treatment plants was identified by some chemical constituents and values of delta 15N, delta 34S, delta 7Li, and delta 11B that were lighter than the values determined for ground water not affected by sewage-treatment plants. Nitrate from agricultural activities was identified by delta 15N, 3H, and delta 34S compositions. Natural nitrate derived from decomposing plants and accumulated by biological fixation was identified by delta 15N values that range between +2 and +8 per mil. In addition to identifying nitrate sources, some chemical and isotopic charabteristics of ground water were determined on the basis of data collected during this study. Concentrations of major ions, lithium, and boron and delta 7Li, delta 11B, 3H, delta D, and delta 18O data identify ground water in different geographic regions in the study area. These differences probably are related to different sources of ground water, geochemical processes, or geologic deposits. The Luke salt body and a geothermal anomaly alter the chemical and isotopic content of some ground water.
Mantle End-Members: The Trace Element Perspective
NASA Astrophysics Data System (ADS)
Willbold, M.; Stracke, A.; Hofmann, A. W.
2004-12-01
On the basis of their isotopic composition, ocean island basalts (OIB) have been classified into three to four end-members; HIMU with the most radiogenic Pb isotope ratios of OIB and Enriched Mantle 1 and 2 (EM1, EM2) with less radiogenic but variable Pb isotope and highly radiogenic Sr isotope signatures. It has also been argued that each of these isotopic families has common trace element characteristics that distinguish them from one another and so substantiated this classification. Here, we present new high-precision trace element data for samples from St. Helena, Tristan da Cunha and Gough in the Atlantic Ocean. The overall data-set is augmented by OIB data from the GEOROC database and includes data from all major isotopic families (HIMU: St. Helena, Mangaia, Tubuai, and Rururtu; EM1: Tristan da Cunha, Gough, Pitcairn; and EM2: Samoa, Marquesas, and Society). For each locality we use only islands defining the most extreme isotopic compositions. The entire data-set has been screened to exclude altered and highly differentiated samples. HIMU basalts have a very uniform trace element composition. Compared to HIMU-type basalts, EM-type basalts are enriched in Rb, Ba, and K, and depleted in U, Nb, and Ta, relative to La. Different EM-type OIBs from the same isotopic family (EM1 or EM2), have distinct trace element characteristics that can ultimately only be caused by different source compositions. For example, Ba/Th ratios in samples from both Tristan da Cunha (EM1) and Samoa (EM2) are similarly high (ca. 110) whereas Ba/Th ratios in samples from Pitcairn (EM1) and Society (EM2) samples are consistently lower (ca. 70). Thus on the basis of their trace element composition, EM-type OIB cannot be classified into EM1 and EM2 type basalts, nor can any other grouping be identified. The remarkably uniform isotopic and trace element composition of HIMU-type basalts suggests derivation from a single common source reservoir, most likely subduction-modified oceanic crust. Although there are some trace element characteristics common to all EM-type basalts, which distinguish them from HIMU-type basalts (e.g. uniformly high Th/U ratios of 4.7 ± 0.3, and enrichment in Cs-U), each suite of EM-type basalts has unique trace element signatures that distinguish them from any other suite of EM-type basalts. This is especially obvious when comparing the trace element composition of EM basalts from one isotopic family, for example EM1-type basalts from Tristan, Gough and Pitcairn. Consequently, the trace element systematics of EM-type basalts suggest that there are many different EM-type sources, whereas the isotopic composition of EM-type basalts suggest derivation from two broadly similar sources, i.e. EM1 and EM2. The large variability in subducting sediments with respect to both parent-daughter (e.g. Rb/Sr, Sm/Nd, U/Pb, Th/Pb,...) and other trace element ratios makes it unlikely that there are reproducible mixtures of sediments leading to two different isotopic evolution paths (EM1 and EM2) while preserving a range of incompatible element contents for each isotopic family, as would be required to reconcile the isotopic and trace element characteristics of EM-type basalts. Although this does not a priori argue against sediments as possible source components for OIB, it does argue against two distinct groups of sediments as EM1 and EM2 sources. Further characterization of sources with the same general origin (e.g. a certain type of crust or lithosphere) or identification of processes leading to reservoirs with similar parent-daughter ratio characteristics but different incompatible trace element contents could resolve the apparent conundrum.
Position-specific 13C distributions within propane from experiments and natural gas samples
NASA Astrophysics Data System (ADS)
Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.
2018-01-01
Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems.
Position-specific 13C distributions within propane from experiments and natural gas samples
Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.
2018-01-01
Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems.
NASA Astrophysics Data System (ADS)
Hsu, F.; Lin, S.; Wang, C.; Huh, C.
2007-12-01
Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.
Loyd, S J
2017-01-01
Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13 C-depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate-free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ 13 C carb ) range from -22.5 to -3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ 13 C org ) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings indicate that concretions can promote delayed oxidative weathering of organic carbon in outcrop and therefore impact local chemical cycling. © 2016 John Wiley & Sons Ltd.
High Precision Iron Isotope Compositions in Components From the Allende CV3 Meteorite by MC-ICP-MS
NASA Astrophysics Data System (ADS)
Mullane, E.; Russell, S. S.; Weiss, D.; Mason, T. F.; Gounelle, M.
2001-12-01
Four chondrules and one matrix sample of Allende were examined for Fe-isotope frac-tionation, using multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). Iron is the most volatile major constituent of chondrules and a recent study [1] suggested that solar system Fe was initially isotopically homogeneous. Thus, any isotopic variation is likely due to mass fractionation during nebular process-ing. The chondrule samples were split. One portion was subject to a standard acid dis-solution whilst the other was polished, ena-bling textural and compositional characteri-zation. Fe, Cu and Zn are separated from the remaining matrix elements [2], removing potential interfering ions from the solution. 100 % elemental recovery (within error) is achieved, ensuring that chromatographic fractionation does not occur [2]. Hydrogen is bled into the collision cell, minimising Ar polyatomic species interferences. Typical precisions of 0.1‰ (2σ ) for 54Fe/56Fe ratios are achieved for 75 replicates. Instrumental mass bias is assessed using (1) sample-standard brack-eting and (2) doping with Cu. A variation of 0.8‰ /amu is observed, which is approximately 18 times the analyti-cal uncertainty at the 2σ level. Our high precision data show that: (1) Allende chondrules and matrix exhibit clear isotopic variation in iron. (2) δ 54Fe val-ues appear to be correlated to the bulk FeO content, with the more iron rich samples enriched in the lighter 54Fe isotope. (3) δ 54Fe values appear to be unre-lated to texture, and consequently to the temperature of chondrule formation. Bulk Fe-content may be a proxy for the amount of volatilisation experienced, and volatilisation of Fe in chondrule precursor material has resulted in a residue of the heavier Fe isotopes. Chondrules are known to have often experienced several heating events, and their texture primarily reflects the nature of the last event. Thus, the lack of correlation between the δ 54Fe value and chondrule texture suggests that Fe-isotope composi-tion was derived from chondrule precursor material. [1] Zhu et al. (2001) Nature 412, p.311 [2] Mullane et al. (2001) LPS XXXII, No.1545.
Inert gases in Sea of Fertility regolith
NASA Technical Reports Server (NTRS)
Vinogradov, A. P.; Zadorozhnyy, I. K.
1974-01-01
The content and isotopic composition were studied of inert gases -- He, Ne, Ar, Kr, and Xe -- in samples of lunar regolith returned by the Luna 16 automatic station. The samples were taken from depths of about 12 and 30 cm. The high concentrations of inert gases exceed by several orders their concentrations observed in ordinary stony meteorites. The gases in lunar regolith were a complex mixture of gases of different origins: Solar, cosmogenic, radiogenic, and so on. Solar wind gases predominated, distributed in the thin surficial layer of the regolith grains. The concentrations of these gases in the surficial layer is several cubic centimeters per gram. The isotopic composition of the inert gases of solar origin approaches their composition measured in gas-rich meteorites.
Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua
2018-01-01
The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the paleogeographic pattern that the north was higher (in elevation) than the south. PMID:29373592
Wei, Xiao; Wang, Shijie; Ji, Hongbing; Shi, Zhenhua
2018-01-01
The isotope ratios of Sr are useful tracers for studying parent material sources, weathering processes, and biogeochemical cycling. Mineralogical and geochemical investigations of two lateritic weathering covers, in an area close to the Tropic of Cancer (Guangxi Province, southern China), were undertaken to study the regional weathering processes and Sr isotopic sources. We found that weathering and decomposition of Rb- and Sr-bearing minerals change the Sr isotopic composition in weathering products (lateritic soils). Weathering of illite lowered the 87Sr/86Sr ratio whereas dissolving and leaching of carbonate minerals increased the 87Sr/86Sr ratio. An Fe nodular horizon is widely developed on the top of the weathering covers in the studied area and it differs from the lateritic soil horizon in mineral composition, construction, and elemental concentration. Furthermore, both Fe2O3 and P2O5 (concentrations) are negatively correlated with the 87Sr/86Sr ratios, suggesting fixation of apatite by Fe oxides is a controlling factor of the Sr isotopic composition in the Fe nodular horizon. The 87Sr/86Sr and Nb/Sr ratios imply the contents and proportions of Fe nodules and clay are critical in controlling the changes of Sr isotopic composition in the Fe nodular horizon. The two stages of the weathering process of carbonate rocks are revealed by the87Sr/86Sr versus Nb/Sr diagram. The 87Sr/86Sr and Rb/Sr ratios suggest that Sr isotopes in the weathering covers within the studied area are derived mainly from parent rock weathering and that the contributions from allothogenic Sr isotopes are limited. A comparison of Sr isotopic composition signatures in the weathering covers of the studied area and Guizhou Province provided insight into the Sr isotopic source and paleogeographic evolution of southern China. From the Permian to the Triassic, the continental fragment sources of the South China sedimentary basin changed significantly. In the Permian, Southern China presented the paleogeographic pattern that the north was higher (in elevation) than the south.
Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.
1989-01-01
On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.
Importance of Rain Evaporation and Continental Convection in the Tropical Water Cycle
NASA Technical Reports Server (NTRS)
Worden, John; Noone, David; Bowman, Kevin; Beer, R.; Eldering, A.; Fisher, B.; Gunson, M.; Goldman, Aaron; Kulawik, S. S.; Lampel, Michael;
2007-01-01
Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.
Importance of rain evaporation and continental convection in the tropical water cycle.
Worden, John; Noone, David; Bowman, Kevin
2007-02-01
Atmospheric moisture cycling is an important aspect of the Earth's climate system, yet the processes determining atmospheric humidity are poorly understood. For example, direct evaporation of rain contributes significantly to the heat and moisture budgets of clouds, but few observations of these processes are available. Similarly, the relative contributions to atmospheric moisture over land from local evaporation and humidity from oceanic sources are uncertain. Lighter isotopes of water vapour preferentially evaporate whereas heavier isotopes preferentially condense and the isotopic composition of ocean water is known. Here we use this information combined with global measurements of the isotopic composition of tropospheric water vapour from the Tropospheric Emission Spectrometer (TES) aboard the Aura spacecraft, to investigate aspects of the atmospheric hydrological cycle that are not well constrained by observations of precipitation or atmospheric vapour content. Our measurements of the isotopic composition of water vapour near tropical clouds suggest that rainfall evaporation contributes significantly to lower troposphere humidity, with typically 20% and up to 50% of rainfall evaporating near convective clouds. Over the tropical continents the isotopic signature of tropospheric water vapour differs significantly from that of precipitation, suggesting that convection of vapour from both oceanic sources and evapotranspiration are the dominant moisture sources. Our measurements allow an assessment of the intensity of the present hydrological cycle and will help identify any future changes as they occur.
Matiatos, Ioannis; Alexopoulos, Apostolos; Godelitsas, Athanasios
2014-04-01
The present study involves an integration of the hydrogeological, hydrochemical and isotopic (both stable and radiogenic) data of the groundwater samples taken from aquifers occurring in the region of northeastern Peloponnesus. Special emphasis has been given to health-related ions and isotopes in relation to the WHO and USEPA guidelines, to highlight the concentrations of compounds (e.g., As and Ba) exceeding the drinking water thresholds. Multivariate statistical analyses, i.e. two principal component analyses (PCA) and one discriminant analysis (DA), combined with conventional hydrochemical methodologies, were applied, with the aim to interpret the spatial variations in the groundwater quality and to identify the main hydrogeochemical factors and human activities responsible for the high ion concentrations and isotopic content in the groundwater analysed. The first PCA resulted in a three component model, which explained approximately 82% of the total variance of the data sets and enabled the identification of the hydrogeological processes responsible for the isotopic content i.e., δ(18)Ο, tritium and (222)Rn. The second PCA, involving the trace element presence in the water samples, revealed a four component model, which explained approximately 89% of the total variance of the data sets, giving more insight into the geochemical and anthropogenic controls on the groundwater composition (e.g., water-rock interaction, hydrothermal activity and agricultural activities). Using discriminant analysis, a four parameter (δ(18)O, (Ca+Mg)/(HCO3+SO4), EC and Cl) discriminant function concerning the (222)Rn content was derived, which favoured a classification of the samples according to the concentration of (222)Rn as (222)Rn-safe (<11 Bq·L(-1)) and (222)Rn-contaminated (>11 Bq·L(-1)). The selection of radon builds on the fact that this radiogenic isotope has been generally related to increased health risk when consumed. Copyright © 2014 Elsevier B.V. All rights reserved.
Early diagenesis and organic matter preservation--A molecular stable isotope perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macko, S.A.; Engel, M.H.; Qian, Y.
1992-01-01
Through new developments in stable isotope capability, gas chromatography coupled to a stable isotope ratio mass spectrometer (GC/IRMS), the molecular pathways of the diagenetic reactions can be observed on the components themselves. The authors report the results of laboratory-controlled degradation experiments of fresh organic substrates. Isotopically resolvable materials were used. Seagrass showed slight enrichments in [delta]N-15 with little change in [delta]C-13 following four weeks of decomposition. During that period the identifiable amino acid content decreased by approx. 50% for each amino acid. Mixtures of marine sediment with the same seagrass showed enrichments in nitrogen with associated depletions in carbon isotopicmore » compositions over the same time span. Control experiments on the sediments without added fresh seagrass showed no change in isotopic content. These changes are attributed to hydrolysis, deamination and decarboxylation reactions. Isotopic fractionations of similar size and direction have been observed in laboratory studies on peptide hydrolysis and natural samples of particulate organic materials. At the molecular level, using GC/IRMS, certain amino acids are seen to decrease in C-13 content while others become increasingly enriched in C-13. Similar reactions are seen in carbohydrates. The molecular isotope approach indicates that the process of diagenesis and preservation is significantly more complex than simple breakdown and loss. A large portion of the organic matter eventually preserved in organic-rich deposits can be attributed to new production in the deposit.« less
Analysis of a Uranium Oxide Sample Interdicted in Slovakia (FSC 12-3-1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borg, Lars E.; Dai, Zurong; Eppich, Gary R.
2014-01-17
We provide a concise summary of analyses of a natural uranium sample seized in Slovakia in November 2007. Results are presented for compound identification, water content, U assay, trace element abundances, trace organic compounds, isotope compositions for U, Pb, Sr and O, and age determination using the 234U – 230Th and 235U – 231Pa chronometers. The sample is a mixture of two common uranium compounds - schoepite and uraninite. The uranium isotope composition is indistinguishable from natural; 236U was not detected. The O, Sr and Pb isotope compositions and trace element abundances are unremarkable. The 234U – 230Th chronometer givesmore » an age of 15.5 years relative to the date of analysis, indicating the sample was produced in January 1997. A comparison of the data for this sample with data in the Uranium Sourcing database failed to find a match, indicating the sample was not produced at a facility represented in the database.« less
Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing
2008-09-01
Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).
DISSOLUTION AND ANALYSIS OF YELLOWCAKE COMPONENTS FOR FINGERPRINTING UOC SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hexel, Cole R; Bostick, Debra A; Kennedy, Angel K
2012-01-01
There are a number of chemical and physical parameters that might be used to help elucidate the ore body from which uranium ore concentrate (UOC) was derived. It is the variation in the concentration and isotopic composition of these components that can provide information as to the identity of the ore body from which the UOC was mined and the type of subsequent processing that has been undertaken. Oak Ridge National Laboratory (ORNL) in collaboration with Lawrence Livermore and Los Alamos National Laboratories is surveying ore characteristics of yellowcake samples from known geologic origin. The data sets are being incorporatedmore » into a national database to help in sourcing interdicted material, as well as aid in safeguards and nonproliferation activities. Geologic age and attributes from chemical processing are site-specific. Isotopic abundances of lead, neodymium, and strontium provide insight into the provenance of geologic location of ore material. Variations in lead isotopes are due to the radioactive decay of uranium in the ore. Likewise, neodymium isotopic abundances are skewed due to the radiogenic decay of samarium. Rubidium decay similarly alters the isotopic signature of strontium isotopic composition in ores. This paper will discuss the chemical processing of yellowcake performed at ORNL. Variations in lead, neodymium, and strontium isotopic abundances are being analyzed in UOC from two geologic sources. Chemical separation and instrumental protocols will be summarized. The data will be correlated with chemical signatures (such as elemental composition, uranium, carbon, and nitrogen isotopic content) to demonstrate the utility of principal component and cluster analyses to aid in the determination of UOC provenance.« less
Documenting the diet in ancient human populations through stable isotope analysis of hair.
Macko, S A; Engel, M H; Andrusevich, V; Lubec, G; O'Connell, T C; Hedges, R E
1999-01-29
Fundamental to the understanding of human history is the ability to make interpretations based on artefacts and other remains which are used to gather information about an ancient population. Sequestered in the organic matrices of these remains can be information, for example, concerning incidence of disease, genetic defects and diet. Stable isotopic compositions, especially those made on isolates of collagen from bones, have been used to help suggest principal dietary components. A significant problem in the use of collagen is its long-term stability, and the possibility of isotopic alteration during early diagenesis, or through contaminating condensation reactions. In this study, we suggest that a commonly overlooked material, human hair, may represent an ideal material to be used in addressing human diets of ancient civilizations. Through the analysis of the amino-acid composition of modern hair, as well as samples that were subjected to radiation (thus simulating ageing of the hair) and hair from humans that is up to 5200 years old, we have observed little in the way of chemical change. The principal amino acids observed in all of these samples are essentially identical in relative abundances and content. Dominating the compositions are serine, glutamic acid, threonine, glycine and leucine, respectively accounting for approximately 15%, 17%, 10%, 8% and 8% of the total hydrolysable amino acids. Even minor components (for example, alanine, valine, isoleucine) show similar constancy between the samples of different ages. This constancy clearly indicates minimal alteration of the amino-acid composition of the hair. Further, it would indicate that hair is well preserved and is amenable to isotopic analysis as a tool for distinguishing sources of nutrition. Based on this observation, we have isotopically characterized modern individuals for whom the diet has been documented. Both stable nitrogen and carbon isotope compositions were assessed, and together provide an indication of trophic status, and principal type (C3 or C4) of vegetation consumed. True vegans have nitrogen isotope compositions of about 7/1000 whereas humans consuming larger amounts of meat, eggs, or milk are more enriched in the heavy nitrogen isotope. We have also analysed large cross-sections of modern humans from North America and Europe to provide an indication of the variability seen in a population (the supermarket diet). There is a wide diversity in both carbon and nitrogen isotope values based at least partially on the levels of seafood, corn-fed beef and grains in the diets. Following analysis of the ancient hair, we have observed similar trends in certain ancient populations. For example, the Coptics of Egypt (1000 BP) and Chinchorro of Chile (5000-800 BP) have diets of similar diversity to those observed in the modern group but were isotopically influenced by local nutritional sources. In other ancient hair (Egyptian Late Middle Kingdom mummies, ca. 4000 BP), we have observed a much more uniform isotopic signature, indicating a more constant diet. We have also recognized a primary vegetarian component in the diet of the Neolithic Ice Man of the Oetztaler Alps (5200 BP). In certain cases, it appears that sulphur isotopes may help to further constrain dietary interpretations, owing to the good preservation and sulphur content of hair. It appears that analysis of the often-overlooked hair in archaeological sites may represent a significant new approach for understanding ancient human communities.
Documenting the diet in ancient human populations through stable isotope analysis of hair.
Macko, S A; Engel, M H; Andrusevich, V; Lubec, G; O'Connell, T C; Hedges, R E
1999-01-01
Fundamental to the understanding of human history is the ability to make interpretations based on artefacts and other remains which are used to gather information about an ancient population. Sequestered in the organic matrices of these remains can be information, for example, concerning incidence of disease, genetic defects and diet. Stable isotopic compositions, especially those made on isolates of collagen from bones, have been used to help suggest principal dietary components. A significant problem in the use of collagen is its long-term stability, and the possibility of isotopic alteration during early diagenesis, or through contaminating condensation reactions. In this study, we suggest that a commonly overlooked material, human hair, may represent an ideal material to be used in addressing human diets of ancient civilizations. Through the analysis of the amino-acid composition of modern hair, as well as samples that were subjected to radiation (thus simulating ageing of the hair) and hair from humans that is up to 5200 years old, we have observed little in the way of chemical change. The principal amino acids observed in all of these samples are essentially identical in relative abundances and content. Dominating the compositions are serine, glutamic acid, threonine, glycine and leucine, respectively accounting for approximately 15%, 17%, 10%, 8% and 8% of the total hydrolysable amino acids. Even minor components (for example, alanine, valine, isoleucine) show similar constancy between the samples of different ages. This constancy clearly indicates minimal alteration of the amino-acid composition of the hair. Further, it would indicate that hair is well preserved and is amenable to isotopic analysis as a tool for distinguishing sources of nutrition. Based on this observation, we have isotopically characterized modern individuals for whom the diet has been documented. Both stable nitrogen and carbon isotope compositions were assessed, and together provide an indication of trophic status, and principal type (C3 or C4) of vegetation consumed. True vegans have nitrogen isotope compositions of about 7/1000 whereas humans consuming larger amounts of meat, eggs, or milk are more enriched in the heavy nitrogen isotope. We have also analysed large cross-sections of modern humans from North America and Europe to provide an indication of the variability seen in a population (the supermarket diet). There is a wide diversity in both carbon and nitrogen isotope values based at least partially on the levels of seafood, corn-fed beef and grains in the diets. Following analysis of the ancient hair, we have observed similar trends in certain ancient populations. For example, the Coptics of Egypt (1000 BP) and Chinchorro of Chile (5000-800 BP) have diets of similar diversity to those observed in the modern group but were isotopically influenced by local nutritional sources. In other ancient hair (Egyptian Late Middle Kingdom mummies, ca. 4000 BP), we have observed a much more uniform isotopic signature, indicating a more constant diet. We have also recognized a primary vegetarian component in the diet of the Neolithic Ice Man of the Oetztaler Alps (5200 BP). In certain cases, it appears that sulphur isotopes may help to further constrain dietary interpretations, owing to the good preservation and sulphur content of hair. It appears that analysis of the often-overlooked hair in archaeological sites may represent a significant new approach for understanding ancient human communities. PMID:10091248
NASA Astrophysics Data System (ADS)
Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald
2014-07-01
In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral-water interactions.
NASA Astrophysics Data System (ADS)
Kim, Y.; Lee, D.; Lee, K.; Koh, D.; Lee, S.; Park, W.; Koh, G.; Woo, N.
2001-12-01
In order to clearly identify the origin of saline groundwaters in the eastern part of Jeju volcanic island, Korea the hydrogeochemical and isotopic studies have been carried out for 18 observation wells located in east and southeast coastal regions. The total dissolved solid (TDS) contents of groundwater samples are highly variable (77 to 21,782 mg/L). Most of the groundwaters in the study area are classified into Na-Cl type except a few samples showing Ca-Cl type. Hydrochemical characteristics based on bivariate and triangular diagrams of major ions show that the changes of chemical compositions of groundwaters were mainly controlled by the salinization process linked to cation-exchange reactions. The oxygen, hydrogen, sulfur, and strontium isotopic data explicitly show a simple mixing trend of groundwater and seawater. Using two-components fractional mixing model on the basis of 18O contents as well as Br and Cl contents, the proportion of seawater in fresh groundwater was quantitatively determined as high as 60 %. Sr isotopic compositions and Br/Cl ratios strongly suggest that the source of groundwater salinization is present-day seawater intrusion rather than paleoseawater or formation water, which can also be supported by the I/Cl ratios. The highly permeable aquifers in the east coastal region characterized by low hydraulic gradient and recharge rate and high hydraulic conductivity comparing with other regions are advantageous to the groundwater salinization. Based on the Cl, ¥ä18O, and 87Sr/86Sr it was determined that seawater has intruded into inland 2.5 km from coastline.
Combined simulation of carbon and water isotopes in a global ocean model
NASA Astrophysics Data System (ADS)
Paul, André; Krandick, Annegret; Gebbie, Jake; Marchal, Olivier; Dutkiewicz, Stephanie; Losch, Martin; Kurahashi-Nakamura, Takasumi; Tharammal, Thejna
2013-04-01
Carbon and water isotopes are included as passive tracers in the MIT general circulation model (MITgcm). The implementation of the carbon isotopes is based on the existing MITgcm carbon cycle component and involves the fractionation processes during photosynthesis and air-sea gas exchange. Special care is given to the use of a real freshwater flux boundary condition in conjunction with the nonlinear free surface of the ocean model. The isotopic content of precipitation and water vapor is obtained from an atmospheric GCM (the NCAR CAM3) and mapped onto the MITgcm grid system, but the kinetic fractionation during evaporation is treated explicitly in the ocean model. In a number of simulations, we test the sensitivity of the carbon isotope distributions to the formulation of fractionation during photosynthesis and compare the results to modern observations of δ13C and Δ14C from GEOSECS, WOCE and CLIVAR. Similarly, we compare the resulting distribution of oxygen isotopes to modern δ18O data from the NASA GISS Global Seawater Oxygen-18 Database. The overall agreement is good, but there are discrepancies in the carbon isotope composition of the surface water and the oxygen isotope composition of the intermediate and deep waters. The combined simulation of carbon and water isotopes in a global ocean model will provide a framework for studying present and past states of ocean circulation such as postulated from deep-sea sediment records.
NASA Astrophysics Data System (ADS)
Winde, Vera; Mahler, Annika; Voss, Maren; Böttcher, Michael E.
2014-05-01
In the frame of the BMBF project BIOACID II we aim for an understanding of the natural distribution and variation of isotopic composition and C-N-S stoichiometry in Fucus vesiculosus growing around the coast line of the Kiel fjord (part of the Kiel bight). Environmental conditions (aquatic chemistry, temperature, salinity) were monitored, too. Some changes in aquatic chemistry are related to stress factors like human activity (e.g., waste input) and further factors leading to specific changes in the composition of Fucus vesiculosus. Sampling was carried out at different stations at the west and east coast of the Kiel Fjord. For each sampling station the aquatic chemistry (TA, pH, salinity, d13C(DIC), main and trace elements and nutrients) as well as the composition of the Fucus organic tissues (stoichiometry and stable isotope composition of carbon, nitrogen) are analysed. The Fucus tissue was sampled in three size classes (small, medium, large). It is shown, that Fucus vesiculosus indicates clear differences in the N contents and stable isotopes between the west and the east site of the Kiel Fjord. Stable nitrogen isotope signatures in Fucus vesiculosus, are useful proxies to identify the influence factors in the Fucus habitat. From the data it is obtained that the influence of human activity (wastewater treatment plant, harbour), small stream and drainage channels, which flow from the near coastal area into the bight, leads to different Fucus vesiculosus compositions. In future work, it is intended to extend the investigation to trace element signatures to further estimate environmental impacts.
Apparatus and method for detecting gamma radiation
Sigg, Raymond A.
1994-01-01
A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.
Osmium isotopic tracing of atmospheric emissions from an aluminum smelter
NASA Astrophysics Data System (ADS)
Gogot, Julien; Poirier, André; Boullemant, Amiel
2015-09-01
We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.
NASA Astrophysics Data System (ADS)
Žák, Karel; SkáLA, Roman; Šanda, Zdeněk.; Mizera, Jiří.
2012-06-01
Tektites, natural silica-rich glasses produced during impact events, commonly contain bubbles. The paper reviews published data on pressure and composition of a gas phase contained in the tektite bubbles and data on other volatile compounds which can be released from tektites by either high-temperature melting or by crushing or milling under vacuum. Gas extraction from tektites using high-temperature melting generally produced higher gas yield and different gas composition than the low-temperature extraction using crushing or milling under vacuum. The high-temperature extraction obviously releases volatiles not only from the bubbles, but also volatile compounds contained directly in the glass. Moreover, the gas composition can be modified by reactions between the released gases and the glass melt. Published data indicate that besides CO2 and/or CO in the bubbles, another carbon reservoir is present directly in the tektite glass. To clarify the problem of carbon content and carbon isotopic composition of the tektite glass, three samples from the Central European tektite strewn field—moldavites—were analyzed. The samples contained only 35-41 ppm C with δ13C values in the range from -28.5 to -29.9‰ VPDB. This indicates that terrestrial organic matter was a dominant carbon source during moldavite formation.
Vetter, R.D.; Fry, B.
1998-01-01
Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.
NASA Astrophysics Data System (ADS)
Pan, Fa-Bin; Liu, Rong; Jin, Chong; Jia, Bao-Jian; He, Xiaobo; Gao, Zhong; Tao, Lu; Zhou, Xiao-Chun; Zhang, Li-Qi
2018-05-01
In situ zircon U-Pb ages, whole-rock major and trace elements, and Sr-Nd isotopic compositions of the Sucun, Yunfeng, and Jingning intrusions from southwest Zhejiang, NE South China Block, are presented to trace their petrogenesis and shed light on its lithosphere evolution. LA-ICP-MS U-Pb zircon dating shows that the Sucun quartz monzonite and Jingning monzogranite were emplaced at 135 Ma, and the Yunfeng quartz monzonite and Jingning granite were emplaced at 104 and 112 Ma, respectively. All these intrusions are metaluminous to weakly peraluminous and lie within high-K calc-alkaline to shoshonite series field (SiO2 = 66-76 wt%, A/CNK = 0.95-1.09, K2O/Na2O = 0.78-1.77). The Yunfeng quartz monzonite clearly have lower K2O and total REE contents, and higher CaO, Na2O, Al2O3, P2O5, MgO, and TiO2 contents, and relatively less enriched Sr-Nd isotopic compositions than those of the Sucun quartz monzonite, indicating that the Yunfeng quartz monzonite were derived from partial melting of a more juvenile lower crust sources compared with the magma source of the Sucun quartz monzonite. The Jingning monzogranite exhibit similar major elements covariations and Nd isotopic compositions, but higher Ba, Sr, and Eu contents and lower Rb, Th, and U contents than those of the Jingning granite. The geochemical features imply that the Jingning monzogranite and granite were fluid-present and fluid-absent anatexis products of the same Paleoproterozoic crustal source, respectively. Whole-rock Sr-Nd isotopic data imply that the estimated amounts of juvenile mantle-derived melts input into the mature crust show southeastward decreasing trend away from the Jiangshan-Shaoxing fault. We propose that roll-back and retreat of the Paleo-Pacific subducting plate might cause extensive asthenosphere mantle upwelling in East China, and the mantle-derived melts tend to rise through the regional main fault zones and preferentially modify the lithosphere nearby these faults.
Wytrychowski, Marine; Daniele, Gaëlle; Casabianca, Hervé
2012-05-01
The effects of feeding bees artificial sugars and/or proteins on the sugar compositions and (13)C isotopic measurements of royal jellies (RJs) were evaluated. The sugars fed to the bees were two C4 sugars (cane sugar and maize hydrolysate), two C3 sugars (sugar beet, cereal starch hydrolysate), and honey. The proteins fed to them were pollen, soybean, and yeast powder proteins. To evaluate the influence of the sugar and/or protein feeding over time, samples were collected during six consecutive harvests. (13)C isotopic ratio measurements of natural RJs gave values of around -25 ‰, which were also seen for RJs obtained when the bees were fed honey or C3 sugars. However, the RJs obtained when the bees were fed cane sugar or corn hydrolysate (regardless of whether they were also fed proteins) gave values of up to -17 ‰. Sugar content analysis revealed that the composition of maltose, maltotriose, sucrose, and erlose varied significantly over time in accordance with the composition of the syrup fed to the bees. When corn and cereal starch hydrolysates were fed to the bees, the maltose and maltotriose contents of the RJs increased up to 5.0 and 1.3 %, respectively, compared to the levels seen in authentic samples (i.e., samples obtained when the bees were fed natural food: honey and pollen) that were inferior to 0.2% and not detected, respectively. The sucrose and erlose contents of natural RJs were around 0.2 %, whereas those in RJs obtained when the bees were fed cane or beet sugar were as much as 4.0 and 1.3 %, respectively. The combination of sugar analysis and (13)C isotopic ratio measurements represents a very efficient analytical methodology for detecting (from early harvests onward) the use of C4 and C3 artificial sugars in the production of RJ.
Oxygen isotope composition of mafic magmas at Vesuvius
NASA Astrophysics Data System (ADS)
Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.
2009-12-01
The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting that crystal growth possibly occurred during magma ascent from the source region or in a shallow reservoir at about 8-10 km depth. Recently, experimental data have suggested massive carbonate assimilation (up to about 20%) to derive potassic alkali magmas from trachybasaltic melts. Accordingly, the δ18O variability and the trace element contents of the studied minerals suggest possible contamination of primary melts by an O-isotope enriched, REE-poor contaminant like the limestone of Vesuvius basement. The δ18Oolivine and δ18Ocpx of the studied minerals define variable degrees of carbonate assimilation and magma crystallization for the different eruptions, and possibly within the same eruption, and show evidence of oxygen isotope equilibrium at high temperature. However, energy-constrained AFC model suggest that carbonate contamination was limited. On the basis of our data, we suggest that interaction between magma and a fluxing, decarbonation-derived CO2 fluid may be partly accounted for the measured O-isotope compositions.
Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone
NASA Astrophysics Data System (ADS)
Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.
2013-12-01
The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects of fractionation crystallization, crustal contamination, the extent of slab flux, metasomatism, and melting of the mantle wedge on the intra-back arc lavas from the SVZ.
Ayuso, Robert; Foley, Nora; Wandless, Gregory; Dillingham, Jeremy; Colvin, Anna
2005-01-01
Lead isotope compositions of soils and near-surface tills from an area of coastal Maine known to have groundwater with anomalously high arsenic contents were measured in order to determine the source of the lead and, by inference, possible sources of arsenic. Five soil and till sites were selected for detailed chemical and isotopic analysis. To construct profiles of the soil and till horizons, five samples were collected at 10-cm intervals from the surface to the base of each horizon. Total lead and arsenic concentrations and lead isotopic compositions were measured for 48 leaches and bulk residues. The soils and tills are underlain by sulfidic schists of the Penobscot Formation. Several generations of minerals containing arsenic and lead exist in the regional bedrock, including rock-forming silicates (feldspar and micas), sulfide minerals formed during diagenesis (for example, arsenic-rich pyrite), and sulfide and oxide minerals that formed as a result of Silurian metamorphic and igneous events (for example, arsenopyrite, galena, iron-oxides, and arsenic-sulfides). A young group of secondary minerals (for example, iron-hydroxides, arsenic-hydroxides, lead-sulfate, and arsenic-jarosite) formed from recent weathering and pedogenic processes.
NASA Astrophysics Data System (ADS)
Plata, D. L.; Gschwend, P. M.; Reddy, C. M.
2008-05-01
Commercially available single-walled carbon nanotubes (SWCNTs) contain large percentages of metal and carbonaceous impurities. These fractions influence the SWCNT physical properties and performance, yet their chemical compositions are not well defined. This lack of information also precludes accurate environmental risk assessments for specific SWCNT stocks, which emerging local legislation requires of nanomaterial manufacturers. To address these needs, we measured the elemental, molecular, and stable carbon isotope compositions of commercially available SWCNTs. As expected, catalytic metals occurred at per cent levels (1.3-29%), but purified materials also contained unexpected metals (e.g., Cu, Pb at 0.1-0.3 ppt). Nitrogen contents (up to 0.48%) were typically greater in arc-produced SWCNTs than in those derived from chemical vapor deposition. Toluene-extractable materials contributed less than 5% of the total mass of the SWCNTs. Internal standard losses during dichloromethane extractions suggested that metals are available for reductive dehalogenation reactions, ultimately resulting in the degradation of aromatic internal standards. The carbon isotope content of the extracted material suggested that SWCNTs acquired much of their carbonaceous contamination from their storage environment. Some of the SWCNTs, themselves, were highly depleted in 13C relative to petroleum-derived chemicals. The distinct carbon isotopic signatures and unique metal 'fingerprints' may be useful as environmental tracers allowing assessment of SWCNT sources to the environment.
Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes.
Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E; Zhang, Zhao-feng
2016-03-18
Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0-2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes.
Deng, Wenbo; Li, Xuxiang; An, Zhisheng; Yang, Liu
2016-11-01
Economic reforms in China since 1978 have promoted nationwide socioeconomic advancement but led to a considerable amount of environmental pollution. The distribution and sources of Pb in a typical peri-urban industrial part of Baoji, China, were assessed by determining the Pb contents and isotopic compositions in 52 topsoil samples from the study area. The topsoil samples were polluted averagely with 40.88 mg Pb kg -1 , was 1.86 times higher than the Pb content of local background soil (22.04 mg kg -1 ). Pb isotopic compositions were determined by analyzing samples prepared using total digestion and acid extraction methods. Radiogenic isotopes contributed more to the Pb concentrations in the acid extracts than in the total digests. This was shown by the 207/206 Pb and 208/206 Pb ratios, which were 0.845-0.88 and 2.088-2.128, respectively, in the acid extracts and 0.841-0.875 and 2.086-2.125, respectively, in the total digests. This indicates that anthropogenic sources of Pb could be identified more sensitively in acid extracts than in total digests. The Pb isotope ratios showed that burning coal and smelting ore are the predominant anthropogenic sources of Pb in the study area, i.e., a lead-zinc smelter and a coking plant are major sources of Pb in the study area.
NASA Astrophysics Data System (ADS)
Alemayehu, Melesse; Zhang, Hong-Fu; Seitz, Hans-Michael
2017-10-01
Lithium (Li) elemental and isotopic compositions for mineral separates of coexisting olivine, orthopyroxene and clinopyroxene of mantle xenoliths from the Quaternary volcanic rocks of southern Ethiopian rift (Dillo and Megado) reveal the influence of late stage melt-peridotite interaction on the early depleted and variably metasomatized lithospheric mantle. Two types of lherzolites are reported (LREE-depleted La/Sm(N) = 0.11-0.37 × Cl and LREE-enriched, La/Sm(N) = 1.88-15.72 × Cl). The depleted lherzolites have variable range in Li concentration (olivine: 2.1-5.4 ppm; opx: 1.1-2.3 ppm; cpx: 1.0-1.8 ppm) and in Li isotopic composition (δ7Li in olivine: -9.4 to 1.5‰; in opx: -4.5 to 3.6‰; in cpx: -17.0 to 4.8‰), indicating strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The enriched lherzolites have limited range in both Li abundances (olivine: 2.7-3.0 ppm; opx: 1.1-3.1 ppm; cpx: 1.1-2.3 ppm) and Li isotopic compositions (δ7Li in olivine: -1.3 to +1.3‰; in opx: -2.0 to +5.0‰; in cpx: -7.5 to +4.8‰), suggest that the earlier metasomatic event which lead to LREE enrichment could also homogenize the Li contents and its isotopes. The enriched harzburgite and clinopyroxenite minerals show limited variation in Li abundances and variable Li isotopic compositions. The Li enrichments of olivine and clinopyroxene correlate neither with the incompatible trace element enrichment nor with the Sr-Nd isotopic compositions of clinopyroxene. These observations indicate that the metasomatic events which are responsible for the LREE enrichment and for the Li addition are distinct, whereby the LREE-enrichment pre-dates the influx of Li. The presence of large Li isotopic disequilibria within and between minerals of depleted and enriched peridotites suggest that the lithospheric mantle beneath the southern Ethiopian rift has experienced recent melt-peridotite interaction. Thus, the Li data set reported in this study offer new additional evidence for the existence of late stage metasomatism, which probably occurred at shallow depth briefly before and/or during entrainment and ascent of mantle xenoliths to the surface.
Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes
NASA Astrophysics Data System (ADS)
Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto
2016-04-01
Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer within each water body, as well as for the modelling of expected changes in nutrient content associated to changes in isotopic composition of sediments. Key words: nitrogen; carbon, sediment; biogeochemical cycle; climate change; hydro-ecology; isotopic niche; Svalbard
Sr isotopic composition as a tracer of Ca sources in two forest ecosystems in Belgium.
NASA Astrophysics Data System (ADS)
Drouet, T.; Herbauts, J.; Demaiffe, D.
2003-04-01
The two main sources of Ca in forest ecosystem are the mineral weathering release and atmospheric inputs. We use the 87Sr/86Sr isotopic ratio (Sr is a proxy for Ca) to determine the Ca contribution from rain input in two forest ecosystems (beech stands) growing on soils formed from parent materials with distinct total Ca contents and contrasted isotopic ratios: Pleistocene loess in Central Belgium (leached brown soil) with present-day 87Sr/86Sr =0.72788 and Lower Devonian shales and sandstones in Ardennes (ochreous brown earth) with 87Sr/86Sr = 0.76913. The 87Sr/86Sr ratios and the Ca and Sr contents were measured in rainwater, vegetation (beech wood growth rings and leaves) and main soil horizons (total, labile and HCl 0.1 M soluble forms). The relative contributions of atmospheric input and soil mineral weathering to vegetation were calculated using mixing equations. Calculations based on the Sr isotope ratios of rainwater (endmember 1; 87Sr/86Sr close to seawater: 0.7090), labile soil fraction (endmember 2; 87Sr/86Sr: 0.71332 to 0.71785) and beech wood (mixing compartment) indicate that about 50 % (Central Belgium) to 35 % (Ardennes) of Ca uptake originate from atmospheric inputs. The choice of the appropriate 87Sr/86Sr ratio for the weathering endmember is however critical. The isotopic composition of the mineral source is theoretically determined by the mineralogical composition of the soil and the relative weatherability of the Sr-bearing minerals. Due to soil processes (weathering and clay illuviation), the distribution of minerals in both soil profiles is not homogeneous and varies from horizon to horizon. Which horizons are relevant and which kind of soil extract (labile soil fraction, acid soluble fraction, total soil,...) should be selected for isotopic measurement of weathering endmember, is therefore questionable. The different ways of estimation are discussed. Quantitative mineralogical reconstitutions of soil horizons and isotopic data indicate preferential weathering of plagioclase (high Sr content with low 87Sr/86Sr) rather than mica or K-feldspar (high 87Sr/86Sr). Our results emphasize the importance of the Ca atmospheric contribution to the tree mineral nutrition in these forest ecosystems. It is plausible that acid depositions associated with decreasing input of atmospheric cations (“acid rains”) could increase the depletion of soil available cation pool at a short-time scale.
99 Tc NMR determination of the oxygen isotope content in 18 O-enriched water.
Tarasov, Valerii P; Kirakosyan, Gayana А; German, Konstantin E
2018-03-01
99 Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH 4 TcO 4 or NaTcO 4 (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled 18 O-enriched water have been studied by 99 Tc NMR. The method is based on 16 O/ 17 O/ 18 O intrinsic isotope effects in the 99 Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO 4 - and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the 99 Tc NMR signals of the Tc 16 O 4-n 18 O n - isotopologues. Because the oxygen exchange between TcO 4 - and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant 99 Tc NMR shift induced by a single 16 O→ 18 O substitution (-0.43 ± 0.01 ppm) in TcO 4 - and spin coupling constant 1 J( 99 Tc- 17 O) (131.46 Hz) favourable for the observation of individual signals of Tc 16 O 4-n 18 O n - isotopologues. Copyright © 2017 John Wiley & Sons, Ltd.
Integrating Stomach Content and Stable Isotope Analyses to Quantify the Diets of Pygoscelid Penguins
Polito, Michael J.; Trivelpiece, Wayne Z.; Karnovsky, Nina J.; Ng, Elizabeth; Patterson, William P.; Emslie, Steven D.
2011-01-01
Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1) selecting appropriate prey sources, 2) weighting combinations of isotopically similar prey in two-source mixing models and 3) refining predicted contributions of isotopically similar prey in multi-source models. PMID:22053199
Magnesium Isotopic Composition of Kamchatka Sub-Arc Mantle Peridotites
NASA Astrophysics Data System (ADS)
Hu, Y.; Teng, F. Z.; Ionov, D. A.
2016-12-01
Subduction of the oceanic slab may add a crustal isotopic signal to the mantle wedge. The highly variable Mg isotopic compositions (δ26Mg) of the subducted oceanic crust input[1] and arc lava output[2] imply a distinctive Mg isotopic signature of the mantle wedge. Magnesium isotopic data on samples from the sub-arc mantle are still limited, however. To characterize the Mg isotopic composition of typical sub-arc mantle, 17 large and fresh spinel harzburgite xenoliths from Avacha volcano were analyzed. The harzburgites were formed by 30% melt extraction at ≤ 1 2 GPa and fluid fluxing condition, and underwent possible fluid metasomatism as suggested by distinctively high orthopyroxene mode in some samples, the presence of accessory amphibole and highly variable Ba/La ratios[3]. However, their δ26Mg values display limited variation from -0.32 to -0.21, which are comparable to the mantle average at -0.25 ± 0.07[4]. The overall mantle-like and homogenous δ26Mg of Avacha sub-arc peridotites are consistent with their similar chemical compositions and high MgO contents (> 44 wt%) relative to likely crustal fluids. Furthermore, clinopyroxene (-0.24 ± 0.10, 2SD, n = 5), a late-stage mineral exsolved from high-temperature, Ca-rich residual orthopyroxene, is in broad Mg isotopic equilibrium with olivine (-0.27 ± 0.04, 2SD, n = 17) and orthopyroxene (-0.22 ± 0.06, 2SD, n = 17). Collectively, this study finds that the Kamchatka mantle wedge, as represented by the Avacha peridotites, has a mantle-like δ26Mg, and low-degree fluid-mantle interaction does not cause significant Mg isotope fractionation in sub-arc mantle peridotites. [1] Wang et al., EPSL, 2012 [2] Teng et al., PNAS, 2016 [3] Ionov, J. Petrol., 2010, [4] Teng et al., GCA, 2010.
Voegtlin, David J.; Hamilton, Krista L.; Hogg, David B.
2017-01-01
Soybean aphid (Aphis glycines Matsumura) is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L.) and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites. PMID:29206134
NASA Astrophysics Data System (ADS)
Bouvet de Maisonneuve, C.; Fiege, A.; Fabbro, G.; Kubo, A. I.
2016-12-01
Large explosive eruptions typically release orders of magnitude more S to the atmosphere than expected based on degassing of the erupted magma. To explain this, an excess, accumulated vapor phase is often proposed. Resolving the presence, composition, and source of such an exsolved volatile phase is essential, as it will drive eruptions towards increased explosivity. Integration of melt inclusion (MI) volatile contents (H, C, S, Cl, F) with S isotope data on melt inclusions, and sulfur-bearing minerals (anhydrite) can provide information on pre- and syn-eruptive degassing. The June 1991 eruption of Mt Pinatubo is an ideal candidate for such a study as it injected a >17 Mt of SO2 into the stratosphere, corresponding to a S excess release of a factor close to 100. The erupted magma was oxidized (QFM+3) and should therefore yield a clear isotopic trend. Volatile contents in glassy but vesicular quartz-hosted MIs were measured by SIMS and yield <3 wt% H2O and <100 ppm S but up to 1500 ppm CO2, in agreement with previous measurements. The MIs with few but large vapor bubbles (avoided during analysis) have lower H2O and CO2 contents and smaller standard deviations. The MIs with many small bubbles have higher volatile contents and standard deviations because the gas phase was not avoided during analysis. We observed scattered S contents and highly variable S isotope compositions for all MIs, which could be due to the presence of submicron S phases. Thus, we homogenized a batch of MIs under P-T-fO2 conditions that best correspond to pre-eruptive conditions. The δ34S for quartz-hosted MIs ranges from -1 to +14 ‰ and δ34S vs. S-H-C content trends are used to infer open or closed system degassing processes. In the near future, anhydrites and melt inclusions in other mineral hosts (amphibole and plagioclase) will be investigated in order to reconstruct the degassing history of the 1991 Pinatubo magma and to trace the S source.
Fatty acid composition of fish species with different feeding habits from an Arctic Lake.
Gladyshev, M I; Sushchik, N N; Glushchenko, L A; Zadelenov, V A; Rudchenko, A E; Dgebuadze, Y Y
2017-05-01
We compared the composition and content of fatty acids (FAs) in fish with different feeding habits (sardine (least) cisco Coregonus sardinella, goggle-eyed charr (pucheglazka) form of Salvelinus alpinus complex, humpback whitefish Coregonus pidschian, broad whitefish Coregonus nasus, boganid charr Salvelinus boganidae, and northern pike Esox lucius from an Arctic Lake. Feeding habits of the studied fish (planktivore, benthivore, or piscivore) significantly affected the composition of biomarker fatty acids and the ratio of stable isotopes of carbon and nitrogen in their biomass. The hypothesis on a higher content of eicosapentaenoic and docosahexaenoic acids in the fish of higher trophic level (piscivores) when compared within the same taxonomic group (order Salmoniformes) was confirmed.
NASA Astrophysics Data System (ADS)
Siklosy, Z.; Demeny, A.; Pilet, S.; Leel-Ossy, Sz.; Lin, K.; Shen, C.-C.
2009-04-01
Speleothems can provide accurate chronologies for reconstructions of climate change by combination of U/Th dating and climate-related geochemical compositions. Geochemical studies of speleothems from Central Europe are mostly based on stable C and O isotope analyses, thus, complex geochemical studies combining isotope and trace element measurements are needed for more reliable climate models for this transitional area between oceanic and continental regions. We present stable H-C-O isotope and trace element records obtained on speleothems covering the Last Interglacial (MIS 5e) and the transition to MIS 5d. A stalagmite from Baradla Cave grew from 127.5 to 110 ka. Accelerated growth rates have been detected by U/Th age data in the 127 to 126 ka and 119 to 117 ka parts. Trace element compositions and 230Th/232Th ratios suggest changes in the hydrological regime, whereby early calcite precipitates formed in fissures during the dry and cold glacial period were dissolved by the starting flux of infiltrating meteoric water (producing elevated dissolved ion concentration but low detrital Th component), then the increasing amount of dripwater during the interglacial period resulted in trace element dilution. Temperature and precipitation amount variations are also reflected by the stable isotope compositions. Oxygen isotope composition shows a continuous increase from 127.5 ka until about 118 ka most probably related to temperature rise, whereas C isotope values are shifted in negative direction suggesting increasing humidity in accordance with trace element contents. The presumably warmest period at ca. 118 ka is associated with rather arid climate as indicated by peak d18O values coinciding with the highest dD values of fluid inclusion water. This is followed by a pronounced negative shift in both O and H isotope values, similarly to recent Alpine studies (Meyer et al., 2008), most probably related to cooling. Hydrogen isotope compositions of fluid inclusion water evaluated together with calculated oxygen isotope compositions of water indicate warming and increasing significance of summer precipitation at the latest period of the last interglacial, then increasing importance of winter precipitation and/or changes in oceanic source composition during the cooling phase. The good agreement with other (Alpine and marine) records indicate a synchronous climate change. However, after a negative shift in the wet/warm phase (increasing soil activity), C isotope values start to increase already at about 119 ky BP, warning to the use of the two isotope systems as event correlation tools. In conclusion, our combined isotope and trace element study indicate a complex pattern of temperature and humidity variations during and right after the Last Interglacial. Acknowledgements — This study was financially supported by the Hungarian Scientific Research Fund (OTKA T 049713). Measurements of U-Th isotopic compositions and and 230Th dates were supported by the National Science Council grants (94-2116-M002-012, 97-2752-M002-004-PAE & -005-PAE to C.C.S.). [Meyer, M.; Spötl, C.; Mangini, A. (2008): The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quaternary Science Reviews, 27, 476-496.
The Effect of Nickel on Iron Isotope Fractionation and Implications for the Earth's Core
NASA Astrophysics Data System (ADS)
Reagan, M. M.; Shahar, A.; Elardo, S. M.; Liu, J.; Xiao, Y.; Mao, W. L.
2017-12-01
The Earth's core is thought to be composed mainly of an iron-rich iron nickel (FeNi) alloy. Therefore, determining the behavior of these alloys at core conditions is crucial for interpreting and constraining geophysical and geochemical models. Understanding the effect of nickel on iron isotope fractionation can shed light on planetary core formation. We collected a series of phonon excitation spectra using nuclear resonant inelastic x-ray scattering (NRIXS) on 57Fe-enriched FeNi alloys with varying (Fe0.9Ni0.1, Fe0.8Ni0.2, Fe0.7Ni0.3) nickel content in a diamond anvil cell at pressures up to 50 GPa. All three alloys studied exhibited differences from pure Fe, indicating that increasing nickel content could have an effect on iron isotope fractionation which would have implications for planetary core formation and provide constraints the bulk composition for terrestrial planets.
NASA Astrophysics Data System (ADS)
Li, W. Y.; Teng, F. Z.; Xiao, Y.
2016-12-01
To investigate the behaviour of Mg isotopes during metasomatic reactions between peridotites and infiltrating fluids along the slab-mantle interface, we analyzed Mg isotopic compositions of a set of well-characterized samples from the ultramafic blocks in the Franciscan Complex of California [1]. The Group 1 and Group 2 samples that were defined by the initial serpentinization and complete serpentinization of peridotites at temperatures of 450-500 ºC, respectively [1], have δ26Mg values (from -0.26 to -0.14‰) clustered around the mantle value. This suggests that Mg isotope fractionation during serpentinization by slab-derived fluids, if any, is small. By contrast, the Group 3 samples that were defined by the replacement of serpentine by talc [1], are enriched in heavy Mg isotopes (δ26Mg of -0.13 to -0.01‰). This may reflect the loss of light Mg isotopes into fluids during the dehydration reaction that produced talc from serpentine, which is consistent with previous observations that secondary clay minerals preferentially incorporate heavy Mg isotopes during water-rock interactions [2, 3]. The Group 4 samples that were defined by the further replacement of talc by tremolite [1], however, have light Mg isotopic compositions (δ26Mg of -0.50 to -0.41‰). Such a shift towards light Mg isotopic compositions likely results from metasomatism by fluids that derived from isotopically light carbonates, which is supported by the remarkably higher CaO content of Group 4 samples (from 6.9 to 9.2 wt%) than Group 3 ones (from 1.1 to 1.4 wt%). Collectively, significant Mg isotopic variations occur during metasomatism of peridotites in the mantle wedge, which would potentially lead to heterogeneous Mg isotopic compositions in arc lavas [4]. Therefore, Mg isotopes can be used as a powerful tracer of crust-mantle interaction at subduction zones. [1] King et al. (2003) Geol. Soc. Am. Bull. 115, 1097-1109. [2] Teng et al. (2010) Earth Planet. Sci. Lett. 300, 63-71. [3] Wimpenny et al. (2014) Geochim. Cosmochim. Acta 128, 178-194. [4] Teng et al. (2016) Proc. Natl. Acad. Sci. 113, 7082-7087. et al. (2016) Proc. Natl. Acad. Sci. 113, 7082-7087.
NASA Astrophysics Data System (ADS)
Lin, Hsing-Juh; Kao, Wen-Yuan; Wang, Ya-Ting
2007-07-01
Detritivorous fish generally refers to fish that primarily ingest unidentified organic detritus. We analyzed stomach contents in combination with stable isotopes to trace and compare the food sources of the large-scale mullet Liza macrolepis and other detritivorous fish species in subtropical mangrove creeks and a tropical lagoon in Taiwan. The volume of organic detritus always contributed >50% of the stomach content of L. macrolepis in the two habitats. However, consumed items were distinct between the two habitats and corresponded to the types in which they reside. The consumed items in the lagoon were more diverse than those observed in the mangroves. In the mangroves, the diet composition of L. macrolepis was primarily determined by season, not by body size. In the lagoon, there were no clear seasonal or size-dependent grouping patterns for the diet composition. There were significant seasonal and spatial variations in δ13C and δ15N values of potential food sources and L. macrolepis. However, neither δ13C nor δ15N values of L. macrolepis were correlated with fish body size. Joint analyses of stomach contents and stable isotopes indicated that benthic microalgae on sediments were the most important assimilated food in both seasons for the dominant detritivorous fish in the mangroves, whereas a greater reliance on microalgal and macroalgal periphyton on oyster-culture pens was observed in the lagoon. Mangrove and marsh plants and phytoplankton, which are mostly locally produced within each habitat, were of minor importance in the assimilated food.
NASA Technical Reports Server (NTRS)
Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.
2014-01-01
C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.
Apparatus and method for detecting gamma radiation
Sigg, R.A.
1994-12-13
A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.
Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.
1999-01-01
The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.
Izbicki, John A.; Clark, Dennis A.; Pimental, Maria I.; Land, Michael; Radyk, John C.; Michel, Robert L.
2000-01-01
This report presents data on the physical properties of unsaturated alluvial deposits and on the chemical and isotopic composition of soil water and soil gas collected at 12 monitoring sites in the western part of the Mojave Desert, near Victorville, California. Sites were installed using the ODEX air-hammer method. Seven sites were located in the active channels of Oro Grande and Sheep Creek Washes. The remaining five sites were located away from the active washes. Most sites were drilled to a depth of about 100 feet below land surface; two sites were drilled to the water table almost 650 feet below land surface. Drilling procedures, lithologic and geophysical data, and site construction and instrumentation are described. Core material was analyzed for water content, bulk density, water potential, particle size, and water retention. The chemical composition of leachate from almost 1,000 subsamples of cores and cuttings was determined. Water extracted from selected subsamples of cores was analyzed for tritium and the stable isotopes of oxygen and hydrogen. Water from suction-cup lysimeters and soil-gas samples also were analyzed for chemical and isotopic composition. In addition, data on the chemical and isotopic composition of bulk precipitation from five sites and on ground water from two water-table wells are reported.
NASA Astrophysics Data System (ADS)
Acheampong, S. Y.
2007-12-01
A critical component to managing water resources is understanding the source of ground water that is extracted from a well. Detail information on the source of recharge and the age of groundwater is thus vital for the proper assessment, development, management, and monitoring of the groundwater resources in an area. Great differences in the isotopic composition of groundwater in a basin and the basin precipitation imply that the groundwater in the basin originates from a source outside the basin or is recharged under different climatic conditions. The stable isotopes of oxygen and hydrogen in precipitation were compared with the isotopic composition of water from wells, springs, and creeks to evaluate the source of the shallow groundwater recharge in Spring and Snake Valleys, Nevada, as part of an evaluation of the water resources in the area. Delta deuterium and delta oxygen-18 composition of springs, wells, creeks, and precipitation in Spring and Snake Valleys show that groundwater recharge occurs primarily from winter precipitation in the surrounding mountains. The carbon-14 content of the groundwater ranged from 30 to 95 percent modern carbon (pmc). Twenty two of the thirty samples had carbon-14 values of greater than 50 pmc. The relatively high carbon-14 values suggest that groundwater in the area is recharged by modern precipitation and the waters have rapid travel times. Total dissolved solids content of the samples outside the playa areas are generally low, and suggests that the water has a relatively short travel time between the recharge areas and sample sites. The presence of tritium in some of the springs and wells also indicate that groundwater mixes with post 1952 precipitation. Hydrogen bomb tests which began in 1952 in the northern hemisphere added large amounts of tritium to the atmosphere and reached a peak in 1963. The stable isotopic composition, the high carbon-14 activities, and the presence of tritium, show that the shallow groundwater in Snake and Spring Valleys originates as modern recharge. The shallow groundwater in these valleys is thus a renewable resource and can be developed in a sustainable manner using the appropriate planning and management tools.
Gas and hydrogen isotopic analyses of volcanic eruption clouds in Guatemala sampled by aircraft
Rose, W.I.; Cadle, R.D.; Heidt, L.E.; Friedman, I.; Lazrus, A.L.; Huebert, B.J.
1980-01-01
Gas samples were collected by aircraft entering volcanic eruption clouds of three Guatemalan volcanoes. Gas chromatographic analyses show higher H2 and S gas contents in ash eruption clouds and lower H2 and S gases in vaporous gas plumes. H isotopic data demonstrate lighter isotopic distribution of water vapor in ash eruption clouds than in vaporous gas plumes. Most of the H2O in the vaporous plumes is probably meteoric. The data are the first direct gas analyses of explosive eruptive clouds, and demonstrate that, in spite of atmospheric admixture, useful compositional information on eruptive gases can be obtained using aircraft. ?? 1980.
Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen
2005-01-01
The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.
Cryogenic distillation facility for isotopic purification of protium and deuterium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.
Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogenmore » isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.« less
NASA Technical Reports Server (NTRS)
Righter, K.; Schonbachler, M.
2018-01-01
Decay of (sup 107) Pd to (sup 107) Ag has a half-life of 6.5 times 10 (sup 6) mega-annums. Because these elements are siderophile but also volatile, they offer potential constraints on the timing of core formation as well as volatile addition. Initial modelling has shown that the Ag isotopic composition of the bulk silicate Earth (BSE) can be explained if accretion occurs with late volatile addition. These arguments were tested for sensitivity for pre-cursor Pd/Ag contents, and for a fixed Pd/Ag ratio of the BSE of 0.1. New Ag and Pd partitioning data has allowed a better understanding of the partitioning behavior of Pd and Ag during core formation. The effects of S, C and Si, and the effect of high temperature and pressure has been evaluated. We can now calculate D(Ag) and D(Pd) over the wide range of PT conditions and variable metallic liquid compositions that are known during accretion. We then use this new partitioning information to revisit the Ag isotopic composition of the BSE during accretion.
Integral nuclear data validation using experimental spent nuclear fuel compositions
Gauld, Ian C.; Williams, Mark L.; Michel-Sendis, Franco; ...
2017-07-19
Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors andmore » representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. Furthermore, the database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.« less
NASA Astrophysics Data System (ADS)
Gilbo, Yekaterina; Wijesooriya, Krishni; Liyanage, Nilanga
2017-01-01
Customarily applied in homeland security for identifying concealed explosives and chemical weapons, NRF (Nuclear Resonance Fluorescence) may have high potential in determining atomic compositions of body tissue. High energy photons incident on a target excite the target nuclei causing characteristic re-emission of resonance photons. As the nuclei of each isotope have well-defined excitation energies, NRF uniquely indicates the isotopic content of the target. NRF radiation corresponding to nuclear isotopes present in the human body is emitted during radiotherapy based on Bremsstrahlung photons generated in a linear electron accelerator. We have developed a Geant4 simulation in order to help assess NRF capabilities in detecting, mapping, and characterizing tumors. We have imported a digital phantom into the simulation using anatomical data linked to known chemical compositions of various tissues. Work is ongoing to implement the University of Virginia's cancer center treatment setup and patient geometry, and to collect and analyze the simulation's physics quantities to evaluate the potential of NRF for medical imaging applications. Preliminary results will be presented.
Integral nuclear data validation using experimental spent nuclear fuel compositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauld, Ian C.; Williams, Mark L.; Michel-Sendis, Franco
Measurements of the isotopic contents of spent nuclear fuel provide experimental data that are a prerequisite for validating computer codes and nuclear data for many spent fuel applications. Under the auspices of the Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) and guidance of the Expert Group on Assay Data of Spent Nuclear Fuel of the NEA Working Party on Nuclear Criticality Safety, a new database of expanded spent fuel isotopic compositions has been compiled. The database, Spent Fuel Compositions (SFCOMPO) 2.0, includes measured data for more than 750 fuel samples acquired from 44 different reactors andmore » representing eight different reactor technologies. Measurements for more than 90 isotopes are included. This new database provides data essential for establishing the reliability of code systems for inventory predictions, but it also has broader potential application to nuclear data evaluation. Furthermore, the database, together with adjoint based sensitivity and uncertainty tools for transmutation systems developed to quantify the importance of nuclear data on nuclide concentrations, are described.« less
NASA Astrophysics Data System (ADS)
Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko
2016-01-01
A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.
In situ Analysis of North American Diamond: Implications for Diamond Growth Modeling
NASA Astrophysics Data System (ADS)
Schulze, D. J.; Van Rythoven, A. D.; Hauri, E.; Wang, J.
2014-12-01
Diamond crystals from three North American kimberlite occurrences were investigated with cathodoluminescence (CL) and secondary ion mass spectrometry (SIMS) to determine their growth history, carbon isotope composition and nitrogen content. Samples analyzed include sixteen from Lynx (Quebec), twelve from Kelsey Lake (Colorado) and eighteen from A154 South (Diavik mine, Northwest Territories). Growth histories for the samples vary from simple to highly complex based on their CL images and depending on the individual stone. Deformation lamellae are evident in CL images of the Lynx crystals which typically are brownish in color. Two to five points per diamond were analyzed by SIMS for carbon isotope composition (δ13CPDB) and three to seven points for nitrogen content. The results for the A154 South (δ13CPDB = -6.76 to -1.68 ‰) and Kelsey Lake (δ13CPDB = -11.81 to -2.43 ‰) stones (mixed peridotitic and eclogitic suites) are similar to earlier reported values. The Lynx kimberlite stones have anomalously high carbon isotope ratios and range from -3.58 to +1.74 ‰. The Lynx diamond suite is almost entirely peridotitic. The unusually high (i.e. >-5‰) δ13C values of the Lynx diamonds, as well as those from Wawa, Ontario and Renard, Quebec, may indicate an anomalous carbon reservoir for the Superior cratonic mantle relative to other cratons. In addition to the heavier carbon isotope values, the Lynx samples have very low nitrogen contents (<100 ppm). Nitrogen contents for Kelsey Lake and Diavik samples are more typical and range to ~1100 ppm. Comparison of observed core to rim variations in nitrogen content and carbon isotopes with modeled Rayleigh fractionation trends for published diamond growth mechanisms allows for evaluation of carbon speciation and other parent fluid conditions. Observed trends that closely follow modeled data are rare, but appear to suggest diamond growth from carbonate-bearing fluids at Lynx and Diavik, and growth from a methane-bearing fluid at Kelsey Lake. However the majority of crystals appear to have very complex growth histories that are clearly the result of multiple growth and resorption events. Trends observed in most of the samples from this study are chaotic and no consistent patterns are seen.
Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes
Sun, Wei-dong; Zhang, Li-peng; Guo, Jia; Li, Cong-ying; Jiang, Yu-hang; Zartman, Robert E.; Zhang, Zhao-feng
2016-01-01
Fine Yin-Shang bronzes containing lead with puzzlingly highly radiogenic isotopic compositions appeared suddenly in the alluvial plain of the Yellow River around 1400 BC. The Tongkuangyu copper deposit in central China is known to have lead isotopic compositions even more radiogenic and scattered than those of the Yin-Shang bronzes. Most of the Yin-Shang bronzes are tin-copper alloys with high lead contents. The low lead and tin concentrations, together with the less radiogenic lead isotopes of bronzes in an ancient smelting site nearby, however, exclude Tongkuangyu as the sole supplier of the Yin-Shang bronzes. Interestingly, tin ingots/prills and bronzes found in Africa also have highly radiogenic lead isotopes, but it remains mysterious as to how such African bronzes may have been transported to China. Nevertheless, these African bronzes are the only bronzes outside China so far reported that have lead isotopes similar to those of the Yin-Shang bronzes. All these radiogenic lead isotopes plot along ~2.0–2.5 Ga isochron lines, implying that deposits around Archean cratons are the most likely candidates for the sources. African cratons along the Nile and even micro-cratons in the Sahara desert may have similar lead signatures. These places were probably accessible by ancient civilizations, and thus are the most favorable suppliers of the bronzes. PMID:26988425
Royles, Jessica; Amesbury, Matthew J; Roland, Thomas P; Jones, Glyn D; Convey, Peter; Griffiths, Howard; Hodgson, Dominic A; Charman, Dan J
2016-07-01
The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.
NASA Astrophysics Data System (ADS)
Wang, Zhengrong; Eiler, John M.
2008-05-01
In situ measurements of oxygen isotope and elemental compositions of olivines from subaerial Mauna Kea lavas reveal that their δ18O values correlate positively with their forsterite contents, consistent with addition of one or more low- δ18O components into magmas from which they grew over the course of their crystallization-differentiation histories. This result supports previous suggestions that low- δ18O components to Mauna Kea lavas are contaminants derived from hydrothermally-altered rocks in the volcanic edifice or lithosphere, rather than components of the underlying mantle sources of these lavas. The slope of the correlation between δ18O values and forsterite contents of olivines is steeper for subaerial Mauna Kea lavas than for submarine Mauna Kea lavas, and olivines from Mauna Loa lavas exhibit negligible changes in δ18O values over a similar range of forsterite contents. Models of assimilation-fractional crystallization (AFC) processes can explain our observations if the δ18O values of crustal contaminants decrease sharply at the submarine-subaerial transition in Mauna Kea volcano, and if Mauna Loa lavas are either uncontaminated or contaminated only by rocks that have δ18O values similar to that of primary Mauna Loa magmas. We suggest that the differences in oxygen isotope systematics among Mauna Loa, submarine Mauna Kea and subaerial Mauna Kea lavas principally reflect the sources and amounts of water available to hydrothermal systems in the volcanic edifice.
NASA Astrophysics Data System (ADS)
Demény, Attila; Kern, Zoltán; Molnár, Mihály; Czuppon, György; Leél-Őssy, Szabolcs; Surányi, Gergely; Gilli, Adrian
2017-04-01
Flowstones formed from springs in the Baradla and Béke Caves, North-east Hungary were drilled at several locations, and their sites were monitored for temperature, CO2 level in cave air, water and carbonate compositions for three years. The monitoring results suggest that the carbonate precipitated close to equilibrium with the local water. The non-systematic distribution of stable isotope and chemical compositions along sections on the surfaces of flowstone occurrences indicate irregular formation and the possibility of hiatuses within the flowstones' edifices. Approximately 40 cm long drill cores were extracted from the „Nagy-tufa" flowstone of the Béke Cave (BNT-2 core) and the Havasok flowstone of the Baradla Cave. U-Th dating efforts resulted in very large age uncertainties for the BNT-2 core, owing to detrital Th contamination. Therefore, in addition to the U-Th dating, AMS radiocarbon analyses were conducted to establish reliable age-depth models. The raw 14C ages were corrected for the dead carbon fraction (dfc) using radiocarbon results obtained for samples that yielded also accurate U-Th ages. Calibration and age-depth modeling have been performed using the OxCal v4.2.4. software. The data prove that the flowstones in the studied caves were formed contemporarily, covering the last 4 ka with two major hiatuses around 3.5 and 1 ka BP. Inclusion-hosted water contents, stable carbon and oxygen isotope compositions of carbonate, and hydrogen isotope composition of inclusion-hosted water as well as Si contents were determined for the two cores and compared with regional paleoclimate records for the period of 3.5 to 1 ka BP. The water contents, δ13Ccarb values and Si contents show correspondence with paleoprecipitation proxies from Central Europe to western Anatolia, while the paleotemperature estimates obtained using the δDwater values were in agreement with temperature reconstructions derived from paleobiological proxies from nearby lake sediments. The inferred paleohumidity variations agree also with water level changes of Lake Balaton (Western Hungary) assumed on the base of settlement migrations revealed by archeological excavations. These correlations indicate that the flowstone data provide valuable information about the regional water balance fluctuations for the late Holocene. The study was financed by the Hungarian Research Fund (OTKA NK 101664).
NASA Astrophysics Data System (ADS)
Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan
2017-06-01
Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a primary melt (i.e. in equilibrium with the mantle) from which other enriched shergottites derived.
NASA Astrophysics Data System (ADS)
Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.
2015-12-01
Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235U. GCA 72,345-359 [2] Wang X. et al. (2015) Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. GCA 150, 160-170
Lithium and boron in late-orogenic granites - Isotopic fingerprints for the source of crustal melts?
NASA Astrophysics Data System (ADS)
Romer, Rolf L.; Meixner, Anette; Förster, Hans-Jürgen
2014-04-01
Geochemically diverse late- and post-Variscan granites of the Erzgebirge-Vogtland, the Saxon Granulite Massif, and Thuringia (Germany) formed by anatectic melting of Palaeozoic sedimentary successions and associated mafic to felsic volcanic rocks. The compositional diversity of the least evolved of these granites is largely inherited from the protoliths. We present Li and B-isotopic data of these granites and compare them with the isotopic composition of their protoliths, to investigate whether (i) there exist systematic differences in the Li and B-isotopic composition among different granite types and (ii) Li and B-isotopic compositions provide information on the granite sources complementary to information from the isotopic composition of Sr, Nd, and Pb and the trace-element signatures. Low-F biotite and two-mica granite types have flat upper continental crust (UCC)-normalized trace-element pattern with variable enrichments in Li, Rb, Cs, Sn, and W and depletions in Sr, Ba, and Eu. These signatures are least pronounced for the Niederbobritzsch biotite granite, which has the largest contribution of mafic material, and most pronounced for the two-mica granites. The granites show a relatively narrow range of δ7Li values (-3.0 to -0.5) and a broad range of δ11B values (-13.4 to +20.1). The δ11B values are lower in rocks with distinctly higher contents of Li, Rb, Cs, and Sn. The high δ11B of the Niederbobritzsch granite may be explained by the melting of former altered oceanic crust in its source. Relative to UCC, intermediate-F to high-F low-P granites show strong depletions in Sr, Ba, Eu as well as Zr and Hf, strong enrichments in Li, Rb, and Cs as well as Nb, Sn, Ta, and W, and REE pattern with stronger enrichments for HREE than for LREE. These granites show narrow ranges of δ7Li (-2.0 to +1.6) and δ11B values (-14.7 to -9.1), reflecting the smaller variability of the Li and B-isotopic composition in their source lithologies. The anomalously high δ7Li value (14.7) of one granite sample (Burgberg), which is similar to δ7Li values of its wall rocks (up to 14.5), may indicate late-magmatic fluid-rock interaction with external, wall rock-derived fluids. Because of the small compositional range of most source lithologies, the Li and B-isotopic variation in the granites is also small indicating that the isotopic composition of Li and B does not represent a particularly sensitive source tracer, with the exception of source lithologies characterized by extreme δ7Li or δ11B values.
NASA Astrophysics Data System (ADS)
Yuan, Honglin; Liu, Xu; Chen, Lu; Bao, Zhian; Chen, Kaiyun; Zong, Chunlei; Li, Xiao-Chun; Qiu, Johnson Wenhong
2018-04-01
We herein report the coupling of a nanosecond laser ablation system with a large-scale multi-collector inductively coupled plasma mass spectrometer (Nu1700 MC-ICPMS, NP-1700) and a conventional Nu Plasma II MC-ICPMS (NP-II) for the simultaneous laser ablation and determination of in situ S and Pb isotopic compositions of sulfide minerals. We found that the required aerosol distribution between the two spectrometers depended on the Pb content of the sample. For example, for a sulfide containing 100-3000 ppm Pb, the aerosol was distributed between the NP-1700 and the NP-II spectrometers in a 1:1 ratio, while for lead contents >3000 and <100 ppm, these ratios were 5:1 and 1:3, respectively. In addition, S isotopic analysis showed a pronounced matrix effect, so a matrix-matched external standard was used for standard-sample bracketing correction. The NIST NBS 977 (NBS, National Bureau of Standards; NIST, National Institute of Standards & Technology) Tl (thallium) dry aerosol internal standard and the NIST SRM 610 (SRM, standard reference material) external standard were employed to obtain accurate results for the analysis of Pb isotopes. In tandem experiments where airflow conditions were similar to those employed during stand-alone analyses, small changes in the aerosol carrier gas flow did not significantly influence the accurate determination of S and Pb isotope ratios. In addition, careful optimization of the flow ratio of the aerosol carrier (He) and makeup (Ar) gases to match stand-alone analytical conditions allowed comparable S and Pb isotope ratios to be obtained within an error of 2 s analytical uncertainties. Furthermore, the results of tandem analyses obtained using our method were consistent with those of previously reported stand-alone techniques for the S and Pb isotopes of chalcopyrite, pyrite, galena, and sphalerite, thus indicating that this method is suitable for the simultaneous analysis of S and Pb isotopes of natural sulfide minerals, and provides an effective tool to determine S and Pb isotope compositions of sulfides formed through multi-stage deposition routes.
A molecular and isotopic study of the organic matter from the Paris Basin, France
NASA Technical Reports Server (NTRS)
Lichtfouse, E.; Albrecht, P.; Behar, F.; Hayes, J. M.
1994-01-01
Thirteen Liassic sedimentary rocks of increasing depth and three petroleums from the Paris Basin were studied for 13C/12C isotopic compositions and biological markers, including steranes, sterenes, methylphenanthrenes, methylanthracenes, and triaromatic steroids. The isotopic compositions of n-alkanes from mature sedimentary rocks and petroleums fall in a narrow range (2%), except for the deepest Hettangian rock and the Trias petroleum, for which the short-chain n-alkanes are enriched and depleted in 13C, respectively. Most of the molecular parameters increase over the 2000-2500 m depth range, reflecting the transformation of the organic matter at the onset of petroleum generation. In this zone, carbonate content and carbon isotopic composition of carbonates, as well as molecular parameters, are distinct for the Toarcian and Hettangian source rocks and suggest a migration of organic matter from these two formations. Two novel molecular parameters were defined for this task: one using methyltriaromatic steroids from organic extracts; the other using 1-methylphenanthrene and 2-methylanthracene from kerogen pyrolysates. The anomalous high maturity of the Dogger petroleum relative to the maturity-depth trend of the source rocks is used to estimate the minimal vertical distance of migration of the organic matter from the source rock to the reservoir.
NASA Astrophysics Data System (ADS)
Duan, Dandan; Zhang, Dainan; Yang, Yu; Wang, Jingfu; Chen, Jing'an; Ran, Yong
2017-09-01
Neutral monosaccharides, algal organic matter (AOM), and carbon stable isotope ratios in three sediment cores of various trophic reservoirs in South China were determined by high-performance anion-exchange chromatography, Rock-Eval pyrolysis, and Finnigan Delta Plus XL mass spectrometry, respectively. The carbon isotopic compositions were corrected for the Suess effect. The concentrations of total neutral carbohydrates (TCHO) range from 0.51 to 6.4 mg g-1 at mesotrophic reservoirs, and from 0.83 to 2.56 mg g-1 at an oligotrophic reservoir. Monosaccharide compositions and diagnostic parameters indicate a predominant contribution of phytoplankton in each of the three cores, which is consistent with the results inferred from the corrected carbon isotopic data and C/N ratios. The sedimentary neutral carbohydrates are likely to be structural polysaccharides and/or preserved in sediment minerals, which are resistant to degradation in the sediments. Moreover, the monosaccharide contents are highly related to the carbon isotopic data, algal productivity estimated from the hydrogen index, and increasing mean air temperature during the past 60 years. The nutrient input, however, is not a key factor affecting the primary productivity in the three reservoirs. The above evidence demonstrates that some of the resistant monosaccharides have been significantly elevated by climate change, even in low-latitude regions.
Isotopic studies of mariposite-bearing rocks from the south- central Mother Lode, California.
Kistler, R.W.; Dodge, F.C.W.; Silberman, M.L.
1983-01-01
Gold-bearing vein formation in the Mother Lode belt of the study area apparently occurred during the Early Cretaceous between 127 and 108 m.y. B.P. The hydrothermal fluids that carried the gold precipitated quartz and mariposite at approx 320oC, similar to the T of precipitation of gold-bearing quartz veins in the Allegheny district. The O- and H-isotopic composition calculated for the fluid indicate that it was similar to formation water or was metamorphic in origin. If the carbonate in the veins was in isotopic equilibrium with this same fluid, it apparently precipitated at a higher T of approx 400oC. The Sr in the carbonate is much less radiogenic than that in any known marine carbonate, but is similar in isotopic composition to that in metamorphosed mafic volcanic rocks of the general region. These mafic rocks could have been the source for the Sr in the hydrothermal veins. This observation supports the contention that the gold-mariposite-quartz-carbonate rocks were formed as an alteration product of serpentinite and other mafic igneous rocks.-A.P.
Gas geochemistry of Sierra Negra volcano, Galapagos hot spot
NASA Astrophysics Data System (ADS)
Taran, Y.; Christenson, B.; Sumino, H.; Kennedy, B.
2010-12-01
We report chemical and isotopic compositions of gases from the Mina Azufral fumarolic field of Sierra Negra volcano, Isabela Island, Galápagos, collected in 2004 and compare our data with the data by Giggenbach (unpublished) collected in 1990 and Goff et al. (2000) collected in 1995. New results include the noble gas elemental and isotope abundances and nitrogen isotope ratios for the discharges. Maximum fumarole temperatures and ratios of major components (C/S/Cl/N) changed very little between 1995 and 2004, but the water fraction varied significantly over this period (39 mol% in 1990; 77% in 1995 and 52% in 2004). Carbon and helium isotopic compositions were stable (-3 to -4‰ and 16-18Ra, respectively), and water isotopic composition showed a notable negative oxygen shift from the local meteoric water value depending on the relative water content and thus controlled by the H2O-CO2 oxygen isotope fractionation. In terms of the noble gas abundances and isotopic ratios, heavy noble gases (Kr and Xe) are mainly of the atmospheric origin. Ne isotopic ratios also show strong meteoric signatures, but fall along the 20Ne/22Ne - 21Ne/22Ne air-deep mantle mixing trend for Fernandina glasses (Kurz et al., 2009). 40Ar/36Ar ratios up to 400 show a notable contribution of radiogenic Ar, and 40Ar*/4He ~ 0.3 ratios are consistent with un-degassed upper mantle values. Despite the high He/Ne ratios in gases collected in 2004, and only trace air contamination attributable to sampling, the nitrogen isotope ratios (~ -1 ‰) show a high fraction of the air-saturated water in the volcanic vapor. The chemical composition of the parent magmatic gas is difficult to characterise due to significant interaction between magmatic and hydrothermal system fluids beneath the Sierra Negra caldera. Never-the-less, some important indicators can be estimated: CO2/3He ≈ 3.5x10^9; N2/He <30; CO2/N2 >500. The last value is much higher than the accepted value of ~ 100 for the upper mantle.
NASA Astrophysics Data System (ADS)
Ewing, Tanya A.; Müntener, Othmar
2018-05-01
The Cretaceous-Paleogene Kohistan arc complex, northern Pakistan, is renowned as one of the most complete sections through a preserved paleo-island arc. The Jijal Complex represents a fragment of the plutonic roots of the Kohistan arc, formed during its early intraoceanic history. We present the first Hf isotope determinations for the Jijal Complex, made on rutile from garnet gabbros. These lithologies are zircon-free, but contain rutile that formed as an early phase. Recent developments in analytical capabilities coupled with a careful analytical and data reduction protocol allow the accurate determination of Hf isotope composition for rutile with <30 ppm Hf for the first time. Rutile from the analysed samples contains 5-35 ppm Hf, with sample averages of 13-17 ppm. Rutile from five samples from the Jijal Complex mafic section, sampling 2 km of former crustal thickness, gave indistinguishable Hf isotope compositions with εHf(i) ranging from 11.4 ± 3.2 to 20.1 ± 5.7. These values are within error of or only slightly more enriched than modern depleted mantle. The analysed samples record variable degrees of interaction with late-stage melt segregations, which produced symplectitic overprints on the main mineral assemblage as well as pegmatitic segregations of hydrous minerals. The indistinguishable εHf(i) across this range of lithologies demonstrates the robust preservation of the Hf isotope composition of rutile. The Hf isotope data, combined with previously published Nd isotope data for the Jijal Complex garnet gabbros, favour derivation from an inherently enriched, Indian Ocean type mantle. This implies a smaller contribution from subducted sediments than if the source was a normal (Pacific-type) depleted mantle. The Jijal Complex thus had only a limited recycled continental crustal component in its source, and represents a largely juvenile addition of new continental crust during the early phases of intraoceanic magmatism. The ability to determine the Hf isotope composition of rutile with low Hf contents is an important development for zircon-free mafic lithologies. This study highlights the potential of Hf isotope analysis of rutile to characterise the most juvenile deep arc crust cumulates worldwide.
Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, Madeline Louise; McMath, Garrett Earl
Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less
Verification of Plutonium Content in PuBe Sources Using MCNP® 6.2.0 Beta with TENDL 2012 Libraries
Lockhart, Madeline Louise; McMath, Garrett Earl
2017-10-26
Although the production of PuBe neutron sources has discontinued, hundreds of sources with unknown or inaccurately declared plutonium content are in existence around the world. Institutions have undertaken the task of assaying these sources, measuring, and calculating the isotopic composition, plutonium content, and neutron yield. The nominal plutonium content, based off the neutron yield per gram of pure 239Pu, has shown to be highly inaccurate. New methods of measuring the plutonium content allow a more accurate estimate of the true Pu content, but these measurements need verification. Using the TENDL 2012 nuclear data libraries, MCNP6 has the capability to simulatemore » the (α, n) interactions in a PuBe source. Theoretically, if the source is modeled according to the plutonium content, isotopic composition, and other source characteristics, the calculated neutron yield in MCNP can be compared to the experimental yield, offering an indication of the accuracy of the declared plutonium content. In this study, three sets of PuBe sources from various backgrounds were modeled in MCNP6 1.2 Beta, according to the source specifications dictated by the individuals who assayed the source. Verification of the source parameters with MCNP6 also serves as a means to test the alpha transport capabilities of MCNP6 1.2 Beta with TENDL 2012 alpha transport libraries. Finally, good agreement in the comparison would indicate the accuracy of the source parameters in addition to demonstrating MCNP's capabilities in simulating (α, n) interactions.« less
NASA Astrophysics Data System (ADS)
Fantle, Matthew S.; Higgins, John
2014-10-01
The Ca, Mg, O, and C isotopic and trace elemental compositions of marine limestones and dolostones from ODP Site 1196A, which range in depth (∼58 to 627 mbsf) and in depositional age (∼5 and 23 Ma), are presented. The objectives of the study are to explore the potential for non-traditional isotope systems to fingerprint diagenesis, to quantify the extent to which geochemical proxies are altered during diagenesis, and to investigate the importance of diagenesis within the global Ca and Mg geochemical cycles. The data suggest that Ca, which has a relatively high solid to fluid mass ratio, can be isotopically altered during diagenesis. In addition, the alteration of Ca correlates with the alteration of Mg in such a way that both can serve as useful tools for deciphering diagenesis in ancient rocks. Bulk carbonate δ44Ca values vary between 0.60 and 1.31‰ (SRM-915a scale); the average limestone δ44Ca is 0.97 ± 0.24‰ (1SD), identical within error to the average dolostone (1.03 ± 0.15 1SD ‰). Magnesium isotopic compositions (δ26Mg, DSM-3 scale) range between -2.59‰ and -3.91‰, and limestones (-3.60 ± 0.25‰) and dolostones (-2.68 ± 0.07‰) are isotopically distinct. Carbon isotopic compositions (δ13C, PDB scale) vary between 0.86‰ and 2.47‰, with average limestone (1.96 ± 0.31‰) marginally offset relative to average dolostone (1.68 ± 0.57‰). The oxygen isotopic compositions (δ18O, PDB scale) of limestones (-1.22 ± 0.94‰) are substantially lower than the dolostones measured (2.72 ± 1.07‰). The isotopic data from 1196A suggest distinct and coherent trends in isotopic and elemental compositions that are interpreted in terms of diagenetic trajectories. Numerical modeling supports the contention that such trends can be interpreted as diagenetic, and suggests that the appropriate distribution coefficient (KMg) associated with limestone diagenesis is ∼1 to 5 × 10-3, distinctly lower than those values (>0.015) reported in laboratory studies. With respect to Mg isotopes, the modeling also suggest that diagenetic fractionation factors of ∼0.9955 (-4.5‰) and 0.9980 (-2‰) are appropriate for limestone diagenesis and dolomitization, respectively.
NASA Astrophysics Data System (ADS)
Alemayehu, Melesse; Zhang, Hong-Fu; Aulbach, Sonja
2017-07-01
We present new trace element compositions of amphiboles, Sr-Nd-Hf isotope compositions of clinopyroxenes and mineral modes for spinel peridotite xenoliths that were entrained in a Miocene alkali basalt (Gundeweyn, northwestern Ethiopian plateau), in order to understand the geochemical evolution and variation occurring within the continental lithospheric mantle (CLM) in close proximity to the East African Rift system, and its dynamic implications. With the exception of a single amphibole-bearing sample that is depleted in LREE (La/YbN = 0.45 × Cl), amphiboles in lherzolites and in one harzburgite show variable degrees of LREE enrichment (La/YbN = 2.5-12.1 × Cl) with flat HREE (Dy/YbN = 1.5-2.1 × Cl). Lherzolitic clinoyroxenes have 87Sr/86Sr (0.70227 to 0.70357), 143Nd/144Nd (0.51285 to 0.51346), and 176Hf/177Hf (0.28297 to 0.28360) ranging between depleted lithosphere and enriched mantle. LREE-enriched clinopyroxenes generally have more enriched isotope compositions than depleted ones. While lherzolites with isotope compositions similar to those of the Afar plume result from the most recent metasomatic overprint, isotope compositions more depleted than present-day MORB can be explained by an older melt extraction and/or isotopic rehomogenisation event, possibly related to the Pan-African orogeny. Several generations of amphibole are recognized in accord with this multi-stage evolution. Texturally unequilibrated amphibole occurring within the peridotite matrix and in melt pockets attest to continued hydration and refertilization of the lithospheric mantle subsequent to Oligocene flood basalt magmatism, during which an earlier-emplaced inventory of amphibole was likely largely consumed. However, a single harzburgite contains amphibole with the highest Mg# and lowest TiO2 content, which is interpreted as sampling a volumetrically subordinate mantle region beneath the Ethiopian plateau that was not tapped during flood basalt magmatism. Strikingly, both trace-element enriched and depleted lherzolites have high clinopyroxene and orthopyroxene and low olivine contents (median 15, 24 and 56 vol.%), combined with primitive olivine Mg# (median 89.5), indicating the presence of refertilized mantle beneath Gundeweyn. Despite its fertility and FeO-rich character (hence high inferred density), and impingement by the Afar plume, the CLM beneath the Ethiopian plateau, though apparently thinned through thermochemical erosion, has so far resisted whole-sale delamination or dripping. This is tentatively ascribed to insufficient stress and density contrasts at the periphery of the Afar plume, which reached its greatest thermochemical buoyancy in the Afar region, northeast of Gundeweyn.
NASA Astrophysics Data System (ADS)
Boereboom, T.; Samyn, D.; Meyer, H.; Tison, J.-L.
2011-12-01
This paper presents and discusses the texture, fabric and gas properties (contents of total gas, O2, N2, CO2, and CH4) of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia. The two ice wedges display contrasting structures: one being of relatively "clean" ice and the other showing clean ice at its centre as well as debris-rich ice on its sides (referred to as ice-sand wedge). A comparison of gas properties, crystal size, fabrics and stable isotope data (δ18O and δD) allows discriminating between three different facies of ice with specific paleoenvironmental signatures, suggesting different climatic conditions and rates of biological activity. More specifically, total gas content and composition reveal variable intensities of meltwater infiltration and show the impact of biological processes with contrasting contributions from anaerobic and aerobic conditions. Stable isotope data are shown to be valid for discussing changes in paleoenvironmental conditions and/or decipher different sources for the snow feeding into the ice wedges with time. Our data also give support to the previous assumption that the composite ice wedge was formed in Pleistocene and the ice wedge in Holocene times. This study sheds more light on the conditions of ice wedge growth under changing environmental conditions.
NASA Astrophysics Data System (ADS)
Goffin, S.; Parent, F.; Plain, C.; Maier, M.; Schack-Kirchner, H.; Aubinet, M.; Longdoz, B.
2012-12-01
The overall aim of this study is to contribute to a better understanding of mechanisms behind soil CO2 efflux using carbon stable isotopes. The approach combines a soil multilayer analysis and the isotopic tool in an in situ study. The specific goal of this work is to quantify the origin and the determinism of 13CO2 and 12CO2 production processes in the different soil layers using the gradient-efflux approach. To meet this, the work includes an experimental setup and a modeling approach. The experimental set up (see also communication of Parent et al., session B008) comprised a combination of different systems, which were installed in a Scot Pine temperate forest at the Hartheim site (Southwestern Germany). Measurements include (i) half hourly vertical profiles of soil CO2 concentration (using soil CO2 probes), soil water content and temperature; (ii) half hourly soil surface CO2 effluxes (automatic chambers); (iii) half hourly isotopic composition of surface CO2 efflux and soil CO2 concentration profile and (iv) estimation of soil diffusivity through laboratory measurements conducted on soil samples taken at several depths. Using the data collected in the experimental part, we developed and used a diffusive transport model to simulate CO2 (13CO2 and 12CO2) flows inside and out of the soil based on Fick's first law. Given the horizontal homogeneity of soil physical parameters in Hartheim, we treated the soil as a structure consisting of distinctive layers of 5 cm thick and expressed the Fick's first law in a discrete formalism. The diffusion coefficient used in each layer was derived from (i) horizon specific relationships, obtained from laboratory measurements, between soil relative diffusivity and its water content and (ii) the soil water content values measured in situ. The concentration profile was obtained from in situ measurements. So, the main model inputs are the profiles of (i) CO2 (13CO2 and 12CO2) concentration, (ii) soil diffusion coefficient and (iii) soil water content. Once the diffusive fluxes deduced at each layer interface, the CO2 (13CO2 and 12CO2) production profile was calculated using the (discretized) mass balance equation in each layer. The results of the Hartheim measurement campaign will be presented. The CO2 source vertical profile and its link with the root and the Carbon organic content distribution will be showed. The dynamic of CO2 sources and their isotopic signature will be linked to climatic variables such soil temperature and soil water content. For example, we will show that the dynamics of CO2 sources was mainly related to temperature while changing of isotopic signature was more correlated to soil moisture.
Zinc Isotopic Compositions of Spinel Peridotites
NASA Astrophysics Data System (ADS)
Chen, S.; Huang, F.
2015-12-01
Zn isotope geochemistry has shown great potential in exploring planetary differentiation and volatilization history [1,2,3,4]. However, the zinc isotopic composition of the mantle and its fractionation mechanism in high-temperature processes are still unclear. In order to understand Zn isotope composition of the mantle, here we measured Zn isotope data for mantle rocks and minerals, including coexisting olivine, orthopyroxene (Opx), clinopyroxene (Cpx) and spinel from peridotite xenoliths in the Hannuoba (China), Vitim (Siberia), Tariat (central Mongolia), and Dariganga (SE Mongolia). As an accessary mineral, spinels in our study have high Zn contents (500-1400 ppm), accounting for 18%-40% of the total Zn budget in peridotites. Spinels have higher δ66Zn ranging from 0.17 to 0.30‰ than other mantle minerals. For most samples, the δ66Zn of olivines vary from -0.03‰ to 0.19‰, indistinguishable to the value of the coexisting Opx (0.05‰ to 0.20‰). However, we also observed large fractionation between these two minerals, which may reflect disequilibrium fractionation due to kinetic processes. Finally, δ66Zn for peridotites are 0.12-0.21‰, slightly lighter than that of basalts (~0.25±0.05‰), revealing that Zn isotopes can be slightly fractionated during mantle melting. [1] Luck et al., (2005) Geochimica Cosmo Acta, 69, 5351-5363. [2] Paniello et al., (2012) Nature, 490, 376-379. [3] Chen et al., (2013) Meteoritics Planet Sci, 48, 2441-2450. [4] Day and Moynier, (2014) Phil. Transac. of the Royal Society B, 372, 20130259
Kennedy, V.C.; Kendall, C.; Zellweger, G.W.; Wyerman, T.A.; Avanzino, R.J.
1986-01-01
The chemical and isotopic composition of rainfall and stream water was monitored during a storm in the Mattole River basin of northwestern California. About 250 mm of rain fell during 6 days (???80% within a 42 h period) in late January, 1972, following 24 days of little or no precipitation. River discharge near Petrolia increased from 22 m3 s-1 to a maximum of 1300 m3 s-1 while chloride and silica concentrations decreased only from 3.2 to 2.1 and 11.5 to 8.6 mgl-1, respectively. Meanwhile, the isotopic composition of the river changed from ??D = - 42???, ??180 = - 6.8??? and 40 tritium units (T.U.) to extreme values at highest flow of ??D = - 35???, ??180 = - 5.9??? and 25 T.U. in response to volume-weighted rainfall averaging ??D = - 19.5???, ??180 = - 3.1??? and 18 T.U. Despite much rainfall of a composition quite different from that of the prestorm river water, "buffering" processes in the watershed greatly restricted changes in the chemical and isotopic content of the river during storm runoff. Because of the physical and hydrologic characteristics of the watershed, major contributions of groundwater to stormflow are very unlikely. The large increase in dissolved chemical load observed at maximum river discharge required that extensive interaction with, and presumably penetration of, soils occurred within a few hours time. Such a large increase in chemical load also required subsurface stormflow throughout a high proportion of the watershed. Chemical and isotopic stabilization of stormflow is believed to be due mainly to displacement of prestorm soil water, with some effects on river chemistry due to rapid rain-soil interactions. The isotopic and chemical composition of prestorm soil moisture cannot readily be predicted a priori because of possible variability in rainfall composition, evaporation, and exchange with atmospheric moisture, nor can it be assumed that baseflow has a predictable relation to the chemical or isotopic composition of water displaced from soils during storms. Therefore, it seems inappropriate to draw conclusions as to the relative proportions of groundwater and rainfall in runoff from a particular storm based only on the average compositions of rainfall, stormflow, and prestorm river water, as has been done in most previous isotope hydrograph studies. Given the great variation in hydrology, topography, soil characteristics, rainfall intensity and quantity, etc. from place to place, the relative amount of overland flow, subsurface flow from the unsaturated zone and of groundwater in stormflow can vary greatly in time and space. ?? 1986.
Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, II
NASA Technical Reports Server (NTRS)
2004-01-01
The Special Session: Oxygen in the Solar System, II, included the following reports:Evolution of Oxygen Isotopes in the Solar Nebula; Disequilibrium Melting of Refractory Inclusions: A Mechanism for High-Temperature Oxygen; Isotope Exchange in the Solar Nebula; Oxygen Isotopic Compositions of the Al-rich Chondrules in the CR Carbonaceous Chondrites: Evidence for a Genetic Link to Ca-Al-rich Inclusions and for Oxygen Isotope Exchange During Chondrule Melting; Nebular Formation of Fayalitic Olivine: Ineffectiveness of Dust Enrichment; Water in Terrestrial Planets: Always an Oxidant?; Oxygen Barometry of Basaltic Glasses Based on Vanadium Valence Determination Using Synchrotron MicroXANES; A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence; The Relationship Between Clinopyroxene Fe3+ Content and Oxygen Fugacity ; and Olivine-Silicate Melt Partitioning of Iridium.
NASA Technical Reports Server (NTRS)
Shirey, Steven B.; Hanson, Gilbert N.
1986-01-01
Crustal evolution in the Rainy Lake area, Ontario is studied in terms of geochemical characteristics. The Nd isotope data are examined for heterogeneity of the Archean mantle, and the Sm/Nd depletion of the mantle is analyzed. The Nd isotope systematics of individual rock suites is investigated in order to understand the difference between crust and mantle sources; the precursors and petrogenetic processes are discussed. The correlation between SiO2 content and Nd values is considered. Rapid recycling of crustal components, which were previously derived from depleted mantle sources, is suggested based on the similarity of the initial Nd isotopic composition for both mantle-derived and crustally-derived rocks.
Experimental identification of Ca isotopic fractionations in higher plants
NASA Astrophysics Data System (ADS)
Cobert, Florian; Schmitt, Anne-Désirée; Bourgeade, Pascale; Labolle, François; Badot, Pierre-Marie; Chabaux, François; Stille, Peter
2011-10-01
Hydroponic experiments have been performed in order to identify the co-occurring geochemical and biological processes affecting the Ca isotopic compositions within plants. To test the influence of the Ca concentration and pH of the nutritive solution on the Ca isotopic composition of the different plant organs, four experimental conditions were chosen combining two different Ca concentrations (5 and 60 ppm) and two pHs (4 and 6). The study was performed on rapid growing bean plants in order to have a complete growth cycle. Several organs (root, stem, leaf, reproductive) were sampled at two different growth stages (10 days and 6 weeks of culture) and prepared for Ca isotopic measurements. The results allow to identify three Ca isotopic fractionation levels. The first one takes place when Ca enters the lateral roots, during Ca adsorption on cation-exchange binding sites in the apoplasm. The second one takes place when Ca is bound to the polygalacturonic acids (pectins) of the middle lamella of the xylem cell wall. Finally, the last fractionation occurs in the reproductive organs, also caused by cation-exchange processes with pectins. However, the cell wall structures of these organs and/or number of available exchange sites seem to be different to those of the xylem wall. These three physico-chemical fractionation mechanisms allow to enrich the organs in the light 40Ca isotope. The amplitude of the Ca isotopic fractionation within plant organs is highly dependent on the composition of the nutritive solution: low pH (4) and Ca concentrations (5 ppm) have no effect on the biomass increase of the plants but induce smaller fractionation amplitudes compared to those obtained from other experimental conditions. Thus, Ca isotopic signatures of bean plants are controlled by the external nutritive medium. This study highlights the potential of Ca isotopes to be applied in plant physiology (to identify Ca uptake, circulation and storage mechanisms within plants) and in biogeochemistry (to identify Ca recycling, Ca content and pH evolutions in soil solutions through time).
NASA Astrophysics Data System (ADS)
Mitchell, Roger; Chudy, Thomas; McFarlane, Christopher R. M.; Wu, Fu-Yuan
2017-08-01
Apatites from the Verity, Fir, Gum, Howard Creek and Felix carbonatites of the Blue River (British Columbia, Canada) area have been investigated with respect to their paragenesis, cathodoluminescence, trace element and Sr-Nd isotopic composition. Although all of the Blue River carbonatites were emplaced as sills prior to amphibolite grade metamorphism and have undergone deformation, in many instances magmatic textures and mineralogy are retained. Attempts to constrain the U-Pb age of the carbonatites by SIMS, TIMS and LA-ICP-MS studies of zircon and titanite were inconclusive as all samples investigated have experienced significant Pb loss during metamorphism. The carbonatites are associated with undersaturated calcite-titanite amphibole nepheline syenite only at Howard Creek although most contain clasts of disaggregated phoscorite-like rocks. Apatite from each intrusion is characterized by distinct, but wide ranges, in trace element composition. The Sr and Nd isotopic compositions define an array on a 87Sr/86Sr vs²Nd diagram at 350 Ma indicating derivation from depleted sub-lithospheric mantle. This array could reflect mixing of Sr and Nd derived from HIMU and EM1 mantle sources, and implies that depleted mantle underlies the Canadian Cordillera. Although individual occurrences of carbonatites in the Blue River region are mineralogically and geochemically similar they are not identical and thus cannot be considered as rocks formed from a single batch of parental magma at the same stage of magmatic evolution. However, a common origin is highly probable. The variations in the trace element content and isotopic composition of apatite from each occurrence suggest that each carbonatite represents a combination of derivation of the parental magma(s) from mineralogically and isotopically heterogeneous depleted mantle sources coupled with different stages of limited differentiation and mixing of these magmas. We do not consider these carbonatites as primary direct partial melts of the sub-lithospheric mantle which have ascended from the asthenosphere without modification of their composition.
NASA Astrophysics Data System (ADS)
Liang, Yayun; Deng, Jun; Liu, Xuefei; Wang, Qingfei; Qin, Cheng; Li, Yan; Yang, Yi; Zhou, Mian; Jiang, Jieyan
2018-03-01
Early Cretaceous mafic dyke swarms are widely developed on Jiaodong Peninsula in the southeastern part of the North China Craton (NCC), but their petrogenesis remains enigmatic. We have examined the in-situ major element, trace element and Sr isotope compositions of the clinopyroxene phenocrysts in these dykes in order to evaluate the extent of magma mixing and source metasomatism. Depending on the type of mineral zoning, the clinopyroxene phenocrysts in our samples can be classified into two groups: Group I (reverse zoning) and Group II (no zoning). Based on core compositions, the Group I phenocrysts with obvious reverse zoning can be divided into two subgroups: Groups IA and IB. The cores of Group IA clinopyroxenes have low values of Mg#, low Al2O3 contents, high Na2O contents, and high 87Sr/86Sr ratios, and they were probably derived from newly accreted lower crust that formed through the underplating of basaltic magma. In contrast, the cores of Group IB clinopyroxenes have lower Mg# values and lower contents of Al2O3, ΣREE (total rare earth elements), and incompatible elements, but they have similar 87Sr/86Sr ratios; these cores crystallised from crust-derived andesitic-dacitic magma. Group IA and IB clinopyroxene phenocryst rims (Group I rims) all have similar compositions with higher values of Mg# and higher Al2O3, Cr and Ni contents than the cores. The rims have high 87Sr/86Sr ratios, are enriched in LREEs (light rare earth elements) and LILEs (large ion lithophile elements), and are depleted in HFSEs (high field strength elements); these characteristics indicate that all the high-Mg rims were derived from a similar magma, possibly a relatively primitive magma derived from lithospheric mantle. We suggest, therefore, that the reversely-zoned clinopyroxene phenocrysts (Group I) in the Jiaodong mafic dykes provide evidence of magma mixing between a magma derived from lithospheric mantle and crust-derived andesitic-dacitic melt alongside with the newly accreted lower crust. The Group II clinopyroxene phenocrysts, which lack zoning, display major and trace element compositions and 87Sr/86Sr ratios that are similar to those of the Group I rims, which indicates that all the high-Mg clinopyroxenes were derived from a common source in the lithospheric mantle. These high-Mg clinopyroxenes exhibit high 87Sr/86Sr ratios, high Sr contents and remarkable depletions in HFSEs, reflecting metasomatism of the mantle source by aqueous fluids derived by dehydration of the subducting slab and its marine sediments. The metasomatism of the source reveals that the lithospheric mantle beneath Jiaodong Peninsula was metasomatised by fluids from the subducting Paleo-Pacific slab. Progressive thinning of the lithosphere mantle under the NCC was induced by continuous thermo-mechanical erosion, promoting the partial melting of lithospheric mantle and generating the mafic dykes at Jiaodong. Table A2 Analytical results for the trace element standards used during LA-ICP-MS analyses of clinopyroxene phenocrysts. Table A3 Analytical results for the Sr isotope standards used during MC-ICP-MS analyses of clinopyroxene phenocrysts. Table A4 Major element contents (wt%) of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A5 Representative Sr isotopic compositions of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A6 Geochemistry of the mafic dykes on Jiaodong Peninsula. Table A7 Partition coefficients (KD) and end-member components used for REE modeling.
Spangenberg, Jorge E; Zufferey, Vivian
2018-04-13
The grapevine is one of the most important edible fruit plants cultivated worldwide, and it is highly sensitive to changes in the soil water content. We studied the total carbon and nitrogen contents and stable isotope compositions (C/N WSR , δ 13 C WSR and δ 15 N WSR values) of the solid residues obtained by freeze-drying wines produced from two white grapevine cultivars (Vitis vinifera L. cv Chasselas and Petite Arvine) field grown under different soil water regimes while maintaining other climatic and ecopedological conditions identical. These experiments simulated the more frequent and extended climate change-induced periods of soil water shortage. The wines were from the 2009-2014 vintages, produced using the same vinification procedure. The plant water status, reflecting soil water availability, was assessed by the predawn leaf water potential (Ψ pd ), monitored in the field during the growing seasons. For both wine varieties, the δ 13 C WSR values are highly correlated with Ψ pd values and record the soil water availability set by soil water holding capacity, rainfall and irrigation water supply. These relationships were the same as those observed for the carbon isotope composition of fruit sugars (i.e., must sugars) and plant water status. In Chasselas wines, the nitrogen content and δ 15 N WSR values decreased with soil water deficit, indicating control of the flux of soil-water soluble nutrients into plants by soil water availability. Such a correlation was not found for Petite Arvine, probably due to different N-metabolism processes in this genetically atypical cultivar. The results presented in this study confirm and generalize what was previously found for red wine (Pinot noir); the carbon isotope composition of wine solid residues is a reliable indicator of the soil and the plant water status and thus can be used to trace back local climatic conditions in the vineyard's region. In most wines (except Petite Arvine) the C/N WSR and δ 15 N WSR values are indicators of the origin of the nitrogen supplied to the plant's fruit (grape) that can be used to assess the N dynamics in the soil-water-plant system. Copyright © 2018 Elsevier B.V. All rights reserved.
2006-09-30
photochemical reactivity of CDOM, affecting its concentration and characteristics. The sampling strategy is coordinated with the Danish National...and DOP), stable isotopic composition of DOM, and lignin content (Osburn et al 2001). (Responsible project partner: NRL) This work package will
NASA Astrophysics Data System (ADS)
Seibert, Stephan; Schubert, Florian; Schmiedinger, Iris; Böttcher, Michael E.; Massmann, Gudrun
2017-04-01
The formation of iron sulfides in sandy sediments and the associated development of stable isotope signatures is still mechanistically not understood. In dune sands under impact of both fresh and saline water several physico-chemical gradients may develop leading to distinctly different biogeochemical zones. In the present study, a 10 m long core from a dune base at the North Eastern part of Spiekeroog Island, southern North Sea, was investigated for the elemental and stable isotope composition. The pyrite (TRIS) content was quantitatively extracted via an acidic Cr(II) distillation procedure and the stable sulfur isotope composition was determined by means of C-irmMS. The pore waters display a downcore increase in salt contents and a mixing between fresh and salt water. The accumulation of metabolites at depth indicate an increasing superimposition of mixing by microbial decomposition of dissolved organic matter with only limited net sulfate reduction. This indicates an essential open system with respect to dissolved sulfate. The sands were found to be very low in TOC, TIC, and TRIS and dominated by quartz minerals. Under the assumption that North Sea water sulfate was the only substantial sulfate source (d34S = + 21per mil), the sedimentary sulfides indicate an overall sulfur isotope discrimination upon microbial sulfate reduction between 39 and 52 per mil, which is within the range of results from other fully marine sands from the Spiekeroog area and laboratory studies with pure cultures of sulfate-reducing bacteria under low cellular sulfate reduction rates. Further investigations are on the way to understand the processes leading to the iron sulfide formation in these organic-poor substrates.
NASA Technical Reports Server (NTRS)
Koeberl, Christian; Shukolyukov, Alex; Lugmair, Guenter
2004-01-01
Osmium isotope data had shown that Ivory Coast tektites contain an extraterrestrial component, but do not allow distinction between chondritic and iron meteorite contamination. PGE abundances of Ivory Coast tektites and impactites and target rocks from the Bosumtwi crater, the source crater of the Ivory Coast tektites, were all relatively high and did not allow to resolve the presence, or identify the nature, of the meteoritic component. However, Cr isotope analyses of an Ivory Coast tektite yielded a distinct 53Cr excess of 0.30+/-0.06, which indicates that the Bosumtwi impactor was an ordinary chondrite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magi, F.; Facchetti, S.; Garibaldi, P.
An experiment is proposed aimed at determining the role of motor traffic in the pollution of the environment by lead, in particular of air, soil, vegetation, food and the human body. The technique of determining the isotopic composition of lead, used in the right way, should enable the whole problem to be solved. It is intended to add lead with a constant isotopic composition different from that of normally occurring lead, whether natural in origin or otherwise, to petrol in at least two regions of Italy. Analyses of lead samples taken from the principal mines have shown that Australian leadmore » (Broken Hill Mine) has quite a different isotopic composition. This lead will therefore be used to prepare the antiknock additives for petrol sold in the regions in question. Adequate sampling should make it possible to determine the contribution to pollution of lead from motor vehicle exhausts. The regions chosen for the experiment are Piedmont (city and province of Cagliari)--the first because of its high traffic density and level of industrialization, the second because of its remoteness and the lead content of the soil, which may affect food. Both regions present favourable conditions for supplying petrol of the intended type. The experiment is intended to last three years; the petrol with Australian lead will be marketed for a period of 18 months. The first results of analyses of the isotopic composition of lead contained in atmospheric dust in the city of Turin and of lead from a number of blood samples are reported in the paper. (auth)« less
NASA Astrophysics Data System (ADS)
Kocsis, László; Vennemann, Torsten W.; Fontignie, Denis
2007-05-01
Trace-element and isotopic compositions of fossilized shark teeth sampled from Miocene marine sediments of the north Alpine Molasse Basin, the Vienna Basin, and the Pannonian Basin generally show evidence of formation in a marine environment under conditions geochemically equivalent to the open ocean. In contrast, two of eight shark teeth from the Swiss Upper Marine Molasse locality of La Molière have extremely low δ18O values (10.3‰ and 11.3‰) and low 87Sr/86Sr ratios (0.707840 and 0.707812) compared to other teeth from this locality (21.1‰ 22.4‰ and 0.708421 0.708630). The rare earth element (REE) abundances and patterns from La Molière not only differ between dentine and enameloid of the same tooth, but also between different teeth, supporting variable conditions of diagenesis at this site. However, the REE patterns of enameloid from the “exotic” teeth analyzed for O and Sr isotopic compositions are similar to those of teeth that have O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two “exotic” teeth were formed while the sharks frequented a freshwater environment with very low 18O-content and Sr isotopic composition controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (˜2300 m) Miocene Alps adjacent to a marginal sea.
NASA Astrophysics Data System (ADS)
Chen, J.; Gaillardet, J.; Louvat, P.; Birck, J.
2009-05-01
Metal contamination is a major issue of human impact on the aqueous environment. River water is particularly susceptible to contamination for both dissolved and particulate loads, displaying a major challenge in understanding the dominant sources and pathways of metals in polluted drainage basins. Recent improvements in mass spectrometry allow isotopic measurements of "non-traditional" metals (Zn, Cu, Fe, etc.), making their isotopes a new potential device to investigate contamination of metals under dissolved and particulate forms in rivers. We focus here on Zn isotope geochemistry in the largely anthropized Seine River (France). A new protocol of two-column separation of Zn from dilute aqueous solution has been developed and proven to be reproducible and satisfactory for accurate measurement of Zn isotopic ratios in water samples by MC-ICP-MS (2σ = 0.04‰). Preliminary results show a total variation of 0.65‰ for δ66Zn in dissolved phases of the Seine basin, and a light isotope enrichment in anthropogenic sources compared to other water samples. The determined conservative behavior of Zn in river water makes its isotopes an effective probe of anthropogenic contamination. The natural and anthropogenic inputs were clearly identified and calculated based on Zn isotope compositions for dissolved loads. Suspended particular matters (SPM) display different Zn isotope compositions compared to dissolved loads, with a total δ66Zn variation of 0.22‰. Zn concentrations and its isotope compositions in SPM reveal inverse relationships as function of the distance from the headwater and the SPM content for geographical and temporal samples, respectively. The δ66Zn data in SPM are interpreted as reflecting the mixture of natural and anthropogenic particles. The correlation between dissolved and particulate δ66Zn shows that adsorption processes are not the dominant process making Zn enrichment in SPM. We report here for the first time systematic δ66Zn data in waters of a whole river basin, showing Zn isotopes a powerful probe to trace contamination sources and biogeochemical processes in hydrologic systems.
Isotopic composition of strontium in three basalt-andesite centers along the Lesser Antilles arc
Hedge, C.E.; Lewis, J.F.
1971-01-01
Si87/Sr86 ratios have been determined for lavas and py lastic rocks from three basalt-andesite centers along the Lesser Antilles arc-Mt. Misery on the island of St. Kitts, Soufriere on the island of St. Vincent, and Carriacou, an island of The Grenadines. The average Si87/Sr86 content of these rocks is 0.7038 for Mt. Misery, 0.7041 for Soufriere, and 0.7053 for Carriacou. All the Sr87/Sr86 values from each center are the same within analytical uncertainty (??0.0002). The constancy of strontium isotopic data within each center supports the hypothesis that basalts and andesites for each specific center investigated are generated from the same source - in agreement with petrographic and major- and minor-element data. Strontium isotopic compositions and elemental concentrations, particularly of strontium and nickel, indicate that this source was mantle peridotite and that the relationship between the respective basalts and andesites is probably fractional crystallization. ?? 1971 Springer-Verlag.
Pb-, Sr- and Nd-Isotopic systematics and chemical characteristics of cenozoic basalts, Eastern China
Peng, Z.C.; Zartman, R.E.; Futa, K.; Chen, D.G.
1986-01-01
Forty-eight Paleogene, Neogene and Quaternary basaltic rocks from northeastern and east-central China have been analyzed for major-element composition, selected trace-element contents, and Pb, Sr and Nd isotopic systematics. The study area lies entirely within the marginal Pacific tectonic domain. Proceeding east to west from the continental margin to the interior, the basalts reveal an isotopic transition in mantle source material and/or degree of crustal interaction. In the east, many of the rocks are found to merge both chemically and isotopically with those previously reported from the Japanese and Taiwan island-arc terrains. In the west, clear evidence exists for component(s) of Late Archean continental lithosphere to be present in some samples. A major crustal structure, the Tan-Lu fault, marks the approximate boundary between continental margin and interior isotopic behaviors. Although the isotopic signature of the western basalts has characteristics of lower-crustal contamination, a subcrustal lithosphere, i.e. an attached mantle keel, is probably more likely to be the major contributor of their continental "flavor". The transition from continental margin to interior is very pronounced for Pb isotopes, although Sr and Nd isotopes also combine to yield correlated patterns that deviate strikingly from the mid-ocean ridge basalt (MORB) and oceanic-island trends. The most distinctive chemical attribute of this continental lithosphere component is its diminished U Pb as reflected in the Pb isotopic composition when compared to sources of MORB, oceanic-island and island-arc volcanic rocks. Somewhat diminished Sm Nd and elevated Rb Sr, especially in comparison to the depleted asthenospheric mantle, are also apparent from the Nd- and Sr-isotopic ratios. ?? 1986.
Guo, Wei; Li, Xiang-Zhong; Liu, Wei-Guo
2013-04-01
In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.
Iron isotope biogeochemistry of Neoproterozoic marine shales
NASA Astrophysics Data System (ADS)
Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.
2017-07-01
Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by < 1 ‰ , suggesting that water column processes, namely the degree of oxidation of the ferrous seawater iron reservoir, control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size, allowing a higher degree of partial oxidation, irrespective of increasing environmental oxygen levels. Alternatively, increasing oxygen levels would have led to a higher proportion of Fe(II) being oxidized, without decreasing the initial size of the ferrous seawater iron pool. We consider the latter explanation as the most likely. According to this hypothesis, the δ 56Fe record reflects the redox evolution of Earth's surface environments. δ 56Fe values in pre-Sturtian samples significantly heavier than bulk crust and hydrothermal iron imply partial oxidation of a ferrous seawater iron reservoir. In contrast, mean δ 56Fe values closer to that of hydrothermal iron in post-Sturtian shales reflects oxidation of a larger proportion of the ferrous seawater iron reservoir, and by inference, higher environmental oxygen levels. Nevertheless, significant iron isotopic variation in post-Sturtian shales suggest redox heterogeneity and possibly a dominantly anoxic deep ocean, consistent with results from recent studies using iron speciation and redox sensitive trace metals. However, the interpretation of generally increasing environmental oxygen levels after the Sturtian glaciation highlights the need to better understand the sensitivity of different redox proxies to incremental changes in oxygen levels to enable us to reconcile results from different paleoredox proxies.
Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.
2012-01-01
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure. PMID:23209656
Choy, C. Anela; Davison, Peter C.; Drazen, Jeffrey C.; Flynn, Adrian; Gier, Elizabeth J.; Hoffman, Joel C.; McClain-Counts, Jennifer P.; Miller, Todd W.; Popp, Brian N.; Ross, Steve W.; Sutton, Tracey T.
2012-01-01
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ~2.9) largely align with expectations from stomach content studies (TP ~3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ~3.2) were lower than TPs derived from stomach content studies (TP~4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.
Calcium Isotopic Compositions of Normal Mid-Ocean Ridge Basalts From the Southern Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Zhu, Hongli; Liu, Fang; Li, Xin; Wang, Guiqin; Zhang, Zhaofeng; Sun, Weidong
2018-02-01
Mantle peridotites show that Ca is isotopically heterogeneous in Earth's mantle, but the mechanism for such heterogeneity remains obscure. To investigate the effect of partial melting on Ca isotopic fractionation and the mechanism for Ca isotopic heterogeneity in the mantle, we report high-precision Ca isotopic compositions of the normal Mid-Ocean Ridge Basalts (N-MORB) from the southern Juan de Fuca Ridge. δ44/40Ca of these N-MORB samples display a small variation ranging from 0.75 ± 0.05 to 0.86 ± 0.03‰ (relative to NIST SRM 915a, a standard reference material produced by the National Institute of Standards and Technology), which are slightly lower than the estimated Upper Mantle value of 1.05 ± 0.04‰ and the Bulk Silicate Earth (BSE) value of 0.94 ± 0.05‰. This phenomenon cannot be explained by fractional crystallization, because olivine and orthopyroxene fractional crystallization has limited influence on δ44/40Ca of N-MORB due to their low CaO contents, while plagioclase fractional crystallization cannot lead to light Ca isotopic compositions of the residue magma. Instead, the lower δ44/40Ca of N-MORB samples compared to their mantle source is most likely caused by partial melting. The offset in δ44/40Ca between N-MORB and BSE indicates that at least 0.1-0.2‰ fractionation would occur during partial melting and light Ca isotopes are preferred to be enriched in magma melt, which is in accordance with the fact that δ44/40Ca of melt-depleted peridotites are higher than fertile peridotites in literature. Therefore, partial melting is an important process that can decrease δ44/40Ca in basalts and induce Ca isotopic heterogeneity in Earth's mantle.
NASA Astrophysics Data System (ADS)
Gong, S.; Li, N.; Liang, Q.; Chen, D.; Feng, D.
2017-12-01
Authigenic carbonates and pyrite associated with sulfate-driven anaerobic oxidation of methane (AOM) at methane seeps provide archives to explore the biogeochemical processes involved and seepage dynamics over time. The wide range and extremely high δ34Spy value of authigenic sulfide has been used to trace the AOM-related processes. However, the detail mechanism for this is unknown. We proposed the δ34Spy characteristics result from high sulfate reduction rate and its competition with sulfate supply rate. To test this hypothesis, we investigated Mo content, Sr/Ca and Mg/Ca ratios, pyrite content, and its sulfur isotopic compositions in methane-derived carbonates from Site F and Haima in northern South China Sea. Calcite and aragonite were distinguished through the Sr/Ca and Mg/Ca ratios. The data show that aragonites are always associated with relatively low δ34Spy values compared to calcites. The Mo content and pyrite have good linear correlations in both aragonites and calcites, and aragonites have more positive slope than calcites. This indicates that there is more Mo available from seawater during the aragonite precipitation. The data suggest that the low δ34Spy values are formed at higher supply rate of sulfate under relatively open system, and high δ34Spy values result from a deep sulfate methane transition zone where dissolve sulfate near to complete exhausted via AOM. The combination of a detailed elemental study of authigenic carbonate with sulfur isotopes of sulfide minerals in carbonates are promising tools for reconstructing the dynamics of seep intensities in modern and, potentially, geological record.
Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico
NASA Astrophysics Data System (ADS)
Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.
2016-05-01
PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.
Wang, Xiao-Ping; Zhang, Ji-Long
2007-07-01
Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25.
Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.
Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P
2013-10-29
Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.
Isotopic composition of atmospheric nitrate in a tropical marine boundary layer
Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.
2013-01-01
Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201
NASA Astrophysics Data System (ADS)
Hu, Xue-Feng; Xue, Yong
2015-04-01
Fe has four stable isotopes, 54Fe (5.84%), 56Fe (91.76%), 57Fe (2.12%) and 58Fe (0.28%). The occurrence of Fe isotopic fractionation during the weathering and pedogenic processes might have some significant paleo-environmental implications. The Quaternary Red Clay (QRC), widely distributed to the south of the Yangtze River, is regarded as a potential archive to record the paleoclimatic changes in subtropical China since the Middle Pleistocene. The composition of Fe isotopes in a profile of the QRC in Langxi County, Anhui Province, Southeast China, was analyzed by the MC-ICP-MS method in this study. The results were as follows: (1) δ56Fe of the Yellow-brown Earth (YBE), the uppermost layer of the profile, only slightly fluctuates between 0.10‰ ~ 0.12‰. That of the Uniform Red Clay (URC) was stable and 0.03‰ in content. That of the Reticulate Red Clay (RRC) in the lower part of the profile, however, was instable and fluctuates between -0.06‰ ~ 0.05‰. (2) The reticulate (net-like) pattern of the RRC was formed by the partial leaching of Fe in the red clay possibly due to long-term frequent fluctuations of groundwater table. The white veins of the RRC were deficiency in both total Fe (Fet) and free Fe (Fed), but the red ones were not. A significant difference of δ56Fe between the white and red veins of the RRC was found. δ56Fe of the white veins, 0.35‰ on average, was significantly higher than that of the red veins, -0.09‰ on average. This suggests that lighter Fe isotopes were preferentially removed during the formation of the reticulate pattern. (3) The content of free Fe oxides in soil is evaluated by the CBD-extracted method. δ56Fe of the CBD-extracted fraction of the red clay samples, -0.083‰ on average, is significantly lower than that of the residual fraction, 0.361‰ on average, suggesting that lighter Fe isotopes were preferentially released from primary minerals to form Fe oxides in the red clay. (4) δ56Fe of the entire profile was negatively significantly correlated with Fet and Fed contents (r2=0.3009 and 0.5105, respectively), which also suggests that Fe in the QRC becomes heavier after the preferential leaching of lighter Fe during the intensive weathering and reticulating processes. In short, the Fe isotopes were only weakly fractionated in the red clay formation under an aerobic condition. When the RRC was formed, however, a large amount of lighter Fe isotopes were preferentially removed under an anaerobic condition and heavier Fe were relatively accumulated in the residues. Therefore, heavier Fe in the red clay may imply a warm and humid climate and luxuriant vegetation during the Middle Pleistocene. The Fe isotope composition of soils or paleosols is a promising factor to interpret pedogenic processes and indicate paleo-environmental changes.
NASA Astrophysics Data System (ADS)
Tolosa, I.; Treignier, C.; Grover, R.; Ferrier-Pagès, C.
2011-09-01
This study assesses the combined effect of feeding and short-term thermal stress on various physiological parameters and on the fatty acid, sterol, and alcohol composition of the scleractinian coral Turbinaria reniformis. The compound-specific carbon isotope composition of the lipids was also measured. Under control conditions (26°C), feeding with Artemia salina significantly increased the symbiont density and chlorophyll content and the growth rates of the corals. It also doubled the concentrations of almost all fatty acid (FA) compounds and increased the n-alcohol and sterol contents. δ13C results showed that the feeding enhancement of FA concentrations occurred either via a direct pathway, for one of the major polyunsaturated fatty acid (PUFA) compounds of the food (18:3n-3 FA), or via an enhancement of photosynthate transfer (indirect pathway), for the other coral FAs. Cholesterol (C27Δ5) was also directly acquired from the food. Thermal stress (31°C) affected corals, but differently according to their feeding status. Chlorophyll, protein content, and maximal photosynthetic efficiency of photosystem II (PSII) decreased to a greater extent in starved corals. In such corals, FA concentrations were reduced by 33%, (especially C16, C18 FAs, and n-3 PUFA) and the sterol content by 27% (especially the C28∆5,22 and C28∆5). The enrichment in the δ13C signature of the storage and structural FAs suggests that they were the main compounds respired during the stress to maintain the coral metabolism. Thermal stress had less effect on the lipid concentrations of fed corals, as only FA levels were reduced by 13%, with no major changes in their isotope carbon signatures. In conclusion, feeding plays an essential role in sustaining T. reniformis metabolism during the thermal stress.
Closed system oxygen isotope redistribution in igneous CAIs upon spinel dissolution
NASA Astrophysics Data System (ADS)
Aléon, Jérôme
2018-01-01
In several Calcium-Aluminum-rich Inclusions (CAIs) from the CV3 chondrites Allende and Efremovka, representative of the most common igneous CAI types (type A, type B and Fractionated with Unknown Nuclear isotopic anomalies, FUN), the relationship between 16O-excesses and TiO2 content in pyroxene indicates that the latter commonly begins to crystallize with a near-terrestrial 16O-poor composition and becomes 16O-enriched during crystallization, reaching a near-solar composition. Mass balance calculations were performed to investigate the contribution of spinel to this 16O-enrichment. It is found that a back-reaction of early-crystallized 16O-rich spinel with a silicate partial melt having undergone a 16O-depletion is consistent with the O isotopic evolution of CAI minerals during magmatic crystallization. Dissolution of spinel explains the O isotopic composition (16O-excess and extent of mass fractionation) of pyroxene as well as that of primary anorthite/dmisteinbergite and possibly that of the last melilite crystallizing immediately before pyroxene. It requires that igneous CAIs behaved as closed-systems relative to oxygen from nebular gas during a significant fraction of their cooling history, contrary to the common assumption that CAI partial melts constantly equilibrated with gas. The mineralogical control on O isotopes in igneous CAIs is thus simply explained by a single 16O-depletion during magmatic crystallization. This 16O-depletion occurred in an early stage of the thermal history, after the crystallization of spinel, i.e. in the temperature range for melilite crystallization/partial melting and did not require multiple, complex or late isotope exchange. More experimental work is however required to deduce the protoplanetary disk conditions associated with this 16O-depletion.
NASA Astrophysics Data System (ADS)
Aléon, J.; Engrand, C.; Leshin, L. A.; McKeegan, K. D.
2009-08-01
Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects.
Lunar and Planetary Science XXXVI, Part 1
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Observations with Near Infrared Spectrometer for Hayabusa Mission in the Cruising Phase. First Results of Quadrantid Meteor Spectrum. Compositional Investigation of Binary Near-Earth Asteroid 66063 (1998 RO1): A Potentially Undifferentiated Assemblage. Impact-induced Hydrothermal Activity on Early Mars. HRTEM and EFTEM Studies of Phyllosilicate-Organic Matter Associations in Matrix and Dark Inclusions in the EET92042 CR2 Carbonaceous Chondrite. Volumetric Analysis of Martian Rampart Craters. High Pressure Melting of H-Chondrite: A Match for the Martian Basalt Source Mantle. MERView: A New Computer Program for Easy Display of MER-acquired M ssbauer Data. Distribution, Exchange, and Topographic Control of Subsurface Ice on Mars. Shock-induced Damage Beneath Normal and Oblique Impact Craters. Amphitrites Patera Studied from the Mars Express HRSC Data. Oxygen Isotope Microanalysis of Enveloping Compound Chondrules in CV3 and LL3 Chondrites. Gamma-Ray Irradiation in the Early Solar System and the Conundrum of the Lu-176 Decay Constant. Magnesium Isotope Mapping of Silica-rich Grains Having. Extreme Oxygen Isotope Anomalies Extreme Oxygen Isotopic Anomalies from Irradiation in the Early Solar System, Re-Examining the Role of Chondrules in Producing the Elemental Fractionations in Chondrites. Meteorite Data on the Solar Modulation of Galactic Cosmic Rays and an Inference on the Solar Activity Influence on Climate of the Earth. Volatiles Enrichments and Composition of Jupiter. Thinking Like a Wildcatter Prospecting for Methane in Arabia Terra, Mars. Size Distribution of Genesis Solar Wind Array Collector Fragments. Initial Subdivision of Genesis Early Science Polished Aluminum Collector. Presolar Graphite and Its Noble Gases. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites. Fe Isotopic Composition of Martian Meteorites. Petrology and Geochemistry of Nakhlite MIL 03346: A New Martian Meteorite from Antarctica.
NASA Astrophysics Data System (ADS)
Bekaert, David V.; Avice, Guillaume; Marty, Bernard; Henderson, Bryana; Gudipati, Murthy S.
2017-12-01
Despite extensive effort during the last four decades, no clear signature of a lunar indigenous noble gas component has been found. In order to further investigate the possible occurrence of indigenous volatiles in the Moon, we have re-analyzed the noble gas and nitrogen isotopic compositions in three anorthosite samples. Lunar anorthosites 60025, 60215 and 65315 have the lowest exposure duration (∼2 Ma) among Apollo samples and consequently contain only limited cosmogenic (e.g. 124,126Xe) and solar wind (SW) noble gases. Furthermore, anorthosites have negligible contributions of fissiogenic Xe isotopes because of their very low Pu and U contents. As observed in previous studies (Lightner and Marti, 1974; Leich and Niemeyer, 1975), lunar anorthosite Xe presents an isotopic composition very close to that of terrestrial atmospheric Xe, previously attributed to ;anomalous adsorption; of terrestrial Xe after sample return. The presumed atmospheric Xe contamination can only be removed by heating the samples at medium to high temperatures under vacuum, and is therefore different from common adsorption. To test this hypothesis, we monitored the adsorption of Xe onto lunar anorthositic powder using infrared reflectance spectroscopy. A clear shift in the anorthosite IR absorbance peaks is detected when comparing the IR absorbance spectra of the lunar anorthositic powder before and after exposure to a neutral Xe-rich atmosphere. This observation accounts for the chemical bonding (chemisorption) of Xe onto anorthosite, which is stronger than the common physical bonding (physisorption) and could account for the anomalous adsorption of Xe onto lunar samples. Our high precision Xe isotope analyses show slight mass fractionation patterns across 128-136Xe isotopes with systematic deficits in the heavy Xe isotopes (mostly 136Xe and marginally 134Xe) that have not previously been observed. This composition could be the result of mixing between an irreversibly adsorbed terrestrial contaminant that is mostly released at high temperature and an additional signature. Solar Wind (SW) Xe contents, estimated from SW-Ne and SW-Ar concentrations and SW-Ne/Ar/Xe elemental ratios, do not support SW as the additional contribution. Using a χ2 test, the latter is best accounted for by cometary Xe as measured in the coma of Comet 67P/Churyumov-Gerasimenko (Marty et al., 2017) or by the primordial U-Xe composition inferred to be the precursor of atmospheric Xe (Pepin, 1994; Avice et al., 2017). It could have been contributed to the lunar budget by volatile-rich bodies that participated to the building of the terrestrial atmosphere inventory (Marty et al., 2017).
Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S
2013-07-25
Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, J.; Gu, L.; Bao, F.; ...
2014-09-10
A longstanding puzzle in isotope studies of C 3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C 3 species thatmore » has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, probably the refixation of respiratory CO 2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs while processes within leaves or during phloem loading may contribute to the overall autotrophic – heterotrophic difference in carbon isotope compositions.« less
Zhang, J.; Gu, L.; Bao, F.; ...
2015-01-01
A longstanding puzzle in isotope studies of C 3 plant species is that heterotrophic plant organs (e.g., stems, roots, seeds, and fruits) tend to be enriched in 13C compared to the autotrophic organ (leaves) that provides them with photosynthate. Our inability to explain this puzzle suggests key deficiencies in understanding post-photosynthetic metabolic processes. It also limits the effectiveness of applications of stable carbon isotope analyses in a variety of scientific disciplines ranging from plant physiology to global carbon cycle studies. To gain insight into this puzzle, we excavated whole plant architectures of Nitraria tangutorum Bobrov, a C 3 species thatmore » has an exceptional capability of fixing sands and building sand dunes, in two deserts in northwestern China. We systematically and simultaneously measured carbon isotope ratios and nitrogen and phosphorous contents of different parts of the excavated plants. We also determined the seasonal variations in leaf carbon isotope ratios on nearby intact plants of N. tangutorum. We found, for the first time, that higher nitrogen contents in heterotrophic organs were significantly correlated with increased heterotrophic 13C enrichment compared to leaves. However, phosphorous contents had no effect on the enrichment. In addition, new leaves had carbon isotope ratios similar to roots but were progressively depleted in 13C as they matured. We concluded that a nitrogen-mediated process, hypothesized to be the refixation of respiratory CO 2 by phosphoenolpyruvate (PEP) carboxylase, was responsible for the differences in 13C enrichment among different heterotrophic organs, while processes such as fractionating foliar metabolism and preferentially loading into phloem of 13C-enriched sugars may contribute to the overall autotrophic–heterotrophic difference in carbon isotope compositions.« less
NASA Astrophysics Data System (ADS)
Pan, Fa-Bin; Jin, Chong; Jia, Bao-Jian; Liu, Rong; He, Xiaobo; Gao, Zhong; Tao, Lu; Zhou, Xiao-Chun; Zhang, Li-Qi
2018-06-01
Early Cretaceous northwest (NW)-trending dolerite and amphibole lamprophyre dykes exposed in NW Zhejiang Province provide a number of new insights into the nature of the subcontinental mantle on the northeast (NE) South China Block (SCB). These dykes have a high Al2O3 (14.04-17.89 wt%) and K2O (0.66-2.69 wt%) contents but relatively low Na2O (2.48-4.61 wt%) and TiO2 (1.33-2.79 wt%) makeup alongside moderate K2O/Na2O ratios between 0.26 and 1.04. These amphibole lamprophyre dykes also have higher MgO, Cr, and Ni contents than those of comparable dolerites that have SiO2 content ranging from 46.32 to 49.87 wt%. The most striking feature of these intrusions is that they contain higher contents of Rb, Th, U, Nb, Ta, and LREE compared to their dolerite counterparts, although both amphibole lamprophyres and dolerites do exhibit similar geochemical patterns that are indicative of subduction-related origins. These features imply that an ambient peridotitic mantle that acted as the source for the amphibole lamprophyre magma source may have reacted with silicate-rich melts leading to olivine consumption while maintaining orthopyroxene. The geochemical composition of these dolerites are likely influenced to a variable extent by the fractionation of olivine, orthopyroxene, clinopyroxene, Fe-Ti oxides, and apatite, while their amphibole lamprophyre counterparts have been modified to a minor degree by amphibole fractionation. Measured Sr-Nd isotopic compositions suggest relatively constant Nd isotopic compositions (-0.36 to +1.52) with more variable Sr isotopic compositions (0.7071 to 0.7306). We hence propose that both the dolerite and amphibole lamprophyre dykes in this region are the products of mantle source metasomatism by the subducted Paleo-Pacific slab. The dolerite dykes are mainly associated with slab-derived fluids, while the lamprophyre dykes are related to both slab-derived fluids and sediment melts. Evidence in support of metasomatism comprising distinct two-stage processes including a fluid-dominated phase followed by a sediment melts-dominated metasomatism stage, further suggests that these mafic dykes most likely formed in a back-arc setting.
Brand, Willi A.; Coplen, T.B.
2001-01-01
An interlaboratory comparison of forty isotope-ratio mass spectrometers of different ages from several vendors has been performed to test 2H/1H performance with hydrogen gases of three different isotopic compositions. The isotope-ratio results (unsufficiently corrected for H3+ contribution to the m/z = 3 collector, uncorrected for valve leakage in the change-over valves, etc.) expressed relative to one of these three gases covered a wide range of values: -630??? to -790??? for the second gas and -368??? to -462??? for the third gas. After normalizing the isotopic abundances of these test gases (linearly adjusting the ?? values so that the gases with the lowest and highest 2H content were identical for all laboratories), the standard deviation of the 40 measurements of the intermediate gas was a remarkably low 0.85???. It is concluded that the use of scaling factors is mandatory for providing accurate internationally comparable isotope-abundance values. Linear scaling for the isotope-ratio scales of gaseous hydrogen mass spectrometers is completely adequate. ?? Springer-Verlag 2001.
Natural and anthropogenic variations in methane sources during the past two millennia.
Sapart, C J; Monteil, G; Prokopiou, M; van de Wal, R S W; Kaplan, J O; Sperlich, P; Krumhardt, K M; van der Veen, C; Houweling, S; Krol, M C; Blunier, T; Sowers, T; Martinerie, P; Witrant, E; Dahl-Jensen, D; Röckmann, T
2012-10-04
Methane is an important greenhouse gas that is emitted from multiple natural and anthropogenic sources. Atmospheric methane concentrations have varied on a number of timescales in the past, but what has caused these variations is not always well understood. The different sources and sinks of methane have specific isotopic signatures, and the isotopic composition of methane can therefore help to identify the environmental drivers of variations in atmospheric methane concentrations. Here we present high-resolution carbon isotope data (δ(13)C content) for methane from two ice cores from Greenland for the past two millennia. We find that the δ(13)C content underwent pronounced centennial-scale variations between 100 BC and AD 1600. With the help of two-box model calculations, we show that the centennial-scale variations in isotope ratios can be attributed to changes in pyrogenic and biogenic sources. We find correlations between these source changes and both natural climate variability--such as the Medieval Climate Anomaly and the Little Ice Age--and changes in human population and land use, such as the decline of the Roman empire and the Han dynasty, and the population expansion during the medieval period.
The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.
1994-01-01
Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.
NASA Astrophysics Data System (ADS)
Selverstone, J.; Sharp, Z. D.
2012-12-01
High-pressure serpentinites and rodingites and high- to ultrahigh-pressure metasedimentary rocks from the Aosta region, Italy, preserve strikingly different chlorine isotope compositions that can be used to constrain the nature of fluid-rock interactions during subduction. Serpentinites and rodingitized gabbroic dikes subducted to 70-80 km have bulk δ37Cl values between -1.6 and +0.9‰ (median= -0.5‰, n=26 plus 5 replicates; one amphibole-vein outlier at -2.9‰). Serpentinite δ37Cl values are positively correlated with Cr ± Cl contents (r2= 0.97 and 0.58) and negatively correlated with CaO (r2=0.72). BSE imaging and X-ray mapping reveal up to three generations of compositionally distinct serpentine and chlorite in single samples. The youngest generation, which is most abundant, has the lowest chlorine content. Three rodingite samples contain abundant texturally early fluid inclusions. These samples were finely crushed and leached in 18 MΩ H2O to extract water-soluble chlorides. The leachates, which are assumed to record the compositions of the fluid inclusions, have δ37Cl values that are 0.7-1.5‰ lower than the corresponding bulk rock values. Leachate from the outlier amph-magnesite vein is indistinguishable from the bulk value at -2.7‰. There is almost no overlap between the Cl isotope compositions of HP serp/rod samples and associated HP/UHP metasedimentary rocks. Calcmica schists, diamond-bearing Mn nodules, and impure marbles subducted to >130 km and calcmica schists and Mn crusts transported to 70-80 km have δ37Cl values between -4.5 and -1.5‰ (median= -2.7‰, n=25 plus 7 replicates; two outlier points at -0.5‰). Primary fluid inclusions in the diamondiferous samples contain carbonate- and silicate-bearing aqueous fluids with very low chloride contents (Frezzotti et al., 2011, Nature Geosci). Taken together, these data record a history of progressive modification of serpentinites and rodingites by mixing with low-δ37Cl, low-Cl, high-Ca fluids during subduction and metamorphism. Serpentinites with the highest Cr contents have Cl isotopic compositions identical to those of modern seafloor serpentinites (δ37Cl=0.2-0.6‰), consistent with primary serpentinization by seawater (e.g., Barnes et al. 2009, Lithos). Low-Cr serpentinites record significant interaction with a Ca-rich fluid that shifted the rocks to lower δ37Cl values and diluted the original Cr and Cl contents. The fluid was likely derived from continuous devolatilization reactions in associated low-δ37Cl, calcareous metasedimentary rocks. These data have important implications for models of subduction mass transfer associated with antigorite breakdown. If serpentinites are commonly modified by interaction with metasedimentary fluids prior to antigorite dehydration, chemical signatures imparted during deserpentinization will reflect the integrated history of fluid-rock interaction in the subduction channel rather than an endmember "serpentinite signature". The data further suggest that Cl may be hydrophobic in HP/UHP carbonate-bearing aqueous fluids, resulting in generation of low-Cl fluid during metamorphic devolatilization.
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.; Hauri, E. H.; Nagle, A.; Forsyth, D. W.; Niu, Y.
2011-12-01
Off-axis seamounts and intra-transform lavas provide more direct geochemical information of the mantle than axial lavas. These smaller volumes of melts undergo lower extent of crystal fractionation and mixing compared to basalts erupting within the ridge axis due to a lack of long-lived magma chambers or along axis melt migration. Therefore, their study provide not only a more reliable approach to determine the volatile content of the intrinsic components forming the Earth's upper mantle, but also help constrain mantle convection, heterogeneity, and crustal recycling. Samples from the Quebrada-Discovery-Gofar (QDG) transform fault system (EPR 3°-5°S) and from northern EPR seamounts (5°-15° N) were collected during KN182-13 (R/V Knorr) and RAIT 02 (R/V Thomas Washington) expeditions, respectively. 159 submarine glasses were analyzed for major elements, trace elements, and volatile elements by triplicate analyses, as well as for Sr and Nd isotopes in a subset of samples. The QDG and northern EPR seamounts have similar trace element and isotopic composition that is consistent with melting of two-component mantle common to both regions. The degree of trace element enrichment (e.g. Th/La), isotopic composition, and depth of melt segregation (e.g. Sm/Yb) have a positive correlation and range from ultra depleted to relatively enriched compositions. In order to investigate the primary volatile content of submarine glasses we first considered shallow level processes, such as volatile degassing, sulfide saturation and interaction of melt with hydrothermally altered material. The vapor-melt equilibrium pressure (Dixon et al., 1995) indicates that the majority of the samples were super-saturated in CO2-H2O vapor at the pressure of eruption, which implies rapid magma ascent rate that prevented complete CO2 degassing. Samples that were sulfide saturated (Liu et al., 2007) and contaminated by seawater or seawater derived material (high Cl/K) were filtered out. F/Nd, Cl/K, and H2O/Ce ratios in our samples positively correlate with Th/La, Sm/Yb, and isotope ratios suggesting that the enriched mantle component is also enriched in volatile contents. S/Dy ratios are the exception, with relatively constant values in both enriched, and depleted basalts. Although it has been argued that correlation between Sr, Nd and Pb isotope ratios and fractionation corrected major element in seamount samples indicate different mantle lithologies under the mid-ocean ridges, we will show that such correlation might be an artifact of ignoring the effect of water during the correction for fractional crystallization. [1] Dixon et al. (1995) J. Pet., 36, 1607-1631. [2] Liu et al. (2007) Geochim Cosmochim Ac., 71, 1783-1799.
Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puscas, R.; Feurdean, V.; Simon, V.
2013-11-13
The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviatedmore » from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.« less
Carbon in weathered ordinary chondrites from Roosevelt County
NASA Technical Reports Server (NTRS)
Ash, R. D.; Pillinger, C. T.
1993-01-01
A suite of Roosevelt County ordinary chondrites of known terrestrial age have been analyzed for carbon content and isotopic composition. Initial results indicate that significant carbon contamination is evident only in samples with a terrestrial age greater than 40 ka. These samples are of weathering grade D and E and contain three times more carbon than the less weathered samples. The soil in which they were preserved has a carbon content of ca. 1.5 percent. Over 200 meteorites have been recovered from a series of soil depleted areas of New Mexico and West Texas. Most have been recovered from blowouts near Clovis in Roosevelt County (RC) on the high plains of New Mexico. The mineralogical and petrologic Al effects of weathering upon these samples have been studied previously and show that the degree of weathering is largely depend ant upon the terrestrial residence time. The study was undertaken to determine the effects of prolonged exposure to the soil and climate of Roosevelt County upon ordinary chondrites in the hope that this will enable a better understanding of the problems associated with the collection of meteoritic falls. A suite of ten grade 4 to 6 H, L, and LL ordinary chondrites were analyzed for carbon content and isotopic composition.
First-principles Calculations of Equilibrium Calcium Isotope Fractionation among Ca-bearing Minerals
NASA Astrophysics Data System (ADS)
Zhou, C.; Wang, W.; Kang, J.; Wu, Z.; Huang, F.
2016-12-01
Calcium isotope fractionation factors of Ca-bearing minerals are investigated with the first principle calculations based on density functional theory (DFT). The sequence of heavy Ca isotope enrichment is forsterite > grossular > butschliite > lime > fluorite > tremolite diopside > anhydrite dolomite titanite > anorthite > perovskite gehlenite aragonite richterite > akermanite > oldhamite. This order is consistent with variation of Ca-O bond lengths, indicating that Ca-O bond energy plays an overwhelming role on the fractionations of Ca isotopes. Our study provides important insights into the Ca isotopic data of meteorites. Our calculation predicts that oldhamites (CaS) are enriched in light Ca isotopes relative to silicate phase if they are in equilibrium, contrast with the observations in Valdes et al (2014). Therefore, oldhamite and silicate phase in the meteorites should be in disequilibrium for Ca isotopes. Our results can also be used to understand Ca isotopic composition of the Moon. Δ44/40Ca between olivine (with CaO content of 2.48 wt%) and diopside is up to 0.41‰ and Δ44/40Cagrossular-diopside is 0.26‰ at 1500K. Feng et al. (2014) calculated that Δ44/40Ca between opx with CaO content of 1.74 wt% and cpx is about 0.27‰ at 1500 K. According to the Lunar Magma Ocean (LMO) model, the modern Moon is chemically stratified (Snyder et al., 1992; Elardo et al., 2011). Assuming that the lower cumulate and upper residual melt are in isotopic equilibrium during the evolution of Lunar Magma Ocean where the cumulate may be mainly composed of olivine and orthopyroxene or garnet/spinel, δ44/40Ca of the Moon could be underestimated by 0.05‰ to 0.25‰ if the shallow lunar samples are used to represent the bulk Moon.
Garnet Pyroxenites from Kaula, Hawaii: Implications for Plume-Lithosphere Interaction
NASA Astrophysics Data System (ADS)
Bizimis, M.; Garcia, M. O.; Norman, M. D.
2006-12-01
The presence of garnet pyroxenite xenoliths on Oahu and Kaula Islands, Hawaii, provides the rare opportunity to investigate the composition of the deeper oceanic mantle lithosphere and the nature of plume-lithosphere interaction in two dimensions, downstream from the center of the Hawaiian plume. Kaula (60 miles SW of Kauai) is on the same bathymetric shallow as Kauai and the Kaula-Niihau-Kauai islands form a cross-trend relationship to the Hawaiian Island ridge. Here, we present the first Sr-Nd isotope data on clinopyroxenes (cpx) from Kaula pyroxenites, and we compare them with the Salt Lake Crater (SLC) pyroxenites from Oahu. The Kaula cpx major element compositions overlap those of the (more variable) SLC pyroxenites (e.g. Mg# = 0.79-0.83), except for their higher Al2O3 contents (9% vs. 5-8%) than the SLC. The Kaula cpx are LREE enriched with elevated Dy/Yb ratios, similar to the SLC pyroxenites and characteristic of the presence of garnet that preferentially incorporates the HREE. In Sr-Nd isotope space, the Kaula pyroxenite compositions (87Sr/86Sr= 0.70312-0.70326, ɛNd= 7.2-8.6) overlap those of both the Oahu-Kauai post erosional lavas and the SLC pyroxenites, falling at the isotopically depleted end of the Hawaiian lava compositions. The depleted Sr-Nd isotope compositions of the Kaula pyroxenites suggest that they are not related to the isotopically enriched shield stage Hawaiian lavas, either as a source material (i.e. recycled eclogite) or as cumulates. Their elevated 87Sr/86Sr ratios relative to MORB also suggests that they are not likely MORB-related cumulates. The similarities between the Oahu and Kaula pyroxenites, some 200 km apart, suggest the widespread presence of pyroxenitic material in the deeper (>60km) Pacific lithosphere between Oahu and Kaula-Kauai, as high pressure cumulates from melts isotopically similar to the secondary Hawaiian volcanism. The presence of this material within the lower lithosphere is consistent with seismic observations suggesting erosion and replacement of the deeper Pacific lithosphere by plume material, downstream from the center of the plume.
NASA Astrophysics Data System (ADS)
Li, Bin; Jiang, Shao-Yong; Lu, An-Huai; Lai, Jian-Qing; Zhao, Kui-Dong; Yang, Tao
2016-11-01
The Gutian porphyry Cu-Mo deposit is a newly proved porphyry copper deposit in the coastal South China associated with granodioritic porphyries. In this study, zircon U-Pb ages and Hf isotope data, as well as geochemical and Sr-Nd-Pb-Re-Os isotopic compositions, are reported for these intrusions and minerals. Both zircon U-Pb and molybdenite Re-Os dating suggest that the Gutian granodiorite porphyries and related mineralization formed at 160 Ma. The Gutian granodiorites show a low-Mg adakitic geochemical affinity, with relatively high K2O but low Cr and Ni contents. These rocks have initial (87Sr/86Sr)i ratios of 0.7085 to 0.7097, negative εNd(t) values (- 12.5 to - 7.8), (206Pb/204Pb)t ratios of 18.048 to 18.241, (207Pb/204Pb)t ratios of 15.609 to 15.628, and (208Pb/204Pb)t ratios of 38.494 to 38.667. Zircons from the granodiorites have negative εHf(t) values of - 15.7 to - 8.5, which are close to those of Cathaysia crust-derived melts. Geochemical and Sr-Nd-Pb-Hf isotopic compositions suggest that they may be derived from Late Jurassic thickened juvenile lower crust. These lower crustal magma sources may not only contain pre-Proterozoic basement rocks, but also involve Triassic and Middle-Late Jurassic arc magmas within the lower crust, which were likely derived from an enriched mantle source associated with paleo-Pacific Plate subduction from the Middle to Late Jurassic. The Gutian ore-related granodiorites represent a new example for significant contributions of ancient subduction melts and enriched mantle-derived sources for porphyry-type magmatism and Cu-Mo mineralization, which occurred in response to an arc regime during the Middle to Late Jurassic in South China. Supplemental Table S2. Hf isotopic compositions of zircons from the studied rocks from the Gutian porphyry deposit in South China. Supplemental Table S3. Statistics for zircon U-Pb ages and Hf isotope compositions from Gutian granodiorites in South China Supplemental Table S4. Major element (wt.%) and trace element (ppm) concentrations of Gutian intrusions in Fujian Province, South China. Supplemental Table S5. Sr and Nd isotopic compositions of the studied rocks from the Gutian porphyry deposit in Fujian Province, South China. Supplemental Table S6. Pb isotopic compositions of the studied rocks from the Gutian porphyry deposit in South China. Supplemental Table S7. Re-Os isotopic compositions of molybdenite from the Gutian porphyry deposit in South China.
Piochi, M.; Ayuso, R.A.; de Vivo, B.; Somma, R.
2006-01-01
New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma-Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation-Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrol. 999-1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J. Petrol. 1019-1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9-10 km) is a fundamental process controlling magma compositions at Mt. Somma-Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions. ?? 2005 Elsevier B.V. All rights reserved.
Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota
Komor, S.C.
1997-01-01
Boron-isotope (δ11B) values may be useful as surrogate tracers of contaminants and indicators of water mixing in agricultural settings. This paper characterizes the B contents and isotopic compositions of hog manure and selected fertilizers, and presents δ11B data for ground and surface water from two agricultural areas. Boron concentrations in dry hog manure averaged 61 mg/kg and in commercial fertilizers ranged from below detection limits in some brands of ammonium nitrate and urea to 382 mg/kg in magnesium sulfate. Values of δ11B of untreated hog manure ranged from 7.2 to 11.2o/oo and of N fertilizers were −2.0 to 0.7o/oo. In 22 groundwater samples from a sand-plain aquifer in east-central Minnesota, B concentrations averaged 0.04 mg/L and δ11B values ranged from 2.3 to 41.5o/oo. Groundwater beneath a hog feedlot and a cultivated field where hog manure was applied had B-isotope compositions consistent with the water containing hog-manure leachate. In a 775-km2 watershed with silty-loam soils in southcentral Minnesota: 18 samples of subsurface drainage from corn (Zea mays L.) and soybean (Glycine max L. Merr.) fields had average B concentrations of 0.06 mg/L and δ11B values of 5.3 to 15.1o/oo; 27 stream samples had average B concentrations of 0.05 mg/L and δ11B values of 1.0 to 19.0o/oo; and eight groundwater samples had average B concentrations of 0.09 mg/L and δ11B values of −0.3 to 23.0o/oo. Values of δ11B and B concentrations, when plotted against one another, define a curved mixing trend that suggests subsurface drainage and stream water contain mixtures of B from shallow and deep groundwater.
NASA Astrophysics Data System (ADS)
Davies, Rondi M.; Griffin, William L.; O'Reilly, Suzanne Y.; Doyle, Buddy J.
2004-09-01
A mineral inclusion, carbon isotope, nitrogen content, nitrogen aggregation state and morphological study of 576 microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, was conducted. Mineral inclusion data show the diamonds are largely eclogitic (64%), followed by peridotitic (25%) and ultradeep (11%). The paragenetic abundances are similar to macrodiamonds from the DO27 kimberlite (Davies, R.M., Griffin, W.L., O'Reilly, S.Y., 1999. Diamonds from the deep: pipe DO27, Slave craton, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), The J. B. Dawson Vol., Proc. 7th Internat. Kimberlite Conf., Red Roof Designs, Cape Town, pp. 148-155) but differ to diamonds from nearby kimberlites at Ekati (e.g., Lithos (2004); Tappert, R., Stachel, T., Harris, J.W., Brey, G.P., 2004. Mineral Inclusions in Diamonds from the Panda Kimberlite, S. P., Canada. 8th International Kimberlite Conference, extended abstracts) and Snap Lake to the south (Dokl. Earth Sci. 380 (7) (2001) 806), that are dominated by peridotitic stones. Eclogitic diamonds with variable inclusion compositions and temperatures of formation (1040-1300 °C) crystallised at variable lithospheric depths sometimes in changing chemical environments. A large range to very 13C-depleted C-isotope compositions ( δ13C=-35.8‰ to -2.2‰) and an NMORB bulk composition, calculated from trace elements in garnet and clinopyroxene inclusions, are consistent with an origin from subducted oceanic crust and sediments. Carbon isotopes in the peridotitic diamonds have mantle compositions ( δ13C mode -4.0‰). Mineral inclusion compositions are largely harzburgitic. Variable temperatures of formation (garnet TNi=800-1300 °C) suggest the peridotitic diamonds originate from the shallow ultra-depleted and deeper less depleted layers of the central Slave lithosphere. Carbon isotopes ( δ13C av.=-5.1‰) and mineral inclusions in the ultradeep diamonds suggest they formed in peridotitic mantle (˜670 km). The diamonds may have been entrained in a plume and subcreted to the base of the central Slave lithosphere. Poorly aggregated nitrogen (IaA without platelets) in a large number of eclogitic (67%) and peridotitic (32%) diamonds, with similar nitrogen contents, indicates the diamonds were stored in the mantle at low temperatures (1060-<1100 °C) following crystallisation in the Archean. Type IaA diamonds have largely cubo-octahedral growth forms, and Type II and Type IaAB diamonds, with higher nitrogen aggregation states, mostly have octahedral morphologies. However, no correlation between these groups and their mineral inclusion compositions, C-isotopes, and N-contents rules out the possibility of unique source origins and suggests eclogitic and peridotitic diamonds experienced variable mantle thermal states. Variation in mineral inclusion chemistries in single diamonds, possible overgrowths of 13C-depleted eclogitic diamond on diamonds with peridotitic and ultradeep inclusions, and Type I ultradeep diamond with low N-aggregation is consistent with diamond growth over time in changing chemical environments.
NASA Astrophysics Data System (ADS)
Voss, Britta M.; Wickland, Kimberly P.; Aiken, George R.; Striegl, Robert G.
2017-08-01
Riverine ecosystems receive organic matter (OM) from terrestrial sources, internally produce new OM, and biogeochemically cycle and modify organic and inorganic carbon. Major gaps remain in the understanding of the relationships between carbon sources and processing in river systems. Here we synthesize isotopic, elemental, and molecular properties of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) in the Upper Mississippi River (UMR) system above Wabasha, MN, including the main stem Mississippi River and its four major tributaries (Minnesota, upper Mississippi, St. Croix, and Chippewa Rivers). Our goal was to elucidate how biological processing modifies the chemical and isotopic composition of aquatic carbon pools during transport downstream in a large river system with natural and man-made impoundments. Relationships between land cover and DOC carbon-isotope composition, absorbance, and hydrophobic acid content indicate that DOC retains terrestrial carbon source information, while the terrestrial POC signal is largely replaced by autochthonous organic matter, and DIC integrates the influence of in-stream photosynthesis and respiration of organic matter. The UMR is slightly heterotrophic throughout the year, but pools formed by low-head navigation dams and natural impoundments promote a shift toward autotrophic conditions, altering aquatic ecosystem dynamics and POC and DIC compositions. Such changes likely occur in all major river systems affected by low-head dams and need to be incorporated into our understanding of inland water carbon dynamics and processes controlling CO2 emissions from rivers, as new navigation and flood control systems are planned for future river and water resources management.
Voss, Britta; Wickland, Kimberly P.; Aiken, George R.; Striegl, Robert G.
2017-01-01
Riverine ecosystems receive organic matter (OM) from terrestrial sources, internally produce new OM, and biogeochemically cycle and modify organic and inorganic carbon. Major gaps remain in the understanding of the relationships between carbon sources and processing in river systems. Here we synthesize isotopic, elemental, and molecular properties of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) in the Upper Mississippi River (UMR) system above Wabasha, MN, including the main stem Mississippi River and its four major tributaries (Minnesota, upper Mississippi, St. Croix, and Chippewa Rivers). Our goal was to elucidate how biological processing modifies the chemical and isotopic composition of aquatic carbon pools during transport downstream in a large river system with natural and man-made impoundments. Relationships between land cover and DOC carbon-isotope composition, absorbance, and hydrophobic acid content indicate that DOC retains terrestrial carbon source information, while the terrestrial POC signal is largely replaced by autochthonous organic matter, and DIC integrates the influence of in-stream photosynthesis and respiration of organic matter. The UMR is slightly heterotrophic throughout the year, but pools formed by low-head navigation dams and natural impoundments promote a shift towards autotrophic conditions, altering aquatic ecosystem dynamics and POC and DIC composition. Such changes likely occur in all major river systems affected by low-head dams and need to be incorporated into our understanding of inland water carbon dynamics and processes controlling CO2 emissions from rivers, as new navigation and flood control systems are planned for future river and water resources management.
A modified procedure for measuring oxygen-18 content of nitrate
NASA Astrophysics Data System (ADS)
Ahmed, M. A.; Aly, A. I. M.; Abdel Monem, N.; Hanafy, M.; Gomaa, H. E.
2012-11-01
SummaryMass spectrometric analysis of O-isotopic composition of nitrate has many potential applications in studies of environmental processes. Through this work, rapid, reliable, precise, broadly applicable, catalyst-free, low-priced and less labor intensive procedure for measuring δ18O of nitrate using Isotope Ratio Mass Spectrometer has been developed and implemented. The conditions necessary to effect complete nitrate recovery and complete removal of other oxygen containing anions and dissolved organic carbon (DOC) without scarifying the isotopic signature of nitrate were investigated. The developed procedure consists of two main parts: (1) wet chemistry train for extraction and purification of nitrate from the liquid matrix; (2) off-line pyrolysis of extracted nitrate salt with activated graphite at 550 °C for 30 min. The conditions necessary to effect complete nitrate recovery and complete removal of other oxygen containing compounds were investigated. Dramatic reduction in processing times needed for analysis of δ18O of nitrate at natural abundance level was achieved. Preservation experiments revealed that chloroform (99.8%) is an effective preservative. Isotopic contents of some selected nitrate salts were measured using the modified procedure and some other well established methods at two laboratories in Egypt and Germany. Performance assessment of the whole developed analytical train was made using internationally distributed nitrate isotopes reference materials and real world sample of initial zero-nitrate content. The uncertainty budget was evaluated using the graphical nested hierarchal approach. The obtained results proved the suitability for handling samples of complicated matrices. Reduction of consumables cost by about 80% was achieved.
NASA Astrophysics Data System (ADS)
Divine, Lauren M.; Bluhm, Bodil A.; Mueter, Franz J.; Iken, Katrin
2017-01-01
We used stomach content and stable δ13C and δ15N isotope analyses to investigate male and female snow crab diets over a range of body sizes (30-130 mm carapace width) in five regions of the Pacific Arctic (southern and northern Chukchi Sea, western, central, and Canadian Beaufort Sea). Snow crab stomach contents from the southern Chukchi Sea were also compared to available prey biomass and abundance. Snow crabs consumed four main prey taxa: polychaetes, decapod crustaceans (crabs, amphipods), echinoderms (mainly ophiuroids), and mollusks (bivalves, gastropods). Both approaches revealed regional differences. Crab diets in the two Chukchi regions were similar to those in the western Beaufort (highest bivalve, amphipod, and crustacean consumption). The Canadian Beaufort region was most unique in prey composition and in stable isotope values. We also observed a trend of decreasing carbon stable isotopes in crabs from the Chukchi to those in the Canadian Beaufort, likely reflecting the increasing use of terrestrial carbon sources towards the eastern regions of the Beaufort Sea from Mackenzie River influx. Cannibalism on snow crabs was higher in the Chukchi regions relative to the Beaufort regions. We suggest that cannibalism may have an impact on recruitment in the Chukchi Sea via reduction of cohort strength after settlement to the benthos, as known from the Canadian Atlantic. Prey composition varied with crab size only in some size classes in the southern Chukchi and central Beaufort, while stable isotope results showed no size-dependent differences. Slightly although significantly higher mean carbon isotope values for males in the southern Chukchi may not be reflective of a gender-specific pattern but rather be driven by low sample size. Finally, the lack of prey selection relative to availability in crabs in the southern Chukchi suggests that crabs consume individual prey taxa in relative proportions to prey field abundances. The present study is the first to provide a baseline of the omnivorous role of snow crabs across the entire Pacific Arctic, as well as evidence for cannibalism in the Chukchi Sea. In light of climate change predictions for the Alaska Arctic, and the potential for future fisheries harvest of snow crabs in this region, continued monitoring of snow crabs, including population and trophic dynamics, is increasingly important to assess snow crab impacts on benthic communities and vice versa.
NASA Astrophysics Data System (ADS)
Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Sloane, Hilary J.; Milodowski, Antoni; Vogel, Hendrik; Baumgarten, Henrike; Zanchetta, Giovanni; Wagner, Bernd
2016-03-01
Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.
Calcium isotopic composition of mantle xenoliths and minerals from Eastern China
NASA Astrophysics Data System (ADS)
Kang, Jin-Ting; Zhu, Hong-Li; Liu, Yu-Fei; Liu, Fang; Wu, Fei; Hao, Yan-Tao; Zhi, Xia-Chen; Zhang, Zhao-Feng; Huang, Fang
2016-02-01
This study presents calcium isotope data for co-existing clinopyroxenes (cpx), orthopyroxenes (opx), and olivine (ol) in mantle xenoliths to investigate Ca isotopic fractionation in the upper mantle. δ44/40Ca (δ44/40Ca (‰) = (44Ca/40Ca)SAMPLE/(44Ca/40Ca)SRM915a - 1) in opx varies from 0.95 ± 0.05‰ to 1.82 ± 0.01‰ and cpx from 0.71 ± 0.06‰ to 1.03 ± 0.12‰ (2se). δ44/40Ca in ol (P-15) is 1.16 ± 0.08‰, identical to δ44/40Ca of the co-existing opx (1.12 ± 0.09‰, 2se). The Δ44/40Caopx-cpx (Δ44/40Caopx-cpx = δ44/40Caopx-δ44/40Cacpx) shows a large variation ranging from -0.01‰ to 1.11‰ and it dramatically increases with decreasing of Ca/Mg (atomic ratio) in opx. These observations may reflect the effect of opx composition on the inter-mineral equilibrium fractionation of Ca isotopes, consistent with the theoretical prediction by first-principles theory calculations (Feng et al., 2014). Furthermore, Δ44/40Caopx-cpx decreases when temperature slightly increases from 1196 to 1267 K. However, the magnitude of such inter-mineral isotopic fractionation (1.12‰) is not consistent with the value calculated by the well-known correlation between inter-mineral isotope fractionation factors and 1/T2 (Urey, 1947). Instead, it may reflect the temperature control on crystal chemistry of opx (i.e., Ca content), which further affects Δ44/40Caopx-cpx. The calculated δ44/40Ca of bulk peridotites and pyroxenites range from 0.76 ± 0.06‰ to 1.04 ± 0.12‰ (2se). Notably, δ44/40Ca of bulk peridotites are positively correlated with CaO and negatively with MgO content. Such correlations can be explained by mixing between a fertile mantle end-member and a depleted one with low δ44/40Ca, indicating that Ca isotopes could be a useful tool in studying mantle evolution.
NASA Astrophysics Data System (ADS)
Zuo, Fanfan; Heimhofer, Ulrich; Huck, Stefan; Erbacher, Jochen; Bodin, Stephane
2017-04-01
Stratigraphic uncertainties due to the lack of open marine marker fossils (e.g. ammonites) hamper the precise age assignment and stratigraphic correlation of Kimmeridgian strata found in the Lower Saxony Basin of Northern Germany. Correlation of these deposits with the Jurassic standard ammonite zonation is still difficult, since the existing ostracod biostratigraphy is facies-controlled and of only limited stratigraphic precision. In this study, a chemostratigraphic approach has been chosen and biogenic shell material produced by brachiopods, oysters and lithiotids is evaluated for its reliability to act as proxy of the original Jurassic seawater strontium isotope composition. Low-Mg calcite shells have been collected from three stratigraphic sections accessible in open-cast quarries located in the Lower Saxony Basin of Northern Germany. In order to identify diagenetically altered shell calcite, trace element and stable isotope analysis of 227 calcite samples (oysters=101; brachiopods=60; Trichites=52) has been carried out. The geochemical results reveal that (1) concentration of different trace elements varies between the different groups of shell-forming organisms, which may be related to vital effects and (2) high strontium contents, low Mn and Fe contents and the lack of correlation between these elements indicate near-pristine calcite shells, and therefore shells are supposed to record the ambient sea water composition during the Late Jurassic. Strontium-isotope (87Sr/86Sr) analysis of diagenetically screened samples indicates an Early Kimmeridgian age of the studied deposits, which is in accordance with ostracod biostratigraphic data. An increasing trend in 87Sr/86Sr with stratigraphic height fits well with the global strontium-isotope curve. Besides, similar 87Sr/86Sr ratios derived from different organisms from a single stratigraphic level highlight the suitability of the shells for strontium-isotope stratigraphy. Despite the shallow-marine character of the studied deposits, no evidence for significant riverine influence on the strontium-isotope signature is observed. The new chemostratigraphic data will provide a more precise age assignment for Kimmeridgian strata in the Lower Saxony Basin and thus enable the establishment of a solid integrated stratigraphic scheme that can be used for correlation on both regional and global scale.
NASA Astrophysics Data System (ADS)
Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.
1996-07-01
Oligocene flood basalts from western Yemen have a relatively limited range in initial isotopic composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the isotopic ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and isotope ratios suggest that crustal contamination has substantially modified the primary isotopic and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous isotopic composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent magmatic system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying isotopic variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. Isotopic compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti. The western Yemen flood basalts contain 0-30% crust which largely swamps their primary lead isotopic signature, but the primary SrNd isotopic signature is close to that of the least contaminated and isotopically most depleted flood basalts. LREE/HFSE and LILE/HFSE ratios also correlate with isotopic data as a result of crustal contamination. However, Nb/La and K/Nb ratios of >1.1 and <150, respectively, in least contaminated samples require an OIB-like source. The pre-contamination isotopic signature is estimated to be: 87Sr/86Sr ˜ 0.7036; 143Nd/144Nd ˜ 0.51292 ; 206Pb/204Pb ˜ 18.4-19.0 . This, coupled with low LILE/HFSE ratios, suggest the source has characteristics akin to the Afar plume. A mantle source isotopically more depleted than Bulk Earth, but not as depleted as MORB, coupled with LILE depletion, also characterises other examples of plume-derived flood volcanism. This mantle reservoir is responsible for the second largest outbursts of volcanism on Earth and has radiogenic isotopic characteristics akin to PREMA mantle, but the incompatible trace element signature of HIMU mantle.
NASA Astrophysics Data System (ADS)
Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng
2018-04-01
Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy Fe isotopes compositions of the sulfides from the SMAR may suggest the equilibrium fractionation process under high temperature conditions. The red Fe oxides are enriched in heavy Fe isotopes, indicating that the oxidative weathering processes result in the occurrence of significant Fe-isotope fractionation and the preferential enrichment of heavy Fe isotopes in the oxidation product.
NASA Astrophysics Data System (ADS)
Ferronskii, V. I.; Poliakov, V. A.
This book is concerned with the natural relations regarding the distribution of the stable isotopes of hydrogen and oxygen in the hydrosphere, taking into account the most important problems with respect to the dynamics and the origin of waters. The solution of these problems on an isotopic basis is considered. The physicochemical principles of isotope separation are discussed along with the isotopic composition of atmospheric moisture, the isotopic composition of surface continental waters, the hydrogen and oxygen isotopic composition of minerals of magmatic and metamorphic rocks and fluid inclusions, the isotopic composition of groundwaters of modern volcanic regions, and the origin of the earth's hydrosphere in the light of isotopic, cosmochemical, and theoretical studies. Attention is also given to the separation of hydrogen and oxygen isotopes of waters in the underground cycle, the isotopic composition of the deep-formation waters of sedimentary basins, the relationship between surface and ground waters, and the groundwater residence time in an aquifer.
Origin Of Extreme 3He/4He Signatures In Icelandic Lavas: Insights From Melt Inclusion Studies
NASA Astrophysics Data System (ADS)
Harlou, R.; Kent, A. J.; Breddam, K.; Davidson, J. P.; Pearson, D. G.
2003-12-01
Helium isotopes are considered a powerful tool for tracking different mantle domains. Yet, the origin of He isotope variations in many basaltic suites remains enigmatic and often difficult to link with more lithophile chemical and isotopic tracers. One problem is that He isotope ratios are measured from crushed olivines and thus reflect prior fluid and melt fluxes trapped in inclusions within the olivine grains, whereas the lithophile elements mainly reflect the host lava. In an attempt to link He and lithophile element variations, we have characterized the major and trace element composition including volatile elements, of olivine-hosted melt inclusions from three ankaramitic lavas from Vestfirdir, NW-Iceland. Previous studies have reported extreme 3He/4He ratios from NW-Iceland and one ankaramite (SEL97) has been suggested to provide the most precise estimate of the radiogenic (Sr-Nd-Pb) isotopic composition of a relatively undegassed (high 3He/4He) mantle component (C or FOZO) common to several ocean islands (Hilton et al. 1999, EPSL 173, 53-60). The samples investigated here exhibit amongst the highest 3He/4He ratios observed in terrestrial rocks (42.9 and 34.8 R/Ra). A detailed account of the trace element signature of melt inclusions in these samples may thus help explain the origin of FOZO. One sample of similar composition to these, has a lower He content and a relatively poorly defined He isotope composition of 8.15 +/- 5.1 R/Ra (Breddam & Kurz, 2001, EOS, 82, F1315). In terms of major elements, the whole rock data reflect olivine accumulation, whereas the melt inclusion data reflect ol + cpx fractionation. The melt inclusions are generally basaltic (Mg#: 52-62), with primitive mantle normalised trace element concentrations that are broadly parallel the host lavas. There is little compositional difference between melt inclusion populations from high and low 3He/4He lavas, although inclusions of the low 3He/4He lava have lower S and moderately lower Cl. The observed range of trace element ratios: [La/Sm]N 1-4, [La/Yb]N 1-5, Sr/Nd 14-24, Ba/Rb 9-23, and Ce/Pb 5-46, covers much of the range observed in Icelandic alkali basalts. The compositional similarities between inclusions and host lavas suggests that bulk rock compositions are petrogenetically related to the melts sampled by melt inclusions. If He predominantly resides in these inclusions, it suggests that the whole rock composition is an aggregate derived from the same melts that contain the measured He.
NASA Astrophysics Data System (ADS)
Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.
2012-02-01
In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.
Volatile element content of the heterogeneous upper mantle
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.; Hauri, E. H.; Forsyth, D. W.; Kamenetsky, V. S.; Niu, Y.
2014-12-01
The physical properties of the asthenosphere (e.g., seismic velocity, viscosity, electrical conductivity) have been attributed to either mineral properties at relevant temperature, pressure, and water content or to the presence of a low melt fraction. We resort to the geochemical studies of MORB to unravel the composition of the asthenosphere. It is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous mantle composition and variations in the physical conditions of magma generation and transport; or alternatively, they represent mixing of melts from a heterogeneous upper mantle. Lavas from intra-transform faults and off-axis seamounts share a common mantle source with axial MORB, but experience less differentiation and homogenization. Therefore they provide better estimates for the end-member volatile budget of the heterogeneous upper mantle. We present major, trace, and volatile element data (H2O, CO2, Cl, F, S) as well as Sr, Nd, and Pb isotopic compositions [1, 2] of basaltic glasses (MgO > 6.0 wt%) from the NEPR seamounts, Quebrada-Discovery-Gofar transform fault system, and Macquarie Island. The samples range from incompatible trace element (ITE) depleted (DMORB: Th/La<0.035) to enriched (EMORB: Th/La>0.07) spanning the entire range of EPR MORB. The isotopic composition of the samples correlates with the degree of trace element enrichment indicating long-lived mantle heterogeneity. Once shallow-level processes (degassing, crystallization, and crustal assimilation) have been considered, we conducted a two-component (DMORB- and EMORB-) mantle melting-mixing model. Our model reproduces the major, trace and volatile element contents and isotopic composition of our samples and suggests that (1) 90% of the upper mantle is highly depleted in ITE (DMORB source) with only 10% of an enriched component (EMORB source), (2) the EMORB source is peridotitic rather than pyroxenitic, and (3) NMORB do not represent an actual mantle source, but the product of magma mixing between D- and E-MORB. Finally we use the volatile to trace element ratios of our samples to estimate the volatile element budget of the end-member components of the upper mantle. [1] Niu, Y. et al. (2002) EPSL, 199, 327-345. [2] Kamenetsky, V. S. et al. (2000) J. Petrology, 41, 411-430.
NASA Astrophysics Data System (ADS)
Darling, W. G.; Bath, A. H.; Talbot, J. C.
The utility of stable isotopes as tracers of the water molecule has a long pedigree. The study reported here is part of an attempt to establish a comprehensive isotopic "baseline" for the British Isles as background data for a range of applications. Part 1 of this study (Darling and Talbot, 2003) considered the isotopic composition of rainfall in Britain and Ireland. The present paper is concerned with the composition of surface waters and groundwater. In isotopic terms, surface waters (other than some upland streams) are poorly characterised in the British Isles; their potential variability has yet to be widely used as an aid in hydrological research. In what may be the first study of a major British river, a monthly isotopic record of the upper River Thames during 1998 was obtained. This shows high damping of the isotopic variation compared to that in rainfall over most of the year, though significant fluctuations were seen for the autumn months. Smaller rivers such as the Stour and Darent show a more subdued response to the balance between runoff and baseflow. The relationship between the isotopic composition of rainfall and groundwater is also considered. From a limited database, it appears that whereas Chalk groundwater is a representative mixture of weighted average annual rainfall, for Triassic sandstone groundwater there is a seasonal selection of rainfall biased towards isotopically-depleted winter recharge. This may be primarily the result of physical differences between the infiltration characteristics of rock types, though other factors (vegetation, glacial history) could be involved. In the main, however, groundwaters appear to be representative of bulk rainfall within an error band of 0.5‰ δ18O. Contour maps of the δ18O and δ2H content of recent groundwaters in the British Isles show a fundamental SW-NE depletion effect modified by topography. The range of measured values, while much smaller than those for rainfall, still covers some ‰ for δ18O and 30‰ for δ2H. Over lowland areas the "altitude effect" is of little significance, but in upland areas is consistent with a range of -0.2 to -0.3‰ per 100 m increase in altitude. Groundwaters dating from the late Pleistocene are usually modified in δ18O and δ2H owing to the effects of climate change on the isotopic composition of rainfall and thus of recharge. Contour maps of isotopic variability prior to 10 ka BP, based on the relatively limited information available from the British Isles, allow a first comparison between groundwaters now and at the end of the last Ice Age. The position of the British Isles in the context of the stable isotope systematics of NW Europe is reviewed briefly.
NASA Astrophysics Data System (ADS)
Wang, Y.; Finney, B.; Wooller, M. J.
2007-12-01
Several techniques are available to examine the isotopic composition of historic lake waters, providing data that can subsequently be used to examine environmental changes. Recently-developed techniques are the stable oxygen isotope analysis of subfossil chironomid (Diptera: Chironomidae) head capsules (mostly chitin) preserved in lake sediments and stable hydrogen isotope analyses directly on bulk sediments. An advantage of using δ18O of chironomids is that the chitinous chironomid headcapsules preserve well in lake sediments, retaining the stable oxygen isotope signature of the lake in which they lived. An advantage of δD analyses of bulk sediments is that a sediment core can be analyzed relatively easily and when the %C (total organic carbon) and %H profiles correlate the data can be used to infer past δD changes of the organics in the sediments. We present results from these analyses of a lake sediment core from Idavain Lake (58°46'N, 155°57'W, 223m above sea level) in southwest Alaska in concert with other paleolimnological proxies, including δ15N, δ13C, LOI, magnetic susceptibility, organic content and opal concentrations for a better understanding of paleolimnological changes since deglaciation for the region. Our preliminilary result shows that downcore shifts of δ18O analyzed from chironomid head capsules coincide well with LOI and pollen changes. The δD of sediments and TOM showed large magnitude changes and reflected the relative lake level changes during the record. This study aim to test the correlation between stable isotope analyese on chiornomid head capsules, lake water, and bulk sediments. In the addition, our study will add to the relatively small database of paleoenvironmental reconstructions from terrestrial sites in Southwest Alaska.
Workshop on Oxygen in Asteroids and Meteorites
NASA Technical Reports Server (NTRS)
2005-01-01
Contents include the following: Constraints on the detection of solar nebula's oxidation state through asteroid observation. Oxidation/Reduction Processes in Primitive Achondrites. Low-Temperature Chemical Processing on Asteroids. On the Formation Location of Asteroids and Meteorites. The Spectral Properties of Angritic Basalts. Correlation Between Chemical and Oxygen Isotopic Compositions in Chondrites. Effect of In-Situ Aqueous Alteration on Thermal Model Heat Budgets. Oxidation-Reduction in Meteorites: The Case of High-Ni Irons. Ureilite Atmospherics: Coming up for Air on a Parent Body. High Temperature Effects Including Oxygen Fugacity, in Pre-Planetary and Planetary Meteorites and Asteroids. Oxygen Isotopic Variation of Asteroidal Materials. High-Temperature Chemical Processing on Asteroids: An Oxygen Isotope Perspective. Oxygen Isotopes and Origin of Opaque Assemblages from the Ningqiang Carbonaceous Chondrite. Water Distribution in the Asteroid Belt. Comparative Planetary Mineralogy: V Systematics in Planetary Pyroxenes and fo 2 Estimates for Basalts from Vesta.
Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.
José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer
2005-01-01
Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...
Cu Isotopic Composition in Surface Environments and in Biological Systems: A Critical Review
Wang, Zhuhong; Chen, Jiubin; Zhang, Ting
2017-01-01
Copper (Cu) is a transition metal and an essential micronutrient for organisms, but also one of the most widespread toxic inorganic contaminants at very high content. The research on Cu isotopes has grown rapidly in the last decade. Hitherto, a large number of studies have been published on the theoretical fractionation mechanisms, experimental data and natural variations of Cu isotopes in variable environments and ecosystems. These studies reported a large variation of δ65Cu (−16.49 to +20.04‰) in terrestrial samples and showed that Cu isotopes could be fractionated by various biogeochemical processes to different extent. Several papers have previously reviewed the coupling of Cu and Zn isotope systematics, and we give here a tentative review of the recent publications only on Cu isotopesin variable surface repositories, animals and human beings, with a goal to attract much attention to research on Cu (and other metals) behaviors in the environment and biological systems. PMID:28524094
U-Th-Pb isotopic systematics of lunar norite 78235
NASA Technical Reports Server (NTRS)
Premo, W. R.; Tatsumoto, M.
1991-01-01
A pristine high-Mg noritic cumulate thought to be relict deep-seated lunar crust is studied with an eye to obtaining evidence of initial Pb isotopic composition and U/Pb ratios of early lunar magma sources and possibly of a primary magma ocean. A leaching procedure was conducted on polymineralic separates to assure the removal of secondary Pb components. The Pb from leached separates do not form a linear trend on the Pb-Pb diagram, indicating open-system behavior either from mixtures of Pb or postcrystallization disturbances. Calculated initial Pb compositions and corresponding U-238/Pb-204 (mu) values are presented, with the assumption of reasonably precise radiometric ages from the literature for norite 78236. The results obtained support the contention that high-Mg suite rocks are coeval with the ferroan anorthosites, both being produced during the earliest stages of lunar evolution.
NASA Astrophysics Data System (ADS)
Lazar, Boaz; Erez, Jonathan
1990-12-01
Extreme depletions in the 13C content of the total dissolved inorganic carbon (CT) were found in brines overlying microbial mat communities. Total alkalinity (AT) and CT in the brines suggest that intense photosynthetic activity of the microbial mat communities depletes the CT from the brine. We suggest that this depletion drives a large, kinetic, negative fractionation of carbon isotopes similar to that observed in highly alkaline solutions. In brines of extreme salinity where microbial mat communities no longer exist, the 13C content of the CT increases, probably because photosynthesis no longer dominates the gas-exchange processes. This mechanism explains light carbon-isotope compositions of carbonate rocks from evaporitic sections and bears on the interpretation of δ13C values in bedded stromatolitic limestones that are ca. 3.5 b.y. old.
NASA Technical Reports Server (NTRS)
Lowe, David C.; Brenninkmeijer, Carl A. M.; Tyler, Stanley C.; Dlugkencky, Edward J.
1991-01-01
A procedure for establishing the C-13/C-12 ratio and the C-14 abundance in the atmospheric methane is discussed. The method involves air sample collection, measurement of the methane mixing ratio by gas chromotography followed by quantitative conversion of the methane in the air samples to CO2 and H2O, and analysis of the resulting CO2 for the C-13/C-12 ratio by stable isotope ratio mass spectrometry and measurement of C-14 content by accelerator mass spectrometry. The carbon isotropic composition of methane in air collected at Baring Head, New Zealand, and in air collected on aircraft flights between New Zealand and Antarctica is determined by the method, and no gradient in the composition between Baring Head and the South Pole station is found. As the technique is refined, and more data is gathered, small seasonal and long-term variations in C-13 are expected to be resolved.
East Asian origin of central Greenland last glacial dust: just one possible scenario?
NASA Astrophysics Data System (ADS)
Újvári, Gábor; Stevens, Thomas; Svensson, Anders; Klötzli, Urs Stephan; Manning, Christina; Németh, Tibor; Kovács, János
2016-04-01
Dust in Greenland ice cores is used to reconstruct the activity of dust emitting regions and atmospheric circulation for the last glacial period. However, the source dust material to Greenland over this period is the subject of considerable uncertainty. Here we use new clay mineral and Sr-Nd isotopic data from eleven loess samples collected around the Northern Hemisphere and compare the 87Sr/86Sr and 143Nd/144Nd isotopic signatures of fine (<10 μm) separates to existing Greenland ice core dust data (GISP2, GRIP; [1]; [2]). Smectite contents and kaolinite/chlorite (K/C) ratios allow exclusion of continental US dust emitting regions as potential sources, because of the very high (>3.6) K/C ratios and extremely high (>~70%) smectite contents. At the same time, Sr-Nd isotopic compositions demonstrate that ice core dust isotopic compositions can be explained by East Asian (Chinese loess) and/or Central/East Central European dust contributions. Central/East Central European loess Sr-Nd isotopic compositions overlap most with ice core dust, while the Sr isotopic signature of Chinese loess is slightly more radiogenic. Nevertheless, an admixture of 90‒10 % from Chinese loess and circum-Pacific volcanic material would also account for the Sr‒Nd isotopic ratios of central Greenland LGM dust. At the same time, sourcing of ice core dust from Alaska, continental US and NE Siberia seems less likely based on Sr and Nd isotopic signatures. The data demonstrate that currently no unique source discrimination for Greenland dust is possible using both published and our new data [3]. Thus, there is a need to identify more diagnostic tracers. Based on initial Hf isotope analyses of fine separates of three loess samples (continental US, Central Europe, China), an apparent dependence of Hf isotopic signatures on the relative proportions of radiogenic clay minerals (primarily illite) was found, as these fine dust fractions are apparently zircon-free. The observed difference between major potential source regions in 176Hf/177Hf that reach several ɛHf units and the first order clay mineralogy dependence of Hf isotopic signatures means there is strong potential for distinguishing between the two hypothesized Greenland dust sources using Hf isotopes [3]. [1] Biscaye P.E., Grousset F.E., Revel M., Van der Gaast S., Zielinski G.A., Vaars A., Kukla G. (1997). Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. Journal of Geophysical Research 102, 26765-26781. [2] Svensson A., Biscaye P.E., Grousset F.E. (2000) Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. Journal of Geophysical Research 105, 4637-4656. [3] Újvári G., Stevens T., Svensson A., Klötzli U.S., Manning, C., Németh T., Kovács J., Sweeney M.R., Gocke M., Wiesenberg G.L.B., Markovic S.B., Zech M. (in press). Two possible source regions for Central Greenland last glacial dust. Geophysical Research Letters, doi: 10.1002/2015GL066153.
Badillo, Daniel; Herzka, Sharon Z; Viana, Maria Teresa
2014-01-01
This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ(15)N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources.
Badillo, Daniel; Herzka, Sharon Z.; Viana, Maria Teresa
2014-01-01
This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ15N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources. PMID:25226392
Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; ...
2016-02-22
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less
Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.
2016-01-01
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10−15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531
Larson, James H.; Richardson, William B.; Vallazza, Jon; Bartsch, Lynn; Bartsch, Michelle
2017-01-01
Inferences about ecological structure and function are often made using elemental or macromolecular tracers of food web structure. For example, inferences about food chain length are often made using stable isotope ratios of top predators and consumer food sources are often inferred from both stable isotopes and fatty acid (FA) content in consumer tissues. The use of FAs as tracers implies some degree of macromolecular conservation across trophic interactions, but many FAs are subject to physiological alteration and animals may produce those FAs from precursors in response to food deficiencies. We measured 41 individual FAs and several aggregate FA metrics in two filter-feeding taxa to (1) assess ecological variation in food availability and (2) identify potential drivers of among-site variation in FA content. These taxa were filter feeding caddisflies (Family Hydropyschidae) and dreissenid mussels (Genus Dreissena), which both consume seston. Stable isotopic composition (C and N) in these taxa co-varied across 13 sites in the Great Lakes region of North America, indicating they fed on very similar food resources. However, co-variation in FA content was very limited, with only one common FA co-varying across this gradient (α-linolenic acid; ALA), suggesting these taxa accumulate FAs very differently even when exposed to the same foods. Based on these results, among-site variation in ALA content in both consumers does appear to be driven by food resources, along with several other FAs in dreissenid mussels. We conclude that single-taxa measurements of FA content cannot be used to infer FA availability in food resources.
Watson: A new link in the IIE iron chain
NASA Technical Reports Server (NTRS)
Olsen, Edward; Davis, Andrew; Clarke, Roy S., Jr.; Schultz, Ludolf; Weber, Hartwig W.; Clayton, Robert; Mayeda, Toshiko; Jarosewich, Eugene; Sylvester, Paul; Grossman, Lawrence
1994-01-01
Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the IIE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new IIE iron. Whole rock Watson silicate shows an enrichment in K and P (each approximately 2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo14)(with very fine exsolution lamellae), antiperthite feldspar (An1-3Or5) with less than 1 micron exsolution lamellae (An1-3Or greater than 40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of approximately 300X and 100-150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite.
Mineralization, watershed geochemistry, and metals in fish from a Subarctic River, Alaska
Gough, L.P.; Wang, B.; Crock, J.G.; Seal, R.R.; Weber-Scannell, P.
2005-01-01
We report on the levels of trace metals and metalloids in Arctic grayling (Thymallus arcticus), an important freshwater sport and subsistence fish in the Fortymile River, east-central Alaska. Functional biogeochemical baseline values and (or) ranges are presented for 38 major- and trace-elements in the muscle (fillet) and liver of 34 fish collected from 11 sampling sites in the watershed. In addition, we present N-, C-, and S-isotopic data for muscle samples. These data are the first to be reported for Arctic grayling in this region of Alaska. Geometric means for total Hg in muscle and liver tissue are 0.069 and 0.062 ppm, respectively. These levels are more than an order of magnitude below the FDA permissible value for methylmercury in fish fillets. In general, we noted little variation in the elemental concentrations in muscle tissue among samples at each of the 11 fish-sampling sites. No definitive link could be attributed between biogeochemical patterns and regional lithology. Stomach-content chemistry varied widely (relative muscle tissue or liver) and generally reflected sediment chemistry - a component of the ingested material. Stomach-content material was examined for the occurrence and frequency of macroinvertebrates and their chemical composition in three fish. Results showed considerable diversity, with 9 to 15 invertebrate taxa of which both aquatic and terrestrial individuals were found. The N-isotopic compositions of muscle fillet samples are homogeneous (??15N = 7.6 - 9.7 permil), reflecting a restricted, low trophic (primary predator) position for the grayling. C and S isotopic compositions (??13C and ??34S) of fillet samples range from -33.1 to -25.8 permil and -8.4 to 8.2 permil, respectively, suggesting heterogeneity of food sources (both aquatic and terrestrial). Copyright ASCE 2005.
Alt, J.C.; Shanks, Wayne C.
2003-01-01
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated ??34Ssulfide (3.7 to 12.7???). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400??C alone cannot account for both the high sulfur contents and high ??34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (???400??C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ???300??C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5???) at temperatures above 250??C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 ?? 1012 g seawater S yr-1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates. ?? 2003 Elsevier Science Ltd.
Yeh, Hsueh-Wen; Hein, James R.; Ye, Jie; Fan, Delian
1999-01-01
The Lijiaying Mn deposit, located about 250 km southwest of Xian, is a high-quality ore characterized by low P and Fe contents and a mean Mn content of about 23%. The ore deposit occurs in shallow-water marine sedimentary rocks of probable Middle Proterozoic age. Carbonate minerals in the ore deposit include kutnahorite, calcite, Mn calcite, and Mg calcite. Carbon (−0.4 to −4.0‰) and oxygen (−3.7 to −12.9‰) isotopes show that, with a few exceptions, those carbonate minerals are not pristine low-temperature marine precipitates. All samples are depleted in rare earth elements (REEs) relative to shale and have negative Eu and positive Ce anomalies on chondrite-normalized plots. The Fe/Mn ratios of representative ore samples range from about 0.034 to <0.008 and P/Mn from 0.0023 to <0.001. Based on mineralogical data, the low ends of those ranges of ratios are probably close to ratios for the pure Mn minerals. Manganese contents have a strong positive correlation with Ce anomaly values and a moderate correlation with total REE contents. Compositional data indicate that kutnahorite is a metamorphic mineral and that most calcites formed as low-temperature marine carbonates that were subsequently metamorphosed. The braunite ore precursor mineral was probably a Mn oxyhydroxide, similar to those that formed on the deep ocean-floor during the Cenozoic. Because the Lijiaying precursor mineral formed in a shallow-water marine environment, the atmospheric oxygen content during the Middle Proterozoic may have been lower than it has been during the Cenozoic.
NASA Astrophysics Data System (ADS)
Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.
2018-04-01
Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.
Yager, Tracy J.B.; McMahon, Peter B.
2012-01-01
Concentrations of dissolved nitrite plus nitrate increased fairly steadily in samples from four shallow groundwater monitoring wells after biosolids applications to nonirrigated farmland began in 1993. The U.S. Geological Survey began a preliminary assessment of sources of nitrogen in shallow groundwater at part of the biosolids-application area near Deer Trail, Colorado, in 2005 in cooperation with the Metro Wastewater Reclamation District. Possible nitrogen sources in the area include biosolids, animal manure, inorganic fertilizer, atmospheric deposition, and geologic materials (bedrock and soil). Biosolids from the Metro Wastewater Reclamation District plant in Denver and biosolids, cow manure, geologic materials (bedrock and soil), and groundwater from the study area were sampled to measure nitrogen content and nitrogen isotopic compositions of nitrate or total nitrogen. Biosolids also were leached, and the leachates were analyzed for nitrogen content and other concentrations. Geologic materials from the study area also were sampled to determine mineralogy. Estimates of nitrogen contributed from inorganic fertilizer and atmospheric deposition were calculated from other published reports. The nitrogen information from the study indicates that each of the sources contain sufficient nitrogen to potentially affect groundwater nitrate concentrations. Natural processes can transform the nitrogen in any of the sources to nitrate in the groundwater. Load calculations indicate that animal manure, inorganic fertilizer, or atmospheric deposition could have contributed the largest nitrogen load to the study area in the 13 years before biosolids applications began, but biosolids likely contributed the largest nitrogen load to the study area in the 13 years after biosolids applications began. Various approaches provided insights into sources of nitrate in the groundwater samples from 2005. The isotopic data indicate that, of the source materials considered, biosolids and (or) animal manure were the most likely sources of nitrate in the wells at the time of sampling (2005), and that inorganic fertilizer, atmospheric deposition, and geologic materials were not substantial sources of nitrate in the wells in 2005. The large total nitrogen content of the biosolids and animal-manure samples and biosolids leachates also indicates that the biosolids and animal manure had potential to leach nitrogen and produce large dissolved nitrate concentrations in groundwater. The available data, however, could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the nitrogen isotopic composition of the two materials is similar. Major-ion data also could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the major-ion composition (as well as the isotopic composition) of the two materials is similar. Without additional data, chloride/bromide mass ratios do not necessarily support or refute the hypothesis that biosolids and (or) animal manure were the primary sources of nitrate in water from the study-area wells in 2005. Concentrations of water-extractable nitrate in the soil indicate that biosolids could be an important source of nitrate in the groundwater recharge. Nitrogen inventories in the soil beneath biosolids-application areas and the nitrogen-input estimates for the study area both support the comparisons of isotopic composition, which indicate that some type of human waste (such as biosolids) and (or) animal manure was the source of nitrate in groundwater sampled from the wells in 2005. The nitrogen-load estimates considered with the nitrogen isotopic data and the soil-nitrogen inventories indicate that biosolids applications likely are a major source of nitrogen to the shallow groundwater at these monitoring wells.
Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans
NASA Technical Reports Server (NTRS)
Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.
2004-01-01
Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.
NASA Astrophysics Data System (ADS)
Oduro, Harry; Van Alstyne, Kathryn L.; Farquhar, James
2012-06-01
Oceanic dimethylsulfoniopropionate (DMSP) is the precursor to dimethylsulfide (DMS), which plays a role in climate regulation through transformation to methanesulfonic acid (MSA) and non-seasalt sulfate (NSS-SO42-) aerosols. Here, we report measurements of the abundance and sulfur isotope compositions of DMSP from one phytoplankton species (Prorocentrum minimum) and five intertidal macroalgal species (Ulva lactuca, Ulva linza, Ulvaria obscura, Ulva prolifera, and Polysiphonia hendryi) in marine waters. We show that the sulfur isotope compositions (δ34S) of DMSP are depleted in 34S relative to the source seawater sulfate by ∼1-3‰ and are correlated with the observed intracellular content of methionine, suggesting a link to metabolic pathways of methionine production. We suggest that this variability of δ34S is transferred to atmospheric geochemical products of DMSP degradation (DMS, MSA, and NSS-SO42-), carrying implications for the interpretation of variability in δ34S of MSA and NSS-SO42- that links them to changes in growth conditions and populations of DMSP producers rather than to the contributions of DMS and non-DMS sources.
NASA Astrophysics Data System (ADS)
Aléon, Jérôme; Marin-Carbonne, Johanna; McKeegan, Kevin D.; El Goresy, Ahmed
2018-07-01
Oxygen, magnesium, and silicon isotopic compositions in the mineralogically complex, ultrarefractory (UR) calcium-aluminum-rich inclusion (CAI) E101.1 from the reduced CV3 chondrite Efremovka confirm that E101.1 is a compound CAI composed of several lithological units that were once individual CAIs, free-floating in the solar protoplanetary disk. Each precursor unit was found to have had its own thermal history prior to being captured and incorporated into the partially molten host CAI. Four major lithological units can be distinguished on the basis of their isotopic compositions. (1) Al-diopside-rich sinuous fragments, hereafter sinuous pyroxene, are 16O-rich (Δ17O ≤ -20‰) and have light Mg and Si isotopic compositions with mass fractionation down to -3.5‰/amu for both isotopic systems. We attribute these peculiar isotopic compositions to kinetic effects during condensation out of thermal equilibrium. (2) Spinel clusters are 16O-rich (Δ17O ∼ -22‰) and have Mg isotope systematics consistent with extensive equilibration with the host melt. This includes (i) δ25Mg values varying between + 2.6‰ and + 6.5‰ close to the typical value of host melilite at ∼+5‰, and (ii) evidence for exchange of radiogenic 26Mg with adjacent melilite as indicated by Al/Mg systematics. The spinel clusters may represent fine-grained spinel-rich proto-CAIs captured, partially melted, and recrystallized in the host melt. Al/Mg systematics indicate that both the sinuous pyroxene fragments and spinel clusters probably had canonical or near-canonical 26Al contents before partial equilibration. (3) The main CAI host (Δ17O ≤ -2‰) had a complex thermal history partially obscured by subsequent capture and assimilation events. Its formation, referred to as the "cryptic" stage, could have resulted from the partial melting and crystallization of a 16O-rich precursor that underwent 16O-depletion and a massive evaporation event characteristic of F and FUN CAIs (Fractionated with Unknown Nuclear effects). Alternatively, a 16O-rich UR precursor may have coagulated with a 16O-poor FUN CAI having 48Ca anomalies, as indicated by perovskite, before subsequent extensive melting. The Al/Mg systematics (2.4 × 10-5 ≤ (26Al/27Al)0‧ ≤ 5.4 × 10-5, where (26Al/27Al)0‧ is a model initial 26Al/27Al ratio per analysis spot) are best understood if the FUN component was 26Al-poor, as are many FUN CAIs. (4) A complete Wark-Lovering rim (WLR) surrounds E101.1. Its Mg and Si isotopic compositions indicate that it formed by interaction of the evaporated interior CAI with an unfractionated 16O-rich condensate component. Heterogeneities in 26Al content in WLR spinels (3.7 × 10-5 ≤ (26Al/27Al)0‧ ≤ 5.7 × 10-5) suggest that the previously reported age difference of as much as 300,000 years between interior CAIs and their WLRs may be an artifact resulting from Mg isotopic perturbations, possibly by solid state diffusion or mixing between the interior and condensate components. The isotopic systematics of E101.1 imply that 16O-rich and 16O-poor reservoirs co-existed in the earliest solar protoplanetary disk and that igneous CAIs experienced a 16O-depletion in an early high temperature stage. The coagulation of various lithological units in E101.1 and their partial assimilation supports models of CAI growth by competing fragmentation and coagulation in a partially molten state. Our results suggest that chemical and isotopic heterogeneities of unclear origin in regular CAIs may result from such a complex aggregation history masked by subsequent melting and recrystallization.
Petrology and geochemistry of komatiites and tholeiites from Gorgona Island, Colombia
NASA Astrophysics Data System (ADS)
Aitken, Bruce G.; Echeverría, Lina M.
1984-04-01
Komatiitic rocks from Gorgona Island, Colombia, in contrast to their Archaean counterparts, occur as rather structureless flows. In addition, textural and mineralogical features indicate that the Gorgona komatiites may have crystallized from superheated liquids. Komatiitic rocks have MgO contents which range from 24 to 11 wt.% and plot on well-defined olivine (Fo90) control lines. Calculations show that potential evolved liquids (MgO<11 wt%) will be SiO2-poor. Komatiites, in this case, cannot be regarded as parental to the associated tholeiitic basalt sequence. On the basis of REE concentrations and Sr, Nd isotopic compositions, the associated basalts are found to be of two types. One type (K-tholeiite) is characterized by noticeably fractionated REE patterns and relatively primitive isotopic compositions similar to those of the komatiites. K-tholeiites, together with komatiites, are regarded as comprising a distinctive komatiitic suite. REE patterns within this suite show progressive depletion in the LREE from K-tholeiites to komatiites, and represent increasingly higher degrees of melting of the same mantle source region. The other type (T-tholeiite), representative of the bulk of the exposed basalt sequence, has flat REE patterns and relatively evolved isotopic compositions. This tholeiitic suite is clearly genetically unrelated to the komatiitic suite.
Long-term nitrogen additions and the intrinsic water-use efficiency of boreal Scots pine.
NASA Astrophysics Data System (ADS)
Marshall, John; Wallin, Göran; Linder, Sune; Lundmark, Tomas; Näsholm, Torgny
2015-04-01
Nitrogen fertilization nearly always increases productivity in boreal forests, at least in terms of wood production, but it is unclear how. In a mature (80 yrs. old) Scots pine forest in northern Sweden, we tested the extent to which nitrogen fertilization increased intrinsic photosynthetic water-use efficiency. We measured δ13C both discretely, in biweekly phloem sampling, and continuously, by monitoring of bole respiration. The original experiment was designed as a test of eddy covariance methods and is not therefore strictly replicated. Nonetheless, we compared phloem contents among fifteen trees from each plot and stem respiration from four per plot. The treatments included addition of 100 kg N/ha for eight years and a control. Phloem contents have the advantage of integrating over the whole canopy and undergoing complete and rapid turnover. Their disadvantage is that some have observed isotopic drift with transport down the length of the stem, presumably as a result of preferential export and/or reloading. We also measured the isotopic composition of stem respiration from four trees on each plot using a Picarro G1101-I CRDS attached to the vent flow from a continuous gas-exchange system. We detected consistent differences in δ13C between the treatments in phloem contents. Within each treatment, the phloem δ13C was negatively correlated with antecedent temperature (R2= 0.65) and no other measured climate variable. The isotopic composition of stem CO2 efflux will be compared to that of phloem contents. However, when converted to intrinsic water-use efficiency, the increase amounted to only about 4%. This is a small relative to the near doubling in wood production. Although we were able to detect a clear and consistent increase in water-use efficiency with N-fertilization, it constitutes but a minor cause of the observed increase in wood production.
Changes in the HOAr isotope composition of clays during retrograde alteration
Wilson, M.R.; Kyser, T.K.; Mehnert, H.H.; Hoeve, J.
1987-01-01
K-Ar ages of illite alteration associated with Middle Proterozoic Athabasca unconformity-type U deposits in Saskatchewan range from 414 to 1493 Ma. The K-Ar ages correlate with water contents and ??D values such that illites with young K-Ar ages have ??D values as low as -169 and water contents as high as 7.7 wt.% whereas illites with older ages have ??D values near -70 and water contents near 4 wt.%. Water extracted at 400??C from illites with low ??D values and high water contents has low ??D and ??18O values similar to those of modern meteoric water suggesting that some of the illites associated with the original deposition of the ore underwent varying degrees of retrograde alteration. The alteration is initiated by hydration of sites in the interlayer region of the illite which results in the partial resetting of the K-Ar ages and introduction of excess structural water in the form of interlamellar water. The interlamellar water is enriched in 18O by about 7 per mil relative to the water that physically surrounded the clay particle. Further alteration decreases the ??D value and increases the ??18O value of the illite by isotopic exchange between the mineral and the interlamellar water. Although the chemical compositions and XRD patterns of the altered illites indicate that no detectable smectite component is present in the samples, the isotopic results suggest that the altered illites may be an early precursor in the formation of mixed-layer illite/smectite by retrograde alteration of pure illite. The wide variation of ??D values of chlorite and kaolinite from these U deposits is analogous to that of the illite suggesting that retrograde alteration of clays by meteoric water can be substantial. The general association of altered clays with areas containing the highest concentrations of U is probably related to localized permeability within the ore zone. ?? 1987.
Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes
NASA Astrophysics Data System (ADS)
Jiang, Fuqing; Frank, Martin; Li, Tiegang; Chen, Tian-Yu; Xu, Zhaokai; Li, Anchun
2013-05-01
The radiogenic strontium (Sr) and neodymium (Nd) isotope compositions of the detrital fraction of surface and subsurface sediments have been determined to trace sediment provenance and contributions from Asian dust off the east coast of Luzon Islands in the western Philippine Sea. The Sr and Nd isotope compositions have been very homogenous near the east coast of the Luzon Islands during the latest Quaternary yielding relatively least radiogenic Sr (87Sr/86Sr = 0.70453 to 0.70491) and more radiogenic Nd isotope compositions (ɛNd(0) = +5.3 to +5.5). These isotope compositions are similar to Luzon rocks and show that these sediments were mainly derived from the Luzon Islands. In contrast, the Sr and Nd isotope compositions of sediments on the Benham Rise and in the Philippine Basin are markedly different in that they are characterized by overall more variable and more radiogenic Sr isotope compositions (87Sr/86Sr = 0.70452 to 0.70723) and less radiogenic Nd isotope compositions (ɛNd(0) = -5.3 to +2.4). The Sr isotope composition in the Huatung Basin is intermediate between those of the east coast of Luzon and Benham Rise, but shows the least radiogenic Nd isotope compositions. The data are consistent with a two end-member mixing relationship between Luzon volcanic rocks and eolian dust from the Asian continent, which is characterized by highly radiogenic Sr and unradiogenic Nd isotope compositions. The results show that Asian continental dust contributes about 10-50% of the detrital fraction of the sediments on Benham Rise in the western Philippine Sea, which offers the potentials to reconstruct the climatic evolution of eastern Asia from these sediments and compare this information to the records from the central and northern Pacific.
NASA Astrophysics Data System (ADS)
Bizimis, M.; Lassiter, J. C.; Salters, V. J.; Sen, G.; Griselin, M.
2004-12-01
We report on the first combined Hf-Os isotope systematics of spinel peridotite xenoliths from the Salt Lake Crater (SLC), Pali and Kaau (PK) vents from the island of Oahu, Hawaii. These peridotites are thought to represent the Pacific oceanic lithosphere beneath Oahu, as residues of MORB-type melting at a paleo-ridge some 80-100Ma ago. Clinopyroxene mineral separates in these peridotites have very similar Nd and Sr isotope compositions with the post erosional Honolulu Volcanics (HV) lavas that bring these xenoliths to the surface. This and their relatively elevated Na and LREE contents suggest that these peridotites are not simple residues of MORB-type melting but have experience some metasomatic enrichment by the host HV lavas. However, the SLC and PK xenoliths show an extreme range in Hf isotope compositions towards highly radiogenic values (ɛ Hf= 7-80), at nearly constant Nd isotope compositions (ɛ Nd= 7-10), unlike any OIB or MORB basalt. Furthermore, these Oahu peridotites show a bimodal distribution in their bulk rock 187Os/186Os ratios: the PK peridotites have similar ratios to the abyssal peridotites (0.130-0.1238), while the SLC peridotites have highly subchondritic ratios (0.1237-0.1134) that yield 500Ma to 2Ga Re-depletion ages. Hf-Os isotopes show a broad negative correlation whereby the samples with the most radiogenic 176Hf/177Hf have the most unradiogenic 187Os/186Os ratios. Based on their combined Hf-Os-Nd isotope and major element compositions, the PK peridotites can be interpreted as fragments of the Hawaiian lithosphere, residue of MORB melting 80-100Ma ago, that have been variably metasomatized by the host HV lavas. In contrast, the extreme Hf-Os isotope compositions of the SLC peridotites suggest that they cannot be the source nor residue of any kind of Hawaiian lavas, and that Hf and Os isotopes survived the metasomatism or melt-rock reaction that has overprinted the Nd and Sr isotope compositions of these peridotites. The ancient (>1Ga) melt depletion event recorded by both the low 187Os/186Os and high 176Hf/177Hf ratios in the SLC peridotites can be explained with two different scenarios. First, the SLC peridotites may represent ancient depleted lithosphere that survived subduction, remained "rafting" in the upper mantle and is now sampled beneath Oahu. However, the lack of such unradiogenic Os isotopes in both MORBs and abyssal peridotites suggests that such peridotites are rare in the upper mantle and makes their exclusive presence under Oahu a rather fortuitous coincidence. Alternatively, the SLC peridotites may represent ancient depleted recycled lithosphere brought up by the Hawaiian plume. A recycled oceanic crust origin has been previously invoked for the Koolau shield lavas. It is then conceivable that fragments of the lithospheric portion of that subducted package have remained coupled with the oceanic crust and are being brought up by the plume from the deep, but because they were previously depleted, these peridotites contribute minimally, if at all, to Hawaiian volcanism. The presence of microdiamonds and majoritic garnets in some SLC pyroxenites also corroborates a deep origin. In this case, the SLC peridotites represent the first-ever direct evidence that subducted material actually makes it back on the surface, essentially closing the subduction cycle.
Trace element evidence for a depleted component intrinsic to the Hawaiian plume
NASA Astrophysics Data System (ADS)
DeFelice, C.; Mallick, S.; Saal, A. E.; Huang, S.
2017-12-01
The Hawaii Scientific Drilling Project (HSDP) recovered 3.5 km of Mauna Kea post-shield and shield stage basalts to investigate the geochemical evolution of a Hawaiian shield stage volcano and to constrain the geochemical structure of Hawaiian plume. A group of tholeiitic lavas from 1760-1810 meters below sea level (mbsl) have higher CaO content at given MgO content and are called high-CaO basalts. Isotopes of Pb, Sr, Hf, and Nd of these basalts show they are the most depleted shield basalts ever recovered in Hawaii. Their 206Pb/204Pb-208Pb/204Pb values indicate that they are not related to Pacific MORB. Their Ba/Th values (115-160) are characteristic of Hawaiian plume material and they are isotopically similar to Hawaiian rejuvenated stage lavas. To further investigate this relationship, we compare high-CaO basalts to the Honolulu Volcanics, a set of rejuvenated stage lavas. To determine their possible petrogenetic relation, we calculate their parental melt composition by adding or removing olivine until their geochemical composition is in equilibrium with Fo90. The High-CaO basalt parent magma composition has a much flatter REE pattern and much lower absolute REE contents than that of the Honolulu lavas. Batch melting forward models are calculated to determine potential sources that could contribute to both the Honolulu Volcanics and high-CaO basalts petrogenesis. Both parental magma compositions can be recreated by melting the same rejuvenated-stage source composition to varying degrees. Honolulu Volcanics are the result of a low degree of melting of the rejuvenated source, while higher degrees of melting reproduce the high-CaO basalts. The High-CaO basalts, erupted during shield-stage volcanism, show that the depleted component that rejuvenated stage basalts form from can be sampled during the most voluminous stage of volcanism, and is likely intrinsic to the plume.
Sulfur Isotope Composition of Putative Primary Troilite in Chondrules
NASA Technical Reports Server (NTRS)
Tachibana, Shogo; Huss, Gary R.
2002-01-01
Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.
Liu, Yu; Zhang, Xufeng; Li, Ying; Wang, Haixia
2017-11-01
Geographical origin traceability is an important issue for controlling the quality of seafood and safeguarding the interest of consumers. In the present study, a new method of compound-specific isotope analysis (CSIA) of fatty acids was established to evaluate its applicability in establishing the origin traceability of Apostichopus japonicus in the coastal areas of China. Moreover, principal component analysis (PCA) and discriminant analysis (DA) were applied to distinguish between the origins of A. japonicus. The results show that the stable carbon isotope compositions of fatty acids of A. japonicus significantly differ in terms of both season and origin. They also indicate that the stable carbon isotope composition of fatty acids could effectively discriminate between the origins of A. japonicus, except for between Changhai Island and Zhangzi Island in the spring of 2016 because of geographical proximity or the similarity of food sources. The fatty acids that have the highest contribution to identifying the geographical origins of A. japonicus are C22:6n-3, C16:1n-7, C20:5n-3, C18:0 and C23:1n-9, when considering the fatty acid contents, the stable carbon isotope composition of fatty acids and the results of the PCA and DA. We conclude that CSIA of fatty acids, combined with multivariate statistical analysis such as PCA and DA, may be an effective tool for establishing the traceability of A. japonicus in the coastal areas of China. The relevant conclusions of the present study provide a new method for determining the traceability of seafood or other food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Katz, Amandine; Bonifacie, Magali; Hermoso, Michaël; Cartigny, Pierre; Calmels, Damien
2017-07-01
The carbonate clumped isotope (or Δ47) thermometer relies on the temperature dependence of the abundance of 13C18O16O22- ion groups within the mineral lattice. This proxy shows tremendous promise to reconstruct past sea surface temperatures (SSTs), but requires calibration of the relationship between Δ47 and calcification temperatures. Specifically, it is important to determine whether biologically-driven fractionation (the so-called "vital effect") overprints Δ47 values, as reported in some biominerals such as the foraminifera and the coccoliths for the carbon and oxygen isotope systems. Despite their abundance in the pelagic environment, coccolithophores have not been comprehensively investigated to test the reliability of coccolith Δ47-inferred temperatures. In this study, we cultured three geologically-relevant coccolith species (Emiliania huxleyi, Coccolithus pelagicus, and Calcidiscus leptoporus) at controlled temperatures between 7 and 25 ± 0.2 °C. Other variables such as pCO2, pH, alkalinity, nutrient concentrations and salinity were kept constant at mean present-day oceanic conditions. Although cultured coccoliths exhibit substantial species-specific oxygen and carbon isotope vital effects, we found that their Δ47 composition follows a statistically indistinguishable relationship with 1/T2 for all three species, indicating a lack of interspecific vital effects in coccoliths. Further, the Δ47 composition of coccolith calcite is identical to inorganic calcite precipitated at the same temperature, indicating an overall absence of clumped isotope vital effect in coccolith biominerals. From a paleoceanographic perspective, this study indicates that the Δ47 values of sedimentary coccoliths - even from highly diverse/mixed assemblages - can be analyzed to reconstruct SSTs with confidence, as such temperature estimates are not biased by taxonomic content or changing interspecies vital effects through time.
Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonat Sen; Gilles Youinou
2013-02-01
It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this casemore » the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)« less
Evidence of subduction and crust-mantle mixing from a single diamond
NASA Astrophysics Data System (ADS)
Schulze, Daniel J.; Harte, Ben; Valley, John W.; Channer, Dominic M. DeR.
2004-09-01
Cathodoluminescence (CL) imaging of polished sections of a diamond from the Guaniamo region of Venezuela suggests a history of the diamond involving two periods of growth separated by a period of resorption and possibly brittle deformation. In situ electron probe analysis of multiple eclogitic garnet inclusions reveals a correlation between garnet composition and location in the stone. An early-formed garnet in the diamond core has higher Ca/(Ca+Mg) and lower Mg/(Mg+Fe) values than later garnets associated with the second period of diamond growth. This variation conforms to an extensive trend of variation in the suite of eclogitic garnets extracted from Venezuelan diamonds. The diamond is zoned in carbon isotope composition (in situ secondary ion mass spectrometry, SIMS, data). The core compositions ( δ13C PDB), corresponding to the first stage of growth, average -17.7‰. The second period of growth is apparently in two sub-sets of CL zones with mean values of -13.0‰ and -7.9‰. Nitrogen contents of diamond are low (30-300 atomic ppm) and do not correlate with carbon isotope composition. Oxygen isotope ratios of the garnet inclusions are elevated substantially above those expected for "common mantle"; δ18O VSMOW of early garnet is approximately +10.5‰ and two late garnets average +8.8‰. The evolutionary trend of magnesium enrichment in garnet is unlikely to represent igneous fractionation. The stable isotope data are consistent with diamond formation in subducted meta-basic rocks that had interacted with sea water at low temperatures at or near the sea floor and contained a substantial biogenic carbon component. During or following subduction, diamonds continued to form in an evolving system that was progressively modified by interaction with mantle material.
Ayuso, R.A.; de Vivo, B.; Rolandi, G.; Seal, R.R.; Paone, A.
1998-01-01
Alkaline volcanism produced by Monte Somma-Vesuvius volcano includes explosive plinian and subplinian activity in addition to effusive lava flows. Pumice, scoria, and lava (150 samples) exhibit major- and trace-element gradients as a function of SiO2 (58.9-47.2 wt%) and MgO (0-7.8 wt%); Mg value are ???50. Internally gradational chemical groups or cycles are distinguished by age: (1) 25 000 to 14 000 yr B.P.; (2) 8000 yr B.P. to A.D. 79; and (3) A.D. 79 to 1944. A small number of lavas, dikes and scora were also analysed from the Somma formation (~ 35 000 to 25 000 yr B.P.). Within each group, contents of Na2O + K2O increas with decreasing MgO along distinct rocks. Nb/Y values are variable from 0.66 to 3.14 (at SiO2 ??? 50 wt%) generally in the range of alkaline and ultra-alkaline rocks. Variations in contents of some majro elements (e.g., P and Ti), and trace elements (e.g., Th, Nb, Ta, Zr, Hf, Pb, La, and Sc), as well as contrasting trends in ratios of various elements (e.g., Ta/Yb, Hf/U, Th/Ta, Th/Hf, Th/Yb, etc.) are also generally consistent with the group subdivisions. For example, Th/Hf increases from ??? 5 to ??? 10 with decreasing age for the Vesuvius system as a whole, yielding similar compositions in the least evolved rocks (low-silica, high-MgO, imcompatible element-poor) erupted at the end of each cycle. Internal variations within individual eruptions also systematically changed generally towards a common mafic composition at the end of each cycle, thus reflecting the dominanit volume in the magma chamber. At the start of a new eruptive cycle, the rocks are relatively enriched in incompatible elements; younger groups also contain higher abundances than other groups. N-MORB-normalized multielement diagrams exhibit selective enrichments of Sr, K, Rb, Th, and the light rare-earth elements; deep Nb and Ta negative anomalies commonly seen in rocks generated at orogenic margins are absent in the light rare-earth elements; deep Nb and Ta netgative anomalies commonly seen in rocks generated at orogenic margins are absent in our samples. Sr isotopic compositions are known to be variable within some of the units, in agreement with our data (87Sr/86Sr ~ 0.70699 to 0.70803) and with contributions from several isotopic components. Isotopic compositions for ??18O (7.3 to 10.2%), Pb for mineral separates and whole rocks (206Pb/204Pb ~ 18.947 to 19.178, 207Pb/204/Pb ~ 15.617 to 15.769, 208Pb/204Pb ~38.915 to 39.345), and Nd (143Nd ~ 0.51228 to 0.51251) also show variability. Oxygen isotope data show that pumices have higher ??18O values than cogenetic lavas, and that ??18O values and SiO2 are correlated. Radiogenic and stable isotope data plot within range of isotopic compositions for the Roman comagmatic province. Fractional crystallization cannot account for the radiogenic isotopic compositions of the Vesuvius magmas. We favor instead the combined effects of heterogeneous magma sources, together with isotopic exchange near the roof of the magma chamber. We suggest that metasomatized continental mantle lithosphere is the principal source of the magmas. This kind of enriched mantle was melted and reactivated in an area of continental extension (incipient rift setting) without direct reliance on contemporaneous subduction processes but possibly with input from mantle sources that resemble those that produce ocean island basalts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less
Pb isotope systematics in volcanic river system: Constraints about weathering processes
NASA Astrophysics Data System (ADS)
Negrel, P. J.; Millot, R.; Petelet-Giraud, E.; Guerrot, C.
2012-12-01
We present a series of lead isotopes in soils and sediments developed on volcanic rocks forming a small watershed flowing through the Massif Central (France). The Massif Central volcanic province is a widespread area of Tertiary to Recent continental alkaline volcanism comprising alkali basalts and basanites. The Allanche watershed has an area of 160 km2, a maximum altitude in the watershed of 1400 m (a.s.l.) and the relief between the extreme sampling points of 340 m The river is 29 km long from headwaters to the outlet and from its origin in the Cézallier area to its mouth in the Allagnon river (a tributary of the Allier river), the Allanche river flows through the volcanic terrains of the lava plateau (11 to 2.5 Ma). Main bedrocks are basanites (nepheline or leucitic basalts), with SiO2 around 41-45%, low Na2O + K2O (<5%), and with modal or normative nepheline or leucite and a ground mass of clinopyroxene and plagioclase. Surrounding rocks are feldspatic basalts with SiO2 close to 46-49%, low Na2O + K2O (<5%). The main phase in these basalts is plagioclase with normative nepheline, hyperstene and olivine. Crustal contamination (e.g. by granite, gneiss or metasedimentary granulite, as stated by Downes, 1987, doi: 10.1144/GSL.SP.1987.030.01.25) has occurred in the differentiated magmas of both series, as witnessed by lead isotopic variations in conjunction with Rb/La ratios and lead contents. Using Pb isotope ratios, major and trace elements (from Négrel and Deschamps, 1996, Aquatic Geochemistry, 2, 1-27) we therefore compare sediments and soils evolution over the Allanche river watershed. K and Ca are considered as mobile reference elements and illustrate the weathering state of soils and sediments relative to parent rocks through a large decrease in K and Ca content when compared to Si; the sediments being less depleted than soils. Lead, with regards to Si shows three behaviour with depleted Si content- same lead content that bedrock, depleted Si content- less lead content and depleted Si content - high lead content that bedrock. The comparison of 1000Pb/K versus Si/K ratio evidenced the evolution line from weathering processes and the lead enrichment from atmospheric deposition as a major contributor to explain the deviation of several points from this line. Lead isotopes decrease from bedrock to sediments-soils without any clear relationship when compared to lead contents. The use of Pb-isotopic compositions showed that most of the lead budget in sediments and soils result from bedrock weathering with an influence of gasoline additive-lead derived inputs and a lack of lead input from agricultural activities.
Atomic Weights and Isotopic Compositions
National Institute of Standards and Technology Data Gateway
SRD 144 Atomic Weights and Isotopic Compositions (Web, free access) The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.
Engel, Annette Summers; Lichtenberg, Henning; Prange, Alexander; Hormes, Josef
2007-04-01
Most transformations within the sulfur cycle are controlled by the biosphere, and deciphering the abiotic and biotic nature and turnover of sulfur is critical to understand the geochemical and ecological changes that have occurred throughout the Earth's history. Here, synchrotron radiation-based sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to examine sulfur speciation in natural microbial mats from two aphotic (cave) settings. Habitat geochemistry, microbial community compositions, and sulfur isotope systematics were also evaluated. Microorganisms associated with sulfur metabolism dominated the mats, including members of the Epsilonproteobacteria and Gammaproteobacteria. These groups have not been examined previously by sulfur K-edge XANES. All of the mats consisted of elemental sulfur, with greater contributions of cyclo-octasulfur (S8) compared with polymeric sulfur (Smicro). While this could be a biological fingerprint for some bacteria, the signature may also indicate preferential oxidation of Smicro and S8 accumulation. Higher sulfate content correlated to less S8 in the presence of Epsilonproteobacteria. Sulfur isotope compositions confirmed that sulfur content and sulfur speciation may not correlate to microbial metabolic processes in natural samples, thereby complicating the interpretation of modern and ancient sulfur records.
Magnesium isotopic composition of the Earth and chondrites
NASA Astrophysics Data System (ADS)
Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali
2010-07-01
To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ 25Mg and ±0.07‰ on δ 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ 25Mg = -0.13 ± 0.05 (2SD) and δ 26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts ( n = 110) and δ 25Mg = -0.13 ± 0.03 (2SD) and δ 26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ 25Mg = -0.15 ± 0.04 (2SD) and δ 26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ 25Mg and -0.25 ± 0.07 for δ 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites. The chondritic composition of the Earth implies that Mg isotopes were well mixed during accretion of the inner solar system.
Stable Vanadium Isotopes as a Redox Proxy at High Temperatures?
NASA Astrophysics Data System (ADS)
Prytulak, J.; Sossi, P.; Halliday, A.; Plank, T. A.; Savage, P.; Woodhead, J. D.
2016-12-01
There is currently no consensus on the relative oxygen fugacity (fO2) of the mantle source of mid-ocean ridge basalts compared to the sub-arc mantle, the region that is central to the mediation of crust-mantle mass balances. Vanadium is a multivalent transition metal whose stable isotope fractionation may reflect oxygen fugacity (fO2). However, a direct link between V isotope composition and fO2 is currently far from convincingly demonstrated. Furthermore, differences in co-ordination environment also play a large role in causing stable isotope fractionation. Here we present V isotope measurements of two suites of co-genetic magmas from contrasting tectonic settings: the Mariana arc and Hekla volcano, Iceland. We use this data alongside the tightly constrained V isotope composition of MORB [1] to assess the effects of fO2 and crystal fractionation on stable vanadium isotopes. We show that, for a given MgO content, V isotopes are identical within analytical error between arc basalts from the Marianas, lavas from Hekla, and MORB. The most striking aspect of our igneous, high temperature V isotope data is the large isotope fractionation (on the order of 2 ‰) towards heavier values in magmatic suites from both Hekla and the Marianas with progressive differentiation. We use a self consistent model of fractionating cotectic phases in both igneous suites to match major, trace and V isotope data. Vanadium partition coefficients required for (titano)magnetite are significantly higher in Hekla (DVmag = 42) than Mariana lavas (DVmag = 32), consistent with a more oxidised source in the latter. Calculated Rayleigh fractionation factors are similar in both suites (Δ51Vmin-melt of -0.4 to -0.5‰) and strongly implicate co-ordination differences between oxides and melt are the dominant driving force for V isotope fractionation. Thus, although fO2likely has a second order effect on V isotopes, they are not a direct proxy for oxygen fugacity in magmatic systems. [1] Prytulak, et al. 2013. EPSL 365, 177-189
High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS
NASA Astrophysics Data System (ADS)
Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian
2006-08-01
The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions, and concentrations, could be directly related to contamination by the steel (mortar/pestle) used to process the materials. Contamination also accounts for the high concentrations of certain other trace elements (e.g., Li, Mo, Cd, Sn, Sb, W) in various USGS reference materials.
Barium isotope composition of altered oceanic crust from the IODP Site 1256 at the East Pacific Rise
NASA Astrophysics Data System (ADS)
Nan, X.; Yu, H.; Gao, Y.
2017-12-01
To understand the behavior of Ba isotopes in the oceanic crust during seawater alteration, we analyzed Ba isotopes for altered oceanic crust (AOC) from the IODP Site 1256 at the East Pacific Rise (EPR). The samples include 33 basalts, 5 gabbros, and 1 gabbronorite. This drill profile has four sections from top to bottom, including the volcanic section, transition zone, sheeted dyke complex, and plutonic complex. They display various degrees of alteration with obviously variable temperatures and water/rock ratios (Gao et al., 2012). The volcanic section is slightly to moderately altered by seawater at 100 to 250°; the transition zone is a mixing zone between upwelling hydrothermal fluids and downwelling seawater; and the sheeted dyke complex and plutonic complex are highly altered by hydrothermal fluids (˜250°). Ba isotopes were analyzed on a Neptune Plus MC-ICP-MS at the University of Science and Technology of China. The long-term precision of δ137/134Ba is better than 0.04‰ (2SD). The δ137/134Ba of the volcanic section and the top of the transition zone range between -0.01 and 0.30‰, higher than the δ137/134Ba of fresh MORB and upper mantle (0.020 ± 0.021‰, 2SE, Huang et al., 2015). Similarly, the δ137/134Ba of the sheeted dyke complex ranges from 0.05 to 0.28‰. The plutonic section has δ137/134Ba from -0.17 to -0.05‰, which is lower than the upper mantle, with one exception that has δ137/134Ba of 0.19‰. No correlation exists between Ba contents and δ137/134Ba. The weighted average δ137/134Ba of the AOC samples is 0.13±0.04‰ (2SE), significantly higher than that of the upper mantle. In all, our AOC data reveal obvious Ba isotopic fractionation, reflecting alteration of the AOC by hydrothermal fluids and seawater. The obvious difference of Ba isotope composition between the AOC and the upper mantle further indicates that recycling of the AOC could result in Ba isotope heterogeneity of the mantle. References: Gao Y, Vils F, Cooper K M, et al. (2012) Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific Rise, ODP Site 1256. Geochemistry, Geophysics, Geosystems,13(10). Huang F., Nan X., Hu M., Huang S. and Huang J. (2015) Barium isotope compositions of igneous rocks. Goldschm. Abstr.2015, 1331.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Place, B.G., Westinghouse Hanford
1996-09-24
The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed,more » include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.« less
Noble gases in diamonds - Occurrences of solarlike helium and neon
NASA Technical Reports Server (NTRS)
Honda, M.; Reynolds, J. H.; Roedder, E.; Epstein, S.
1987-01-01
Seventeen diamond samples from diverse locations were analyzed for the contents of He, Ar, Kr, and Xe, and of their isotopes, using a Reynolds (1956) type glass mass spectrometer. The results disclosed a large spread in the He-3/He-4 ratios, ranging from values below atmospheric to close to the solar ratio. In particular, solarlike He-3/He-4 ratios were seen for an Australian colorless diamond composite and an Arkansas diamond, which also displayed solarlike neon isotopic ratios. Wide variation was also observed in the He-4/Ar-40 ratios, suggesting a complex history for the source regions and the diamond crystallization processes.
NASA Astrophysics Data System (ADS)
Stolpnikova, E. M.; Kovaleva, N. O.; Kovalev, I. V.
2018-01-01
Paleosols of Trubchevsk district of the Bryansk region (Russia) lie in landscape with its own characteristic micro-relief, called Trubchevsk Opolye. The radiocarbon data have obtained for two interstadial soils: 16500 ± 230 Ki-17 414, 12930 ± 170 Ki-17 413 years ago. The ratio δ13Corg for underlying sandy pedosediments varies in range -26.5-27.2 %o characterizes relatively humid climate. The most lightweight carbon isotope composition (δ13C = -28.4-29.5 %o) measured for the Holocene second humus horizon, discovered in microdepressions of Trubchevsk opolye and dating (in its upper part) 2180 ± 60 Ki-17 415 BP, 1650±60 Ki-18775. It is characterized by a high content of phosphorus, including its strong accumulation of organic compounds (635.8 mg/kg P2O5).
NASA Astrophysics Data System (ADS)
Rapti Caputo, D.; Martinelli, G.
Groundwater samples from wells were collected to examine the hydrochemical char- acteristics and isotopic composition of the water resources in the Ferrara area (delta Po plain). Electrical conductivity (EC), pH, total dissolved solid (TDS), temperature of the water were directly measured in the field. Subsequently, in the laboratory, the samples were analysed for the determination of major ions such as Ca, Mg, K, Na, SO4, Cl, NO3 and HCO3. Also, oxygen, deuterium and tritium isotopic composition, of the same samples were analysed for the isotopic characterisation of the waters. Three principal water groups can be distinguished on the basis of the distribution of the values of 18O and 2H. The first group (A), include the waters from the wells that exploit the unsatured shallow aquifer, developing in mainly sandy or sandy-silty lenses. These are large diameter wells, whose depth does not exceed the 7 m, while their piezometric level is at depth varying between 2 and 3 m from the soil surface. The isotopic composition of such wells is strongly affected by meteorological events (local recharge). Indeed, the main supply to the aquifer occurs through infiltration, mainly from rainwaters and, secondly, from the waters contained in the drainage channels. The hydrochemical characteristics of the waters coming from those wells present a very high sulphate concentration (up to 508 mg/l). To the second group (B) belong the waters with an 18O and 2H content lower than the previously described group and varying, respectively, between -9.6 < 18O < -9.0 and 68.9 < 2H < -64.7. In partic- ular, this group include the waters from the wells exploiting the first confined aquifer sistem, developed in mainly sandy layers. The top of this hydrogeological units, is at a depth varying between 15 and 20 m from the soil surface, while the thickness varies from 20 and 35 m. The waters of this goup present low oxygen values and deuterium and a substantial variation in the traces of tritium with variations from 2.5 to 22.5 +/- 3.9 UT. The low concentration of 2.5 UT, in particular, allows us to evaluate a resi- dence time in underground aquifer for these waters of about 30 years. The high tritium content value of the waters (22.5 +/- 5.6 UT) can be interpreted as mixing phenom- ena between the 'old' waters of the confined aquifer and the 'recent additions' of the network hydrological system situated in the area of the Ferrara plain (Po and Po di Volano rivers). In group C, are the waters of the Po River, where low values can be 1 observed both in oxygen and deuterium contents, with values equal to -9.90 s´ 0.03 and -71.3 s´ 0.9, respectively.
Converting isotope ratios to diet composition - the use of mixing models - June 2010
One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...
Taylor, Gordon T.; Suter, Elizabeth A.; Li, Zhuo Q.; Chow, Stephanie; Stinton, Dallyce; Zaliznyak, Tatiana; Beaupré, Steven R.
2017-01-01
A new method to measure growth rates of individual photoautotrophic cells by combining stable isotope probing (SIP) and single-cell resonance Raman microspectrometry is introduced. This report explores optimal experimental design and the theoretical underpinnings for quantitative responses of Raman spectra to cellular isotopic composition. Resonance Raman spectra of isogenic cultures of the cyanobacterium, Synechococcus sp., grown in 13C-bicarbonate revealed linear covariance between wavenumber (cm−1) shifts in dominant carotenoid Raman peaks and a broad range of cellular 13C fractional isotopic abundance. Single-cell growth rates were calculated from spectra-derived isotopic content and empirical relationships. Growth rates among any 25 cells in a sample varied considerably; mean coefficient of variation, CV, was 29 ± 3% (σ/x¯), of which only ~2% was propagated analytical error. Instantaneous population growth rates measured independently by in vivo fluorescence also varied daily (CV ≈ 53%) and were statistically indistinguishable from single-cell growth rates at all but the lowest levels of cell labeling. SCRR censuses of mixtures prepared from Synechococcus sp. and T. pseudonana (a diatom) populations with varying 13C-content and growth rates closely approximated predicted spectral responses and fractional labeling of cells added to the sample. This approach enables direct microspectrometric interrogation of isotopically- and phylogenetically-labeled cells and detects as little as 3% changes in cellular fractional labeling. This is the first description of a non-destructive technique to measure single-cell photoautotrophic growth rates based on Raman spectroscopy and well-constrained assumptions, while requiring few ancillary measurements. PMID:28824580
NASA Astrophysics Data System (ADS)
Stuart, Finlay; Rogers, Nick; Davies, Marc
2016-04-01
The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a common depletion history and that they do not mix with shallower mantle reservoirs to the same extent.
The CN/C15N isotopic ratio towards dark clouds
NASA Astrophysics Data System (ADS)
Hily-Blant, P.; Pineau des Forêts, G.; Faure, A.; Le Gal, R.; Padovani, M.
2013-09-01
Understanding the origin of the composition of solar system cosmomaterials is a central question, not only in the cosmochemistry and astrochemistry fields, and requires various approaches to be combined. Measurements of isotopic ratios in cometary materials provide strong constraints on the content of the protosolar nebula. Their relation with the composition of the parental dark clouds is, however, still very elusive. In this paper, we bring new constraints based on the isotopic composition of nitrogen in dark clouds, with the aim of understanding the chemical processes that are responsible for the observed isotopic ratios. We have observed and detected the fundamental rotational transition of C15N towards two starless dark clouds, L1544 and L1498. We were able to derive the column density ratio of C15N over 13CN towards the same clouds and obtain the CN/C15N isotopic ratios, which were found to be 500 ± 75 for both L1544 and L1498. These values are therefore marginally consistent with the protosolar value of 441. Moreover, this ratio is larger than the isotopic ratio of nitrogen measured in HCN. In addition, we present model calculations of the chemical fractionation of nitrogen in dark clouds, which make it possible to understand how CN can be deprived of 15N and HCN can simultaneously be enriched in heavy nitrogen. The non-fractionation of N2H+, however, remains an open issue, and we propose some chemical way of alleviating the discrepancy between model predictions and the observed ratios. Appendices are available in electronic form at http://www.aanda.orgThe reduced spectra (in FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A65
A Chlorine-Centric Perspective on Fluid-Mediated Processes at Convergent Plate Boundaries
NASA Astrophysics Data System (ADS)
Selverstone, J.
2014-12-01
The release and migration of metamorphic fluids from subducting slabs into overlying mantle is widely recognized as a major mechanism in producing arc geochemical signatures and returning fluid-mobile elements to earth's crust and surface environments. Although the magnitudes of many geochemical fluxes are well constrained, the processes whereby mass transfer occurs in different portions of the subduction system are less well known. Chlorine stable isotopes provide a new perspective on some of these processes: Cl is hydrophilic, but decarbonation reactions favor Cl retention in minerals. Cl also shows less isotopic fractionation than other fluid-sensitive systems and may thus preserve evidence of specific fluid sources and/or fluid mixing events. Detailed studies of sedimentary sequences show that individual beds are isotopically homogeneous but large heterogeneities in δ37Cl exist across beds on a cm to m scale and vary as a function of depositional environment. Compositionally correlative medium-, high-, and ultrahigh-pressure metamorphic sequences in the Alps record decreases of 30-50% in Cl contents in the earliest stages of metamorphism, but little change thereafter. No statistically significant change in isotopic composition occurs during prograde metamorphism of individual horizons, and the same large degree of isotopic heterogeneity (up to 6‰) persists throughout the prograde devolatilization history of the rocks. Likewise, analysis of HP/UHP serpentinites and altered oceanic crust show that heterogeneous protolith compositions are preserved during transport to sub-arc depths, despite large-scale devolatilization. However, upward transport of rocks within the subduction channel results in highly localized interaction with isotopically distinct, Cl-bearing fluid packets. Overlying forearc wedge rocks also record heterogeneous and channelized interaction with distinct fluid components with different δ37Cl. Within-layer fluid compartmentalization during continuous devolatilization reactions must thus be reconciled with discontinuous, cross-layer fluid percolation out of the slab and into the wedge. The resulting implications of the chlorine data for recent mechanical models of slab-to-wedge fluid transport will be discussed.
Record of archaeal activity at the serpentinite-hosted Lost City Hydrothermal Field.
Méhay, S; Früh-Green, G L; Lang, S Q; Bernasconi, S M; Brazelton, W J; Schrenk, M O; Schaeffer, P; Adam, P
2013-11-01
Samples of young, outer surfaces of brucite-carbonate deposits from the ultramafic-hosted Lost City hydrothermal field were analyzed for DNA and lipid biomarker distributions and for carbon and hydrogen stable isotope compositions of the lipids. Methane-cycling archaeal communities, notably the Lost City Methanosarcinales (LCMS) phylotype, are specifically addressed. Lost City is unlike all other hydrothermal systems known to date and is characterized by metal- and CO2 -poor, high pH fluids with high H2 and CH4 contents resulting from serpentinization processes at depth. The archaeal fraction of the microbial community varies widely within the Lost City chimneys, from 1-81% and covaries with concentrations of hydrogen within the fluids. Archaeal lipids include isoprenoid glycerol di- and tetraethers and C25 and C30 isoprenoid hydrocarbons (pentamethylicosane derivatives - PMIs - and squalenoids). In particular, unsaturated PMIs and squalenoids, attributed to the LCMS archaea, were identified for the first time in the carbonate deposits at Lost City and probably record processes exclusively occurring at the surface of the chimneys. The carbon isotope compositions of PMIs and squalenoids are remarkably heterogeneous across samples and show highly (13) C-enriched signatures reaching δ(13) C values of up to +24.6‰. Unlike other environments in which similar structural and isotopic lipid heterogeneity has been observed and attributed to diversity in the archaeal assemblage, the lipids here appear to be synthesized solely by the LCMS. Some of the variations in lipid isotope signatures may, in part, be due to unusual isotopic fractionation during biosynthesis under extreme conditions. However, we argue that the diversity in archaeal abundances, lipid structure and carbon isotope composition rather reflects the ability of the LCMS archaeal biofilms to adapt to chemical gradients in the hydrothermal chimneys and possibly to perform either methanotrophy or methanogenesis using dissolved inorganic carbon, methane or formate as a function of the prevailing environmental conditions. © 2013 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.
2016-01-01
Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has a H-isotopic composition that is intermediate (dD of 1000-2000per mille) between an isotopically light mantle (Delta D is less than 275per mille [10]) and an isotopically heavy atmosphere (dD of 2500-6100per mille [11, 12]). Apatites in NWA 7034 occur in a number of lithologic domains, however apatites across all lithologic domains have been affected by a Pb-loss event at about 1.5 Ga before present [5], so they are unlikely to have retained a primary composition and are more likely to have equilibrated with fluids within the martian crust that may or may not have exchanged with the martian atmosphere. Equilibration of apatite with crustal fluids is further supported by the chlorine-rich compositions exhibited by apatites in NWA 7034 in comparison to apatites from other martian meteorites (Figure 1; [13]). Cl is more hydrophilic than F, which promotes formation of Cl-rich apatite compositions in fluid-rich systems [e.g., 14, 15-17].
Source Signature of Sr Isotopes in Fluids Emitting From Mud volcanoes in Taiwan
NASA Astrophysics Data System (ADS)
Chung, C.; You, C.; Chao, H.
2003-12-01
Located at the boundary between the Philippine Sea Plate and the Asia Continental Plate, abundance of mud volcanoes were erupted on land in Taiwan. According to their occurrences and associated tectonic settings, these mud volcanoes were classified into four groupies. The group (I) mud volcanoes are located in the western coastal plane, whereas group (II) and (III) are situated near the Kutinkung anticline axis and the Chishan fault respectively. The group (IV) mud volcanoes are discovered at the Coastal Range. Although there are numerous studies focused on morphology, possible fluid migration paths and sources are poorly understood. We have collected and analyzed major ions and Sr isotopic ratios in fluids separated from various mud volcanoes in Taiwan. Chemical contents of these fluids were measured by IC and the emitted gasses were analyzed by GC. The Sr concentrations in these fluids were determined using AA and the isotopic compositions were analyzed by TIMS. The dominated ions in fluids are Na and Cl which account for 98% of dissolved materials. All fluids show similar Na/Cl ratios(0.7-0.8), slightly higher than seawater but each group has unique Sr isotopic signature. Waters expelled from group I mud volcanoes featured with low salinity and high Sr isotopic ratios ranged from 0.71150 to 0.71175. Groups II and III were outcroped in the Kutinkung formation but show distinctive chemical compositions. Group II fluids have four times Cl concentrations(358-522mM) compared with those of group III(85-162mM). The latter fluids appear to be more radiogenic(0.71012- 0.71075) indicating possible influence due to water-rock interactions. Low 87Sr/86Sr(0.70692-0.70939) is typical characteristic of mud volcano fluids in group IV where large Mg and K depletion were discovered, suggesting effects due to sediment diagenetic processes. The chemical compositions of mud volcano associated gasses show similar distribution pattern. The major gas constituents in mud volcano zones II and III are methane(>80%), air(1-10%) and carbon dioxide(1-5%). Gases collected from zone IV display significantly higher air content(5-20%) with low carbon dioxide(<0.2%). These results are useful for gaining a better understanding of mud volcano fluid sources.
NASA Technical Reports Server (NTRS)
Des Marais, D. J.; Mitchell, J. M.; Meinschein, W. G.; Hayes, J. M.
1980-01-01
The structures and C-13 contents of individual hydrocarbons extracted from bat guano found in the Carlsbad region of New Mexico are analyzed in order to elucidate details of the carbon flow in the plant-insect-bat ecosystem. Carbon isotopic analyses indicate that equivalent numbers of plants with C3 and C4 photosynthetic pathways occupy the feeding area of the bats, which supports alfalfa and cotton as well as native plants. The molecular composition of the guano is consistent with an origin in two distinct populations of insects with different feeding habits, one of which may graze predominantly on crops. It is also pointed out that isotopic analyses of more ancient guano deposits may be useful in characterizing prevalent vegetation and climate of earlier periods.
Zhang, Hua; Yin, Run-sheng; Feng, Xin-bin; Sommar, Jonas; Anderson, Christopher W N; Sapkota, Atindra; Fu, Xue-wu; Larssen, Thorjørn
2013-11-25
The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ(199)Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude.
NASA Astrophysics Data System (ADS)
Cowie, G.; Mowbray, S.; Belyea, L.; Laing, C.; Allton, K.; Abbott, G.; Muhammad, A.
2010-12-01
Northern peatlands store around one third of global soil C and thus represent a key reservoir. To elucidate how these systems might respond to climate change, field- and laboratory-based experimental incubation studies are being conducted at sites across a natural peatland gradient in the boreonemoral zone of central Sweden (Ryggmossen). The site comprises four successional stages, from edge to centre; Swamp Forest (SF), Lagg Fen (LF), Bog Margin (BM) and Bog Plateau (BP). The well-preserved succession shows strong decreases in mineral cations and pH, and distinct changes in vegetation and water-table depth. As an underpinning to these experiments, comprehensive characterization of natural soil organic matter (SOM) alteration has been carried out through detailed analyses of vegetation and downcore profiles at contrasting topographic sites (hummock vs hollow) in each of the four locations. As illustrated in Figure 1, while some similarities occur in downcore trends, contrasts are observed in C and N elemental and stable isotopic compositions, between stages and, in some cases, between microtopographic settings. Downcore trends and intersite differences are also observed in biochemical yields and molecular composition (carbohydrates, amino acids, phenols, lipids and D/L amino acid ratios). These reflect SOM decay and alteration combined with the effects of contrasting hydrologic, redox and nutrient regimes and differing vegetation and microbial inputs at each of the study sites. Multivariate analysis is used to to elucidate compositional patterns that characterize and delineate progressive SOM decay, specific vegetation types, and the effects of contrasting environmental conditions at the different sites. Figure 1. A. Organic carbon content (wt %), B. Atomic ratio of organic C to total N, C. Stable C isotopic composition of organic C (d13Corg), and D. Stable N isotopic composition of total nitrogen (d15N), all for core profiles from contrasting settings (hummock and hollow) at locations spanning a peatland gradient. Site locations are defined in the text.
NASA Astrophysics Data System (ADS)
Currie, L. A.; Kessler, J. D.
2005-05-01
The primary objective of the research reported here has been the development of an hybrid reference material (RM) to serve as a test of accuracy for elemental carbon (EC) isotopic (14C) speciation measurements. Such measurements are critically important for the quantitative apportionment of fossil and biomass sources of ''soot'' (EC), the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust), showed a range of results, but since the ''truth'' was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC) of measurement validity (Currie et al., 2002). Components of the new Hybrid RM (DiesApple), however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically). NIST SRM 2975 (Forklift Diesel Soot) has little or no 14C, and its major compositional component is EC. SRM 1515 (Apple Leaves) has the 14C content of biomass-C, and it has little or no EC. Thus, the hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C from SRM 1515 in the EC isolate of the hybrid RM, together with testing for conservation of its dominant soot fraction through the isolation procedure.
Oxygen isotope geochemistry of mafic magmas at Mt. Vesuvius
NASA Astrophysics Data System (ADS)
Dallai, Luigi; Raffaello, Cioni; Chiara, Boschi; Claudia, D'oriano
2010-05-01
Pumice and scoria from different eruptive layers of Mt. Vesuvius volcanic products contain mafic minerals consisting of High-Fo olivine and Diopsidic Pyroxene. These phases were crystallized in unerupted trachibasaltic to tephritic magmas, and were brought to surface by large phonolitic/tephri-phonolitic (e.g. Avellino and Pompei) and/or of tephritic and phono-tephritic (Pollena) eruptions. A large set of these mm-sized crystals was accurately separated from selected juvenile material and measured for their chemical compositions (EPMA, Laser Ablation ICP-MS) and 18O/16O ratios (conventional laser fluorination) to constrain the nature and evolution of the primary magmas at Mt. Vesuvius. Uncontaminated mantle δ18O values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary melts during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). At Mt. Vesuvius, measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas. Trace element composition constrains the near primary nature of the phases. Published data on volatile content of melt inclusions hosted in these crystals reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting that crystal growth occurred in a reservoir at about 8-10 km depth. Recently, experimental data have suggested massive carbonate assimilation (up to about 20%) to derive potassic alkali magmas from trachybasaltic melts. Accordingly, the δ18O variability and the trace element content of the studied minerals suggest possible contamination of primary melts by an O-isotope enriched, REE-poor contaminant like the limestone of Vesuvius basement. Low, nearly primitive δ18O values are observed for olivine from Pompeii eruption, although still above the range of typical mantle minerals. The δ18Oolivine and δ18Ocpxof the minerals from all the studied eruptions define variable degrees of carbonate interaction and magma crystallization for the different eruptions, and possibly within the same eruption, and show evidence of oxygen isotope equilibrium at high temperature. However, energy-constrained AFC model suggest that carbonate assimilation was limited. On the basis of our data, we suggest that interaction between magma and a fluxing, decarbonation-derived CO2 fluid may be partly accounted for the measured O-isotope compositions.
The origin of water in the primitive Moon as revealed by the lunar highlands samples
NASA Astrophysics Data System (ADS)
Barnes, Jessica J.; Tartèse, Romain; Anand, Mahesh; McCubbin, Francis M.; Franchi, Ian A.; Starkey, Natalie A.; Russell, Sara S.
2014-03-01
The recent discoveries of hydrogen (H) bearing species on the lunar surface and in samples derived from the lunar interior have necessitated a paradigm shift in our understanding of the water inventory of the Moon, which was previously considered to be a ‘bone-dry’ planetary body. Most sample-based studies have focused on assessing the water contents of the younger mare basalts and pyroclastic glasses, which are partial-melting products of the lunar mantle. In contrast, little attention has been paid to the inventory and source(s) of water in the lunar highlands rocks which are some of the oldest and most pristine materials available for laboratory investigations, and that have the potential to reveal the original history of water in the Earth-Moon system. Here, we report in-situ measurements of hydroxyl (OH) content and H isotopic composition of the mineral apatite from four lunar highlands samples (two norites, a troctolite, and a granite clast) collected during the Apollo missions. Apart from troctolite in which the measured OH contents in apatite are close to our analytical detection limit and its H isotopic composition appears to be severely compromised by secondary processes, we have measured up to ˜2200 ppm OH in the granite clast with a weighted average δD of ˜ -105±130‰, and up to ˜3400 ppm OH in the two norites (77215 and 78235) with weighted average δD values of -281±49‰ and -27±98‰, respectively. The apatites in the granite clast and the norites are characterised by higher OH contents than have been reported so far for highlands samples, and have H isotopic compositions similar to those of terrestrial materials and some carbonaceous chondrites, providing one of the strongest pieces of evidence yet for a common origin for water in the Earth-Moon system. In addition, the presence of water, of terrestrial affinity, in some samples of the earliest-formed lunar crust suggests that either primordial terrestrial water survived the aftermath of the putative impact-origin of the Moon or water was added to the Earth-Moon system by a common source immediately after the accretion of the Moon.
Foraging ecology of the endangered wood stork recorded in the stable isotope signature of feathers.
Romanek, C S; Gaines, K F; Bryan, A L; Brisbin, I L
2000-12-01
Down feathers and regurgitant were collected from nestling wood storks (Mycteria americana) from two inland and two coastal breeding colonies in Georgia. The stable isotopic ratios of carbon ( 13 C/ 12 C) and nitrogen ( 15 N/ 14 N) in these materials were analyzed to gain insights into the natal origins of juvenile storks and the foraging activities of adults. Down feathers differed in δ 13 C between inland and coastal colonies, having average isotopic values that reflected the sources of carbon fixed in biomass at the base of the food web. Feathers from the inland colonies differed between colonies in δ 15 N, while those from the coastal colonies did not. These patterns primarily reflected the foraging activities of parent storks, with individuals capturing differing percentages of prey of distinct trophic status at each colony. Collectively, the carbon and nitrogen isotopic signatures of feather keratin were used to distinguish nestlings from each colony, except for instances where storks from different colonies foraged in common wetlands. The stable isotopic composition of food items in regurgitant was used to reconstruct the trophic structure of the ecosystems in which wood storks foraged. Predicted foraging activities based on the isotopic composition of keratin were generally consistent with the percentage of prey types (freshwater vs. saltwater and lower trophic level vs. upper trophic level consumer) observed in regurgitant, except for the coastal colony at St. Simons Island, where the δ 13 C of feathers strongly suggested that freshwater prey were a significant component of the diet. This inconsistency was resolved by aerial tracking of adults during foraging excursions using a fixed-wing aircraft. Observed foraging activities supported interpretations based on the stable isotope content of feathers, suggesting that the latter provided a better record of overall foraging activity than regurgitant analysis alone. Observed foraging patterns were compared to the predictions of a statistical model that determined habitat utilization based on habitat availability using a geographic information system (GIS) database. Observed foraging activities and those predicted from feathers both suggested that some adult storks preferred to feed their young freshwater prey, even when saltwater resources were more accessible in the local environment. This conclusion supports the contention that wood stork populations are sensitive to changes in the distribution of freshwater habitats along the southeastern coastal plain of the United States.
Fate of Subducting Organic Carbon: Evidence from HP/UHP Metasedimentary Suites
NASA Astrophysics Data System (ADS)
Kraft, K.; Bebout, G. E.
2017-12-01
Community interest in deep-Earth C cycling has focused attention on extents of C release from subducting oceanic lithosphere and sediment and the fate of this released C. Many have suggested that, based on isotopic and other arguments, 20% of the C subducted into the deeper mantle is in reduced form (organic); however, individual margins show large variation in carbonate to organic C ratios. Despite the size of the potentially deeply subducted organic C reservoir, its fate in subducting sections remains largely unexplored, with most attention paid to release of carbonate C. To characterize the forearc behavior of organic C, metamorphosed to P-T as high as that beneath volcanic fronts, we evaluated records of reduced C (RC) contents and isotope compositions in HP/UHP metasediments: 1) Schistes Lustres/Cignana (SLC) suite (Alps; Cook-Kollars et al., 2014, Chem Geol) with abundant carbonate and resembling sediment entering the East Sunda trench; and (2) Franciscan Complex (FC), W. Baja Terrain (WBT), Catalina Schist (CS) metasediments (Sadofsky and Bebout, 2003, G3), largely sandstone-shale sequences containing very little carbonate. In general, more Al-rich samples (shaley) in the terrigenous metasedimentary suites have higher concentrations of RC, which in low-grade units preserves δ13C of its organic protoliths. Carbonate-poor rocks in the SLC suite, and at ODP Site 765, show correlated major element (Al, Mg, Mn, Ti, P) and RC contents (up to 1.2 wt.%) reflecting sandstone-shale mixture. In the FC, WBT, and CS, the more Al-rich samples contain up to 2 wt. % RC. In high-grade Catalina Schist, RC has elevated δ13C due to C loss in CH4 and high-grade Alps rocks show reduced RC wt. % normalized to Al content. We consider processes that could alter contents and isotopic compositions of RC in sediment, e.g., devolatilization, closed-system exchange with carbonate, redox reactions, isotopic exchange with C in externally-derived fluids. It appears that, on modern Earth, 40±20% of initially subducted C (globally, including reduced and oxidized C) is returned to the atmosphere in arcs. Our studies indicate delivery of the majority of the subducted RC to beneath volcanic fronts, where some fraction could be released during sediment melting leading to contributions of organic C in volcanic gases (see Hilton et al., 2002, RIMG).
Effects of climatic seasonality on the isotopic composition of evaporating soil waters
NASA Astrophysics Data System (ADS)
Benettin, Paolo; Volkmann, Till H. M.; von Freyberg, Jana; Frentress, Jay; Penna, Daniele; Dawson, Todd E.; Kirchner, James W.
2018-05-01
Stable water isotopes are widely used in ecohydrology to trace the transport, storage, and mixing of water on its journey through landscapes and ecosystems. Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the local meteoric water line (LMWL) that characterizes precipitation. Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation. These soil and xylem water samples frequently plot along linear trends in dual-isotope space. These trend lines are often termed "evaporation lines" and their intersection with the LMWL is often interpreted as the isotopic composition of the precipitation source water. Here we use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation. Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water.
Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?
NASA Astrophysics Data System (ADS)
Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.
2013-06-01
Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.
NASA Astrophysics Data System (ADS)
Bischoff, Addi; Dyl, Kathryn A.; Horstmann, Marian; Ziegler, Karen; Wimmer, Karl; Young, Edward D.
2013-04-01
The Villalbeto de la Peña meteorite that fell in 2004 in Spain was originally classified as a moderately shocked L6 ordinary chondrite. The recognition of fragments within the Villalbeto de la Peña meteorite clearly bears consequences for the previous classification of the rock. The oxygen isotope data clearly show that an exotic eye-catching, black, and plagioclase-(maskelynite)-rich clast is not of L chondrite heritage. Villalbeto de la Peña is, consequently, reclassified as a polymict chondritic breccia. The oxygen isotope data of the clast are more closely related to data for the winonaite Tierra Blanca and the anomalous silicate-bearing iron meteorite LEW 86211 than to the ordinary chondrite groups. The REE-pattern of the bulk inclusion indicates genetic similarities to those of differentiated rocks and their minerals (e.g., lunar anorthosites, eucritic, and winonaitic plagioclases) and points to an igneous origin. The An-content of the plagioclase within the inclusion is increasing from the fragment/host meteorite boundary (approximately An10) toward the interior of the clast (approximately An52). This is accompanied by a successive compositionally controlled transformation of plagioclase into maskelynite by shock. As found for plagioclase, compositions of individual spinels enclosed in plagioclase (maskelynite) also vary from the border toward the interior of the inclusion. In addition, huge variations in oxygen isotope composition were found correlating with distance into the object. The chemical and isotopical profiles observed in the fragment indicate postaccretionary metamorphism under the presence of a volatile phase.
R. Kasten Dumroese; Deborah S. Page-Dumroese; Robert E. Brown
2011-01-01
Nursery irrigation regimes that recharged container capacity when target volumetric water content reached 72%, 58%, and 44% (by volume) influenced Pinus ponderosa Douglas ex Lawson & C. Lawson growth more than either a 1:1 (by volume) Sphagnum peat - vermiculite (PV) or a 7:3 (by volume) Sphagnum peat - sawdust (PS) medium. Exponential fertilization avoided...
Sedimentary input into the source of Martinique lavas: a Li perspective
NASA Astrophysics Data System (ADS)
Tang, M.; Chauvel, C.; Rudnick, R. L.
2013-12-01
The Lesser Antilles arc is known for the prominent continental crustal signatures in its lavas. It thus provides an ideal target for studying crustal recycling in subduction zones. Martinique Island, located in the middle of the Lesser Antilles arc, has been well characterized for its elemental and radiogenic isotope geochemistry (Labanieh et al., 2012). We measured Li isotopes in the Martinique lavas as well as sediments cored at the southern (Site 144) and northern part (Site 543) of the subducting slab. The sediments show a large isotopic variation (δ7Li ~ -4.2‰ to +3.2‰) but the average δ7Li of -1.1 × 2.4‰ (1 σ, n = 15) is significantly lower than that of N-MORB (δ7Li = + 3.4 × 0.7‰, 1 σ, Tomascak et al., 2008), reflecting the influence of chemical weathering in the continental provenance. Although the subducting sediments display marked mineralogical and chemical shifts from south to north due to different deposition distances to the continental platform (Carpentier et al., 2009), their average Li isotopic compositions are indiscernible from each other. With a few exceptions, the Li isotopic compositions of the Martinique lavas are systematically lighter than MORB, giving an average δ7Li of 1.6 × 1.4‰ (1 σ, n = 25, 4 exceptions excluded). The δ7Li values show no correlation with any radiogenic isotope ratios (206Pb/204Pb, 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf), Li/Y ratio, La/Sm ratio and SiO2 content. Therefore, the light Li isotopic composition likely reflects the source characteristics rather than contamination within the arc crust. Incorporation of the isotopically light sediments from Site 144 and 543 in the source may explain the depletion of 7Li in the Martinique lavas. A two-end-member mixing model requires 2-5% addition of the sediments into the depleted mantle source, compared with 1-10% sediments constrained by radiogenic isotopes (Carpentier et al., 2008). References Carpentier, M., Chauvel, C., & Mattielli, N., 2008. Pb-Nd isotopic constraints on sedimentary input into the Lesser Antilles arc system. Earth and Planetary Science Letters, 272(1), 199-211. Carpentier, M., Chauvel, C., Maury, R. C., & Mattielli, N., 2009. The 'zircon effect' as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments. Earth and Planetary Science Letters, 287(1), 86-99. Labanieh, S., Chauvel, C., Germa, A., & Quidelleur, X., 2012. Martinique: a Clear Case for Sediment Melting and Slab Dehydration as a Function of Distance to the Trench. Journal of Petrology, 53(12), 2441-2464. Tomascak, P. B., Langmuir, C. H., le Roux, P. J., & Shirey, S. B. (2008). Lithium isotopes in global mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 72(6), 1626-1637.
Tennantite-tetrahedrite series from the Madan Pb-Zn deposits, Central Rhodopes, Bulgaria
NASA Astrophysics Data System (ADS)
Vassileva, Rossitsa D.; Atanassova, Radostina; Kouzmanov, Kalin
2014-08-01
Minerals from the tennantite-tetrahedrite series (fahlores) are found as single euhedral crystals and crustiform aggregates in hydrothermal veins of the Gradishte and Petrovitsa Pb-Zn deposits of the Madan ore field, southern Bulgaria. Unusually large compositional variations and fine oscillatory crystal zoning were investigated with electron microprobe analysis. The Gradishte samples correspond dominantly to tennantite, while Petrovitsa crystals have exclusively tetrahedrite composition. Fahlore compositions at Madan correspond to zincian varieties (1.6-1.95 apfu), with low Fe-content (<0.45 apfu). Minor silver is characteristic only for the Petrovitsa samples, reaching a maximum of 0.30 apfu. The (Cu+Ag) content of the Petrovitsa tennantites and the Cu content of the Gradishte tetrahedrites systematically exceed 10 apfu resulting in compensation of the excess Cu in the structure by Fe3+. Textural characteristics, mineral relationships and available fluid inclusion and stable isotope data suggest that fahlores precipitated in the late stages of mineralization at Madan, at temperature interval of 300-200 °C from oxidizing fluids with mixed (magmatic-meteoric) signatures.
Distinctly different parental magmas for plutons and lavas in the central Aleutian arc
NASA Astrophysics Data System (ADS)
Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.
2014-12-01
While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively, subduction erosion of arc crust followed by "relamination" [2] of buoyant calc-alkaline rocks may be more effective. [1] e.g. Ringwood & Green, Tectonophysics 1966; Herzberg et al. Contributions to mineralogy and petrology 1983; [2] e.g. Hacker et al. Earth and Planetary Science Letters 2011.
NASA Astrophysics Data System (ADS)
Günther, T.; Haase, K. M.; Junge, M.; Oberthür, T.; Woelki, D.; Krumm, S.
2018-06-01
Platiniferous dunite pipes occur in the lower mafic/ultramafic portion of the Rustenburg Layered Suite of the Bushveld large igneous province (LIP). Olivine compositions in these pipes range from forsterite (Fo) 80 to 35 mol% and suggest crystallization from variably evolved magmas at high temperatures ( 1200 °C). The most primitive olivines are from a stock unit and have the highest contents of Ni (>0.15 wt%) and lowest contents of Mn (<0.3 wt%). Fractional crystallization and partial melting of pyroxenite host rock play a significant role in the formation of the fayalitic olivines with its high Mn contents (>0.3 wt%). High δ18O values of olivine (5.7-7.0‰) and pyroxene (6.7-7.4‰) are akin to those of the Lower and Critical Zone of the Bushveld intrusion suggesting a common origin. The constant high O isotope ratios with variable Fo contents in the olivines are unlike trends observed in olivine phenocrysts in magmas forming by assimilation-fractional crystallization. We suggest that the high δ18O in the most primitive dunites reflect that of the primary melt of the Bushveld pipes, indicating either a bulk assimilation of crust prior to pipe formation or a contribution from recycled oceanic crust in the sub-continental lithospheric mantle (SCLM). The latter scenario is supported by the high Ni/Mn ratios in primitive pipe olivine that might be inherited from melting of a pyroxene-rich mantle source.
Archival processes of the water stable isotope signal in East Antarctic ice cores
NASA Astrophysics Data System (ADS)
Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean
2018-05-01
The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.
NASA Technical Reports Server (NTRS)
Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.
1990-01-01
Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.
Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation
NASA Astrophysics Data System (ADS)
Chen, Guo; Schnyder, Hans; Auerswald, Karl
2017-04-01
Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (p<0.05) to the isotope composition in meteoric water in a regression analysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havrilla, George Joseph; Gonzalez, Jhanis
2015-06-10
The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elementalmore » composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.« less
Maya, M V; Soares, Melena A; Agnihotri, Rajesh; Pratihary, A K; Karapurkar, Supriya; Naik, Hema; Naqvi, S W A
2011-04-01
Chemical and isotopic (δ13C and δ15N) investigation of the Mandovi estuary along the Indian west coast affected strongly by the seasonal monsoon cycle was carried out. The Mandovi estuary is a major waterway for Goa and extensively used for transportation of iron and manganese ore. In addition, with large population centers as well as agricultural fields located on its shores, the estuary is assumed to have been influenced by human activities. Measurements of chemical and isotopic parameters made in the lower part of the estuary during the southwest (SW) monsoon and post-monsoon seasons reveal distinct changes, and it is observed that despite considerable enrichment of macronutrients during the SW monsoon, productivity of the estuary (phytoplankton biomass), as inferred from the chlorophyll-a content, is not as high as expected. This is due to occurrences of high turbidity and cloud cover that limits photosynthetic productivity. The isotopic characterization (C and N isotopes) of suspended organic matter produced/transported during the monsoon and post-monsoon seasons of year 2007 provides a baseline dataset for future isotopic studies in such type of tropical estuaries.
Magnesium isotopic composition of the mantle
NASA Astrophysics Data System (ADS)
Teng, F.; Li, W.; Ke, S.; Marty, B.; Huang, S.; Dauphas, N.; Wu, F.; Helz, R. L.
2009-12-01
Studies of Mg isotopic composition of the Earth not only are important for understanding its geochemistry but also can shed light on the accretion history of the Earth as well as the evolution of the Earth-Moon system. However, to date, the Mg isotopic composition of the Earth is still poorly constrained and highly debated. There is uncertainty in the magnitude of Mg isotope fractionation at mantle temperatures and whether the Earth has a chondritic Mg isotopic composition or not. To constrain further the Mg isotopic composition of the mantle and investigate the behavior of Mg isotopes during igneous differentiation, we report >200 high-precision (δ26Mg < 0.1‰, 2SD) analyses of Mg isotopes on 1) global mid-ocean ridge basalts covering major ridge segments of the world and spanning a broad range in latitudes, chemical and radiogenic isotopic compositions; 2) ocean island basalts from Hawaiian (Koolau, Kilauea and Loihi) and French Polynesian volcanoes (Society island and Cook Austral chain); 3) olivine grains from Hawaiian volcanoes (Kilauea, Koolau and Loihi) and 4) peridotite xenoliths from Australia, China, France, Tanzania and USA. Global oceanic basalts and peridotite xenoliths have a limited (<0.2 ‰) variation in Mg isotopic composition, with an average δ26Mg = -0.25 relative to DSM3. Olivines from Hawaiian lavas have δ26Mg ranging from -0.43 to +0.03, with most having compositions identical to basalts and peridotites. Therefore, the mantle’s δ26Mg value is estimated to be ~ -0.25 ± 0.1 (2SD), different from that reported by Wiechert and Halliday (2007; δ26Mg = ~ 0) but similar to more recent studies (δ26Mg = -0.27 to -0.33) (Teng et al. 2007; Handler et al. 2009; Yang et al., 2009). Moreover, we suggest the Earth, as represented by the mantle, has a Mg isotopic composition similar to chondrites (δ26Mg = ~-0.33). The need for a model such as that of Wiechert and Halliday (2007) that involves sorting of chondrules and calcium-aluminum-rich inclusions in the proto planetary disc is thus not required to explain the Mg isotopic composition of the Earth.
Wigner, E.P.; Young, G.J.; Ohlinger, L.A.
1957-12-01
This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.
NASA Technical Reports Server (NTRS)
Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.
1993-01-01
The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.
Long-term data set analysis of stable isotopic composition in German rivers
NASA Astrophysics Data System (ADS)
Reckerth, Anne; Stichler, Willibald; Schmidt, Axel; Stumpp, Christine
2017-09-01
Stable isotopes oxygen-18 (18O) and deuterium (2H) are commonly used to investigate hydrological processes in catchments. However, only a few isotope studies have been conducted on a large scale and rarely over long time periods. The objective of this study was to identify the spatial and seasonal variability of isotopic composition in river water and how it is affected by geographical and hydrological factors. The stable isotopic composition of river water has been measured in nine large river catchments in Germany for a time period of 12 years or 26 years. We conducted time series and correlation analyses to identify spatial and temporal patterns of the isotopic composition in the rivers. Further, we compared it to isotopic composition in local precipitation and catchments characteristics. In the majority of the rivers, the spatial and temporal patterns of precipitation were directly reflected in river water. The isotopic signals of the river water were time shifted and show attenuated amplitudes. Further deviations from isotopic compositions in local precipitation were observed in catchments with complex flow systems. These deviations were attributed to catchment processes and influences like evaporation, damming and storage. The seasonality of the isotopic composition was mainly determined by the discharge regimes of the rivers. We found correlations between isotopic long-term averages and catchment altitude as well as latitude and longitude, resulting in a northwest-southeast gradient. Furthermore, it was shown that long-term averages of d-excess were inversely related to flow length and catchment size, which indicates that evaporation enrichment has an impact on the isotopic composition even in catchments of humid climates. This study showed that isotopic composition in rivers can serve as a proxy for the local precipitation and can be utilized as an indicator for hydrological processes even in large river basins. In future, such long time series will help to also understand the impact of changes in the hydrological cycle on the larger scales. They can also be used for calibration and validation of flow and transport models at catchment and sub-catchment scale.
Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.
1987-01-01
The sulfur isotopic composition of the sulfur fluxes occurring in the anoxic marine sediments of Cape Lookout Bight, N.C., U.S.A., was determined, and the result of isotopic mass balance was obtained via the differential diffusion model. Seasonal pore water sulfate ??34S measurements yielded a calculated sulfate input of 0.6%.. Sulfate transported into the sediments via diffusion appeared to be enriched in the lighter isotope because its concentration gradient was steeper, due to the increase in the measured isotopic composition of sulfate with depth. Similarly, the back diffusion of dissolved sulfide towards the sediment-water interface appeared enriched in the heavier isotope. The isotopic composition of this flux was calculated from measurements of the ??34S of dissolved sulfide and was determined to be 15.9%.. The isotopic composition of buried sulfide was determined to be -5.2%. and the detrital sulfur input was estimated to be -6.2%.. An isotope mass balance equation based upon the fluxes at the sediment-water interface successfully predicted the isotopic composition of the buried sulfur flux within 0.5%., thus confirming that isotopes diffuse in response to their individual concentration gradients. ?? 1987.
Molybdenum Isotopic Composition of Iron Meteorites, Chondrites and Refractory Inclusions
NASA Technical Reports Server (NTRS)
Becker, H.; Walker, R. J.
2003-01-01
Recent Mo isotopic studies of meteorites reported evidence for differences in isotopic compositions for whole rocks of some primitive and differentiated meteorites relative to terrestrial materials. Enrichments of r- and p-process isotopes of up to 3-4 units (e unit = parts in 10(exp 4) over s-process dominated isotopes are the most prominent features. Certain types of presolar grains show large enrichments in s-process isotopes, however, it was concluded on grounds of mass balance that incomplete digestion of such grains cannot explain the enrichments of r- and p-process isotopes in whole rocks of primitive chondrites. If the reported variability in r- and p-process isotope enrichments reflects the true isotopic characteristics of the whole rocks, the implications are quite profound. It would suggest the presence of large scale Mo isotopic heterogeneity within the solar accretion disk with likely collateral effects for other elements. However, such effects were not found for Ru isotopes, nor for Zr isotopes. Another recent Mo isotopic study by multi collector ICP-MS could not confirm the reported deviations in Allende, Murchison or iron meteorites. Here, we present new results for the Mo isotopic composition of iron meteorites, chondrites and CAIs obtained by negative thermal ionization mass spectrometry (NTIMS). We discuss analytical aspects and the homogeneity of Mo isotopic compositions in solar system materials.
Tungsten residence in silicate rocks: implications for interpreting W isotopic compositions
NASA Astrophysics Data System (ADS)
Liu, J.; Pearson, G. D.; Chacko, T.; Luo, Y.
2015-12-01
High-precision measurements of W isotopic ratios have boosted recent exploration of early Earth processes from the small W isotope anomalies observable in some Hadean-Archean rocks. However, before applying W isotopic data to understand the geological processes responsible for the formation of these rocks, it is critical to evaluate whether the rocks' present W contents and isotopic compositions reflect that of the protolith or the effects of secondary W addition/mobilization. To investigate this issue, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases and alteration assemblages within a broad spectrum of rocks using LA-ICP-MS. Isotope dilution whole-rock W concentration measurements are used along with modes calculated from mineral and bulk rock major element data to examine the mass balance for W and other elements. In general, W is positively correlated with Nb, Ta, Ti, Sn, Mo and U, indicating similar geochemical behavior. Within granitic gneisses and amphibolites, biotite, hornblende, titanite and ilmenite control the W budget, while plagioclase and k-feldspar have little effect. For granulites, pyroxenites and eclogites, titanite, rutile, ilmenite, magnetite and sulfide, as well as grain boundary alteration assemblages dominate the W budget, while garnet, clinopyroxene, orthopyroxene and plagioclase have little or no W. Within mantle harzburgites and dunites, major phases such as olivine, clinopyroxene, orthopyroxene and spinel/chromite have very low concentrations of W, Nb, Ta, Sn and Mo. Instead, these elements are concentrated along grain boundaries and within sulfide/mss. Mass balance shows that for granitic gneisses and amphibolites, the rock-forming minerals can adequately account for the whole-rock W budget, whereas for ultramafic rocks such as pyroxenites, eclogites and harzburgites and dunites, significant W is hosted along grain boundaries, indicating that metamorphism and melt/fluid metasomatism can dramatically modify W concentrations in such rocks. Therefore, for rocks that experienced subsequent W enrichments, their W isotopic compositions may not necessarily represent their mantle sources, but could predominantly reflect later inputs, for example from a crustal reservoir that has long existed on Earth.
NASA Astrophysics Data System (ADS)
Beard, A. D.; Downes, H.; Hegner, E.; Sablukov, S. M.
2000-03-01
The Arkhangelsk kimberlite province (AKP) is situated in the north of the Baltic Shield within the buried southeastern portion of the Kola-Kuloi craton. It forms part of the extensive Devonian magmatic event of the northern Baltic Shield and Kola Peninsula. Two main groups of kimberlites can be distinguished within the province: (1) kimberlites from the diamondiferous Zolotitsa field that have geochemical and isotopic affinities with Group 2 kimberlites and lamproites; (2) diamond-poor Ti-Fe-rich kimberlites from other Arkhangelsk fields that have geochemical and isotopic affinities with Group 1 kimberlites. However, the Zolotitsa and Ti-Fe-rich kimberlites have mineralogical characteristics that are not typical for their respective assigned kimberlite group classifications. Both groups of Arkhangelsk kimberlites are apparently transitional to Group 1 kimberlites, Group 2 kimberlites and lamproites as they are defined elsewhere in the world. An associated kimberlite from the Mela Sill Complex has strong affinities with carbonatites. The low Al 2O 3, high Ni and Cr contents, and high Mg# in both groups of kimberlites indicate strongly depleted lherzolitic-harzburgitic mantle sources. Trace element patterns show a variable enrichment of incompatible elements and strong LREE enrichment. However, kimberlites from the Zolotitsa field have overall lower trace element abundances and less steep REE patterns, suggesting a higher degree of partial melt and/or a less enriched source compared to that of the Ti-Fe-rich kimberlites. A calciocarbonatite of the Mela Sill Complex has trace element and REE patterns typical of other carbonatites closely associated with kimberlites. 87Sr/ 86Sri and 143Nd/ 144Ndi isotope compositions of the Arkhangelsk kimberlites and carbonatite reveal that at least two mantle sources are required to explain the isotopic variation: (1) most of the Zolotitsa and Mela kimberlites and the Mela carbonatite are derived from an ancient enriched lithospheric source (EMI); (2) the Ti-Fe-rich kimberlites are derived from a plume-related asthenospheric mantle source with an isotopic composition close to Bulk Earth. Present-day Pb isotope compositions reveal that the Zolotitsa kimberlites have values close to Group 1 kimberlites. However, the Ti-Fe-rich kimberlites generally have slightly more radiogenic Pb isotope values.
Do Hf isotopes in magmatic zircons represent those of their host rocks?
NASA Astrophysics Data System (ADS)
Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao
2018-04-01
Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.
Oxygen Isotope Measurements of a Rare Murchison Type A CAI and Its Rim
NASA Technical Reports Server (NTRS)
Matzel, J. E. P.; Simon, J. I.; Hutcheon, I. D.; Jacobsen, B.; Simon, S. B.; Grossman, L.
2013-01-01
Ca-, Al-rich inclusions (CAIs) from CV chondrites commonly show oxygen isotope heterogeneity among different mineral phases within individual inclusions reflecting the complex history of CAIs in both the solar nebula and/or parent bodies. The degree of isotopic exchange is typically mineral-specific, yielding O-16-rich spinel, hibonite and pyroxene and O-16-depleted melilite and anorthite. Recent work demonstrated large and systematic variations in oxygen isotope composition within the margin and Wark-Lovering rim of an Allende Type A CAI. These variations suggest that some CV CAIs formed from several oxygen reservoirs and may reflect transport between distinct regions of the solar nebula or varying gas composition near the proto-Sun. Oxygen isotope compositions of CAIs from other, less-altered chondrites show less intra-CAI variability and 16O-rich compositions. The record of intra-CAI oxygen isotope variability in CM chondrites, which commonly show evidence for low-temperature aqueous alteration, is less clear, in part because the most common CAIs found in CM chondrites are mineralogically simple (hibonite +/- spinel or spinel +/- pyroxene) and are composed of minerals less susceptible to O-isotopic exchange. No measurements of the oxygen isotope compositions of rims on CAIs in CM chondrites have been reported. Here, we present oxygen isotope data from a rare, Type A CAI from the Murchison meteorite, MUM-1. The data were collected from melilite, hibonite, perovskite and spinel in a traverse into the interior of the CAI and from pyroxene, melilite, anorthite, and spinel in the Wark-Lovering rim. Our objectives were to (1) document any evidence for intra-CAI oxygen isotope variability; (2) determine the isotopic composition of the rim minerals and compare their composition(s) to the CAI interior; and (3) compare the MUM-1 data to oxygen isotope zoning profiles measured from CAIs in other chondrites.
NASA Astrophysics Data System (ADS)
Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Lei, Jijiang; Wang, Hao; Li, Zhenggang
2018-04-01
Significant Zn isotope fractionation occurs during seafloor hydrothermal activities. Therefore, exploring variations in Zn isotope composition affected by hydrothermal fluids and oxidative processes would help to better understand hydrothermal fluid cycling and sulfide deposition on mid-ocean ridges. In this paper, the Zn isotope compositions of different types of sulfides and their oxidation products obtained from hydrothermal fields on the South Mid-Atlantic Ridge (13-15°S) were analyzed using a Neptune plus MC-ICP-MS. The δ66Zn ratios range from -0.14‰ to +0.38‰, and the average δ66Zn ratio is +0.12±0.06‰ ( n=21, 2 SD) for all the studied sulfides and oxidation products. The Cu-rich sulfides have a slightly heavier Zn isotope composition (average δ66Zn=+0.19±0.07‰, n=6) than the Zn-rich sulfides (average δ66Zn=-0.02±0.06‰, n=5). The Zn isotope compositions of the oxidation products are similar to those of the Cu-rich sulfides, with an average δ66Zn ratio of 0.14±0.06‰ ( n=10, 2 SD). The Zn isotope compositions of all the samples are generally within the ranges of sulfides from hydrothermal fields on other mid-ocean ridges, such as the East Pacific Rise (9°N, 21°N) and the Trans-Atlantic Geotraverse. However, the average Zn isotope composition indicates the presence of significantly lighter Zn isotopes relative to those reported in the literature (average δ66Zn=+0.39‰). The significant enrichment of the Zn-rich sulfides with light Zn isotopes reveals that kinetic fractionation likely occurs during mineral deposition. Furthermore, the Zn isotope compositions of the sulfides and their oxidation products (average δ66Zn=+0.12‰) are significantly lighter than the average Zn isotope composition of the ocean (δ66Zn=+0.5‰), which could further constrain the modern Zn isotope cycle in the ocean by serving as a sink for light Zn isotopes.
NASA Astrophysics Data System (ADS)
Yihunie, Tadesse; Adachi, Mamoru; Yamamoto, Koshi
2006-03-01
Neoproterozoic metabasic rocks along with metasediments and ultramafic rocks constitute the Kenticha and Bulbul lithotectonic domains in the Negele area. They occur as amphibolite and amphibole schist in the Kenticha, and amphibole schist and metabasalt in the Bulbul domains. These rocks are dominantly basaltic in composition and exhibit low-K tholeiitic characteristics. They are slightly enriched in large ion lithophile (LIL) and light rare earth (LRE) elements and depleted in high field strength (HFS) and heavy rare earth (HRE) elements. They exhibit chemical characteristics similar to back-arc basin and island-arc basalts, but include a few samples with slightly higher Y, Zr and Nb contents. Initial Sr isotopic ratios and ɛNd values for the Kenticha metabasic rocks range from 0.7048 to 0.7051 and from 4.7 to 9.6 whereas for the Bulbul metabasic rocks they range from 0.7032 to 0.7055 and from -0.1 to 5.5, respectively. The trace elements and Sr-Nd isotope compositions of samples from the Kenticha and Bulbul domains suggest similar, but isotopically heterogeneous magma sources. The magma is inferred to have derived from depleted source with a contribution from an enriched mantle source component.
NASA Astrophysics Data System (ADS)
Baggio, Sérgio Benjamin; Hartmann, Léo Afraneo; Lazarov, Marina; Massonne, Hans-Joachim; Opitz, Joachim; Theye, Thomas; Viefhaus, Tillmann
2018-03-01
Different hypotheses exist on the origin of native copper mineralization in the Paraná volcanic province that invoke magmatic, late magmatic, or hydrothermal events. The average copper content in the host basalts is 200 ppm. Native copper occurs as dendrites in cooling joints, fractures, and cavities within amygdaloidal crusts. Cuprite, tenorite, chrysocolla, malachite, and azurite occur in breccias at the top of the lava flows. Chemical analyses, X-ray diffraction, Raman spectrometry, electron microprobe analyses, LA-ICP-MS, and Cu isotope analyses were used to evaluate the origin of native copper in the volcanic province. Copper contents in magnetite of the host basalt are close to 1 wt.%, whereas clinopyroxene contains up to 0.04 wt.% Cu. Cretaceous hydrothermal alteration of magnetite and clinopyroxene released copper to generate hydrothermal copper mineralization. The isotopic composition of the native copper in the Paraná volcanic province varies from -0.9‰ in the southeastern portion (Rio Grande do Sul state) to 1.9‰ in the central portion (Paraná state) of the province. This study supports a hydrothermal origin followed by supergene enrichment for native copper in the Paraná volcanic province.
Liu, Jinling; Bi, Xiangyang; Li, Fanglin; Wang, Pengcong; Wu, Jin
2018-05-12
Concentrations of heavy metals, as well as isotopic compositions of mercury (Hg) and lead (Pb), in mosses (Bryum argenteum) from the Three Gorges Reservoir (TGR) region were investigated to decipher the sources of atmospheric metals in this region. Higher contents of metals (0.90 ± 0.65 mg/kg of Cd, 24.6 ± 27.4 mg/kg of Cu, and 36.1 ± 51.1 mg/kg of Pb) in the mosses from TGR were found compared with those from pollution-free regions. Principal component analysis (PCA) grouped the moss metals into four main components which were associated with both anthropogenic and natural sources. The ratios of Pb isotopes of the mosses (1.153-1.173 for 206 Pb/ 207 Pb and 2.094-2.129 for 208 Pb/ 206 Pb) fell between those of the traffic emissions and coals. Similarly, the compositions of δ 202 Hg (-4.29∼-2.33‰) and Δ 199 Hg (within ±0.2‰) were comparable to those of the coals and coal combustion emissions from China and India. These joined results of Pb and Hg isotope data give solid evidences that the coal combustion and traffic emissions are the main causes of metal accumulation in the TGR region. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernández Fernández, Luz Eva; Westphal, Julia; Schmiedinger, Iris; Kreuzburg, Matthias; Bahlo, Reiner; Koebsch, Franziska; Böttcher, Michael E.
2017-04-01
Coastal wetlands are under dynamic impact both from fresh water and salt water sources, thereby experiencing temporarily sulfur-excess and -limiting conditions. In the present study, nine up to 10 meter long sediment cores from a recently rewetted fen (Hütelmoor, southern Baltic Sea) which has been under impact by episodic flooding with brackish waters were investigated (isotope) geochemically. The sites are positioned at different distances to the Baltic Sea coastline. The soils were analyzed for the elemental composition (CNS), reactive iron and sedimentary sulfur contents, iron sulfide micro-textures, as well as the stable sulfur isotope composition of inorganic and organic sulfur fractions to understand signal development for the biogeochemical carbon-sulfur cycles in such a dynamic ecosystem. We found evidence for the activity of dissimilatory sulfate-reducing microorganisms and the associated formation of pyrite with different textures (framboids, single euhedral crystals and clusters) and sulfurization of organic matter. Sedimentary sulfur fractions and their stable isotope signatures are controlled by the availability of dissolved organic matter or methane, reactive iron, and in particular dissolved sulfate and thereby from the relative position to the coast line and the given lithology. d34S values in the pyrite fraction vary in a wide range between -21 and +15 per mil versus VCDT, in agreement with spatial and temporal dynamics in the extend of sulfate-limiting conditions during the oxidation of reduced carbon.
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang
2018-05-01
Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents (<65%), low methane contents (<10%) and low dryness coefficients (<0.5), and a reversal of the normal trend of carbon isotope ratios, showing δ13C methane (C1) > δ13C ethane (C2) < δ13C propane (C3) < δ13C butane (C4). Specifically, methane is enriched in 13C with the variations in δ13C1 values between gases from Block HD4 and gases from its neighboring blocks reaching 10‰. This type of abnormal gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.
Kèlomé, Nelly C; Lévêque, Jean; Andreux, Francis; Milloux, Marie-Jeanne; Oyédé, Lucien-Marc
2006-08-01
The carbon isotopic composition (delta13C) of plants can reveal the isotopic carbon content of the atmosphere in which they develop. The delta13C values of air and plants depend on the amount of atmospheric fossil fuel CO2, which is chiefly emitted in urban areas. A new indicator of CO2 pollution is tested using the delta13C variation in a C4 grass: Eleusine indica. A range of about 4 per thousand delta units was observed at different sites in Cotonou, the largest city in the Republic of Benin. The highest delta13C values, from -12 per thousand to -14 per thousand, were found in low traffic zones; low delta13C values, from -14 per thousand to -16 per thousand, were found in high traffic zones. The amount of fossil fuel carbon assimilated by plants represented about 20% of the total plant carbon content. An overall decrease in plant delta13C values was observed over a four-year monitoring period. This decrease was correlated with increasing vehicle traffic. The delta13C dataset and the corresponding geographical database were used to map and define zones of high and low 13C-depleted CO2 emissions in urban and sub-urban areas. The spatial distribution follows dominant wind directions, with the lowest emission zones found in the southwest of Cotonou. High CO2 emissions occurred in the north, the east and the center, providing evidence of intense anthropogenic activity related to industry and transportation.
Tracing subducted crustal materials in the mantle by using magnesium isotopes
NASA Astrophysics Data System (ADS)
Teng, F. Z.
2016-12-01
Recent studies show that some continental basalt, mantle-metasomatised peridotite and cratonic eclogite have heterogeneous Mg isotopic compositions. These isotopically distinct Mg isotopic compositions have been explained by the incorporation of subducted materials in their mantle sources though the detailed mechanisms are still not well understood. In particular, how Mg-poor crustal materials can modify Mg isotopic systematics of Mg-rich mantle is unknown. Subduction zones are the most efficient sites for crust and mantle interactions, hence should be where the most prominent Mg isotopic variation occurs. However, to date, little is known on Mg isotope systematics in the subduction factory. Here I first review and report new Mg isotopic data for arc lava, subarc peridotite and the subducted slab (marine sediment, altered basalt and abyssal peridotite), then use them to constrain the origins of mantle Mg isotopic heterogeneity and lay the foundation for using Mg isotopes as new tools for tracing crust-mantle interactions. The main conclusions are 1) fluid-rock interactions can modify Mg isotopic systematics of abyssal peridotites; 2) island arc lavas have non-MORB Mg isotopic compositions, reflecting distinct surbarc mantle Mg isotopic signature; 3) continental arcs have non-MORB Mg isotopic compositions, likely resulting from crustal contamination and 4) the isotopically heterogeneous continental basalts are mainly produced by mixing of isotopically distinct magmas instead of being partial melting products of metasomatised mantle peridotites.
The ungrouped chondrite El Médano 301 and its comparison with other reduced ordinary chondrites
NASA Astrophysics Data System (ADS)
Pourkhorsandi, Hamed; Gattacceca, Jérôme; Devouard, Bertrand; D'Orazio, Massimo; Rochette, Pierre; Beck, Pierre; Sonzogni, Corinne; Valenzuela, Millarca
2017-12-01
El Médano 301 (EM 301) is an ungrouped chondrite with overall texture and trace-element distribution similar to those of ordinary chondrites (OCs), but with silicate (olivine and low-Ca pyroxene) compositions that are more reduced than those in OCs, with average olivine and low-Ca pyroxene of Fa3.9±0.3 and Fs12.8±4.9, respectively. These values are far lower than the values for OCs and even for chondrites designed as ;reduced; chondrites. Low-Ca pyroxene is the dominant mineral phase and shows zoning with higher MgO contents along the crystal rims and cracks (reverse zoning). The Co content of kamacite is also much lower than the concentrations observed in OCs (below detection limit of 0.18 wt% versus 0.44-37 wt%). Oxygen isotopic composition is Δ17O = +0.79,+0.78‰ and slightly different from that of OCs. The lower modal olivine/pyroxene ratio, different Infrared (IR) spectra, lower Co content of kamacite, lower mean FeO contents of olivine and pyroxene, different kamacite texture, and different oxygen-isotopic composition show that EM 301 does not belong to a known OC group. EM 301 shows similarities with chondritic clasts in Cumberland Falls aubrite, and with Northwest Africa 7135 (NWA 7135) and Acfer 370 ungrouped chondrites. However, dissimilar to NWA 7135 and the clasts, it does not contain highly reduced mineral phases like daubréelite. Our observations suggest the formation of EM 301 in a nebular region compositionally similar to OCs but with a different redox state, with oxygen fugacity (ƒO2) in this region lower than that of OCs and higher than that of enstatite chondrites condensation region. A second, possibly nebular, phase of reduction by the production of reducing gas phases (e.g., C-rich) could be responsible for the subsequent reduction of the primary material and the occurrence of reverse zoning in the low-Ca pyroxene and lower average Fa/Fs ratio. Based on the IR spectra of EM 301 we suggest the possibility that the parent body of this chondrite was a V-type asteroid.
Romek, Katarzyna M; Julien, Maxime; Frasquet-Darrieux, Marine; Tea, Illa; Antheaume, Ingrid; Hankard, Régis; Robins, Richard J
2013-12-01
Since exclusively breast-suckled infants obtain their nutrient only from their mother's milk, it might be anticipated that a correlation will exist between the (15)N/(14)N isotope ratios of amino acids of protein of young infants and those supplied by their mother. The work presented here aimed to determine whether amino nitrogen transfer from human milk to infant hair protein synthesized within the first month of life conserves the maternal isotopic signature or whether post-ingestion fractionation dominates the nitrogen isotope spectrum. The study was conducted at 1 month post-birth on 100 mother-infant pairs. Isotope ratios (15)N/(14)N and (13)C/(12)C were measured using isotope ratio measurement by Mass Spectrometry (irm-MS) for whole maternal milk, and infant hair and (15)N/(14)N ratios were also measured by GC-irm-MS for the N-pivaloyl-O-isopropyl esters of amino acids obtained from the hydrolysis of milk and hair proteins. The δ(15)N and δ(13)C (‰) were found to be significantly higher in infant hair than in breast milk (δ(15)N, P < 0.001; δ(13)C, P < 0.001). Furthermore, the δ(15)N (‰) of individual amino acids in infant hair was also significantly higher than that in maternal milk (P < 0.001). By calculation, the observed shift in isotope ratio was shown not to be accounted for by the amino acid composition of hair and milk proteins, indicating that it is not simply due to differences in the composition in the proteins present. Rather, it would appear that each pool-mother and infant-turns over independently, and that fractionation in infant N-metabolism even in the first month of life dominates over the nutrient N-content.
NASA Astrophysics Data System (ADS)
Mayer, B.; Jung, S.; Brauns, M.; Münker, C.
2018-06-01
The Rhön area as part of the Central European Volcanic Province (CEVP) hosts an unusual suite of Tertiary 24-Ma old hornblende-bearing alkaline basalts that provide insights into melting and fractionation processes within the lithospheric mantle. These chemically primitive to slightly evolved and isotopically (Sr, Nd, Pb) depleted basalts have slightly lower Hf isotopic compositions than respective other CEVP basalts and Os isotope compositions more radiogenic than commonly observed for continental intraplate alkaline basalts. These highly radiogenic initial 187Os/188Os ratios (0.268-0.892) together with their respective Sr-Nd-Pb isotopic compositions are unlikely to result from crustal contamination alone, although a lack of Os data for lower crustal rocks from the area and limited data for CEVP basalts or mantle xenoliths preclude a detailed evaluation. Similarly, melting of the same metasomatized subcontinental lithospheric mantle as inferred for other CEVP basalts alone is also unlikely, based on only moderately radiogenic Os isotope compositions obtained for upper mantle xenoliths from elsewhere in the province. Another explanation for the combined Nd, Sr and Os isotope data is that the lavas gained their highly radiogenic Os isotope composition through a mantle "hybridization", metasomatism process. This model involves a mafic lithospheric component, such as an intrusion of a sublithospheric primary alkaline melt or a melt derived from subducted oceanic material, sometime in the past into the lithospheric mantle where it metasomatized the ambient mantle. Later at 24 Ma, thermal perturbations during rifting forced the isotopically evolved parts of the mantle together with the peridotitic ambient mantle to melt. This yielded a package of melts with highly correlated Re/Os ratios and radiogenic Os isotope compositions. Subsequent movement through the crust may have further altered the Os isotope composition although this effect is probably minor for the majority of the samples based on radiogenic Nd and unradiogenic Sr isotope composition of the lavas. If the radiogenic Os isotope composition can be explained by a mantle-hybridization and metasomatism model, the isotopic compositions of the hornblende basalts can be satisfied by ca. 5-25% addition of the mafic lithospheric component to an asthenospheric alkaline magma. Although a lack of isotope data for all required endmembers make this model somewhat speculative, the results show that the Re-Os isotope system in continental basalts is able to distinguish between crustal contamination and derivation of continental alkaline lavas from isotopically evolved peridotitic lithosphere that was contaminated by mafic material in the past and later remelted during rifting. The Hf isotopic compositions are slightly less radiogenic than in other alkaline basalts from the province and indicate the derivation of the lavas from low Lu-Hf parts of the lithospheric mantle. The new Os and Hf isotope data constrain a new light of the nature of such metasomatizing agents, at least for these particular rocks, which represent within the particular volcanic complex the first product of the volcanism.
The silicon isotope composition of the upper continental crust
NASA Astrophysics Data System (ADS)
Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.
2013-05-01
The upper continental crust (UCC) is the major source of silicon (Si) to the oceans and yet its isotopic composition is not well constrained. In an effort to investigate the degree of heterogeneity and provide a robust estimate for the average Si isotopic composition of the UCC, a representative selection of well-characterised, continentally-derived clastic sediments have been analysed using high-precision MC-ICPMS. Analyses of loess samples define a narrow range of Si isotopic compositions (δ30Si = -0.28‰ to -0.15‰). This is thought to reflect the primary igneous mineralogy and predominance of mechanical weathering in the formation of such samples. The average loess δ30Si is -0.22 ± 0.07‰ (2 s.d.), identical to average granite and felsic igneous compositions. Therefore, minor chemical weathering does not resolvably affect bulk rock δ30Si, and loess is a good proxy for the Si isotopic composition of unweathered, crystalline, continental crust. The Si isotopic compositions of shales display much more variability (δ30Si = -0.82‰ to 0.00‰). Shale Si isotope compositions do not correlate well with canonical proxies for chemical weathering, such as CIA values, but do correlate negatively with insoluble element concentrations and Al/Si ratios. This implies that more intensive or prolonged chemical weathering of a sedimentary source, with attendant desilicification, is required before resolvable negative Si isotopic fractionation occurs. Shale δ30Si values that are more positive than those of felsic igneous rocks most likely indicate the presence of marine-derived silica in such samples. Using the data gathered in this study, combined with already published granite Si isotope analyses, a weighted average composition of δ30Si = -0.25 ± 0.16‰ (2 s.d.) for the UCC has been calculated.
Controls on the barium isotope compositions of marine sediments
NASA Astrophysics Data System (ADS)
Bridgestock, Luke; Hsieh, Yu-Te; Porcelli, Donald; Homoky, William B.; Bryan, Allison; Henderson, Gideon M.
2018-01-01
The accumulation of barium (Ba) in marine sediments is considered to be a robust proxy for export production, although this application can be limited by uncertainty in BaSO4 preservation and sediment mass accumulation rates. The Ba isotope compositions of marine sediments could potentially record insights into past changes in the marine Ba cycle, which should be insensitive to these limitations, enabling more robust interpretation of sedimentary Ba as a proxy. To investigate the controls on the Ba isotope compositions of marine sediments and their potential for paleo-oceanographic applications, we present the first Ba isotope compositions results for sediments, as well as overlying seawater depth profiles collected in the South Atlantic. Variations in Ba isotope compositions of the sediments predominantly reflect changes in the relative contributions of detrital and authigenic Ba sources, with open-ocean sediments constraining the isotope composition of authigenic Ba to be δ 138/134Ba ≈ + 0.1 ‰. This value is consistent with the average isotope composition inferred for sinking particulate Ba using simple mass balance models of Ba in the overlying water column and is hypothesized to reflect the removal of Ba from the upper water column with an associated isotopic fractionation of Δ diss-part 138/134Ba ≈ + 0.4 to +0.5. Perturbations to upper ocean Ba cycling, due to changes in export production and the supply of Ba via upwelling, should therefore be recorded by the isotope compositions of sedimentary authigenic Ba. Such insights will help to improve the reliable application of Ba accumulation rates in marine sediments as a proxy for past changes in export production.
Isotopic signals of denitrification in a northern hardwood forested catchment
NASA Astrophysics Data System (ADS)
Wexler, Sarah; Goodale, Christine
2013-04-01
Water samples from streams, groundwater and precipitation were collected during summer from the hydrologic reference watershed (W3) at Hubbard Brook Experimental Forest in the White Mountains, New Hampshire, and analysed for d15N-NO3 and d18O-NO3. Despite very low nitrate concentrations (<0.5 to 8.8 uM NO3-) dual-isotopic signals of sources and processes were clearly distinguishable. The isotopic composition of nitrate from shallow groundwater showed evidence of dual isotopic fractionation in line with denitrification, with a positive relationship between nitrogen and oxygen isotopic composition, a regression line slope of 0.76 (r2 = 0.68), and an empirical isotope enrichment factor of ɛP-S 15N-NO3 -12.7%. The isotopic composition of riparian groundwater nitrate from time-series samples showed variation in processes over a small spatial scale. The expected isotopic composition of nitrate sources in the watershed was used to distinguish nitrate in rain and nitrate from nitrification of both rainfall ammonium and ammonium from mineralised soil organic nitrogen. Evidence of oxygen exchange with water during nitrification was seen in the isotopic composition of stream and shallow groundwater nitrate. The isotopic composition of streamwater nitrate following a period of storms indicated that 25% of nitrate in the streamwater was of atmospheric origin. This suggests rapid infiltration of rainfall via vertical bypass flow to the saturated zone, enabling transport of atmospheric nitrate to the stream channels. Across the Hubbard Brook basin, the isotopic composition of nitrate from paired samples from watersheds 4-7 indicated a switch between a nitrification and assimilation dominated system, to a system influenced by rainfall nitrogen inputs and denitrification. The dual isotope approach has revealed evidence of denitrification of nitrate from different sources at low concentrations at Hubbard Brook during summer. This isotopic evidence deepens our understanding of the significance and spatial variability of denitrification in environments with low levels of nitrate, represented by this northern hardwood forested catchment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valysaev, B.M.; Erokhin, V.E.; Grinchenko, Y.I.
A study has been made of the isotopic composition of the carbon in methane and carbon dioxide, as well as hydrogen in the methane, in the gases of mud volcanoes, for all main mud volcano areas in the USSR. The isotopic composition of carbon and hydrogen in methane shows that the gases resemble those of oil and gas deposits, while carbon dioxide of these volcanoes has a heavier isotopic composition with a greater presence of ''ultraheavy'' carbon dioxide. By the chemical and isotopic composition of gases, Azerbaidzhan and South Sakhalin types of mud volcano gases have been identified, as wellmore » as Bulganak subtypes and Akhtala and Kobystan varieties. Correlations are seen between the isotopic composition of gases and the geological build of mud volcano areas.« less
Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew
2017-10-01
Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth environments and consequently in food supplies. Copyright © 2017 Elsevier B.V. All rights reserved.
Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew
2017-01-01
Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and consequently in food supplies.
Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nakamura-Messenger, Keiko
2015-01-01
Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.
NASA Astrophysics Data System (ADS)
Zheng, Jian; Tan, Mingguang; Shibata, Yasuyuki; Tanaka, Atsushi; Li, Yan; Zhang, Guilin; Zhang, Yuanmao; Shan, Zuci
The stable lead (Pb) isotope ratios and the concentrations of 23 elements, including heavy metals and toxic elements, were measured in the PM 10 airborne particle samples collected at seven monitoring sites in Shanghai, China, to evaluate the current elemental compositions and local airborne Pb isotope ratio characteristics. Some source-related samples, such as cement, coal and oil combustion dust, metallurgic dust, vehicle exhaust particles derived from leaded gasoline and unleaded gasoline, and polluted soils were analyzed for their Pb content and isotope ratio and compared to those observed in PM 10 samples. Airborne Pb concentration ranged from 167 to 854 ng/m 3 in the seven monitored sites with an average of 515 ng/m 3 in Shanghai, indicating that a high concentration of Pb remains in the air after the phasing out of leaded gasoline. Lead isotopic compositions in airborne particles ( 207Pb/ 206Pb, 0.8608±0.0018; 208Pb/ 206Pb, 2.105±0.005) are clearly distinct from the vehicle exhaust particles ( 207Pb/ 206Pb, 0.8854±0.0075; 208Pb/ 206Pb, 2.145±0.006), suggesting that the automotive lead is not currently the major component of Pb in the air. By using a binary mixing equation, a source apportionment based on 207Pb/ 206Pb ratios, indicates that the contribution from automotive emission to the airborne Pb is around 20%. The Pb isotope ratios obtained in the source-related samples confirmed that the major emission sources are metallurgic dust, coal combustion, and cement.
Zhong, Shangzhi; Chai, Hua; Xu, Yueqiao; Li, Yan; Ma, Jian-Ying; Sun, Wei
2017-01-01
Whether photosynthetic pathway differences exist in the amplitude of nighttime variations in the carbon isotope composition of leaf dark-respired CO2 (δ13Cl) and respiratory apparent isotope fractionation relative to biomass (ΔR,biomass) in response to drought stress is unclear. These differences, if present, would be important for the partitioning of C3-C4 mixed ecosystem C fluxes. We measured δ13Cl, the δ13C of biomass and of potential respiratory substrates and leaf gas exchange in one C3 (Leymus chinensis) and two C4 (Chloris virgata and Hemarthria altissima) grasses during a manipulated drought period. For all studied grasses, δ13Cl decreased from 21:00 to 03:00 h. The magnitude of the nighttime shift in δ13Cl decreased with increasing drought stress. The δ13Cl values were correlated with the δ13C of respiratory substrates, whereas the magnitude of the nighttime shift in δ13Cl strongly depended on the daytime carbon assimilation rate and the range of nighttime variations in the respiratory substrate content. The ΔR,biomass in the C3 and C4 grasses varied in opposite directions with the intensification of the drought stress. The contribution of C4 plant-associated carbon flux is likely to be overestimated if carbon isotope signatures are used for the partitioning of ecosystem carbon exchange and the δ13C of biomass is used as a substitute for leaf dark-respired CO2. The detected drought sensitivities in δ13Cl and differences in respiratory apparent isotope fractionation between C3 and C4 grasses have marked implications for isotope partitioning studies at the ecosystem level. PMID:29375587
NASA Astrophysics Data System (ADS)
Bonazza, Mattia; Tjoa, Aiyen; Knohl, Alexander
2017-04-01
During the last few decades, Indonesia experienced rapid and large scale land-use change towards intensively managed crops, one of them is oil palm. This transition results in warmer and dryer conditions in microclimate. The impacts on the hydrological cycle and on water-use by plants are, however, not yet completely clear. Water stable isotopes are useful tracers of the hydrological processes and can provide means to partition evapotranspiration into evaporation and transpiration. A key parameter, however, is the enrichment of water stable isotope in plant tissue such as leaves that can provide estimates on the isotopic composition of transpiration. Here we present the results of a field campaign conducted in a mature oil palm plantation in Jambi province, Indonesia. We combined continuous measurements of water vapor isotopic composition and mixing ratio with isotopic analysis of water stored in different pools like oil palm leaves, epiphytes, trunk organic matter and soil collected over a three days period. Leaf enrichment varied from -2 ‰ to 10 ‰ relative to source (ground) water. The temporal variability followed Craig and Gordon model predictions for leaf water enrichment. An improved agreement was reached after considering the Péclet effect with an appropriate value of the characteristic length (L). Measured stomatal conductance (gs) on two different sets of leaves (top and bottom canopy) was mainly controlled by radiation (photosynthetically active radiation) and vapor pressure deficit. We assume that this control could be explained in conditions where soil water content is not representing a limiting factor. Understanding leaf water enrichment provides one step towards partitioning ET.
Dhaoui, Z; Chkir, N; Zouari, K; Ammar, F Hadj; Agoune, A
2016-06-01
Environmental tracers ((2)H, (18)O, isotopes of Uranium) and geochemical processes occurring within groundwaters from the Continental Intercalaire (CI) in Southern Tunisia were used to understand the hydrodynamics and the recharge conditions of this aquifer. This study investigates the chemical and isotopic compositions of the CI groundwater. The water types are dominated by Na(+), SO4(2-), Cl(-) throughout most of the basin with a general increase in total dissolved solids from the Saharan Platform margins towards the Chotts region. Large scale groundwater flow paths are toward the Chotts region. The stable isotopes composition of the analyzed groundwater ranges from -8.8 to -6‰ vs V-SMOW for δ(18)O and from -67 to -40‰ vs V-SMOW for δ(2)H. The relatively enriched stable isotopes contents suggest the contribution of the Dahar sandstones outcrops in the current recharge of the CI aquifer in an arid context. However, the most depleted values in heavy isotopes indicate a paleorecharge of the aquifer under wetter conditions revealing a long residence time of groundwaters. The results from water samples using alpha spectrometry method indicate a range in (238)U concentrations and (234)U/(238)U activity ratios (AR) of 0.044-1.285 μg kg(-1) and 1.2 to 8.84 respectively. The geochemistry of uranium isotopes in groundwater is controlled by many factors, essentially, the influence of water rock interactions, the preferential dissolution of (234)U relative to (238)U due to alpha recoil and the mixing processes between different waters with distinct AR as well as (238)U concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei
2018-03-01
The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.
Song, Li-Ning; Zhu, Jiao-Jun; Li, Ming-Cai; Yan, Tao; Zhang, Jin-Xin
2012-06-01
A comparative study was conducted on the needles stable carbon isotope composition (delta13 C), specific leaf area (SLA), and dry matter content (DMC) of 19-year-old Pinus sylvestris var. mongolica trees in a sparse wood grassland in the south edge of Keerqin Sandy Land under the conditions of extreme drought and extreme wetness, aimed to understand the water use of Pinus sylvestris under the conditions of extreme precipitation. The soil water content and groundwater level were also measured. In the dry year (2009), the soil water content in the grassland was significantly lower than that in the wet year (2010), but the delta13C values of the current year-old needles had no significant difference between the two years and between the same months of the two years. The SLA of the current year-old needles was significantly lower in the dry year than in the wet year, but the DMC had no significant difference between the two years. Under the conditions of the two extreme precipitations, the water use efficiency of the trees did not vary remarkably, and the trees could change their needles SLA to adapt the variations of precipitation. For the test ecosystem with a groundwater level more than 3.0 m, extreme drought could have no serious impact on the growth and survival of the trees.
Tracing Cd, Zn and Pb pollution sources in bivalves using isotopes
NASA Astrophysics Data System (ADS)
Shiel, A. E.; Weis, D. A.; Orians, K. J.
2010-12-01
In a multi-tracer study, Cd, Zn and Pb isotopes (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) are evaluated as tools to distinguish between natural and anthropogenic sources of these metals in bivalves from western Canada (British Columbia), the eastern USA, Hawaii and France. High Cd concentrations found in BC oysters have elicited economic and health concerns. The source of these high Cd levels is unknown but thought to be largely natural. High Cd levels in BC oysters are largely attributed to the natural upwelling of Cd-rich intermediate waters in the North Pacific as the δ114/110Cd (-0.69 to -0.09‰) and δ66/64Zn (0.28 to 0.36‰) values of BC oysters fall within the range reported for North Pacific seawater. Different contributions from anthropogenic sources account for the variability of Cd isotopic compositions of BC oysters; the lightest of these oysters are from the BC mainland. These oysters also have Pb isotopic compositions that reflect primarily anthropogenic sources (e.g., leaded and unleaded automotive gasoline and smelting of Pb ores, potentially historical). On the contrary, USA East Coast bivalves exhibit relatively light Cd isotopic compositions (δ114/110Cd = -1.20 to -0.54‰; lighter than reported for North Atlantic seawater) due to the high prevalence of industry on this coast. The Pb isotopic compositions of these bivalves indicate contributions from the combustion of coal. The large variability of environmental health among coastal areas in France is reflected in the broad range of Cd isotopic compositions exhibited by French bivalves (δ114/110Cd = -1.08 to -0.20‰). Oysters and mussels from the Marennes-Oléron basin and Gironde estuary have the lightest Cd isotopic compositions of the French oysters consistent with significant historical Cd emissions from the now-closed proximal Zn smelter. In these bivalves, significant declines in the Cd levels between 1984/7 and 2004/5 are not accompanied by a significant shift in the Cd isotopic composition toward natural values. The Mediterranean samples have isotopic compositions within error of the lighter end of the range reported for Mediterranean seawater. The Zn isotopic compositions of French oysters and mussels (δ66/64Zn = 0.39 to 0.46‰) are identical to those reported for North Atlantic seawater, with the exception of the much heavier compositions of oysters (δ66/64Zn = 1.03 to 1.15‰) from the polluted Gironde estuary. In agreement with Cd and Zn isotopic compositions, the Pb isotopic compositions of the French bivalves indicate primarily industrial (as opposed to automotive) sources; this is consistent with the collection of most of the French bivalve samples in 2004, after the complete phase-out of leaded gasoline in France. This study demonstrates the effective use of Cd and Zn isotopes to trace anthropogenic sources in the environment and the benefit of combining these tools with Pb isotope “fingerprinting” techniques to identify processes contributing metals. Use of these new geochemical tools requires site-specific knowledge of potential metal sources and their isotopic compositions.
van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C
2014-06-01
The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryerson, F J
The oxygen isotopic compositions of the world's oldest mineral grains, zircon, have recently been used to infer the compositions of the rocks from which they crystallized. The results appear to require a source that had once experienced isotopic fractionation between clay minerals and liquid water, thereby implying the presence of liquid water at the Earth's surface prior to 4.4 billion years ago, less than 2 million years after accretion. This observation has important implications for the development of the Earth's continental crust. The inferred composition of the zircon source rock is directly dependent upon the oxygen isotopic fractionation between zirconmore » and melt, and zircon and water. These fractionation factors have not been determined experimentally, however, constituting the weak link in this argument. A series of experiments to measure these fractionation factors has been conducted. The experiments consist of finely powdered quartz, a polished single crystal of zircon and isotopically-enriched or isotopically normal water to provide a range of isotopic compositions. The experiments will be run until quartz is in isotopic equilibrium with water. Zircon was expected to partially equilibrate producing an oxygen isotopic diffusion profile perpendicular to the surface. Ion probe spot analysis of quartz and depth profiling of zircon will determine the bulk and surface isotopic compositions of the phases, respectively. The well-known quartz-water isotopic fractionation factors can be used to calculate the oxygen isotopic composition of the fluid, and with the zircon surface composition, the zircon-water fractionation factor. Run at temperatures up to 1000 C for as long as 500 hours have not produced diffusion profiles longer than 50 nm. The steep isotopic gradient at the samples surface precludes use of the diffusion profile for estimation on the surface isotopic composition. The short profiles may be the result of surface dissolution, although such dissolution cannot be resolved in SEM images. The sluggish nature of diffusion in zircon may require that fractionation factors be determined by direct hydrothermal synthesis of zircon rather than by mineral-fluid exchange.« less
Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae
NASA Astrophysics Data System (ADS)
Kodolányi, János; Stephan, Thomas; Trappitsch, Reto; Hoppe, Peter; Pignatari, Marco; Davis, Andrew M.; Pellin, Michael J.
2018-01-01
We report the carbon, silicon, iron, and nickel isotope compositions of twenty-five presolar SiC grains of mostly supernova (SN) origin. The iron and nickel isotope compositions were measured with the new Chicago Instrument for Laser Ionization, CHILI, which allows the analysis of all iron and nickel isotopes without the isobaric interferences that plagued previous measurements with the NanoSIMS. Despite terrestrial iron and nickel contamination, significant isotopic anomalies in 54Fe/56Fe, 57Fe/56Fe, 60Ni/58Ni, 61Ni/58Ni, 62Ni/58Ni, and 64Ni/58Ni were detected in nine SN grains (of type X). Combined multi-isotope data of three grains with the largest nickel isotope anomalies (>100‰ or <-100‰ in at least one isotope ratio, when expressed as deviation from the solar value) are compared with the predictions of two SN models, one with and one without hydrogen ingestion in the He shell prior to SN explosion. One grain's carbon-silicon-iron-nickel isotope composition is consistent with the prediction of the model without hydrogen ingestion, whereas the other two grains' isotope anomalies could not be reproduced using either SN models. The discrepancies between the measured isotope compositions and model predictions may indicate element fractionation in the SN ejecta prior to or during grain condensation, and reiterate the need for three-dimensional SN models.
Nitrogen source tracking with δ15N content of coastal wetland plants in Hawaii
Gregory L. Bruland; Richard A. Mackenzie
2010-01-01
Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared δ15N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of δ15N with...
Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility
NASA Technical Reports Server (NTRS)
Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.
1977-01-01
Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.
Rubio, K S; Ajemian, M; Stunz, G W; Palmer, T A; Lebreton, B; Beseres Pollack, J
2018-06-22
The Baffin Bay estuary is a hypersaline system in the Gulf of Mexico that supports an important recreational and commercial fishery for black drum Pogonias cromis, a benthic predator. Seasonal measurements of water quality variables, benthic macrofauna densities and biomass, and determination of P. cromis food sources using stomach-content and stable-isotope analyses were carried out to determine how P. cromis food sources change with water quality and how this may affect P. cromis diet. Gut-content analysis indicated P. cromis selectively consumed bivalves Mulinia lateralis and Anomalocardia auberiana. Isotope compositions demonstrated that P. cromis relied on these benthic food resources produced in the Baffin Bay estuary year-round. Biomass and densities of these bivalves were influenced by changes in water quality variables, particularly salinity and dissolved oxygen. Thus, this paper demonstrates the relationship between water quality variables, benthic macrofauna, and their use as food resources by a carnivorous fish species, and emphasizes the need for integrated assessments when studying the effects of water quality on ecosystem function. Holistic approaches such as these can provide important information for management and conservation of fishery resources and can improve predictions of ecosystem response to climate variability. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Klein-BenDavid, Ofra; Pearson, D. Graham; Nowell, Geoff M.; Ottley, Chris; McNeill, John C. R.; Cartigny, Pierre
2010-01-01
Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665-667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ˜ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid-rock interaction and to immiscibility processes. Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient incompatible element-enriched parts of the lithospheric mantle while the trigger for releasing this fluid source was probably carbonatitic/kimberlitic melts derived from greater depths. We suggest that phlogopite mica was an integral part of the enriched lithospheric fluid source and that breakdown of this mica releases K and radiogenic Sr into a fluid phase. The resulting fluids operate as a major metasomatic agent in the sub-continental lithospheric mantle as reflected by the isotopic composition and trace element patterns of G10 garnets.
NASA Technical Reports Server (NTRS)
Liu, M.-C.; Keller, L. P.; McKeegan, K. D.
2016-01-01
Introduction: Hibonite-rich refractory inclusions are among the first solids that formed in the solar nebula, and thus provide constraints on the earliest environment in the Solar System. An unusual hibonite-perovskite inclusion from Allende, SHAL, consists of a large (approximately 500 by 200 microns) single hibonite crystal and coexisting blocky perovskite (approximately 200 microns in size). The hibonite is characterized by chemical and oxygen isotopic compositions similar to those in the FUN (Fractionated and Unknown Nuclear anomalies) inclusion HAL. However, the rare earth element (REE) patterns measured at different spots of SHAL hibonite are highly variable, ranging from Group II-like (light REEs enriched relative to heavy REEs) to Group III-like (relatively flat with slight Eu depletions), but overall contrast largely with that of HAL, especially in the Ce and Yb abundances. This implies that SHAL hibonite formed and underwent distillation processes under more reducing conditions. Interestingly, the accompanying perovskite has uniform, unfractionated oxygen isotopic compositions (averaging delta (sup 17) O equals delta (sup 18) O equals -7 per mille) and REE abundances that are completely different from those of SHAL hibonite. This has been interpreted that perovskite and hibonite may not be co-genetic. Here we performed Al-Mg and Ti isotopic measurements of SHAL hibonite and perovskite to determine if the FUN characteristics are observed in these two isotope systems, and to further constrain the origin and evolution of SHAL. Results: Isotopic measurements of Al-Mg and Ti in SHAL were performed on the UCLA CAMECA ims-1290 ion microprobe by following the analytical protocols described in [1]. The Al-Mg and Ti data obtained in both terrestrial standards and SHAL hibonite and perovskite are shown below. Both SHAL hibonite and perovskite, despite very high (sup 27) Al to (sup 24) Mg ratios, are devoid of (sup 26) Mg excesses that can be attributed to the decay of (sup 26) Al. Delta (sup 25) Mg (mass-dependent fractionation) in hibonite is approximately -5 per mille per atomic mass unit relative to Madagascar hibonite, but is not well constrained for perovskite due to very large uncertainties owing to extremely low Mg contents. Similar to Mg isotopes, SHAL hibonite and perovskite show essentially the same Ti isotopic compositions, with anomalies in (sup 50) Ti of approximately 14 per mille, but the former shows greater Ti isotope fractionation than the latter (2.5 per mille per atomic mass unit versus 0 per mille). Discussion and Conclusions: The Al-Mg and Ti isotopic compositions of SHAL hibonite are consistent with those of HAL, suggesting that SHAL hibonite is a FUN inclusion and likely formed prior to homogenization of (sup 26) Al and Ti isotope variations in the solar nebula. However, the formation mechanisms for SHAL and HAL differ, given the differences in the REE patterns and degrees of oxygen mass-dependent fractionation. The Group-II to Group-III like REE patterns, the Yb depletions, and negative delta (sup 25) Mg observed in SHAL hibonite are all consistent with condensation of the hibonite precursor in a reducing environment.. The lack of large Ce depletions in SHAL hibonite implies that distillation processes that fractionated hibonite's oxygen isotopes must have taken place under a reducing condition, but the extent to which SHAL hibonite was distilled appears to be less than HAL because of the smaller degree of oxygen mass-dependent fractionation. The perovskite shares essentially the same Ti and Mg isotopic compositions as hibonite and probably formed in the same reservoir.. The ultrarefractory REE pattern seen in perovskite likely resulted from gas-solid fractionation which depleted HREEs in this reservoir. This process also explains why SHAL hibonite is generally depleted in HREEs relative to LREEs.
NASA Astrophysics Data System (ADS)
Charbonnier, Guillaume; Pucéat, Emmanuelle; Bayon, Germain; Desmares, Delphine; Dera, Guillaume; Durlet, Christophe; Deconinck, Jean-François; Amédro, Francis; Gourlan, Alexandra T.; Pellenard, Pierre; Bomou, Brahimsamba
2012-12-01
The Fe-Mn oxide fraction leached from deep-sea sediments has been increasingly used to reconstruct the Nd isotope composition of deep water masses, that can be used to track changes in oceanic circulation with a high temporal resolution. Application of this archive to reconstruct the Nd isotope composition of bottom seawater in shallow shelf environments remained however to be tested. Yet as the Nd isotope composition of seawater on continental margins is particularly sensitive to changes in erosional inputs, establishment of neritic seawater Nd isotope evolution around areas of deep water formation would be useful to discriminate the influence of changes in oceanic circulation and in isotopic composition of erosional inputs on the Nd isotope record of deep waters. The purpose of this study is to test the potential of Fe-Mn coatings leached from foraminifera tests to reconstruct the Nd isotope composition of seawater in shelf environments for deep-time intervals. Albian to Turonian samples from two different outcrops have been recovered, from the Paris Basin (Wissant section, northern France) and from the Western Interior Seaway (Hot Spring, South Dakota, USA), that were deposited in epicontinental seas. Rare Earth Element (REE) spectra enriched in middle REEs in the foraminifera leach at Wissant highlight the presence of Fe-Mn oxides. The similarity of the Nd isotopic signal of the Fe-Mn oxide fraction leached from foraminifera tests with that of fish teeth suggests that Fe-Mn oxides coating foraminifera can be good archives of shelf bottom seawater Nd isotopic composition. Inferred bottom shelf water Nd isotope compositions at Wissant range from -8.5 to -9.7 ɛ-units, about 1.5-2 ɛ-units higher than that of the contemporaneous local detrital fraction. At Hot Spring, linear REE spectra characterizing foraminifera leach may point to an absence of authigenic marine Fe-Mn oxide formation in this area during the Late Cenomanian-Early Turonian, consistent with dysoxic to anoxic conditions at Hot Spring, contemporaneous to an Oceanic Anoxic Event. The similarity of the Nd isotopic signal of the carbonate matrix of foraminifera with that of fish teeth suggests that it records the Nd isotope composition of bottom shelf seawater as well. Inferred bottom shelf water Nd isotope compositions at Hot Spring are quite radiogenic, between -7 and -6 ɛ-units, about 2.5-4 ɛ-units higher than that of the contemporaneous local detrital fraction. In contrast, in both sections Fe-Mn oxides leached directly from the decarbonated sediment tend to yield a less radiogenic Nd isotopic composition, typically between 0.2 and 0.8 ɛ-units lower, that is intermediate between that of fish teeth and of the detrital fraction. This suggests the contribution of pre-formed continental Fe-Mn oxides to the Nd isotopic signal, along with authigenic marine oxides, or a detrital contamination during leaching.
Experimental Assessment of Carbon Isotopes of Light Hydrocarbons under Different Redox Conditions
NASA Astrophysics Data System (ADS)
Fu, Q.; Chen, X.
2017-12-01
Hydrocarbons can be derived from a variety of carbon sources, by different processes, and under a wide range of physicochemical conditions. Other than bacterial activities facilitating biogenic hydrocarbon formation at low temperatures, decomposition of complex organic matter in sedimentary rocks at elevated temperatures produce thermogenic hydrocarbons, whereas abiogenic hydrocarbons are mainly generated through Fischer-Tropsch type synthesis with mineral catalysts. The carbon isotope has been used extensively to distinguish hydrocarbons of different origins and their formation conditions. For each type of hydrocarbons, however, environmental conditions may change reaction pathways and corresponding isotope fractionations. To better understand the variation of carbon isotopes caused by environmental variables, mineral constraints in particular, a series of laboratory experiments are conducted. In experiments where thermogenic hydrocarbons are formed, oil shale is the source material with different gypsum contents (0, 0.3, 0.5, and 1 wt.%). The abundance of generated light straight chain hydrocarbons decreases with increasing gypsum content, but their carbon isotopes become heavier. For example, the δ13C value of methane increases from -55.1‰ to -41.4‰ with gypsum varying between 0 and 1 wt.%. In similar experiments with the presence of MnO2, carbon isotope values of light alkanes are also higher, but with limited magnitudes (e.g., 3 to 4‰ for methane). In another experiment with dissolved H2 gas of 100 mmol/kg, light alkanes become depleted in 13C than experiments without H2. For example, there is a depletion of 2.7‰ for methane. The variation of carbon isotope values of light alkanes suggests the redox condition, constrained by mineral assemblage, fluid composition, and physical environment, play an important role in isotope fractionation. The pathway of hydrocarbon generation may be different under oxidized or reducing conditions. A set of experiments, in which abiogenic hydrocarbons are formed, is currently in progress. Combined together, they would facilitate our understanding of carbon isotope fractionation under geological conditions, and effective use of carbon isotopes as a diagnostic tool for hydrocarbons that are poorly understood in terms of origin and evolution.
NASA Astrophysics Data System (ADS)
Nielson, Kristine E.; Bowen, Gabriel J.
2010-03-01
Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.
Wang, Benlian; Sun, Gang; Anderson, David R.; Jia, Minghong; Previs, Stephen; Anderson, Vernon E.
2007-01-01
Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, isotopic labeling by chemical reactions, and studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra obtained in profile-mode of clusters of isotopologue ions are fit by non-linear least squares to a series of Gaussian peaks (described in the accompanying manuscript) which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios is developed which obviates the need to determine the intensity of all of the ions of an ID. Consequently a precise and accurate determination of the isotopic composition a product ion may be obtained from only the initial values of the ID, however the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined. PMID:17559791
Nature of the impactor at the K/T boundary: clues from Os, W and Cr isotopes.
NASA Astrophysics Data System (ADS)
Quitté, G.; Robin, E.; Capmas, F.; Levasseur, S.; Rocchia, R.; Birck, J. L.; Allègre, C. J.
2003-04-01
We measured the isotope composition of Os, W and Cr in K/T boundary sediments of three marine sites (Stevns Klint, Caravaca and Bidart) to determine the nature of the bolid that impacted the Earth 65 Myrs ago. We also analysed Ni-rich cosmic spinels, because they are thought to keep the signature of the impactor. The low REE content in spinels precludes indeed the hypothesis of a mixing with more than 10% of terrestrial material. The Os and W enrichment at the K/T boundary could be explained by a scavenging of chalcophile elements at the time of sulfide precipitation. The 187Os/186Os ratio of the K/T sediments is higher than the ratio of any kind of meteorites. On top of a possible mixing with surrounding sediments, we suggest that the boundary contained more Re in the past (lost since that time by alteration and oxidation) and that the Os isotope ratio is in fact disturbed. On each of the three sites, the boundary itself does not present any tungsten isotopic anomaly. The most likely interpretation is that the extraterrestrial material is diluted enough into the sediments so that the isotopic signature has been erased. Spinels show a small deficit of (0.34±0.9) ɛ in 182W. The large error bar precludes any clear conclusion whether or not a meteoritic signature is really present. If the spinels really carry an extraterrestrial signature as expected, their W composition is in favour of an ordinary chondrite. All K/T samples (sediments and spinels) are apparently depleted in 53Cr by about 0.5 ɛ (after renormalization of 54Cr to the terrestrial value) whereas ordinary chondrites display an excess of about 0.5 ɛ. Among meteorites, only carbonaceous chondrites present a negative value for the 53Cr/52Cr ratio relative to the terrestrial value. As more than 90% of the Cr present in spinels is of extraterrestrial origin, the Cr isotopes unambiguously show that the K/T impactor was a carbonaceous chondrite. These isotopic results also confirm the extraterrestrial origin of spinels. The W isotope composition of the spinels does not fully agree with the conclusion of a carbonaceous chondrite, but a refined measurement is required to discuss this discrepancy in more details.
Nucleosynthetic Heterogeneity Controls Vanadium Isotope Variations in Bulk Chondrites
NASA Technical Reports Server (NTRS)
Nielsen, S. G.; Righter, K.; Wu, F.; Owens, J. D.; Prytulak, J.; Burton, K.; Parkinson, I.; Davis, D.
2018-01-01
The vanadium (V) isotope composition of early solar system materials have been hypothesized to be sensitive to high energy irradiation that originated from the young Sun. Vanadium has two isotopes with masses 50 and 51 that have (51)V/(50)V ratio of approximately 410. High energy irradiation produces (50)V from various target isotopes of Ti, Cr and Fe, which would result in light V isotope compositions (expressed as delta (51)V in per mille = 1000 x (((51)V/(50)V(sub sample)/(51)V/(50)V(sub AlfaAesar)) - 1)) relative to a presumably chondritic starting composition. Recently published V isotope data for calcium aluminium inclusions (CAIs) has revealed some very negative values relative to chondrites (by almost -4 per mille) that were indeed interpreted to reflect irradiation processes despite the fact that the studied CAIs all exhibited significant initial abundances of (10)Be, while only a few CAIs displayed light V isotope compositions. It is difficult to relate V isotope variations directly to a singular process because V only possesses two isotopes. Therefore, V isotope variations can principally be produced both mass dependent and independent processes. Mass dependent kinetic stable isotope fractionation is common in CAIs for refractory elements due to partial condensation/evaporation processes. The element strontium (Sr) has an almost identical condensation temperature to V and studies of stable Sr isotope compositions in CAIs reveal both heavy and light values relative to chondrites of several permil. These variations are similar in magnitude to those reported for V isotopes in CAIs, which suggests it is possible that some of the V isotope variation in CAIs could be due to kinetic stable isotope fractionation during condensation/evaporation processes.
NASA Astrophysics Data System (ADS)
Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.
2011-12-01
Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.
Isotopic composition of atmospheric moisture from pan water evaporation measurements.
Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm
2015-01-01
A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.
Stable Isotope Systematics in Grasshopper Assemblages Along an Elevation Gradient, Colorado
NASA Astrophysics Data System (ADS)
Kohn, M. J.; Evans, S.; Dean, J.; Nufio, C.
2012-12-01
Insects comprise over three quarters of all animal species, yet studies of body water isotopic composition are limited to only the cockroach, the hoverfly, and chironomid flies. These studies suggest that oxygen and hydrogen isotopic compositions in body water are primarily controlled by dietary water sources, with modification from respiratory and metabolic processes. In particular, outward diffusion of isotopically depleted water vapor through insect spiracles at low humidity enriches residual body water in 18O and 2H (D). Stable isotope compositions (δ18O and δD) also respond to gradients in elevation and humidity, but these influences remain poorly understood. In this study, we measured grasshopper body water and local vegetation isotopic compositions along an elevation gradient in Colorado to evaluate three hypotheses: 1) Insect body water isotopic composition is directly related to food source water composition 2) Water vapor transport alters body water isotopic compositions relative to original diet sources, and 3) Elevation gradients influence isotopic compositions in insect body water. Thirty-five species of grasshopper were collected from 14 locations in Colorado grasslands, ranging in elevation from 450 to 800 meters (n=131). Body water was distilled from previously frozen grasshopper specimens using a vacuum extraction line, furnaces (90 °C), and liquid nitrogen traps. Water samples were then analyzed for δ18O and δD on an LGR Liquid Water Isotope Analyzer, housed in the Department of Geosciences, Boise State University. Grasshopper body water isotopic compositions show wide variation, with values ranging between -76.64‰ to +42.82‰ in δD and -3.06‰ to +26.78‰ in δ18O. Precipitation δ18O values over the entire Earth excluding the poles vary by approximately 30‰, comparable to the total range measured in our single study area. Most grasshopper values deviate from the global meteoric water line relating δ18O and δD in precipitation, consistent with evaporative enrichment in food (plants) due to plant transpiration. However, grasshopper body water from any given location is further enriched in 18O and D relative to food. Isotopic values decrease slightly with increasing elevation, but some specific grasshopper species appear more sensitive to elevation. Overall, evaporative enrichment of 18O and D in this relatively dry environment appears the strongest factors influencing grasshopper compositions.
Determination of kinetic isotopic fractionation of water during bare soil evaporation
NASA Astrophysics Data System (ADS)
Quade, Maria; Brüggemann, Nicolas; Graf, Alexander; Rothfuss, Youri
2017-04-01
A process-based understanding of the water cycle in the atmosphere is important for improving meteorological and hydrological forecasting models. Usually only net fluxes of evapotranspiration - ET are measured, while land-surface models compute their raw components evaporation -E and transpiration -T. Isotopologues can be used as tracers to partition ET, but this requires knowledge of the isotopic kinetic fractionation factor (αK) which impacts the stable isotopic composition of water pools (e.g., soil and plant waters) during phase change and vapor transport by soil evaporation and plant transpiration. It is defined as a function of the ratio of the transport resistances in air of the less to the most abundant isotopologue. Previous studies determined αK for free evaporating water (Merlivat, 1978) or bare soil evaporation (Braud et al. 2009) at only low temporal resolution. The goal of this study is to provide estimates at higher temporal resolution. We performed a soil evaporation laboratory experiment to determine the αK by applying the Craig and Gordon (1965) model. A 0.7 m high column (0.48 m i.d.) was filled with silt loam (20.1 % sand, 14.9 % loam, 65 % silt) and saturated with water of known isotopic composition. Soil volumetric water content, temperature and the isotopic composition (δ) of the soil water vapor were measured at six different depths. At each depth microporous polypropylene tubing allowed the sampling of soil water vapor and the measurement of its δ in a non-destructive manner with high precision and accuracy as detailed in Rothfuss et al. (2013). In addition, atmospheric water vapor was sampled at seven different heights up to one meter above the surface for isotopic analysis. Results showed that soil and atmospheric δ profiles could be monitored at high temporal and vertical resolutions during the course of the experiment. αK could be calculated by using an inverse modeling approach and the Keeling (1958) plot method at high temporal resolution over a long period. We observed an increasing δ in the evaporating water vapor due to more enriched surface water. This leads to a higher transport resistances and an increasing αK. References Braud, I., Bariac, T., Biron, P., and Vauclin, M.: Isotopic composition of bare soil evaporated water vapor. Part II: Modeling of RUBIC IV experimental results, J. Hydrol., 369, 17-29. Craig, H. et al., 1965. Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: E. Tongiogi (Editor), Stable Isotopes in Oceanographic Studies and Paleotemperatures. V. Lishi, Spoleto, Italy, pp. 9-130. Keeling, C. D.: The Concentration and Isotopic Abundances of Atmospheric Carbon Dioxide in Rural Areas, Geochim. Cosmochim. Acta, 13, 322-334. Merlivat, L., 1978. Molecular Diffusivities of H216O, HD16O, and H218O in Gases. J Chem Phys, 69, 2864-2871. Rothfuss, Y. et al., 2013. Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy. Water Resour. Res., 49, 1-9.
NASA Astrophysics Data System (ADS)
Seitz, Hans-Michael; Brey, Gerhard P.; Harris, Jeffrey W.; Durali-Müller, Soodabeh; Ludwig, Thomas; Höfer, Heidi E.
2018-05-01
The most remarkable feature of the inclusion suite in ultradeep alluvial and kimberlitic diamonds from Sao Luiz (Juina area in Brazil) is the enormous range in Mg# [100xMg/(Mg + Fe)] of the ferropericlases (fper). The Mg-richer ferropericlases are from the boundary to the lower mantle or from the lower mantle itself when they coexist with ringwoodite or Mg- perovskite (bridgmanite). This, however, is not an explanation for the more Fe-rich members and a lowermost mantle or a "D" layer origin has been proposed for them. Such a suggested ultra-deep origin separates the Fe-rich fper-bearing diamonds from the rest of the Sao Luiz ultradeep diamond inclusion suite, which also contains Ca-rich phases. These are now thought to have an origin in the uppermost lower mantle and in the transition zone and to belong either to a peridotitic or mafic (subducted oceanic crust) protolith lithology. We analysed a new set of more Fe-rich ferropericlase inclusions from 10 Sao Luiz ultradeep alluvial diamonds for their Li isotope composition by solution MC-ICP-MS (multi collector inductively coupled plasma mass spectrometry), their major and minor elements by EPMA (electron probe micro-analyser) and their Li-contents by SIMS (secondary ion mass spectrometry), with the aim to understand the origin of the ferropericlase protoliths. Our new data confirm the wide range of ferropericlase Mg# that were reported before and augment the known lack of correlation between major and minor elements. Four pooled ferropericlase inclusions from four diamonds provided sufficient material to determine for the first time their Li isotope composition, which ranges from δ7Li + 9.6 ‰ to -3.9 ‰. This wide Li isotopic range encompasses that of serpentinized ocean floor peridotites including rodingites and ophicarbonates, fresh and altered MORB (mid ocean ridge basalt), seafloor sediments and of eclogites. This large range in Li isotopic composition, up to 5 times higher than `primitive upper mantle' Li-abundances, and an extremely large and incoherent range in Mg# and Cr, Ni, Mn, Na contents in the ferropericlase inclusions suggests that their protoliths were members of the above lithologies. This mélange of altered rocks originally contained a variety of carbonates (calcite, magnesite, dolomite, siderite) and brucite as the secondary products in veins and as patches and Ca-rich members like rodingites and ophicarbonates. Dehydration and redox reactions during or after deep subduction into the transition zone and the upper parts of the lower mantle led to the formation of diamond and ferropericlase inclusions with variable compositions and a predominance of the Ca-rich, high-pressure silicate inclusions. We suggest that the latter originated from peridotites, mafic rocks and sedimentary rocks as redox products between calcite and SiO2.
NASA Astrophysics Data System (ADS)
Tahmasebi, F.; Longstaffe, F. J.; Zazula, G.
2016-12-01
The loess deposits of eastern Beringia, a region in North America between 60° and 70°N latitude and bounded by Chukchi Sea to the west and the Mackenzie River to the east, are a magnificent repository of Late Pleistocene megafauna fossils. The stable carbon and nitrogen isotope compositions of these fossils are measured to determine the paleodiet of these animals, and hence the paleoenvironment of this ecosystem during the Quaternary. For this approach to be most successful, however, requires consideration of possible changes in nutrient cycling and hence the carbon and nitrogen isotopic compositions of vegetation in this ecosystem. To test for such a shift following the terminal Pleistocene, we analyzed the stable carbon and nitrogen isotope compositions of modern plants and bone collagen of Arctic ground squirrels from Yukon Territory, and fossil plants and bones recovered from Late Pleistocene fossil Arctic ground squirrel nests. The data for modern samples provided a measure of the isotopic fractionation between ground squirrel bone collagen and their diet. The over-wintering isotopic effect of decay on typical forage grasses was also measured to evaluate its role in determining fossil plant isotopic compositions. The grasses showed only a minor change ( 0-1 ‰) in carbon isotope composition, but a major change ( 2-10 ‰) in nitrogen isotope composition over the 317-day experiment. Based on the modern carbon isotope fractionation between ground squirrel bone collagen and their diet, the modern vegetation carbon isotopic baseline provides a suitable proxy for the Late Pleistocene of eastern Beringia, after accounting for the Suess effect. However, the predicted nitrogen isotope composition of vegetation comprising the diet of fossil ground squirrels remains 2.5 ‰ higher than modern grasslands in this area, even after accounting for possible N-15 enrichment during decay. This result suggests a change in N cycling in this region since the Late Pleistocene.
Do Leached Authigenic Fractions Reflect the Neodymium Seawater Composition?
NASA Astrophysics Data System (ADS)
Pimbert, A.; Gourlan, A. T.; Chauvel, C.
2016-12-01
Leaching of marine sediment is often used to recover past Nd seawater composition and reconstruct past ocean circulation. It is assumed to reliably extract REE from the authigenic fraction of sediment [1]. However, while most studies assume that the recovered signal is that of past seawater, very few report complete isotopic and trace element data that clearly demonstrate it is the case. We present new ɛNd values and REE contents measured on leachates of sediments from two Cretaceous marine sections deposited at shallow water depth (Taghazoute in Morocco) and at greater depth in the Atlantic (DSDP Site 367). REE patterns of leachates vary according to lithology: bell-shaped patterns or positive Ce anomalies for organic-poor samples and seawater-like patterns (negative Ce anomaly, low Nd/Yb ratio) for black shales. ɛNd values also vary: between -5.6 and -9.6 at Taghazoute and between -10 and -8.1 at Site 367. Interestingly, ɛNd values correlate with Ce anomalies for Taghazoute black shales. Samples with the largest Ce negative anomalies have the highest ɛNd while samples with no Ce anomalies have much lower ɛNd. This suggests the presence in the leached material of detritus mixed up with the authigenic fraction for sediments deposited in shallow environment. This confirms the findings made by Huck et al. [2] for fish teeth in a similar environment. In such environment, recovering the pristine seawater signal requires (a) the acquisition of both Nd isotopes and trace element contents, and (b) selection of the only Nd isotopic compositions associated to clear seawater trace element characteristics. For sediments deposited in open-ocean setting (Site 367), no detrital contamination affects leached fractions. The REE patterns vary depending on the nature of authigenic fraction but ɛNd remains constant. Here, ɛNd values can be used to discuss oceanic reconstructions. [1] Martin et al. (2010), Chem. Geol, 269, 414-431. [2] Huck et al. (2016), G3, 17, 679-698.
NASA Astrophysics Data System (ADS)
Burgess, Ray; Cartigny, Pierre; Harrison, Darrell; Hobson, Emily; Harris, Jeff
2009-03-01
In order to better investigate the compositions and the origins of fluids associated with diamond growth, we have carried-out combined noble gas (He and Ar), C and N isotope, K, Ca and halogen (Cl, Br, I) determinations on fragments of individual microinclusion-bearing diamonds from the Panda kimberlite, North West Territories, Canada. The fluid concentrations of halogens and noble gases in Panda diamonds are enriched by several orders of magnitude over typical upper mantle abundances. However, noble gas, C and N isotopic ratios ( 3He/ 4He = 4-6 Ra, 40Ar/ 36Ar = 20,000-30,000, δ 13C = -4.5‰ to -6.9‰ and δ 15N = -1.2‰ to -8.8‰) are within the worldwide range determined for fibrous diamonds and similar to the mid ocean ridge basalt (MORB) source value. The high 36Ar content of the diamonds (>1 × 10 -9 cm 3/g) is at least an order of magnitude higher than any previously reported mantle sample and enables the 36Ar content of the subcontinental lithospheric mantle to be estimated at ˜0.6 × 10 -12 cm 3/g, again similar to estimates for the MORB source. Three fluid types distinguished on the basis of Ca-K-Cl compositions are consistent with carbonatitic, silicic and saline end-members identified in previous studies of diamonds from worldwide sources. These fluid end-members also have distinct halogen ratios (Br/Cl and I/Cl). The role of subducted seawater-derived halogens, originally invoked to explain some of the halogen ratio variations in diamonds, is not considered an essential component in the formation of the fluids. In contrast, it is considered that large halogen fractionation of a primitive mantle ratio occurs during fluid-melt partitioning in forming silicic fluids, and during separation of an immiscible saline fluid.
Deciphering the iron isotope message of the human body
NASA Astrophysics Data System (ADS)
Walczyk, Thomas; von Blanckenburg, Friedhelm
2005-04-01
Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.
Lead Isotopic Source Signatures for Rains and River Waters in Taiwan
NASA Astrophysics Data System (ADS)
You, C.; Cheng, M.; Lee, M.; Lin, F.
2002-12-01
Lead isotopic compositions and Pb contents in rains and river waters are sensitive proxies for air-pollutant sources and their transport processes. We have collected more than 100 wet precipitations between 1998 and 2001 at Peng-Chia Yu, an offshore island in northern Taiwan, and two other cities, Taichung and Tainan, located at central and southern Taiwan. Additional 14 river waters collected along the Er-Ren-Shi River, Tainan were investigated for systematic comparison. All collected samples were analyzed for major ions (i.e., Cl, Na, Mg, Ca, SO4, NO3 and NH4) by ion chromatography, trace elements and Pb isotopes by ICP-MS (Element II) installed at NCKU. The Peng-Chia Yu rains show large seasonal variation in major ions where Na and Cl are much higher in the winter season. Significant industrial contributions of SO4, NH4 and nsCa are detected at Taichung and Tainan. Trace element results display a more complicated picture, suggesting mixing among seasalt, Asia continental dust, and atmospheric pollutant. These chemical data can be understood in terms of seasonal wind direction changes due to the Asian monsoon system. In winter, the northerly cold wind blow materials with high concentration of anthropogenic input (i.e., Pb and SO4) and dust source (i.e., Al and Ca) from the Asia continent. In contrast, the intertropical convergence zone (ITCZ) migrates northward and caused southwest monsoon prevail in the summer. The 208Pb/207Pb ratio shows consistent seasonal trends as that of Pb contents, possibly a result of mixing between Asia atmospheric sources and seasalt. For the Er-ren Shi River waters, Pb and Pb isotopic compositions vary systematically downstream. Pb concentrations decrease rapidly from 5200 ppt at upstream stations to a value of less than 50 ppt near the estuary whereas 208Pb/207Pb varied between 2.087 and 2.124. The 208Pb/206Pb vs. 1/Pb plot demonstrates a mixing trend between anthropogenic sources and seawater. These results demonstrate that Pb and Pb isotopes in rains and river waters can be used as useful tools for tracing air-borne pollutant sources and their transportation processes.
Tahmasebi, Farnoush; Longstaffe, Fred J; Zazula, Grant; Bennett, Bruce
2017-01-01
We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of -27.5 ± 1.2 ‰ and foliar δ13C of -28.0 ± 1.3 ‰, and average whole plant δ15N of -0.3 ± 2.2 ‰ and foliar δ15N of -0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region.
NASA Astrophysics Data System (ADS)
Trayler, Robin B.; Kohn, Matthew J.
2017-02-01
Oxygen isotope and major element zoning patterns of several disparate ungulate teeth were collected to evaluate the timing and geometry of enamel formation, records of isotope zoning, and tooth enamel sampling strategies. Isotopic zoning in mammalian tooth enamel encodes a sub-annual time series of isotopic variation of an animal's body water composition, with a damping factor that depends on the specifics of how enamel mineralizes. Enamel formation comprises two stages: precipitation of appositional enamel with a high CO3:PO4 ratio, followed by precipitation of maturational enamel with a lower CO3:PO4. If appositional and maturational enamel both contribute to isotope compositions (but with different CO3:PO4), and if isotope compositions vary seasonally, paired δ18O values from CO3 and PO4 profiles should show a spatial separation. CO3 isotope patterns should be shifted earlier seasonally than PO4 isotope patterns. Such paired profiles for new and published data show no resolvable shifts, i.e. CO3 and PO4 δ18O profiles show coincident maxima and minima. This coincidence suggests that enamel maturation reequilibrates appositional isotope compositions. If enamel maturation establishes enamel isotope compositions, the geometry of maturation, not apposition, should be considered when devising sampling protocols. X-ray maps of Ca zoning show that the majority of enamel (inner and middle layers) mineralizes heavily at a high angle to the external tooth surface and the enamel-dentine junction over length scales of 2-4 mm, while the outer enamel surface mineralizes more slowly. These data suggest that isotopic sampling strategies should parallel maturational geometry and focus on interior enamel to improve data fidelity. The magnitude of isotopic damping is also smaller than implied in previous studies, so tooth enamel zoning more closely reflects original body water isotopic variations than previously assumed.
Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.
1999-01-01
Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and lower model Th/U. These Pb isotope differences are inferred to result from differences in their respective post-1.7 Ga magmatic histories. Throughout Arizona, Pb isotope compositions of Late Cretaceous and early Tertiary plutons and associated sulfide minerals are distinct from those of Jurassic plutons and also middle Tertiary igneous rocks and sulfide minerals. These differences most likely reflect changes in tectonic setting and magmatic sources. Within Late Cretaceous and early Tertiary igneous complexes that host economic porphyry copper deposits, there is commonly a decrease in Pb isotope composition from older to younger plutons. This decrease in Pb isotope values with time suggests an increasing involvement of crust with lower U/Pb than average crust in the source(s) of Late Cretaceous and early Tertiary magmas. Lead isotope compositions of the youngest porphyries in the igneous complexes are similar to those in most sulfide minerals within the associated porphyry copper deposit. This Pb isotope similarity argues for a genetic link between them. However, not all Pb in the sulfide minerals in porphyry copper deposits is magmatically derived. Some sulfide minerals, particularly those that are late stage, or distal to the main orebody, or in Proterozoic or Paleozoic rocks, have elevated Pb isotope compositions displaced toward the gross average Pb isotope composition of the local country rocks. The more radiogenic isotopic compositions argue for a contribution of Pb from those rocks at the site of ore deposition. Combining the Pb isotope data with available geochemical, isotopic, and petrologic data suggests derivation of the young porphyry copper-related plutons, most of their Pb, and other metals from a hybridized lower continental crustal source. Because of the likely involvement of subduction-related mantle-derived basaltic magma in the hybridized lower crustal source, an indiscernible mantle contribution is probable in the porphyry magmas. Clearly, in addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, R.; Kerrich, R.; Maas, R.
1993-02-01
The Abitibi greenstone belt (AGB) and Pontiac Subprovince (PS) in the southwestern Superior Province are adjacent greenstone-plutonic and metasedimentary-dominated terranes, respectively, separated by a major fault zone. Metasediments from these two contrasting terranes are compared in terms of major- and trace-element and O- and Nd-isotope compositions, and detrital zircon ages. The following two compositional populations of metasediments are present in the low-grade, Abitibi southern volcanic zone: (1) a mafic-element-enriched population (MEP) characterized by flat, depleted REE patterns; enhanced Mg, Cr, Co, Ni, and Sc; low-incompatible-element contents; and minor or absent normalized negative troughs at Nb, Ta, and Ti; and (2)more » a low-mafic-element population (LMEP) featuring LREE-enriched patterns; enhanced Rb, Cs, Ba, Th, and U contents; and pronounced normalized negative troughs at Nb, Ta, and Ti. These geochemical features are interpreted to indicate that the MEP sediments were derived from an ultramafic- and mafic-dominated oceanic provenance, whereas the LMEP sediments represent mixtures of mafic and felsic are source rocks. The PS metasediments are essentially indistinguishable from Abitibi LMEP on the basis of major-element and transition metal abundances, suggesting comparable types of source rocks and degrees of maturity, but are distinct in terms of some trace elements and O-isotope compositions. The Pontiac metasediments are depleted in [sup 18]O and enriched in Cs, Ba, Pb, Th, U, Nb, Ta, Hf, Zr, and total REE and also have higher ratios of Rb/K, Cs/Rb, Ba/Rb, Ta/Nb, Th/La, and Ba/La relative to the Abitibi LMEP. Two subtypes of REE patterns have been identified in PS metasediments. The first subtype is interpreted to be derived from provenances of mixed mafic and felsic volcanic rocks, whereas the Eu-depleted type has features that are typical of post-Archean sediments or Archean K-rich granites and volcanic equivalents. 100 refs., 9 figs., 4 tabs.« less
Isotopic Compositions of the Elements, 2001
NASA Astrophysics Data System (ADS)
Böhlke, J. K.; de Laeter, J. R.; De Bièvre, P.; Hidaka, H.; Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P.
2005-03-01
The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the "best measurement" of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001.
Groundwater residence time and paleohydrology in the Baltic Artesian basin:isotope geochemical data
NASA Astrophysics Data System (ADS)
Vaikmae, R.; Gerber, C.; Purtschert, R.; Aeschbach, W.; Raidla, V., Sr.; Lu, Z. T.; Zappala, J. C.; Mueller, P.; Mokrik, R., Sr.; Jiang, W.
2016-12-01
In this study of the Cambrian aquifer system(CAS) in the Baltic Artesian Basin(BAS) (, chemistry, stable isotopes, noble gas measurements, and dating tracers were combined for study the flow and recharge dynamics of the system over the last million years We find that the variability in chemical composition, stable isotopes and noble gas content in the basin is predominately controlled by mixing of three distinct water masses: Holocene and Pleistocene interglacial water, glacial meltwater, and brine. 81Kr is a nearly ideal dating tracer for such old systems. The radiogenic 4He and 40Ar provide additional information, but are more difficult to interpret in terms of groundwater age. In this study, we did not consider diffusive loss of 81Kr to stagnant water, which might result in an overestimation of groundwater ages ). However, the relatively high porosity and large thickness of the CAS, together with the presumed high salinity and low Kr content of the stagnant water all diminish the effect of diffusive 81Kr loss on age estimates. Our results confirm that under normal conditions, underground production of 81Kr is not affecting the dating results. 81Kr, 4He, and 40Ar all indicate a residence time of the brine of more than 1-3 Ma. Some uncertainty about the brine formation process remains, but the combination of chemical and stable isotope composition of the brine, noble gas concentrations and dating results favors evaporative enrichment of seawater. Tracer ages of interglacial water and glacial meltwater are on the order of several hundred thousand years, which means that several reversals of the flow direction in the CAS as a result of the paleoclimatology of the area have to be taken into account. Under such conditions, small vertical leakage, through fracture zones for example, might considerably impact the net flow pattern. Due to the cyclic flow direction reversals, the aquifer was probably in a transient state over most of the last 1 Ma period.
NASA Astrophysics Data System (ADS)
Chen, Xiao-Cui; Hu, Rui-Zhong; Bi, Xian-Wu; Zhong, Hong; Lan, Jiang-Bo; Zhao, Cheng-Hai; Zhu, Jing-Jing
2015-03-01
The Bainiuchang silver-polymetallic ore deposit is a super-large deposit in the western part of the South China tungsten-tin province (or the Nanling tungsten-tin province). The deposit is spatially and temporally associated with the Bozhushan granite pluton. Our new data indicate that the Bozhushan granitoids formed at 86-87 Ma. The granitoids are geochemically consistent with A-type granite. The Bozhushan pluton consists predominantly of biotite granite that is characterized by weakly peraluminous to metaluminous compositions and high alkali contents (Na2O + K2O = 7.51-9.06 wt.%). The granitic rocks are enriched in large-ion lithophile elements (LILE) Rb, Th, U, and K, but relatively depleted in Ba and Sr. In addition, they have high Zr + Nb + Ce + Y contents (310-478 ppm) and high 10,000× Ga/Al ratios (2.7-3.1). The temperatures of the parental magmas for the Bozhushan granites are estimated to be 790-842 °C based on the zircon saturation thermometer. Isotopically, the Bozhushan granites are characterized by elevated initial 87Sr/86Sr ratios (0.7126-0.7257) and low εNd values (-11.2 to -12.4), and high δ18O values (7.91-9.58‰) and low εHf values (-9.5 to -6.1) for zircon crystals, which indicate a dominant continental crustal source. The two-stage Hf model ages vary from 1.53 to 1.86 Ga. The isotopic compositions support the interpretation that the granitic rocks formed by melting of the Meso- and Neoproterozoic metasedimentary basements of the Cathaysia block. These results, together with geological records in the other parts of the western Cathaysia block, suggest that the formation of the Bozhushan A-type granites is related to lithospheric extension and asthenospheric upwelling that are associated with the change of plate motion in Late-Cretaceous.
NASA Astrophysics Data System (ADS)
Bojar, Ana-Voica; Lécuyer, Christophe; Bojar, Hans-Peter; Fourel, François; Vasile, Ştefan
2018-03-01
Deep-sea vent communities live on a limited area characterized by sharp physico-chemical (temperature, salinity, pH) gradients. Around the vent, the fauna is distributed accordingly, showing characteristic niche partitioning for different groups of animals. In this study we investigate shell microstructure, minor elements and stable isotope compositions of two groups of organisms such as a snail, Ifremeria nautilei, and a crustacean, Eochionelasmus ohtai manusensis. Both organisms occupy distinct niches within the same hydrothermal vent field of the Manus Basin, Western Pacific. Powder XRD and electron microbeam analysis of a polished cross-section indicate that the shells are composed of microcrystalline calcite, with distinct Na, Mg, Sr, and S element contents. For both specimens 20-30 μm large weddellite crystals were found. The δ18O profiles were obtained perpendicular to the growth increments of I. nautilei and E. o. manusensis calcitic shells. Those profiles reveal isotopic variations of 0.5 and 0.6‰, respectively for both intra- and inter-shell measurements. For E. o. manusensis, the Mg content suggests continuous shell growth during the year, both δ18O and Mg data supporting cyclical variation of temperature at vent site. The calculated temperatures at sites with I. nautilei and E. o. manusensis range from 17° to 21.5°C and from 2.1° to 7.2°C, respectively, showing a similar variability of 5-6 °C. The δ13C values of the Ifremeria calcitic shell range from 3‰ to 4.6‰ (V-PDB), the isotopic composition being 13C-enriched relative to the surrounding inorganic pool. The δ13C values of the chitine layer covering the shell range from - 33 to - 31.1‰. The δ13C values of Eochionelasmus vary between 0‰ and 1‰, reflecting the surrounding inorganic DIC pool.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam
2012-01-01
Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .
NASA Astrophysics Data System (ADS)
Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan
2016-12-01
We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic composition is estimated at - 2.38‰ (from COP-2), but most samples show elemental fractionation due to boiling and steam separation followed by various degrees of atmospheric contamination. All these geochemical and isotopic characteristics are the direct consequence of tectonic particularities of the CCVC: NE faults promote the ascent of hydrothermal fluids in the geothermal area whereas WNW faults serve as preferential channels for meteoric water infiltration.
Chen, Kai-Yun; Fan, Chao; Yuan, Hong-Lin; Bao, Zhi-An; Zong, Chun-Lei; Dai, Meng-Ning; Ling, Xue; Yang, Ying
2013-05-01
In the present study we set up a femtosecond laser ablation MC-ICP-MS method for lead isotopic analysis. Pb isotopic composition of fifteen copper (brass, bronze) standard samples from the National Institute of Standards Material were analyzed using the solution method (MC-ICP-MS) and laser method (fLA-MC-ICPMS) respectively, the results showed that the Pb isotopic composition in CuPb12 (GBW02137) is very homogeneous, and can be used as external reference material for Pb isotopic in situ analysis. On CuPb12 112 fLA-MC-ICPMS Pb isotope analysis, the weighted average values of the Pb isotopic ratio are in good agreement with the results analyzed by bulk solution method within 2sigma error, the internal precision RSEs of the 208 Pb/204 Pb ratio and 207 Pb/206 Pb ratio are less than 90 and 40 ppm respectively, and the external precision RSDs of them are less than 60 and 30 ppm respectively. Pb isotope of thirteen ancient bronze coins was analyzed via fLA-MC-ICPMS, the results showed that the Pb isotopic composition of ancient coins of different dynasties is significantly different, and not all the Pb isotopic compositions in the coins even from the same dynasty are in agreement with each other.
Magnesium isotope geochemistry in arc volcanism.
Teng, Fang-Zhen; Hu, Yan; Chauvel, Catherine
2016-06-28
Incorporation of subducted slab in arc volcanism plays an important role in producing the geochemical and isotopic variations in arc lavas. The mechanism and process by which the slab materials are incorporated, however, are still uncertain. Here, we report, to our knowledge, the first set of Mg isotopic data for a suite of arc lava samples from Martinique Island in the Lesser Antilles arc, which displays one of the most extreme geochemical and isotopic ranges, although the origin of this variability is still highly debated. We find the δ(26)Mg of the Martinique Island lavas varies from -0.25 to -0.10, in contrast to the narrow range that characterizes the mantle (-0.25 ± 0.04, 2 SD). These high δ(26)Mg values suggest the incorporation of isotopically heavy Mg from the subducted slab. The large contrast in MgO content between peridotite, basalt, and sediment makes direct mixing between sediment and peridotite, or assimilation by arc crust sediment, unlikely to be the main mechanism to modify Mg isotopes. Instead, the heavy Mg isotopic signature of the Martinique arc lavas requires that the overall composition of the mantle wedge is buffered and modified by the preferential addition of heavy Mg isotopes from fluids released from the altered subducted slab during fluid-mantle interaction. This, in turn, suggests transfer of a large amount of fluid-mobile elements from the subducting slab to the mantle wedge and makes Mg isotopes an excellent tracer of deep fluid migration.
NASA Astrophysics Data System (ADS)
Yang, Guang; Li, Chaolun; Guilini, Katja; Peng, Quancai; Wang, Yanqing; Zhang, Ye; Zhang, Yongshan
2016-08-01
Using fatty acid biomarkers and stable isotopic signatures, we investigated the feeding strategies and dietary preferences of four dominant copepod species (Calanoides acutus, Calanus propinquus, Metridia gerlachei and Rhincalanus gigas) sampled during the late austral summer in Prydz Bay, Antarctica. Our results show that diatoms, dinoflagellates and ciliates dominated copepod food sources (hypothesized to be phytoplankton and particulate organic matter) in the inner bay regions more than in the oceanic regions of Prydz Bay. Regional differences in the composition and abundance of food sources were also reflected in the fatty acid biomarkers and stable isotopic values. In the inner bay region, the total fatty acid contents of these food sources were nearly twofold higher, including greater contributions from fatty acids of dinoflagellate origin; these samples also had higher δ13C and δ15N values. Fatty acid biomarkers and stable isotopic values in copepod species roughly mirrored the spatial patterns in food sources. As found in the primary producers, the concentrations of dinoflagellate fatty acids and δ13C and δ15N values were higher in copepods from the inner bay regions. Additionally, there were inter-species differences in the fatty acids and stable isotopic values of copepods. C. acutus and C. propinquus did not exhibit significant regional differences in their total fatty acid contents. In contrast, M. gerlachei from the inner bay region had higher fatty acid values. C. acutus and C. propinquus had higher compositions of the long chain fatty acids 20:1n-9, 22:1n-9 and 22:1n-1, while docosahexaenoic acid (DHA) was higher in M. gerlachei. The δ15N values indicate that C. acutus occupies a higher trophic level than the other copepod species. Similarly, higher fatty acid ratios in M. gerlachei, including DHA/EPA(eicosapntemacnioc acid) and 18:1n-9/18:1n-7, indicate that this species feeds more opportunistically and prefers a carnivorous diet. Insights from this combined fatty acid and stable isotopic approach suggest that the dominant copepod species in Prydz Bay, Antarctica, have flexible feeding strategies that vary by food source during the late austral summer.
Chondritic late accretion to Mars and the nature of shergottite reservoirs
NASA Astrophysics Data System (ADS)
Tait, Kim T.; Day, James M. D.
2018-07-01
Mars is considered to have formed as a planetary embryo that experienced extensive differentiation early in its history. Shergottite meteorites preserve evidence for this history, and for late accretion events that affected their mantle sources within Mars. Here we report the first coupled 187Re-187Os, 87Sr/86Sr, highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, Re) and major element abundance dataset for martian shergottites that span a range of MgO contents, from 6.4 to 30.3 wt.%. The shergottites range from picro-basalt to basaltic-andesite compositions, have enriched to depleted incompatible trace-element compositions, and define fractional crystallization trends, enabling the determination of HSE compatibility for martian magmatism in the order: Os > Ir ≥ Ru ≫ Pt ≥ Pd ≥ Re. This order of compatibility is like that defined previously for Earth and the Moon, but the fractionation of strongly compatible Os, Ir and Ru appears to take place at higher MgO contents in martian magmas, due to early onset of sulfide fractionation. In general, enriched shergottites have lower MgO contents than intermediate or depleted shergottites and have fractionated HSE patterns (Re + Pd + Pt > Ru + Ir + Os) and more radiogenic measured 87Sr/86Sr (0.7127-0.7235) and 187Os/188Os (0.140-0.247) than intermediate or depleted shergottite meteorites (87Sr/86Sr = 0.7010-0.7132; 187Os/188Os = 0.127-0.141). Osmium isotope compositions, corrected for crystallization age, define compositions that are implausibly unradiogenic in some enriched shergottites, implying recent mobilization of Re in some samples. Filtering for the effects of alteration and high Re/Os through crystal-liquid fractionation leads to a positive correlation between age-corrected Sr and Os isotope compositions. Mixing between hypothetical martian crustal and mantle reservoirs are unable to generate the observed Sr-Os isotope compositions of shergottites, which require either distinct and discrete long-term incompatible-element depleted and enriched mantle sources, or originate from hybridized melting of deep melts with metasomatized martian lithosphere. Using MgO-regression methods, we obtain a modified estimate of the bulk silicate Mars HSE composition of (in ng g-1) 0.4 [Re], 7.4 [Pd], 9.6 [Pt], 6.2 [Ru], 3.7 [Ir], 4 [Os], and a long-term chondritic 187Os/188Os ratio (∼0.1312). This result does not permit existing models invoking high-pressure and temperature partitioning of the HSE. Instead, our estimate implies 0.6-0.7% by mass of late accretion of broadly chondritic material to Mars. Our results indicate that Mars could have accreted earlier than Earth, but that disproportional accretion of large bodies and a relative constant flux of accretion of available materials in the first 50-100 Ma of Solar System led to the broad similarity in HSE abundances between Earth and Mars.
NASA Astrophysics Data System (ADS)
Höll, Christine; Kemle-von Mücke, Sylvia
2000-07-01
Analysis of multiple proxies shows that eastern equatorial Atlantic upwelling was subdued during isotope stage 5.5, more intense during stages 4, 5.2, 5.4, and 6, and most intense early in stage 2. These findings are based on proxy measures from a core site about 600 km southwest of Liberia. The proxies include total organic carbon content, the ratio of peridinoid and oceanic organic-walled dinoflagellate cyst species, accumulation rates of calcareous dinoflagellates, estimates of sea surface paleotemperatures, the difference in stable oxygen isotope composition between two species of planktonic foraminifera that live at different water depths, and the abundance of the planktonic foraminifera Neogloboquadrina dutertrei. Most of these parameters consistently vary directly or inversely with one another. Slight discrepancies between the individual parameters show the usefulness of a multiple proxy approach to reconstruct paleoenvironments. Our data confirm that northern summer insolation strongly influences upwelling in the eastern equatorial Atlantic Ocean.
Statistical clumped isotope signatures
Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.
2016-01-01
High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168
Nature and origin of the sedimentary pile subducting in the Nankai Through
NASA Astrophysics Data System (ADS)
Chauvel, C.; Garcon, M.; Yobregat, E.; Chipoulet, C.; Labanieh, S.
2013-12-01
Nd-Hf isotopes and trace and major element concentrations were measured on bulk sediments recovered at Site C0012 during IODP Expedition 322 and 333 in the Shikoku basin. We analyzed the composition of different lithologies such as clay, claystone, sand, sandstone, and ash layers, all through the sedimentary pile, from the surface to the sediment-basalt interface, in order to identify compositional trends and source variations with depth. Major and trace element contents of the background sediments (hemipelagic mudstone) are very homogenous and span a relatively small range of values throughout the entire sedimentary pile. Their composition resembles that of the average upper continental crust of Rudnick and Gao (2003, Treatise on Geochemistry, Vol.3, p. 1-64). Nd and Hf isotopes are more variable, relatively unradiogenic (-8 < ɛNd < -3 ; -4 < ɛHf < +5) but display no systematic variations with depth (Fig. 1). Such isotopic compositions indicate that the background sedimentation of the Shikoku basin may consist of volcaniclastic material from the Izu-Bonin and/or Ryukyu arcs, detrital material eroded from SW Japan and relatively high amount of an evolved continental-derived component, probably Chinese loess as already suggested by Mahomet (2005, Sediment. Geol., 182, p.183-199). Compared to the background sedimentation, volcanic ash layers and volcaniclastic sandstones have very different trace element patterns and more radiogenic Nd-Hf isotopic signature (Fig. 1). Our results allow us to distinguish at least two different volcanic sources for these deposits. At the bottom of the sedimentary pile, siliciclastic sandstones with a mid-Miocene age are present; they have remarkably low ɛNd and ɛHf values (i.e. ɛNd < -8 and ɛHf < -5). Such isotopic compositions clearly demonstrate that their source cannot be the Japanese mainland, as suggested by previous studies (e.g. Underwood et al, 2009, Exp.322 PR ; Fergusson, 2003, Proc. ODP, Sci. Results 190/196). These sandstones are also too coarse to result from an accumulation of Chinese loess transported by wind (particles usually finer than 40 μm). Given the location of the Shikoku basin at 15Ma, we suggest that the siliciclastic sandstones mainly consists of detrital materials transported by Chinese rivers up to the sea in the Shikoku basin. Variations of ɛNd as a function of depth. Potential sediment sources are indicated by color bands
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell
2015-01-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...
The Effects of Core Composition on Iron Isotope Fractionation During Planetary Differentiation
NASA Astrophysics Data System (ADS)
Elardo, S. M.; Shahar, A.; Caracas, R.; Mock, T. D.; Sio, C. K. I.
2018-05-01
High pressure and temperature isotope exchange experiments and density functional theory calculations show how the composition of planetary cores affects the fractionation of iron isotopes during planetary differentiation.
NASA Astrophysics Data System (ADS)
Li, X.; Bao, H.; Zhou, A.; Wang, D.
2012-12-01
Secondary atmospheric sulfate (SAS) is the oxidation product and sink for sulfur gases of biological, volcanic, and anthropogenic origins on Earth. SAS can be produced from gas-phase OH-radical oxidation and five aqueous-phase chemical reactions including aqueous-phase S (IV) oxidation reactions by H2O2, O3, oxygen catalyzed by Fe3+ and Mn2+, and methyle hydrogen peroxide and peroxyacetic acid. The tropospheric sulfur oxidation pathway is therefore determined by cloud-water pH, dissolved [Fe2+] or [Mn2+] content, S emission rate, meteorological condition, and other factors. The S isotope composition is a good tracer for the source while the O isotopes, especially the triple O isotope compositions are a good tracer for S oxidation pathway. Jerkins and Bao (2006) provided the first set of multiple stable isotope compositions (δ34S, δ18O and Δ17O) for SAS collected from bulk atmosphere in Baton Rouge in the relatively rural southern USA. Their study revealed a long-tern average Δ17O value of ~+0.7‰ for SAS, and speculated that much of the Earth mid-latitudes may have a similar average SAS Δ17O value. Additional sampling campaign at different sites is necessarily for constructing and testing models on sulfur oxidation and transport in the troposphere. A total of 33 sulfate samples were collected from bulk atmospheric deposition over a 950-day period from May 2009 to December 2011 in the city of Wuhan, Hubei Province, China. Differing from Baton Rouge, Wuhan is an industrial metropolis with a population of 9.8 million and a high particulate matter content (115 μg/m3). It also has a subtropical monsoon climate, with rainwater pH at ~5.3 year-around. The rainwater ion concentrations have seasonal variations, typically low in summer and high in winter. The anions are dominated by SO42-, at an average concentration of 8.5 mg/L. There is little sulfate contribution from sea-salt (SS) sulfate or dusts in Wuhan. The isotopic compositions for bulk atmospheric sulfate range from 0.00‰ to 1.02‰ for the Δ17O, 8.0‰ to 17.8‰ for the δ18O, and 2.1‰ to 24.1‰ for the δ34S. No apparent correlation is found among Δ17O, δ18O, or δ34S values. No significant temporal pattern exists for the Δ17O over the collection period. The positive Δ17O values for SAS have a time-weighted average of 0.52 ± 0.23‰, lower than the average in Baton Rouge, raising the possibility that the high particulate matter content in Wuhan may have played a role in promoting S oxidation via surface and/or Fe(III)-catalyzed pathways that do not generate positive 17O anomaly in product sulfate. The average Δ17O value also supports the assertion that the long-term average Δ17O value for SAS in the mid-latitude sites fall within a range (0.6~0.8‰) that is much lower than that in polar areas. The SAS δ18O values in Wuhan lie within the range reported for other sites (+5.0‰ to +19.6‰), with a time-weighted average value of 12.0 ± 2.3‰. Not counting three outlier (>13‰), the δ34S values are at a narrow range with a time-weighted average of +4.5 ±1.3‰ (n=30), which is higher than those from Baton Rouge but is typical for the heavily populated regions in China.
NASA Astrophysics Data System (ADS)
Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis
2015-08-01
The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found to be isotopically heavier than the soil (Δ60Niwhole plant-soil up to 0.40‰). Fractions of Ni extracted by DTPA (diethylenetriaminepentaacetic acid) presented isotopically heavy compositions compared to the soil (Δ60NiDTPA-soil up to 0.89‰), supporting the hypothesis that the dissolved Ni fraction controlled by weathering has a heavy isotope signature. The non-hyperaccumulators (n = 2) were inclined to take up and translocate light Ni isotopes with a large degree of fractionation (Δ60Nileaves-roots up to - 0.60 ‰). For Ni-hyperaccumulators (n = 7), significant isotopic fractionation was observed in the plants in their early growth stages, while no fractionation occurred during later growth stages, when plants are fully loaded with Ni. This suggests that (i) the high-efficiency translocation process involved in hyperaccumulators does not fractionate Ni isotopes, and (ii) the root uptake process mainly controls the isotopic composition of the plant. In ultramafic contexts, vegetation composed of hyperaccumulators can significantly influence isotopic compositions through its remobilization in the upper soil horizon, thereby influencing the isotopic balance of Ni exported to rivers.
Cycling of Volatiles and Stable Isotopes During High-P Subduction Dehydration of Serpentinite
NASA Astrophysics Data System (ADS)
Alt, J.; Garrido, C. J.; Shanks, W. C.; Turchyn, A. V.; López-Sánchez-Vizcaíno, V.; Gómez-Pugnaire, M.
2009-12-01
We present volatile contents and stable isotope compositions of high-P antigorite serpentinites and their chlorite-harzburgite dehydration products from the Cerro del Almirez complex, Spain. The serpentinites are former Tethyan seafoor consisting of antigorite with olivine, diopside, chlorite, magnetite, tremolite, and Ti-clinohumite, dehydrated to chlorite-harzburites comprising spinifex-like olivine + orthopyroxene, with chlorite, tremolite, and magnetite, at T> 650°C and P>2 GPa. The serpentinites have elevated H2O, S, and C contents, averaging (n=10) 1000 ppm S and 10 wt% H2O, and with 180-1280 ppm total C. Bulk δ18O values of 7.9-9.1‰ and δD= -49 to -61‰ are consistent with serpentinization by seawater at 50-100°C. The high sulfide contents and preliminary δ34S analyses of ~10‰ likely reflect microbial reduction of seawater sulfate, and δ13C (total C) values of -10.9 to -20.2‰ are consistent with the presence of an organic carbon component. These data and processes are similar to those for modern seafloor serpentinites. High-P dehydration of the serpentinites resulted in loss of about half of their H2O and S: chlorite-harzburgites (n=11) average 5.7 wt% H2O and 610 ppm S. The δ34S (-5.1 to 10.2‰) and δ18O (6.4-9.5‰) of the metamorphic harzburgites are unchanged from serpentinite, but hydrogen isotopes are fractionated during dehydration, from serpentinite δD values around -55‰ to chlorite-harzburgite values of ~ -70 to -90‰. Carbon contents and δ13C values of the two rock types overlap, with a broad trend of decreasing C contents and δ13C, from ~1200 to 200 ppm and -9.6 to -20.3‰, perhaps reflecting loss of CO2. Our results indicate: 1) significant uptake of H2O, S and C during serpentinization on the seafloor; 2) that recycling of serpentinites to high P and T results in loss of isotopically fractionated sulfur, water and possibly carbon to the sub-arc mantle; and 3) that fractionated sulfur, water and carbon in serpentinite dehydration products can be recycled into the mantle where they can contribute to isotope heterogeneities.
Use of Isotope Ratio Determination (13C/12C) to Assess the Production Method of Sparkling Wine.
Rossier, Joël S; Maury, Valérie; Gaillard, Laetitia; Pfammatter, Elmar
2016-01-01
The production of a sparkling wine can be performed with different methods taking from a few weeks to several years, which often justifies a difference in added value for the consumer. This paper presents the use of isotope ratio δ(13)C measurements combined with physico-chemical analyses for the determination of mislabelling of sparkling wines produced by 'ancestral', 'traditional', 'closed tank' or 'gasification' methods. This work shows that the isotope composition of CO(2) compared with that of the corresponding dried residue of wine (DRW) can assess whether carbonate CO(2) in a sparkling wine originates from alcohol fermentation or from artificial gas addition. Isotopic ratios expressed as δ(13)C(CO2) and δ(13)C(DRW) measurements have been obtained for each wine by gasbench isotopic ratio mass spectroscopy and cavity ring down infrared spectroscopy, respectively. When the difference between δ(13)C(CO2) and δ(13)C(DRW) is negative, the presence of artificial CO(2) can be undoubtedly inferred, which would exclude the production methods 'ancestral' or 'traditional' for instance. Other parameters such as alcohol content, sugar and acid distributions are also important to complete the analytical panel to aid fraud tracking.
NASA Astrophysics Data System (ADS)
Jeffrey, Amy; Denys, Christiane; Stoetzel, Emmanuelle; Lee-Thorp, Julia A.
2015-10-01
The stable isotope composition of small mammal tissues has the potential to provide detailed information about terrestrial palaeoclimate and environments, because their remains are abundant in palaeontological and archaeological sites, and they have restricted home ranges. Applications to the Quaternary record, however, have been sparse and limited by an acute lack of understanding of small mammal isotope ecology, particularly in arid and semi-arid environments. Here we document the oxygen and carbon isotope composition of Gerbillinae (gerbil) tooth apatite across a rainfall gradient in northwestern Africa, in order to test the relative influences of the 18O/16O in precipitation or moisture availability on gerbil teeth values, the sensitivity of tooth apatite 13C/12C to plant responses to moisture availability, and the influence of developmental period on the isotopic composition of gerbil molars and incisors. The results show that the isotopic composition of molars and incisors from the same individuals differs consistent with the different temporal periods reflected by the teeth; molar teeth are permanently rooted and form around the time of birth, whereas incisors grow continuously. The results indicate that tooth choice is an important consideration for applications as proxy Quaternary records, but also highlights a new potential means to distinguish seasonal contexts. The oxygen isotope composition of gerbil tooth apatite is strongly correlated with mean annual precipitation (MAP) below 600 mm, but above 600 mm the teeth reflect the oxygen isotope composition of local meteoric water instead. Predictably, the carbon isotope composition of the gerbil teeth reflected C3 and C4 dietary inputs, however arid and mesic sites could not be distinguished because of the high variability displayed in the carbon isotope composition of the teeth due to the microhabitat and short temporal period reflected by the gerbil. We show that the oxygen isotope composition of small mammal teeth strongly reflects moisture availability in semi-arid and arid environments and would provide an excellent record of palaeo-aridity in a terrestrial setting. The results illustrate that an understanding of an animal's physiology is essential for interpreting the animal's isotopic responses to external contexts, especially in arid zones.
Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.
1999-01-01
Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that geochemical cycling of lead between sediments and water accounts for persistently elevated lead concentrations in the water column despite 10-fold reduction of external source inputs to San Francisco Bay [Flegal, A.R., Rivera-Duarte, I., Ritson, P.I., Scelfo, G., Smith, G.J., Gordon, M., Sanudo-Wilhelmy, S.A., 1996. Metal contamination in San Francisco Waters: historic perturbations, contemporary concentrations, and future considerations in San Francisco Bay. In: Hollobaugh, J.T. (Ed.), The Ecosystem. AAAS, pp. 173-188].
NASA Astrophysics Data System (ADS)
Iannone, Rosario Q.; Romanini, Daniele; Cattani, Olivier; Meijer, Harro A. J.; Kerstel, Erik R. Th.
2010-05-01
Water vapor isotopes represent an innovative and excellent tool for understanding complex mechanisms in the atmospheric water cycle over different time scales, and they can be used for a variety of applications in the fields of paleoclimatology, hydrology, oceanography, and ecology. We use an ultrasensitive near-infrared spectrometer, originally designed for use on airborne platforms in the upper troposphere and lower stratosphere, to measure the water deuterium and oxygen-18 isotope ratios in situ, in ground-level tropospheric moisture, with a high temporal resolution (from 300 s down to less than 1 s). We present some examples of continuous monitoring of near-surface atmospheric moisture, demonstrating that our infrared laser spectrometer could be used successfully to record high-concentration atmospheric water vapor mixing ratios in continuous time series, with a data coverage of ˜90%, interrupted only for daily calibration to two isotope ratio mass spectrometry-calibrated local water standards. The atmospheric data show that the water vapor isotopic composition exhibits a high variability that can be related to weather conditions, especially to changes in relative humidity. Besides, the results suggest that observed spatial and temporal variations of the stable isotope content of atmospheric water vapor are strongly related to water vapor transport in the atmosphere.
Isotopic compositions of the elements, 2001
Böhlke, J.K.; De Laeter, J. R.; De Bievre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.
2005-01-01
The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the “best measurement” of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E)">Ar(E)Ar(E) and its uncertainty U[Ar(E)]">U[Ar(E)]U[Ar(E)] recommended by CAWIA in 2001.
Salisbury, M.J.; Bohrson, W.A.; Clynne, M.A.; Ramos, F.C.; Hoskin, P.
2008-01-01
Products of the 1915 Lassen Peak eruption reveal evidence for a magma recharge-magma mixing event that may have catalyzed the eruption and from which four compositional members were identified: light dacite, black dacite, andesitic inclusion, and dark andesite. Crystal size distribution, textural, and in situ chemical (major and trace element and Sr isotope) data for plagioclase from these compositional products define three crystal populations that have distinct origins: phenocrysts (long axis > 0??5 mm) that typically have core An contents between 34 and 36 mol %, microphenocrysts (long axis between 0??1 and 0??5 mm) that have core An contents of 66-69, and microlites (long axis < 0??1 mm) with variable An core contents from 64 to 52. Phenocrysts are interpreted to form in an isolated dacitic magma chamber that experienced slow cooling. Based on textural, compositional, and isotopic data for the magma represented by the dacitic component, magma recharge was not an important process until just prior to the 1915 eruption. Average residence times for phenocrysts are in the range of centuries to millennia. Microphenocrysts formed in a hybrid layer that resulted from mixing between end-member reservoir dacite and recharge magma of basaltic andesite composition. High thermal contrast between the two end-member magmas led to relatively high degrees of undercooling, which resulted in faster crystal growth rates and acicular and swallowtail crystal habits. Some plagioclase phenocrysts from the dacitic chamber were incorporated into the hybrid layer and underwent dissolution-precipitation, seen in both crystal textures and rim compositions. Average microphenocryst residence times are of the order of months. Microlites may have formed in response to decompression and/ or syn-eruptive degassing as magma ascended from the chamber through the volcanic conduit. Chemical distinctions in plagioclase microlite An contents reveal that melt of the dark andesite was more mafic than the melt of the other three compositions. We suggest that mixing of an intruding basaltic andesite and reservoir dacite before magma began ascending in the conduit allowed formation of a compositionally distinct microlite population. Melt in the other three products was more evolved because it had undergone differentiation during the months following initial mixing; as a consequence, melt and microlites among these three products have similar compositions. The results of this study highlight the integrated use of crystal size distribution, textural, and in situ chemical data in identifying distinct crystal populations and linking these populations to the thermal and chemical characteristics of complex magma bodies. ?? The Author 2008. Published by Oxford University Press. All rights reserved.
Blessing, Carola H; Barthel, Matti; Gentsch, Lydia; Buchmann, Nina
2016-01-01
Drought down-regulates above- and belowground carbon fluxes, however, the resilience of trees to drought will also depend on the speed and magnitude of recovery of these above- and belowground fluxes after re-wetting. Carbon isotope composition of above- and belowground carbon fluxes at natural abundance provides a methodological approach to study the coupling between photosynthesis and soil respiration (SR) under conditions (such as drought) that influence photosynthetic carbon isotope discrimination. In turn, the direct supply of root respiration with recent photoassimilates will impact on the carbon isotope composition of soil-respired CO 2 . We independently measured shoot and soil CO 2 fluxes of beech saplings ( Fagus sylvatica L.) and their respective δ 13 C continuously with laser spectroscopy at natural abundance. We quantified the speed of recovery of drought stressed trees after re-watering and traced photosynthetic carbon isotope signal in the carbon isotope composition of soil-respired CO 2 . Stomatal conductance responded strongly to the moderate drought (-65%), induced by reduced soil moisture content as well as increased vapor pressure deficit. Simultaneously, carbon isotope discrimination decreased by 8‰, which in turn caused a significant increase in δ 13 C of recent metabolites (1.5-2.5‰) and in δ 13 C of SR (1-1.5‰). Generally, shoot and soil CO 2 fluxes and their δ 13 C were in alignment during drought and subsequent stress release, clearly demonstrating a permanent dependence of root respiration on recently fixed photoassimilates, rather than on older reserves. After re-watering, the drought signal persisted longer in δ 13 C of the water soluble fraction that integrates multiple metabolites (soluble sugars, amino acids, organic acids) than in the neutral fraction which represents most recently assimilated sugars or in the δ 13 C of SR. Nevertheless, full recovery of all aboveground physiological variables was reached within 4 days - and within 7 days for SR - indicating high resilience of (young) beech against moderate drought.
NASA Astrophysics Data System (ADS)
Shiklomanov, A. I.; Tokarev, I. V.; Davydov, S. P.; Davydova, A.; Streletskiy, D. A.
2017-12-01
There is substantial evidence supporting increasing river runoff in the Eurasian pan-Arctic, but the causes of these changes are not well understood. To determine the contributions of various water sources to river runoff generation in small streams and large rivers located in the continuous permafrost zone, an extensive field campaign was carried out near the town of Cherskii, Russia. Measurements of hydrometeorological characteristics, as well as stable isotope composition and hydrochemistry of precipitation, river flow and ground ice, were obtained during the 2013-2016 period. When combined with older data (2005-2009), the isotopic composition of atmospheric precipitation showed a general trend towards heavier winter precipitation, attributed mainly to observed increases in winter air temperature. Samples of water and ground ice from several boreholes showed that isotopic compositions of water from the active layer, transient layer and permafrost are significantly different. Thus, stable isotopes can be used to assess contributions of different soil layers to stream flow generation. Increases in streamflow of small test watersheds were observed during dry periods in August-September. These increases were associated with considerable stable isotope depletion in streamflow samples, which is likely caused by thawing of the transient- and possibly upper permafrost layers. The absence of correlation between water and air temperature during these periods (R2 = 0.22 in August-September and R2 = 0.8 in June-July) also suggests an increasing contribution of thawing ground ice to the streamflow. To quantitatively assess the contribution of various water sources to the river runoff of Kolyma River, we used stable isotope data along with a physically based hydrological model developed at the University of New Hampshire. Preliminary results suggest that thawing permafrost increased August-September discharge in Kolyma near Cherskii by 8% in 2013, 11% in 2014 and 4% in 2015, even though none of these years was extremely warm or wet. We estimate that 5cm of permafrost thaw (with 30% ice content) over the entire Kolyma basin can contribute about 10 km3/year (or 10%) to annual discharge and significantly change the water regime during low-flow periods (fall-winter).
NASA Astrophysics Data System (ADS)
Bristow, Thomas F.; Kennedy, Martin J.; Morrison, Keith D.; Mrofka, David D.
2012-08-01
The mineralogical, compositional and stable isotopic variability of lacustrine carbonates are frequently used as proxies for ancient paleoenvironmental change in continental settings, under the assumption that precipitated carbonates reflect conditions and chemistry of ancient lake waters. In some saline and alkaline lake systems, however, authigenic clay minerals, forming at or near the sediment water interface, are a major sedimentary component. Often these clays are rich in Mg, influencing the geochemical budget of lake waters, and are therefore expected to influence the properties of contemporaneous authigenic carbonate precipitates (which may also contain Mg). This paper documents evidence for a systematic feedback between clay mineral and carbonate authigenesis through multiple precessionally driven, m-scale sedimentary cycles in lacustrine oil-shale deposits of the Eocene Green River Formation from the Uinta Basin (NE Utah). In the studied section, authigenic, Mg-rich, trioctahedral smectite content varies cyclically between 9 and 39 wt.%. The highest concentrations occur in oil-shales and calcareous mudstones deposited during high lake level intervals that favored sedimentary condensation, lengthening the time available for clay diagenesis and reducing dilution by other siliciclastic phases. An inverse relation between dolomite percentage of carbonate and trioctahedral smectite abundance suggests the Mg uptake during clay authigenesis provides a first order control on carbonate mineralogy that better explains carbonate mineralogical trends than the possible alternative controls of (1) variable Mg/Ca ratios in lake water and (2) degree of microbial activity in sediments. We also observe that cyclical change in carbonate mineralogy, believed to be induced by clay authigenesis, also causes isotopic covariation between δ13CPDB and δ18OPDB of bulk sediments because of differences in the equilibrium fractionation factors of dolomite and calcite (˜2‰ and ˜2.6%, respectively). This provides an alternative mechanism for the common pattern of isotopic covariation, which is typically attributed to the effect of simultaneous changes in water balance and biological activity on the carbon and oxygen isotopic composition of lake waters. These findings may help improve paleoenvironmental reconstructions based on lacustrine carbonate records by adding to the factors known to influence the mineralogical, compositional and stable isotopic signals recorded by lacustrine carbonates.
NASA Astrophysics Data System (ADS)
Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh
2018-06-01
Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.
Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates
NASA Astrophysics Data System (ADS)
Vengosh, Avner; Kolodny, Yehoshua; Starinsky, Abraham; Chivas, Allan R.; McCulloch, Malcolm T.
1991-10-01
The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The boron content of the biogenic skeletons is independent of mineralogical composition and is probably related to biological (vital) effects. The δ11B values of the carbonates range from 14.2 to 32.2%. (relative to NBS SRM 951) and overlap with the δ11B values of modern deep-sea carbonate sediments ( δ11B = 8.9 to 26.2%.). The variations of δ11B may be controlled by isotopic exchange of boron species in which 10B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in the calcium carbonates. Carbonates with low δ11B values (~ 15%.) may indicate preferential incorporation of tetrahedral species, whereas the higher δ11B values (~30%.) may indicate (1) uptake of both boron species assuming equilibrium with seawater (2) preferential incorporation of B(OH) 4- from in situ high-pH internal fluids of organisms that are isolated from seawater. The B content and δ11B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 ± 0.9 × 10 10 g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 × 10 10 g/yr) and approximately half that of altered oceanic crust (14 × 10 10 g/yr). Thus, carbonates are an important sink for B in the oceans being ~20% of the total sinks. The preferential incorporation of 10B into calcium carbonate results in oceanic 11B-enrichment, estimated as 1.2 ± 0.3 × 10 12 per mil · g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record. The potential use of boron-isotope geochemistry in skeletons as a tracer for palaeoenvironments is demonstrated in Ostracoda and Foraminifera from the Gulf of Carpentaria, Australia. The δ11B values of glacial-age, buried skeletons (4.0 and 4.9%., respectively) are lower than that of their modern equivalents (17.6 and 13.3%., respectively). This may reflect a "terrestrial" boron-isotope signature of the water in the gulf during the Late Quaternary when it was isolated from the ocean.
A model for osmium isotopic evolution of metallic solids at the core-mantle boundary
NASA Astrophysics Data System (ADS)
Humayun, Munir
2011-03-01
Some plumes are thought to originate at the core-mantle boundary, but geochemical evidence of core-mantle interaction is limited to Os isotopes in samples from Hawaii, Gorgona (89 Ma), and Kostomuksha (2.7 Ga). The Os isotopes have been explained by physical entrainment of Earth's liquid outer core into mantle plumes. This model has come into conflict with geophysical estimates of the timing of core formation, high-pressure experimental determinations of the solid metal-liquid metal partition coefficients (D), and the absence of expected 182W anomalies. A new model is proposed where metallic liquid from the outer core is partially trapped in a compacting cumulate pile of Fe-rich nonmetallic precipitates (FeO, FeS, Fe3Si, etc.) at the top of the core and undergoes fractional crystallization precipitating solid metal grains, followed by expulsion of the residual metallic liquid back to the outer core. The Os isotopic composition of the solids and liquids in the cumulate pile is modeled as a function of the residual liquid remaining and the emplacement age using 1 bar D values, with variable amounts of oxygen (0-10 wt %) as the light element. The precipitated solids evolve Os isotope compositions that match the trends for Hawaii (at an emplacement age of 3.5-4.5 Ga; 5%-10% oxygen) and Gorgona (emplacement age < 1.5 Ga; 0%-5% oxygen). The Fe-rich matrix of the cumulate pile dilutes the precipitated solid metal decoupling the Fe/Mn ratio from Os and W isotopes. The advantages to using precipitated solid metal as the Os host include a lower platinum group element and Ni content to the mantle source region relative to excess iron, miniscule anomalies in 182W (<0.1 ɛ), and no effects for Pb isotopes, etc. A gradual thermomechanical erosion of the cumulate pile results in incorporation of this material into the base of the mantle, where mantle plumes subsequently entrain it. Fractional crystallization of metallic liquids within the CMB provides a consistent explanation of both Os isotope correlations, Os-W isotope systematics, and Fe/Mn evidence for core-mantle interaction over the entire Hawaiian source.
Trace Element Compositions of Pallasite Olivine Grains and Pallasite Origin
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Herrin, J. S.
2010-01-01
Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous fractionation on a single, initially homogeneous parent asteroid. For Al and Ti, the low and high Mn/Mg clusters have generally uniform contents, while the medium cluster has wide ranges. This is also true of analyses of duplicate grains from the medium cluster pallasites which can have very different Al and Ti contents. Those from the low and high clusters do not. These observations suggest that pallasite olivines are not cumulates, but rather are restites from high degrees of melting. The moderately siderophile elements P and Ga show wide ranges in the high Mn/Mg cluster, but very uniform compositions in the medium cluster, opposite the case for Al and Ti. There is no correlation of P or Ga and Fe/Mn as might be expected if redox processes controlled the contents of moderately siderophile elements in the olivines. The lack of correlation of P could reflect equilibration with phosphates, although there is no correlation of Ca with P as might be expected
Grosnaja ABCs: Magnesium isotope compositions
NASA Technical Reports Server (NTRS)
Goswami, J. N.; Srinivasan, G.; Ulyanov, A. A.
1993-01-01
Three CAI's from the Grosnaja CV3 chondrite were analyzed for their magnesium isotopic compositions by the ion microprobe. The selected CAI's represent three distinct types: GR4(compact Type A), GR7(Type B) and GR2(Type C). Petrographic studies indicate that all three Grosnaja inclusions were subjected to secondary alterations. The Type A CAI GR4 is primarily composed of melilite with spinel and pyroxene occurring as minor phases. The rim of the inclusion does not exhibit distinct layered structure and secondary alteration products (garnet, Fe-rich olivine and Na-rich plagioclase) are present in some localized areas near the rim region. The average major element compositions of different mineral phases in GR4 are given. Preliminary REE data suggest a depletion of HREE relative to LREE by about a factor of 3 without any clear indication of interelement fractionation. The CAI GR7 has textural and minerological characteristics similar to Type B inclusions. The REE data show a pattern that is similar to Group 6 with enrichment in Eu and Yb. In addition, a depletion of HREE compared to LREE is also evident in this object. Melilite composition shows a broad range of akermanite content (Ak(sub 15-55)). Detailed petrographic study is in progress. GR2 is a anorthite-rich Type C inclusion with large plagioclase laths intergrown with Ti-rich pyroxene. The average plagioclase composition is close to pure anorthite (An99).
NASA Astrophysics Data System (ADS)
Hissler, Christophe; Stille, Peter
2015-04-01
Weathering mantles are widespread and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual high content of associated trace elements in weathering mantles originating from carbonate rocks, which have been poorly studied, compared to those developing on magmatic bedrocks. For instance, these enrichments can be up to five times the content of the underlying carbonate rocks. However, these studies also showed that the carbonate bedrock content only partially explains the soil enrichment for all the considered major and trace elements. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources. REE distribution patterns and Sr-Nd-Pb isotope ratios have been used because they are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments have been applied to identify mobile phases in the soil system and to yield information on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. All these geochemical informations indicate that the cambisol developing on such a typical weathering mantle ("terra fusca") has been formed through weathering of a condensed Bajocian limestone-marl facies. This facies shows compared to average world carbonates important trace element enrichments. Their trace element distribution patterns are similar to those of the soil suggesting their close genetic relationships. Sr-Nd-Pb isotope data allow to identify four principal components in the soil: a silicate-rich pool at close to the surface, a leachable REE enriched pool at the bottom of the soil profile, the limestone facies on which the weathering profile developed and an anthropogenic, atmosphere-derived component detected in the soil leachates of the uppermost soil horizon. The leachable phases are mainly secondary carbonate-bearing REE phases such as bastnaesite. The isotope data and trace element distribution patterns indicate that at least four geological and environmental events impacted the chemical and isotopical compositions of the soil system since the Cretaceous.
NASA Astrophysics Data System (ADS)
Lee, Y. I.; Kim, D.; Hyeong, K.; Chan Min, Y.
2016-12-01
The appearance and development of C4 plants in the Late Miocene is well-established by various lines of evidence including stable carbon isotope data, yet the stable carbon isotope change before the global vegetation change has not been reported. Prior to the C4 plant expansion, the ecosystem may have been composed of C3 plants. Here we present the content and stable carbon isotope record of black carbon (BC) in a 470-cm-long piston core retrieved from the northeastern equatorial Pacific. Although suitable age dating method is lacking for the studied core, correlation of clay mineral composition, BC content, and stable carbon isotope data with a nearby well-studied core (Kim et al., submitted) at the same latitude suggests that the studied core contains sediment older than 15 Ma (330 cm in depth) and possibly back to 25 Ma, much prior to the major diversification of C4 plants. The older sediment was derived from Southern Hemisphere. The δ13C value of BC in the oldest sediment shows a relatively high value ( -22.7 ‰ on average), similar to that of C4 expansion event, and then decreases with time till reaching normal δ13C value of C3-dominated environment (-25.3 ‰ on average) around 13 Ma. This relatively high δ13C value reflects the presence of specific ecosystem, likely Pebas wetland that dominated western Amazonia before 17 Ma, and decreasing δ13C value suggests subsequent gradual development of closed-forest ecosystem. The BC content shows an abrupt increase around 400 cm, suggesting a significant aridity event in South America. Uplift of the North Andean region at 23 Ma seems to be the likely cause of such aridity event. From these observations, we argue that by comparing with the well-studied core data environmental record provided by BC data can be used for approximate age dating of deep-sea core sediment lacking appropriate dating tools, and that carbon isotope data before C4 development event may also provide information about specific regional ecosystem
Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles
NASA Astrophysics Data System (ADS)
Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent
2014-05-01
The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of organics that occurred at that time, and that the subsequent development of the biosphere resulted in shifts of δ15N towards higher values.
The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere
NASA Astrophysics Data System (ADS)
Day, James M. D.; Barry, Peter H.; Hilton, David R.; Burgess, Ray; Pearson, D. Graham; Taylor, Lawrence A.
2015-03-01
New helium isotope and trace-element abundance data are reported for pyroxenites and eclogites from South Africa, Siberia, and the Beni Bousera Massif, Morocco that are widely interpreted to form from recycled oceanic crustal protoliths. The first He isotope data are also presented for Archaean peridotites from the Kaapvaal (South Africa), Slave (Canada), and Siberian cratons, along with recently emplaced off-craton peridotite xenoliths from Kilbourne Hole, San Carlos (USA) and Vitim (Siberia), to complement existing 3He/4He values obtained for continental and oceanic peridotites. Helium isotope compositions of peridotite xenoliths vary from 7.3 to 9.6 RA in recently (<10 kyr) emplaced xenoliths, to 0.05 RA in olivine from cratonic peridotite xenoliths of the 1179 Ma Premier kimberlite, South Africa. The helium isotope compositions of the peridotites can be explained through progressive sampling of 4He produced from radiogenic decay of U and Th in the mineral lattice in the older emplaced peridotite xenoliths. Ingrowth of 4He is consistent with generally higher 4He concentrations measured in olivine from older emplaced peridotite xenoliths relative to those from younger peridotite xenoliths. Collectively, the new data are consistent with pervasive open-system behaviour of He in peridotite xenoliths from cratons, mobile belts and tectonically-active regions. However, there is probable bias in the estimate of the helium isotope composition of the continental lithospheric mantle (6.1 ± 2.1 RA), since previously published databases were largely derived from peridotite xenoliths from non-cratonic lithosphere, or phenocrysts/xenocrysts obtained within continental intraplate alkaline volcanics that contain a contribution from asthenospheric sources. Using the new He isotope data for cratonic peridotites and assuming that significant portions (>50%) of the Archaean and Proterozoic continental lithospheric mantle are stable and unaffected by melt or fluid infiltration on geological timescales (>0.1 Ga), and that U and Th contents vary between cratonic lithosphere and non-cratonic lithosphere, calculations yield a 3He flux of 0.25-2.2 atoms/s/cm2 for the continental lithospheric mantle. These estimates differ by a factor of ten from non-cratonic lithospheric mantle and are closer to the observed 3He flux from the continents (<1 atoms/s/cm2). Pyroxenites and eclogites from the continental regions are all characterized by 3He/4He (0.03-5.6 RA) less than the depleted upper mantle, and relatively high U and Th contents. Together with oceanic and continental lithospheric peridotites, these materials represent reservoirs with low time-integrated 3He/(U + Th) in the mantle. Pyroxenites and eclogites are also characterized by higher Fe/Mg, more radiogenic Os-Pb isotope compositions, and more variable δ18O values (∼3‰ to 7‰), compared with peridotitic mantle. These xenoliths are widely interpreted to be the metamorphic/metasomatic equivalents of recycled oceanic crustal protoliths. The low-3He/4He values of these reservoirs and their distinctive compositions make them probable end-members to explain the compositions of some low-3He/4He OIB, and provide an explanation for the low-3He/4He measured in most HIMU lavas. Continental lithospheric mantle and recycled oceanic crust protoliths are not reservoirs for high-3He/4He and so alternative, volumetrically significant, He-rich reservoirs, such as less-degassed (lower?) mantle, are required to explain high-3He/4He signatures measured in some intraplate lavas. Recycling of oceanic crust represents a fundamental process for the generation of radiogenic noble gases in the mantle, and can therefore be used effectively as tracers for volatile recycling.
Iron Stable Isotopes, Magmatic Differentiation and the Oxidation State of Mariana Arc Magmas
NASA Astrophysics Data System (ADS)
Williams, H. M.; Prytulak, J.; Plank, T. A.; Kelley, K. A.
2014-12-01
Arc magmas are widely considered to be oxidized, with elevated ferric iron contents (Fe3+/ΣFe) relative to mid-ocean ridge lavas (1, 2). However, it is unclear whether the oxidized nature of arc basalts is a primary feature, inherited from the sub-arc mantle, or the product of magmatic differentiation and/or post eruptive alteration processes (3). Iron stable isotopes can be used to trace the distribution of Fe during melting and magmatic differentiation processes (4, 5). Here we present Fe isotope data for well-characterized samples (6-8) from islands of the Central Volcanic Zone (CVZ) of the intra-oceanic Mariana Arc to explore the effect of magmatic differentiation processes on Fe isotope systematics. The overall variation in the Fe isotope compositions (δ57Fe) of samples from the CVZ islands ranges from -0.10 ±0.04 to 0.29 ± 0.01 ‰. Lavas from Anatahan are displaced to lower overall δ57Fe values (range -0.10 ±0.04 to 0.18 ±0.01 ‰) relative to other CVZ samples. Fe isotopes in the Anatahan suite (range -0.10 ±0.04 to 0.18 ±0.01 ‰) are positively correlated with SiO2 and negatively correlated with Ca, Fe2O3(t), Cr and V and are displaced to lower overall δ57Fe values relative to other CVZ samples. These correlations can be interpreted in terms of clinopyroxene and magnetite fractionation, with magnetite saturation throughout the differentiation sequence. Magnetite saturation is further supported by negative correlations between V, Fe2O3(t), Cr and MgO (for MgO <3.5 wt%). The early saturation of magnetite in the Anatahan and CVZ lavas is likely to be a function of high melt water content (9, 10) and potentially elevated melt oxidation state. Future work will focus on determining the relationships between mineral Fe isotope partitioning effects and melt composition and oxidation state. 1. R. Arculus, Lithos (1994). 2. K. A. Kelley et al., Science (2009). 3. C.-T. A. Lee et al., J. Pet. (2005). 4. N. Dauphas et al., EPSL (2014). 5. P. A. Sossi et al., CMP (2012). 6. T. Elliott et al., JGR (1997). 7. J. A. Wade et al.. JVGR (2005). 8. J. Woodhead, Chem. Geol. (1989). 9. K. A. Kelley et al., J. Pet. (2010). 10. T. Sisson et al., CMP (1993).
NASA Astrophysics Data System (ADS)
Bebout, Gray E.
The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.
Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples
NASA Astrophysics Data System (ADS)
Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.
2018-02-01
New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might provide a record of the nebular formation environment. The Te stable isotope fractionation of the carbonaceous chondrites CI and CM (and CO potentially) overlap within uncertainty with data for terrestrial Te standard solutions, sediments and ore samples. Assuming the silicate Earth displays similar Te isotope fractionation as the studied terrestrial samples, the data indicate that the late veneer might have been delivered by material similar to CI or CM (or possibly) CO carbonaceous chondrites in terms of Te isotope composition. Nine terrestrial samples display resolvable Te stable isotope fractionation of 0.85 and 0.60‰ for δ130/125Te for sediment and USGS geochemical exploration reference samples, respectively. Tellurium isotopes therefore have the potential to become a new geochemical sedimentary proxy, as well as a proxy for ore-exploration.
Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.; ...
2016-06-23
Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less
NASA Astrophysics Data System (ADS)
Knowles, Justin; Skutnik, Steven; Glasgow, David; Kapsimalis, Roger
2016-10-01
Rapid nondestructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the Oak Ridge National Laboratory High Flux Isotope Reactor Neutron Activation Analysis facility has developed a generalized nondestructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and makes use of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a complete characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% recovery bias have been conducted on standards of 235U and 239Pu as low as 12 ng in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 198 ng of fissile mass with less than 7% recovery bias. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation facilities, and account for increasingly complex sample matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowles, Justin R.; Skutnik, Steven E.; Glasgow, David C.
Rapid non-destructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the High Flux Isotope Reactor Neutron Activation Analysis laboratory has developed a generalized non-destructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and capitalizes off of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a holistic characterization of isotopic identification,more » mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% error have been conducted on standards of 235U and 239Pu as low as 12 nanograms in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 229 nanograms of fissile mass with less than 12% error. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. Furthermore, it is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation sources, and account for increasingly complex sample matrices.« less
Partial melting and melt percolation in the mantle: The message from Fe isotopes
NASA Astrophysics Data System (ADS)
Weyer, Stefan; Ionov, Dmitri A.
2007-07-01
High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched peridotites) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. The peridotites yield an average δ 56Fe = 0.01‰ and are significantly lighter than the basalts (average δ 56Fe = 0.11‰). Furthermore, the peridotites display a negative correlation of δ 56Fe with Mg# indicating a link between δ 56Fe and degrees of melt extraction. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt. The slope of depletion trends (δ 56Fe versus Mg#) of the peridotites was used to model Fe isotope fractionation during partial melting, resulting in αmantle-melt ≈ 1.0001-1.0003 or ln αmantle-melt ≈ 0.1-0.3‰. In contrast to most other peridotites investigated in this study, spinel lherzolites and harzburgites from three localities (Horoman, Kamchatka and Lherz) are virtually unaffected by metasomatism. These three sites display a particularly good correlation and define an isotope fractionation factor of ln αmantle-melt ≈ 0.3‰. This modelled value implies Fe isotope fractionation between residual mantle and mantle-derived melts corresponding to Δ56Fe mantle-basalt ≈ 0.2-0.3‰, i.e. significantly higher than the observed difference between averages for all the peridotites and the basalts in this study (corresponding to Δ56Fe mantle-basalt ≈ 0.1‰). Either disequilibrium melting increased the modelled αmantle-melt for these particular sites or the difference between average peridotite and basalt may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. The slope of the weaker δ 56Fe-Mg# trend defined by the combined set of all mantle peridotites from this study is more consistent with the generally observed difference between peridotites and basalts; this slope was used here to estimate the Fe isotope composition of the fertile upper mantle (at Mg# = 0.894, δ 56Fe ≈ 0.02 ± 0.03‰). Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events, e.g. melt percolation. At two localities (Tok, Siberia and Tariat, Mongolia) δ 56Fe correlates with iron contents of the peridotites, which was increased from about 8% to up to 14.5% FeO by post-melting melt percolation. This process produced a range of Fe isotope compositions in the percolation columns, from extremely light (δ 56Fe = - 0.42‰) to heavy (δ 56Fe = + 0.17‰). We propose reaction with isotopically heavy melts and diffusion (enrichment of light Fe isotopes) as the most likely processes that produced the large isotope variations at these sites. Thus, Fe isotopes might be used as a sensitive tracer to identify such metasomatic processes in the mantle.
Oxygen Isotopic Analyses of Water Extracted from the Martian Meteorite NWA 7034
NASA Astrophysics Data System (ADS)
Nunn, M.; Agee, C. B.; Thiemens, M. H.
2012-12-01
Introduction: The NWA 7034 meteorite has been identified as Martian, but it is distinct from the Shergottite-Nakhlite-Chassignite (SNC) grouping of meteorites in its petrology (it is the only known Martian basaltic breccia) and bulk silicate oxygen isotopic composition (Δ17O = 0.56 ± 0.06 ‰, where Δ17O = δ17O - 0.528 x δ18O, compared to the average SNC Δ17O ≈ 0.3 ‰) [e.g., 1-2]. We report here measurements of the oxygen isotopic composition of water extracted from NWA 7034 by stepwise heating. Methods: A piece (~1.2g) of NWA 7034 was pumped to vacuum until outgassing had stopped before heating to 50, 150, 320, 500, and 1000°C. The sample was maintained at each temperature step for at least one hour while collecting evolved volatiles in a liquid nitrogen cold trap. Water was selectively converted to molecular oxygen, the oxygen isotopic composition of which was then measured on a double collecting isotope ratio mass spectrometer. Results: Our stepwise heating experiments indicate NWA 7034 contains 3330ppm water, and this water has an average oxygen isotopic composition of Δ17O = 0.330 ± 0.011‰. The oxygen isotopic composition of water in NWA 7034 is unlike that of the silicates from which it is extracted (Δ17O = 0.56 ± 0.06 ‰) but is comparable to the average SNC silicate composition (Δ17O ≈ 0.3 ‰). However, there is no consensus on the oxygen isotopic composition of water in SNCs because aliquots of water extracted from different samples (separate pieces of a single meteorite or from different meteorites) have different oxygen isotopic compositions [3]. Furthermore, carbonates and sulfates extracted from SNCs also possess distinct oxygen isotopic compositions [4]. The variation in oxygen isotopic composition among these phases most likely results from the existence of isotopically distinct oxygen reservoirs on Mars that were not equilibrated. On Earth, interaction of ozone (O3) and carbon dioxide (CO2) leads to a mass independent oxygen isotopic composition of atmospheric CO2 [5]. This anomaly is transferred by exchange from CO2 to water and subsequently to secondary minerals. The much larger CO2 to water ratio on Mars could allow this process to introduce a measurable oxygen isotopic anomaly to sulfates, carbonates, and water. The magnitude and variability of this anomaly would depend on the formation mechanism of the species (particularly the source of oxygen), as is consistent with measurements to date of phases in SNCs. References: [1] Franchi, I.A., et al. (1999) MAPS 34, 657-661. [2] Rumble, D. and Irving, A.J. (2009) LPSC XXXX, #2293 [3] Karlsson, H.R., et al. (1992) Science 255, 1409-1411. [4] Farquhar, J. and Thiemens, M.H. (2000) J. Geophys. Res. 105, 11991-11997. [5] Yung, Y.L., et al. (1991) Geophys. Res. Lett. 18, 13-16.
An isotopic biogeochemical study of the Green River oil shale
NASA Technical Reports Server (NTRS)
Collister, J. W.; Summons, R. E.; Lichtfouse, E.; Hayes, J. M.
1992-01-01
Thirty-five different samples from three different sulfur cycles were examined in this stratigraphically oriented study of the Shell 22x-l well (U.S.G.S. C177 core) in the Piceance Basin, Colorado. Carbon isotopic compositions of constituents of Green River bitumens indicate mixing of three main components: products of primary photoautotrophs and their immediate consumers (delta approximately -30% vs PDB), products of methanotrophic bacteria (delta approximately -85%), and products of unknown bacteria (delta approximately -40%). For individual compounds synthesized by primary producers, delta-values ranged from -28 to -32%. 13C contents of individual primary products (beta-carotane, steranes, acyclic isoprenoids, tricyclic triterpenoids) were not closely correlated, suggesting diverse origins for these materials. 13C contents of numerous hopanoids were inversely related to sulfur abundance, indicating that they derived both from methanotrophs and from other bacteria, with abundances of methanotrophs depressed when sulfur was plentiful in the paleoenvironment. gamma-Cerane coeluted with 3 beta(CH3),17 alpha(H),21 beta(H)-hopane, but delta-values could be determined after deconvolution. gamma-Cerane (delta approximately -25%) probably derives from a eukaryotic heterotroph grazing on primary materials, the latter compound (delta approximately -90%) must derive from methanotrophic organisms. 13C contents of n-alkanes in bitumen differed markedly from those of paraffins generated pyrolytically. Isotopic and quantitative relationships suggest that alkanes released by pyrolysis derived from a resistant biopolymer of eukaryotic origin and that this was a dominant constituent of total organic carbon.
NASA Astrophysics Data System (ADS)
Lopez-Duarte, P. C.; Able, K.; Fodrie, J.; McCann, M. J.; Melara, S.; Noji, C.; Olin, J.; Pincin, J.; Plank, K.; Polito, M. J.; Jensen, O.
2016-02-01
Multiple studies conducted over five years since the 2010 Macondo oil spill in the Gulf of Mexico indicate that oil impacts vary widely among taxonomic groups. For instance, fishes inhabiting the marsh surface show no clear differences in either community composition or population characteristics between oiled and unoiled sites, despite clear evidence of physiological impacts on individual fish. In contrast, marsh insects and spiders are sensitive to the effects of hydrocarbons. Both insects and spiders are components of the marsh food web and represent an important trophic link between marsh plants and higher trophic levels. Because differences in oil impacts throughout the marsh food web have the potential to significantly alter food webs and energy flow pathways and reduce food web resilience, our goal is to quantify differences in marsh food webs between oiled and unoiled sites to test the hypothesis that oiling has resulted in simpler and less resilient food webs. Diets and food web connections were quantified through a combination of stomach content, stable isotope, and fatty acid analysis. The combination of these three techniques provides a more robust approach to quantifying trophic relationships than any of these methods alone. Stomach content analysis provides a detailed snapshot of diets, while fatty acid and stable isotopes reflect diets averaged over weeks to months. Initial results focus on samples collected in May 2015 from a range of terrestrial and aquatic consumer species, including insects, mollusks, crustaceans, and piscivorous fishes.
NASA Astrophysics Data System (ADS)
Freitag, Johannes; Schaller, Christoph; Kipfstuhl, Sepp; Hörhold, Maria; Schaidt, Maximilian; Sander, Merle; Moser, Dorothea
2017-04-01
Interpreting polar ice as climate archive requires profound knowledge about the formation of climate-proxies within the upper snow column. In order to investigate different impact factors on signal formation we performed a multiproxy- approach for 2m deep snow profiles by continuously measuring the 3D-microstructure using core-scale X-CT and the isotopic composition and impurity load in discrete samples of 1.1cm spatial resolution. The study includes profiles from a low-accumulation site on the East Antarctic plateau (Kohnen Station, DML), a typical medium-accumulation site on the North-East-Greenland ice sheet (EGRIP drilling camp) and a high-accumulation site on the Renland ice cap (East-coast of Greenland, RECAP drilling camp). Major observations are the tooth-shaped imprint of structural anisotropy and sulfate concentrations at the low accumulation site, the clear isotopic inter-annual variations that are in line with distinct impurity peaks at the high-accumulation site and the unexpected missing footprint of ice crusts and refrozen melt layers within the impurity- and isotope records for all sites.
NASA Astrophysics Data System (ADS)
Henchiri, Soufian; Gaillardet, Jérôme; Dellinger, Mathieu; Bouchez, Julien; Spencer, Robert G. M.
2016-05-01
The isotopic composition of dissolved lithium (δ7Li) near the Congo River mouth varied from 14‰ to 22‰ in 2010 and was negatively correlated to discharge. From the relationship between dissolved δ7Li and strontium isotopes, we suggest that this large variation is due to mixing of waters from two contrasting continental weathering regimes. One end-member (high δ7Li ≈ 25‰) represents waters sourced from active lateritic soils covering the periphery of the basin (Li highly sequestered into secondary mineral products) and another representing blackwater rivers (low δ7Li ≈ 5.7‰) derived from the swampy central depression where high organic matter content in water leads to congruent dissolution of the Tertiary sedimentary bedrock. This suggests that the lithium isotopic signature of tropical low-relief surfaces is not unique and traces the long-term, large-scale vertical motions of the continental crust that control geomorphological settings. This evolution should be recorded in the oceanic secular δ7Li curve.
Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements
NASA Astrophysics Data System (ADS)
Xie, Xueshu; Zubarev, Roman A.
2015-03-01
Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p << 10-15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.
[Sources of Methane in the Boreal Region
NASA Technical Reports Server (NTRS)
1998-01-01
In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition is important in both understanding the bio-geochemistry of the system and also in determining the regional and global inputs for the methane isotope budget. In determining the destruction of methane for balancing the atmospheric methane budget soil oxidation must be considered.
Iron isotopic composition of blood serum in anemia of chronic kidney disease.
Anoshkina, Yulia; Costas-Rodríguez, Marta; Speeckaert, Marijn; Van Biesen, Wim; Delanghe, Joris; Vanhaecke, Frank
2017-05-24
Chronic kidney disease (CKD) is a general term for disorders that affect the structure and function of the kidneys. Iron deficiency (ID) and anemia occur in the vast majority of CKD patients, most of whom are elderly. However, establishing the cause of anemia in CKD, and therefore making an informed decision concerning the corresponding therapeutic treatment, is still a challenge. High-precision Fe isotopic analysis of blood serum samples of CKD patients with and without ID/anemia was performed via multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) for such a purpose. Patients with CKD and/or iron disorders showed a heavier serum Fe isotopic composition than controls. Many clinical parameters used for the diagnosis and follow-up of anemia correlated significantly with the serum Fe isotopic composition. In contrast, no relation was observed between the serum Fe isotopic composition and the estimated glomerular filtration rate as a measure of kidney function. Among the CKD patients, the serum Fe isotopic composition was substantially heavier in the occurrence of ID anemia, while erythropoietin-related anemia did not exert this effect. The Fe isotopic composition can thus be useful for distinguishing these different types of anemias in CKD patients, i.e. ID anemia vs. erythropoietin-related anemia.
Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source
NASA Astrophysics Data System (ADS)
Peto, M. K.; Mukhopadhyay, S.
2012-12-01
Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature 2012; [2] Tucker et al., EPSL (in review); [3] Moreira et al., Nature 1998 [4] Touboul et al., Science 2012.
Stable Isotopic Composition of Particulate Organic Carbon in the Caspian Sea
NASA Astrophysics Data System (ADS)
Kravchishina, M. D.; Klyuvitkin, A. A.; Pautova, L. A.; Politova, N. V.; Lein, A. Yu.
2018-01-01
The data on the isotopic composition of particulate organic carbon (δ13CPOC) in the Caspian Sea water in summer-autumn 2008, 2010, 2012, and 2013 are discussed in the paper. These data allowed as to reveal the predominant genesis of organic carbon in suspended particulate matter of the active seawater layer (from 0 to 40 m). The δ13CPOC =-27‰ (PDB) and δ13CPOC =-20.5‰ (PDB) values were taken as the reference data for terrigenous and planktonogenic organic matter, respectively. Seasonal (early summer, late summer, and autumn) variations in the composition of suspended particulate matter in the active sea layer were revealed. A shift of δ13CPOC towards greater values was seen in autumn (with a slight outburst in the development (bloom) of phytoplankton) in comparison with summer (with large accumulations and an extraordinary phytoplankton bloom confined to the thermocline area). The seasonal dynamics of autochthonous and allochthonous components in the suspended particulate matter of the Middle and Southern Caspian Sea was studied with the use of data on the concentration of particulate matter and chlorophyll a, the phytoplankton biomass and the POC content.
Liu, Juan; Wang, Jin; Chen, Yongheng; Shen, Chuan-Chou; Jiang, Xiuyang; Xie, Xiaofan; Chen, Diyun; Lippold, Holger; Wang, Chunlin
2016-06-01
Thallium (Tl) is a non-essential element in humans and it is considered to be highly toxic. In this study, the contents, sources, and dispersal of Tl were investigated in surface sediments from a riverine system (the western Pearl River Basin, China), whose catchment has been contaminated by mining and roasting of Tl-bearing pyrite ores. The isotopic composition of Pb and total contents of Tl and other relevant metals (Pb, Zn, Cd, Co, and Ni) were measured in the pyrite ores, mining and roasting wastes, and the river sediments. Widespread contamination of Tl was observed in the sediments across the river, with the highest concentration of Tl (17.3 mg/kg) measured 4 km downstream from the pyrite industrial site. Application of a modified Institute for Reference Materials and Measurement (IRMM) sequential extraction scheme in representative sediments unveiled that 60-90% of Tl and Pb were present in the residual fraction of the sediments. The sediments contained generally lower (206)Pb/(207)Pb and higher (208)Pb/(206)Pb ratios compared with the natural Pb isotope signature (1.2008 and 2.0766 for (206)Pb/(207)Pb and (208)Pb/(206)Pb, respectively). These results suggested that a significant fraction of non-indigenous Pb could be attributed to the mining and roasting activities of pyrite ores, with low (206)Pb/(207)Pb (1.1539) and high (208)Pb/(206)Pb (2.1263). Results also showed that approximately 6-88% of Tl contamination in the sediments originated from the pyrite mining and roasting activities. This study highlights that Pb isotopic compositions could be used for quantitatively fingerprinting the sources of Tl contamination in sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.
1991-01-01
Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0-10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing "basification" of a lower crustal magma source by repeated injection of mantle-derived mafic magmas. ?? 1991 Springer-Verlag.
Isotope effects on the optical spectra of semiconductors
NASA Astrophysics Data System (ADS)
Cardona, Manuel; Thewalt, M. L. W.
2005-10-01
Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.
Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry
Meier, A.L.
1982-01-01
The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.
Petrogenesis of Late Triassic ultramafic rocks from the Andong Ultramafic Complex, South Korea
NASA Astrophysics Data System (ADS)
Kim, Nak Kyu; Choi, Sung Hi
2016-11-01
To constrain the source and tectonomagmatic processes that gave rise to the Andong Ultramafic Complex (AUC) in South Korea, we determined the clinopyroxene Sr-Nd-Hf-Pb isotope and trace element compositions as well as the whole-rock and mineral compositions for the Late Triassic (ca. 222 Ma) ultramafic rocks from the complex. They are composed of dunites, wehrlites, pyroxene/hornblende peridotites, and pyroxenites. The constituent minerals are olivines, diopsides/augites, bronzites, calcic-amphiboles, and spinels. Clinopyroxenes exhibit a convex-upward rare earth element (REE) pattern, with an apex at Sm. The whole-rock compositions plot away from the residual mantle peridotite trends, with variable but lower Al2O3 and SiO2 contents, and higher CaO, FeO*, and TiO2 contents at a given value of MgO. Estimated equilibrium temperatures for the AUC rocks range from 420 to 780 °C. These observations, together with the absence of reaction or melt impregnation textures, indicate that the AUC ultramafic rocks are magmatic cumulates emplaced within the crust rather than residual mantle or mantle-melt reaction products. The AUC clinopyroxenes have compositions intermediate between the oceanic island basalt- and arc basalt-related cumulate clinopyroxenes. The AUC spinels have lower Cr#s than the arc-related magmatic cumulate spinels. They plot within the field for spinels from mid-ocean ridge basalts (MORB) on a TiO2 vs. Cr# diagram. However, the AUC clinopyroxenes have much more radiogenic Sr ([87Sr/86Sr]i = 0.70554 to 0.70596), unradiogenic Nd ([εNd]i = - 1.0 to - 0.3), and Hf ([εHf]i = + 4.4 to + 6.6) isotopic compositions than those of the MORB or fore-arc basalts (FAB). In the Sr-Nd isotopic correlation diagram, the AUC clinopyroxenes plot in the enriched extension of the "mantle array". They also have more elevated 207Pb/204Pb ratios at a given 206Pb/204Pb than those of the MORB or FAB. In the Nd-Hf isotope space, the AUC clinopyroxenes have somewhat elevated 176Hf/177Hf ratios at a given 143Nd/144Nd compared to the "mantle-crust" array. These observations indicate that the sub-continental lithospheric mantle (SCLM) overprinted by secondary volatile-rich silicate melts might be the principal source of the AUC magmatism. Heat from the upwelling asthenosphere, through the slab window produced by detachment of the oceanic slab from the buoyant continental lithosphere during continental collision between the North and South China Cratons, might lead to partial melting of the overlying metasomatized SCLM, resulting in the post-collisional Triassic magmatism in South Korea.
Latitudinal change in precipitation and water vapor isotopes over Southern ocean
NASA Astrophysics Data System (ADS)
Rahul, P.
2015-12-01
The evaporation process over ocean is primary source of water vapor in the hydrological cycle. The Global Network of Isotopes in Precipitation (GNIP) dataset of rainwater and water vapor isotopes are predominantly based on continental observations, with very limited observation available from the oceanic area. Stable isotope ratios in precipitation provide valuable means to understand the process of evaporation and transport of water vapor. This is further extended in the study of past changes in climate from the isotopic composition of ice core. In this study we present latitudinal variability of water vapor and rainwater isotopic composition and compared it with factors like physical condition of sea surface water from near equator (1°S) to the polar front (56°S) during the summer time expedition of the year 2013. The water vapor and rainwater isotopes showed a sharp depletion in isotopes while progressively move southward from the tropical regions (i.e. >30°S), which follows the pattern recorded in the surface ocean water isotopic composition. From the tropics to the southern latitudes, the water vapor d18O varied between -11.8‰ to -14.7‰ while dD variation ranges between -77.7‰ to -122.2‰. Using the data we estimated the expected water vapor isotopic composition under kinetic as well as equilibrium process. Our observation suggests that the water vapor isotopic compositions are in equilibrium with the sea water in majority of cases. At one point of observation, where trajectory of air parcel originated from the continental region, we observed a large deviation from the existing trend of latitudinal variability. The deduced rainwater composition adopting equilibrium model showed a consistent pattern with observed values at the tropical region, while role of kinetic process become dominant on progressive shift towards the southern latitudes. We will draw comparison of our observation with other data available in the literature together with isotope model data during the presentation.
Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014
Munksgaard, Niels C.; Zwart, Costijn; Kurita, Naoyuki; Bass, Adrian; Nott, Jon; Bird, Michael I.
2015-01-01
The isotope signatures registered in speleothems during tropical cyclones (TC) provides information about the frequency and intensity of past TCs but the precise relationship between isotopic composition and the meteorology of TCs remain uncertain. Here we present continuous δ18O and δ2H data in rainfall and water vapour, as well as in discrete rainfall samples, during the passage of TC Ita and relate the evolution in isotopic compositions to local and synoptic scale meteorological observations. High-resolution data revealed a close relationship between isotopic compositions and cyclonic features such as spiral rainbands, periods of stratiform rainfall and the arrival of subtropical and tropical air masses with changing oceanic and continental moisture sources. The isotopic compositions in discrete rainfall samples were remarkably constant along the ~450 km overland path of the cyclone when taking into account the direction and distance to the eye of the cyclone at each sampling time. Near simultaneous variations in δ18O and δ2H values in rainfall and vapour and a near-equilibrium rainfall-vapour isotope fractionation indicates strong isotopic exchange between rainfall and surface inflow of vapour during the approach of the cyclone. In contrast, after the passage of spiral rainbands close to the eye of the cyclone, different moisture sources for rainfall and vapour are reflected in diverging d-excess values. High-resolution isotope studies of modern TCs refine the interpretation of stable isotope signatures found in speleothems and other paleo archives and should aim to further investigate the influence of cyclone intensity and longevity on the isotopic composition of associated rainfall. PMID:25742628
Intramolecular Isotopic Studies: Chemical Enhancements and Alternatives
NASA Astrophysics Data System (ADS)
Hayes, J. M.
2016-12-01
As mass spectroscopic and NMR-based methods now appropriately flourish, chemical techniques should not be forgotten. First, the methods developed by pioneering intramolecular analysts can be reapplied to new samples. Second, they can be extended. The synthesis of intramolecular isotopic standards is particularly important and straightforward. It requires only that a chemical reaction has no secondary products. An example is provided by the addition of carbon dioxide to a Grignard reagent. The reaction proceeds with an isotope effect. The isotopic composition of the carboxyl group in the acid which is produced is thus not equal to that of the starting carbon dioxide but the unconsumed CO2 can be recovered and analyzed. A simple titration can show that all the rest of the CO2 is in the product acid. The isotopic composition of the carboxyl group can then be calculated by difference. The product is an intramolecular isotopic standard, an organic molecule in which the isotopic composition of a specific carbon position is known accurately. Both analysts and reviewers can thus gain invaluable confidence in the accuracy of instrumental results. A second example: the haloform reaction quantitatively degrades methyl ketones, producing a carboxylic acid which can be decarboxylated to determine the isotopic composition of the parent carbonyl and a haloform (CHI3, for example) that can be combusted to determine the isotopic composition of the methyl group. Ketones thus analyzed can be combined with Grignard reagents to yield carbon skeletons in which the isotopic compositions of internal and terminal -CH2- and -CH3 groups are known accurately. In general, analysts accustomed to demanding quantitative reactions should remember the power of mass balances and recognize that many organic-chemical reactions, while not quantitative, lack side products and can be driven to the total consumption of at least one reactant.
Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes
NASA Astrophysics Data System (ADS)
Amsellem, Elsa; Moynier, Frédéric; Pringle, Emily A.; Bouvier, Audrey; Chen, Heng; Day, James M. D.
2017-07-01
Understanding the composition of raw materials that formed the Earth is a crucial step towards understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary composition. However, in order to use Ca isotopes as a tracer of Earth's accretion history, it is first necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation. Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic composition enables understanding of how and in what conditions the Solar System formed. Here we present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca isotopes (δ 44 / 40 Ca = + 0.1 to + 0.93 ‰) compared with bulk silicate Earth (δ 44 / 40 Ca = + 1.05 ± 0.04 ‰, Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope composition (δ 44 / 40 Ca = + 0.91 to + 1.06 ‰). Chondrules from Allende are enriched in the heavier isotopes of Ca compared to the bulk and the matrix of the meteorite (δ 44 / 40 Ca = + 1.00 to + 1.21 ‰). This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and chondrules is permissive of recent dynamical models of planetary formation that propose a chondrule-rich accretion model for planetary embryos.
Ghashghaie, Jaleh; Badeck, Franz W; Girardin, Cyril; Sketriené, Diana; Lamothe-Sibold, Marlène; Werner, Roland A
2015-01-01
Carbon isotope composition in respired CO2 and organic matter of individual organs were measured on peanut seedlings during early ontogeny in order to compare fractionation during heterotrophic growth and transition to autotrophy in a species with lipid seed reserves with earlier results obtained on beans. Despite a high lipid content in peanut seeds (48%) compared with bean seeds (1.5%), the isotope composition of leaf- and root-respired CO2 as well as its changes during ontogeny were similar to already published data on bean seedlings: leaf-respired CO2 became (13)C-enriched reaching -21.5‰, while root-respired CO2 became (13)C-depleted reaching around -31‰ at the four-leaf stage. The opposite respiratory fractionation in leaves vs. roots already reported for C3 herbs was thus confirmed for peanuts. However, contrarily to beans, the peanut cotyledon-respired CO2 was markedly (13)C-enriched, and its (13)C-depletion was noted from the two-leaf stage onwards only. Carbohydrate amounts being very low in peanut seeds, this cannot be attributed solely to their use as respiratory substrate. The potential role of isotope fractionation during glyoxylate cycle and/or gluconeogenesis on the (13)C-enriched cotyledon-respired CO2 is discussed.
NASA Astrophysics Data System (ADS)
Elshehawi, Samer; Grootjans, Ab; Bregman, Enno
2017-04-01
This paper investigates the origin of various groundwater flows in a small brook valley reserve Drentsche Aa Valley in the northern part of the Netherlands. The aim was also to validate a hydrological model that simulated coupled particle flow in this area and also incorporated different scenarios for groundwater abstraction in order to predict future implications of groundwater abstraction on ecological values. Water samples from various sites and depths were analysed for macro-ionic composition, stable isotopes (2H and 18O) and also 14C. Three sites have 14C activities over 100%, indicating very recent water. The main groundwater discharge areas showed inflow of old groundwater up to 5000 years. Inflow of different groundwater flows of various ages could be detected most clearly from the 14C data. Downstream area that were affected by groundwater abstraction showed distinct infiltration characteristics, both in macro-ionic composition and contents of natural isotopes, to a depth of 6m below surface In the main exfiltration areas, we found that at 95 meters below the surface, the groundwater was characterized by a NaCl type groundwater facies. But the absolute concentrations were not high enough to conclude that double diffusive convection (DDC) near a salt diapir was responsible for this effect.
NASA Astrophysics Data System (ADS)
Martín-Méndez, Iván; Boixereu, Ester; Villaseca, Carlos
2016-06-01
Graphite is found dispersed in high-grade metapelitic rocks of the Anatectic Complex of Toledo (ACT) and was mined during the mid twentieth century in places where it has been concentrated (Guadamur and la Puebla de Montalbán mines). Some samples from these mines show variable but significant alteration intensity, reaching very low-T hydrothermal (supergene) conditions for some samples from the waste heap of the Guadamur site (<100 °C and 1 kbar). Micro-Raman and XRD data indicate that all the studied ACT graphite is of high crystallinity irrespective of the degree of hydrothermal alteration. Chemical differences were obtained for graphite δ13C composition. ACT granulitic graphite shows δ13CPDB values in the range of -20.5 to -27.8 ‰, indicating a biogenic origin. Interaction of graphite with hydrothermal fluids does not modify isotopic compositions even in the most transformed samples from mining sites. The different isotopic signatures of graphite from the mining sites reflect its contrasted primary carbon source. The high crystallinity of studied graphite makes this area of central Spain suitable for graphitic exploration and its potential exploitation, due to the low carbon content required for its viability and its strategic applications in advanced technologies, such as graphene synthesis.
Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture
Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz
2014-01-01
We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178
NASA Astrophysics Data System (ADS)
Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa
2016-04-01
Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the oxygen isotope composition of ambient CO2. This non-destructive approach was tested through laboratory incubations of air-dried soils that were re-wetted with water of known isotopic composition. Performance was assessed by comparing estimates of the soil water oxygen isotope composition derived from open chamber flux measurements with those measured in the irrigation water and soil water extracted following incubations. The influence of soil pH and bovine carbonic anhydrase additions on these estimates was also investigated. Coherent values were found between the soil water composition estimates obtained from the dual steady state approach and those measured for irrigation waters. Estimates of carbonic anhydrase activity made using this approach also reflected well artificial increases to the concentration of carbonic anhydrase and indicated that this activity was sensitive to soil pH.
Multiple stable isotope fronts during non-isothermal fluid flow
NASA Astrophysics Data System (ADS)
Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas
2018-02-01
Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.
NASA Astrophysics Data System (ADS)
Nedosekova, I. L.; Belousova, E. A.; Sharygin, V. V.; Belyatsky, B. V.; Bayanova, T. B.
2013-02-01
The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.
Using multiple isotopes to understand the source of ingredients used in golden beverages
NASA Astrophysics Data System (ADS)
Wynn, J. G.
2011-12-01
Traditionally, beer contains 4 simple ingredients: water, barley, hops and yeast. Each of these ingredients used in the brewing process contributes some combination of a number of "traditional" stable isotopes (i.e., isotopes of H, C, O, N and S) to the final product. As an educational exercise in an "Analytical Techniques in Geology" course, a group of students analyzed the isotopic composition of the gas, liquid and solid phases of a variety of beer samples collected from throughout the world (including other beverages). The hydrogen and oxygen isotopic composition of the water followed closely the isotopic composition of local meteoric water at the source of the brewery, although there is a systematic offset from the global meteoric water line that may be due to the effects of CO2-H2O equilibration. The carbon isotopic composition of the CO2 reflected that of the solid residue (the source of carbon used as a fermentation substrate), but may potentially be modified by addition of gas-phase CO2 from an inorganic source. The carbon isotopic composition of the solid residue similarly tracks that of the fermentation substrate, and may indicate some alcohol fermented from added sugars in some cases. The nitrogen isotopic composition of the solid residue was relatively constant, and may track the source of nitrogen in the barley, hops and yeast. Each of the analytical methods used is a relatively standard technique used in geological applications, making this a "fun" exercise for those involved, and gives the students hands-on experience with a variety of analytes from a non-traditional sample material.
The ruthenium isotopic composition of the oceanic mantle
NASA Astrophysics Data System (ADS)
Bermingham, K. R.; Walker, R. J.
2017-09-01
The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.
The influence of diet on the δ 13C of shell carbon in the pulmonate snail Helix aspersa
NASA Astrophysics Data System (ADS)
Stott, Lowell D.
2002-02-01
The influence of diet and atmospheric CO 2 on the carbon isotope composition of shell aragonite and shell-bound organic carbon in the pulmonate snail Helix aspersa raised in the laboratory was investigated. Three separate groups of snails were raised on romaine lettuce (C3 plant, δ 13C=-25.8‰), corn (C4 plant, δ 13C=-10.5‰), and sour orange ( 12C-enriched C3 plant, δ 13C=-39.1‰). The isotopic composition of body tissues closely tracked the isotopic composition of the snail diet as demonstrated previously. However, the isotopic composition of the acid insoluble organic matrix extracted from the aragonite shells does not track diet in all groups. In snails that were fed corn the isotopic composition of the organic matrix was more negative than the body by as much as 5‰ whereas the matrix was approximately 1‰ heavier than the body tissues in snails fed a diet of C3 plant material. These results indicate that isotopic composition of the organic matrix carbon cannot be used as an isotopic substrate for paleodietary reconstructions without first determining the source of the carbon and any associated fractionations. The isotopic composition of the shell aragonite is offset from the body tissues by 12.3‰ in each of the culture groups. This offset was not influenced by the consumption of carbonate and is not attributable to the diffusion of atmospheric CO 2 into the hemolymph. The carbon isotopic composition of shell aragonite is best explained in terms of equilibrium fractionations associated with exchange between metabolic CO 2 and HCO 3 in the hemolymph and the fractionation associated with carbonate precipitation. These results differ from previous studies, based primarily on samples collected in the field, that have suggested atmospheric carbon dioxide contributes significantly to the shell δ 13C. The culture results indicate that the δ 13C of aragonite is a good recorder of the isotopic composition of the snail body tissue, and therefore a better recorder of diet than is the insoluble shell organic carbon. Because the systematic fractionation of carbon isotopes within the snail is temperature dependent, the δ 13C of the shell could provide an independent technique for estimating paleotemperature changes.
Strontium and neodymium isotopes in hot springs on the East Pacific Rise and Guaymas Basin
NASA Technical Reports Server (NTRS)
Piepgras, D. J.; Wasserburg, G. J.
1985-01-01
Solutions collected from 21 deg N, East Pacific Rise (Epr) and Guaymas Basin, Gulf of California, are analyzed for Nd isotopic composition and Sm and Nd concentrations. The results indicate extensive but not complete isotopic exchange with Sr in the depleted oceanic crust and that Sr concentrations in these solutions are buffered. In contrast, the Nd data exhibit a wide range in isotopic composition and concentration between vents. Many samples show substantial contributions from MORB, but all have isotopic compositions below MORB, in spite of enrichments in Nd up to 100 times seawater. It is shown that the fluids must exchange Nd with a sedimentary reservoir having an isotopic composition less than Pacific seawater. Low-temperature reactions with metalliferous sediments on the flanks of the EPR may provide such a source. Using a simple box method, estimates of the hydrothermal fluxes of Nd are compared to fluxes which are necessary to maintain a radiogenic isotopic composition of about -3 in the Pacific against the influx of Antarctic waters. It is concluded that erosion from island arcs is the main source of radiogenic Nd in the Pacific.
Measurement of natural carbon isotopic composition of acetone in human urine.
Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko
2016-02-01
The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.
Sr isotopic tracer study of the Samail ophiolite, Oman.
Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.
1981-01-01
Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.
Serret, María D; Yousfi, Salima; Vicente, Rubén; Piñero, María C; Otálora-Alcón, Ginés; Del Amor, Francisco M; Araus, José L
2017-01-01
Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO 2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO 2 ] (400 and 800 μmol mol -1 ), three water regimes (control and mild and moderate water stress) and four genotypes were assayed. For each combination of genotype, [CO 2 ] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO 2 ], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO 2 ], while the lower N concentration caused by rising [CO 2 ] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ 13 C, δ 18 O, and δ 15 N) in plant matter are affected not only by water regime but also by rising [CO 2 ]. Thus, δ 18 O increased probably as response to decreases in transpiration, while the increase in δ 15 N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ 13 C explains differences in plant growth across water regimes within a given [CO 2 ], seems to be mediated through its direct relationship with N accumulation in leaves. The changes in the profile and amount of amino acids caused by water stress and high [CO 2 ] support this conclusion. However, the results do not support the use of δ 18 O as an indicator of the effect of water regime on plant growth.
Serret, María D.; Yousfi, Salima; Vicente, Rubén; Piñero, María C.; Otálora-Alcón, Ginés; del Amor, Francisco M.; Araus, José L.
2018-01-01
Sweet pepper is among the most widely cultivated horticultural crops in the Mediterranean basin, being frequently grown hydroponically under cover in combination with CO2 fertilization and water conditions ranging from optimal to suboptimal. The aim of this study is to develop a simple model, based on the analysis of plant stable isotopes in their natural abundance, gas exchange traits and N concentration, to assess sweet pepper growth. Plants were grown in a growth chamber for near 6 weeks. Two [CO2] (400 and 800 μmol mol−1), three water regimes (control and mild and moderate water stress) and four genotypes were assayed. For each combination of genotype, [CO2] and water regime five plants were evaluated. Water stress applied caused significant decreases in water potential, net assimilation, stomatal conductance, intercellular to atmospheric [CO2], and significant increases in water use efficiency, leaf chlorophyll content and carbon isotope composition, while the relative water content, the osmotic potential and the content of anthocyanins did change not under stress compared to control conditions support this statement. Nevertheless, water regime affects plant growth via nitrogen assimilation, which is associated with the transpiration stream, particularly at high [CO2], while the lower N concentration caused by rising [CO2] is not associated with stomatal closure. The stable isotope composition of carbon, oxygen, and nitrogen (δ13C, δ18O, and δ15N) in plant matter are affected not only by water regime but also by rising [CO2]. Thus, δ18O increased probably as response to decreases in transpiration, while the increase in δ15N may reflect not only a lower stomatal conductance but a higher nitrogen demand in leaves or shifts in nitrogen metabolism associated with decreases in photorespiration. The way that δ13C explains differences in plant growth across water regimes within a given [CO2], seems to be mediated through its direct relationship with N accumulation in leaves. The changes in the profile and amount of amino acids caused by water stress and high [CO2] support this conclusion. However, the results do not support the use of δ18O as an indicator of the effect of water regime on plant growth. PMID:29354140
Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations
NASA Technical Reports Server (NTRS)
Piepgras, D. J.; Wasserburg, G. J.
1987-01-01
The relationship between the Nd isotopic composition in the Atlantic waters and the origin and circulation of the water masses was investigated. Samples were collected in the western North Atlantic between 7 and 54 deg N. The isotopic composition (Nd-143/Nd-144 ratios) showed extensive vertical structure at all locations. In regions where a thermocline was well-developed, large isotopic shifts were observed across the base of the thermocline, while regions without a thermocline were characterized by much more gradual shifts in isotopic composition with depth. The data reveal an excellent correlation between the Nd isotopic distribution in the western North Atlantic water column and the distribution of water masses identified from temperature and salinity measurements.
NASA Technical Reports Server (NTRS)
Shaw, H. F.; Wasserburg, G. J.
1985-01-01
The possibility of establishing a record of variations in the isotopic composition of Nd in seawater over geologic time is explored. To construct such a record, a phase must be identified which incorporated Nd with the same isotopic composition as seawater at the time of its formation, preserves that composition, and which is relatively common in sediments. To evaluate the suitability of carbonates and phosphates, the Rb, Sr, Sm, and Nd concentrations and the Nd and Sr isotopic composition of a variety of modern and ancient marine calcite, aragonite, and apatite samples have been measured and the results are presented and discussed.
NASA Technical Reports Server (NTRS)
Hoppe, Peter; Geiss, Johannes; Buehler, Fritz; Neuenschwander, Juerg; Amari, Sachiko; Lewis, Roy S.
1993-01-01
We report ion microprobe determinations of the carbon, nitrogen, and silicon isotopic compositions of small SiC grains from the Murchison CM2 chondrite. Analyses were made on samples containing variable numbers of grains and on 14 individual grains. In some cases the multiple-grain sample compositions were probably dominated by only one or two grains. Total ranges observed are given. Only a few grains show values near the range limits. Both the total ranges of carbon and nitrogen isotopic compositions, and even the narrower ranges typical for the majority of the grains, are similar to those observed for larger SiC grains. Two rare components appear to be present in the smaller-size fraction, one characterized by C-12/C-13 about 12-16 and the other by very heavy nitrogen. The carbon and nitrogen isotopic compositions qualitatively may reflect hydrostatic H-burning via the CNO cycle and He-burning in red giants, as well as explosive H-burning in novae. The silicon isotopic compositions of most grains qualitatively show what is the signature of He-burning. The silicon isotopic composition of one grain, however, suggests a different process.
Kent, Adam J.R.; Rowe, Michael C.; Thornber, Carl R.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
Plagioclase crystals from gabbronorite inclusions in three dacite samples have markedly different trace-element and Pbisotope compositions from those of plagioclase phenocrysts, despite having a similar range of anorthite contents. Inclusions show some systematic differences from each other but typically have higher Ti, Ba, LREE, and Pb and lower Sr and have lower 208Pb/206Pb and 207Pb/206Pb ratios than coexisting plagioclase phenocrysts. The compositions of plagioclase from inclusions cannot be related to phenocryst compositions by any reasonable petrologic model. From this we suggest that they are unlikely to represent magmatic cumulates or restite inclusions but instead are samples of mafic Tertiary basement from beneath the volcano.
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
NASA Astrophysics Data System (ADS)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Meyer, Bradley S.; O’D. Alexander, Conel M.; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.
2018-03-01
We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB (14N/15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains (14N/15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likely originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars’ pre-SN evolution rather than from an explosive neutron-capture process. In addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...
2018-03-16
In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick
In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less
NASA Technical Reports Server (NTRS)
Hoppe, Peter; Amari, Sachiko; Zinner, Ernst; Ireland, Trevor; Lewis, Roy S.
1994-01-01
Seven hundred and twenty SiC grains from the Murchison CM2 chondrite, ranging in size from 1 to 10 micrometers, were analyzed by ion microprobe mass spectrometry for their C-isotopic compositions. Subsets of the grains were also analyzed for N (450 grains), Si (183 grains), Mg (179 grains), and Ti (28 grains) isotopes. These results are compared with previous measurements on 41 larger SiC grains (up to 15 x 26 micrometers) from a different sample of Murchison analyzed by Virag et al. (1992) and Ireland, Zinner, & Amari (1991a). All grains of the present study are isotopically anomalous with C-12/C-13 ratios ranging from 0.022 to 28.4 x solar, N-14/N-15 ratios from 0.046 to 30 x solar, Si-29/Si-28 from 0.54 to 1.20 x solar, Si-30/Si-28 from 0.42 to 1.14 x solar, Ti-49/Ti-48 from 0.96 to 1.95 x solar, and Ti-50/Ti-48 from 0.94 to 1.39 x solar. Many grains have large Mg-26 excesses from the decay of Al-26 with inferred Al-26/Al-27 ratios ranging up to 0.61, or 12,200 x the ratio of 5 x 10(exp -5) inferred for the early solar system. Several groups can be distinguished among the SiC grains. Most of the grains have C-13 and N-14 excesses, and their Si isotopic compositions (mostly excesses in Si-29 and Si-30) plot close to a slope 1.34 line on a Delta Si-29/Si-28 versus Delta Si-30/Si-28 three-isotope plot. Grains with small C-12/C-13 ratios (less than 10) tend to have smaller or no N-14 excesses and high Al-26/Al-27 ratios (up to 0.01). Grains with C-12/C-13 greater than 150 fall into two groups: grains X have N-15 excesses and Si-29 and Si-30 deficits and the highest (0.1 to 0.6) Al-26/Al-27 ratios; grains Y have N-14 excesses and plot on a slope 0.35 line on a Si three-isotope plot. In addition, large SiC grains of the Virag et al. (1992) study fall into three-distinct clusters according to their C-, Si-, and Ti-isotopic compositions. The isotopic diversity of the grains and the clustering of their isotopic compositions imply distinct and multiple stellar sources. The C- and N-isotopic compositions of most grains are consistent with H-burning in the CNO cycle. These and s-process Kr, Xe, Ba, and Nd suggest asymptotic giant branch (AGB) or Wolf-Rayet stars as likely sources for the grains, but existing models of nucleosynthesis in these stellar sites fail to account in detail for all the observed isotopic compositions. Special problems are posed by grains with C-12/C-13 less than 10 and almost normal and heavy N-isotopic compositions. Also the Si- and Ti-isotopic compositions, with excesses in Si-29 and Si-30 relative to Si-28 and excesses in all Ti isotopes relative to Ti-48, do not precisely conform with the compositions predicted for slow neutron capture. Additional theoretical efforts are needed to achieve an understanding of the isotopic composition of the SiC grains and their stellar sources.
NASA Astrophysics Data System (ADS)
Longinelli, Antonio; Wierzbowski, Hubert; Di Matteo, Antonella
2003-04-01
The oxygen isotopic composition of coexisting carbonate and phosphate from belemnite rostra was measured according to well established techniques in 42 samples of Early and Middle Jurassic age and in five samples of oyster shells. Most of the samples come from various locations in the Western Carpathians of Slovakia and Ukraine, and from central Poland. Three samples come from the Isle of Skye. The phosphate content of belemnite rostra, though variable, is systematically very low: consistently lower than about 0.3%. However, this phosphate concentration is close to that found in shells of modern marine organisms including pelecypods, gastropods and Sepia cuttlebones which, in some way, could be considered the modern belemnite counterpart. The measured oxygen isotopic composition of carbonate is within the normal range of values obtained from these fossils ranging from about -1.3 to about +0.6‰ (PDB-1) with the exception of three samples; the δ 13C values range from about -0.8 to about +2.8‰ (PDB-1). With the single exception of one sample from the Isle of Skye, the oxygen isotopic composition of phosphate from belemnite rostra ranges from +19.8 to +24.9‰ (V-SMOW), 22 of the samples measured showing δ 18O values equal to or heavier than +23.0‰. In contrast, the oyster values are considerably lighter, in the case of both carbonate and phosphate. 18O-enriched values can hardly be related to diagenetic processes that normally cause an oxygen isotope shift towards light values. If deposition temperatures are calculated from the heavily enriched values by means of the equation of Longinelli and Nuti [Earth Planet. Sci. Lett. 19 (1973) 373-376] and assuming the δ 18O of Jurassic ocean water to be equal to -1‰ taking into account the lack of ice caps during the Jurassic, the obtained temperatures range from about 8°C to about zero. These temperatures are obviously unreliable when Mesozoic palaeoceanographic conditions and palaeoclimate are taken into account. Two different hypotheses are suggested to explain these results, other hypotheses being rejected as unreliable. (1) Phosphate derived from the decaying organic matter of belemnites might have been introduced into belemnite rostra by early diagenetic fluids. If the phosphate of belemnite organic matter was isotopically heavy as happens nowadays in the flesh of molluscs, the inflow of this phosphate into the rostra could be responsible for the very positive δ 18O values shown by many belemnite rostra (this hypothesis is suggested by H.W.); (2) previous oxygen isotope measurements on Upper Cretaceous belemnites yielded δ 18O values very close to the most positive values obtained from Lower Tertiary pelecypods and fish teeth which are known to precipitate their phosphate under isotopic equilibrium conditions with seawater. These data suggest the possibility that the phosphate in belemnite rostra is primary phosphate so that the very positive data reported here can be considered the result of good preservation of the pristine isotopic composition of primary phosphate. Consequently, the only way to explain the very positive δ 18O values is to consider the oxygen isotopic composition of Jurassic ocean water to be more positive than nowadays by at least 3‰. This hypothesis is suggested by A.L. and A.D.M.
NASA Astrophysics Data System (ADS)
Barras, Vaughan; Simmonds, Ian
2010-05-01
The application of stable water isotopes as tracers of moisture throughout the hydrological cycle is often hindered by the relatively coarse temporal and spatial resolution of observational data. Intensive observation periods (IOPs) of isotopes in precipitation have been valuable in this regard enabling the quantification of the effects of vapour recycling, convection, cloud top height and droplet reevaporation (Dansgaard, 1953; Miyake et al., 1968; Gedzelman and Lawrence, 1982; 1990; Pionke and DeWalle, 1992; Risi et al., 2008; 2009) and have been used as a basis to develop isotope models of varying complexity (Lee and Fung, 2008; Bony et al., 2008). This study took a unified approach combining observation and modelling of stable isotopes in precipitation in an investigation of three key circulation types that typically bring rainfall to southeastern Australia. The observational component of this study involved the establishment of the Melbourne University Network of Isotopes in Precipitation (MUNIP). MUNIP was devised to sample rainwater simultaneously at a number of collection sites across greater Melbourne to record the spatial and temporal isotopic variability of precipitation during the passage of particular events. Samples were collected at half-hourly intervals for three specific rain events referred to as (1) mixed-frontal, (2) convective, and (3) stratiform. It was found that the isotopic content for each event varied over both high and low frequencies due to influences from local changes in rain intensity and large scale rainout respectively. Of particular note was a positive relationship between deuterium excess and rainfall amount under convective conditions. This association was less well defined for stratiform rainfall. As a supplement to the data coverage of the observations, the events were simulated using a version of NCAR CAM3 running with an isotope hydrology scheme. This was done by periodically nudging the model dynamics with data from the NCEP Reanalysis (Noone, 2006). Results from the simulations showed that the model represented well the large scale evolution of vapour profiles of deuterium excess and 18O for the mixed-frontal and stratiform events. Reconstruction of air mass trajectories provided further detail of the evolution and structure of the vapour profiles revealing a convergence of air masses from different source regions for the mixed-frontal event. By combining observations and modelling in this way, much detail of the structure and isotope moisture history of the observed events was provided that would be unavailable from the sampling of precipitation alone. References Bony, S., C. Risi, and F. Vimeux (2008), Influence of convective processes on the isotopic composition (?18O and ?D) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean-Global Atmosphere-Coupled Ocean-Atmosphere Response (TOGA-COARE) simulations, J. Geophys. Res., 113, D19305, doi:10.1029/2008JD009942. Dansgaard, W. (1953), The abundance of 18O in atmospheric water and water vapor. Tellus, 5, 461-469. Gedzelman, S. D., and J. R. Lawrence (1982), The isotopic composition of cyclonic precipitation. J. App. Met., 21, 1385-1404. Gedzelman, S. D., and J. R. Lawrence (1990), The isotopic composition of precipitation from two extratropical cyclones, Mon. Weather Rev., 118 , 495-509. Lee, J., and I. Fung (2008), 'Amount effect' of water isotopes and quantitative analysis of post-condensation processes, Hydrol. Process., 22, 1-8. Miyake, Y., O. Matsubaya, and C. Nishihara (1968), An isotopic study on meteoric precipitation, Pap. Meteorol. Geophys., 19, 243-266. Noone, D. (2006), Isotopic composition of water vapor modeled by constraining global climate simulations with reanalyses, in Research activities in atmospheric and oceanic modeling, J. Côté (ed.), Report No. 36, WMO/TD-No. 1347, p. 2.37-2.38. Pionke, H. B., and D. R. DeWalle (1992), Intra- and inter-storm 18O trends for selected rainstorms in Pennsylvania. J. Hydrol., 138, 131-143. Risi, C., S. Bony, and F. Vimeux (2008), Influence of convective processes on the isotopic composition (?18O and ?D) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res., 113, D19306, doi:10.1029/2008JD009943. Risi, C., S. Bony, F. Vimeux, M. Chong, and L. Descroix (2009), Evolution of the water stable isotopic composition of the rain sampled along Sahelian squall lines, Q. J. Roy. Meteor. Soc., doi:10.1002/qj.485, (in press).
Rb-Sr and Sm-Nd Ages of Zagami DML and SR Isotopic Heterogeneity in Zagami
NASA Technical Reports Server (NTRS)
Nyquist, L.aurenceE.; Shih, C.-Y.; Reese, Y. D.
2010-01-01
Zagami contains lithologic heterogeneity suggesting that it did not form in a homogeneous, thick lava flow [1]. We have previously investigated the Sr and Nd isotopic systematics of Coarse-Grained (CG) and Fine-Grained (FG) lithologies described by [2]. Both appear to belong to Normal Zagami (NZ) [1,3], but their initial Sr-isotopic compositions differ [4,5]. Here we report new analyses of the Dark Mottled Lithology (DML, [3]) that show its age and initial Sr and Nd isotopic compositions to be identical within error limits with those of CG, but Sr initial isotopic compositions differ from those of FG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludvigson, G.A.; Gonzalez, L.S.; Witzke, B.J.
1993-03-01
The Middle-Upper Devonian Cedar Valley Gp in Iowa is subdivided into four formations each representing a broad transgressive-regressive (T-R) cycle of deposition. Cycles consist of basal open marine facies that shallow upward into capping peritidal facies. Results from ongoing diagenetic studies of the Coralville Fm (late Givetian), the second T-R cycle of the Cedar Valley Gp, have focused attention on the origins of early cements. Early calcite cements in the Coralville Fm of Johnson County, Iowa, include blocky equant spars filling fenestral voids in birdseye limestones of the Iowa City Mbr and isopachous bladed spars that occur throughout the Coralville.more » Bladed spars fill stromatactis and microkarstic voids in the Iowa City Mbr, and sheltered voids in underlying open-marine skeletal packstones of the Cou Falls Mbr (lower Coralville cycle). The bladed spars include nonluminescent inclusion-free domains that contain up to 4,000 ppm Mg, and luminescent inclusion-rich domains that contain less than 2,000 ppm Mg. Birdseye spars have a constructive oscillatory luminescent-nonluminescent zonation controlled by Mn contents and contain less than 1,000 ppm Mg. Nonluminescent domains in bladed spars have the heaviest oxygen isotopic compositions of all components in the Coralville, similar to the isotopically heaviest nonluminescent brachiopods but have [delta][sup 13]C values ranging from [minus]3 to [minus]5 [per thousand]. They are interpreted to have precipitated from marine fluids saturated by CO[sub 2] produced from bacterial oxidation of organic matter. Altered luminescent domains in the bladed spars have the same [delta][sup 13]C compositions, but have widely varying [delta][sup 18]O compositions, ranging to [minus]9 [per thousand].« less
NASA Astrophysics Data System (ADS)
Petit, J.; Mattielli, N.; de Jong, J.; Chou, L.
2004-05-01
Recent developments in MC-ICP-MS technology allow high precision measurements of heavy stable isotopes, such as Cu and Zn isotopes, which have been shown to undergo biotic or abiotic fractionation (1). Application of Zn isotopes to the study of aquatic ecosystems has already shown some interesting perspectives in their potential use as biogeochemical tracers in deep ocean carbonates (2) or Fe-Mn nodules (3). However, until now no investigation of possible Cu and Zn isotopic fractionation has been carried out within estuaries that are important pathways for hydrological and geochemical cycling of metals. Cu and Zn isotope geochemistry has been studied in sandy to loamy surface sediments (top 20 cm) and in suspended particulate matter (SPM) along a transect in a strong tidal estuary, the Scheldt estuary situated in Belgium and the Netherlands (November 2002). Further to separation of Cu, Fe and Zn by one step ion-exchange chromatography, Cu and Zn isotopic ratios are measured with a "Nu-Plasma" MC-ICP-MS. Instrumental mass bias is corrected using reference materials (Zn JMC, Cu NIST SRM 976 and Ga JMC standard) by simultaneous standard-sample bracketing and external normalization (500 ppb Zn doping for Cu isotopic analyses in static mode and 250 ppb Ga doping for Zn isotopic analyses in dynamic mode), together with a Ni correction. These methods lead to long-term reproducibility (2σ at 95 % confidence level) of ± 0.07 per mil for δ 66Zn (n=100 over 7 analysis sessions) and ± 0.06 per mil for δ 65Cu (n=120 over 8 analysis sessions) for 500 ppb of reference material. Average beam intensities are 6 V/ppm. Precise and reproducible results are obtained for concentration as low as 100 ppb for Cu and Zn. Expected Cu and Zn enrichment in SPM (120 ppm and 1200 ppm respectively) and sediments (being 6 to 10 times lower than SPM) in the upper estuary and progressive decrease in metal content by mixing downstream of the maximum turbidity zone (MTZ, around 5 psu) are observed. Results show that variations in Cu and Zn isotopic composition are smaller in SPM (δ 66Zn varying from 0.35 to 0.17 and δ 65Cu from -0.13 to 0.18) than in sediments. Cu and Zn isotopic signatures of sediments show a clear trend of lighter isotopes removal from the MTZ seaward with δ 66Zn varying from 0.21 at 2 psu to 1.11 per mil at 33 psu (and δ 65Cu = -0.37 to 0.24). In contrast, Zn isotopic compositions in SPM are more homogeneous with average δ 66Zn of 0.24 ± 0.18 over all the transect. Cu isotopic composition in SPM are very constant downstream of the MTZ with average δ 65Cu =-0.06 ± 0.08 but become more scattered within MTZ (varying from -0.04 to 0.18). These preliminary results pinpoint important variations in Cu and Zn isotopic compositions within estuarine systems and contrasted isotopic signatures in Cu and Zn between SPM and sediments. Results suggest the important role of early diagenesis in the isotope geochemistry of heavy metals in estuarine environment. This study provides a stepping stone for further investigation of interacting processes involved in controlling the cycling of metals in the Scheldt estuary. (1) Zhu et al., Earth Planet. Sci. Lett. 200 (2002), 47-62 (2) Pichat et al., Earth Planet. Sci. Lett. 6598 (2003), 1-12 (3) Maréchal et al., Geochem. Geophys. Geosyt., 1 (2000), GC000029
Diamonds from Orapa Mine show a clear subduction signature in SIMS stable isotope data
NASA Astrophysics Data System (ADS)
Chinn, Ingrid L.; Perritt, Samantha H.; Stiefenhofer, Johann; Stern, Richard A.
2018-05-01
Spatially resolved analyses reveal considerable isotopic heterogeneity within and among diamonds ranging in size from 0.15 to 4.75 mm from the Orapa Mine, Botswana. The isotopic data are interpreted in conjunction with nitrogen aggregation state data and growth zone relationships from cathodoluminescence images. The integrated information confirms that a distinct diamond growth event (with low IaAB nitrogen aggregation states, moderately high nitrogen contents and δ13C and δ15N values compatible with average mantle values) is younger than the dominant population(s) of Type IaAB diamonds and cores of composite diamonds with more negative and positive δ13C and δ15N values, respectively. A significant proportion of the older diamond generation has high nitrogen contents, well outside the limit sector relationship, and these diamonds are likely to reflect derivation from subducted organic matter. Diamonds with low δ13C values combined with high nitrogen contents and positive δ15N values have not been previously widely recognised, even in studies of diamonds from Orapa. This may have been caused by prior analytical bias towards inclusion-bearing diamonds that are not necessarily representative of the entire range of diamond populations, and because of average measurements from heterogeneous diamonds measured by bulk combustion methods. Two distinct low nitrogen/Type II microdiamond populations were recognised that do not appear to continue into the macrodiamond sizes in the samples studied. Other populations, e.g. those containing residual singly-substituted nitrogen defects, range in size from small microdiamonds to large macrodiamonds. The total diamond content of the Orapa kimberlite thus reflects a complex assortment of multiple diamond populations.
Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vengosh, A.; Chivas, A.R.; McCulloch, M.T.
1991-10-01
The abundances and isotopic composition of boron in modern, biogenic calcareous skeletons from the Gulf of Elat, Israel, the Great Barrier Reef, Australia, and in deep-sea sediments have been examined by negative thermal-ionization mass spectrometry. The selected species (Foraminifera, Pteropoda, corals, Gastropoda, and Pelecypoda) yield large variations in boron concentration that range from 1 ppm in gastropod shells to 80 ppm in corals. The variations of {delta}{sup 11}B may be controlled by isotopic exchange of boron species in which {sup 10}B is preferentially partitioned into the tetrahedral species, and coprecipitation of different proportions of trigonal and tetrahedral species in themore » calcium carbonates. The B content and {delta}{sup 11}B values of deep-sea sediments, Foraminifera tests, and corals are used to estimate the global oceanic sink of elemental boron by calcium carbonate deposition. As a result of enrichment of B in corals, a substantially higher biogenic sink of 6.4 {plus minus} 0.9 {times} 10{sup 10} g/yr is calculated for carbonates. This is only slightly lower than the sink for desorbable B in marine sediments (10 {times} 10{sup 10} g/yr) and approximately half that of altered oceanic crust (14 {times} 10{sup 10} g/yr). Thus, carbonates are an important sink for B in the oceans being {approximately}20% of the total sinks. The preferential incorporation of {sup 10}B into calcium carbonate results in oceanic {sup 11}B-enrichment, estimated as 1.2 {plus minus} 0.3 {times} 10{sup 12} per mil {center dot} g/yr. The boron-isotope composition of authigenic, well-preserved carbonate skeletons may provide a useful tool to record secular boron-isotope variations in seawater at various times in the geological record.« less
Nahon, Sarah; Séité, Sarah; Kolasinski, Joanna; Aguirre, Pierre; Geurden, Inge
2017-10-30
Carbon and nitrogen stable isotope analyses of fish tissues are now commonly used in ecological studies but mostly require the sacrifice of the animal. Ethical considerations recommend the use of anesthetics for tissue sampling. This study examines how anesthetics affect stable isotope ratios of fish compared with other euthanasia methods. Rainbow trout fry and juveniles were sacrificed using ice-freezing (as this common method used to kill fish does not affect natural isotopic ratios), electronarcosis or an overdose of chemical anesthetics (2-phenoxyethanol, benzocaine and clove oil). For fry, we sampled the whole animal whereas, for juveniles, white dorsal muscle, liver, red blood cells, plasma, external tegument and pectoral fin were sampled. Isotopic ratios and the elemental compositions of carbon and nitrogen were then measured. The δ 15 N values, and the C and N contents of all considered tissues as well as δ 13 C values of muscle, liver, red blood cells and plasma, were not affected by the use of chemical anesthetics. Clove oil and to a lesser extent 2-phenoxyethanol and benzocaine decreased δ 13 C values of whole fry and juvenile external tegument and pectoral fin. The use of electronarcosis drastically affects the δ 13 C and δ 15 N values of all fish tissues. Anesthetics should be avoided for δ 13 C analysis when tissues are in contact with the water containing the anesthetic. Ice-immersion has to be preferred when approved by guidelines. If not, benzocaine and 2-phenoxyethanol should be preferred over clove oil. Electronarcosis should not be used to kill fish until further investigations are performed. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Le, Dung Quang; Tanaka, Kentaro; Hii, Yii Siang; Sano, Yuji; Nanjo, Kusuto; Shirai, Kotaro
2018-05-01
The commercially important pink ear emperor fish, Lethrinus lentjan, often occurs as a juvenile in subtropical and tropical interlinked mangrove and seagrass ecosystems, but little is known about its feeding habits and habitat use. Here, we used gut contents and stable isotopic (δ13C and δ15N) ratios to determine temporal changes in food sources and foraging habits of juvenile and sub-adult fish collected in mangrove forests and seagrass beds in the Setiu Lagoon. Gut content examination identified the main food sources as crustaceans, gastropods, bivalves, and annelids. Stable isotope analysis of food sources showed marked differences between the mangroves (δ13C = -26.8 ± 2.0‰; δ15N = 4.3 ± 1.7‰) and the seagrasses (mean ± S.D. δ13C = -20.5 ± 5.5‰; δ15N = 5.8 ± 1.2‰). The isotopic composition of L. lentjan revealed that it mainly utilized seagrass-based food sources. Rainfall and the semi-diurnal tidal regimes may affect the foraging habitats of fish in the lagoon. A significant depletion of 13C related to body size was observed, suggesting that mangroves provided some benefits to sub-adult fish. In contrast, trophic position increased with fish growth, although this increase was negligible. A stable isotope mixing model confirmed that the seagrass bed constituted the main carbon source for the fish, but with an increasing contribution of mangrove prey, such as sesarmid crabs, related to fish growth. This study provided novel information on seasonal variations in feeding areas and flexible habitat use in L. lentjan in the Setiu Lagoon, which will help optimize management strategies for sustainable use and wildlife conservation.
Copahue volcano and its regional magmatic setting
Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin
2016-01-01
Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.
NASA Astrophysics Data System (ADS)
Munro, L. E.; Longstaffe, F. J.; White, C. D.
2003-12-01
Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned and incrementally heated from 25 to 900° C, in 25° intervals. The samples were then ground to a standardized grain-size (45<63μ m), and changes in bioapatite crystallinity (CI) were determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by about 8-10‰ below 500° C, 5-6‰ between 500-700° C, and 8-10‰ above 700° C. CI and oxygen isotopic compositions of carbonate and phosphate are not well correlated. Only modest CI changes are recorded from 25-675° C, compared with much larger changes in oxygen isotopic composition, especially above 300° C. On average, original isotopic compositions are largely preserved for both phosphate (+/-1‰ ) and carbonate (+/-2‰ ) oxygen at <300° C. At higher temperatures, however, both phosphate and carbonate oxygen in the bioapatite are systematically depleted of oxygen-18 relative to original values.
NASA Astrophysics Data System (ADS)
Martin, Erwan; Bindeman, Ilya; Balan, Etienne; Palandri, Jim; Seligman, Angela; Villemant, Benoit
2017-12-01
The use of volcanic glass as recorder of paleoenvironmental conditions has existed for 30 years. In this paper we investigate the methodological aspects of the determination of water content, isotopic composition, and water speciation in volcanic glass using the High Temperature Conversion/Elemental Analyzer (TCEA) mass spectrometer system on milligram quantities of glass concentrates. It is shown here that the precision and the reproducibility of this method is comparable to off-line conventional methods that require 100 times greater amount of material (δD ± 3‰; [H2O]tot ± 10relative% if < 1 wt% and ± 5 relative% if > 1 wt%) but is quicker and permits easy replication. This method extracts 100% of the water as verified by FTIR measurements. Finally, this study confirms the interest of DRIFT spectroscopy in the NIR range for the study of porous samples such as volcanic pumices and tephra, to determine the water speciation (H2O/OH). It may complement conventional FTIR transmission measurements in the MIR or NIR range that usually require homogeneous transparent sections or high degree of sample dilution in a non-absorbing matrix. Using these methods, we attempt to discriminate residual magmatic from secondary meteoric water in volcanic glass. Using mafic to differentiated samples from different geological settings and different climatic conditions, we show that the H-isotope composition and water content of volcanic glass alone are not always sufficient to provide clear distinction between magmatic and meteoric origin. However if the magma is known to have a δD between - 90‰ and - 40‰ (- 60‰ for MORB mantle source), it is quite easy to resolve the δD evolution during magmatic degassing from post-depositional rehydration by meteoric water with δD < - 50‰ or δD > - 20‰. Water speciation measurements may provide additional information. In most cases, isotopic and total water measurements should be complemented by characterization of water speciation. During magmatic degassing (from 6 wt% to 0.1 wt% water) the H2O/OH is expected to decrease from 2 to close to 0. However, our dataset suggests that during secondary glass hydration (from 0.1 wt% to 6 wt% water) the H2O/OH ratio decreases from 5 to 2, which is the complete opposite. Overall our results support the use of H-isotopes of volcanic glass to discuss the composition of meteoric waters and paleo-climate within a specific region. To this purpose, the volcanic glass has to be almost fully rehydrated in order to fingerprint the isotopic composition of the ambient environmental water. As rehydration is exponentially faster with increasing temperature, efficient rehydration taking months to years, may occur in a cooling volcanic deposits that are meters-thick and thus can remain at a few hundred °C for a years to hundreds of years after the eruption. Such deposits could then provide a snap-shot view of climatic conditions at the time of the studied eruption.
Silicon biogeochemical processes in a large river (Cauvery, India)
NASA Astrophysics Data System (ADS)
Kameswari Rajasekaran, Mangalaa; Arnaud, Dapoigny; Jean, Riotte; Sarma Vedula, V. S. S.; Nittala, S. Sarma; Sankaran, Subramanian; Gundiga Puttojirao, Gurumurthy; Keshava, Balakrishna; Cardinal, Damien
2016-04-01
Silicon (Si), one of the key nutrients for diatom growth in ocean, is principally released during silicate weathering on continents and then exported by rivers. Phytoplankton composition is determined by the availability of Si relative to other nutrients, mainly N and P, which fluxes in estuarine and coastal systems are affected by eutrophication due to land use and industrialization. In order to understand the biogeochemical cycle of Si and its supply to the coastal ocean, we studied a tropical monsoonal river from Southern India (Cauvery) and compare it with other large and small rivers. Cauvery is the 7th largest river in India with a basin covering 85626 sq.km. The major part of the basin (˜66%) is covered by agriculture and inhabited by more than 30 million inhabitants. There are 96 dams built across the basin. As a consequence, 80% of the historical discharge is diverted, mainly for irrigation (Meunier et al. 2015). This makes the Cauvery River a good example of current anthropogenic pressure on silicon biogeochemical cycle. We measured amorphous silica contents (ASi) and isotopic composition of dissolved silicon (δ30Si-DSi) in the Cauvery estuary, including freshwater end-member and groundwater as well as along a 670 km transect along the river course. Other Indian rivers and estuaries have also been measured, including some less impacted by anthropogenic pressure. The average Cauvery δ30Si signature just upstream the estuary is 2.21±0.15 ‰ (n=3) which is almost 1‰ heavier than the groundwater isotopic composition (1.38±0.03). The δ30Si-DSi of Cauvery water is also almost 1‰ heavier than the world river supply to the ocean estimated so far and 0.4‰ heavier than other large Indian rivers like Ganges (Frings et al 2015) and Krishna. On the other hand, the smaller watersheds (Ponnaiyar, Vellar, and Penna) adjacent to Cauvery also display heavy δ30Si-DSi. Unlike the effect of silicate weathering, the heavy isotopic compositions in the river Cauvery may result from the successive dams along the main course which are expected to favor the retention of isotopically light Si isotopes in sediments via diatom uptake in reservoirs and/or, Si uptake by vegetation. Both processes likely result in heavier δ30Si-DSi downstream. In the estuary, the average δ30Si-DSi is 2.20±0.17 ‰ (n=11). There is a significant positive relationship between ASi contents and fucoxanthin (diatom marker pigment) (r=0.61, p<0.05, n=11) suggesting a significant control of diatoms on ASi. However a dominant mixing effect is observed in dissolved silicon with a strong positive relationship between 1/DSi and δ30Si-DSi (r=0.71, p<0.01, n=11). A comparative study with a west-flowing river, the Netravathi (southwest India) will be performed and presented during the session. We will also compare the Si isotopic signatures in Cauvery along the transect with focus on seasonal variability and on upstream vs. downstream large dams to strengthen interpretations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahl, Tais W.; Wirth, Stefanie B.
The molybdenum (Mo) isotope composition in euxinic shales has been used as a proxy for the global distribution of anoxic conditions in ancient oceans, and since more recently also as a proxy for sulfide concentrations in depositional environments. However, there is currently no way to distinguish isotope fractionation at low bottom water sulfide concentrations in ‘local’ basins from ‘global’ secular isotope variations associated with changing seawater composition. This uncertainty is challenging the use of Mo isotopes for paleoceanographic reconstructions. To explore this further, we present new data from sediments deposited over the past ~ 9800 years in one of themore » best studied euxinic localities in the world: Lake Cadagno in Switzerland. The sample set allows us to test ways to discern isotope fractionation processes at play in a highly restricted euxinic basin. Most of our drill core samples (n = 18) show high δ98Mo values similar to previously studied shallow sediments, indicative of quantitative Mo removal from the water column (Dahl et al. 2010a). However, a few samples (n = 3) deposited between about 1200 and 3400 years ago carry low δ98Mo values and have been isotopically fractionated in the lake. Sedimentological and geochemical characterizations show that these δ98Mo-fractionated sediments formed during times of frequent injection of O2- and sediment-rich river water into the deep sulfidic water column. A positive correlation between δ98Mo and sedimentary Mo contents suggests that isotope fractionation occurred during times of non-quantitative Mo removal, although Mn-oxide cycling at the chemocline might also contribute a subordinate proportion of (98Mo-depleted) molybdenum into the sulfidic zone. Sedimentary Mo/U enrichments relative to oxic lake water further supports the hypothesis that a particulate Mo shuttle was most efficient during times of quantitative Mo removal. Therefore, periods with inefficient Mo capture are ascribed to incomplete conversion of molybdate to particle reactive Mo species when bottom water H2S levels were low or less stable than today. Using XAFS spectroscopy, we found that the two distinct Mo compounds predominating in the sediments (MoIV-S and MoVI-OS) are not diagnostic for isotope fractionation that has occurred in Lake Cadagno. Instead, we infer that δ98Mo-fractionated products (forming via a low-sulfide Mo pathway) can be subsequently altered with little or no isotopic imprint during remobilization and re-precipitation (e.g., at higher sulfide levels in the sediments) as well as during post-depositional oxidation. Future work could investigate local δ98Mo-fractionation processes expressed in other euxinic settings and explore other sedimentary metrics to constrain the steps involved in the euxinic burial pathway(s). One tantalizing prospect of this is to distinguish between local bottomwater sulfide levels and variations in the fraction of global seafloor anoxia from the Mo isotope composition in ancient euxinic mudrocks.« less
Horton, James A.; Hayden, Jr., Howard W.
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.
Horton, J.A.; Hayden, H.W. Jr.
1995-05-30
An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.
Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François
2016-06-01
We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the O isotopic composition of ocean water at that period in time.
NASA Astrophysics Data System (ADS)
Creech, J. B.; Moynier, F.; Bizzarro, M.
2017-11-01
Stable isotope studies of highly siderophile elements (HSE) have the potential to yield valuable insights into a range of geological processes. In particular, the strong partitioning of these elements into metal over silicates may lead to stable isotope fractionation during metal-silicate segregation, making them sensitive tracers of planetary differentiation processes. We present the first techniques for the precise determination of palladium stable isotopes by MC-ICPMS using a 106Pd-110Pd double-spike to correct for instrumental mass fractionation. Results are expressed as the per mil (‰) difference in the 106Pd/105Pd ratio (δ106Pd) relative to an in-house solution standard (Pd_IPGP) in the absence of a certified Pd isotopic standard. Repeated analyses of the Pd isotopic composition of the chondrite Allende demonstrate the external reproducibility of the technique of ±0.032‰ on δ106Pd. Using these techniques, we have analysed Pd stable isotopes from a range of terrestrial and extraterrestrial samples. We find that chondrites define a mean δ106Pdchondrite = -0.19 ± 0.05‰. Ureilites reveal a weak trend towards heavier δ106Pd with decreasing Pd content, similar to recent findings based on Pt stable isotopes (Creech et al., 2017), although fractionation of Pd isotopes is significantly less than for Pt, possibly related to its weaker metal-silicate partitioning behaviour and the limited field shift effect. Terrestrial mantle samples have a mean δ106Pdmantle = -0.182 ± 0.130‰, which is consistent with a late-veneer of chondritic material after core formation.
NASA Astrophysics Data System (ADS)
Sun, C.; Shanahan, T. M.; Partin, J. W.
2017-12-01
The processes that control the isotopic composition of precipitation in the mid-latitudes are understudied compared to the high and low latitudes, but are critical for interpreting paleo records using isotope proxies. To better understand these processes, we investigated changes of isotopic composition of rainwater in Central Texas using 20 months of event-based rainwater collection. We find that in both the event-based data and the monthly data from the Waco GNIP station, the dominant control on the isotopic composition of precipitation is the proportion that is derived from convective systems. This finding is consistent with previously reported data largely from tropical localities (Aggarwal et al., 2016), where large organized convective systems lead to high rainfall amounts and isotopically depleted precipitation. Although there are seasonal differences in the dominant rainfall types over the South Central US, with winter precipitation almost entirely stratiform, seasonality plays very little role in the net isotopic composition of precipitation because the total contribution during winter is small compared with spring, summer and fall. We also find that changes of source have little effect on the isotopic composition of rainfall, as the majority of the moisture is derived from the Gulf of Mexico with little influence of reevaporation or mixing. The majority of the warm season precipitation in the South Central US occurs in association with mesoscale convective systems (MCSs) and the development of these systems plays a critical role in the overall isotopic signature of precipitation. MCSs are characterized by a combination of intense, organized convection at their leading edges and trailing stratiform precipitation. Larger MCSs tend to contain higher proportions of stratiform rainfall and as a result, have isotopically depleted values. Proxy records from this region displaying more negative isotope values in the past should therefore be interpreted with caution as they could reflect either increases in cool versus warm season precipitation or changes in the intensity of warm season MCSs.
Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, K; Kita, N; Mendybaev, R
2009-06-18
Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquidsmore » (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.« less
Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates
NASA Technical Reports Server (NTRS)
Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.
2004-01-01
Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.
NASA Astrophysics Data System (ADS)
Leuzinger, L.; Kocsis, L.; Billon-Bruyat, J.-P.; Spezzaferri, S.; Vennemann, T.
2015-12-01
Chondrichthyan teeth (sharks, rays, and chimaeras) are mineralized in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are generally consistent with marine conditions, unusually low δ18Op values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the hybodont shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).
NASA Astrophysics Data System (ADS)
Leuzinger, L.; Kocsis, L.; Billon-Bruyat, J.-P.; Spezzaferri, S.; Vennemann, T.
2015-08-01
Chondrichthyan teeth (sharks, rays and chimaeras) are mineralised in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are consistent with marine conditions, unusually low δ18Op values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered as a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the primitive shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).
SULFUR ISOTOPIC COMPOSITIONS OF SUBMICROMETER SiC GRAINS FROM THE MURCHISON METEORITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yuchen; Zinner, Ernst; Gallino, Roberto
2015-02-01
We report C, Si, N, S, Mg-Al, and Ca-Ti isotopic compositions of presolar silicon carbide (SiC) grains from the SiC-rich KJE size fraction (0.5-0.8 μm) of the Murchison meteorite. One thousand one hundred thirteen SiC grains were identified based on their C and Si isotopic ratios. Mainstream, AB, C, X, Y, and Z subtypes of SiC, and X-type silicon nitride (Si{sub 3}N{sub 4}) account for 81.4%, 5.7%, 0.1%, 1.5%, 5.8%, 4.9%, and 0.4%, respectively. Twenty-five grains with unusual Si isotopic ratios, including one C grain, 16 X grains, 1 Y grain, 5 Z grains, and 2 X-type Si{sub 3}N{sub 4} grainsmore » were selected for N, S, Mg-Al, and Ca-Ti isotopic analysis. The C grain is highly enriched in {sup 29}Si and {sup 30}Si (δ{sup 29}Si = 1345‰ ± 19‰, δ{sup 30}Si = 1272‰ ± 19‰). It has a huge {sup 32}S excess, larger than any seen before, and larger than that predicted for the Si/S supernova (SN) zone, providing evidence against the elemental fractionation model by Hoppe et al. Two SN models investigated here present a more satisfying explanation in terms of a radiogenic origin of {sup 32}S from the decay of short-lived {sup 32}Si (τ{sub 1/2} = 153 yr). Silicon-32 as well as {sup 29}Si and {sup 30}Si can be produced in SNe by short neutron bursts; evidence for initial {sup 44}Ti (τ{sub 1/2} = 60 yr) in the C grain is additional evidence for an SN origin. The X grains have marginal {sup 32}S excesses, much smaller than expected from their large {sup 28}Si excesses. Similarly, the Y and Z grains do not show the S-isotopic anomalies expected from their large Si isotopic anomalies. Low intrinsic S contents and contamination with isotopically normal S are the most likely explanations.« less
The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes
NASA Astrophysics Data System (ADS)
Wang, Kun; Jacobsen, Stein B.; Sedaghatpour, Fatemeh; Chen, Heng; Korotev, Randy L.
2015-11-01
Recent high-precision isotopic measurements show that the isotopic similarity of Earth and Moon is unique among all known planetary bodies in our Solar System. These observations provide fundamental constraints on the origin of Earth-Moon system, likely a catastrophic Giant Impact event. However, in contrast to the isotopic composition of many elements (e.g., O, Mg, Si, K, Ti, Cr, and W), the Fe isotopic compositions of all lunar samples are significantly different from those of the bulk silicate Earth. Such a global Fe isotopic difference between the Moon and Earth provides an important constraint on the lunar formation - such as the amount of Fe evaporation as a result of a Giant Impact origin of the Moon. Here, we show through high-precision Fe isotopic measurements of one of the oldest lunar rocks (4.51 ± 0.10 Gyr dunite 72 415), compared with Fe isotope results of other lunar samples from the Apollo program, and lunar meteorites, that the lunar dunite is enriched in light Fe isotopes, complementing the heavy Fe isotope enrichment in other lunar samples. Thus, the earliest olivine accumulation in the Lunar Magma Ocean may have been enriched in light Fe isotopes. This new observation allows the Fe isotopic composition of the bulk silicate Moon to be identical to that of the bulk silicate Earth, by balancing light Fe in the deep Moon with heavy Fe in the shallow Moon rather than the Moon having a heavier Fe isotope composition than Earth as a result of Giant Impact vaporization.
The role of stable isotopes in understanding rainfall interception processes: a review
The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interce...
Metal stable isotopes in weathering and hydrology: Chapter 10
Bullen, Thomas D.; Holland, Heinrich; Turekian, K.
2014-01-01
This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.
Coplen, T.B.; Qi, H.
2009-01-01
New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory information management system, (9) making at regular intervals a complete backup of laboratory analytical data (both of samples logged into the laboratory and of mass spectrometric analyses), being sure to store one copy of this backup offsite, and (10) participating in interlaboratory comparison exercises sponsored by the IAEA and other agencies at regular intervals. ?? Taylor & Francis.
Using Redwood Tree Ring Chronologies to Obtain the Long-View on California's Coastal Climate
NASA Astrophysics Data System (ADS)
Dawson, T. E.; Roden, J. S.; Voelker, S. L.; Johnstone, J. A.; Ambrose, A.
2014-12-01
Coast redwood (Sequoia sempervirens) occupies a long and narrow range at the land-sea interface from the southern Big Bur region to the California-Oregon boarder. Since mature trees can live in excess of 2000 years, using the interannual variability in the oxygen and carbon stable isotope composition of tree rings obtained from trees growing in different parts of the redwood range holds the potential for obtaining a long-term record of California's coastal climate, including the history of temperatures, low cloud / fog, rainfall and associated climatic drivers of their variation. We analyzed the oxygen and carbon stable isotope composition of tree ring cellulose from both tree cores and whole cross-sectional slabs and compared these data to several regional climate indicies and to published growth chronologies to obtain the long-view on California's coastal climate. Several highlights will be presented and discussed. These include: (1) redwoods faithfully record water sources they use in the oxygen stable isotope composition of their tree ring cellulose; (2) these is both strong watershed- and regional-scale coherence; (3) redwood tree ring carbon isotope composition shows its strongest correlations to tree water status, stand-scale humidity, and at the regional scale to what we term "summer precipitation" anomalies (lack of rain with presence of fog); also (4) that carbon stable isotope composition is very sensitive to within tree and stand microclimate while oxygen stable isotope composition seems to be sensitive to topographic site factors like slope position and proximity to riparian / gully habitats; (5) multivariate climatic analyses reveal that summertime drought recorded in the isotope excursions are most strongly linked to atmospheric circulation anomalies; and (6) that redwood tree rings and their isotope composition provide great potential for reconstructing high-resolution paleo-climate along the California coast.
NASA Astrophysics Data System (ADS)
Lin, Ying; Horita, Juske; Abe, Osamu
2018-02-01
Soil water dynamics within a vadose (unsaturated) zone is a key component in the hydrologic cycle, especially in arid regions. In applying the Craig-Gordon evaporation model to obtain isotopic compositions of soil water and the evaporated vapor in land-surface models (LSMs), it has been assumed that the equilibrium isotope fractionation factors between soil water and water vapor, α(2H) and α(18O), are identical to those between liquid and vapor of bulk water. Isotope effects in water condensation arise from intermolecular hydrogen bonding in the condensed phase and the appearance of hindered rotation/translation. Hydrogen bonding between water molecules and pore surface hydroxyl groups influences adsorption isotope effects. To test whether equilibrium fractionation factors between soil water and water vapor are identical to those between liquid and vapor of bulk water and to evaluate the influence of pore size and chemical composition upon adsorption isotope effects, we extended our previous experiments of a mesoporous silica (15 nm) to two other mesoporous materials, a silica (6 nm) and an alumina (5.8 nm). Our results demonstrated that α(2H) and α(18O) between adsorbed water and water vapor are 1.057 and 1.0086 for silica (6 nm) and 1.041 and 1.0063 for alumina (5.8 nm), respectively, at saturation pressure (po), which are smaller than 1.075 and 1.0089, respectively, between liquid and vapor phases of free water at 30 °C and that the differences exaggerate at low water contents. However, the profiles of α values with relative pressures (p/po) for these three materials differ due to the differences in chemical compositions and pore sizes. Empirical formula relating α(2H) and α(18O) values to the proportions of filled pores (f) are developed for potential applications to natural soils. Our results from triple oxygen isotope analyses demonstrated that the isotope fractionation does not follow a canonical law. For the silica (15 nm), fractionation exponents (17θ) are 0.5361 ± 0.0018 and 0.5389 ± 0.0016 at p/po = 0.72 and 0.77, respectively. For the silica (6 nm), 17θ values are 0.5330 ± 0.0011 at p/po = 0.65 and 0.5278 ± 0.0010 at p/po = 0.81. For the alumina (5.8 nm), 17θ value is 0.5316 ± 0.0015 at p/po = 0.78. These values are greater than or equal to that of liquid-vapor equilibrium of bulk water (0.529 ± 0.001).
The vanadium isotope compositions of subduction zone lavas
NASA Astrophysics Data System (ADS)
Tian, S.; Huang, F.
2017-12-01
Vanadium is a redox sensitive element with multiple oxidation states, and thus it has the potential to trace redox-related processes. With the advancement of analytical method for V isotopes, we are now able to recognize V isotope fractionation for igneous rocks. Subduction zones are critical zones on the Earth for the interaction between crust and mantle where undergo complex geological processes. However, V isotope data of subduction zone lavas are still rare except those reported in [1]. To investigate the V isotope variations of subduction zones and discuss the potential to apply V to trace mantle redox state. In this contribution, we report δ51V for three subduction zone lavas from Kamchatka, Lesser Antilles, and Aleutians which are characterized by well-documented magmatic evolutionary series. 47 arc lava samples have been analyzed and the δ51V data of them range from -0.91‰ to -0.53‰ (2sd = 0.10 ‰). Among these samples, primitive arc basalts with MgO > 6 wt. % have an average δ51V of -0.80 ± 0.15‰ (2sd, n = 20), broadly consistent with δ51V data of MORB [2, 3]. Within the single arc of Kamchatka, δ51V data of primitive basalts from the arc front to the back-arc is almost constant, suggesting limited influences of mantle melting and source heterogeneity on V isotopes. δ51V data of these samples show no correlation with Ba/Nb, suggesting that fluids have little impact on V isotopes. On the other hand, δ51V data of the more involved samples with MgO < 6 wt. % are negatively correlated with MgO contents, indicating that the 50V preferentially enters crystalline minerals, which produces heavier V isotope compositions of residual melts. Distinct to the observation showing 2‰ fractionation reported in [1], the magnitude of V isotope fractionation in arc lavas is much smaller (0.38‰) in this study. Future works are needed for better understanding the V isotope fractionation mechanisms of subduction zone lavas. [1]Prytulak et al., 2017, Geochem. Persp. Let. 3, 75-84. [2]Huang et al., 2016, Goldschmidt Abstracts. 1190. [3] Prytulak et al., 2013, EPSL. 365, 177-189.