Science.gov

Sample records for content isotopic composition

  1. Lead content and isotopic composition in submound and recent soils of the Volga Upland

    NASA Astrophysics Data System (ADS)

    Pampura, T. V.; Probst, A.; Ladonin, D. V.; Demkin, V. A.

    2013-11-01

    Literature data on the historical reconstructions of the atmospheric lead deposition in Europe and the isotopic composition of the ores that are potential sources of the anthropogenic lead in the atmospheric deposition in the lower Volga steppes during different time periods have been compiled. The effect of the increasing anthropogenic lead deposition recorded since the Bronze Age on the level of soil contamination has been investigated. For the first time paleosol buried under a burial mound of the Bronze Age has been used as a reference point to assess of the current contamination level. The contents and isotopic compositions of the mobile and total lead have been determined in submound paleosols of different ages and their recent remote and roadside analogues. An increase in the content and fraction of the mobile lead and a shift of its isotopic composition toward less radiogenic values (typical for lead from the recent anthropogenic sources) has been revealed when going from a Bronze-Age paleosol to a recent soil. In the Bronze-Age soil, the isotopic composition of the mobile lead is inherited from the parent rock to a greater extent than in the modern soils, where the lead is enriched with the less radiogenic component. The effect of the anthropogenic component is traced in the analysis of the mobile lead, but it is barely visible for the total lead. An exception is provided by the recent roadside soils characterized by increased contents and the significantly less radiogenic isotopic composition of the mobile and total lead.

  2. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean

    USGS Publications Warehouse

    Chan, L.-H.; Hein, J.R.

    2007-01-01

    To test the feasibility of using lithium isotopes in marine ferromanganese deposits as an indicator of paleoceanographic conditions and seawater composition, we analyzed samples from a variety of tectonic environments in the global ocean. Hydrogenetic, hydrothermal, mixed hydrogenetic–hydrothermal, and hydrogenetic–diagenetic samples were subjected to a two-step leaching and dissolution procedure to extract first the loosely bound Li and then the more tightly bound Li in the Mn oxide and Fe oxyhydroxide. Total leachable Li contents vary from 2 by coulombic force. Hence, the abundant Li in hydrothermal deposits is mainly associated with the dominant phase, MnO2. The surface of amorphous FeOOH holds a slightly positive charge and attracts little Li, as demonstrated by data for hydrothermal Fe oxyhydroxide. Loosely sorbed Li in both hydrogenetic crusts and hydrothermal deposits exhibit Li isotopic compositions that resemble that of modern seawater. We infer that the hydrothermally derived Li scavenged onto the surface of MnO2 freely exchanged with ambient seawater, thereby losing its original isotopic signature. Li in the tightly bound sites is always isotopically lighter than that in the loosely bound fraction, suggesting that the isotopic fractionation occurred during formation of chemical bonds in the oxide and oxyhydroxide structures. Sr isotopes also show evidence of re-equilibration with seawater after deposition. Because of their mobility, Li and Sr in the ferromanganese crusts do not faithfully record secular variations in the isotopic compositions of seawater. However, Li content can be a useful proxy for the hydrothermal history of ocean basins. Based on the Li concentrations of the globally distributed hydrogenetic and hydrothermal samples, we estimate a scavenging flux of Li that is insignificant compared to the hydrothermal flux and river input to the ocean.

  3. Isotopic ratio correlation for the isotopic composition analysis of plutonium in Am-Pu mixed samples having high americium content.

    PubMed

    Patra, Sabyasachi; Agarwal, Chhavi; Chaudhury, Sanhita; Newton Nathaniel, T; Gathibandhe, M; Goswami, A

    2013-08-01

    Interference of high amount of americium in the plutonium isotopic composition analysis has been studied by simulating gamma-ray spectra for Am-Pu samples over a wide composition range (5-97% (241)Am) for both power and research reactor grade plutonium. An alternate way for isotopic composition analysis has been proposed by correlating the isotopic ratios available in our old database with the experimentally obtained (241)Pu/(239)Pu isotopic ratio. The proposed method has been validated using simulated spectra of known isotopic compositions.

  4. Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms

    USGS Publications Warehouse

    Vetter, R.D.; Fry, B.

    1998-01-01

    Total sulfur (S(TOT)), elemental sulfur (S??) and sulfur-isotope compositions (??34S) of marine animals were analyzed to determine whether these chemical characteristics could help distinguish animals with a sulfur-based, thiotrophic nutrition from animals whose nutrition is based on methanotrophy or on more normal consumption of phytoplankton-derived organic matter. The presence of S??was almost entirely confined to the symbiont-containing tissues of thiotrophs, but was sometimes undetectable in thiotrophic species where sulfide availability was probably low. When S??contents were subtracted, the remaining tissue-sulfur concentrations were similar for all nutritional groups. ??34S values were typically lower for thiotrophs than for other groups, although there was overlap in methanotroph and thiotroph values at some sites. Field evidence supported the existence of small to moderate (1 to 10???)34S fractionations in the uptake of sulfides and metabolism of thiosulfate. In general, a total sulfur content of >3% dry weight, the presence of elemental sulfur, and ??34S values less than + 5??? can be used to infer a thiotrophic mode of nutrition.

  5. Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota

    USGS Publications Warehouse

    Komor, S.C.

    1997-01-01

    Boron-isotope (δ11B) values may be useful as surrogate tracers of contaminants and indicators of water mixing in agricultural settings. This paper characterizes the B contents and isotopic compositions of hog manure and selected fertilizers, and presents δ11B data for ground and surface water from two agricultural areas. Boron concentrations in dry hog manure averaged 61 mg/kg and in commercial fertilizers ranged from below detection limits in some brands of ammonium nitrate and urea to 382 mg/kg in magnesium sulfate. Values of δ11B of untreated hog manure ranged from 7.2 to 11.2o/oo and of N fertilizers were −2.0 to 0.7o/oo. In 22 groundwater samples from a sand-plain aquifer in east-central Minnesota, B concentrations averaged 0.04 mg/L and δ11B values ranged from 2.3 to 41.5o/oo. Groundwater beneath a hog feedlot and a cultivated field where hog manure was applied had B-isotope compositions consistent with the water containing hog-manure leachate. In a 775-km2 watershed with silty-loam soils in southcentral Minnesota: 18 samples of subsurface drainage from corn (Zea mays L.) and soybean (Glycine max L. Merr.) fields had average B concentrations of 0.06 mg/L and δ11B values of 5.3 to 15.1o/oo; 27 stream samples had average B concentrations of 0.05 mg/L and δ11B values of 1.0 to 19.0o/oo; and eight groundwater samples had average B concentrations of 0.09 mg/L and δ11B values of −0.3 to 23.0o/oo. Values of δ11B and B concentrations, when plotted against one another, define a curved mixing trend that suggests subsurface drainage and stream water contain mixtures of B from shallow and deep groundwater.

  6. Variability in magnesium, carbon and oxygen isotope compositions, and trace element contents of brachiopod shells: implications for paleoceanographic studies

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, Claire; Saulnier, Ségolène; Vigier, Nathalie; Schumacher, Aimryc; Chaussidon, Marc; Lécuyer, Christophe

    2016-04-01

    Magnesium content in the ocean is ≈ 1290 ppm and is one of the most abundant elements. It is involved in the carbon cycle via the dissolution and precipitation of carbonates, especially Mg-rich carbonates as dolomites. The Mg/Ca ratio of the ocean is believed to have changed through time. The causes of these variations, i.e. hydrothermal activity change or enhanced precipitation of dolomite, could be constrained using the magnesium isotope composition (δ26Mg) of carbonates. Brachiopods, as marine environmental proxies, have the advantage to occur worldwide in a depth range from intertidal to abyssal, and have been found in the geological record since the Cambrian. Moreover, as their shell is in low-Mg calcite, they are quite resistant to diagenetic processes. Here we report δ26Mg, δ18O, δ13C values along with trace element contents of one modern brachiopod specimen (Terebratalia transversa) and one fossil specimen (Terebratula scillae, 2.3 Ma). We combined δ26Mg values with oxygen and carbon isotope compositions and trace element contents to look for possible shell geochemical heterogeneities in order to investigate the processes that control the Mg isotope composition of brachiopod shells. We also evaluate the potential of brachiopods as a proxy of past seawater δ26Mg values. The two investigated brachiopod shells present the same range of δ26Mg variation (up to 2 ‰)). This variation cannot be ascribed to changes in environmental parameters, i.e. temperature or pH. As previously observed, the primary layer of calcite shows the largest degree of oxygen and carbon isotope disequilibrium relative to seawater. In contrast, the δ26Mg value of this layer is comparable to that of the secondary calcite layer value. In both T. scillae and T. transversa, negative trends are observable between magnesium isotopic compositions and oxygen and carbon isotopic compositions. These trends, combined to linear relationships between δ26Mg values and REE contents, are best

  7. Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.

    2016-05-01

    PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.

  8. Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress.

    PubMed

    Hussain, M Iftikhar; Reigosa, Manuel J

    2014-09-15

    Rutin, a plant secondary metabolite that is used in cosmetics and food additive and has known medicinal properties, protects plants from UV-B radiation and diseases. Rutin has been suggested to have potential in weed management, but its mode of action at physiological level is unknown. Here, we report the biochemical, physiological and oxidative response of Arabidopsis thaliana to rutin at micromolar concentrations. It was found that fresh weight; leaf mineral contents (nitrogen, sodium, potassium, copper and aluminum) were decreased following 1 week exposure to rutin. Arabidopsis roots generate significant amounts of reactive oxygen species after rutin treatment, consequently increasing membrane lipid peroxidation, decreasing leaf Ca(2+), Mg(2+), Zn(2+), Fe(2+) contents and losing root viability. Carbon isotope composition in A. thaliana leaves was less negative after rutin application than the control. Carbon isotope discrimination values were decreased following rutin treatment, with the highest reduction compared to the control at 750μM rutin. Rutin also inhibited the ratio of CO2 from leaf to air (ci/ca) at all concentrations. Total protein contents in A. thaliana leaves were decreased following rutin treatment. It was concluded carbon isotope discrimination coincided with protein degradation, increase lipid peroxidation and a decrease in ci/ca values may be the primary action site of rutin. The present results suggest that rutin possesses allelopathic potential and could be used as a candidate to develop environment friendly natural herbicide.

  9. Origin of placer laurite from Borneo: Se and As contents, and S isotopic compositions

    USGS Publications Warehouse

    Hattori, K.H.; Cabri, L.J.; Johanson, B.; Zientek, M.L.

    2004-01-01

    We examined grains of the platinum-group mineral, laurite (RuS2), from the type locality, Pontyn River, Tanah Laut, Borneo, and from the Tambanio River, southeast Borneo. The grains show a variety of morphologies, including euhedral grains with conchoidal fractures and pits, and spherical grains with no crystal faces, probably because of abrasion. Inclusions are rare, but one grain contains Ca-Al amphilbole inclusions, and another contains an inclusion of chalcopyrite+bornite+pentlandite+heazlewoodite (Ni3S2) that is considered to have formed by a two-stage process of exsolution and crystallization from a once homogeneous Fe-Cu-Ni sulphide melt. All grains examined are solid solutions of Ru and Os with Ir (2.71-11.76 wt.%) and Pd (0.31-0.66 wt%). Their compositions are similar to laurite from ophiolitic rocks. The compositions show broad negative correlations between Os and Ir, between As and Ir, and between As (0.4-0.74 wt.%) and Se (140 to 240 ppm). Laurite with higher Os contains more Se and less Ir and As. The negative correlations between Se and As may be attributed to their occupancy of the S site, but the compositional variations of Os. Ir and As probably reflect the compositional variation of rocks where the crystals grew. Ratios of S/Se in laurite show a narrow spread from 1380 to 2300, which are similar to ratios for sulphides from the refractory sub-are mantle. Sulphur isotopic compositions of laurite are independent of chemical compositions and morphologies and are similar to the chondritic value of 0???. The data suggest that S in laurite has not undergone redox changes and originated from the refractory mantle. The data support the formation of laurite in the residual mantle or in a magnia generated from such a refractory mantle, followed by erosion after the obduction of the host ultramafic rocks. ?? 2004 The Mineralogical Society.

  10. [Determination of deuterium concentration in foods and influence of water with modified isotopic composition on oxidation parameters and heavy hydrogen isotopes content in experimental animals].

    PubMed

    Basov, A A; Bykov, I M; Baryshev, M G; Dzhimak, S S; Bykov, M I

    2014-01-01

    The article presents the results of the study of the deuterium (D) content in food products as well as the influence of deuterium depleted water (DDW) on the concentration of heavy hydrogen isotopes in the blood and lyophilized tissues of rats. The most significant difference in the content of D was found between potato and pork fat, which indexes the standard delta notation (δ) D in promille, related to the international standard SMOW (Standard Mean Ocean of Water) amounted to -83,2 per thousand and -250,7 per thousand, respectively (p<0,05). Among the investigated samples of water deuterium concentration ranged from -75,5 per thousand (Narzan) to +72,1 per thousand (Kubai), that indicates the ability of some food products to increase the concentration of heavy hydrogen atoms in the body. The data obtained in the experimental modeling of the diet of male Wistar rats in the age of 5-6 mo (weight 235 ± 16 g) using DDW (δD = -743,2 per thousand) instead of drinking water (δD = -37,0 per thousand) with identical mineral composition showed that after 2 weeks significant (p <0,05) formation of isotopic (deuterium-protium, D/H) gradient in the body is possible. Changing the direction of isotopic D/H gradient in laboratory animals in comparison with its physiological indicators (72-127 per thousand, "plasma>tissue") is due to different rates ofisotopic exchange reactions in plasma and tissues (liver, kidney, heart), which can be explained by entering into the composition of a modified diet of organic substrates with more than DDW concentration D, which are involved in the construction of cellular structures and eventually lead to a redistribution of D and change direction of D/H gradient "plasmaisotopic composition, aimed at reducing the level of heavy non-radioactive atoms will

  11. Water content, speciation and isotopic composition in volcanic glass: an open window on magma degassing processes or paleoclimate?

    NASA Astrophysics Data System (ADS)

    Martin, Erwan; Bindeman, Ilya; Balan, Etienne; Palandri, Jim; Seligman, Angela; Villemant, Benoit

    2016-04-01

    The content, speciation and isotopic composition of water in volcanic glass have been used for decades as recorder of magma degassing or late glass rehydration processes. Magmatic or paleoclimate information are derived depending on the primary (magmatic) or meteoric (secondary) origin of water. In this study, we attempt to discriminate residual magmatic from secondary meteoric water in volcanic glass. Using samples from different geological settings and different climatic conditions, we show that the H-isotope composition and water content measured via a TC/EA-MAT253 system in volcanic glass alone are not always sufficient to provide clear distinction between magmatic and meteoric origin. However, it is quite easy to resolve δD evolution during post-deposit rehydration by meteoric water from magma degassing when volcanic glass have a δD <-100‰ or >-50‰ and [H2O]tot >1.5-2wt.%. Water speciation inferred from near-infrared spectroscopy also provides valuable information complementary to isotopic and total water measurements. During magma degassing (typically with [H2O]tot decreasing from 6wt.% to ~0wt.% water) H2O/OH is expected to decrease from 2 to close to 0. However, our dataset shows the opposite trend with an increase of H2O/OH from 2 to ~5. We interpret it as post deposit rehydration of the volcanic glass. Overall our results show that the discrimination of the water origin is essential to discuss magma degassing processes or paleoclimatic reconstitutions. The present study of hydrous glass supports the use of H-isotopes of volcanic glass to discuss paleoclimate reconstitution in a specific region. To this purpose, the volcanic glass has to be almost fully rehydrated in order to fingerprint the isotopic composition of the rehydration water. A sharp time constrain can be obtained if the full rehydration occurs quickly after the eruption. This is most likely to occur in meters thick volcanic pyroclast deposits that undergo slow cooling rates and thus can

  12. [Study on the content and carbon isotopic composition of water dissolved inorganic carbon from rivers around Xi'an City].

    PubMed

    Guo, Wei; Li, Xiang-Zhong; Liu, Wei-Guo

    2013-04-01

    In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.

  13. Variations in the neodymium and strontium isotopic composition and REE content of molluscan shells from the Cretaceous Western Interior seaway

    SciTech Connect

    Whittaker, S.G.; Kyser, T.K. )

    1993-08-01

    Rare earth element concentrations, [epsilon][sub ND](T) values, and strontium isotopic compositions of mollusc shells were used to trace variations in the neodymium and strontium isotopic composition of the epicontinental Late Cretaceous Western Interior seaway of North America. Rare earth element patterns are different in aragonite and calcite produced by the molluscs endemic to the seaway, indicating that either mineralogical control or possibly scavenging by organic films associated with the different phases of biogenic carbonate resulted in differential partitioning of the REEs from seawater during shell formation. The biogenic carbonate also may contain REEs associated with Fe-flocs trapped in the shells during growth, but these flocs cannot result in different REE patterns of aragonite and calcite produced by the molluscs. The neodymium isotopic composition of the Western Interior seaway is inferred to have varied 13 [epsilon]-units over 20 My as a result of incursions of seawater from the Arctic Ocean and Gulf of Mexico, river influx from tectonically active terranes, benthic diagenetic fluxes, and volcanic ash falls. Ash from a variety of volcanic centers in western North America was significant in producing rapid and marked changes in [sup 143]Nd/[sup 144]Nd ratios of the seaway, and abrupt regional variations in neodymium isotopic composition of the seaway make the construction of an accurate neodymium isotope evolution curve difficult for this basin. Strontium isotopic compositions of the mollusc shells indicate the [sup 87]Sr/[sup 86]Sr ratio of the Western Interior seaway was generally similar to contemporaneous oceans, although, periodically, the basin had strontium isotopic compositions distinct from contemporaneous seawater. 58 refs., 7 figs., 3 tabs.

  14. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  15. Effect of different fertilizers on nitrogen isotope composition and nitrate content of Brassica campestris.

    PubMed

    Yuan, Yuwei; Zhao, Ming; Zhang, Zhiheng; Chen, Tianjin; Yang, Guiling; Wang, Qiang

    2012-02-15

    The effect of different fertilizers on the δ(15)N value, nitrate concentration, and nitrate reductase activity of Brassica campestris and the δ(15)N value of soil has been investigated through a pot experiment. The δ(15)N mean value of B. campestris at the seedling stage observed in the composted chicken treatment (+8.65‰) was higher than that of chemical fertilizer treatment (+5.73‰), compost-chemical fertilizer (+7.53‰), and control check treatment (+7.86‰). There were significantly different δ(15)N values (p < 0.05) between B. campestris cultivated with composted chicken manure treatment and with chemical fertilizer treatment. The similar results were also found at the middle stage and the terminal stage. The variation of δ(15)N value in soil for different treatments was smaller than that of B. campestris, which was +6.71-+8.12‰, +6.83-+8.24‰, and +6.85-8.4‰, respectively, at seedling stage, middle stage, and terminal stage. With the growth of B. campestris, the nitrate content decreased in all treatments, and the nitrate reductase activity in B. campestris increased except for the CK. Results suggested that the δ(15)N values of B. campestris and soil were more effected by the fertilizer than by the dose level, and the δ(15)N value analysis could be used as a tool to discriminate the B. campestris cultivated with composted manure or chemical fertilizer.

  16. Determination of plutonium content in high burnup pressurized water reactor fuel samples and its use for isotope correlations for isotopic composition of plutonium.

    PubMed

    Joe, Kihsoo; Jeon, Young-Shin; Han, Sun-Ho; Lee, Chang-Heon; Ha, Yeong-Keong; Song, Kyuseok

    2012-06-01

    The content of plutonium isotopes in high burnup pressurized water reactor fuel samples was examined using both alpha spectrometry and mass spectrometry after anion exchange separation. The measured values were compared with results calculated by the ORIGEN-2 code. On average, the ratios (m/c) of the measured values (m) over the calculated values (c) were 1.22±0.16 for (238)Pu, 1.02±0.14 for (239)Pu, 1.08±0.06 for (240)Pu, 1.06±0.16 for (241)Pu, and 1.13±0.08 for (242)Pu. Using the Pu data obtained in this work, correlations were derived between the alpha activity ratios of (238)Pu/((239)Pu+(240)Pu), the alpha specific activities of Pu, and the atom % abundances of the Pu isotopes. Using these correlations, the atom % abundances of the plutonium isotopes in the target samples were calculated. These calculated results agreed within a range from 2 to 8% of the experimentally derived values according to the isotopes of plutonium.

  17. Grosnaja ABCs: Magnesium isotope compositions

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.; Srinivasan, G.; Ulyanov, A. A.

    1993-01-01

    Three CAI's from the Grosnaja CV3 chondrite were analyzed for their magnesium isotopic compositions by the ion microprobe. The selected CAI's represent three distinct types: GR4(compact Type A), GR7(Type B) and GR2(Type C). Petrographic studies indicate that all three Grosnaja inclusions were subjected to secondary alterations. The Type A CAI GR4 is primarily composed of melilite with spinel and pyroxene occurring as minor phases. The rim of the inclusion does not exhibit distinct layered structure and secondary alteration products (garnet, Fe-rich olivine and Na-rich plagioclase) are present in some localized areas near the rim region. The average major element compositions of different mineral phases in GR4 are given. Preliminary REE data suggest a depletion of HREE relative to LREE by about a factor of 3 without any clear indication of interelement fractionation. The CAI GR7 has textural and minerological characteristics similar to Type B inclusions. The REE data show a pattern that is similar to Group 6 with enrichment in Eu and Yb. In addition, a depletion of HREE compared to LREE is also evident in this object. Melilite composition shows a broad range of akermanite content (Ak(sub 15-55)). Detailed petrographic study is in progress. GR2 is a anorthite-rich Type C inclusion with large plagioclase laths intergrown with Ti-rich pyroxene. The average plagioclase composition is close to pure anorthite (An99).

  18. Calcium isotopic composition of mantle peridotites

    NASA Astrophysics Data System (ADS)

    Huang, F.; Kang, J.; Zhang, Z.

    2015-12-01

    Ca isotopes are useful to decipher mantle evolution and the genetic relationship between the Earth and chondrites. It has been observed that Ca isotopes can be fractionated at high temperature [1-2]. However, Ca isotopic composition of the mantle peridotites and fractionation mechanism are still poorly constrained. Here, we report Ca isotope composition of 12 co-existing pyroxene pairs in 10 lherzolites, 1 harzburgite, and 1 wehrlite xenoliths collected from Hainan Island (South Eastern China). Ca isotope data were measured on a Triton-TIMS using the double spike method at the Guangzhou Institute of Geochemistry, CAS. The long-term external error is 0.12‰ (2SD) based on repeated analyses of NIST SRM 915a and geostandards. δ44Ca of clinopyroxenes except that from the wehrlite ranges from 0.85‰ to 1.14‰, while opx yields a wide range from 0.98‰ up to 2.16‰. Co-existing pyroxene pairs show large ∆44Caopx-cpx (defined as δ44Caopx-δ44Cacpx) ranging from 0 to 1.23‰, reflecting equilibrium fractionation controlled by variable Ca contents in the opx. Notably, clinopyroxene of wehrlite shows extremely high δ44Ca (3.22‰). δ44Ca of the bulk lherzolites and harzburgites range from 0.86‰ to 1.14‰. This can be explained by extracting melts with slightly light Ca isotopic compositions. Finally, the high δ44Ca of the wehrlite (3.22‰) may reflect metasomatism by melt which has preferentially lost light Ca isotopes due to chemical diffusion during upwelling through the melt channel. [1] Amini et al (2009) GGR 33; [2] Huang et al (2010) EPSL 292.

  19. Sulfur isotopic composition of cenozoic seawater sulfate

    PubMed

    Paytan; Kastner; Campbell; Thiemens

    1998-11-20

    A continuous seawater sulfate sulfur isotope curve for the Cenozoic with a resolution of approximately 1 million years was generated using marine barite. The sulfur isotopic composition decreased from 19 to 17 per mil between 65 and 55 million years ago, increased abruptly from 17 to 22 per mil between 55 and 45 million years ago, remained nearly constant from 35 to approximately 2 million years ago, and has decreased by 0.8 per mil during the past 2 million years. A comparison between seawater sulfate and marine carbonate carbon isotope records reveals no clear systematic coupling between the sulfur and carbon cycles over one to several millions of years, indicating that changes in the burial rate of pyrite sulfur and organic carbon did not singularly control the atmospheric oxygen content over short time intervals in the Cenozoic. This finding has implications for the modeling of controls on atmospheric oxygen concentration.

  20. Carbonate abundances and isotopic compositions in chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'd.; Bowden, R.; Fogel, M. L.; Howard, K. T.

    2015-04-01

    We report the bulk C abundances, and C and O isotopic compositions of carbonates in 64 CM chondrites, 14 CR chondrites, 2 CI chondrites, LEW 85332 (C2), Kaba (CV3), and Semarkona (LL3.0). For the unheated CMs, the total ranges of carbonate isotopic compositions are δ13C ≈ 25-75‰ and δ18O ≈ 15-35‰, and bulk carbonate C contents range from 0.03 to 0.60 wt%. There is no simple correlation between carbonate abundance and isotopic composition, or between either of these parameters and the extent of alteration. Unless accretion was very heterogeneous, the uncorrelated variations in extent of alteration and carbonate abundance suggests that there was a period of open system behavior in the CM parent body, probably prior to or at the start of aqueous alteration. Most of the ranges in CM carbonate isotopic compositions can be explained by their formation at different temperatures (0-130 °C) from a single fluid in which the carbonate O isotopes were controlled by equilibrium with water (δ18O ≈ 5‰) and the C isotopes were controlled by equilibrium with CO and/or CH4 (δ13C ≈ -33‰ or -20‰ for CO- or CH4-dominated systems, respectively). However, carbonate formation would have to have been inefficient, otherwise carbonate compositions would have resembled those of the starting fluid. A quite similar fluid composition (δ18O ≈ -5.5‰, and δ13C ≈ -31‰ or -17‰ for CO- or CH4-dominated systems, respectively) can explain the carbonate compositions of the CIs, although the formation temperatures would have been lower (~10-40 °C) and the relative abundances of calcite and dolomite may play a more important role in determining bulk carbonate compositions than in the CMs. The CR carbonates exhibit a similar range of O isotopes, but an almost bimodal distribution of C isotopes between more (δ13C ≈ 65-80‰) and less altered samples (δ13C ≈ 30-40‰). This bimodality can still be explained by precipitation from fluids with the same isotopic

  1. A Methodology for Absolute Isotope Composition Measurement

    NASA Astrophysics Data System (ADS)

    Shen, J. J.; Lee, D.; Liang, W.

    2007-12-01

    Double spike technique was a well defined method for isotope composition measurement by TIMS of samples which have natural mass fractionation effect, but it is still a problem to define the isotope composition for double spike itself. In this study, we modified the old double spike technique and found that we could use the modified technique to solve the ¡§true¡¨ isotope composition of double spike itself. According the true isotope composition of double spike, we can measure the absolute isotope composition if the sample has natural fractionation effect. A new vector analytical method has been developed in order to obtain the true isotopic composition of a 42Ca-48Ca double spike, and this is achieved by using two different sample-spike mixtures combined with the double spike and the natural Ca data. Because the natural sample, the two mixtures, and the spike should all lie on a single mixing line, we are able to constrain the true isotopic composition of our double spike using this new approach. This method not only can be used in Ca system but also in Ti, Cr, Fe, Ni, Zn, Mo, Ba and Pb systems. The absolute double spike isotopic ratio is important, which can save a lot of time to check different reference standards. Especially for Pb, radiogenic isotope system, the decay systems embodied in three of four naturally occurring isotopes induce difficult to obtain true isotopic ratios for absolute dating.

  2. Zinc isotopic compositions of breast cancer tissue.

    PubMed

    Larner, Fiona; Woodley, Laura N; Shousha, Sami; Moyes, Ashley; Humphreys-Williams, Emma; Strekopytov, Stanislav; Halliday, Alex N; Rehkämper, Mark; Coombes, R Charles

    2015-01-01

    An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.

  3. Isotopic compositions of the elements, 2001

    USGS Publications Warehouse

    Böhlke, J.K.; De Laeter, J. R.; De Bievre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.

    2005-01-01

    The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the "best measurement" of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element A r(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001. ?? 2005 American Institute of Physics.

  4. Determination of plutonium isotopic composition by gamma-ray spectroscopy

    SciTech Connect

    Sampson, T.E.; Hsue, S.T.; Parker, J.L.; Johnson, S.S.; Bowersox, D.F.

    1981-01-01

    We discuss the general approach, computerized data analysis methods, and results of measurements used to determine the isotopic composition of plutonium by gamma-ray spectroscopy. The simple techniques are designed to be applicable to samples of arbitrary size, geometry, age, chemical, and isotopic composition. The combination of the gamma spectroscopic measurement of isotopic composition coupled with calorimetric measurement of total sample power is shown to give a totally nondestructive determination of sample plutonium mass with a precision of 0.6% for 1000-g samples of PuO/sub 2/ with 12% /sup 240/Pu content. The precision of isotopic measurements depends upon many factors, including sample size, sample geometry, and isotopic content. Typical ranges are found to be /sup 238/Pu, 1 to 10%; /sup 239/Pu, 0.1 to 0.5%; /sup 240/Pu, 2 to 5%; /sup 241/Pu, 0.3 to 0.7%; /sup 242/Pu (determined by isotopic correlation); and /sup 241/Am, 0.2 to 10%.

  5. Determination of total content and isotopic compositions of plutonium and uranium in environmental samples for safeguards purposes by ICP-QMS.

    PubMed

    Godoy, Maria Luiza Duarte Pinto; Godoy, José Marcus; Roldão, Luiz Alfredo; Tauhata, Luiz

    2009-08-01

    The aim of this work was to determine the concentrations and isotopic compositions of plutonium and uranium in environmental samples for safeguards purposes. An analytical method was developed with a plutonium and uranium separation procedure based on extraction chromatography (using 2mL TEVA and UTEVA columns) and detection with a quadrupole ICP-MS applying an ultra-sonic nebulizer coupled with a membrane desolvation system. Starting from blank swipes, the background equivalent concentration (BEC) was 8fg for (239)Pu and 1ng (238)U. The method was successfully applied to certified reference materials as well as to round robin samples obtained in the framework of the inter-laboratory exercise program, promoted by the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), together with the US Department of Energy (USDOE). After the introduction of an additional ion-exchange separation step, the methodology was applied to the IAEA-384 sediment reference sample with precise and accurate total plutonium and uranium, (240)Pu/(239)Pu, (241)Pu/(239)Pu, (234)U/(238)U and (235)U/(238)U atomic ratio results. PMID:19500890

  6. Content of lithium, beryllium, boron, and titanium, and the isotopic composition of lithium, boron, and magnesium in Luna 16 regolith sample

    NASA Technical Reports Server (NTRS)

    Eugster, O.

    1974-01-01

    The abundance of the following elements in the L 16-19 No. 118 regolith sample, zone V was determined by isotopic dilution using a mass spectrometer equipped with a scattering ion source: Li -- 9.8, Be -- 1.2, Be -- 2.6, and Ti -- 1.92 percent. For comparison, these same elements were measured in samples of surface material returned by Apollo 11, Apollo 12, and Apollo 14, and in the terrestrial reference standard diabase W-1. The content of Li, Be, and B in the Luna 16 sample is nearly the same as in the Apollo 11 surface material. The surface material returned by Apollo 12 and Apollo 14 contains two to four times more of these elements. However, the abundance ratios of Li, Be, and B are remarkably similar in the surface materials from the four different lunar regions. With respect to basaltic achondrites and especially with respect to chondrites, the lunar basalts are enriched in Li, Be, and B up to 100 times.

  7. Isotopic Compositions of Evaporative Fluxes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Dade, W. B.; Virginia, R. A.; Posmentier, E. S.

    2013-12-01

    The isotopic fluxes of evaporation from a water surface are typically computed using a one-dimensional model, originally conceptualized by Craig and Gordon (1965) and further developed and adapted to different natural settings (such as transpiration, open surface evaporation, etc.) by various investigators. These models have two distinguishing characteristics. First, there exists a laminar layer where molecular diffusion away from the water-air interface causes kinetic isotopic fractionation. The magnitude of this fractionation is controlled by the diffusion/transport coefficient of each vapor isotopologue in air and their concentration gradients, the latter being controlled by relative humidity, isotopic ratios of ambient air, and turbulent conditions (such as wind and surface roughness). Second, the horizontal variations are ignored. In particular, the effect of horizontal advection on isotopic variations in the ambient air is not considered. The research reported here addresses the effects of relinquishing the simplifying assumptions in both of these areas. We developed a model, in which the simplification of a purely laminar layer is dropped. Instead, we express the vertical transport coefficient as the sum of the molecular diffusivity, that differs for each water isotopologue, and the turbulent diffusivity that increases linearly with height but does not vary among water isotopologues. With this model, the kinetic isotopic effect reduces with height in the vicinity of the water surface, and the net isotopic fractionation through the boundary layer can be integrated. The advantage of this conceptualization is that the magnitude of kinetic isotopic fractionation can be assessed directly with changing environmental conditions, such as humidity and wind speed, rather than approximated by discontinuous empirical functions of the environmental conditions, as in the conventional models mentioned above. To address the effect of lateral heterogeneity, we expanded the

  8. Nucleosynthesis and the Isotopic Composition of Stardust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. M.

    1997-01-01

    Various components have been isolated from carbonaceous meteorites with an isotopically anomalous elemental composition. Several of these are generally thought to represent stardust containing a nucleosynthetic record of their birthsites. This paper discusses the expected isotopic composition of stardust based upon astronomical observations and theoretical studies of their birthsites: red giants and supergiants, planetary nebulae, C-rich Wolf-Rayet stars, novae and supernovae. Analyzing the stardust budget, it is concluded that about 15% of the elements will be locked up in stardust components in the interstellar medium. This stardust will be isotopically heterogenous on an individual grain basis by factors ranging from 2 to several orders of magnitude. Since comets may have preserved a relatively unprocessed record of the stardust entering the solar nebula, isotopic studies of returned comet samples may provide valuable information on the nucleosynthetic processes taking place in the interiors of stars and the elemental evolution of the Milky Way.

  9. Copper isotopic composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Huang, Jian; Liu, Jingao; Wörner, Gerhard; Yang, Wei; Tang, Yan-Jie; Chen, Yi; Tang, Limei; Zheng, Jianping; Li, Shuguang

    2015-10-01

    Copper isotopes have been successfully applied to many fields in geochemistry, and in particular, as a strongly chalcophile element, the isotope systematics of Cu can be potentially applied as a proxy for crust-mantle and core-mantle differentiation processes. However, to date, the Cu isotopic composition of distinct silicate reservoirs in the Earth, as well as the behaviour of Cu isotopes during igneous processes and slab dehydration are not well constrained. To address these issues, here we report high-precision (±0.05‰; 2SD) Cu isotope data for 132 terrestrial samples including 28 cratonic peridotites, 19 orogenic peridotites, 70 basalts (MORBs, OIBs, arc basalts and continental basalts) and 15 subduction-related andesites/dacites sourced worldwide. The peridotites are classified into metasomatized and non-metasomatized groups, based upon their rare earth element (REE) patterns and the presence or lack of minerals diagnostic of metasomatism (e.g., phlogopite). The metasomatized peridotites span a wide range of δ65Cu values from -0.64 to +1.82‰, in sharp contrast to the non-metasomatized peridotites that exhibit a narrow range of δ65Cu from -0.15 to +0.18‰ with an average of + 0.03 ± 0.24 ‰ (2SD). Comparison between these two groups of peridotites demonstrates that metasomatism significantly fractionates Cu isotopes with sulfide breakdown and precipitation potentially shifting Cu isotopes towards light and heavy values, respectively. MORBs and OIBs have homogeneous Cu isotopic compositions (+ 0.09 ± 0.13 ‰; 2SD), which are indistinguishable from those of the non-metasomatized peridotites within uncertainty. This suggests that Cu isotope fractionation during mantle partial melting is limited, even if sulfides are a residual phase. Compared with MORBs and OIBs, arc and continental basalts are more heterogeneous in Cu isotopic composition. In particular, basalts that were collected from a traverse across the Kamchatka arc over a distance of 200 to 400

  10. An Ordinary Chondrite Impactor Composition for the Bosumtwi Impact Structure, Ghana, West Africa: Discussion of Siderophile Element Contents and Os and Cr Isotope Data

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Shukolyukov, Alex; Lugmair, Guenter

    2004-01-01

    Osmium isotope data had shown that Ivory Coast tektites contain an extraterrestrial component, but do not allow distinction between chondritic and iron meteorite contamination. PGE abundances of Ivory Coast tektites and impactites and target rocks from the Bosumtwi crater, the source crater of the Ivory Coast tektites, were all relatively high and did not allow to resolve the presence, or identify the nature, of the meteoritic component. However, Cr isotope analyses of an Ivory Coast tektite yielded a distinct 53Cr excess of 0.30+/-0.06, which indicates that the Bosumtwi impactor was an ordinary chondrite.

  11. Isotopic composition of Silurian seawater

    SciTech Connect

    Knauth, L.P.; Kealy, S.; Larimer, S.

    1985-01-01

    Direct isotopic analyses of 21 samples of the Silurian hydrosphere preserved as fluid inclusions in Silurian halite deposits in the Michigan Basin Salina Group yield delta/sup 18/O, deltaD ranging from 0.2 to +5.9 and -26 to -73, respectively. delta/sup 18/O has the same range as observed for modern halite facies evaporite waters and is a few per thousand higher than 100 analyses of fluid inclusions in Permian halite. deltaD is about 20 to 30 per thousand lower than modern and Permian examples. The trajectory of evaporating seawater on a deltaD-delta/sup 18/O diagram initially has a positive slope of 3-6, but hooks strongly downward to negative values, the shape of the hook depending upon humidity. Halite begins to precipitate at delta values similar to those observed for the most /sup 18/O rich fluid inclusions. Subsequent evaporation yields progressively more negative delta values as observed for the fluid inclusions. The fluid inclusion data can be readily explained in terms of evaporating seawater and are consistent with the degree of evaporation deduced from measured bromide profiles. These data are strongly inconsistent with arguments that Silurian seawater was 5.5 per thousand depleted in /sup 18/O. delta/sup 18/O for evaporite waters is systematically related to that of seawater, and does not show a -5.5 per thousand shift in the Silurian, even allowing for variables which affect the isotope evaporation trajectory. The lower deltaD may indicate a component of gypsum dehydration waters or may suggest a D-depleted Silurian hydrosphere.

  12. The isotopic composition of cosmic ray chlorine

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1985-01-01

    The isotopic composition of galactic cosmic ray chlorine (approx. = 225 MeV/amu) has been studied using the high energy cosmic ray experiment on the International Sun Earth Explorer 3 (ISEE-3) spacecraft. The abundances of 35C1 and 37C1 are found to be consistent with the secondary production expected from a propagation model developed to account for both light and subiron secondaries. An upper limit on the abundance of the radioactive isotope 36C1 (halflife approx. = 0.3 Myr) is used to set a lower limit on the confinement time of cosmic rays of approximately 1 Myr.

  13. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    NASA Astrophysics Data System (ADS)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    We report the first accurate and precise data for mass-dependent fractionation of tungsten (W) stable isotopes, using a double spike technique and MC-ICPMS. Results are expressed relative to the NIST 3136 W isotope standard as per mil deviations in 186W/184W (δ186W). Although heavy element mass-dependent fractionations are expected to be small, Tl and U both display significant low temperature isotopic fractionations. Theoretical calculations indicate that W nuclear volume isotopic effects should be smaller than mass-dependent fractionations at low temperatures. Hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from seawater and have been used as paleoceanographic recorders of temporal changes in seawater chemistry. Crusts are strongly enriched in W and other metals, and are a promising medium for exploring W isotopic variability. Tungsten has a relatively long residence time in seawater of ~61,000 years, mainly as the tungstate ion (WO42-). Water depth profiles show conservative behaviour. During adsorption on Fe-Mn crusts, W species form inner-sphere complexes in the hexavalent (W6+) state. The major host phase is thought to be Mn oxides and the lighter W isotope is expected to be absorbed preferentially. Surface scrapings of 13 globally distributed hydrogenetic Fe-Mn crusts display δ186W from -0.08 to -0.22‰ (±0.03‰, 2sd). A trend toward lighter W isotope composition exists with increasing water depth (~1500 to ~5200m) and W concentration. One hydrothermal Mn-oxide sample is anomalously light and Mn nodules are both heavy and light relative to Fe-Mn crusts. Tungsten speciation depends on concentration, pH, and time in solution and is not well understood because of the extremely slow kinetics of the reactions. In addition, speciation of aqueous and/or adsorbed species might be sensitive to pressure, showing similar thermodynamic stability but different effective volumes. Thus, W stable isotopes might be used as a water-depth barometer in

  14. ISOTOPIC COMPOSITIONS OF URANIUM REFERENCE MATERIALS

    SciTech Connect

    Jacobsen, B; Borg, L; Williams, R; Brennecka, G; Hutcheon, I

    2009-09-03

    Uranium isotopic compositions of a variety of U standard materials were measured at Lawrence Livermore National Laboratory and are reported here. Both thermal ionization mass spectrometry (TIMS) and multi-collector inductively couple plasma mass spectrometry (MC-ICPMS) were used to determine ratios of the naturally occurring isotopes of U. Establishing an internally coherent set of isotopic values for a range of U standards is essential for inter-laboratory comparison of small differences in {sup 238}U/{sup 235}U, as well as the minor isotopes of U. Differences of {approx} 1.3{per_thousand} are now being observed in {sup 238}U/{sup 235}U in natural samples, and may play an important role in understanding U geochemistry where tracing the origin of U is aided by U isotopic compositions. The {sup 238}U/{sup 235}U ratios were measured with a TRITON TIMS using a mixed {sup 233}U-{sup 236}U isotopic tracer to correct for instrument fractionation. this tracer was extremely pure and resulted in only very minor corrections on the measured {sup 238}U/{sup 235}U ratios of {approx} 0.03. The values obtained for {sup 238}U/{sup 235}U are: IRMM184 = 137.698 {+-} 0.020 (n = 15), SRM950a = 137.870 {+-} 0.018 (n = 8), and CRM112a = 137.866 {+-} 0.030 (n = 16). Uncertainties represent 2 s.d. of the population. The measured value for IRMM184 is in near-perfect agreement with the certified value of 137.697 {+-} 0.042. However, the U isotopic compositions of SRM950a and CRM112a are not certified. Minor isotopes of U were determined with a Nu Plasma HR MC-ICPMS and mass bias was corrected by sample/standard bracketing to IRMM184, using its certified {sup 238}U/{sup 235}U ratio. Thus, the isotopic compositions determined using both instruments are compatible. The values obtained for {sup 234}U/{sup 235}U are: SRM950a = (7.437 {+-} 0.043) x 10{sup -3} (n = 18), and CRM112a = (7.281 {+-} 0.050) x 10{sup -3} (n = 16), both of which are in good agreement with published values. The value for

  15. Isotopic Composition of Oxygen in Lunar Zircons

    NASA Technical Reports Server (NTRS)

    Nemchin, A. A.; Whitehouse, M. J.; Pidgeon, R. T.; Meyer, C.

    2005-01-01

    The recent discovery of heavy oxygen in zircons from the Jack Hills conglomerates Wilde et al. and Mojzsis et al. was interpreted as an indication of presence of liquid water on the surface of Early Earth. The distribution of ages of Jack Hills zircons and lunar zircons appears to be very similar and therefore analysis of oxygen in the lunar grains may provide a reference frame for further study of the early history of the Earth as well as give additional information regarding processes that operated on the Moon. In the present study we have analysed the oxygen isotopic composition of zircon grains from three lunar samples using the Swedish Museum of Natural History CAMECA 1270 ion microprobe. The samples were selected as likely tests for variations in lunar oxygen isotopic composition. Additional information is included in the original extended abstract.

  16. Tracing anthropogenic thallium in soil using stable isotope compositions.

    PubMed

    Kersten, Michael; Xiao, Tangfu; Kreissig, Katharina; Brett, Alex; Coles, Barry J; Rehkämper, Mark

    2014-08-19

    Thallium stable isotope data are used in this study, for the first time, to apportion Tl contamination in soils. In the late 1970s, a cement plant near Lengerich, Germany, emitted cement kiln dust (CKD) with high Tl contents, due to cocombustion of Tl-enriched pyrite roasting waste. Locally contaminated soil profiles were obtained down to 1 m depth and the samples are in accord with a binary mixing relationship in a diagram of Tl isotope compositions (expressed as ε(205)Tl, the deviation of the (205)Tl/(203)Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 10(4)) versus 1/[Tl]. The inferred mixing endmembers are the geogenic background, as defined by isotopically light soils at depth (ε(205)Tl ≈ -4), and the Tl emissions, which produce Tl-enriched topsoils with ε(205)Tl as high as ±0. The latter interpretation is supported by analyses of the CKD, which is also characterized by ε(205)Tl ≈ ± 0, and the same ε(205)Tl value was found for a pyrite from the deposit that produced the cocombusted pyrite roasting waste. Additional measurements for samples from a locality in China, with outcrops of Tl sulfide mineralization and associated high natural Tl backgrounds, reveal significant isotope fractionation between soils (ε(205)Tl ≈ +0.4) and locally grown green cabbage (ε(205)Tl between -2.5 and -5.4). This demonstrates that biological isotope fractionation cannot explain the isotopically heavy Tl in the Lengerich topsoils and the latter are therefore clearly due to anthropogenic Tl emissions from cement processing. Our results thus establish that isotopic data can reinforce receptor modeling for the toxic trace metal Tl. PMID:25055714

  17. Tracing anthropogenic thallium in soil using stable isotope compositions.

    PubMed

    Kersten, Michael; Xiao, Tangfu; Kreissig, Katharina; Brett, Alex; Coles, Barry J; Rehkämper, Mark

    2014-08-19

    Thallium stable isotope data are used in this study, for the first time, to apportion Tl contamination in soils. In the late 1970s, a cement plant near Lengerich, Germany, emitted cement kiln dust (CKD) with high Tl contents, due to cocombustion of Tl-enriched pyrite roasting waste. Locally contaminated soil profiles were obtained down to 1 m depth and the samples are in accord with a binary mixing relationship in a diagram of Tl isotope compositions (expressed as ε(205)Tl, the deviation of the (205)Tl/(203)Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 10(4)) versus 1/[Tl]. The inferred mixing endmembers are the geogenic background, as defined by isotopically light soils at depth (ε(205)Tl ≈ -4), and the Tl emissions, which produce Tl-enriched topsoils with ε(205)Tl as high as ±0. The latter interpretation is supported by analyses of the CKD, which is also characterized by ε(205)Tl ≈ ± 0, and the same ε(205)Tl value was found for a pyrite from the deposit that produced the cocombusted pyrite roasting waste. Additional measurements for samples from a locality in China, with outcrops of Tl sulfide mineralization and associated high natural Tl backgrounds, reveal significant isotope fractionation between soils (ε(205)Tl ≈ +0.4) and locally grown green cabbage (ε(205)Tl between -2.5 and -5.4). This demonstrates that biological isotope fractionation cannot explain the isotopically heavy Tl in the Lengerich topsoils and the latter are therefore clearly due to anthropogenic Tl emissions from cement processing. Our results thus establish that isotopic data can reinforce receptor modeling for the toxic trace metal Tl.

  18. The isotopic composition of cosmic ray calcium

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1985-01-01

    Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.

  19. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  20. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    SciTech Connect

    Pizzarello, Sandra

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  1. Iron Isotope Compositions of Achondritic Meteorites from Distinct Parent Bodies

    NASA Astrophysics Data System (ADS)

    Dybal, E. M. K.; Wadhwa, M.; Romaniello, S.; Hines, R.

    2016-08-01

    We report the Fe isotope compositions of primitive and differentiated achondrites. The goal was to study a variety of achondrites that formed on distinct planetesimals to gain insights into the effects of differentiation on Fe isotope fractionation.

  2. Sedimentary organic matter in two Spitsbergen fjords: Terrestrial and marine contributions based on carbon and nitrogen contents and stable isotopes composition

    NASA Astrophysics Data System (ADS)

    Koziorowska, Katarzyna; Kuliński, Karol; Pempkowiak, Janusz

    2016-02-01

    The aim of this study was to estimate the spatial variability of organic carbon (Corg) and total nitrogen (Ntot) concentrations, Corg/Ntot ratios, stable isotopes of carbon and nitrogen (δ13Corg, δ15Ntot) and the proportions of autochthonous and allochtonous organic matter within recently deposited sediments of two Spitsbergen fjords: the Hornsund and the Adventfjord, which are affected to a different degree by the West Spitsbergen Current. Corg concentrations ranged from 1.38% to 1.98% in the Hornsund and from 1.73% to 3.85% in the Adventfjord. In both fjords the highest Corg concentrations were measured at the innermost stations and they decreased towards the mouths of the fjords. This suggests fresh water runoff to be an important source of organic matter (OM) for surface sediments. The results showed that both fjords differ significantly in terms of sedimentary organic matter characteristics. The samples from the Hornsund, except those from the innermost station in the Brepollen, had relatively low Corg/Ntot ratios, all within a narrow range (from 9.7 to 11.3). On the other hand significantly higher Corg/Ntot ratios, varying within a broad range (from 14.6 to 33.0), were measured in the Adventfjord. The samples from the Hornsund were characterized by higher δ13Corg (from -24.90‰ to -23.87‰) and δ15Ntot (from 3.02‰ to 4.93‰) than those from the Adventfjord (-25.94‰ to -24.69‰ and from 0.71‰ to 4.00‰, respectively). This is attributed to a larger proportion of marine organic matter. Using the two end-member approach proportions of terrestrial organic matter were evaluated. Terrestrial OM contribution for the Adventfjord was in the range of 82-83%, while in case of the Hornsund the results were in the range of 69-75%, with the exception of the innermost part of the fjord, where terrestrial organic matter contribution ranged from 80 to 82%. The strong positive correlation between δ13Corg and δ15Ntot was revealed. This was taken as an indicator

  3. The Li isotopic composition of Oldoinyo Lengai: Nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis

    NASA Astrophysics Data System (ADS)

    Halama, Ralf; McDonough, William F.; Rudnick, Roberta L.; Keller, Jörg; Klaudius, Jurgis

    2007-02-01

    Lithium concentrations and Li isotope compositions are reported for natrocarbonatites and silicate lavas from Oldoinyo Lengai, Tanzania. Natrocarbonatites are characterized by very high Li contents (211-294 ppm) and a narrow range of δ7Li values between + 3.3 and + 5.1. These Li isotope compositions overlap with those reported for MORB and OIB and suggest that the natrocarbonatites reflect the Li isotopic composition of their mantle source. Co-genetic silicate lavas, covering a wide compositional spectrum, show no obvious isotopic fractionation as a function of igneous differentiation or liquid immiscibility. Primitive olivine melilitites (Mg# = 58-70), considered to be parental magmas, contain 14-23 ppm Li and have δ7Li values of + 2.4 to + 4.4. A highly differentiated, peralkaline nephelinite (Mg# = 12), likely to be related to the natrocarbonatites by liquid immiscibility, has about twice as much Li as the melilitite (57 ppm), but a similar isotopic composition (δ7Li = + 3). In contrast, a phonolite with 15 ppm Li has a lighter Li isotope composition (δ7Li = - 0.4), which may reflect assimilation of isotopically light lower crustal mafic granulites, a conclusion supported by radiogenic isotope data. Clinopyroxene and olivine separates from the silicate lavas have uniformly lower Li concentrations (3-15 ppm) and lower δ7Li values (δ7Li = - 2.9 to - 0.5) than the respective whole-rocks, with Δ7Liwhole-rock-mineral between 1.4 and 6.3. This difference between whole-rock and mineral data is interpreted to reflect diffusion-driven isotopic fractionation.

  4. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  5. Oxygen isotope composition of trinitite postdetonation materials.

    PubMed

    Koeman, Elizabeth C; Simonetti, Antonio; Chen, Wei; Burns, Peter C

    2013-12-17

    Trinitite is the melt glass produced subsequent the first nuclear bomb test conducted on July 16, 1945, at White Sands Range (Alamagordo, NM). The geological background of the latter consists of arkosic sand that was fused with radioactive debris and anthropogenic materials at ground zero subsequent detonation of the device. Postdetonation materials from historic nuclear weapon test sites provide ideal samples for development of novel forensic methods for attribution and studying the chemical/isotopic effects of the explosion on the natural geological environment. In particular, the latter effects can be evaluated relative to their spatial distribution from ground zero. We report here δ(18)O(‰) values for nonmelted, precursor minerals phases (quartz, feldspar, calcite), "feldspathic-rich" glass, "average" melt glass, and bulk (natural) unmelted sand from the Trinity site. Prior to oxygen isotope analysis, grains/crystals were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine their corresponding major element composition. δ(18)O values for bulk trinitite samples exhibit a large range (11.2-15.5‰) and do not correlate with activity levels for activation product (152)Eu; the latter levels are a function of their spatial distribution relative to ground zero. Therefore, the slow neutron flux associated with the nuclear explosion did not perturb the (18)O/(16)O isotope systematics. The oxygen isotope values do correlate with the abundances of major elements derived from precursor minerals present within the arkosic sand. Hence, the O isotope ratios documented here for trinitite melt glass can be attributed to a mixture of the respective signatures for precursor minerals at the Trinity site prior to the nuclear explosion.

  6. Oxygen isotope composition of trinitite postdetonation materials.

    PubMed

    Koeman, Elizabeth C; Simonetti, Antonio; Chen, Wei; Burns, Peter C

    2013-12-17

    Trinitite is the melt glass produced subsequent the first nuclear bomb test conducted on July 16, 1945, at White Sands Range (Alamagordo, NM). The geological background of the latter consists of arkosic sand that was fused with radioactive debris and anthropogenic materials at ground zero subsequent detonation of the device. Postdetonation materials from historic nuclear weapon test sites provide ideal samples for development of novel forensic methods for attribution and studying the chemical/isotopic effects of the explosion on the natural geological environment. In particular, the latter effects can be evaluated relative to their spatial distribution from ground zero. We report here δ(18)O(‰) values for nonmelted, precursor minerals phases (quartz, feldspar, calcite), "feldspathic-rich" glass, "average" melt glass, and bulk (natural) unmelted sand from the Trinity site. Prior to oxygen isotope analysis, grains/crystals were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine their corresponding major element composition. δ(18)O values for bulk trinitite samples exhibit a large range (11.2-15.5‰) and do not correlate with activity levels for activation product (152)Eu; the latter levels are a function of their spatial distribution relative to ground zero. Therefore, the slow neutron flux associated with the nuclear explosion did not perturb the (18)O/(16)O isotope systematics. The oxygen isotope values do correlate with the abundances of major elements derived from precursor minerals present within the arkosic sand. Hence, the O isotope ratios documented here for trinitite melt glass can be attributed to a mixture of the respective signatures for precursor minerals at the Trinity site prior to the nuclear explosion. PMID:24304329

  7. Mg Isotopic Compositions of Modern Marine Carbonates

    NASA Astrophysics Data System (ADS)

    Krogstad, E.; Bizzarro, M.; Hemming, N.

    2003-12-01

    We have used a MC-ICP-MS to measure the isotopic composition of magnesium in a number of samples of modern marine carbonate. Due to the large mass difference between 26Mg and 24Mg (similar to that between 13C and 12C), there is potential for mass fractionation during geologic and biologic processes that may make this isotope system useful for geochemical studies. These samples are from the study of Hemming and Hanson (1992, GCA 56: 537-543). The carbonate minerals analyzed include aragonite, low-Mg calcite, and high-Mg calcite. The samples include corals, echinoderms, ooids, etc., from subtropical to Antarctic settings. Mg purification was accomplished by ion-exchange chromatography, using Bio-Rad AG50W-X12 resin on which greater than 99 percent recovery of Mg is achieved. Samples were introduced into the MC-ICP-MS (VG Axiom) using a Cetac MCN-6000 nebuliser. We use a standard-sample-standard bracketing technique, and samples are analysed at least three times. For lab standards we find that the reproducibility on the 26Mg/24Mg to be about ñ 0.12 permil (2 s.d.). We monitored our separated samples for Na and Ca, as we have found that high Ca/Mg and Na/Mg produce variable magnesium isotopic fractionation during mass spectrometry due to as yet unclear matrix effects. We have normalized our results to our measured values for seawater. We observed a d26Mg(s.w.) range of -1.4 to -2.4 permil in our modern carbonate samples relative to present day seawater. Due to the long residence time of Mg in the oceans (ca. 50 my), this must be due to kinetic or biologic effects. Our d25Mg(s.w.) variations as a function of d26Mg(s.w.) plot along the terrestrial fractionation trend. With an average d26Mg(s.w.) of ca. +0.5 permil in all samples of mantle lithologies and mantle-derived igneous rocks (Bizzarro et al., Goldschmidt abs., 2003), we can assume that the Mg isotopic composition of Earth's river water lies between ca. -2.4 and +0.5 permil (relative to seawater). The actual

  8. Molybdenum Isotopic Composition of Iron Meteorites, Chondrites and Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Becker, H.; Walker, R. J.

    2003-01-01

    Recent Mo isotopic studies of meteorites reported evidence for differences in isotopic compositions for whole rocks of some primitive and differentiated meteorites relative to terrestrial materials. Enrichments of r- and p-process isotopes of up to 3-4 units (e unit = parts in 10(exp 4) over s-process dominated isotopes are the most prominent features. Certain types of presolar grains show large enrichments in s-process isotopes, however, it was concluded on grounds of mass balance that incomplete digestion of such grains cannot explain the enrichments of r- and p-process isotopes in whole rocks of primitive chondrites. If the reported variability in r- and p-process isotope enrichments reflects the true isotopic characteristics of the whole rocks, the implications are quite profound. It would suggest the presence of large scale Mo isotopic heterogeneity within the solar accretion disk with likely collateral effects for other elements. However, such effects were not found for Ru isotopes, nor for Zr isotopes. Another recent Mo isotopic study by multi collector ICP-MS could not confirm the reported deviations in Allende, Murchison or iron meteorites. Here, we present new results for the Mo isotopic composition of iron meteorites, chondrites and CAIs obtained by negative thermal ionization mass spectrometry (NTIMS). We discuss analytical aspects and the homogeneity of Mo isotopic compositions in solar system materials.

  9. Isotopic composition of Riyadh rainfall, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Michelsen, Nils; Reshid, Mustefa; Siebert, Christian; Schulz, Stephan; Rausch, Randolf; Knöller, Kay; Weise, Stephan; Al-Saud, Mohammed; Schüth, Christoph

    2015-04-01

    Arid countries like Saudi Arabia often depend on fossil groundwater. Hence, thorough studies of the available resources are crucial. In the course of such investigations, analyses of δ18O and δD are frequently applied to constrain the provenance of the waters and to reconstruct the (paleo)climatic conditions during their recharge. Yet, to be able to evaluate the isotopic signature of the groundwater, one also has to know the isotopic composition of current precipitation. Although a few rain water analyses are available for Central Saudi Arabia in the literature - mostly in unpublished consultant reports - a Local Meteoric Water Line has never been established. To complement the available data, 28 rain events occurring in Riyadh between 2009 and 2013 were studied for their stable isotope composition. Samples were collected as integral samples, i.e., they represent the entire precipitation event. Moreover, one event was sampled several times, aiming at an evaluation of intra-storm variability. During selected storms, a grab sample was taken for 3H analysis. The event samples showed δ18O and δD values scattering between -6.5 and +9.5 and between -30 and +50 ‰ V-SMOW, respectively. In the course of the event that was sequentially sampled, a proceeding isotopic depletion was observed with respect to both isotopes. The relatively large ranges of δ-values for 18O and D of approximately 7 and 38 ‰ V-SMOW highlight the general need for integral sampling. The obtained grab samples are characterized by moderate 3H concentrations of a few Tritium Units. Further results will be presented and discussed in view of associated weather data (e.g. rain amount and temperature) and the probable moisture sources derived from back-trajectories, which were calculated using HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory Model; Draxler & Rolph, 2003). References Draxler, R.R. & Rolph, G.D. (2013): HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory

  10. Diets of introduced predators using stable isotopes and stomach contents

    USGS Publications Warehouse

    Meckstroth, A.M.; Miles, A.K.; Chandra, S.

    2007-01-01

    In a study of predation on ground-nesting birds at South San Francisco Bay (South Bay), California, USA, we analyzed stomach contents and stable isotopes of carbon and nitrogen to identify commonly consumed prey. We obtained the stomach contents from 206 nonnative red foxes (Vulpes vulpes regalis) collected in the South Bay area and Monterey County during 1995-2001 and from 68 feral cats (Felis silvestris) from the South Bay area during 2001-2002. We determined prey identity, biomass, and frequency, described seasonal diet trends, and derived an Index of Relative Importance. Avian species were the most frequent prey we found in the stomachs of red foxes from South Bay (61%), whereas small rodents were most frequent for red foxes from Monterey County (62%). Small rodents were the most frequent prey we found in feral cats (63%). Carbon and nitrogen isotopic signatures for foxes supported stomach content findings. However, isotope results indicated that cats received a majority of their energy from a source other than rodents and outside the natural system, which differed from the stomach content analysis. We demonstrated the utility of both stable isotope and stomach content analyses to establish a more complete understanding of predators' diets. This information aids natural resource managers in planning and evaluating future predator-removal programs and increases our understanding of the impacts of nonnative foxes and cats on native species.

  11. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass

    NASA Astrophysics Data System (ADS)

    Webb, Elizabeth A.; Longstaffe, Fred J.

    2002-06-01

    Samples of Calamovilfa longifolia were collected from across the North American prairies to investigate the relationship between the oxygen-isotope composition of biogenic silica (phytoliths) deposited in this grass and relative humidity, temperature, and the oxygen-18 enrichment of soil water relative to local precipitation. The δ 18O values of silica in nontranspiring tissues were controlled by soil-water composition and temperature, whereas the oxygen-18 content of silica formed in leaf and inflorescence tissues was enriched further by transpiration. Accurate calculation of growing temperature was possible only when the oxygen-isotope compositions of both stem silica and soil water were known. However, the oxygen-isotope values of stem phytoliths can be used to calculate the variation in the isotopic composition of soil water across a North American temperature gradient. As plant organic matter decays and phytoliths are transferred to the soil, the temperature and soil-water signals carried by the oxygen-isotope composition of silica from nontranspiring tissues can be masked by the oxygen-18 enrichment of phytoliths from transpiring tissues. However, the overall oxygen-isotope composition of a soil-phytolith assemblage can be related to temperature using an empirical relationship based on temperature and the difference between soil-phytolith and estimated soil-water oxygen-isotope compositions.

  12. Transforming Content Knowledge: Learning to Teach about Isotopes.

    ERIC Educational Resources Information Center

    Geddis, Arthur N.; And Others

    1993-01-01

    Presents a vignette about Karen, a student teacher in her first attempt at teaching chemical isotopes. Karen focuses on transmitting what she knows. An overview of Schulman's conceptions of pedagogical content knowledge is then provided. Shulman's ideas are employed to frame the experiences of Alan, a student teacher, as he and his cooperating…

  13. Measurements of Isotopic Composition of Vapour on the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Casado, M.; Landais, A.; Masson-Delmotte, V.; Genthon, C.; Prie, F.; Kerstel, E.; Kassi, S.; Arnaud, L.; Steen-Larsen, H. C.; Vignon, E.

    2015-12-01

    The oldest ice core records are obtained on the East Antarctic plateau. The composition in stable isotopes of water (δ18O, δD, δ17O) permits to reconstruct the past climatic conditions over the ice sheet and also at the evaporation source. Paleothermometer accuracy relies on good knowledge of processes affecting the isotopic composition of surface snow in Polar Regions. Both simple models such as Rayleigh distillation and global atmospheric models with isotopes provide good prediction of precipitation isotopic composition in East Antarctica but post deposition processes can alter isotopic composition on site, in particular exchanges with local vapour. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum water vapour - precipitation - surface snow - buried snow. While precipitation and snow sampling are routinely performed in Antarctica, climatic conditions in Concordia, very cold (-55°C in average) and very dry (less than 1000ppmv), impose difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20ppmv). Here we present the results of a campaign of measurement of isotopic composition in Concordia in 2014/2015. Two infrared spectrometers have been deployed or the first time on top of the East Antarctic Plateau allowing a continuous vapour measurement for a month. Comparison of the results from infrared spectroscopy with cryogenic trapping validates the relevance of the method to measure isotopic composition in dry conditions. Identification of different behaviour of isotopic composition in the water vapour associated to turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction.

  14. Isotopic composition of tellurium in the Abee meteorite

    SciTech Connect

    Smith, C.L.; De Laeter, J.R.

    1986-03-01

    The research of Smith et al. (1978) and Oliver et al. (1981) on the Abee meteorite's possible negative tellurium anomaly is extended. Two sets of measurements of the tellurium isotopic composition of Abee are reported, and the meteoritic data are compared with a terrestrial tellurium standard. No isotopic anomalies can be distinguished within the error limits. However, further work on the isotopic composition of Te in residues from the Allende meteorite need to be pursued by accurate mass spectrometric analysis. 23 references

  15. Magnesium Isotopic Composition of Subducting Marine Sediments

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Teng, F. Z.; Plank, T. A.; Huang, K. J.

    2015-12-01

    Subducted marine sediments have recently been called upon to explain the heterogeneous Mg isotopic composition (δ26Mg, ‰) found in mantle wehrlites (-0.39 to +0.09 [1]) in the context of a homogeneous mantle (-0.25 ± 0.07 [2]). However, no systematic measurements of δ26Mg on marine sediments are currently available to provide direct support to this model. To characterize the Mg inputs to global subduction zones, we measured δ26Mg data for a total of 90 marine sediments collected from 12 drill sites outboard of the world's major subduction zones. These sediments span a 1.73‰ range in δ26Mg. The detritus-dominated sediments have δ26Mg (-0.59 to +0.53) comparable to those of weathered materials on continents (e.g. -0.52 to +0.92 [3]), while the calcareous oozes yield δ26Mg (as light as -1.20) more similar to the seawater value (-0.83 [4]). The negative correlation between δ26Mg and CaO/Al2O3 in these sediments indicates the primary control of mineralogy over the Mg isotopic distribution among different sediment types, as carbonates are enriched in light Mg isotopes (-5.10 to -0.40 [5]) whereas clay-rich weathering residues generally have heavier δ26Mg (e.g. up to +0.65 in saprolite [6]). In addition, chemical weathering and grain-size sorting drive sediments to a heavier δ26Mg, as indicated by the broad positive trends between δ26Mg with CIA (Chemical Index of Alteration [7]) and Al2O3/SiO2, respectively. Collectively, the arc systems sampled in this study represent ~30% of global arc length and the extrapolated global Mg flux of subducting marine sediments accounts for ~9% of the yearly Mg riverine input with a flux-weighted average δ26Mg at -0.26. Subduction of these heterogeneous sediments may not cause significant mantle heterogeneity on a global scale, but the highly variable Mg fluxes and δ26Mg of sediments delivered to different trenches are capable of producing local mantle variations. Volcanic rocks sourced from these mantle domains are thus

  16. Integrating Stomach Content and Stable Isotope Analyses to Quantify the Diets of Pygoscelid Penguins

    PubMed Central

    Polito, Michael J.; Trivelpiece, Wayne Z.; Karnovsky, Nina J.; Ng, Elizabeth; Patterson, William P.; Emslie, Steven D.

    2011-01-01

    Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1) selecting appropriate prey sources, 2) weighting combinations of isotopically similar prey in two-source mixing models and 3) refining predicted contributions of isotopically similar prey in multi-source models. PMID:22053199

  17. Integrating stomach content and stable isotope analyses to quantify the diets of pygoscelid penguins.

    PubMed

    Polito, Michael J; Trivelpiece, Wayne Z; Karnovsky, Nina J; Ng, Elizabeth; Patterson, William P; Emslie, Steven D

    2011-01-01

    Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1) selecting appropriate prey sources, 2) weighting combinations of isotopically similar prey in two-source mixing models and 3) refining predicted contributions of isotopically similar prey in multi-source models.

  18. Rainwater chemistry and isotopic content in the French Basque Country

    NASA Astrophysics Data System (ADS)

    Jaunat, J.; Huneau, F.; Celle-Jeanton, H.; Dupuy, A.; Le Coustumer, P.

    2012-04-01

    The Northern Basque Country (Southwestern France) is subject to strong water needs in constant increase because of a rising population. Located 25 km from the Atlantic coast, the shallow aquifer of the Ursuya Mount (680 m ASL) is one of the main water supplies able to meet water needs. Unfortunately, this strategic resource suffers from a lack of knowledge about the recharge processes. A hydrological and hydrochemical survey was carried out since 2010 with the aim of enhancing the understanding of the behaviour of this aquifer, particularly through rainwater chemistry study. Rain gauges were disposed at four locations around and in the centre of the study area. Three collectors allowed the sampling of the total monthly height of bulk precipitation and one sequential collector allowed the sampling of the daily wet precipitation. This rainwater survey (height, majors ions, stable isotopes) was carried out between February 2010 and November 2011, which represents almost two hydrological cycles. The chemical and isotopic content of the 125 daily rainwater samples has been coupled with the corresponding air mass back trajectories to investigate the origin of the components. The trajectories were segregated into 5 main transport patterns by taking into account the regions crossed during the previous 72 h: 1) Northwestern part of Atlantic Ocean (exclusively marine origin); 2) Southwestern part of Atlantic Ocean (marine and Iberian Peninsula origin); 3) Northern Europe (continental origin); 4) Spain (exclusively Iberian Peninsula origin); 5) Southeastern (Southeastern Europe, Northern Africa and Mediterranean origin). Principal component analyses applied on the major ions components have shown that four major factors control the chemical composition of the precipitation at this place. The first factor (HCO3-, NO2-, PO43-, NH4+, K+, and Ca2+) is a mixed source of anthropogenic pollution and crustal material. The second factor (Cl-, Na+ and Mg2+) denotes a marine source. The

  19. The isotopic composition of Nd in different ocean masses

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.; Dasch, E. J.

    1979-01-01

    The paper examines the isotopic composition of Nd in marine environments. The Sm-Nd data for authigenic ferromanganese sediments indicate that the Atlantic, Pacific, and Indian Oceans have a distinct range in Nd isotopic composition characteristics of each ocean basin and reflect the dissolved load of Nd in the water mass. Measurements of the Nd isotopic seawater composition of seawater indicate that the rare earth elements (REE) in ferromanganese sediments are derived by direct precipitation of these elements out of seawater. It is believed that the Nd isotopic variations in these sediments represent true variations in the dissolved Nd isotopic composition which reflect the age and (Sm-147)/(Nd-144) ratios of the continental masses sampled believed to be the major source of REE in seawater.

  20. Ferromanganese crusts as archives of deep water Cd isotope compositions

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; SchöNbäChler, M.; RehkäMper, M.; Nielsen, S. G.; Williams, H.; Halliday, A. N.; Xue, Z.; Hein, J. R.

    2010-04-01

    The geochemistry of Cd in seawater has attracted significant attention owing to the nutrient-like properties of this element. Recent culturing studies have demonstrated that Cd is a biologically important trace metal that plays a role in the sequestration of inorganic carbon. This conclusion is supported by recent isotope data for Cd dissolved in seawater and incorporated in cultured phytoplankton. These results show that plankton features isotopically light Cd while Cd-depleted surface waters typically exhibit complimentary heavy Cd isotope compositions. Seawater samples from below 900 m depth display a uniform and intermediate isotope composition of ɛ114/110Cd = +3.3 ± 0.5. This study investigates whether ferromanganese (Fe-Mn) crusts are robust archives of deep water Cd isotope compositions. To this end, Cd isotope data were obtained for the recent growth surfaces of 15 Fe-Mn crusts from the Atlantic, Pacific, Indian, and Southern oceans and two USGS Fe-Mn reference nodules using double spike multiple collector inductively coupled plasma mass spectrometry. The Fe-Mn crusts yield a mean ɛ114/110Cd of +3.2 ± 0.4 (2 SE, n = 14). Data for all but one of the samples are identical, within the analytical uncertainty of ±1.1ɛ114/110Cd (2 SD), to the mean deep water Cd isotope value. This indicates that Fe-Mn crusts record seawater Cd isotope compositions without significant isotope fractionation. A single sample from the Southern Ocean exhibits a light Cd isotope composition of ɛ114/110Cd = 0.2 ± 1.1. The origin of this signature is unclear, but it may reflect variations in deep water Cd isotope compositions related to differences in surface water Cd utilization or long-term changes in seawater ɛ114/110Cd. The results suggest that time series analyses of Fe-Mn crusts may be utilized to study changes in marine Cd utilization.

  1. Microphysical controls on the isotopic composition of wintertime orographic precipitation

    NASA Astrophysics Data System (ADS)

    Moore, M.; Blossey, P. N.; Muhlbauer, A.; Kuang, Z.

    2016-06-01

    The sensitivity of mixed-phase orographic clouds, precipitation, and their isotopic content to changes in dynamics, thermodynamics, and microphysics is explored in idealized two-dimensional flow over a mountain barrier. These simulations use the Weather Research and Forecasting (WRF) model with stable water isotopologues (HDO and H218O), which have been integrated into the Thompson microphysics scheme within WRF as part of the present project. In order to understand how the isotopic composition of precipitation (δ18Oprecip) is fixed, the mountain height, temperature, and the prescribed cloud droplet number concentration (CDNC) have been varied in a series of simulations. For the given range of values explored in this work, changes in mountain height and temperature induce stronger responses in domain-averaged δ18Oprecip than do changes in CDNC by a factor of approximately 10. The strongest response to changing CDNC leads to local variations of δ18Oprecip of about 3‰, though those occur in regions of weak precipitation (<0.1 mm h-1). Changes in δ18Oprecip can be understood through the microphysical pathways by which precipitable hydrometeors are formed and by the isotopic signature associated with each pathway. The decrease in δ18Oprecip with increasing mountain height is not just a function of decreasing temperature but also reflects the changing contributions and distinct isotopic signatures of riming of cloud liquid and vapor deposition onto snow, the leading sources of precipitation in these simulations. The changes in δ18Oprecip with mountain height, temperature, and CDNC are governed in part by the microphysical pathways through which precipitating hydrometeors are formed and grow.

  2. The carbon isotopic compositions of individual compounds from ancient and modern depositional environments

    SciTech Connect

    Freeman, K.H.

    1991-01-01

    This work examines factors influencing the isotopic compositions of individual compounds and, consequently, that of preserved sedimentary organic matter. Specifically, isotope effects associated with reactions resulting in the production and degradation of organic matter in the water column and reactions affecting preservation during diagenesis are considered in three projects. The first documents the preservation of the isotopic compositions of hydrocarbons altered by diagenetic reaction. Isotopic compositions of structurally-related polycyclic aromatic hydrocarbons (PAH) from the Messel Shale show little variation with increased unsaturation. The influence of environmental conditions on the isotopic composition of sedimentary organic carbon is documented by a comparison of the {delta}{sup 13}C of hydrocarbons in the marine Julia Creek Oil Shale and the lacustrine Condor Oil Shale. A model is proposed for identifying relative degrees of oxygenation and productivity within a paleoenvironment based on the observed {sup 13}C contents of biomarkers. Effects of processes proposed in the environmental model are documented by an examination of hydrocarbons from the waters and sediments of the Black Sea and of the Cariaco Trench. Sources of individual compounds are identified by comparison of their {sup 13}C content with that predicted for autotrophic biomass calculated from the concentration and {sup 13}C content of CO{sub 2}(aq) in the surface waters.

  3. The Cl Isotope Composition of the Moon as evidence for an Anhydrous Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Shearer, C., Jr.; McKeegan, K. D.; Barnes, J.; Wang, Y.

    2010-12-01

    The chlorine isotope composition of primitive terrestrial basalts and carbonaceous chondrites cover a narrow range centered around 0‰ with a total variation of ± 0.5‰. In contrast, the chlorine isotope composition of bulk samples and in situ ion microprobe analyses of lunar basalts and glasses cover a range of 25‰. Three possibilities were considered to explain the large spread: 1) initial isotopic heterogeneities, 2) devolatilization from solar wind/micrometeorite bombardment, 3) degassing under anhydrous conditions. The first of these possibilities is rejected because the Moon went through an magma ocean stage which would have homogenized any isotopic heterogeneities. To examine surface effects, we chose samples that have extremely different degrees of surface exposure. We find no correlation between the Cl isotope composition and surface exposure. We also conducted a laboratory experiment in which a thin film of NaCl was bombarded with a proton source for 24 hours with no change in Cl isotope composition. The third possibility is that the fractionation is explained by the anhydrous character of the Moon. On Earth, the volatiling Cl species is HCl. HCl is known to preferentially incorporate 37Cl relative to 35Cl due to the high bond strength of the molecule. This is offset by the higher translational velocity of H35Cl, so that overall, there is very little Cl isotope fractionation during degassing. We propose that lunar basalts were anhydrous and the volatile Cl species were metal chlorides, such as ZnCl2, NaCl, FeCl2, etc. The bond strength of metal chlorides and Cl dissolved in a basalt are similar, so that fractionation is caused mainly by volatilization, with the light isotopologue preferentially lost to the vapor phase. This idea is supported by the consistent lower Cl isotope ratios of water soluble salt fraction (~10 ‰ lower) and the lowest lunar Cl isotope values close to those of bulk Earth. The H content of lunar magmas must have been lower

  4. Oxygen and Sulfur Isotope Composition of Dissolved Sulfate in Interstitial Waters of the Great Australian Bight, ODP Leg 182.

    NASA Astrophysics Data System (ADS)

    Bernasconi, S. M.; Böttcher, M. E.; Wormann, U. G.

    2005-12-01

    We measured the sulfur and oxygen isotope composition of dissolved sulfides and sulfate at ODP Sites 1129, 1130, 1131 and 1132 in the Great Australian Bight (GAB). At all Sites, a saline brine is present in the subsurface as indicated by increasing chloride concentrations with depth to reach contents up to 3 times seawater. Sulfate also increases with depth but the concentrations are reduced by intense microbial sulfate reduction. The sulfur isotope fractionation between coexisting dissolved sulfate and sulfide is very large and reaches up to 70 ‰ at all studied Sites. Due to the high sulfide concentrations and the lack of a significant source of oxidants we consider that the large sulfur isotope fractionations are induced by sulfate reducing bacteria alone without a significant contribution of elemental sulfur disproportionation and sulfide oxidation processes. The oxygen isotope composition of dissolved sulfate reaches maximum values of approximately +27 ‰ vs. VSMOW at all sites, close to the equilibrium isotope fractionation between sulfate and water. The oxygen isotope composition of dissolved sulfate positively correlates with the sulfur isotope fractionation between sulfate and sulfide. These oxygen isotope data thus support the hypothesis that that the high sulfur isotope fractionation are related to a single step fractionation by sulfate reducing bacteria and do not involve significant sulfide oxidation reactions and/or elemental sulfur disproportionation. Sulfide oxidation processes would lead to a lowering of the oxygen isotope composition of residual sulfate. Elemental sulfur disproportionation has been shown to increase the oxygen isotope composition of sulfate but to a smaller extent than that that observed in the GAB. The patterns of the oxygen isotope increase with progressive sulfate reduction indicate a predominant influence of isotope exchange rather than a kinetic isotope fractionation controlling the oxygen isotope composition of sulfate

  5. The Chlorine Isotopic Composition of Lunar urKREEP

    NASA Astrophysics Data System (ADS)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-05-01

    We have measured the Cl isotopic composition of apatite in a range of lunar rocks using NanoSIMS. We find a correlation between Cl isotopes and bulk rock chemistry which strongly suggesting urKREEP was characterized by heavy Cl.

  6. Isotopic Composition of Barium in Single Presolar Silicon Carbide Grains

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2002-01-01

    We have measured Ba isotope distributions in individual presolar SiC grains. We find that the Ba isotopic composition in mainstream SiC grains is consistent with models of nucleosynthesis in low to intermediate mass asymptotic giant branch (AGB) stars. Additional information is contained in the original extended abstract.

  7. Which minerals control the Nd-Hf-Sr-Pb isotopic compositions of river sediments?

    NASA Astrophysics Data System (ADS)

    Garcon, M.; Chauvel, C.; France-Lanord, C.; Limonta, M.; Garzanti, E.

    2013-12-01

    River sediments naturally sample and average large areas of eroded continental crust. They are ideal targets not only for provenance studies based on isotopic compositions, but also to establish average continental crust isotopic values. However, in large fluvial systems, mineral sorting processes significantly modify the mineralogy, and thus the geochemistry of the transported sediments. We still do not know, in any quantitative way, to what extent mineral sorting affects and fractionates the isotopic compositions of river sediments. Here, we focus on this issue and try to decipher the role of each mineral species in the bulk isotopic compositions of bedloads and suspended loads sampled at the outflow of the Ganga River that drains the Himalayan mountain range. We analyzed Nd, Hf, Sr and Pb isotopic compositions as well as trace element contents of a large number of pure mineral fractions (K-feldspar, plagioclase, muscovite, biotite, magnetite, zircon, titanite, apatite, monazite/allanite, amphibole, epidote, garnet, carbonate and clay) separated from bedload sediments. We combine these data with mineral proportions typical of the Ganga sediments to perform Monte-carlo simulations that quantify the contribution of individual mineral species to the Nd, Hf, Sr and Pb isotopic budgets of bedloads and suspended loads. We show that the isotopic systematic of river sediments is entirely buffered by very few minerals. Despite their extremely low proportions in sediments, zircon and monazite/allanite control Hf and Nd isotopes, respectively. Feldspars, epidote and carbonate buffer the Sr isotopic budget while clay, feldspars and heavy minerals dominate Pb isotopes. We also demonstrate that the observed difference in Hf, Sr and Pb isotopic compositions between bedloads and suspended loads reflects their different mineral proportions. Our findings highlight the need to be very careful about the choice of isotopic compositions measured on sediments when used as source

  8. Ruthenium Isotopic Composition of Terrestrial Materials, Iron Meteorites and Chondrites

    NASA Technical Reports Server (NTRS)

    Becker, H.; Walker, R. J.

    2002-01-01

    Ru isotopic compositions of magmatic iron meteorites and chondrites overlap with terrestrial Ru at the 0.3 to 0.9 (epsilon) level. Additional information is contained in the original extended abstract.

  9. Classification of Chinese Honeys According to Their Floral Origins Using Elemental and Stable Isotopic Compositions.

    PubMed

    Wu, Zhaobin; Chen, Lanzhen; Wu, Liming; Xue, Xiaofeng; Zhao, Jing; Li, Yi; Ye, Zhihua; Lin, Guanghui

    2015-06-10

    The objective of this study is to test the feasibility of multi-isotopic and elemental analyses combined with chemometric techniques for differentiating the botanical origins of major honey products in China. The stable isotope and elemental compositions of 57 honey samples from four major floral origins in China (i.e., rape honey, acacia honey, vitex honey, and jujube honey) were analyzed using stable isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results showed that hydrogen and oxygen isotopes could be more suitable than the carbon isotope for discriminating the floral origins of major honeys in China. There were significant differences in the contents of most elements between or among different floral origins. The combination of IRMS and ICP-MS methods provides the most effective and accurate approach (in most cases close to 100% accuracy) for classifying Chinese honeys according to their floral origins.

  10. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    USGS Publications Warehouse

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  11. Nitrogen abundances and isotopic compositions in lunar samples

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Clayton, R. N.

    1975-01-01

    Isotopic analyses were carried out on soil separates as well as on bulk samples. Analyses of nitrogen fractions obtained by step-wise heating of the separates were also conducted. It was also attempted to obtain a value for the isotopic composition of indigenous lunar nitrogen from analyses of igneous rock samples. Several breccias were also analyzed for their nitrogen isotope ratios. The significance of the obtained results is discussed. Several lines of evidence point to the conclusion that the isotope ratio of the nitrogen being implanted into the lunar regolith has increased by some 15% over a period of at least 450 million years and possibly as long as 3,700 million years or more. This may be the result of changes in the nitrogen isotope ratio of the solar wind with time, or it may be due to outgassing and subsequent reimplantation of an isotopically light indigenous lunar nitrogen from the lunar interior in the early history of the moon.

  12. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  13. A first roadmap for kryptology. [isotopic composition from supernovae

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.

    1980-01-01

    Studies of the complex variations of the isotopic composition of xenon in the solar system have been christened 'xenology'. In the title of the present investigation, the word 'kryptology' is employed to indicate the primary objective of the reported studies. This objective is related to the prediction of the isotopic composition of krypton which comes from a number of specific locations of a supernova in association with the isotopic compositions of xenon from these locations. Krypton is a logical candidate for testing the stellar theory on geochemical grounds, taking into account also the point of view of nucleosynthesis, because the isotopes of xenon and krypton are formed by the same thermonuclear processes in stars. The data and arguments presented in the investigation show that the treatment by Heymann and Dziczkaniec (1979), although not wrong, is too simplistic, because it has ignored the possibility of holdup and arrest in Xe network.

  14. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates

    NASA Astrophysics Data System (ADS)

    Huang, Kang-Jun; Shen, Bing; Lang, Xian-Guo; Tang, Wen-Bo; Peng, Yang; Ke, Shan; Kaufman, Alan J.; Ma, Hao-Ran; Li, Fang-Bing

    2015-09-01

    Available Mg isotope data indicate that dolostones of different ages have overlapping range of Mg isotopic composition (δ26Mg) and there is no systematic difference among different types of dolomites. To further explore the Mg isotopic systematics of dolomite formation, we measured Mg isotopic compositions of Mesoproterozoic dolostones from the Wumishan Formation in North China Block, because dolomite formation in Mesoproterozoic might have been fundamentally different from the younger counterparts. Based on petrographic observations, three texturally-different dolomite phases (dolomicrite, subhedral dolomite and anhedral dolomite) are recognized in the Wumishan dolostones. Nevertheless, these three types of dolomites have similar δ26Mg values, ranging from -1.35‰ to -1.72‰, which are indistinguishable from Neoproterozoic and Phanerozoic dolostones. To explain δ26Mg values of dolostones, we simulate the Mg isotopic system during dolomite formation by applying the one-dimensional Diffusion-Advection-Reaction (1D-DAR) model, assuming that the contemporaneous seawater is the Mg source of dolostone. The 1D-DAR modeling results indicate that the degree of dolomitization is controlled by sedimentation rate, seawater Mg concentration, temperature, and reaction rate of dolomite formation, whereas Mg isotopic composition of dolostone is not only dependent on these factors, but also affected by δ26Mg of seawater and isotope fractionation during dolomite formation. Moreover, the 1D-DAR model predicts that dolomite formation within sediments has limited range of variation in δ26Mg with respect to limestones. Furthermore, the modeling results demonstrate that dolostone is always isotopically heavier than Ca-carbonate precipitated from seawater, explaining the systematic isotopic difference between dolostones and limestones. Finally, we can infer from the 1D-DAR model that early-formed dolostone at shallower depth of sediments is always isotopically lighter than that

  15. The Palladium Isotopic Composition in Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A.

    2005-01-01

    Ru, Mo and Pd are very useful indicators for the identification of nucleosynthetic components. We have developed techniques for Pd isotopes, in an effort to check the extent of isotopic effects in this mass region and for a Pt-group element which is less refractory than Ru. Stable Pd isotopes are produced by the process only (102Pd), the s-process only (104Pd), the process only (Pd-110) and by both the r- and s-processes (Pd-105, Pd-106, Pd-108). Kelly and Wasserburg reported a hint of a shift in 102Pd (approx. 25(epsilon)u; 1(epsilon)u (triple bonds) 0.01%) in Santa Clara. Earlier searches for Mo and Ru isotopic anomalies were either positive or negative.

  16. Linking ramped pyrolysis isotope data to oil content through PAH analysis

    NASA Astrophysics Data System (ADS)

    Pendergraft, Matthew A.; Dincer, Zeynep; Sericano, José L.; Wade, Terry L.; Kolasinski, Joanna; Rosenheim, Brad E.

    2013-12-01

    Ramped pyrolysis isotope (13C and 14C) analysis coupled with polycyclic aromatic hydrocarbon (PAH) analysis demonstrates the utility of ramped pyrolysis in screening for oil content in sediments. Here, sediments from Barataria Bay, Louisiana, USA that were contaminated by oil from the 2010 BP Deepwater Horizon spill display relationships between oil contamination, pyrolysis profiles, and isotopic composition. Sediment samples with low PAH concentrations are thermochemically stable until higher temperatures, while samples containing high concentrations of PAHs pyrolyze at low temperatures. High PAH samples are also depleted in radiocarbon (14C), especially in the fractions that pyrolyze at low temperatures. This lack of radiocarbon in low temperature pyrolyzates is indicative of thermochemically unstable, 14C-free oil content. This study presents a proof of concept that oil contamination can be identified by changes in thermochemical stability in organic material and corroborated by isotope analysis of individual pyrolyzates, thereby providing a basis for application of ramped pyrolysis isotope analysis to samples deposited in different environments for different lengths of time.

  17. Controls on ostracod valve geochemistry: Part 2. Carbon and oxygen isotope compositions

    NASA Astrophysics Data System (ADS)

    Decrouy, Laurent; Vennemann, Torsten Walter; Ariztegui, Daniel

    2011-11-01

    The stable carbon and oxygen isotope compositions of fossil ostracods are powerful tools to estimate past environmental and climatic conditions. The basis for such interpretations is that the calcite of the valves reflects the isotopic composition of water and its temperature of formation. However, calcite of ostracods is known not to form in isotopic equilibrium with water and different species may have different offsets from inorganic precipitates of calcite formed under the same conditions. To estimate the fractionation during ostracod valve calcification, the oxygen and carbon isotope compositions of 15 species living in Lake Geneva were related to their autoecology and the environmental parameters measured during their growth. The results indicate that: (1) Oxygen isotope fractionation is similar for all species of Candoninae with an enrichment in 18O of more than 3‰ relative to equilibrium values for inorganic calcite. Oxygen isotope fractionation for Cytheroidea is less discriminative relative to the heavy oxygen, with enrichments in 18O for these species of 1.7 to 2.3‰. Oxygen isotope fractionations for Cyprididae are in-between those of Candoninae and Cytheroidea. The difference in oxygen isotope fractionation between ostracods and inorganic calcite has been interpreted as resulting from a vital effect. (2) Comparison with previous work suggests that oxygen isotope fractionation may depend on the total and relative ion content of water. (3) Carbon isotope compositions of ostracod valves are generally in equilibrium with DIC. The specimens' δ 13C values are mainly controlled by seasonal variations in δ 13C DIC of bottom water or variation thereof in sediment pore water. (4) Incomplete valve calcification has an effect on carbon and oxygen isotope compositions of ostracod valves. Preferential incorporation of CO32- at the beginning of valve calcification may explain this effect. (5) Results presented here as well as results from synthetic carbonate

  18. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  19. Cr isotopic composition of modern carbonates and seawater

    NASA Astrophysics Data System (ADS)

    Bonnand, P.; Parkinson, I. J.; James, R. H.; Fehr, M.; Connelly, D. P.

    2010-12-01

    Recent development in MC-ICP-MS instrumentation, coupled with double-spike techniques has led to the improvement of stable Cr isotopes measurements and allows the determination of Cr isotopes in low concentration samples such as carbonates and seawater. Cr is a redox sensitive element and its isotopes are fractionated during the reduction of Cr(VI) to Cr(III) [1]. Chromium isotopic variations in BIFs have been linked to the redox conditions of ancient oceans[2]. However, in order to understand Cr isotopic fractionation in the past it is important to constrain the Cr isotopic composition of modern seawater. Chromium concentrations in seawater are between 2 and 5nM, and therefore the measurement of stable Cr isotopes in seawater is an analytical challenge. We have developed a new technique to measure Cr isotopes in seawater based on the Cr co-precipitation with Fe[3], the chemical purification of Cr using an anion exchange chromatography and analyses using the double-spike technique with a ThermoFisher Neptune MC-ICP-MS. Using this method, seawater samples from the Argentinean Basin and from Southampton Water (UK) have been analysed, which have Cr concentrations of ~6nM of Cr. Chromium isotopic composition of our seawater samples is consistently heavier than continental crust and mantle values (δ53Cr -0.18‰)[4] with δ53Cr values of ~+0.5‰. We have also measured Cr isotopic compositions in ooids from the Bahamas Banks, which represent chemical precipitates from modern seawater. These also record consistently heavy δ53Cr values (0.6-0.8‰), which overlap the range of modern seawater. We conclude that heavy δ53Cr in seawater reflect either redox cycling of Cr in the oceans[3] or fractionation during the weathering of the continental crust. Moreover, Cr isotopes in modern carbonates are not significantly offset from seawater and therefore, these carbonates reflect the Cr composition of seawater. Thus, Cr isotopes in carbonates can be used to reconstruct the Cr

  20. What does the oxygen isotope composition of rodent teeth record?

    NASA Astrophysics Data System (ADS)

    Royer, Aurélien; Lécuyer, Christophe; Montuire, Sophie; Amiot, Romain; Legendre, Serge; Cuenca-Bescós, Gloria; Jeannet, Marcel; Martineau, François

    2013-01-01

    Oxygen isotope compositions of tooth phosphate (δ18Op) were measured in 107 samples defined on the basis of teeth obtained from 375 specimens of extant rodents. These rodents were sampled from pellets collected in Europe from 38°N (Portugal) to 65°N (Finland) with most samples coming from sites located in France and Spain. Large oxygen isotopic variability in δ18Op is observed both at the intra- and inter-species scale within pellets from a given location. This isotopic variability is partly explained by heterochrony in tooth formation related to the short time of mineralization for all rodent species as well as the duration of mineralization that is species-dependent. Consequently, tooth phosphate of rodents records a short seasonal interval in the oxygen isotope compositions of meteoric waters (δ18Omw). In addition, inter-species isotopic variability observed in the same pellets suggests behavioural differences implying distinct isotopic compositions for species living in the same location. At the scale of Europe, a robust linear oxygen isotope fractionation equation was determined for Muroidea between the midrange δ18Op values and δ18Omw values: δ18Op=1.21(±0.20)δ18Omw+24.76(±2.70) with R2=0.79 (n=9; p<0.0001).

  1. Stable isotope composition of human fingernails from Slovakia.

    PubMed

    Grolmusová, Zuzana; Rapčanová, Anna; Michalko, Juraj; Čech, Peter; Veis, Pavel

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ(13)C and δ(15)N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in (13)C and (15)N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ(13)C and δ(15)N values. These data were compared to previously published δ(13)C and δ(15)N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking.

  2. An estimate of the Germanium isotopic composition of the Ocean.

    NASA Astrophysics Data System (ADS)

    Galy, A.; Rouxel, O.; Mantoura, S.; Elderfield, H.; de La Rocha, C.

    2004-12-01

    Ge is a trace element in seawater whose biogeochemistry is dominated by its Si-like behaviour. Its residence time is poorly constrained but could be close to the mixing time of the ocean. In addition, hydrothermal vents are enriched in Ge (relative to Si) and this excess has been witnessed in the water column. Moreover, Si isotopic variations have been reported in the ocean, related to the precipitation of biogenic opal, while the Si residence time is slightly higher than the Ge residence time. Therefore, variations in the isotopic composition of dissolved Ge in the ocean are expected provided that at least one of the major input or output of Ge has a different isotopic composition. Given the low Ge concentration (around 40 picomol/kg) and the state-of-the art analytical facilities, a direct measurement of the isotopic composition of the seawater is barely conceivable. The major input of Ge into the ocean are the rivers and the hydrothermal vents, while the removal of Ge occurs through the precipitation of biogenic opal and the early diagenesis of passive margins. The mechanism of the later is, however, not well established but could be related to the precipitation of Fe-oxyhydroxide. So the measurement of marine authigenic minerals, biogenic silica and the comparison with an estimate of the bulk silicate Earth (BSE) composition will give some constraints on the Germanium isotopic composition of the ocean. A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate, sulfide, and biogenic material. The analyses were performed using a continuous flow hydride generation system coupled to a Nu Instrument MC-ICPMS. Samples have been purified through anion and cation exchange resins to separate Ge from matrix elements and potential interferences. Deep sea clays have a similar isotopic composition that MORBs or granites, suggesting that isotopic composition of the dissolved Ge in rivers might not

  3. Calcium isotopic compositions of mid-ocean ridge basalts

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Zhang, Z.; Sun, W.; Wang, G. Q.

    2015-12-01

    Previous studies have demonstrated that Earth's mantle has heterogeneous calcium isotopic compositions. But the reason why mantle has its heterogeneity remains uncertain. In general, δ44/40Ca values of mantle xenolith samples have a variation of >0.45‰. While ultramafic rocks, especially dunites, have higher δ44/40Ca values than volcanic rocks, and there is a positive correlation between δ44/40Ca and Ca/Mg. These phenomena imply that the heterogeneity of Ca isotopic compositions of mantle xenolith samples might result from different degrees of melt extraction, as indicated by large Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene. However, because ancient marine carbonate has its own unique calcium isotopic characteristics, recycling of even a small amount of ancient marine carbonates into the mantle could also cause the heterogeneity of Ca isotopes in Earth's mantle. This could be the reason why oceanic island basalts (OIB) have lighter Ca isotopic compositions than the mantle xenolith. Thus, the lighter Ca isotopic compositions in the mantle source cannot only be ascribed to magmatic processes. Therefore, it is more important to know calcium isotopic characteristics during partial melting and oceanic crust contamination.Mid-ocean ridge basalts (MORB) are formed from the partial melts of the upper mantle and are rarely affected by crustal contamination. Different types of MORB, including D-MORB, N-MORB and E-MORB, have experienced different degrees of partial melting and contamination of enriched end-members. Here we report calcium isotopic characteristic of different types of MORB, we believe it will be very helpful to understand the behaviors of Ca isotopes during partial melting and it is possible to provide further information to discover the reason why calcium isotopic compositions is heterogeneous in Earth's mantle. This work was supported by Natural Science Foundation of China (No. 41373007, No. 41490632 and No. 91328204

  4. Monitoring the water vapor isotopic composition in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Sveinbjornsdottir, A. E.; Steen-Larsen, H.; Jonsson, T.; Johnsen, S. J.

    2011-12-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is found to depend on both the isotopic composition as well as the relative humidity as prescribed by theories for evaporation from an ocean. The site likely represents a major source region for the moisture that later falls as snow on parts of the Greenland Ice Sheet. This leads to

  5. Estimating diets of pre-spawning Atlantic bluefin tuna from stomach content and stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Varela, José L.; Rodríguez-Marín, Enrique; Medina, Antonio

    2013-02-01

    Stomach content analysis (SCA) and stable isotope analysis (SIA) coupled with isotopic mixing model analysis were used to estimate diet composition of pre-spawning Atlantic bluefin tuna (ABFT), Thunnus thynnus, caught by trap in the Strait of Gibraltar area. SCA provided poor information on diet as most of the stomachs appeared empty or contained only hard remains. Mixing model diet compositions estimated from muscle tissue SIA data did not show clear inter-annual variations and suggested that ABFT fed on prey that occupy high and intermediate level positions of the food web. Otherwise, diet compositions estimated from liver tissue SIA showed greater inter-annual variations and appeared to indicate that ABFT fed on prey located at lower trophic levels. The different dietary compositions inferred from muscle and liver samples were most probably due to the different turnover rates of these organs, which would provide trophic information at two distinct time scales. Our findings suggest that a combination of SCA and SIA is more suitable than using SCA alone to determine temporal and regional variations in ABFT diet composition.

  6. Isotopic compositions of cometary matter returned by Stardust.

    PubMed

    McKeegan, Kevin D; Aléon, Jerome; Bradley, John; Brownlee, Donald; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Fallon, Stewart; Floss, Christine; Gilmour, Jamie; Gounelle, Matthieu; Graham, Giles; Guan, Yunbin; Heck, Philipp R; Hoppe, Peter; Hutcheon, Ian D; Huth, Joachim; Ishii, Hope; Ito, Motoo; Jacobsen, Stein B; Kearsley, Anton; Leshin, Laurie A; Liu, Ming-Chang; Lyon, Ian; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; Meibom, Anders; Messenger, Scott; Mostefaoui, Smail; Mukhopadhyay, Sujoy; Nakamura-Messenger, Keiko; Nittler, Larry; Palma, Russ; Pepin, Robert O; Papanastassiou, Dimitri A; Robert, François; Schlutter, Dennis; Snead, Christopher J; Stadermann, Frank J; Stroud, Rhonda; Tsou, Peter; Westphal, Andrew; Young, Edward D; Ziegler, Karen; Zimmermann, Laurent; Zinner, Ernst

    2006-12-15

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.

  7. Isotopic compositions of cometary matter returned by Stardust.

    PubMed

    McKeegan, Kevin D; Aléon, Jerome; Bradley, John; Brownlee, Donald; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Fallon, Stewart; Floss, Christine; Gilmour, Jamie; Gounelle, Matthieu; Graham, Giles; Guan, Yunbin; Heck, Philipp R; Hoppe, Peter; Hutcheon, Ian D; Huth, Joachim; Ishii, Hope; Ito, Motoo; Jacobsen, Stein B; Kearsley, Anton; Leshin, Laurie A; Liu, Ming-Chang; Lyon, Ian; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; Meibom, Anders; Messenger, Scott; Mostefaoui, Smail; Mukhopadhyay, Sujoy; Nakamura-Messenger, Keiko; Nittler, Larry; Palma, Russ; Pepin, Robert O; Papanastassiou, Dimitri A; Robert, François; Schlutter, Dennis; Snead, Christopher J; Stadermann, Frank J; Stroud, Rhonda; Tsou, Peter; Westphal, Andrew; Young, Edward D; Ziegler, Karen; Zimmermann, Laurent; Zinner, Ernst

    2006-12-15

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion. PMID:17170292

  8. Verification of the isotopic composition of precipitation simulated by a regional isotope circulation model over Japan.

    PubMed

    Tanoue, Masahiro; Ichiyanagi, Kimpei; Yoshimura, Kei

    2016-01-01

    The isotopic composition (δ(18)O and δ(2)H) of precipitation simulated by a regional isotope circulation model with a horizontal resolution of 10, 30 and 50 km was compared with observations at 56 sites over Japan in 2013. All simulations produced reasonable spatio-temporal variations in δ(18)O in precipitation over Japan, except in January. In January, simulated δ(18)O values in precipitation were higher than observed values on the Pacific side of Japan, especially during an explosively developing extratropical cyclone event. This caused a parameterisation of precipitation formulation about the large fraction of precipitated water to liquid detrained water in the lower troposphere. As a result, most water vapour that transported from the Sea of Japan precipitated on the Sea of Japan side. The isotopic composition of precipitation was a useful verification tool for the parameterisation of precipitation formulation as well as large-scale moisture transport processes in the regional isotope circulation model.

  9. Komatiites constrain molybdenum isotope composition of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Greber, Nicolas D.; Puchtel, Igor S.; Nägler, Thomas F.; Mezger, Klaus

    2015-07-01

    In order to estimate the Mo isotope composition and Mo abundance in the Bulk Silicate Earth (BSE), a total of thirty komatiite samples from five localities on three continents were analyzed using an isotope dilution double spike technique. Calculated Mo concentrations of the emplaced komatiite lavas range from 25 ± 3 to 66 ± 22 ng /g, and the inferred Mo concentrations in the deep mantle sources of the komatiites range between 17 ± 4 and 30 ± 12 ng /g, with an average value of 23 ± 7 ng /g (2SE). This average value represents our best estimate for the Mo concentration in the BSE; it is identical, within the uncertainty, to published previous estimates of 39 ± 16 ng /g, but is at least a factor of 2 more precise. The Mo isotope compositions of the komatiite mantle sources overlap within uncertainty and range from δ98Mo = - 0.04 ± 0.28 to 0.11 ± 0.10 ‰, with an average of 0.04 ± 0.06 ‰ (2SE). This value is analytically indistinguishable from published Mo isotope compositions of ordinary and enstatite chondrites and represents the best estimate for the Mo isotope composition of the BSE. The inferred δ98Mo for the BSE is therefore lighter than the suggested average of the upper continental crust (0.3 to 0.4‰). Thus, from the mass balance standpoint, a reservoir with lighter Mo isotope composition should exist in the Earth's mantle; this reservoir can potentially be found in subducted oceanic crust. The similarity of δ98Mo between chondritic meteorites and estimates for the BSE from this study indicates that during the last major equilibration between Earth's core and mantle, i.e., the one that occurred during the giant impact that produced the Moon, chemical and isotopic equilibrium of Mo between Fe metal of the core and the silicate mantle was largely achieved.

  10. Mg isotopic composition of carbonate: insight from speleothem formation

    NASA Astrophysics Data System (ADS)

    Galy, Albert; Bar-Matthews, Miryam; Halicz, Ludwik; O'Nions, R. Keith

    2002-07-01

    Simultaneous high-precision measurement of 24Mg, 25Mg and 26Mg isotopic compositions were made by multiple collector inductively coupled mass spectrometry (MC-ICP-MS) relative to the international standard SRM980. Data are presented on low-Mg calcite speleothems and their associated host rocks and waters from four caves, one in the French Alps and three in Israel, covering various climate conditions. In addition, data are presented on three dolostones and three limestones from the Himalaya. The overall variation is 4.13‰ and 2.14‰ in δ 26Mg and δ 25Mg, respectively. This is 35 times the uncertainty of the measurements and clearly demonstrates that the terrestrial isotopic composition of Mg is not unique. Each speleothem shows a characteristic range of δ 26Mg values that are attributed to the isotopic composition of the local water. Differences between the isotopic composition of Mg in the water dripping from stalactites and that of the modern speleothem are interpreted as being due to Mg isotopic fractionation during carbonate precipitation in the temperature range of 4-18°C. The low-Mg calcite is enriched in light isotopes by 1.35‰/AMU and the dependence on temperature has been found to be less than 0.02‰/AMU/°C. Despite various geological settings, the δ 26Mg of the studied dolostones is 2.0±1.2‰ higher than the δ 26Mg of the limestones. All together, these results suggest a strong mineralogical control and a weak temperature effect on the Mg isotopic composition of carbonate.

  11. Stable sulfur and nitrogen isotopic compositions of crude oil fractions from Southern Germany

    NASA Astrophysics Data System (ADS)

    Hirner, A. V.; Graf, W.; Treibs, R.; Melzer, A. N.; Hahn-Weinheimer, P.

    1984-11-01

    Eleven samples of crude oil from the Molasse Basin of Southern Germany were fractionated and their contents of sulfur and nitrogen as well as the stable isotope compositions of these elements ( 34S /32S and 15N /14N , resp.) investigated. According to the δ34S determinations, all crude oils from the Tertiary base of the Western and Eastern Molasse belong to one oil family and differ significantly from the Triassic and Liassic oils in the Western Molasse. An enrichment of 34S was observed with increasing polarity of crude oil fractions. The isotope distributions of sulfur in the polar constituents of the biodegraded oils from the sandstones of Ampfing, however, approach a homogeneous distribution. The nitrogen isotope distribution is rather uniform in Southern German oils. A regional differentiation can be recognized, although the overall isotopic variation is small. The δ15N values of the crudes and asphaltenes do not correlate.

  12. Iron isotope composition of some Archean and Proterozoic iron formations

    NASA Astrophysics Data System (ADS)

    Planavsky, Noah; Rouxel, Olivier J.; Bekker, Andrey; Hofmann, Axel; Little, Crispin T. S.; Lyons, Timothy W.

    2012-03-01

    Fe isotopes can provide new insight into redox-dependent biogeochemical processes. Precambrian iron formations (IF) are deserving targets for Fe isotope studies because they are composed predominantly of authigenic Fe phases and record a period of unprecedented iron deposition in Earth's history. We present Fe isotope data for bulk samples from 24 Archean and Proterozoic IF and eight Phanerozoic Fe oxide-rich deposits. These data reveal that many Archean and early Paleoproterozoic iron formations were a sink for isotopically heavy Fe, in contrast to later Proterozoic and Phanerozoic Fe oxide-rich rocks. The positive δ56Fe values in IF are best explained by delivery of particulate ferric oxides formed in the water column to the sediment-water interface. Because IF are a net sink for isotopically heavy Fe, there must be a corresponding pool of isotopically light Fe in the sedimentary record. Earlier work suggested that Archean pyritic black shales were an important part of this light sink before 2.35 billion years ago (Ga). It is therefore likely that the persistently and anomalously low δ56Fe values in shales are linked with the deposition of isotopically heavy Fe in IF in the deeper parts of basins. IF deposition produced a residual isotopically light dissolved Fe pool that was captured by pyritic Fe in shales. Local dissimilatory Fe reduction in porewater and associated diagenetic reactions resulting in pyrite and carbonate precipitation may have further enhanced Fe isotope heterogeneity in marine sediments, and an 'iron shuttle' may have transported isotopically light Fe from shelf sediments to the basin. Nevertheless, water-column processing of hydrothermally delivered Fe likely had the strongest influence on the bulk iron isotope composition of Archean and Paleoproterozoic iron formations and other marine sediments.

  13. Carbon fiber content measurement in composite

    NASA Astrophysics Data System (ADS)

    Wang, Qiushi

    Carbon fiber reinforced polymers (CFRPs) have been widely used in various structural applications in industries such as aerospace and automotive because of their high specific stiffness and specific strength. Their mechanical properties are strongly influenced by the carbon fiber content in the composites. Measurement of the carbon fiber content in CFRPs is essential for product quality control and process optimization. In this work, a novel carbonization-in-nitrogen method (CIN) is developed to characterize the fiber content in carbon fiber reinforced thermoset and thermoplastic composites. In this method, a carbon fiber composite sample is carbonized in a nitrogen environment at elevated temperatures, alongside a neat resin sample. The carbon fibers are protected from oxidization while the resin (the neat resin and the resin matrix in the composite sample) is carbonized under the nitrogen environment. The residue of the carbonized neat resin sample is used to calibrate the resin carbonization rate and calculate the amount of the resin matrix in the composite sample. The new method has been validated on several thermoset and thermoplastic resin systems and found to yield an accurate measurement of fiber content in carbon fiber polymer composites. In order to further understand the thermal degradation behavior of the high temperature thermoplastic polymer during the carbonization process, the mechanism and the kinetic model of thermal degradation behavior of carbon fiber reinforced poly (phenylene sulfide) (CPPS) are studied using thermogravimetry analysis (TGA). The CPPS is subjected to TGA in an air and nitrogen atmosphere at heating rates from 5 to 40°C min--1. The TGA curves obtained in air are different from those in nitrogen. This demonstrates that weight loss occurs in a single stage in nitrogen but in two stages in air. To elucidate this difference, thermal decomposition kinetics is analyzed by applying the Kissinger, Flynn-Wall-Ozawa, Coat-Redfern and

  14. Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L.

    PubMed

    Flanagan, L B; Comstock, J P; Ehleringer, J R

    1991-06-01

    In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate. PMID:16668226

  15. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    USGS Publications Warehouse

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  16. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zhen; Helz, Rosalind T.; Moynier, Frédéric

    2013-05-01

    The zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰<δ66Zn<0.36‰; δ66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe-Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰<δ66Zn<0.33‰), however, the degree of fractionation caused by magmatic differentiation is less significant (only 0.07‰) and no correlation between isotope composition and degree of differentiation is seen. We conclude that high temperature magmatic differentiation can cause Zn isotope fractionation that is resolvable at current levels of precision, but only in compositionally-evolved lithologies. With regards to primitive (ultramafic and basaltic) material, this signifies that the terrestrial mantle is essentially homogeneous with respect to Zn isotopes. Utilizing basaltic and ultramafic sample analyses, from different geologic settings, we estimate that the average Zn isotopic composition of Bulk Silicate Earth is δ66Zn=0.28

  17. Uranium isotopic composition and absolute ages of Allende chondrules

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.; Budde, G.; Kleine, T.

    2015-11-01

    A handful of events, such as the condensation of refractory inclusions and the formation of chondrules, represent important stages in the formation and evolution of the early solar system and thus are critical to understanding its development. Compared to the refractory inclusions, chondrules appear to have a protracted period of formation that spans millions of years. As such, understanding chondrule formation requires a catalog of reliable ages, free from as many assumptions as possible. The Pb-Pb chronometer has this potential; however, because common individual chondrules have extremely low uranium contents, obtaining U-corrected Pb-Pb ages of individual chondrules is unrealistic in the vast majority of cases at this time. Thus, in order to obtain the most accurate 238U/235U ratio possible for chondrules, we separated and pooled thousands of individual chondrules from the Allende meteorite. In this work, we demonstrate that no discernible differences exist in the 238U/235U compositions between chondrule groups when separated by size and magnetic susceptibility, suggesting that no systematic U-isotope variation exists between groups of chondrules. Consequently, chondrules are likely to have a common 238U/235U ratio for any given meteorite. A weighted average of the six groups of chondrule separates from Allende results in a 238U/235U ratio of 137.786 ± 0.004 (±0.016 including propagated uncertainty on the U standard [Richter et al. 2010]). Although it is still possible that individual chondrules have significant U isotope variation within a given meteorite, this value represents our best estimate of the 238U/235U ratio for Allende chondrules and should be used for absolute dating of these objects, unless such chondrules can be measured individually.

  18. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  19. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  20. Carbon isotopic composition of individual Precambrian microfossils

    NASA Technical Reports Server (NTRS)

    House, C. H.; Schopf, J. W.; McKeegan, K. D.; Coath, C. D.; Harrison, T. M.; Stetter, K. O.

    2000-01-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  1. Carbon isotopic composition of individual Precambrian microfossils.

    PubMed

    House, C H; Schopf, J W; McKeegan, K D; Coath, C D; Harrison, T M; Stetter, K O

    2000-08-01

    Ion microprobe measurements of carbon isotope ratios were made in 30 specimens representing six fossil genera of microorganisms petrified in stromatolitic chert from the approximately 850 Ma Bitter Springs Formation, Australia, and the approximately 2100 Ma Gunflint Formation, Canada. The delta 13C(PDB) values from individual microfossils of the Bitter Springs Formation ranged from -21.3 +/- 1.7% to -31.9 +/- 1.2% and the delta 13C(PDB) values from microfossils of the Gunflint Formation ranged from -32.4 +/- 0.7% to -45.4 +/- 1.2%. With the exception of two highly 13C-depleted Gunflint microfossils, the results generally yield values consistent with carbon fixation via either the Calvin cycle or the acetyl-CoA pathway. However, the isotopic results are not consistent with the degree of fractionation expected from either the 3-hydroxypropionate cycle or the reductive tricarboxylic acid cycle, suggesting that the microfossils studied did not use either of these pathways for carbon fixation. The morphologies of the microfossils suggest an affinity to the cyanobacteria, and our carbon isotopic data are consistent with this assignment.

  2. The Stable Isotopic Composition of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Yakir, D.

    2003-12-01

    When a bean leaf was sealed in a closed chamber under a lamp (Rooney, 1988), in two hours the atmospheric CO2 in the microcosm reached an isotopic steady state with a 13C abundance astonishingly similar to the global mean value of atmospheric CO2 at that time (-7.5‰ in the δ13C notation introduced below). Almost concurrently, another research group sealed a suspension of asparagus cells in a different type of microcosm in which within about two hours the atmospheric O2 reached an isotopic steady state with 18O enrichment relative to water in the microcosm that was, too, remarkably similar to the global-scale offset between atmospheric O2 and mean ocean water (21‰ versus 23.5‰ in the δ18O notation introduced below; Guy et al., 1987). These classic experiments capture some of the foundations underlying the isotopic composition of atmospheric CO2 and O2. First, in both cases the biological system rapidly imposed a unique isotopic value on the microcosms' atmosphere via their massive photosynthetic and respiratory exchange of CO2 and O2. Second, in both cases the biological system acted on materials with isotopic signals previously formed by the global carbon and hydrological cycles. That is, the bean leaf introduced its previously formed organic matter (the source of the CO2 respired into microcosm's atmosphere), and the asparagus cells were introduced complete with local tap water (from which photosynthesis released molecular oxygen). Therefore, while the isotopic composition of the biological system used was slave to long-term processes, intense metabolic processes centered on few specific enzymes (Yakir, 2002) dictated the short-term atmospheric composition.In a similar vein, on geological timescales of millions of years, the atmosphere and its isotopic composition are integral parts of essentially a single dynamic ocean-atmosphere-biosphere system. This dynamic system exchanges material, such as carbon and oxygen, with the sediments and the lithosphere via

  3. Lithium isotope composition of basalt glass reference material.

    PubMed

    Kasemann, Simone A; Jeffcoate, Alistair B; Elliott, Tim

    2005-08-15

    We present data on the lithium isotope compositions of glass reference materials from the United States Geological Survey (USGS) and the National Institute of Standards and Technology (NIST) determined by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), thermal ionization mass spectrometry (TIMS), and secondary ionization mass spectrometry (SIMS). Our data on the USGS basaltic glass standards agree within 2 per thousand, independent of the sample matrix or Li concentration. For SIMS analysis, we propose use of the USGS glasses GSD-1G (delta(7)Li 31.14 +/- 0.8 per thousand, 2sigma) and BCR-2G (delta(7)Li 4.08 +/- 1.0 per thousand, 2sigma) as suitable standards that cover a wide range of Li isotope compositions. Lithium isotope measurements on the silica-rich NIST 600 glass series by MC-ICPMS and TIMS agree within 0.8 per thousand, but SIMS analyses show systematic isotopic differences. Our results suggest that SIMS Li isotope analyses have a significant matrix bias in high-silica materials. Our data are intended to serve as a reference for both microanalytical and bulk analytical techniques and to improve comparisons between Li isotope data produced by different methodologies.

  4. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    USGS Publications Warehouse

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.

  5. Heavy nickel isotope compositions in rivers and the oceans

    NASA Astrophysics Data System (ADS)

    Cameron, V.; Vance, D.

    2014-03-01

    Nickel is a biologically-active trace metal whose dissolved concentration depth profiles in the ocean show nutrient-like behaviour. If the pronounced removal of nickel from the dissolved phase in the surface ocean, and its return in the deep, is associated with an isotopic fractionation nickel isotopes may be able to yield constraints on the precise biogeochemical processes involved. Here we present the first nickel isotope data for seawater along with data for the dissolved phase of rivers, one of the principal sources of nickel to the oceans. The dissolved phase of rivers exhibits substantial variability in both Ni concentration and δ60Ni: from 2.2 to 35 nmol kg-1 and +0.29 to +1.34‰, respectively. The most striking result from the nickel isotope analyses of rivers is that they are substantially heavier (by up to 1‰ for δ60Ni) than the range for silicate rocks on the continents, a finding that is analogous to that for other transition metal isotope systems. If the data presented here are close to representative of the global riverine flux, they suggest an annual input of Ni to the oceans of 3.6 × 108moles, and a discharge- and concentration-weighted δ60Ni average of +0.80‰. The relationship between Ni isotopes and concentrations shows similarities with those for other transition metal isotope systems, where the main control has been suggested to be isotopic partitioning between the dissolved phase and particulates, either in the weathering environment or during transport. In stark contrast to the rivers, the dataset for seawater is very homogeneous, with 2SD of the entire dataset being only twice the analytical reproducibility. The second main feature is that seawater is distinctly heavier in Ni isotopes than rivers. The average δ60Ni is 1.44 ± 0.15‰ (2SD), and only 2 of the 29 seawater analyses have a Ni isotopic composition that is lighter than the heaviest river. The lack of an isotopic shift associated with the drawdown of nickel concentrations

  6. Stable isotope composition of cocoa beans of different geographical origin.

    PubMed

    Perini, Matteo; Bontempo, Luana; Ziller, Luca; Barbero, Alice; Caligiani, Augusta; Camin, Federica

    2016-09-01

    The isotopic profile (δ(13) C, δ(15) N, δ(18) O, δ(2) H, δ(34) S) was used to characterise a wide selection of cocoa beans from different renowned production areas (Africa, Asia, Central and South America). The factors most influencing the isotopic signatures of cocoa beans were climate and altitude for δ(13) C and the isotopic composition of precipitation water for δ(18) O and δ(2) H, whereas δ(15) N and δ(34) S were primarily affected by geology and fertilisation practises. Multi-isotopic analysis was shown to be sufficiently effective in determining the geographical origin of cocoa beans, and combining it with Canonical Discriminant Analysis led to more than 80% of samples being correctly reclassified. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Isotopic composition and concentration of sulfur in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Gao, X.; Thiemens, M. H.

    1993-07-01

    New sulfur isotopic ratio measurements are reported for seven carbonaceous chondrites. Newly developed procedures permit measurement of delta S-33, delta S-34, and delta S-36 at precisions significantly greater than previously reported. A search for S-36 nucleosynthetic anomalies coproduced with anomalies in, for example, Ti-50 and Ca-48 was negative. The high endemic sulfur concentration probably dilutes any S-36 anomaly, and separation of individual sulfur phases may be needed to identify S-36 carrier phases. Large internal isotopic variations are observed, deriving from parent body and possibly nebular processes. Chondrule separates from Allende demonstrate isotopic compositions which vary as a function of diameter. High-temperature gas-solid exchange and a two-component mixing model may account for the observations. High-resolution isotopic data and structural information are reported for organic sulfur compounds separated by chemical extractions. The insoluble organics appear to be of either aliphatic or alicyclic structure and are dominant phases.

  8. Stable isotope composition of cocoa beans of different geographical origin.

    PubMed

    Perini, Matteo; Bontempo, Luana; Ziller, Luca; Barbero, Alice; Caligiani, Augusta; Camin, Federica

    2016-09-01

    The isotopic profile (δ(13) C, δ(15) N, δ(18) O, δ(2) H, δ(34) S) was used to characterise a wide selection of cocoa beans from different renowned production areas (Africa, Asia, Central and South America). The factors most influencing the isotopic signatures of cocoa beans were climate and altitude for δ(13) C and the isotopic composition of precipitation water for δ(18) O and δ(2) H, whereas δ(15) N and δ(34) S were primarily affected by geology and fertilisation practises. Multi-isotopic analysis was shown to be sufficiently effective in determining the geographical origin of cocoa beans, and combining it with Canonical Discriminant Analysis led to more than 80% of samples being correctly reclassified. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27484307

  9. What controls the isotopic composition of Greenland surface snow?

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, S.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A. E.

    2014-02-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD) of near-surface water vapor, precipitation and samples of the top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near-surface vapor

  10. What controls the isotopic composition of Greenland surface snow?

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Masson-Delmotte, V.; Hirabayashi, M.; Winkler, R.; Satow, K.; Prié, F.; Bayou, N.; Brun, E.; Cuffey, K. M.; Dahl-Jensen, D.; Dumont, M.; Guillevic, M.; Kipfstuhl, J.; Landais, A.; Popp, T.; Risi, C.; Steffen, K.; Stenni, B.; Sveinbjörnsdottír, A.

    2013-10-01

    Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically-enabled atmospheric models. However, post-deposition processes linked with snow metamorphism remain poorly documented. For this purpose, a monitoring of the isotopic composition (δ18O, δD) of surface water vapor, precipitation and samples of top (0.5 cm) snow surface has been conducted during two summers (2011-2012) at NEEM, NW Greenland. The measurements also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between surface vapor δ18O and air temperature (0.85 ± 0.11 ‰ °C-1 (R = 0.76) for 2012). The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess) is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1-5 days periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated that 6 to 20% of the surface snow mass is exchanged with the atmosphere using the CROCUS snow model. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or condensation. Comparisons with atmospheric models show that day-to-day variations in surface vapor isotopic composition are driven by synoptic weather and changes in air mass trajectories and distillation histories. We suggest that, in-between precipitation events, changes in the surface snow isotopic composition are driven by these changes in surface vapor isotopic composition. This

  11. The Clumped Isotope Composition of Biogenic Methane.

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Douglas, P. M.; Eiler, J. M.; Stolper, D. A.

    2015-12-01

    The excess or lack of 13CH3D, a doubly substituted ("clumped") isotopologue of methane, relative to that expected for a random distribution of isotopes across molecules, is a function of the processes that generated the methane. For high-temperature thermogenic methane, which typically achieves internal equilibrium, an excess of 13CH3D is expected and the amount of excess can serve as a thermometer. In contrast, biogenic methane often - though not always - has a smaller excess of clumped isotopologues, and sometimes even a deficit of clumped species ("anti-clumped"). The effect presumably arises from kinetic isotope effects accompanying enzymatic reactions in the methanogenic pathway, though the particular reaction(s) has not yet been positively identified. The decrease in clumping is also known to correlate with both the reversibility of the pathway and the methane flux. In this talk, we will present recent data bearing on the origin and utility of biologic fractionations of clumped isotopologues in methane. Preliminary data suggest that methane deriving from the fermentative pathway is enriched in D-bearing isotopologues, at the same level of clumping, relative to that derived from the CO2-reductive pathway. This property offers another potential means to distinguish biogenic methane sources in the environment. Recently, we have also begun to measure the 12CH2D2 isotopologue, for which equilibrium and kinetic isotope effects are predicted to be distinct from 13CH3D. Preliminary data suggest that the combination of both doubly-substituted isotopologues will be especially useful for disentangling mixtures containing biogenic gas.

  12. H-Isotopic Composition of Apatite in Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  13. Measurement of Plutonium Isotopic Composition - MGA

    SciTech Connect

    Vo, Duc Ta

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  14. Heavy nickel isotope compositions in rivers and the oceans

    NASA Astrophysics Data System (ADS)

    Cameron, V.; Vance, D.

    2014-03-01

    Nickel is a biologically-active trace metal whose dissolved concentration depth profiles in the ocean show nutrient-like behaviour. If the pronounced removal of nickel from the dissolved phase in the surface ocean, and its return in the deep, is associated with an isotopic fractionation nickel isotopes may be able to yield constraints on the precise biogeochemical processes involved. Here we present the first nickel isotope data for seawater along with data for the dissolved phase of rivers, one of the principal sources of nickel to the oceans. The dissolved phase of rivers exhibits substantial variability in both Ni concentration and δ60Ni: from 2.2 to 35 nmol kg-1 and +0.29 to +1.34‰, respectively. The most striking result from the nickel isotope analyses of rivers is that they are substantially heavier (by up to 1‰ for δ60Ni) than the range for silicate rocks on the continents, a finding that is analogous to that for other transition metal isotope systems. If the data presented here are close to representative of the global riverine flux, they suggest an annual input of Ni to the oceans of 3.6 × 108moles, and a discharge- and concentration-weighted δ60Ni average of +0.80‰. The relationship between Ni isotopes and concentrations shows similarities with those for other transition metal isotope systems, where the main control has been suggested to be isotopic partitioning between the dissolved phase and particulates, either in the weathering environment or during transport. In stark contrast to the rivers, the dataset for seawater is very homogeneous, with 2SD of the entire dataset being only twice the analytical reproducibility. The second main feature is that seawater is distinctly heavier in Ni isotopes than rivers. The average δ60Ni is 1.44 ± 0.15‰ (2SD), and only 2 of the 29 seawater analyses have a Ni isotopic composition that is lighter than the heaviest river. The lack of an isotopic shift associated with the drawdown of nickel concentrations

  15. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Takigiku, Ray; Ocampo, Ruben; Callot, Enry J.; Albrecht, Pierre

    1987-01-01

    It is shown here that the carbon isotopic compositions of biomarkers from the Eocene Messel shale, accumulated 47 + or - 2 million years ago in anaerobic waters at the bottom of a lake, allow identification of specific sources for some materials and reconstruction of carbon flows within the lake and its sediments. The C-13 content of organic matter synthesized by lacustrine primary producers can be estimated from the observed C-13 content of the geoporphyrins derived from their chlorophylls. Total organic material in the shale is depleted in C-13 by six parts per thousand relative to that input. This difference cannot be explained by selective loss of components enriched in C-13, nor, as shown by isotopic compositions of other biomarkers, by inputs from land plants surrounding the lake or from methanogenic bacteria.

  16. Pressure-dependent isotopic composition of iron alloys.

    PubMed

    Shahar, A; Schauble, E A; Caracas, R; Gleason, A E; Reagan, M M; Xiao, Y; Shu, J; Mao, W

    2016-04-29

    Our current understanding of Earth's core formation is limited by the fact that this profound event is far removed from us physically and temporally. The composition of the iron metal in the core was a result of the conditions of its formation, which has important implications for our planet's geochemical evolution and physical history. We present experimental and theoretical evidence for the effect of pressure on iron isotopic composition, which we found to vary according to the alloy tested (FeO, FeH(x), or Fe3C versus pure Fe). These results suggest that hydrogen or carbon is not the major light-element component in the core. The pressure dependence of iron isotopic composition provides an independent constraint on Earth's core composition. PMID:27126042

  17. Pressure-dependent isotopic composition of iron alloys.

    PubMed

    Shahar, A; Schauble, E A; Caracas, R; Gleason, A E; Reagan, M M; Xiao, Y; Shu, J; Mao, W

    2016-04-29

    Our current understanding of Earth's core formation is limited by the fact that this profound event is far removed from us physically and temporally. The composition of the iron metal in the core was a result of the conditions of its formation, which has important implications for our planet's geochemical evolution and physical history. We present experimental and theoretical evidence for the effect of pressure on iron isotopic composition, which we found to vary according to the alloy tested (FeO, FeH(x), or Fe3C versus pure Fe). These results suggest that hydrogen or carbon is not the major light-element component in the core. The pressure dependence of iron isotopic composition provides an independent constraint on Earth's core composition.

  18. Pressure-dependent isotopic composition of iron alloys

    NASA Astrophysics Data System (ADS)

    Shahar, A.; Schauble, E. A.; Caracas, R.; Gleason, A. E.; Reagan, M. M.; Xiao, Y.; Shu, J.; Mao, W.

    2016-04-01

    Our current understanding of Earth’s core formation is limited by the fact that this profound event is far removed from us physically and temporally. The composition of the iron metal in the core was a result of the conditions of its formation, which has important implications for our planet’s geochemical evolution and physical history. We present experimental and theoretical evidence for the effect of pressure on iron isotopic composition, which we found to vary according to the alloy tested (FeO, FeHx, or Fe3C versus pure Fe). These results suggest that hydrogen or carbon is not the major light-element component in the core. The pressure dependence of iron isotopic composition provides an independent constraint on Earth’s core composition.

  19. Converting isotope ratios to diet composition - the use of mixing models - June 2010

    EPA Science Inventory

    One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...

  20. A reconnaissance of the boron isotopic composition of tourmaline

    SciTech Connect

    Swihart, G.H.; Moore, P.B. )

    1989-04-01

    A preliminary investigation of the boron isotopic composition of tourmaline from some boron-rich associations has been made. The results for tourmaline from metasedimentary paragneisses (n = 12) range from {delta}{sup 11}B = {minus}22 to +22 per mil. These data mainly fall between the boron isotopic compositions of normal marine sediments with {delta}{sup 11}B = {minus}2 to +5 per mil and seawater with {delta}{sup 11}B = +39.5 per mil. Tourmaline samples from granitic pegmatites (n = 6), on the other hand, range from {delta}{sup 11}B = {minus}12 to {minus}5 per mil. The data provide a rudimentary indication of the range of boron isotopic variation in tourmaline, some of the processes leading to this range, and some possible geochemical tracer applications.

  1. Transition of the Isotopic Composition of Leaf Water to the Isotopic Steady State in Soybean and Corn

    NASA Astrophysics Data System (ADS)

    Kim, K.; Lee, X.; Welp, L. R.

    2007-12-01

    The isotope composition of leaf water (δL) plays an important role in the isotopic water and carbon fluxes between terrestrial plants and the atmosphere. The objective of this study is to improve our understanding of environmental and biological controls on the transition of δL to steady state through laboratory experiments. Plants (soybean, Glycine max; corn, Zea mays) were grown hydroponically with water of a known isotopic content in a greenhouse. On the day of the experiment, they were first moved to ambient environment in full sunlight for at least 6 hr and then into a dark container inside the lab for up to 48 hr in which water vapor isotope ratios, temperature, and humidity were controlled. This arrangement created a step change in the forcing on the plant isotopic exchange. Leaves were sampled prior to the transfer to the dark container and 6 more times every 4 - 12 hr over the experiment. In the first set of experiments, humidity inside the container was saturated to mimic dew events in field conditions. In the second set, humidity was controlled at approximately 95%. Water from the leaf samples was extracted by a vacuum line and was analyzed for both δD and δ18O. The dataset will allow us to evaluate leaf water isotopic theories by exploring the transitions of δL in response to the step change. Specifically, we are interested in whether the stomatal opening is an effective pathway for gaseous exchange in total darkness and how the transitional behaviors of δL differ between the C3 and C4 photosynthesis pathways.

  2. Authentication of bell peppers using boron and strontium isotope compositions

    NASA Astrophysics Data System (ADS)

    Rosner, Martin; Pritzkow, Wolfgang; Vogl, Jochen; Voerkelius, Susanne

    2010-05-01

    The wrong declaration of food in terms of geographical origin and production method is a major problem for the individual consumer and public regulatory authorities. The authentication of food matrices using H-C-N-O-S isotopic compositions is already well established. However, specific questions require additional isotopic systems, which are more diagonstic for the source reservoires involved or production methods used. Here we present B and Sr isotopic compositions of bell peppers from Europe (Germany, Austria, Netherlands, Spain) and Israel to verfiy their origin. The bell peppers' B isotopic compositions between different locations are highly variable (d11BNISTSRM951 -8 to +35 ‰), whereas the 87Sr/86Sr ratios are all close to modern seawater Sr isotopic composition of about 0.7092 (0.7078 to 0.7107), but still can reliably be distinguished. Distinct isotopically heavy and light B isotopic fingerprints are obtained for bell peppers from Israel and the Netherlands. Samples from Germany, Austria, and Spain display overlapping d11B values between 0 and +12 ‰. Bell peppers from Israel show high d11B values (+28 to +35 ‰) combined with 87Sr/86Sr ratios slightly more unradiogenic than modern seawater (ca 0.7079). Bell peppers from the Netherlands, however, show low d11B values (-8 ‰) combinded with 87Sr/86Sr ratios of modern seawater (approx. 0.7085). Mainly based on diagnostic B isotopic compositions bell peppers from Israel and the Netherlands can be related to a specific geographical growing environment (Israel) or production method (Netherlands). The isotope fingerprints of bell peppers from the Netherlands are consistent with growing conditions in greenhouses typical for the Netherlands vegetable farming. Using optimized production methods crops in greenhouses were supplied with nutritients by liquid fertilizers on artificial substrates. As most fertilizers derive from non-marine salt deposits, fertilization typically imprints invariant d11B values close

  3. The isotopic composition of atmospheric oxygen

    NASA Astrophysics Data System (ADS)

    Luz, Boaz; Barkan, Eugeni

    2011-09-01

    Atmospheric O2 is almost 24‰ more enriched in 18O than seawater, and this enrichment is known as the Dole effect. For a long time it has been accepted that there is no oxygen isotope fractionation in photosynthesis, and thus the Dole effect should be the result of preferential terrestrial and marine respiratory consumption of 16O over 18O, and also several permil enrichment of leaf water from which terrestrial photosynthesis produces 18O enriched O2. This concept has led to the understanding that the record of past Dole effect variations was strongly affected by changes in the ratio of photosynthetic production between land and sea. However, recent studies in our lab have led to two major new observations: (1) O2 produced by certain marine phytoplankton, representing important groups of primary producers, is significantly enriched (up to 6‰) in 18O with respect to the substrate seawater and (2) effective oxygen isotope fractionation in soil respiration is considerably smaller than the intrinsic respiratory fractionation. Here we take these two observations into account and show that the magnitudes of the terrestrial and marine components of the Dole effect are close, and both are close to the measured Dole effect. As a result, the magnitude of the global Dole effect should not be sensitive to past changes in the ratio of land-to-sea photosynthetic rates. Instead of the land-sea control, variations in low-latitude hydrology, and possibly changes of fractionations in the marine biosphere, are more important in regulating the magnitude of the Dole effect and its past variations.

  4. Isotope composition and volume of Earth's early oceans.

    PubMed

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  5. CALCIUM ISOTOPE COMPOSITION OF METEORITES, EARTH, AND MARS

    SciTech Connect

    Simon, Justin I.; DePaolo, Donald J.; Moynier, Frederic

    2009-09-01

    The relative abundances of calcium isotopes in the mass range 40-44 were measured in primitive and differentiated meteorites and igneous rocks from Earth and Mars in search of non-mass-dependent variations that could provide clues about early solar system processes. Most bulk samples of planetary materials have calcium isotopic compositions identical with Earth's within the current resolution of about 0.01% in {sup 40}Ca/{sup 44}Ca. Possible exceptions include carbonaceous chondrites, some ordinary chondrites, and two samples of calcium-aluminum-rich inclusions, which have small excesses of {sup 40}Ca. The samples with {sup 40}Ca excesses are also known to have {sup 50}Ti and {sup 135}Ba excesses and {sup 142}Nd and {sup 144}Sm deficits. Collectively these data from refractory elements suggest that the planetary embryos represented by chondrites preserve isotopic heterogeneity that reflects different nucleosynthetic sources. No late admixture from a single nucleosynthetic source can explain all observations. The results are most compatible with variable proportions of material derived from Type II supernovae. The initial calcium isotope compositions of Earth and Mars are indistinguishable and similar to the {sup 40}Ca abundance found in some chondrites and all differentiated meteorites studied. It appears that isotopic heterogeneity in calcium was still present at the completion of disk formation but was homogenized during planetary accretion.

  6. Isotope composition and volume of Earth’s early oceans

    PubMed Central

    Pope, Emily C.; Bird, Dennis K.; Rosing, Minik T.

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth’s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen’s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth’s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth. PMID:22392985

  7. Controls over the strontium isotope composition of river water

    SciTech Connect

    Palmer, M.R. ); Edmond, J.M. )

    1992-05-01

    Strontium concentrations and isotope ratios have been measured in river and ground waters from the Granges, Orinoco, and Amazon river basins. When compared with major element concentrations, the data set has allowed a detailed examination of the controls over the strontium isotope systematics of riverine input to the oceans in the following environments: (1) typical drainage basins containing limestones, evaporites, shales, and alumino-silicate metamorphic and igneous rocks; (2) shield terrains containing no chemical or biogenic sediments; and (3) the flood plains that constitute the largest areas of many large rivers. The strontium concentration and isotope compositions of river waters are largely defined by mixing of strontium derived from limestones and evaporites with strontium derived from silicate rocks. The strontium isotope composition of the limestone end member generally lies within the Phanerozoic seawater range, which buffers the [sup 87]Sr/[sup 86]Sr ratios of major rivers. A major exception is provided by the rivers draining the Himalayas, where widescale regional metamorphism appears to have led to an enrichment in limestones of radiogenic strontium derived from coexisting silicate rocks. The strontium isotope systematics of rivers draining shield areas are controlled by the intense, transport-limited, nature of the weathering reactions, and thereby limits variations in the strontium flux from these terrains. Flood plains are only a minor source of dissolved strontium to river waters, and precipitation of soil salts in some flood plains can reduce the riverine flux of dissolved strontium to the oceans.

  8. The abundance and isotopic composition of water in eucrites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Barnes, J. J.; TartèSe, R.; Anand, M.; Franchi, I. A.; Greenwood, R. C.; Charlier, B. L. A.; Grady, M. M.

    2016-06-01

    Volatile elements play a key role in the dynamics of planetary evolution. Extensive work has been carried out to determine the abundance, distribution, and source(s) of volatiles in planetary bodies such as the Earth, Moon, and Mars. A recent study showed that the water in apatite from eucrites has similar hydrogen isotopic compositions compared to water in terrestrial rocks and carbonaceous chondrites, suggesting that water accreted very early in the inner solar system given the ancient crystallization ages (~4.5 Ga) of eucrites. Here, the measurements of water (reported as equivalent H2O abundances) and the hydrogen isotopic composition (δD) of apatite from five basaltic eucrites and one cumulate eucrite are reported. Apatite H2O abundances range from ~30 to ~3500 ppm and are associated with a weighted average δD value of -34 ± 67‰. No systematic variations or correlations are observed in H2O abundance or δD value with eucrite geochemical trend or metamorphic grade. These results extend the range of previously published hydrogen isotope data for eucrites and confirm the striking homogeneity in the H-isotopic composition of water in eucrites, which is consistent with a common source for water in the inner solar system.

  9. The Chlorine Isotopic Composition Of Lunar UrKREEP

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. However, the current models for the Moon’s formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes, using NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) of lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  10. Menopause effect on blood Fe and Cu isotope compositions.

    PubMed

    Jaouen, Klervia; Balter, Vincent

    2014-02-01

    Iron (δ(56) Fe) and copper (δ(65) Cu) stable isotope compositions in blood of adult human include a sex effect, which still awaits a biological explanation. Here, we investigate the effect of menopause by measuring blood δ(56) Fe and δ(65) Cu values of aging men and women. The results show that, while the Fe and Cu isotope compositions of blood of men are steady throughout their lifetime, postmenopausal women exhibit blood δ(65) Cu values similar to men, and δ(56) Fe values intermediate between men and premenopausal women. The residence time of Cu and Fe in the body likely explains why the blood δ(65) Cu values, but not the δ(56) Fe values, of postmenopausal women resemble that of men. We suggest that the Cu and Fe isotopic fractionation between blood and liver resides in the redox reaction occurring during hepatic solicitation of Fe stores. This reaction affects the Cu speciation, which explains why blood Cu isotope composition is impacted by the cessation of menstruations. Considering that Fe and Cu sex differences are recorded in bones, we believe this work has important implications for their use as a proxy of sex or age at menopause in past populations.

  11. The isotopic composition of solar flare accelerated neon

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of neon in energetic solar-flare particles have been clearly resolved with a rms mass resolution of 0.20 amu. The ratios found are Ne-20/Ne-22 = 7.6 (+2.0, -1.8) and Ne-21/Ne-22 of no more than about 0.11 in the 11-26 MeV per nucleon interval. This isotopic composition is essentially the same as that of meteoritic planetary neon-A and is significantly different from that of the solar wind.

  12. Isotopic composition of hydrogen in insoluble organic matter from cherts

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.

    1991-01-01

    Robert (1989) reported the presence of unusually enriched hydrogen in the insoluble HF-HCl residue extracted from two chert samples of Eocene and Pliocene ages. Since the presence of heavy hydrogen might be due to the incorporation of extraterrestrial materials, we desired to reexamine the same samples to isolate the D-rich components. Our experiments did not reveal any D-rich components, but the hydrogen isotope composition of the insoluble residue of the two chert samples was well within the range expected for terrestrial organic matter. We also describe a protocol that needs to be followed in the hydrogen isotope analysis of any insoluble organic matter.

  13. The Chlorine Isotopic Composition Of Lunar UrKREEP

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. Numerous studies have examined the abundances and isotopic compositions of volatiles in lunar apatite, Ca5(PO4)3(F,Cl,OH). In particular, apatite has been used as a tool for assessing the sources of H2O in the lunar interior. However, current models for the Moon's formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. For ex-ample, in the context of the lunar magma ocean (LMO) model, it is anticipated that chlorine (and other volatiles) should have been concentrated in the late-stage LMO residual melts (i.e., the dregs enriched in incompatible elements such as K, REEs (Rare Earth Elements), and P, collectively called KREEP, and in its primitive form - urKREEP, given its incompatibility in mafic minerals like olivine and pyroxene, which were the dominant phases that crystallized early in the cumulate pile of the LMO. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon (BSM). In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes in lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  14. C-isotope composition of fossil sedges and grasses

    NASA Astrophysics Data System (ADS)

    Kurschner, Wolfram M.

    2010-05-01

    C4 plants differ from C3 plants regarding their anatomy and their C-isotope composition. Both features can be used in the geological record to determine the presence of C4 plants. Yet, the evolution of the C4 pathway in the fossil record is enigmatic as palaeobotanical and geological evidence for C4 plants is sparse. The oldest structural evidence for Kranz anatomy has been found in Late Miocene permineralized grass leaf remains. But studies on the C-isotope composition of sedimentary organic matter indicate that abundant C4 biomass was present in N-America and Asia throughout the Miocene in expanding savannahs and grasslands. The success of C4 plants appears to be related also to an increasing seasonal aridity in the tropical climate belts and the co-evolution of grazers. However, C- isotope composition of palaeosols or vertebrate teeth only allows to estimate the abundance of C4 plant biomass in the vegetation or in the diet without further taxonomical specification which plant groups would have had C4 metabolism. In this contribution the first extensive C-isotope analysis of fossil seeds of sedges and a few grasses are presented. The age of the carpological material ranges from Late Eocene to Pliocene and was collected from several central European brown coal deposits. The 52 different taxa studied include several species of Carex, Cladiocarya, Eriopherum, Eleocharis, Scirpus, Sparganium. Most of them representing herbaceous elements of a (sub)tropical vegetation growing near the edge of a lake. The C-isotope composition of the fossil seeds varies between -30 and -23 o/oo indicating C3 photosynthesis. This first systematic inventory shows that C4 plants were absent in the European (sub)tropical brown coal forming wetland vegetation during the Tertiary. These preliminary data are in agreement with phylogenetic studies which predict the origin of C4 plants outside the European realm.

  15. Unnatural Isotopic Composition of Lithium Reagents

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.; Wang, Q. Zh; Wang, Y.-H.

    1997-01-01

    Isotopic analysis of 39 lithium reagents from several manufacturers indicates that seven were artificially depleted in 6Li significantly in excess of the variation found in terrestrial materials. The atomic weight of lithium in analyzed reagents ranged from 6.939 to 6.996, and ??7-Li, reported relative to L-SVEC lithium carbonate, ranged from -11 to +3013???. This investigation indicates that 6Li-depleted reagents are now found on chemists' shelves, and the labels of these 6Li-depleted reagents do not accurately reflect the atomic and (or) molecular weights of these reagents. In 1993, IUPAC issued the following statement: "Commercially available Li materials have atomic weights that range between 6.94 and 6.99; if a more accurate value is required, it must be determined for the specific material." This statement has been found to be incorrect In two of the 39 samples analyzed, the atomic weight of Li was in excess of 6.99.

  16. Boron isotopic compositions of some boron minerals

    SciTech Connect

    Oi, Takao; Musashi, Masaaki; Ossaka, Tomoko; Kakihana, Hidetake ); Nomura, Masao; Okamoto, Makoto )

    1989-12-01

    Boron minerals that have different structural formulae but are supposed to have the same geologic origin have been collected and analyzed for the {sup 11}B/{sup 10}B isotopic ratio. It has been reconfirmed that minerals of marine origin have higher {sup 11}B/{sup 10}B ratios than those of nonmarine origin. It has been found that the sequence of decreasing {sup 11}B/{sup 10}B values among the minerals with the same geologic origin is; borax, tincal, kernite (Na borates) > ulexite (Na/Ca borate) > colemanite, iyoite, meyerhofferite (Ca borates). This sequence is explainable on the basis of the difference in crystal structure among the minerals. That is, minerals with high BO{sub 3}/BO{sub 4} ratios, (the ratio of the number of the BO{sub 3} triangle units to the number of the BO{sub 4} tetrahedron units in the structural formula of a mineral) have higher {sup 11}B/{sup 10}B ratios.

  17. The Li isotope composition of modern biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; West, A. J.; Adkins, J. F.; Paris, G.; Eagle, R.; Freitas, P. S.; Bagard, M. L.; Ries, J. B.; Corsetti, F. A.; Pogge von Strandmann, P.; Ullmann, C. V.

    2015-12-01

    The lithium stable isotope composition (δ7Li) of sedimentary carbonates has great potential to unravel weathering rates and intensity in the past, with implications for understanding the carbon cycle over geologic time. However, so far very little is known about the potential influence of fractionation of the stable Li isotope composition of biogenic carbonates. Here, we investigate the δ7Li of various organisms (particularly mollusks, echinoderms and brachiopods) abundant in the Phanerozoic record, in order to understand which geologic archives might provide the best targets for reconstructing past seawater composition. The range of measured samples includes (i) modern calcite and aragonite shells from variable natural environments, (ii) shells from organisms grown under controlled conditions (temperature, salinity, pCO2), and (iii) fossil shells from a range of species collected from Miocene deposits. When possible, both the inner and outer layers of bivalves were micro-sampled to assess the intra-shell heterogeneity. For calcitic shells, the measured δ7Li of bivalve species range from +32 to +41‰ and is systematically enriched in the heavy isotope relative to seawater (31 ‰) and to inorganic calcite, which is characterized by Δ7Licalcite-seawater = -2 to -5‰ [1]. The Li isotope composition of aragonitic bivalves, ranging from +16 to +22‰, is slightly fractionated to both high and low δ7Li relative to inorganic aragonite. The largest intra-shell Li isotope variability is observed for mixed calcite-aragonite shells (more than 20‰) whereas in single mineralogy shells, intra-shell δ7Li variability is generally less than 3‰. Overall, these results suggest a strong influence of vital effects on Li isotopes during bio-calcification of bivalve shells. On the contrary, measured brachiopods systematically exhibit fractionation that is very similar to inorganic calcite, with a mean δ7Li of 27.0±1.5‰, suggesting that brachiopods may provide good

  18. Do foraminifera accurately record seawater neodymium isotope composition?

    NASA Astrophysics Data System (ADS)

    Scrivner, Adam; Skinner, Luke; Vance, Derek

    2010-05-01

    Palaeoclimate studies involving the reconstruction of past Atlantic meridional overturning circulation increasingly employ isotopes of neodymium (Nd), measured on a variety of sample media (Frank, 2002). In the open ocean, Nd isotopes are a conservative tracer of water mass mixing and are unaffected by biological and low-temperature fractionation processes (Piepgras and Wasserburg, 1987; Lacan and Jeandel, 2005). For decades, benthic foraminifera have been widely utilised in stable isotope and geochemical studies, but have only recently begun to be exploited as a widely distributed, high-resolution Nd isotope archive (Klevenz et al., 2008), potentially circumventing the difficulties associated with other methods used to recover past deep-water Nd isotopes (Klevenz et al., 2008; Rutberg et al., 2000; Tachikawa et al., 2004). Thus far, a single pilot study (Klevenz et al., 2008) has indicated that core-top sedimentary benthic foraminifera record a Nd isotope composition in agreement with the nearest available bottom seawater data, and has suggested that this archive is potentially useful on both millennial and million-year timescales. Here we present seawater and proximal core-top foraminifer Nd isotope data for samples recovered during the 2008 "RETRO" cruise of the Marion Dufresne. The foraminifer samples comprise a depth-transect spanning 3000m of the water column in the Angola Basin and permit a direct comparison between high-resolution water column and core-top foraminiferal Nd isotope data. We use these data to assess the reliability of both planktonic and benthic foraminifera as recorders of water column neodymium isotope composition. Frank, M., 2002. Radiogenic isotopes: Tracers of past ocean circulation and erosional input, Rev. Geophys., 40 (1), 1001, doi:10.1029/2000RG000094. Klevenz, V., Vance, D., Schmidt, D.N., and Mezger, K., 2008. Neodymium isotopes in benthic foraminifera: Core-top systematics and a down-core record from the Neogene south Atlantic

  19. Effect of Plant Uptake on Perchlorate Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Estrada, N. L.; Jackson, W. A.; Bohlke, J. K.; Sturchio, N. C.; Gu, B.; Rao, B.; Hatzinger, P. B.; Harvey, G.; Burkey, K.; McGrath, M. T.; Sevanthi, R.

    2013-12-01

    The occurrence of perchlorate (ClO4-) in the environment is attributed to both synthetic and natural sources. Unlike anthropogenic ClO4-, natural ClO4- exhibits a wide range in isotopic compositions, suggesting that natural ClO4- is formed through more than one pathway and/or undergoes post-depositional isotopic fractionation processes. One of these processes could be plant uptake and metabolism. Plants are known to reversibly accumulate ClO4-. However, there is little information available regarding the ability for plants to isotopically fractionate ClO4-. Plants could alter ClO4-isotopic composition either by mass dependent fractionation via transport carriers in the root, diffusion limitations through the root, translocation within the plant, reduction of ClO4- by plant enzymes, or non-specific exchange of oxygen in ClO4- catalyzed by plant compounds/processes. We examined the potential for plants to alter the isotopic composition of ClO4- (δ37Cl, δ18O, and Δ17O) in both hydroponic and field scale experiments. Hydroponically grown snap bean plants were exposed to variable ClO4-concentrations (2mg/L and 10mg/L) in solutions prepared from ClO4- with both normal and anomalous O isotopic abundances. At maturity, we evaluated the uptake of ClO4-relative to other anions and the isotopic compositions of ClO4- in both plants and growth solutions. Additional experiments involved field scale exposures of snap beans to irrigation water containing low levels (< 10 ug/L) of ClO4-. The majority of the initial mass of ClO4- for both the low and high exposure hydroponic treatments was recovered in the growth solutions (20-40%) or plant compartments (40-60%), while some mass was not recovered (~20%). ClO4- isotopic compositions were essentially identical between recovered ClO4- in the plant tissues and hydroponic solutions. Anion ratios indicate that ClO4-was accumulated similarly to NO3- but preferentially to Cl- (~4X). In field experiments, the isotopic composition of ClO4

  20. Radium isotopes in the Polish Outer Carpathian mineral waters of various chemical composition.

    PubMed

    Chau, Nguyen Dinh; Lucyna, Rajchel; Jakub, Nowak; Paweł, Jodłowski

    2012-10-01

    The paper presents the activity concentrations of radium isotopes ((226)Ra, (228)Ra) and chemical compositions of above 70 mineral water samples collected from several dozens of springs and boreholes localized in the Polish Outer Carpathians. The activity concentrations of both radium isotopes clearly increase with the increase of water TDS, but decrease when the SO(4)(2-) content increases. These concentrations vary in the broad interval from a few to near 1000 mBq/L. The coefficient of the linear correlation between concentrations of these isotopes amounts to 0.85, and the activity ratio (226)Ra/(228)Ra is >1 for chloride-sodium waters, being ≈1 for hydrogen-carbonate and <1 for the sulfate ones.

  1. Stable isotopic composition of bottled mineral waters from Romania

    NASA Astrophysics Data System (ADS)

    Bădăluţă, Carmen; Nagavciuc, Viorica; Perșoiu, Aurel

    2015-04-01

    Romania has a high potential of mineral waters resources, featuring one of the largest mineral resources at European and global level. In the last decade, due to increased in consumption of bottled water, numerous brands have appeared on the market, with equally numerous and variable sources of provenance. In this study we have analyzed the isotopic composition of bottled mineral waters from Romania in order to determine their source and authenticity. We have analysed 32 carbonated and 24 non-carbonated mineral waters from Romania. and the results were analysed in comparison with stable isotope data from precipitation and river waters. Generally, the isotopic values of the mineral waters follow those in precipitation; however, differences occur in former volcanic regions (due to deep circulation of meteoric waters and increased exchange with host rock and volcanic CO2), as well as in mountainous regions, where high-altitude recharge occurs.

  2. The chromium isotope composition of reducing and oxic marine sediments

    NASA Astrophysics Data System (ADS)

    Gueguen, Bleuenn; Reinhard, Christopher T.; Algeo, Thomas J.; Peterson, Larry C.; Nielsen, Sune G.; Wang, Xiangli; Rowe, Harry; Planavsky, Noah J.

    2016-07-01

    The chromium (Cr) isotope composition of marine sediments has the potential to provide new insights into the evolution of Earth-surface redox conditions. There are significant but poorly constrained isotope fractionations associated with oxidative subaerial weathering and riverine transport, the major source of seawater Cr, and with partial Cr reduction during burial in marine sediments, the major sink for seawater Cr. A more comprehensive understanding of these processes is needed to establish global Cr isotope mass balance and to gauge the utility of Cr isotopes as a paleoredox proxy. For these purposes, we investigated the Cr isotope composition of reducing sediments from the upwelling zone of the Peru Margin and the deep Cariaco Basin. Chromium is present in marine sediments in both detrital and authigenic phases, and to estimate the isotopic composition of the authigenic fraction, we measured δ53Cr on a weakly acid-leached fraction in addition to the bulk sediment. In an effort to examine potential variability in the Cr isotope composition of the detrital fraction, we also measured δ53Cr on a variety of oxic marine sediments that contain minimal authigenic Cr. The average δ53Cr value of the oxic sediments examined here is -0.05 ± 0.10‰ (2σ, n = 25), which is within the range of δ53Cr values characteristic of the bulk silicate Earth. This implies that uncertainty in estimates of authigenic δ53Cr values based on bulk sediment analyses is mainly linked to estimation of the ratio of Cr in detrital versus authigenic phases, rather than to the Cr-isotopic composition of the detrital pool. Leaches of Cariaco Basin sediments have an average δ53Cr value of +0.38 ± 0.10‰ (2σ, n = 7), which shows no dependency on sample location within the basin and is close to that of Atlantic deepwater Cr (∼+0.5‰). This suggests that authigenic Cr in anoxic sediments may reliably reflect the first-order Cr isotope composition of deepwaters. For Peru Margin samples

  3. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    PubMed

    Paul, Maxence; Bridgestock, Luke; Rehkämper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated

  4. Groundwater changes in evaporating basins using gypsum crystals' isotopic compositions

    NASA Astrophysics Data System (ADS)

    Gatti, E.; Bustos, D.; Allwood, A.; Coleman, M. L.

    2014-12-01

    While the dynamics of groundwater evaporation are well known, it is still challenging to reconstruct the water patterns in areas where water is not available anymore. We selected a specific location in White Sands National Monument (WSNM), New Mexico, to validate a method to extract information from hydrated minerals regarding past groundwater evaporation patterns in evaporitic basins. WSNM has gypsum (CaSO4.2H2O) dunes and crystals precipitated from the evaporation of an ancient lake. Our approach aims to extract the water of crystallization of gypsum and measure its oxygen and hydrogen isotopic compositions, in order to reconstruct the groundwater history of the area. The idea is that as the mother brine evaporates its isotopic composition changes continuously, recorded as water of crystallization in successive growth zones of gypsum. To check if the isotopic composition of the salt could effectively differentiate between distinctive humidity conditions, the methodology was tested first on synthetic gypsum grown under controlled humidity and temperature conditions. T and RH% were maintained constant in a glove box and precipitated gypsum was harvested every 24 hours. d2H and d18O of water of crystallization from the synthetic gypsum was extracted using a specially developed technique on a TC/EA. The brine was measured using a Gas Bench II for d18O and an H-Device for d2H on a Thermo Finnigan MAT 253 mass spectrometer. With the method tested, we measured natural gypsum. In order to identify the growth zones we mapped the surface of the crystals using an experimental space flight XRF instrument. Crystals were then sampled for isotopic analyses. Preliminary results suggest that site-specific groundwater changes can be described by the isotopic variations. We will show that the methodology is a reliable and fast method to quantify hydrological changes in a targeted environment. The study is currently ongoing but the full dataset will be presented at the conference.

  5. The Stable Isotopic Composition of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Yakir, D.

    2003-12-01

    When a bean leaf was sealed in a closed chamber under a lamp (Rooney, 1988), in two hours the atmospheric CO2 in the microcosm reached an isotopic steady state with a 13C abundance astonishingly similar to the global mean value of atmospheric CO2 at that time (-7.5‰ in the δ13C notation introduced below). Almost concurrently, another research group sealed a suspension of asparagus cells in a different type of microcosm in which within about two hours the atmospheric O2 reached an isotopic steady state with 18O enrichment relative to water in the microcosm that was, too, remarkably similar to the global-scale offset between atmospheric O2 and mean ocean water (21‰ versus 23.5‰ in the δ18O notation introduced below; Guy et al., 1987). These classic experiments capture some of the foundations underlying the isotopic composition of atmospheric CO2 and O2. First, in both cases the biological system rapidly imposed a unique isotopic value on the microcosms' atmosphere via their massive photosynthetic and respiratory exchange of CO2 and O2. Second, in both cases the biological system acted on materials with isotopic signals previously formed by the global carbon and hydrological cycles. That is, the bean leaf introduced its previously formed organic matter (the source of the CO2 respired into microcosm's atmosphere), and the asparagus cells were introduced complete with local tap water (from which photosynthesis released molecular oxygen). Therefore, while the isotopic composition of the biological system used was slave to long-term processes, intense metabolic processes centered on few specific enzymes (Yakir, 2002) dictated the short-term atmospheric composition.In a similar vein, on geological timescales of millions of years, the atmosphere and its isotopic composition are integral parts of essentially a single dynamic ocean-atmosphere-biosphere system. This dynamic system exchanges material, such as carbon and oxygen, with the sediments and the lithosphere via

  6. Isotopic composition of lithium, potassium, rubidium, and strontium in lunar surface material

    NASA Technical Reports Server (NTRS)

    Zaslavskiy, V. G.; Levskiy, L. K.; Murin, A. N.

    1974-01-01

    The isotopic composition of alkali and alkaline earth elements in the Luna 16 regolith was investigated by the method of thermionic emission, without chemical separation. The isotopic composition of the lithium in two regolith samples did not differ (within the limits 0.5 percent) from the mean of the terrestrial reference standard. At the same time, the observed difference (1 percent) in the isotopic composition of lithium between the samples requires further investigation and confirmation. The isotopic compositions of K and Rb did not differ within the limits of experimental error from the isotopic composition of the reference standard.

  7. The mercury isotope composition of Arctic coastal seawater

    NASA Astrophysics Data System (ADS)

    Štrok, Marko; Baya, Pascale Anabelle; Hintelmann, Holger

    2015-11-01

    For the first time, Hg isotope composition of seawater in the Canadian Arctic Archipelago is reported. Hg was pre-concentrated from large volumes of seawater sampling using anion exchange resins onboard the research vessel immediately after collection. Elution of Hg was performed in laboratory followed by isotope composition determination by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). For comparison, seawater from two stations was shipped to the laboratory and processed within it. Results showed negative mass-dependent fractionation in the range from -2.85 to -1.10‰ for δ202Hg, as well as slightly positive mass-independent fractionation of odd Hg isotopes. Positive mass-independent fractionation of 200Hg was also observed. Samples that were pre-concentrated in the laboratory showed different Hg isotope signatures and this is most probably due to the abiotic reduction of Hg in the dark by organic matter during storage and shipment after sampling. This emphasizes the need for immediate onboard pre-concentration.

  8. Nitrogen isotopic composition and density of the Archean atmosphere.

    PubMed

    Marty, Bernard; Zimmermann, Laurent; Pujol, Magali; Burgess, Ray; Philippot, Pascal

    2013-10-01

    Understanding the atmosphere's composition during the Archean eon is fundamental to unraveling ancient environmental conditions. We show from the analysis of nitrogen and argon isotopes in fluid inclusions trapped in 3.0- to 3.5-billion-year-old hydrothermal quartz that the partial pressure of N2 of the Archean atmosphere was lower than 1.1 bar, possibly as low as 0.5 bar, and had a nitrogen isotopic composition comparable to the present-day one. These results imply that dinitrogen did not play a significant role in the thermal budget of the ancient Earth and that the Archean partial pressure of CO2 was probably lower than 0.7 bar.

  9. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction

    SciTech Connect

    Shahack-Gross, R.; Weiner, S.; Shemesh, A.; Yakir, D.

    1996-10-01

    Opaline mineralized bodies are produced by many terrestrial plants and accumulate in certain soils and archaeological sites. Analyses of the oxygen isotopic compositions of these so-called phytoliths from stems and leaves of wheat plants grown in a greenhouse showed a linear relationship with stem and leaf water isotopic compositions and hence, indirectly, rain water isotopic composition. Analyses of wheat plants grown in fields showed that stem phytoliths isotopic composition directly reflects the seasonal air temperature change, whereas leaf phytoliths isotopic composition reflects both temperature and relative humidity. Temperature and the oxygen isotopic composition of stem phytoliths were related by an equation similar to that proposed for marine opal. Oxygen isotopic compositions of fossil phytoliths, and in particular those from stems, could be valuable for reconstructing past terrestrial climate change.

  10. Fractionation of oxygen isotopes by root respiration: Implications for the isotopic composition of atmospheric O 2

    NASA Astrophysics Data System (ADS)

    Angert, Alon; Luz, Boaz

    2001-06-01

    The ratio of 18O/ 16O in atmospheric oxygen depends on the isotopic composition of the substrate water used in photosynthesis and on discrimination against 18O in respiratory consumption. The current understanding of the composition of air O 2 attributes the magnitude of the respiratory fractionation to biochemical mechanisms alone. Thus the discrimination against 18O is assumed as 18‰ in normal dark respiration and 25‰ to 30‰ in cyanide resistant respiration. Here we report new results on the fractionation of O 2 isotopes in root respiration. The isotopic fractionation was determined from the change in δ 18O of air due to partial uptake by roots in closed containers. The discrimination in these experiments was in the range of 11.9‰ to 20.0‰ with an average of 14.5‰. This average is significantly less than the known discrimination in dark respiration. A simple diffusion-respiration model was used to explain the isotopic discrimination in roots. Available data show that O 2 concentration inside roots is low due to slow diffusion. As a result, due to diffusion and biological uptake at the consumption site inside the root, the overall discrimination is small. Root respiration is an important component of the global oxygen uptake. Our new result that the discrimination against 18O is less than generally thought indicates that the mechanisms affecting δ 18O of atmospheric oxygen should be re-evaluated.

  11. Isotopic composition of precipitation during different atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael; Kononova, Nina; Vreča, Polona

    2016-04-01

    Precipitation generating processes depend on atmospheric circulation patterns and consequently it is expected that its water stable isotopic composition of hydrogen and oxygen is related to them. Precipitation generated at similar atmospheric circulation patterns should have similar empirical distribution of δ2H and δ18O values. There are several approaches in which atmospheric circulation patterns are classified as elementary air circulation mechanisms - ECM; in our approach we have applied Dzerdzeevskii classification. Two types of models of relation between ECM and isotopic composition of precipitation are proposed; first is based on the linear combination of δ2H and δ18O values with precipitation amount weighted average (Brenčič et al., 2015) and the second new one is based on the multiple regression approach. Both approaches make possible also to estimate empirical distributions' dispersion parameters. Application of the models is illustrated on the precipitation records from Ljubljana and Portorož GNIP stations, Slovenia. Estimated values of the parameters for empirical distributions of δ2H and δ18O of each ECM subtype have shown that calculated estimates are reasonable. Brenčič, M., Kononova, N.K., Vreča, P., 2015: Relation between isotopic composition of precipitation and atmospheric circulation patterns. Journal of Hydrology 529, 1422-1432: doi: 10.1016/j.jhydrol.2015.08.040

  12. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    During the past three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. As part of my startup package I received funds to construct a state-of-the-art experimental facility to study gas-solid reaction kinetics. Much of our effort was spent developing the methodology to measure the abundance and isotopic composition of Hg at ultratrace levels in solid materials. In our first study, the abundance and isotopic composition of Hg was determined in bulk samples of the Murchison (CM) and Allende (CV) carbonaceous chondrites. We have continued our study of mercury in primitive meteorites and expanded the suite of meteorites to include other members of the CM and CV chondrite group as well as CI and CO chondrites. Samples of the CI chondrite Orgueil, the CM chondrites Murray, Nogoya, and Cold Bokkeveld, the CO chondrites Kainsaz, Omans, and Isna, and the CV chondrites Vigarano, Mokoia, and Grosnaja were tested. We have developed a thermal analysis ICP-MS technique and applied it to the study of a suite of thermally labile elements (Zn, As, Se, Cd, In, Sn, Sb, Te, Hg, Au, Tl, Pb, and Bi) in geologic materials as well.

  13. Experimental and theoretical study of organometallic radiation-protective materials adapted to radiation sources with a complex isotopic composition

    SciTech Connect

    Russkikh, I. M.; Seleznev, E. N.; Tashlykov, O. L. Shcheklein, S. E.

    2015-12-15

    The significance of optimizing the content of components of a radiation-protective material, which is determined by the isotopic composition of radioactive contamination, depending on the reactor type, operating time, and other factors is demonstrated. The results of computational and experimental investigation of the gamma-radiation attenuation capacity of homogenous radiation-protective materials with different fillers are reported.

  14. Stable isotope composition of the meteoric precipitation in Croatia.

    PubMed

    Hunjak, Tamara; Lutz, Hans O; Roller-Lutz, Zvjezdana

    2013-01-01

    The precipitation is the input into the water system. Its stable isotope composition has to be known for the proper use and management of water resources. Croatia is not well represented in the Global Network of Isotopes in Precipitation (GNIP) database, and the geomorphology of the country causes specific local conditions. Therefore, at the Stable Isotope Laboratory (SILab), Rijeka, we monitor the stable isotope composition (δ(18)O, δ(2)H) of precipitation. Since δ(18)O and δ(2)H are well correlated, we concentrate the discussion on the δ(18)O distribution. Together with GNIP, our database contains 40 stations in Croatia and in the neighbouring countries. Their different latitudes, longitudes and altitudes give information of great detail, including the influence of the topographic structure on the precipitation in the south-eastern part of Europe, as well as the complex interplay of the different climate conditions in the area. Within a few hundred kilometres, the stable isotope values display a significant change from the maritime character in the south (mean δ(18)O around-6 to-8‰) to the continental behaviour in the north (mean δ(18)O around-8 to-11‰). Depending on the location, the mean δ(18)O values vary with altitude at a rate of approximately-0.2‰/100 m and-0.4‰/100 m, respectively. Also the deuterium excess has been found to depend on location and altitude. The data are being used to construct a δ(18)O map for the entire area. PMID:23937110

  15. The triple isotopic composition of oxygen in leaf water

    NASA Astrophysics Data System (ADS)

    Landais, A.; Barkan, E.; Yakir, D.; Luz, B.

    2006-08-01

    The isotopic composition of atmospheric O 2 depends on the rates of oxygen cycling in photosynthesis, respiration, photochemical reactions in the stratosphere and on δ17O and δ18O of ocean and leaf water. While most of the factors affecting δ17O and δ18O of air O 2 have been studied extensively in recent years, δ17O of leaf water—the substrate for all terrestrial photosynthesis—remained unknown. In order to understand the isotopic composition of atmospheric O 2 at present and in fossil air in ice cores, we studied leaf water in field experiments in Israel and in a European survey. We measured the difference in δ17O and δ18O between stem and leaf water, which is the result of isotope enrichment during transpiration. We calculated the slopes of the lines linking the isotopic compositions of stem and leaf water. The obtained slopes in ln( δ17O + 1) vs. ln( δ18O + 1) plots are characterized by very high precision (˜0.001) despite of relatively large differences between duplicates in both δ17O and δ18O (0.02-0.05‰). This is so because the errors in δ18O and δ17O are mass-dependent. The slope of the leaf transpiration process varied between 0.5111 ± 0.0013 and 0.5204 ± 0.0005, which is considerably smaller than the slope linking liquid water and vapor at equilibrium (0.529). We further found that the slope of the transpiration process decreases with atmospheric relative humidity ( h) as 0.522-0.008 × h, for h in the range 0.3-1. This slope is neither influenced by the plant species, nor by the environmental conditions where plants grow nor does it show strong variations along long leaves.

  16. Determination of the combined isotopic composition of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Butterworth, Anna Lucy

    Methane is an important global warming gas, present in the atmosphere at a concentration of 1.714 ppmv. Its concentration has more than doubled since the start of the industrial revolution and the increase is generally acknowledged to be due to human activities. The continued rise in concentration of methane is believed to be contributing to an increase in mean global temperature. Recently, the global budget of methane has been constrained by balancing the magnitude and isotopic signature of the sources and sinks with the measured tropospheric abundance and isotopic composition. The dual element stable isotopic composition (δ13C and /delta D) of methane may be used to characterise different sources of methane. Traditional methods of determining the δ13C value and the /delta D value of methane require large sample sizes. An alternative approach to investigating the stable isotopic composition of methane was to determine the combined ratio of 13CH4 and 12CH3D (mass 17) relative to 12CH4 (mass 16) and quote the results on a δ17M scale. A static-vacuum mass spectrometer has been developed specifically for the determination of the 17M/16M ratio of sub- nanomole quantities of methane with a δ17M precision of [/pm]0.2/ /perthous. An on-line sample preparation technique has also been developed to separate the methane from 10 ml of air and provide a pure, dry, ~300 picomole methane sample for isotope ratio determination. The overall δ17M precision of the analysis of the methane in air samples was [<][/pm]0.5/ /perthous. A number of sources of atmospheric methane have been investigated, demonstrating that sources may be distinguished from each other on the δ17M scale. The very small sample requirements for the instrument permitted a simple air sampling procedure to be employed, which was particularly useful for collecting air samples in remote locations. Air samples, containing methane emitted by termites, were collected from a tropical rainforest. The methane produced

  17. A method for determining the nitrogen isotopic composition of porphyrins.

    PubMed

    Higgins, Meytal B; Robinson, Rebecca S; Casciotti, Karen L; McIlvin, Matthew R; Pearson, Ann

    2009-01-01

    We describe a new method for analysis of the nitrogen isotopic composition of sedimentary porphyrins. This method involves separation and purification of geoporphyrins from sediment samples using liquid chromatography and HPLC, oxidation of the nitrogen within porphyrin-enriched fractions using a two-step process, and isotopic analysis of the resulting nitrate using the denitrifier method. By analysis of these degradation products of chlorophylls, we are able to measure an isotopic signature that reflects the nitrogen utilized by primary producers. The high sensitivity of the denitrifier method allows measurement of small samples that contain low concentrations of porphyrins. Extraction of only 50 nmol of nitrogen (nmol N) allows the following five analyses to be made (each on approximately 10 nmol N): nitrogen concentration, an assessment of potential contamination by nonporphyrin N, and three replicate isotopic measurements. The measured values of delta15N have an average analytical precision of +/-0.5 per thousand (1sigma) and an average contribution from Rayleigh fractionation of 0.7 per thousand from incomplete oxidation of porphyrin N to nitrate. The overall method will enable high-resolution records of delta15N values to be obtained for geological and ecological applications.

  18. BOREAS TE-5 CO2 Concentration and Stable Isotope Composition

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This data set contains measurements of the concentration and stable carbon (C-13/C-12 and oxygen (O-18/O-16) isotope ratios of atmospheric CO2 in air samples collected at different heights within forest canopies. The data were collected to determine the influence of photosynthesis and respiration by the forest ecosystems on the concentration and stable isotope ratio of atmospheric CO2 These measurements were collected at the SSA during each 1994 IFC at OJP, OBS, and OA sites. Measurements were also collected at the NSA during each 1994 IFC at the OJP, T6R5S TE UBS, and T2Q6A TE OA sites. The stable isotope ratios are expressed using standard delta notation and in units of per mil. The isotope ratios are expressed relative to the international standard, PDB, for both carbon and oxygen samples. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  19. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L

    SciTech Connect

    Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. )

    1991-06-01

    In this paper the authors describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L.I. Gordon for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AMV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.

  20. Differences in isotopic composition of carbonaceous components in enstatite chondrites

    NASA Astrophysics Data System (ADS)

    Grady, M. M.; Wright, I. P.; Carr, R. H.; Poths, J.; Pillinger, C. T.

    1988-02-01

    Carbon stable isotopic composition of the major carbonaceous component in enstatite chondrites varies with petrologic type. Investigation of a suite of HF/HCl-resistant residues has shown that this variation is due to an inherent difference in delta(C-13) of the carbon, and is not a result of the presence of small amounts of isotopically anomalous carbon-bearing components. These latter do occur in type EH3 and EH4 chondrites, in concentrations similar to those found in C1 and C2 carbonaceous chondrites. Combustion of the major carbon component (apparently elemental carbon, not necessarily graphite) occurs at relatively higher temperatures in enstatite chondrites of increasing petrologic type. This is considered to reflect an increase in crystallinity or ordering of the carbonaceous component, and is a measure of the degree of thermal processing to which the meteorites have been subjected during accretion and/or metamorphism.

  1. Isotopic composition of strontium in sea water throughout Phanerozoic time

    USGS Publications Warehouse

    Peterman, Z.E.; Hedge, C.E.; Tourtelot, H.A.

    1970-01-01

    Isotopic analyses of strontium in primary fossil carbonate reveal significant variations in Sr87 Sr86 of sea water during the Phanerozoic. The strontium isotopic composition may have been uniform from the Ordovician through the Mississippian, with an average Sr87 Sr86 of 0.7078. A subsequent decrease in this value into the Mesozoic is interrupted by two provisionally documented positive pulses in Sr87 Sr86-one in the Early Pennsylvanian and one in the Early Triassic. The lowest observed value (0.7068) occurred in Late Jurassic time, and this was followed by a gradual increase to 0.7075 in the Late Cretaceous and a more rapid increase through the Tertiary to 0.7090 for modern sea water. These variations are thought to be the result of a complex interplay of periods of intense volcanism and epeirogenic movements of the continents on a worldwide scale. ?? 1970.

  2. Perchlorate in the Great Lakes: isotopic composition and origin.

    PubMed

    Poghosyan, Armen; Sturchio, Neil C; Morrison, Candice G; Beloso, Abelardo D; Guan, Yunbin; Eiler, John M; Jackson, W Andrew; Hatzinger, Paul B

    2014-10-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean.

  3. Perchlorate in the Great Lakes: isotopic composition and origin.

    PubMed

    Poghosyan, Armen; Sturchio, Neil C; Morrison, Candice G; Beloso, Abelardo D; Guan, Yunbin; Eiler, John M; Jackson, W Andrew; Hatzinger, Paul B

    2014-10-01

    Perchlorate is a persistent and mobile contaminant in the environment with both natural and anthropogenic sources. Stable isotope ratios of oxygen (δ(18)O, Δ(17)O) and chlorine (δ(37)Cl) along with the abundance of the radioactive isotope (36)Cl were used to trace perchlorate sources and behavior in the Laurentian Great Lakes. These lakes were selected for study as a likely repository of recent atmospheric perchlorate deposition. Perchlorate concentrations in the Great Lakes range from 0.05 to 0.13 μg per liter. δ(37)Cl values of perchlorate from the Great Lakes range from +3.0‰ (Lake Ontario) to +4.0‰ (Lake Superior), whereas δ(18)O values range from -4.1‰ (Lake Superior) to +4.0‰ (Lake Erie). Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ(17)O values (+1.6‰ to +2.7‰) divided into two distinct groups: Lake Superior (+2.7‰) and the other four lakes (∼+1.7‰). The stable isotopic results indicate that perchlorate in the Great Lakes is dominantly of natural origin, having isotopic composition resembling that measured for indigenous perchlorate from preindustrial groundwaters of the western USA. The (36)Cl/Cl ratio of perchlorate varies widely from 7.4 × 10(-12) (Lake Ontario) to 6.7 × 10(-11) (Lake Superior). These (36)ClO4(-) abundances are consistent with an atmospheric origin of perchlorate in the Great Lakes. The relatively high (36)ClO4(-) abundances in the larger lakes (Lakes Superior and Michigan) could be explained by the presence of (36)Cl-enriched perchlorate deposited during the period of elevated atmospheric (36)Cl activity following thermonuclear bomb tests in the Pacific Ocean. PMID:25171443

  4. Does burial diagenesis reset pristine isotopic compositions in paleosol carbonates?

    NASA Astrophysics Data System (ADS)

    Bera, M. K.; Sarkar, A.; Tandon, S. K.; Samanta, A.; Sanyal, P.

    2010-11-01

    Sedimentological study of early Oligocene continental carbonates from the fluvial Dagshai Formation of the Himalayan foreland basin, India resulted in the recognition of four different types namely, soil, palustrine, pedogenically modified palustrine and groundwater carbonates. Stable oxygen and carbon isotopic ( δ18O and δ13C) analyses of fabric selective carbonate microsamples show that although the pristine isotopic compositions are largely altered during deep-burial diagenesis, complete isotopic homogenization does not occur. δ18O and δ13C analyses of ~ 200 calcrete and palustrine carbonates from different stratigraphic horizons and comparison with δ18O of more robust bioapatite (fossil vertebrate tooth) phase show that dense micrites (~ > 70% carbonate) invariably preserve the pristine δ18O value (mean) of ~ - 9.8‰, while altered carbonates show much lower δ18O value ~ - 13.8‰. Such inhomogeneity causes large intra-sample and intra-soil profile variability as high as > 5‰, suggesting that soils behave like a closed system where diagenetic overprinting occurs in local domains. A simple fluid-rock interaction model suggests active participation of clay minerals to enhance the effect of fluid-rock ratio in local domains during diagenesis. This places an upper limit of 70% micrite concentration above which the effect of diagenetic alteration is minimal. Careful sampling of dense micritic part of the soil carbonate nodules, therefore, does provide pristine isotopic composition and it is inappropriate, as proposed recently, to reject the paleoclimatic potential of all paleosol carbonates affected by burial diagenesis. Based on pristine δ13C value of - 8.8 ± 0.2‰ in soil carbonates an atmospheric CO 2 concentration between ~ 764 and ~ 306 ppmv is estimated for the early Oligocene (~ 31 Ma) Dagshai time. These data show excellent agreement between two independent proxy records (viz. soil carbonate and marine alkenone) and support early Oligocene

  5. Helium-carbon isotopic composition of thermal waters from Tunisia

    NASA Astrophysics Data System (ADS)

    Fourré, E.; Aiuppa, A.; di Napoli, R.; Parello, F.; Gaubi, E.; Jean-Baptiste, P.; Allard, P.; Calabrese, S.; Ben Mammou, A.

    2010-12-01

    Tunisia has numerous thermo-mineral springs. Previous studies have shown that their chemical composition and occurrence are strongly influenced by the regional geology, however little work has been conducted to date to investigate the isotopic composition of volatiles associated with these geothermal manifestations. Here, we report the results of an extensive survey of both natural hot springs and production wells across Tunisia aimed at investigating the spatial distribution of the 3He/4He ratio and associated carbon isotopic compositions. With respect to helium isotopes, not unexpectedly, the lowest 3He/4He values (0.01-0.02 Ra) are associated with the old groundwaters of the “Continental Intercalaire” aquifer of the stable Saharan Platform. The 3He/4He values are equal to the crustal production ratio, with no detectable amount of mantle-derived 3He, in agreement with previous studies of helium isotopes in sedimentary basin, which conclude that tectonically-stable regions are essentially impermeable to mantle volatiles. The low 3He/4He domain extends to the entire Atlasic domain of central Tunisia. This Atlasic domain also displays the highest helium concentrations : along the Gafsa Fault, helium concentrations of 1777 and 4723 x 10-8 cm3STP/g (the highest value of our data set) are observed in the production wells of Sidi Ahmed Zarrouk. This emphasizes the role of deep tectonic features in channelling and transporting deep crustal volatiles to shallow levels. The eastern margin of Tunisia displays higher 3He/4He values indicative of a substantial mantle volatile input. The highest value is recorded in the carbo-gaseous mineral water of Ain Garci (2.4 Ra). This northeastern part of the African plate commonly referred to as the Pelagian block extends from Tunisia to Sicily and is characterized by strong extensional tectonics (Pantelleria rift zone) and present-day magmatic activity. This lithospheric stretching and decompressional mantle melts production in

  6. Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel

    SciTech Connect

    Horak, W.C.; Lu, Ming-Shih

    1991-12-01

    This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

  7. Dietary interpretations for extinct megafauna using coprolites, intestinal contents and stable isotopes: Complimentary or contradictory?

    NASA Astrophysics Data System (ADS)

    Rawlence, Nicolas J.; Wood, Jamie R.; Bocherens, Herve; Rogers, Karyne M.

    2016-06-01

    For many extinct species, direct evidence of diet (e.g. coprolites, gizzard/intestinal contents) is not available, and indirect dietary evidence (e.g. stable isotopes) must be relied upon. The Late Holocene fossil record of New Zealand provides a unique opportunity to contrast palaeodietary reconstructions for the extinct moa (Aves: Dinornithiformes) using stable isotopes and coprolite/gizzard contents. Palaeodietary reconstructions from isotopes are found to contradict those based on direct dietary evidence. We discuss reasons for this and advocate, where possible, for the use of multiple lines of evidence in reconstructing the diets of extinct species.

  8. Nitrogen isotope composition of organically and conventionally grown crops.

    PubMed

    Bateman, Alison S; Kelly, Simon D; Woolfe, Mark

    2007-04-01

    Authentic samples of commercially produced organic and conventionally grown tomatoes, lettuces, and carrots were collected and analyzed for their delta15N composition in order to assemble datasets to establish if there are any systematic differences in nitrogen isotope composition due to the method of production. The tomato and lettuce datasets suggest that the different types of fertilizer commonly used in organic and conventional systems result in differences in the nitrogen isotope composition of these crops. A mean delta15N value of 8.1 per thousand was found for the organically grown tomatoes compared with a mean value of -0.1 per thousand for those grown conventionally. The organically grown lettuces had a mean value of 7.6 per thousand compared with a mean value of 2.9 per thousand for the conventionally grown lettuces. The mean value for organic carrots was not significantly different from the mean value for those grown conventionally. Overlap between the delta15N values of the organic and conventional datasets (for both tomatoes and lettuces) means that it is necessary to employ a statistical methodology to try and classify a randomly analyzed "off the shelf" sample as organic/conventional, and such an approach is demonstrated. Overall, the study suggests that nitrogen isotope analysis could be used to provide useful "intelligence" to help detect the substitution of certain organic crop types with their conventional counterparts. However, delta15N analysis of a "test sample" will not provide unequivocal evidence as to whether synthetic fertilizers have been used on the crop but could, for example, in a situation when there is suspicion that mislabeling of conventionally grown crops as "organic" is occurring, be used to provide supporting evidence. PMID:17341092

  9. The concentration and isotopic composition of osmium in the oceans

    SciTech Connect

    Sharma, M.; Papanastassiou, D.A.; Wasserburg, G.J.

    1997-08-01

    Osmium is one of the rarer elements in seawater. Analytical difficulties have previously prevented the direct measurement of the osmium concentration and isotopic composition in seawater. We report a chemical separation procedure that yields quantitative extraction of osmium standard and of osmium tracer by iron hydroxide precipitation from seawater doped with osmium standard, osmium tracer, and FeCl{sub 3}. The iron hydroxide precipitate is processed to extract osmium, using techniques developed for iron meteorites. Utilizing this procedure, water samples from the Pacific and Atlantic oceans were analyzed for osmium concentration and isotopic composition. Direct determination of the osmium concentration of seawater gives between 15 and 19 fM kg{sup -1}. Detailed experiments on different aliquots of one seawater sample from the North Atlantic Ocean, keeping the amounts of reagents constant, yield concentrations from 16 to 19 fM kg{sup -1}. The variability in concentration is outside the uncertainty introduced because of blanks and indicates a lack of full equilibration between the osmium tracer and seawater osmium. The most reliable osmium concentration of the North Atlantic deep ocean water is 19 fM kg {sup -1} with the {sup 187}Os/{sup 186}Os ratio being 8.7{+-}2 (2{sigma}). Detailed experiments on one seawater sample from the Central Pacific Ocean indicate that the most reliable osmium concentration of the deep ocean water from the Central Pacific is 19 fM kg{sup -1} with the {sup 187}Os/{sup 186}Os ratio being 8.7{+-}0.3 (2{sigma}). The directly measured osmium isotopic composition of the oceans is in good agreement with that obtained from the analysis of some rapidly accumulating organic rich sediments. A sample of ambient seawater around the Juan de Fuca Ridge gave {sup 187}Os/{sup 186}Os = 6.9{+-} 0.4. 42 refs., 6 figs., 4 tabs.

  10. Geographical discrimination of extra-virgin olive oils from the Italian coasts by combining stable isotope data and carotenoid content within a multivariate analysis.

    PubMed

    Portarena, S; Baldacchini, C; Brugnoli, E

    2017-01-15

    We have determined the isotopic composition and the carotenoid contents of 38 extra-virgin olive oils (EVOOs) from seven regions along the Italian coasts, by means of isotope ratio mass spectrometry (IRMS) and resonant Raman spectroscopy (RRS), respectively. The application of linear discriminant analysis to our overall results demonstrated the combination of isotope and carotenoid data is a promising method to discriminate EVOOs from production sites that are impacted by similar geographical and climatic parameters. In particular, this dual approach allowed correct classification of 82% EVOO samples, while separate IRMS and RRS investigations were able to discriminate only samples from Sicily and Latium, respectively. PMID:27542443

  11. Modeling the carbon isotope composition of bivalve shells (Invited)

    NASA Astrophysics Data System (ADS)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., <10%) in shells from aquatic organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions

  12. The carbon isotopic composition of Novo Urei diamonds

    NASA Technical Reports Server (NTRS)

    Fisenko, A. V.; Semjenova, L. F.; Verchovsky, A. B.; Russell, S. S.; Pillinger, C. T.

    1993-01-01

    The carbon isotopic composition of diamond grains isolated from the Novo Urei meteorite are discussed. A diamond separate was obtained from 2g of whole rock using the chemical treatments described aimed at obtaining very pure diamond. X ray diffraction of the residue, which represented 5000 ppm of the parent mass, indicated only the presence of the desired mineral. The diamond crystals were 1-30 microns in diameter, and some grains had a yellow color. The chemical treatments were followed by a size separation to give a 1-10 microns and a 5-30 microns fraction, which were named DNU-1 and DNU-2, respectively.

  13. Isotopic composition of cosmic-ray boron and nitrogen

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  14. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.

    PubMed

    Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M

    2013-12-01

    During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents. PMID:23647101

  15. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.

    PubMed

    Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M

    2013-12-01

    During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents.

  16. Isotopic Composition of Cosmic Rays:. Results from the Cosmic Ray Isotope Spectrometer on the Ace Spacecraft

    NASA Astrophysics Data System (ADS)

    Israel, M. H.

    Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22Ne and 58Fe, are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL <> and links on that page to CRIS and to Science News.

  17. Isotopic Composition of Organic and Inorganic Carbon in Desert Biological Soil Crust Systems

    NASA Astrophysics Data System (ADS)

    Alexander, K.; Hartnett, H.; Anbar, A.; Beraldi, H.; Garcia-Pichel, F.

    2006-12-01

    Biological soil crusts (BSCs) are microbial communities that colonize soil surfaces in many arid regions. BSCs are important sources for fixed carbon and nitrogen in these ecosystems, and they greatly influence the structure, function, and appearance of desert soils. Biological activity of BSCs occurs during pulses of hydration requiring desert crusts to tolerate extremes in UV radiation, temperature, and desiccation. These characteristics make desert crusts unique systems that have received little consideration in the study of biogeochemical processes in extreme environments. This project investigates the impact of BSCs on carbon dynamics within desert soils. Soil cores ranging in depth from 8 to 12 cm were taken in March, 2006 from deserts near Moab, Utah. Two major BSC classes were identified: lichen-dominated (dark and pinnacled) soil crusts and cyanobacteria-dominated (light and flat) soil crusts. These two surface morphologies are related to the different biological communities. Carbon content and stable carbon isotopic composition were determined for the bulk carbon pool, as well as for the organic and inorganic carbon fractions of the soils. Expectedly, there was a net decrease in organic carbon content with depth (0.39-0.27 percent). Stable carbon isotope values for the organic fraction ranged from -5.8 per mil to -24.0 per mil (Avg: -14.4 per mil, S.D: 6.42 per mil). Stable carbon isotope values for the inorganic fraction ranged from 0.3 per mil to -3.6 per mil (Avg: -2.4 per mil, S.D.: 1.05 per mil). The variation in the isotopic composition of the organic carbon was due to a strong depletion below the surface soil value occurring between 3 and 5 cm depth, with an enrichment above the original surface value at depths below 6 to 10 cm. These data suggest that within desert soil crust systems the carbon isotopic signal is complex with both a clear biological imprint (lighter organic carbon) as well as evidence for some mechanism that results in

  18. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235

  19. Constraining the oxygen isotope composition of early Cretaceous seawater

    NASA Astrophysics Data System (ADS)

    Price, Gregory; VanDeVelde, Justin; Passey, Ben; Grimes, Stephen

    2015-04-01

    The oxygen isotopic composition of well-preserved marine fossils fundamentally underpins our understanding of the evolution of the Earth's climate. However, a lack of constraint on the delta18O of seawater provides a major challenge. In this study new analyses of sub-Arctic and Boreal Cretaceous (Berriasian-late Valanginian, ca. 145-134 Ma) fossil molluscs (belemnites) have been undertaken using carbonate clumped isotopes, an approach based on the "clumping" of 13C and 18O in the carbonate mineral lattice into bonds with each other. From our analyses we infer Early Cretaceous marine temperatures ranging from 10 °C to 20 °C. We identify a cooler late Valanginian interval with temperatures consistent with regions a few degrees above freezing. Our combined temperature and delta18O belemnite data imply seawater delta18O values that have a remarkably modern profile in that they are similar to modern high-latitude seawater and much more positive than values typically assumed for Cretaceous seawater. These high oxygen isotope ratios suggest a hydrological cycle similar to the modern rather than a substantial increase towards a more vigorous hydrological cycle. Our results argue for generally warm but dynamic polar climates during Cretaceous greenhouse intervals that were punctuated by periods of ice growth.

  20. On the isotopic composition of magmatic carbon in SNC meteorites

    NASA Technical Reports Server (NTRS)

    Wright, I. P.; Grady, M. M.; Pillinger, C. T.

    1992-01-01

    SNC meteorites are thought, from many lines of evidence, to come from Mars. A line of investigation which has been pursued in our laboratory over the years involves measurement of the stable isotopic composition of carbon, in its various forms, in SNC meteorites. In order to establish a firm basis for studying the isotopic systematics of carbon in the martian surface environment, it is first necessary to try and constrain the delta C-13 of bulk Mars. Taking all of the available information, it would seem that the delta C-13 of the Earth's mantle lies somewhere in the range of -5 to -7 percent. Preliminary assessment of magnetic carbon in SNC meteorites, would tend to suggest a delta C-13 of 20 to 30 percent, which is conspicuously different from that of the terrestrial mantle. It is not obvious why there should be such a difference between the two planets, although many explanations are possible. One of these possibilities, that previous delta C-13 measurements for magnetic carbon in SNC meteorites are in error to some degree, is being actively investigated. The most recent results seem to constrain the theta C-13 of the magnetic carbon in SNC meteorites to about -20 percent, which is not at odds with previous estimates. As such, it is considered that a detailed investigation of the carbon isotopic systematics of martian surface materials does have the necessary information with which to proceed.

  1. Tracing mercury contamination sources in sediments using mercury isotope compositions.

    PubMed

    Feng, Xinbin; Foucher, Delphine; Hintelmann, Holger; Yan, Haiyu; He, Tianrong; Qiu, Guangle

    2010-05-01

    Mercury (Hg) isotope ratios were determined in two sediment cores collected from two adjacent reservoirs in Guizhou, China, including Hongfeng Reservoir and Baihua Reservoir. Hg isotope compositions were also analyzed in a soil sample collected from the catchment of Hongfeng Reservoir and three cinnabar samples collected from the Wanshan Hg mine. Baihua Reservoir was contaminated with runoff from Guizhou Organic Chemical Plant (GOCP) when metallic Hg was used as a catalyst to produce acetic acid. Hongfeng Reservoir, located upstream of Baihua, receives Hg from runoff and atmospheric deposition. We demonstrated that delta(202)Hg values relative to NIST 3133 of sediment in Baihua Reservoir ranging from -0.60 to -1.10 per thousand were distinctively different from those in Hongfeng Reservoir varying from -1.67 to -2.02 per thousand. While sediments from both Baihua and Hongfeng Reservoirs were characterized by mass dependent variation (MDF), only Hongfeng Reservoir sediments were characterized by mass independent variation (MIF). Moreover, by using a binary mixing model, we demonstrated the major source of Hg in sediment of Hongfeng Reservoir was from runoff due to soil erosion, which was consistent with the conclusion obtained from a previous Hg balance study. This study demonstrates Hg isotope data are valuable tracers for determining Hg contamination sources in sediments.

  2. Evolution of the composition isotopic of the continuum soil-plant-atmosphere

    SciTech Connect

    Bariac, T.; Jusserand, C.; Mariotti, A. )

    1990-02-01

    Intensive daily sampling of the soil-plant-atmosphere continuum was carried out to determine the vertical evolution of diurnal variation of the isotopic composition of (1) water in leaves from a maize canopy at the experimental site of Villeau, Eure et Loir (France) and (ii) water vapor in the atmosphere above and within the canopy. Applying some reasonable assumptions, the isotopic model of the transpiration process (I.M.T.) fits well the daily enrichment cycle of {sup 18}O and {sup 2}H in the leaf water sampled at different levels of the plants. The most important factors influencing the variations of {sup 18}O and {sup 2}H content are the relative humidity of the air and the kinetic enrichment factor occurring during transpiration. The discrepancies between the measured and the calculated values seem to be closely related to the differences between the isotopic composition of the water pools in the leaf. Without experimental data on the transpiration flux and the root water uptake, the I.M.T. allows a relatively precise determination of the nature (transient or stationary) of the isotopic state of the water in the leaf. When {delta}{sup 18}O and {delta}{sup 2}H present steady-state values, the water fluxes are always conservative in the transpiring pools of the leaf. When the heterogeneity of the pools of the leaf is taken into account, it appears that the leaf does not present systematically an instantaneous isotopic steady-state. The results reported here indicate that the assumption of the constancy of {epsilon}{sub k} values is invalid: the discrepancy in {epsilon}{sub k} values between the leaves at the top of the canopy and the other ones can be related to the increase of the turbulence of the atmosphere with height in the canopy.

  3. Where Did the Ureilite Parent Body Accrete? Constraints from Chemical and Isotopic Compositions

    NASA Astrophysics Data System (ADS)

    Goodrich, Cyrena; O'Brien, David P.

    2014-11-01

    Almahata Sitta and other polymict ureilites contain a remarkable diversity of materials, including EH, EL, OC, R- and CB chondrites, in addition to the dominant ureilitic material [1]. These materials represent at least 6 different parent asteroids and a wide range of chemical and isotopic environments in the early Solar System. To understand the origin of this diversity it is critical to know where (heliocentric distance) the ureilite parent body (UPB) accreted. The chemical and isotopic compositions of ureilite precursors (inferred from the compositions of ureilites) can provide clues. Lithophile element ratios such as Si/Mg and Mn/Mg [2,3], and deficits in neutron-rich Cr, Ti and Ni isotopes [3], indicate that ureilite precursors were similar to ordinary or enstatite chondrites (OC or EC), not carbonaceous chondrites (CC). In contrast, high carbon contents, carbon isotopes and oxygen isotopes suggest a genetic link to CC. This poses a conundrum considering the variation of asteroid types, which suggests that EC and OC dominate the inner asteroid belt and CC the outer belt. However, the CC-like oxygen isotopes of ureilites strongly suggest the effects of parent-body aqueous alteration [4,5], which clearly implies that the UPB accreted beyond the ice line. Lithophile element properties of ureilites compared with chondrites may not be a reliable indicator of location of accretion, because lithophile elements in chondrites are sited mainly in chondrules and the UPB accreted before most chondrules formed [6]. Ureilite Cr, Ti and Ni isotopes may indicate late introduction of the neutron rich isotopes of these elements to the CC-formation region [7]. We conclude that the UPB accreted in the outer belt, like CC. The UPB or one of its offspring must have migrated to the inner belt to acquire OC, EC and R-chondrite materials.[1] Horstmann M. & Bischoff A. [2014] Chemie der Erde 74, 149.[2] Goodrich C. [1999] MAPS 34, 109.[3] Warren P. [2011] GCA 46, 53.[4] Young E. [1999

  4. Silicon and Titanium Isotopic Compositions of Interstellar Graphite Spherules

    NASA Astrophysics Data System (ADS)

    Ireland, T. R.; Amari, S.; Hoppe, P.; Zinner, E.; Lewis, R. S.

    1992-07-01

    Graphite spherules from the Murchison meteorite have been identified as interstellar because they carry Ne-E(L) and Kr-S, extreme ^12C/^13C variations, excess ^26Mg, and large anomalies in ^18O/^16O (Lewis and Amari, 1992; Amari et al., 1990; Hoppe et al., 1992a,b; Nichols et al., 1992). Surprisingly, only a few graphite spherules were found to contain anomalous Si although the uncertainties were large because of low Si concentrations. Here we report Si- isotopic compositions measured to higher precision with the SHRIMP ion microprobe and results of a feasibility study of determining Ti isotopic compositions. For the Si-isotopic measurements the instrumental mass fractionation was corrected by concurrent measurements of terrestrial kaersutite. All graphite grains analyzed are normal within analytical uncertainty (1 sigma errors range from less than 10 per mil to ~30 per mil). However, the grains with anomalous Si analyzed by Hoppe et al. (1992) were not analyzed in this work in order to preserve them for other measurements. Titanium has been found in graphite spherules as TiC at a level of ~10^-5 (Bernatowicz et al., 1991). Ti-isotopic measurements at this level have been obtained on SHRIMP for some SiC particles (Ireland et al., 1991). However, the graphite separate had been treated with chromic acid, which resulted in extreme interference of ^50Cr on ^50Ti. We analyzed only one particle (KFB1-301), a grain with the highest Al/C ratio and therefore an expected high Ti concentration. Even in this grain, the ^50Cr correction is 460 per mil, making a definitive measurement of the ^50Ti abundance difficult. The Ti isotope pattern is shown in the figure after correction for a 15 per mil/amu instrumental mass fractionation. The grain has solar ^46Ti and ^47Ti relative to ^48Ti , but both ^49Ti and ^50Ti are depleted. Normal isotopic ratios for Cr were used for the interference correction since no mass fractionation of Cr was detected in a variety of terrestrial

  5. Isotopic compositions and sources of nitrate in ground water from western Salt River Valley, Arizona

    USGS Publications Warehouse

    Gellenbeck, D.J.

    1994-01-01

    Isotopic and chemical compositions of ground water from western Salt River Valley near Phoenix, Arizona, were used to develop identification tech- niques for sources of nitrate in ground water. Four possible sources of nitrate were studied: dairies and feedlots, sewage-treatment plants, agricultural activities, and natural source. End members that represent these sources were analyzed for a variety of chemical and isotopic constituents; contents of the end-member and the ground water were compared to identify nitrate from these sources. Nitrate from dairies and feedlots was identified by delta 15N values higher than +9.0 per mil. Nitrate from sewage treatment plants was identified by some chemical constituents and values of delta 15N, delta 34S, delta 7Li, and delta 11B that were lighter than the values determined for ground water not affected by sewage-treatment plants. Nitrate from agricultural activities was identified by delta 15N, 3H, and delta 34S compositions. Natural nitrate derived from decomposing plants and accumulated by biological fixation was identified by delta 15N values that range between +2 and +8 per mil. In addition to identifying nitrate sources, some chemical and isotopic charabteristics of ground water were determined on the basis of data collected during this study. Concentrations of major ions, lithium, and boron and delta 7Li, delta 11B, 3H, delta D, and delta 18O data identify ground water in different geographic regions in the study area. These differences probably are related to different sources of ground water, geochemical processes, or geologic deposits. The Luke salt body and a geothermal anomaly alter the chemical and isotopic content of some ground water.

  6. Chemical and isotope compositions of nitric thermal water of Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Plyusnin, A. M.; Chernyavsky, M. K.; Peryazeva, E. G.

    2010-05-01

    Three types of hydrotherms (nitric, carbonaceous and methane) are distinguished within the Baikal Rift Zone. The unloading sites of nitric therms are mostly located in the central and north-eastern parts of the Rift. Several chemical types are found among nitric therms (Pinneker, Pisarsky, Lomonosov, 1968; Lomonosov, 1974, etc.). The formation of terms being various in chemical compositions is associated with effect of several factors, i.e. various chemical, mineralogical compositions of rocks, various temperatures, extent of interaction in water-rock system, etc. The ratio data of water oxygen and hydrogen isotopes of the studied thermal springs indicate that water is largely of meteoric origin. All established ratios of oxygen (δ18OSMOW = -19.5‰ - -17.5‰) and hydrogen (δDSMOW = -155‰ - - 130‰) isotopes are along the line of meteoric waters. Oxygen values from -20‰ to -5‰ are characteristic of the current meteoric and surface waters in the region. The average value equals -16.5‰ in Lake Baikal. By our data, a large group with oxygen lighter isotope composition that corresponds to isotope ratio being specific for glaciers is revealed in fissure-vein waters. Significant shift toward the oxygen getting heavier is observed in some springs. It is mostly observed in the springs that form chemical composition within the area of the intrusive and metamorphic rock distribution. As a result of hydrolysis reaction of alumosilicates, heavy isotope passes from rocks into water molecule, whereas oxygen heavy isotope passes from rocks into solutes during decomposition of carbonates. High contents of fluoride and sulfate-ions are specific feature of the Baikal Rift Zone most nitric therms. Water is tapped in one of the drill holes, where fluoride-ion dominates in its anion composition (46.7 mg/dm3) and pH reaches 10, 12. The sulphate sulphur isotope composition studies carried out allow to conclude that its heavy isotope (δ34SCDT = +25‰ - +30‰) prevails in

  7. Lead concentration and isotopic composition in five peridotite inclusions of probable mantle origin

    USGS Publications Warehouse

    Zartman, R.E.; Tera, F.

    1973-01-01

    The lead content of five whole-rock peridotite inclusions (four lherzolites and one harzburgite) in alkali basalt ranges from 82 to 570 ppb (parts per billion). Approximately 30-60 ppb of this amount can be accounted for by analyzed major silicate minerals (olivine ??? 10 ppb; enstatite 5-28 ppb; chrome diopside ???400 ppb). Through a series of acid leaching experiments, the remainder of the lead is shown to be quite labile and to reside in either glassy or microcrystalline veinlets or accessory mineral phases, such as apatite and mica. The lead isotopic composition of the peridotites (206Pb/204Pb = 18.01-18.90; 207Pb/204Pb = 15.52-15.61; 208Pb/204Pb = 37.80-38.86) lies within the range of values defined by many modern volcanic rocks and, in particular, is essentially coextensive with the abyssal tholeiite field. In all but one instance, isotopic differences were found between the peridotite and its host alkali basalt. Two of the peridotites clearly demonstrated internal isotopic heterogeneity between leachable and residual fractions that could not simply be due to contamination by the host basalt. However, there is no evidence that these ultramafic rocks form some layer in the mantle with isotopic characteristics fundamentally different from those of the magma sources of volcanic rocks. ?? 1973.

  8. The Abundance and Isotopic Composition of Hg in Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Blum, J. D.; Klaue, Bjorn

    2005-01-01

    During the three year grant period we made excellent progress in our study of the abundances and isotopic compositions of Hg and other volatile trace elements in extraterrestrial materials. At the time the grant started, our collaborating PI, Dante Lauretts, was a postdoctoral research associate working with Peter Buseck at Arizona State University. The work on chondritic Hg was done in collaboration with Dante Lauretta and Peter Buseck and this study was published in Lauretta et a1 (2001a). In July, 2001 Dante Lauretta accepted a position as an Assistant Professor in the Lunar and Planetary Laboratory at the University of Arizona. His funding was transferred and this grant has supported much of his research activities during his first two years at the U of A. Several other papers are in preparation and will be published soon. We presented papers on this topic at Goldschmidt Conferences, the Lunar and Planetary Science Conferences, and the Annual Meetings of the Meteoritical Society. The work done under this grant has spurred several new directions of inquiry, which we are still pursuing. Included in this paper are the studies of bulk abundances and isotopic compositions of metreoritic Mercury, and the development of a thermal analysis ICP-MS technique applied to thermally liable elements.

  9. The isotopic composition of iron-group galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; Leske, R. A.

    1995-01-01

    Results from studies of the isotopic composition of iron group elements in the galactic cosmic radiation are reviewed, emphasizing recently reported measurements from the ISEE-3 spacecraft. The observed isotope distributions for the elements Ti through Mn are in good agreement with those expected for a propagated solar-like source composition, with the possible exception of an enhanced abundance of Ti-50. It is found that a significant fraction of the radioactive secondary nuclide Mn-54 has decayed, indicating a confinement time of iron group cosmic rays in the galaxy of at least 2 Myr. The source ratio Fe-54/Fe-56 is found to be consistent with the solar value, but the ratio Ni-60/Ni-58 is greater than solar by a factor of 2.8+/-1.0. The measured abundance of Co-59 is significantly greater than the calculated secondary contribution, suggesting that this nuclide has been produced in the source regions by the electron capture decay of Ni-59 and implying a time delay between nucleosynthesis and acceleration approximately greater than 10(exp 5) yr.

  10. [Mechanism of pigment content on infrared emissivity of composite coatings].

    PubMed

    Zhang, Wei-Gang; Xu, Guo-Yue; Xu, Fei-Feng; Ding, Ru-Ya; Tan, Shu-Juan

    2012-10-01

    Polyurethane (PU)/flaky metal composite coatings were prepared by using PU and flaky metal powders as adhesives and pigments, respectively. The infrared emissivity of coatings with different metal content was measured by infrared emissometer, and the microstructure of PU/flaky metal composite coatings was observed by scanning electron microscopy. The results of infrared emissivity measurement indicate that the emissivity changes significantly with increasing metal content and presents a "U" type. The results of microstructure observation indicate that PU/flaky metal composite coatings have one-dimensional photonic structural characteristics. According to the microstructure characteristics, the optical reflection spectra of one-dimensional photonic structure in PU/flaky metal composite coatings with different metal content were simulated, and the results show that "U" type variation of emissivity with increasing metal content is derived from the blueshift of reflection peak wavelength with increasing metal content of one-dimensional photonic structure in coatings.

  11. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    NASA Astrophysics Data System (ADS)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  12. Monitoring of Pb Contamination in Loire Estuary: Trends, Distribution and Isotopic composition

    NASA Astrophysics Data System (ADS)

    Brach-Papa, Christophe; Chiffoleau, Jean-François; Knoery, Joel; Chouvelon, Tiphaine; Auger, Dominique; Bretaudeau, Jane; Crochet, Sylvette; Rozuel, Emmanuelle; Thomas, Batien; Vasileva, Emilia; Oriani, Anna Maria

    2014-05-01

    The Loire River is one of the largest river systems in Western Europe and constitutes a major continental input to marine environment in the Bay of Biscay. Its catchment area flows through agricultural, industrial areas and through a more and more urbanized estuary. Even if Loire River is not considered as a highly polluted system, some studies identified a Pb contamination of its estuary due to industrial inputs and combustion of leaded gasoline up to the mid 90's. A retrospective study, based on the analysis (Pb contents and isotopic composition) of Mytilus edulis samples collected by the French mussel watch program (RNO/ROCCH) has highlighted this contamination and its trend between 1985-2005 (Couture et al., 2010). This poster will first complete the work initiated by Couture et al. Pb contents and isotopic signatures in mussel samples collected by RNO/ROCCH over the last 10 years will be presented and discussed. Results will be compared to measurements performed on various environmental samples (sediment, biota…) collected in the frame of the environmental monitoring project RS2E started in 2012 by the "Observatoire des Sciences de l'Univers Nantes-Atlantique" (OSUNA). This new data will contribute to a better characterisation of Pb contents and distribution along the Loire Estuary. Moreover, some key samples will be submitted to HR-ICP-MS for Pb isotopic analysis. Discrimination of anthropic Pb sources requires both precise and accurate isotope ratio determination and also high versatility due to the complex matrix, which is typical for marine and estuarine samples. These measurements will contribute to a more accurate definition and characterisation of main actual anthropic Pb sources (urban, agricultural, industrial or atmospheric deposition). Couture R.- M., Chiffoleau J.-F., Auger D., Claisse D., Gobeil C. and Cossa D. (2010) Seasonal and decadal variation in lead sources to eastern north Atlantic mussels. Environ. Sci. Technol. 44, 1211-1216.

  13. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer

    PubMed Central

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D.; Vicars, William; Alexander, Becky; Achterberg, Eric P.

    2013-01-01

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201

  14. The effect of natural weathering on the chemical and isotopic compositions of biotites

    USGS Publications Warehouse

    Clauer, Norbert; O'Neil, J.R.; Bonnot-Courtois, C.

    1982-01-01

    The effect of progressive natural weathering on the isotopic (Rb-Sr, K-Ar, ??D, ??18O) and chemical (REE, H2O+) compositions of biotite has been studied on a suite of migmatitic biotites from the Chad Republic. During the early stages of weathering the Rb-Sr system is strongly affected, the hydrogen and oxygen isotope compositions change markedly, the minerals are depleted in light REE, the water content increases by a factor of two, and the K-Ar system is relatively little disturbed. During intensive weathering the K-Ar system is more strongly disturbed than the Rb-Sr system. Most of the isotopic and chemical modifications take place under nonequilibrium conditions and occur before newly formed kaolinite and/or smectite can be detected. These observations suggest that 1. (a) "protominerals" may form within the biotite structure during the initial period of weathering, and 2. (b) only when chemical equilibrium is approached in the weathering profile are new minerals able to form. ?? 1982.

  15. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.

    PubMed

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P

    2013-10-29

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL.

  16. Isotopic composition of atmospheric nitrate in a tropical marine boundary layer.

    PubMed

    Savarino, Joel; Morin, Samuel; Erbland, Joseph; Grannec, Francis; Patey, Matthew D; Vicars, William; Alexander, Becky; Achterberg, Eric P

    2013-10-29

    Long-term observations of the reactive chemical composition of the tropical marine boundary layer (MBL) are rare, despite its crucial role for the chemical stability of the atmosphere. Recent observations of reactive bromine species in the tropical MBL showed unexpectedly high levels that could potentially have an impact on the ozone budget. Uncertainties in the ozone budget are amplified by our poor understanding of the fate of NOx (= NO + NO2), particularly the importance of nighttime chemical NOx sinks. Here, we present year-round observations of the multiisotopic composition of atmospheric nitrate in the tropical MBL at the Cape Verde Atmospheric Observatory. We show that the observed oxygen isotope ratios of nitrate are compatible with nitrate formation chemistry, which includes the BrNO3 sink at a level of ca. 20 ± 10% of nitrate formation pathways. The results also suggest that the N2O5 pathway is a negligible NOx sink in this environment. Observations further indicate a possible link between the NO2/NOx ratio and the nitrogen isotopic content of nitrate in this low NOx environment, possibly reflecting the seasonal change in the photochemical equilibrium among NOx species. This study demonstrates the relevance of using the stable isotopes of oxygen and nitrogen of atmospheric nitrate in association with concentration measurements to identify and constrain chemical processes occurring in the MBL. PMID:23431201

  17. Evidencing the Impact of Coastal Contaminated Sediments on Mussels Through Pb Stable Isotopes Composition.

    PubMed

    Dang, Duc Huy; Schäfer, Jörg; Brach-Papa, Christophe; Lenoble, Véronique; Durrieu, Gaël; Dutruch, Lionel; Chiffoleau, Jean-Francois; Gonzalez, Jean-Louis; Blanc, Gérard; Mullot, Jean-Ulrich; Mounier, Stéphane; Garnier, Cédric

    2015-10-01

    Heavily contaminated sediments are a serious concern for ecosystem quality, especially in coastal areas, where vulnerability is high due to intense anthropogenic pressure. Surface sediments (54 stations), 50 cm interface cores (five specific stations), river particles, coal and bulk Pb plate from past French Navy activities, seawater and mussels were collected in Toulon Bay (NW Mediterranean Sea). Lead content and Pb stable isotope composition have evidenced the direct impact of sediment pollution stock on both the water column quality and the living organisms, through the specific Pb isotopic signature in these considered compartments. The history of pollution events including past and present contaminant dispersion in Toulon Bay were also demonstrated by historical records of Pb content and Pb isotope ratios in sediment profiles. The sediment resuspension events, as simulated by batch experiments, could be a major factor contributing to the high Pb mobility in the considered ecosystem. A survey of Pb concentrations in surface seawater at 40 stations has revealed poor seawater quality, affecting both the dissolved fraction and suspended particles and points to marina/harbors as additional diffuse sources of dissolved Pb.

  18. Interpreting bryophyte stable carbon isotope composition: Plants as temporal and spatial climate recorders

    NASA Astrophysics Data System (ADS)

    Royles, Jessica; Horwath, Aline B.; Griffiths, Howard

    2014-04-01

    are unable to control tissue water content although physiological adaptations allow growth in a wide range of habitats. Carbon isotope signals in two mosses (Syntrichia ruralis and Chorisodontium aciphyllum) and two liverworts (Conocephalum conicum and Marchantia polymorpha), whether instantaneous (real time, Δ13C), or organic matter (as δ13COM), provide an assimilation-weighted summary of bryophyte environmental adaptations. In mosses, δ13COM is within the measured range of Δ13C values, which suggests that other proxies, such as compound-specific organic signals, will be representative of historical photosynthetic and growth conditions. The liverworts were photosynthetically active over a wider range of relative water contents (RWC) than the mosses. There was a consistent 5‰ offset between Δ13C values in C. conicum and M. polymorpha, suggestive of greater diffusion limitation in the latter. Analysis of a C. aciphyllum moss-peat core showed the isotopic composition over the past 200 years reflects recent anthropogenic CO2 emissions. Once corrected for source-CO2 inputs, the seasonally integrated Δ13COM between 1350 and 2000 A.D. varied by 1.5‰ compared with potential range of the 12‰ measured experimentally, demonstrating the relatively narrow range of conditions under which the majority of net assimilation takes place. Carbon isotope discrimination also varies spatially, with a 4‰ shift in epiphytic bryophyte organic matter found between lowland Amazonia and upper montane tropical cloud forest in the Peruvian Andes, associated with increased diffusion limitation.

  19. Growth Retardation and Altered Isotope Composition As Delayed Effects of PCB Exposure in Daphnia magna.

    PubMed

    Ek, Caroline; Gerdes, Zandra; Garbaras, Andrius; Adolfsson-Erici, Margaretha; Gorokhova, Elena

    2016-08-01

    Trophic magnification factor (TMF) analysis employs stable isotope signatures to derive biomagnification potential for environmental contaminants. This approach relies on species δ(15)N values aligning with their trophic position (TP). This, however, may not always be true, because toxic exposure can alter growth and isotope allocation patterns. Here, effects of PCB exposure (mixture of PCB18, PCB40, PCB128, and PCB209) on δ(15)N and δ(13)C as well as processes driving these effects were explored using the cladoceran Daphnia magna. A two-part experiment assessed effects of toxic exposure during and after exposure; juvenile daphnids were exposed during 3 days (accumulation phase) and then allowed to depurate for 4 days (depuration phase). No effects on survival, growth, carbon and nitrogen content, and stable isotope composition were observed after the accumulation phase, whereas significant changes were detected in adults after the depuration phase. In particular, a significantly lower nitrogen content and a growth inhibition were observed, with a concomitant increase in δ(15)N (+0.1 ‰) and decrease in δ(13)C (-0.1 ‰). Although of low magnitude, these changes followed the predicted direction indicating that sublethal effects of contaminant exposure can lead to overestimation of TP and hence underestimated TMF. PMID:27367056

  20. The chlorine isotopic composition of Martian meteorites 1: Chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions

    NASA Astrophysics Data System (ADS)

    Williams, J. T.; Shearer, C. K.; Sharp, Z. D.; Burger, P. V.; McCubbin, F. M.; Santos, A. R.; Agee, C. B.; McKeegan, K. D.

    2016-05-01

    The Martian meteorites record a wide diversity of environments, processes, and ages. Much work has been done to decipher potential mantle sources for Martian magmas and their interactions with crustal and surface environments. Chlorine isotopes provide a unique opportunity to assess interactions between Martian mantle-derived magmas and the crust. We have measured the Cl-isotopic composition of 17 samples that span the range of known ages, Martian environments, and mantle reservoirs. The 37Cl of the Martian mantle, as represented by the olivine-phyric shergottites, NWA 2737 (chassignite), and Shergotty (basaltic shergottite), has a low value of approximately -3.8‰. This value is lower than that of all other planetary bodies measured thus far. The Martian crust, as represented by regolith breccia NWA 7034, is variably enriched in the heavy isotope of Cl. This enrichment is reflective of preferential loss of 35Cl to space. Most basaltic shergottites (less Shergotty), nakhlites, Chassigny, and Allan Hills 84001 lie on a continuum between the Martian mantle and crust. This intermediate range is explained by mechanical mixing through impact, fluid interaction, and assimilation-fractional crystallization.

  1. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Masson-Delmotte, Valérie; Genthon, Christophe; Kerstel, Erik; Kassi, Samir; Arnaud, Laurent; Picard, Ghislain; Prie, Frederic; Cattani, Olivier; Steen-Larsen, Hans-Christian; Vignon, Etienne; Cermak, Peter

    2016-07-01

    Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014-January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying a unique origin leading

  2. Perchlorate in The Great Lakes: Distribution, Isotopic Composition and Origin

    NASA Astrophysics Data System (ADS)

    Poghosyan, A.; Sturchio, N. C.; Jackson, W. A.; Guan, Y.; Eiler, J. M.; Hatzinger, P. B.

    2013-12-01

    Concentrations, stable chlorine and oxygen isotopic compositions, and 36Cl abundances of perchlorate were investigated in the five Laurentian Great Lakes. Samples were collected during monitoring cruises in 2007 and 2008 of the U.S. EPA's RV Lake Guardian and in 2010 at the water supply intake of Marquette, MI on the southern shore of Lake Superior. Concentrations of perchlorate were measured by IC/MS/MS at 24 locations, including one or two depth profiles in each lake. Mean concentrations (μg/L) are: Superior, 0.06 × 0.01; Michigan, 0.10 × 0.01; Huron, 0.11 × 0.01; Erie, 0.08 × 0.01, and Ontario, 0.09 × 0.01. Concentration vs. depth is nearly constant in each lake, indicating well-mixed conditions. Perchlorate was extracted from near-surface water by passing 15,000 to 80,000 L of water through 1-L cartridges containing Purolite A530E bifunctional anion-exchange resin. In the laboratory, perchlorate was eluted from the resin, purified, and precipitated as a >99% pure crystalline phase. Milligram amounts were recovered from each lake. Chlorine and oxygen isotopic analyses were performed at Caltech using the Cameca 7f-GEO SIMS instrument, following validation of the SIMS method with analyses of USGS-37 and USGS-38 isotopic reference materials. Results indicate a relatively narrow range in δ37Cl values (+2.9 to +3.9 ‰) and a wider range in δ18O values (-4.0 to +4.1 ‰), with a general geographic trend of increasing δ18O from west to east. Oxygen-17 was measured at UIC using dual-inlet IRMS of O2 produced by decomposition of KClO4. Great Lakes perchlorate has mass-independent oxygen isotopic variations with positive Δ17O values (+1.6 ‰ to +2.7 ‰) divided into two distinct groups: Lake Superior (+2.7 ‰) and the other four lakes (~ +1.7 ‰). The isotopic data indicate that perchlorate is dominantly of natural origin, having stable isotopic compositions resembling those of perchlorate from pre-industrial groundwaters in the western USA. The 36Cl

  3. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  4. [Humus composition and stable carbon isotope natural abundance in paddy soil under long-term fertilization].

    PubMed

    Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing

    2008-09-01

    Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).

  5. Evaluating Foraminifera as an Archive for Seawater Chromium Isotopic Composition

    NASA Astrophysics Data System (ADS)

    Wang, X.; Planavsky, N.; Hull, P. M.; Tripati, A.; Reinhard, C.; Zou, H.; Elder, L. E.; Henehan, M. J.

    2015-12-01

    In recent years there has been growing interest in using chromium isotopes (δ53Cr) as a proxy to investigate the redox evolution of Earth's ocean-atmosphere system throughout geological history. Potential archives for seawater δ53Cr that have been identified to date include iron formations and organic-rich siliciclastic sediments. However, these types of sediments are not common and they are discontinuous over geologic time. As a result, alternative types of archives are needed. Here we evaluate the utility of foraminifera tests as a recorder of seawater δ53Cr. Core-tops used were from different ocean basins. Mono-specific samples of Globigerinoides sacculifer, Orbulina universa, Pulleniatina obliquiloculata, Globoratalia crassula-crassaformis, Globoratalia truncatulinoides, and Globigerinella siphonifera were isolated to investigate inter-species isotope fractionation. Chromium concentrations were measured by isotope dilution method to be 0.1-0.3 μg/g. The δ53Cr values of these species range from 0.2‰ to 2.4‰, with an analytical uncertainty of 0.3‰ (95% confidence). Despite the high analytical uncertainty due to the extremely low levels of Cr present, there is still large detectable variation in foraminiferal δ53Cr values, which overlap presently available seawater values (Bonnand et al., 2013; Scheiderich et al., 2015). Possible explanations for such variations in foraminiferal δ53Cr values include heterogeneity of seawater δ53Cr in the modern oceans, and/or photobiochemical redox cycling of Cr in the surface oceans. Therefore, care should be taken when using foraminifera to reconstruct past seawater δ53Cr values. ReferencesBonnand, P., James, R., Parkinson, I., Connelly, D., Fairchild, I., 2013. The chromium isotopic composition of seawater and marine carbonates. Earth and Planetary Science Letters, 382: 10-20. Scheiderich, K., Amini, M., Holmden, C., Francois, R., 2015. Global variability of chromium isotopes in seawater demonstrated by Pacific

  6. Contact Zones: Composition's Content in the University.

    ERIC Educational Resources Information Center

    Gottschalk, Katherine K.

    Contact zone theory--spaces where cultures meet, clash, and grapple with each other--helps writing program administrators to situate themselves. Writing programs and composition courses seem most troubled where the viewpoint of the most powerful faction is assumed as "the" viewpoint. One way to defuse tension is to recognize that writing is not…

  7. Evaluating crustal contamination in continental basalts: the isotopic composition of the Picture Gorge Basalt of the Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Brandon, Alan D.; Hooper, Peter R.; Goles, Gordon G.; Lambert, Richard St J.

    1993-09-01

    Crustal contamination of basalts located in the western United States has been generally under-emphasized, and much of their isotopic variation has been ascribed to multiple and heterogeneous mantle sources. Basalts of the Miocene Columbia River Basalt Group in the Pacific Northwest have passed through crust ranging from Precambrian to Tertiary in age. These flows are voluminous, homogenous, and underwent rapid effusion, all of which are disadvantages for crustal contamination while en route to the surface. The Picture Gorge Basalt of the Columbia River Basalt Group erupted through Paleozoic and Mesozoic oceanic accreted terranes in central Oregon, and earlier studies on these basalts provided no isotopic evidence for crustal contamination. New Sr, Nd, Pb, and O isotopic data presented here indicate that the isotopic variation of the Picture Gorge Basalt is very small, 87Sr/86Sr=0.70307 0.70371, ɛNd=+7.7-+4.8, δ18O=+5.6±6.1, and 206Pb/204Pb=18.80 18.91. Evaluation of the Picture Gorge compositional variation supports a model where two isotopic components contributed to Picture Gorge Basalt genesis. The first component (C1) is reflected by low 87Sr/86Sr, high ɛNd, and nonradiogenic Pb isotopic compositions. Basalts with C1 isotopic compositions have large MgO, Ni, and Cr contents and mantle-like δ18O=+5.6. C1 basalts have enrichments in Ba coupled with depletions in Nb and Ta. These characteristics are best explained by derivation from a depleted mantle source which has undergone a recent enrichment by fluids coming from a subducted slab. This C1 mantle component is prevalent throughout the Pacific Northwest. The second isotopic component has higher 87Sr/ 86Sr and δ18O, lower ɛNd, and more radiogenic Pb isotopic compositions than C1. There is a correlation in the Picture Gorge data of Sr, Nd, and Pb isotopes with differentiation indicators such as decreasing Mg#, and increasing K2O/TiO2, Ba, Ba/Zr, Rb/Sr, La/Sm, and La/Yb. Phase equilibrium and mineralogical

  8. The effects of core formation on the Pb- and Tl- isotopic composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    Wood, Bernard J.; Nielsen, Sune G.; Rehkämper, Mark; Halliday, Alex N.

    2008-05-01

    We have performed metal-silicate partitioning experiments at 2 GPa and 1650-2180 °C to investigate the behaviour of Pb and Tl during terrestrial core formation. The aim was to test the hypothesis that metal core formation followed by late sulphide addition to the core resulted in the concentrations and isotopic compositions of Pb and Tl in the silicate Earth. We investigated DPbmet/sil and DTLmet/sil as functions of the sulphur content of the metal and measured the equilibrium Tl isotope fractionation between the coexisting phases. Lead is moderately siderophile under the likely conditions (initially reducing [Wade, J., Wood, B.J., Core formation and the oxidation state of the Earth, Earth Planet. Sci. Lett. 236(2005) 78-95.]) of core segregation on Earth so that the μ( 238U/ 204Pb) of the bulk silicate Earth should have increased by a factor of 6.5 ( DPb ˜ 13) as the core separated. In the case of Tl, core segregation should have reduced the Tl concentration of the BSE by about 50%. Neither the Pb nor Tl isotopic compositions of the bulk silicate Earth can, however, be completely explained by S-free iron core formation. Thallium isotopes were found not to be significantly fractionated by metal or sulphide separation from silicate. Addition of sulphur to the metal greatly increases metal-silicate partition coefficients for both Pb and Tl. DPbmet/sil increases by a factor of 15 and DTLmet/sil by a factor of 45 as S increases from 0 to 35% in the metal phase. This means that extraction of sulphide from a molten mantle would result in DPbsulph/sil of ˜ 40 and DTLsulph/sil of ˜ 60. We used the latter results to calculate the effects of late sulphide extraction on the Pb and Tl isotopic compositions of the silicate Earth. For a bulk Earth with μ of 0.7 addition of 1.6% sulphide to the core 100-140 Myr after the beginning of the solar system is sufficient to displace the Pb-isotopic composition of the silicate Earth into the region indicated by estimates in the

  9. Interpreting the Calcium Isotopic Composition of Seawater Through the Neogene and Quaternary

    NASA Astrophysics Data System (ADS)

    de La Rocha, C. L.; Sime, N. G.; Tipper, E. T.; Tripati, A.; Galy, A.; Bickle, M. J.

    2006-12-01

    It has been proposed that the calcium isotopic composition (δ^{44/42}Ca) of marine biogenic carbonates can be used to reconstruct past changes in the Ca2+ content of the ocean, lending insight into in weathering fluxes of Ca to the oceans and atmospheric concentrations of CO2. Here we present a 20 million year record of the δ^{44/42}Ca of planktonic foraminifera from ODP site 925, in the Atlantic Ocean (Ceara Rise), and make a critical analysis of Ca isotope-based reconstructions of the Ca cycle. The Ceara Rise record, whose δ^{44/42}Ca averages +0.37 ± 0.05 (1σ S.D.) and ranges from +0.21 ‰ to +0.52 ‰, is a good match to previously published Neogene Ca isotope records based on foraminifera, but differs from the record based on bulk carbonates which has values that are as much as 0.25 ‰ lower. Bulk carbonate and planktonic foraminfera from core tops differ only by 0.06 ± 0.06 ‰ (n =5), leaving room for additional factors than potentially differing fractionation factors for the production of calcite by foraminifera and coccolithophorids to cause discrepancy between bulk carbonate and foraminiferan values back through time. Modeling the global Ca cycle from downcore variations in δ^{44/42}Ca by assuming fixed values for the isotopic composition of weathering inputs (δ^{44/42}Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in large variations in the mass of Ca2+ in the oceans during the Neogene. This suggests that δ^{44/42}Caw and Δsed instead fluctuate over time. Ca isotope fractionation during weathering processes, such as has been recently documented, could easily result in variations in δ^{44/42}Caw of a few tenths of permil associated with shifts in climate on land. Likewise the differing degree of isotope fractionation associated with aragonite versus calcite formation could drive shifts in Δsed of several tenths of permil with changes in the Mg/Ca of seawater or the relative importance

  10. Analyses of stomach contents and stable isotopes reveal food sources of estuarine detritivorous fish in tropical/subtropical Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Hsing-Juh; Kao, Wen-Yuan; Wang, Ya-Ting

    2007-07-01

    Detritivorous fish generally refers to fish that primarily ingest unidentified organic detritus. We analyzed stomach contents in combination with stable isotopes to trace and compare the food sources of the large-scale mullet Liza macrolepis and other detritivorous fish species in subtropical mangrove creeks and a tropical lagoon in Taiwan. The volume of organic detritus always contributed >50% of the stomach content of L. macrolepis in the two habitats. However, consumed items were distinct between the two habitats and corresponded to the types in which they reside. The consumed items in the lagoon were more diverse than those observed in the mangroves. In the mangroves, the diet composition of L. macrolepis was primarily determined by season, not by body size. In the lagoon, there were no clear seasonal or size-dependent grouping patterns for the diet composition. There were significant seasonal and spatial variations in δ13C and δ15N values of potential food sources and L. macrolepis. However, neither δ13C nor δ15N values of L. macrolepis were correlated with fish body size. Joint analyses of stomach contents and stable isotopes indicated that benthic microalgae on sediments were the most important assimilated food in both seasons for the dominant detritivorous fish in the mangroves, whereas a greater reliance on microalgal and macroalgal periphyton on oyster-culture pens was observed in the lagoon. Mangrove and marsh plants and phytoplankton, which are mostly locally produced within each habitat, were of minor importance in the assimilated food.

  11. The ability of isotope enabled Global Circulation Models to simulate observed water vapor isotopic composition above the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Risi, Camille; Yoshimura, Kei; Werner, Martin; Butzin, Martin; Masson-Delmotte, Valerie

    2014-05-01

    We have measured continuously for three summer seasons (2010-2012) the isotopic composition of the water vapor on top of the Greenland Ice Sheet as part of the NEEM deep ice core-drilling project (77.45 N 51.06 W, 2484 m a.s.l). The purpose of this campaign has been to improve our understanding of the climatic factors controlling the ice core isotope signal, which can then be used to reconstruct the past climate. To achieve such an understanding general circulation models provide a valuable tool. It is therefore crucial to test the ability of the models to simulate the present day hydrological cycle and its isotopic counterparts. We therefore compare the observed water vapor isotopic composition with model outputs from three isotope-enabled general circulation models (LMDZiso, isoGSM, ECHAM-wiso). We are thereby able to benchmark the models and address effect of model resolution, effect of transport, effect of isotope parameterization, and representation of significant source region contributions. We find for all models that simulated isotopic value δD are significantly biased towards too enriched values. This isotopic bias is partly explained by a bias in the simulated air temperature. We furthermore find that the simulated amplitude in d-excess variations is ~50% smaller than observed and that the simulated average summer level is ~10‰ lower than in observations. The bias in the simulated δD and d-excess water vapor is similar to the already-documented bias in the simulated δD and d-excess of Greenland ice core records. This suggests that if we improve the simulation of the water vapor isotopic composition we might also improve the simulation of the ice core isotope record.

  12. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  13. Amino acid nitrogen isotopic composition patterns in lacustrine sedimenting matter

    NASA Astrophysics Data System (ADS)

    Carstens, Dörte; Lehmann, Moritz F.; Hofstetter, Thomas B.; Schubert, Carsten J.

    2013-11-01

    Amino acids (AAs) comprise a large fraction of organic nitrogen (N) in plankton and sedimenting matter. Aquatic studies of organic N compounds in general and of AAs in particular, mostly concentrate on marine environments. In order to study the cycling and fate of organic N and AAs in lakes, we measured the N isotopic composition (δ15N) of bulk organic matter (OM) and of single hydrolysable AAs in sediment trap and sediment samples from two Swiss lakes with contrasting trophic state: Lake Brienz, an oligotrophic lake with an oxic water column, and Lake Zug a eutrophic, meromictic lake. We also measured the N isotopic composition of water column nitrate, the likely inorganic N source during biosynthesis in both lakes. The δ15N-AA patterns found for the sediment trap material were consistent with published δ15N-AA data for marine plankton. The AA composition and primary δ15N-AA signatures are preserved until burial in the sediments. During early sedimentary diagenesis, the δ15N values of single AAs appear to increase, exceeding those of the bulk OM. This increase in δ15N-AA is paralleled by a decreased contribution of AAs to the total OM pool with progressed degradation, suggesting preferential AA degradation associated with a significant N isotope fractionation. Indicators for trophic level based on δ15N-AAs were determined, for the first time in lacustrine systems. In our samples, the trophic AAs were generally enriched in 15N compared to source AAs and higher trophic δ15N-AA values in Lake Zug were consistent with a higher trophic level of the bulk biomass compared to Lake Brienz. Especially the difference between average trophic δ15N-AAs and average source δ15N-AAs was sensitive to the trophic states of the two lakes. A proxy for total heterotrophic AA re-synthesis (ΣV), which is strongly associated with heterotrophic microbial reworking of the OM, was calculated based on δ15N values of trophic AAs. Higher ΣV in Lake Brienz indicate enhanced

  14. Osmium Isotopic Composition of the Sumbar Cretaceous- Tertiary Boundary, Turkmenia

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1992-07-01

    Turekian (1982) propagated the use of the osmium isotopic composition as a cosmic indicator for the origin of the high osmium (and iridium) layers at the K/T boundaries. He did not consider the osmium isotopic signature of the terrestrial mantle, which also has a chondritic evolution of the Re-Os system. Osmium cannot serve alone as an infallible indicator of the impact theory, but interesting results can be obtained from their investigation. Different K/T boundary section have been analyzed so far for ^187Os/^186Os. An overview of the values is presented in the table. Boundary Clay layer Os ratio Reference Stevns Klint fish clay 1.66 Luck and Turekian, 1983 Woodside Creek 1.12 Lichte et al., 1986 Raton Basin 1.23 Kraehenbuehl et al., 1988 Raton Basin (several) 1.15-1.23 Esser and Turekian, 1989 Sumbar (0-1 cm) 1.16 This work We obtained a complete marine section of the K/T boundary in southern Turkmenia (decribed by Alekseyev, 1988). It shows a very high Ir concentration (66 ppb) at the boundary layer and a remarkable Ir enrichment over crustal rocks continuing up to 30 cm above the boundary. Our aim of this investigation is to analyze several samples from above and below the boundary for the ^187Os/^186Os ratio to obtain a complete picture of the isotopic evolution of the section. We want to evaluate mixing of Os with chondritic ratios with Os from upper crustal rocks. Another goal is to investigate a mobilization of Os. So far only one sample has been analyzed with NTI-MS after fire assay digestion of the sample. The sample 0 to 1 cm has an ^187Os/^186Os ratio of 1.162 +- 13, which is quite low. We expect an even lower value for the boundary clay (0 cm) itself not taking into account a contribution of radiogenic osmium from the decay of terrestrial rhenium. This might put this K/T boundary section closest of all to the present day chondritic value (approx. 1.05). Further analysis will be presented at the meeting. References Alekseyev A. S., Nazarov M. A

  15. Triple sulfur isotope composition of Late Archean seawater sulfate

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2013-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks have provided powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. Most processes fractionate sulfur isotopes in proportion to their mass differences, but the Archean sulfur isotope record is marked by pronounced mass-independent fractionation (MIF, Δ33S≠0). The origin of these signatures has been traditionally interpreted as the result of photolysis of SO2 from short wavelength UV light, with positive Δ33S values recorded in pyrite and negative Δ33S values in sulfate-bearing phases [2]. This long-held hypothesis rests on observations of negative Δ33S from enigmatic barite occurrences from mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes [3], it is largely untested [3]. It is largely untested. Consequently, the biggest challenge to our current understanding of the early sulfur cycle is a poor understanding of the isotopic composition of seawater sulfate. Sulfate evaporite minerals are absent from Archean strata and the sulfur isotope record is written entirely by measurements of pyrite. Carbonate associated sulfate (CAS) provides an important archive for assaying the isotopic composition of ancient seawater sulfate It has been exploited in many studies of Phanerozoic and Proterozoic sulfate but have been only marginally used thus far for Archean samples because of the extremely low concentration of CAS in limestones and dolomites from this era. We have developed a novel MC-ICP-MS approach to solve this problem [4]. This new method lowers the detection limit by up to three orders of magnitude for δ34S and Δ33S measurements, enabling to work on a few nmols of sulfate which represent only tens of mg of sample powders micromilled from specific carbonate textures. Two stratigraphic sections from the 2

  16. Proximate composition and caloric content of eight Lake Michigan fishes

    USGS Publications Warehouse

    Rottiers, Donald V.; Tucker, Robert M.

    1982-01-01

    We measured the proximate composition (percentage lipid, water, fat-free dry material, ash) and caloric content of eight species of Lake Michigan fish: lake trout (Salvelinus namaycush), coho salmon (Oncorhynchus kisutch), lake whitefish (Coregonus clupeaformis), bloater (Coregonus hoyi), alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), deepwater sculpin (Myoxocephalus quadricornis), and slimy sculpin (Cottus cognatus). Except for alewives, proximate composition and caloric content did not differ significantly between males and females. And, for coho salmon, there was no significant difference in composition between fish collected in different years. Lipid and caloric content of lake trout increased directly with age. In all species examined, lipids and caloric contents were significantly lower in small, presumably immature, fish than in larger, older fish. Lipid content of lake trout, lake whitefish, and bloaters (range of means, 16-22%) was nearly 3 times higher than that of coho salmon, sculpins, rainbow smelt, and alewives (range of means, 5.2-7.0%). The mean caloric content ranged from 6.9 to 7.1 kcal/g for species high in lipids and from 5.8 to 6.3 kcal/g for species low in lipids. Although the caloric content of all species varied directly with lipid content and inversely with water content, an increase in lipid content did not always coincide with a proportional increase in caloric content when other components of fish composition were essentially unchanged. This observation suggests that the energy content of fish estimated from the proximate composition by using universal conversion factors may not necessarily be accurate.

  17. Isotopic composition of sulfate accumulations, Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Bojar, Ana-Voica; Halas, Stanislaw; Bojar, Hans-Peter; Trembaczowski, Andrzej

    2015-04-01

    The Eastern Alps are characterised by the presence of three main tectonic units, such as the Lower, Middle and Upper Austroalpine, which overlie the Penninicum (Tollmann, 1977). The Upper Austroalpine unit consists of the Northern Calcareous Alps (NCA) overlying the Greywacke zone and corresponding to the Graz Paleozoic, Murau Paleozoic and the Gurktal Nappe. Evaporitic rocks are lacking in the later ones. The Northern Calcareous Alps are a detached fold and thrust belt. The sedimentation started in the Late Carboniferous or Early Permian, the age of the youngest sediments being Eocene. The NCA are divided into the Bajuvaric, Tirolic and Juvavic nappe complexes. The evaporitic Haselgebirge Formation occurs in connection with the Juvavic nappe complex at the base of the Tirolic units (Leitner et al., 2013). The Haselgebirge Formation consists mainly of salt, shales, gypsum and anhydrite and includes the oldest sediments of the NCA. The age of the Haselgebirge Formation, established by using spors and geochronological data, is Permian to Lower Triassic. For the Northern Calcareous Alps, the mineralogy of sulphate accumulations consists mainly of gypsum and anhydrite and subordonates of carbonates. The carbonates as magnesite, dolomite and calcite can be found either as singular crystals or as small accumulations within the hosting gypsum. Sulfides (sphalerite, galena, pyrite), sulfarsenides (enargite, baumhauerite) and native sulphur enrichments are known from several deposits (Kirchner, 1987; Postl, 1990). The investigated samples were selected from various gypsum and halite rich deposits of the Northern Calcareous Alps. A total of over 20 samples were investigated, and both oxygen and sulfur isotopic composition were determined for anhydrite, gyps, polyhalite, blödite and langbeinite. The sulfur isotopic values vary between 10.1 to 14 ‰ (CDT), with three values higher than 14 ‰. The Oxygen isotopic values show a range from 9 to 23 ‰ (SMOW). The sulfur

  18. Lithium isotope fractionation in the Ganges-Brahmaputra floodplain and implications for groundwater impact on seawater isotopic composition

    NASA Astrophysics Data System (ADS)

    Bagard, Marie-Laure; West, A. Joshua; Newman, Karla; Basu, Asish R.

    2015-12-01

    Lithium isotopes are a promising proxy for reconstructing past weathering processes, but unraveling the seawater record requires a comprehensive understanding of the magnitude and isotopic composition of Li fluxes to the oceans, and of how these change over time. Little information is available on the role of floodplain sediments and groundwater systems in setting the Li isotope signature of the dissolved flux delivered from the continents to the oceans. Here we investigate the Li dissolved fluxes of river waters and groundwaters in the Ganges-Brahmaputra floodplain. The data suggest that a maximum of 3.1 ×108 and 1.5 ×108 moles Li/yr are carried to the Bay of Bengal by Ganges-Brahmaputra rivers and groundwaters, respectively. The riverine flux has a significantly heavier Li isotope composition (average δ7Li: 26‰) than the groundwater flux (average δ7Li: 16‰) and increases downstream across the floodplain. δ7Li in both river waters and shallow groundwater can be explained by Li scavenging by Quaternary floodplain sediments following a Rayleigh fractionation process, with preferential removal of 6Li. On the other hand, deep groundwaters (>40 m) contributing to submarine groundwater discharge to the Bay of Bengal are enriched in 6Li at depth, likely due to the dissolution of floodplain sediments releasing Li with a light isotope composition. Similarly low δ7Li has been reported in other large sedimentary aquifers. The deep groundwater values are close to the average isotope composition of the global Li inputs to the ocean (∼15‰), so groundwater submarine discharge has only a minor influence on the assessment of the modern Li isotope budget of the ocean. Our analysis further suggests that groundwater discharge of Li has probably played at most a small and secondary role in past changes in the isotope composition of the total continental flux of Li to the ocean.

  19. Lead isotope compositions as guides to early gold mineralization: The North Amethyst vein system, Creede district, Colorado

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    1994-01-01

    Pb isotope compositions from the late stage of the North Amethyst vein system and from the Bondholder and central and southern Creede mining districts are more radiogenic than the host volcanic rocks of the central cluster of the San Juan volcanic field. Our Pb isotope results indicate that early Au mineralization of the North Amethyst area may represent the product of an older and relatively local hydrothermal system distinct from that of the younger base metal and Ag mineralization found throughout the region. Fluids that deposited Au minerals may have derived their Pb isotope composition by a greater degree of interaction with shallow, relatively less radiogenic volcanic wall rocks. The younger, base metal and Ag-rich mineralization that overprints the Au mineralization in the North Amethyst area clearly has a more radiogenic isotopic signature, which implies that the later mineralization derived a greater component of its Pb from Proterozoic source rocks, or sediments derived from them.Paragenetically early sulfide-rich vein assemblages have the least radiogenic galenas and generally also have the highest Au contents. Thus, identification of paragenetically early vein assemblages with relatively unradiogenic Pb isotope compositions similar to those of the North Amethyst area provides an additional exploration tool for Au in the central San Juan Mountains area.

  20. Understanding the source: The nitrogen isotope composition of Type II mantle diamonds

    NASA Astrophysics Data System (ADS)

    Mikhail, Sami; Howell, Dan; Jones, Adrian; Milledge, Judith; Verchovsky, Sasha

    2010-05-01

    Diamonds can be broadly subdivided into 2 groups based on their nitrogen content; type I with > 10ppm nitrogen and type II with < 10ppm (1). Roughly 98 % of upper mantle diamonds are classified as type I, interestingly nearly all lower mantle diamonds are of type II (2). This study aims to identify the processes involved or source of type II diamonds from several localities by measuring their carbon and nitrogen stable isotope compositions simultaneously for the first time. Samples have been categorised as type II using Fourier transform infra-red (FTIR) analysis. The carbon and nitrogen isotopes as well as additional nitrogen content data have been acquired using a custom made a hi-sensitivity gas sourced mass spectrometer built and housed at the Open University, UK. There are two ways in which we can model the petrogenesis of type II diamonds. 1- During diamond growth nitrogen can be incorporated into diamond as a compatible element in a closed system and therefore the N/C ratio in the source can be depleted by Rayleigh fractionation as the first diamonds to crystallise will partition nitrogen atoms into their lattice as a 1:1 substitution for carbon atoms (type I diamonds). However nitrogen may behave as an incompatible element in diamond (and be a compatible element in the metasomatic fluid), this coupled with an open system would lead to the removal of nitrogen by the metasomatic fluids, thus causing the source to progressively become depleted in nitrogen. Continued diamond crystallization in either system will produce diamonds with ever decreasing nitrogen concentrations with time, possibly to the point of them being almost nitrogen free. 2- It is conceivable that type I & II diamonds found in the same deposit and sharing a common paragenesis (eclogitic or peridotitic) may have formed from different metasomatic fluids in separate diamond forming events. The latter has been proposed for samples from the Cullinan mine (South Africa) based on their carbon

  1. Relation between isotopic composition of precipitation and atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael; Kononova, Nina K.; Vreča, Polona

    2015-10-01

    Precipitation generating processes depend on atmospheric circulation patterns and consequently it is expected that its water stable isotopic composition of hydrogen and oxygen is related to them. Precipitation generated at similar atmospheric circulation patterns should have similar empirical distribution of δ2H and δ18O values. Mathematical model based on the linear combination of δ2H and δ18O values and on precipitation amount weighted average related to elementary air circulation mechanisms - ECM is proposed. The model enables estimation of average δ2H and δ18O values and their standard deviation for the precipitation generated at distinctive atmospheric circulation patterns. Approach in which atmospheric circulation patterns were classified as ECM based on the Dzerdzeevskii classification was applied. Application of the model is illustrated on the long term precipitation record from Ljubljana GNIP station Slovenia. Estimated values of the parameters for empirical distributions of δ2H and δ18O of each ECM subtype have shown that calculated estimates are reasonable. Further applications of the proposed model enable new insight into the understanding of isotopes spatial and temporal distribution in precipitation important also for better understanding of climate proxies.

  2. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics.

    PubMed

    Pujol, Magali; Marty, Bernard; Burgess, Ray; Turner, Grenville; Philippot, Pascal

    2013-06-01

    Understanding the growth rate of the continental crust through time is a fundamental issue in Earth sciences. The isotopic signatures of noble gases in the silicate Earth (mantle, crust) and in the atmosphere afford exceptional insight into the evolution through time of these geochemical reservoirs. However, no data for the compositions of these reservoirs exists for the distant past, and temporal exchange rates between Earth's interior and its surface are severely under-constrained owing to a lack of samples preserving the original signature of the atmosphere at the time of their formation. Here, we report the analysis of argon in Archaean (3.5-billion-year-old) hydrothermal quartz. Noble gases are hosted in primary fluid inclusions containing a mixture of Archaean freshwater and hydrothermal fluid. Our analysis reveals Archaean atmospheric argon with a (40)Ar/(36)Ar value of 143 ± 24, lower than the present-day value of 298.6 (for which (40)Ar has been produced by the radioactive decay of the potassium isotope (40)K, with a half-life of 1.25 billion years; (36)Ar is primordial in origin). This ratio is consistent with an early development of the felsic crust, which might have had an important role in climate variability during the first half of Earth's history.

  3. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1987-01-01

    Studies of modern and ancient buried wood show that there is a linear correlation between carbohydrate content and the stable carbon isotope composition as carbohydrates are preferentially degraded during early diagenesis. As the carbohydrate content decreases, the ??13C value of the degraded wood decreases 1 to 2 per mil, approaching the value of the residual lignin. These results indicate that carbohydrate degradation products are lost and not incorporated into the aromatic structure as lignin is selectively preserved during early diagenesis of wood. These results also indicate that attempts to quantify terrestrial inputs to modern sedimentary organic matter based on ??13C values should consider the possibility of a 1 to 2 per mil decrease in the ??13C value of degraded wood. ?? 1987.

  4. The elemental and isotopic composition of galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1983-01-01

    A directly accessible sample of matter which originates outside the solar system is provided by galactic cosmic rays. The present investigation is primarily concerned with progress related to questions raised regarding the similarity or difference between solar system matter and matter coming from outside the solar system. The investigation takes into account U.S. contributions to this topic over the period from 1979 to 1982. The cosmic ray (CR) abundances of all the elements from H to Ni (atomic number Z=1 to 28) have now been measured. Cosmic ray source (CRS) and solar system (SS) elemental compositions are listed in a table, and the ratio of CRS to SS abundance for 21 elements is shown in a graph. There is now clear evidence from CR isotope studies that the nucleosynthesis of CRS material has differed from that of SS material.

  5. Neodymium isotope evidence for a chondritic composition of the Moon.

    PubMed

    Rankenburg, K; Brandon, A D; Neal, C R

    2006-06-01

    Samarium-neodymium isotope data for six lunar basalts show that the bulk Moon has a 142Nd/144Nd ratio that is indistinguishable from that of chondritic meteorites but is 20 parts per million less than most samples from Earth. The Sm/Nd formation interval of the lunar mantle from these data is 215(-21)(+23) million years after the onset of solar system condensation. Because both Earth and the Moon likely formed in the same region of the solar nebula, Earth should also have a chondritic bulk composition. In order to mass balance the Nd budget, these constraints require that a complementary reservoir with a lower 142Nd/144Nd value resides in Earth's mantle. PMID:16741118

  6. The concentration and isotopic composition of osmium in the oceans

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Papanastassiou, D. A.; Wasserburg, G. J.

    1997-08-01

    Osmium is one of the rarer elements in seawater. Analytical difficulties have previously prevented the direct measurement of the osmium concentration and isotopic composition in seawater. We report a chemical separation procedure that yields quantitative extraction of osmium standard and of osmium tracer by iron hydroxide precipitation from seawater doped with osmium standard, osmium tracer, and FeCl 3. The iron hydroxide precipitate is processed to extract osmium, using techniques developed for iron meteorites. Utilizing this procedure, water samples from the Pacific and Atlantic oceans were analyzed for osmium concentration and isotopic composition. Direct determination of the osmium concentration of seawater gives between 15 and 19 fM kg -1. Detailed experiments on different aliquots of one seawater sample from the North Atlantic Ocean, keeping the amounts of reagents constant, yield concentrations from 16 to 19 fM kg -1. The variability in concentration is outside the uncertainty introduced because of blanks and indicates a lack of full equilibration between the osmium tracer and seawater osmium. The most reliable osmium concentration of the North Atlantic deep ocean water is 19 fM kg -1 with the 187Os 186Os ratio being 8.7 ± 0.2 (2σ). Detailed experiments on one seawater sample from the Central Pacific Ocean indicate that the most reliable osmium concentration of the deep ocean water from the Central Pacific is 19 fM kg -1 with the 187Os 186Os ratio being 8.7 ± 0.3 (2σ). The directly measured osmium isotopic composition of the oceans is in good agreement with that obtained from the analysis of some rapidly accumulating organic rich sediments ( Ravizza and Turekian, 1992). A sample of ambient seawater around the Juan de Fuca Ridge gave 187Os 186Os= 6.9 ± 0.4. This is distinctly lower than the deep-sea water value and may reflect local hydrothermal activity or some analytical difficulty with this sample. The osmium isotopic composition of the deep oceans

  7. Os isotopic composition of steels: Constraints on sources of Os in steel & crustal isotopic evolution of iron ores

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. N.; Lassiter, J. C.

    2013-12-01

    Metal contamination during sample processing is a potential concern in Os-isotope studies. We examined Os concentrations and Os isotopes in industrial steels. Samples include high Cr stainless steels (>10.5% Cr), low alloy steels (>=92% Fe) and high alloy steels (<92% Fe). The chief components used to make steel are iron ore, chromites and coke. Coke is derived from coals that have low Os concentration (~36 ppt) [1]. Chromites in steels are mined from chromitites, which have high average Os concentrations and mantle-like 187Os/188Os ratios (~88 ppb Os, 187Os/188Os ≈ 0.127×24) [2]. Iron ores used in US steel manufacturing derive chiefly from magnetites mined from iron-bearing formations such as Banded Iron Formations (BIF), which have median Os concentration of ~4.8 ppb and radiogenic 187Os/188Os ≈ 0.358×388 [3]. Os concentrations in the measured steels span a wide range, from 0.03 to 22 ppb. The 187Os/188Os ratios vary from 0.144-4.12. Such high Os concentrations and radiogenic isotopic compositions confirm that metal contamination can affect Os-isotope compositions during sample processing, particularly for low-[Os] samples. There is no correlation between C and Os concentration in steel, indicating that coke is not a major Os source in steels. Os concentrations in steels are positively correlated with Cr content, suggesting that chromite-derived Os dominates the Os budget in stainless steels. 187Os/188Os is negatively correlated with Cr content, ranging from 0.144-0.195 in high-Cr (>10.5 % Cr) steels but from 0.279-4.12 in low-Cr steels. In addition, there is a positive correlation between 1/Os and 187Os/188Os, consistent with two-component mixing of Os derived from magnetite ore and chromites. Lower Os concentrations in steels than expected from simple mixing of magnetite and chromitite suggest some volatile Os loss during smelting. Although the current data is limited, the 186Os-187Os trend defined by the steel analyses can be utilized to extrapolate

  8. [Isotopic composition and isotope tracing of sulfur in atmospheric precipitation at the head area of the Three Gorges Reservoir, China].

    PubMed

    Wu, Qi-Xin; Han, Gui-Lin

    2012-07-01

    Rainwater samples were collected in the head area of the Three Gorges Reservoir from June 2009 to July 2010. The SO4(2-) content and the characteristics of sulfur isotopic composition were determined. The results showed that the concentrations of SO4(2-) ranged from 31.4-668. 1 micromol x L(-1) with a weighted average of 161.9 micromol x L(-1), whereas the variation of delta34S values for SO4(2-) ranged from -2.14 per hundred to 6.07 per hundred with an annual average of 2.06 per hundred +/- 1.97 per hundred. Significant seasonal variations were found in the SO4(2-) content, which were higher in winter and spring and lower in summer and autumn. The delta34S values for SO4(2-) measured in winter were much higher than those in the other seasons. Analysis of the delta34S values showed that the biogenic sulfur might have significant contribution to the acidity of rainwater, especially in summer and autumn.

  9. The silicon isotopic composition of the Ganges and its tributaries

    NASA Astrophysics Data System (ADS)

    Fontorbe, Guillaume; De La Rocha, Christina L.; Chapman, Hazel J.; Bickle, Michael J.

    2013-11-01

    The silicon isotopic composition (δSi30) of the headwaters of the Ganges River, in the Himalaya, ranged from +0.49±0.01‰ to +2.17±0.04‰ at dissolved silicon (DSi) concentrations of 38 to 239 μM. Both the concentration and isotopic composition of DSi in the tributaries increased between the highest elevations to where the Ganges leaves the Himalayas at Rishikesh. The tributaries exhibit a linear correlation between δSi30 and DSi that may represent mixing between a low DSi, low δSi30 (e.g., 40 μM, +0.5‰) component potentially reflecting fractionation during adsorption of a small fraction of silicon onto iron oxides and a high DSi, high δSi30 component (e.g., 240 μM, +1.7‰) produced during higher intensity weathering with a greater proportional sequestration of weathered silicon into secondary minerals or biogenic silica. On the Ganges alluvial plain, in the Ganges and the Yamuna, Gomati, and their tributaries, DSi ranged from 122 to 218 μM while δSi30 ranged from +1.03±0.03‰ to +2.46±0.06‰. Highest values of δSi30 occurred in the Gomati and its tributaries. In general, the lower DSi and higher δSi30 of DSi in these rivers suggests control of both by removal of DSi by secondary mineral formation and/or biogenic silica production. A simple 1-dimensional model with flow through a porous medium is introduced and provides a useful framework for understanding these results.

  10. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

    NASA Astrophysics Data System (ADS)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2013-06-01

    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  11. Geochemical and Isotopic Composition of Aerosols in Tucson

    NASA Astrophysics Data System (ADS)

    Riha, K. M.; Michalski, G. M.; Lohse, K. A.; Gallo, E. L.; Brooks, P. D.; Meixner, T.

    2010-12-01

    isotopic analyses have been conducted on these samples using the denitrifier method (Casciotti et al., 2002). Observed elevated δ18O values correspond to atmospheric oxidation processes and varying δ15N are possibly linked to different N sources. These isotopic values will be used as a proxy for deposition in a mass balance mixing model for nitrogen in arid streams. References: Casciotti, K. L., D. M. Sigman, M. G. Hastings, J. K. Böhlke and A. Hilkert, Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74(19), 4905-4912, 2002. Michalski, G., Z. Scott, M. Kabiling and M. Thiemens, First Measurements and Modeling of Δ17O in Atmospheric Nitrate, Geophys. Res. Lett., 30(16), (1870), 2003.

  12. Isotopic Incorporation and the Effects of Fasting and Dietary Lipid Content on Isotopic Discrimination in Large Carnivorous Mammals.

    PubMed

    Rode, K D; Stricker, C A; Erlenbach, J; Robbins, C T; Cherry, S G; Newsome, S D; Cutting, A; Jensen, S; Stenhouse, G; Brooks, M; Hash, A; Nicassio, N

    2016-01-01

    There has been considerable emphasis on understanding isotopic discrimination for diet estimation in omnivores. However, discrimination may differ for carnivores, particularly species that consume lipid-rich diets. Here, we examined the potential implications of several factors when using stable isotopes to estimate the diets of bears, which can consume lipid-rich diets and, alternatively, fast for weeks to months. We conducted feeding trials with captive brown bears (Ursus arctos) and polar bears (Ursus maritimus). As dietary lipid content increased to ∼90%, we observed increasing differences between blood plasma and diets that had not been lipid extracted (∆(13)Ctissue-bulk diet) and slightly decreasing differences between plasma δ(13)C and lipid-extracted diet. Plasma Δ(15)Ntissue-bulk diet increased with increasing protein content for the four polar bears in this study and data for other mammals from previous studies that were fed purely carnivorous diets. Four adult and four yearling brown bears that fasted 120 d had plasma δ(15)N values that changed by <±2‰. Fasting bears exhibited no trend in plasma δ(13)C. Isotopic incorporation in red blood cells and whole blood was ≥6 mo in subadult and adult bears, which is considerably longer than previously measured in younger and smaller black bears (Ursus americanus). Our results suggest that short-term fasting in carnivores has minimal effects on δ(13)C and δ(15)N discrimination between predators and their prey but that dietary lipid content is an important factor directly affecting δ(13)C discrimination and indirectly affecting δ(15)N discrimination via the inverse relationship with dietary protein content. PMID:27153128

  13. Isotopic Incorporation and the Effects of Fasting and Dietary Lipid Content on Isotopic Discrimination in Large Carnivorous Mammals.

    PubMed

    Rode, K D; Stricker, C A; Erlenbach, J; Robbins, C T; Cherry, S G; Newsome, S D; Cutting, A; Jensen, S; Stenhouse, G; Brooks, M; Hash, A; Nicassio, N

    2016-01-01

    There has been considerable emphasis on understanding isotopic discrimination for diet estimation in omnivores. However, discrimination may differ for carnivores, particularly species that consume lipid-rich diets. Here, we examined the potential implications of several factors when using stable isotopes to estimate the diets of bears, which can consume lipid-rich diets and, alternatively, fast for weeks to months. We conducted feeding trials with captive brown bears (Ursus arctos) and polar bears (Ursus maritimus). As dietary lipid content increased to ∼90%, we observed increasing differences between blood plasma and diets that had not been lipid extracted (∆(13)Ctissue-bulk diet) and slightly decreasing differences between plasma δ(13)C and lipid-extracted diet. Plasma Δ(15)Ntissue-bulk diet increased with increasing protein content for the four polar bears in this study and data for other mammals from previous studies that were fed purely carnivorous diets. Four adult and four yearling brown bears that fasted 120 d had plasma δ(15)N values that changed by <±2‰. Fasting bears exhibited no trend in plasma δ(13)C. Isotopic incorporation in red blood cells and whole blood was ≥6 mo in subadult and adult bears, which is considerably longer than previously measured in younger and smaller black bears (Ursus americanus). Our results suggest that short-term fasting in carnivores has minimal effects on δ(13)C and δ(15)N discrimination between predators and their prey but that dietary lipid content is an important factor directly affecting δ(13)C discrimination and indirectly affecting δ(15)N discrimination via the inverse relationship with dietary protein content.

  14. Sulfur Isotopic Composition and Behavior in Granitoid Intrusions, southwestern New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lentz, D. R.

    2004-05-01

    Bulk sulfur isotopic composition and sulfur content were determined for 12 granitoid intrusions (48 samples) associated with various types of mineralization (e.g., Au, Sb-W-Mo-Au, W-Sn-In-Zn-Pb-Cu) and the pertinent wallrocks (7 samples), in southwestern New Brunswick, Canada. This data together with data from field relations, magnetic susceptibility, sulfide mineralogy, petrology, and geochemistry, were used to characterize these intrusions. Two distinct groups can be established, although both show some features of I-type grantiods: (1) a Late Devonian granitic series (GS) including the Mount Pleasant, True Hill, Beech Hill, Pleasant Ridge, Kedron, Sorrel Ridge granites, and (2) a Late Silurian to Early Devonian granodioritic to monzogranitic series (GMS) including the Magaguadavic, Bocabec, Utopia, Tower Hill, Evandale, and Lake George intrusions. The former occur along the northwestern flank of the Saint George Batholith as satellite plutons, and the later form parts of this batholith and the Pokiok Batholith to the north. The GS rocks show the attributes of evolved I-type with some A-type features, whereas the GMS rocks are either reduced I-type (ilmenite-series), or normal I-type (magnetite-series). Strong assimilation and contamination by local metasedimentary rocks lead to the Tower Hill granite resembling S-type, e.g., the presence of muscovite and garnet. The GS type rocks have δ 34S values between -7.1 and +13 per mil with bulk-S content ranging from 33 to 3434 ppm. The GMS type rocks have relatively narrower variation in δ 34S values (-4.4 to +7.3 per mil), but with larger ranges of bulk-S content (45 to 11100 ppm). The granite samples with S contents much higher than its solubility in felsic melts are interpreted to be affected either by local metasedimentary rocks or by late stage hydrothermal alteration. The metasedimentary rocks contain variable S contents (707 to 14000 ppm) with δ 34S values of -10.6 to 0.1 per mil. In terms of mass balance, a

  15. Zinc isotopic composition of iron meteorites: Absence of isotopic anomalies and origin of the volatile element depletion

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Nguyen, Bach Mai; Moynier, Frédéric

    2013-12-01

    High-precision Zn isotopic compositions measured by MC-ICP-MS are documented for 32 iron meteorites from various fractionally crystallized and silicate-bearing groups. The δ66Zn values range from -0.59‰ up to +5.61‰ with most samples being slightly enriched in the heavier isotopes compared with carbonaceous chondrites (0 < δ66Zn < 0.5). The δ66Zn versus δ68Zn plot of all samples defines a common linear fractionation line, which supports the hypothesis that Zn was derived from a single reservoir or from multiple reservoirs linked by mass-dependent fractionation processes. Our data for Redfields fall on a mass fractionation line and therefore refute a previous claim of it having an anomalous isotopic composition due to nonmixing of nucleosynthetic products. The negative correlation between δ66Zn and the Zn concentration of IAB and IIE is consistent with mass-dependent isotopic fractionation due to evaporation with preferential loss of lighter isotopes in the vapor phase. Data for the Zn concentrations and isotopic compositions of two IVA samples demonstrate that volatile depletion in the IVA parent body is not likely the result of evaporation. This is important evidence that favors the incomplete condensation origin for the volatile depletion of the IVA parent body.

  16. Tungsten residence in silicate rocks: implications for interpreting W isotopic compositions

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pearson, G. D.; Chacko, T.; Luo, Y.

    2015-12-01

    High-precision measurements of W isotopic ratios have boosted recent exploration of early Earth processes from the small W isotope anomalies observable in some Hadean-Archean rocks. However, before applying W isotopic data to understand the geological processes responsible for the formation of these rocks, it is critical to evaluate whether the rocks' present W contents and isotopic compositions reflect that of the protolith or the effects of secondary W addition/mobilization. To investigate this issue, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases and alteration assemblages within a broad spectrum of rocks using LA-ICP-MS. Isotope dilution whole-rock W concentration measurements are used along with modes calculated from mineral and bulk rock major element data to examine the mass balance for W and other elements. In general, W is positively correlated with Nb, Ta, Ti, Sn, Mo and U, indicating similar geochemical behavior. Within granitic gneisses and amphibolites, biotite, hornblende, titanite and ilmenite control the W budget, while plagioclase and k-feldspar have little effect. For granulites, pyroxenites and eclogites, titanite, rutile, ilmenite, magnetite and sulfide, as well as grain boundary alteration assemblages dominate the W budget, while garnet, clinopyroxene, orthopyroxene and plagioclase have little or no W. Within mantle harzburgites and dunites, major phases such as olivine, clinopyroxene, orthopyroxene and spinel/chromite have very low concentrations of W, Nb, Ta, Sn and Mo. Instead, these elements are concentrated along grain boundaries and within sulfide/mss. Mass balance shows that for granitic gneisses and amphibolites, the rock-forming minerals can adequately account for the whole-rock W budget, whereas for ultramafic rocks such as pyroxenites, eclogites and harzburgites and dunites, significant W is hosted along grain boundaries, indicating that metamorphism and melt/fluid metasomatism can

  17. [Hydrogen and Oxygen Isotopic Compositions of Precipitation and Its Water Vapor Sources in Eastern Qaidam Basin].

    PubMed

    Zhu, Jian-jia; Chen, Hui; Gong, Guo-li

    2015-08-01

    Stable hydrogen and oxygen isotopes can be used as a tracer to analyze water vapor sources of atmospheric precipitation. We choose Golmud and Delingha as our study areas, Golmud locates in the south of Qaidam basin, and Delingha locates in the northeast. Based on the analysis of monthly change of hydrogen and oxygen isotopic compositions of precipitation during June to September of 2010, and the relationship between deltaD and delta18O in precipitation, we investigated the water vapor sources of precipitation in eastern Qaidam basin. The results show that: (1) meteoric water line between June to September in Golmud is: deltaD = 7.840 delta18O - 4.566 (R2 = 0.918, P < 0.001), and in Delingha is: deltaD = 7.833 delta18O + 8.606 (R2 = 0.986, P < 0.001). The slopes and intercepts of meteoric water line between June to September in both Golmud and Delingha are lower than the global average, and the intercept in Golmud is only -4.566, which indicates the extremely arid climate condition. (2) the delta18O content of precipitation is much higher in Golmud in early July, it shows the enrichment of some heavier isotopes. However, the delta18O content of precipitation becomes lower from late July to early September, especially for the late September. The 8180 content of precipitation in Delingha is higher in June to August than that in late September. (3) the water vapor sources of precipitation in Golmud and Delingha are different, Golmud area is the northern border of Qinghai-Tibet Plateau where the southwest monsoon can reach, and the southwest monsoon brings water vapors of precipitation, but the water vapors of precipitation in Delingha are mainly from local evaporation.

  18. Calcium isotopic composition of mantle xenoliths and minerals from Eastern China

    NASA Astrophysics Data System (ADS)

    Kang, Jin-Ting; Zhu, Hong-Li; Liu, Yu-Fei; Liu, Fang; Wu, Fei; Hao, Yan-Tao; Zhi, Xia-Chen; Zhang, Zhao-Feng; Huang, Fang

    2016-02-01

    This study presents calcium isotope data for co-existing clinopyroxenes (cpx), orthopyroxenes (opx), and olivine (ol) in mantle xenoliths to investigate Ca isotopic fractionation in the upper mantle. δ44/40Ca (δ44/40Ca (‰) = (44Ca/40Ca)SAMPLE/(44Ca/40Ca)SRM915a - 1) in opx varies from 0.95 ± 0.05‰ to 1.82 ± 0.01‰ and cpx from 0.71 ± 0.06‰ to 1.03 ± 0.12‰ (2se). δ44/40Ca in ol (P-15) is 1.16 ± 0.08‰, identical to δ44/40Ca of the co-existing opx (1.12 ± 0.09‰, 2se). The Δ44/40Caopx-cpx (Δ44/40Caopx-cpx = δ44/40Caopx-δ44/40Cacpx) shows a large variation ranging from -0.01‰ to 1.11‰ and it dramatically increases with decreasing of Ca/Mg (atomic ratio) in opx. These observations may reflect the effect of opx composition on the inter-mineral equilibrium fractionation of Ca isotopes, consistent with the theoretical prediction by first-principles theory calculations (Feng et al., 2014). Furthermore, Δ44/40Caopx-cpx decreases when temperature slightly increases from 1196 to 1267 K. However, the magnitude of such inter-mineral isotopic fractionation (1.12‰) is not consistent with the value calculated by the well-known correlation between inter-mineral isotope fractionation factors and 1/T2 (Urey, 1947). Instead, it may reflect the temperature control on crystal chemistry of opx (i.e., Ca content), which further affects Δ44/40Caopx-cpx. The calculated δ44/40Ca of bulk peridotites and pyroxenites range from 0.76 ± 0.06‰ to 1.04 ± 0.12‰ (2se). Notably, δ44/40Ca of bulk peridotites are positively correlated with CaO and negatively with MgO content. Such correlations can be explained by mixing between a fertile mantle end-member and a depleted one with low δ44/40Ca, indicating that Ca isotopes could be a useful tool in studying mantle evolution.

  19. SULFUR ISOTOPIC COMPOSITIONS OF SUBMICROMETER SiC GRAINS FROM THE MURCHISON METEORITE

    SciTech Connect

    Xu, Yuchen; Zinner, Ernst; Gallino, Roberto; Heger, Alexander; Pignatari, Marco; Lin, Yangting

    2015-02-01

    We report C, Si, N, S, Mg-Al, and Ca-Ti isotopic compositions of presolar silicon carbide (SiC) grains from the SiC-rich KJE size fraction (0.5-0.8 μm) of the Murchison meteorite. One thousand one hundred thirteen SiC grains were identified based on their C and Si isotopic ratios. Mainstream, AB, C, X, Y, and Z subtypes of SiC, and X-type silicon nitride (Si{sub 3}N{sub 4}) account for 81.4%, 5.7%, 0.1%, 1.5%, 5.8%, 4.9%, and 0.4%, respectively. Twenty-five grains with unusual Si isotopic ratios, including one C grain, 16 X grains, 1 Y grain, 5 Z grains, and 2 X-type Si{sub 3}N{sub 4} grains were selected for N, S, Mg-Al, and Ca-Ti isotopic analysis. The C grain is highly enriched in {sup 29}Si and {sup 30}Si (δ{sup 29}Si = 1345‰ ± 19‰, δ{sup 30}Si = 1272‰ ± 19‰). It has a huge {sup 32}S excess, larger than any seen before, and larger than that predicted for the Si/S supernova (SN) zone, providing evidence against the elemental fractionation model by Hoppe et al. Two SN models investigated here present a more satisfying explanation in terms of a radiogenic origin of {sup 32}S from the decay of short-lived {sup 32}Si (τ{sub 1/2} = 153 yr). Silicon-32 as well as {sup 29}Si and {sup 30}Si can be produced in SNe by short neutron bursts; evidence for initial {sup 44}Ti (τ{sub 1/2} = 60 yr) in the C grain is additional evidence for an SN origin. The X grains have marginal {sup 32}S excesses, much smaller than expected from their large {sup 28}Si excesses. Similarly, the Y and Z grains do not show the S-isotopic anomalies expected from their large Si isotopic anomalies. Low intrinsic S contents and contamination with isotopically normal S are the most likely explanations.

  20. Sulfur Isotopic Compositions of Submicrometer SiC Grains from the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Xu, Yuchen; Zinner, Ernst; Gallino, Roberto; Heger, Alexander; Pignatari, Marco; Lin, Yangting

    2015-02-01

    We report C, Si, N, S, Mg-Al, and Ca-Ti isotopic compositions of presolar silicon carbide (SiC) grains from the SiC-rich KJE size fraction (0.5-0.8 μm) of the Murchison meteorite. One thousand one hundred thirteen SiC grains were identified based on their C and Si isotopic ratios. Mainstream, AB, C, X, Y, and Z subtypes of SiC, and X-type silicon nitride (Si3N4) account for 81.4%, 5.7%, 0.1%, 1.5%, 5.8%, 4.9%, and 0.4%, respectively. Twenty-five grains with unusual Si isotopic ratios, including one C grain, 16 X grains, 1 Y grain, 5 Z grains, and 2 X-type Si3N4 grains were selected for N, S, Mg-Al, and Ca-Ti isotopic analysis. The C grain is highly enriched in 29Si and 30Si (δ29Si = 1345‰ ± 19‰, δ30Si = 1272‰ ± 19‰). It has a huge 32S excess, larger than any seen before, and larger than that predicted for the Si/S supernova (SN) zone, providing evidence against the elemental fractionation model by Hoppe et al. Two SN models investigated here present a more satisfying explanation in terms of a radiogenic origin of 32S from the decay of short-lived 32Si (τ1/2 = 153 yr). Silicon-32 as well as 29Si and 30Si can be produced in SNe by short neutron bursts; evidence for initial 44Ti (τ1/2 = 60 yr) in the C grain is additional evidence for an SN origin. The X grains have marginal 32S excesses, much smaller than expected from their large 28Si excesses. Similarly, the Y and Z grains do not show the S-isotopic anomalies expected from their large Si isotopic anomalies. Low intrinsic S contents and contamination with isotopically normal S are the most likely explanations.

  1. NEW INSIGHTS ON SATURN'S FORMATION FROM ITS NITROGEN ISOTOPIC COMPOSITION

    SciTech Connect

    Mousis, Olivier; Lunine, Jonathan I.; Fletcher, Leigh N.; Mandt, Kathleen E.; Ali-Dib, Mohamad; Atreya, Sushil

    2014-12-01

    The recent derivation of a lower limit for the {sup 14}N/{sup 15}N ratio in Saturn's ammonia, which is found to be consistent with the Jovian value, prompted us to revise models of Saturn's formation using as constraints the supersolar abundances of heavy elements measured in its atmosphere. Here we find that it is possible to account for both Saturn's chemical and isotopic compositions if one assumes the formation of its building blocks at ∼45 K in the protosolar nebula, provided that the O abundance was ∼2.6 times protosolar in its feeding zone. To do so, we used a statistical thermodynamic model to investigate the composition of the clathrate phase that formed during the cooling of the protosolar nebula and from which the building blocks of Saturn were agglomerated. We find that Saturn's O/H is at least ∼34.9 times protosolar and that the corresponding mass of heavy elements (∼43.1 M {sub ⊕}) is within the range predicted by semi-convective interior models.

  2. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Schoeninger, Margaret J.; Valley, John W.

    1996-10-01

    The applicability of rapid and precise laser probe analysis of tooth enamel for δ18O has been verified, and the method has been applied to different modern herbivores in East Africa. Sampling and pretreatment procedures involve initial bleaching and grinding of enamel to <75 μm, and elimination of adsorbed water and organic compounds with BrF 5. Typical analytical reproducibilities for 0.5-2 mg samples are ±0.08‰ (± 1σ). Chemical and spectroscopic characterization of pretreated but unanalyzed samples show no alteration compared to fresh enamel. Solid reaction products are nearly pure CaF 2 with little evidence for residual O 2. Because laser probe fluorination extracts oxygen from all sites in the apatite structure (phosphate, structural carbonate, and hydroxyl), only unaltered tooth enamel (>95% apatite) can be analyzed reliably. Different East African herbivores exhibit previously unsuspected compositional differences. Average enamel δ18O values (V-SMOW) are approximately: 25‰ (goat), 27‰ (oryx), 28‰ (dikdik and zebra), 29‰ (topi), 30‰ (gerenuk), and 32‰ (gazelle). These compositions differ from generalized theoretical models, but are broadly consistent with expected isotope effects associated with differences in how much each animal (a) drinks, (b) eats C3 vs. C4 plants, and (c) pants vs. sweats. Consideration of diet, water turnover, and animal physiology will allow the most accurate interpretation of ancient teeth and targeting of environmentally-sensitive animals in paleoclimate studies.

  3. Isotopic and Elemental Composition of Roasted Coffee as a Guide to Authenticity and Origin.

    PubMed

    Carter, James F; Yates, Hans S A; Tinggi, Ujang

    2015-06-24

    This study presents the stable isotopic and elemental compositions of single-origin, roasted coffees available to retail consumers. The δ(13)C, δ(15)N, and δ(18)O compositions were in agreement with those previously reported for green coffee beans. The δ(15)N composition was seen to be related to organic cultivation, reflected in both δ(2)H and δ(18)O compositions. The δ(13)C composition of extracted caffeine differed little from that of the bulk coffee. Stepwise discriminant analysis with jackknife tests, using isotopic and elemental data, provided up to 77% correct classification of regions of production. Samples from Africa and India were readily classified. The wide range in both isotopic and elemental compositions of samples from other regions, specifically Central/South America, resulted in poor discrimination between or within these regions. Simpler X-Y and geo-spatial plots of the isotopic data provided effective visual means to distinguish between coffees from different regions.

  4. Adulteration Identification of Commercial Honey with the C-4 Sugar Content of Negative Values by an Elemental Analyzer and Liquid Chromatography Coupled to Isotope Ratio Mass Spectroscopy.

    PubMed

    Dong, Hao; Luo, Donghui; Xian, Yanping; Luo, Haiying; Guo, Xindong; Li, Chao; Zhao, Mouming

    2016-04-27

    According to the AOAC 998.12 method, honey is considered to contain significant C-4 sugars with a C-4 sugar content of >7%, which are naturally identified as the adulteration. However, the authenticity of honey with a C-4 sugar content of <0% calculated by the above method has been rarely investigated. A new procedure to determine δ(13)C values of honey, corresponding extracted protein and individual sugars (sucrose, glucose, and fructose), δ(2)H and δ(18)O values, sucrose content, and reducing sugar content of honey using an elemental analyzer and liquid chromatography coupled to isotope ratio mass spectroscopy, was first developed to demonstrate the authenticity of honey with a C-4 sugar content of <0%. For this purpose, 800 commercial honey samples were analyzed. A quite similar pattern on the pentagonal radar plot (isotopic compositions) between honey with -7 < C-4 sugar content (%) < 0 and 0 < C-4 sugar content (%) < 7 indicated that honey with -7 < C-4 sugar content (%) < 0 could be identified to be free of C-4 sugars as well. A very strong correlation is also observed between δ(13)C honey values and δ(13)C protein values of both honey groups. For the δ(18)O value, the C-4 sugar content (%) < -7 group has lower (p < 0.05) values (16.30‰) compared to other honey, which could be a useful parameter for adulterated honey with a C-4 sugar content (%) < -7. The use of isotopic compositions and some systematic differences permits the honey with a C-4 sugar content of <0% to be reliably detected. The developed procedure in this study first and successfully provided favorable evidence in authenticity identification of honey with a C-4 sugar content of <0%. PMID:27064147

  5. Isotopic and elemental compositions of stardust and protosolar dust grains in primitive meteorites

    NASA Astrophysics Data System (ADS)

    Bose, Maitrayee

    This dissertation presents the results and implications of the isotopic and elemental analyses of presolar silicate grains from the primitive chondrites, Acfer 094, SAH 97096, and ALHA77307. Oxygen-anomalous, C-anomalous, and N-anomalous grains were identified by O, C, and N isotopic imaging, respectively, using the NanoSIMS 50. Subsequently, the elemental compositions of the grains carrying the anomalous isotopic signatures were acquired in the PHI 700 Auger Nanoprobe. Some silicate grains with unique O isotopic compositions were measured for Si and Fe isotopes. The isotopic analyses indicate that a majority of the silicate and oxide grains are 17 O-rich with solar to sub-solar 18 O/ 16 O ratios and come from less than 2.2 M⊙ Red Giant or Asymptotic Giant Branch stars. The second most abundant fraction of grains show large 18 O excesses and come from core collapse supernovae. The next most abundant fraction of grains comes from high metallicity AGB stars of approximately solar mass. A minor fraction of the grains exhibit large excesses in 16 O and formed in core collapse supernova ejecta. Grains with extreme 17 O excesses are the latest addition to the presolar grain inventory. These grains may come from binary star systems where one star goes nova. Numerous presolar SiC and N-anomalous carbonaceous grains were identified in the matrix of ALHA77307. The SiC grains are predominantly mainstream grains and may have condensed in 1-3 M⊙ AGB stars. The carbonaceous grains may have formed by ionmolecule reactions in the protosolar nebula or interstellar medium. A few carbonaceous grains exhibit 13C-rich compositions; grains with such compositions are rare, which implies that either the fractionation effects that produce C anomalies in opposite directions cancel them out or secondary processing destroyed grains with C anomalies. The elemental compositions of the silicate grains are predominantly nonstoichiometric (61%), with some grains exhibiting olivine- or pyroxene

  6. CORRESPONDENCE OF STABLE ISOTOPE AND GUT CONTENTS ANALYSES IN DETERMINING TROPHIC POSITION OF STREAM FISHES

    EPA Science Inventory

    It is generally accepted that both stable isotope analysis (SIA) and gut contents analysis (GCA) be used in food web studies; however, few researchers have analyzed these data in concert. We utilized SIA and GCA to determine if longitudinal and seasonal variation in diet affects...

  7. Comparing trophic position of stream fishes using stable isotope and gut contents analyses

    EPA Science Inventory

    Stable isotope analysis (SIA) and gut content analysis (GCA) are commonly used in food web studies, but few studies analyze these data in concert. We used SIA and GCA to identify diets and trophic position (TP) of six stream fishes and to compare TP estimates between methods. Ord...

  8. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle

    USGS Publications Warehouse

    Teng, F.-Z.; Wadhwa, M.; Helz, R.T.

    2007-01-01

    To investigate whether magnesium isotopes are fractionated during basalt differentiation, we have performed high-precision Mg isotopic analyses by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) on a set of well-characterized samples from Kilauea Iki lava lake, Hawaii, USA. Samples from the Kilauea Iki lava lake, produced by closed-system crystal-melt fractionation, range from olivine-rich cumulates to highly differentiated basalts with MgO content ranging from 2.37 to 26.87??wt.%. Our results demonstrate that although these basalts have diverse chemical compositions, mineralogies, crystallization temperatures and degrees of differentiation, their Mg isotopic compositions display no measurable variation within the limits of our external precision (average ??26Mg = - 0.36 ?? 0.10 and ??25Mg = - 0.20 ?? 0.07; uncertainties are 2SD). This indicates that Mg isotopic fractionation during crystal-melt fractionation at temperatures of ??? 1055????C is undetectable at the level of precision of the current investigation. Calculations based on our data suggest that at near-magmatic temperatures the maximum fractionation in the 26Mg/24Mg ratio between olivine and melt is 0.07???. Two additional oceanic basalts, two continental basalts (BCR-1 and BCR-2), and two primitive carbonaceous chondrites (Allende and Murchison) analyzed in this study have Mg isotopic compositions similar to the Kilauea Iki lava lake samples. In contrast to a recent report [U. Wiechert, A.N. Halliday, Non-chondritic magnesium and the origins of the inner terrestrial planets, Earth and Planetary Science Letters 256 (2007) 360-371], the results presented here suggest that the Bulk Silicate Earth has a chondritic Mg isotopic composition. ?? 2007.

  9. Light element isotopic compositions of cometary matter returned by the STARDUST mission

    SciTech Connect

    McKeegan, K D; Aleon, J; Bradley, J; Brownlee, D; Busemann, H; Butterworth, A; Chaussidon, M; Fallon, S; Floss, C; Gilmour, J; Gounelle, M; Graham, G; Guan, Y; Heck, P R; Hoppe, P; Hutcheon, I D; Huth, J; Ishii, H; Ito, M; Jacobsen, S B; Kearsley, A; Leshin, L A; Liu, M; Lyon, I; Marhas, K; Marty, B; Matrajt, G; Meibom, A; Messenger, S; Mostefaoui, S; Nakamura-Messenger, K; Nittler, L; Palma, R; Pepin, R O; Papanastassiou, D A; Robert, F; Schlutter, D; Snead, C J; Stadermann, F J; Stroud, R; Tsou, P; Westphal, A; Young, E D; Ziegler, K; Zimmermann, L; Zinner, E

    2006-10-10

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild2 particle fragments, however extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Non-terrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is {sup 16}O-enriched like refractory inclusions in meteorites, suggesting formation in the hot inner solar nebula and large-scale radial transport prior to comet accretion in the outer solar system.

  10. Influence of climate on the formation and isotopic composition of calcretes

    NASA Astrophysics Data System (ADS)

    Rossinsky, Victor, Jr.; Swart, Peter K.

    The control exerted by climate on calcrete formation throughout the Caribbean region is expressed as a change in the oxygen isotopic composition of calcretes along the climatic gradient between south Florida and the Turks and Caicos Islands, British West Indies. Along this gradient, an oxygen isotopic trend is documented as an increase in δ18O from south Florida to the Turks and Caicos. This is attributed mainly to higher temperatures and faster evaporation rates in the Turks and Caicos Islands. Isotopic compositions of meteoric waters have not been measured directly, but may play a secondary role in the observed isotopic trend in calcretes.

  11. Evaluation of the sulfur isotopic composition and homogeneity of the Soufre de Lacq reference material

    USGS Publications Warehouse

    Carmody, R.W.; Seal, R.R., II

    1999-01-01

    Sulfur isotopic analysis of the elemental sulfur reference material Soufre de Lacq, prepared as silver sulfide by chromous chloride reduction and as copper sulfide by sealed-tube synthesis, indicates that Soufre de Lacq is isotopically homogeneous across different size fractions to within analytical uncertainty (??0.15???). The sulfur isotopic composition of aliquots of Soufre de Lacq prepared by these two techniques are identical to within analytical uncertainty. The mean sulfur isotopic composition for Soufre de Lacq prepared as silver sulfide and copper sulfide (relative to VCDT) is +16.20 ?? 0.15??? (1??).

  12. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    USGS Publications Warehouse

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of

  13. Chemical and isotopic compositions of bottled waters sold in Korea: chemical enrichment and isotopic fractionation by desalination.

    PubMed

    Kim, Go-Eun; Ryu, Jong-Sik; Shin, Woo-Jin; Bong, Yeon-Sik; Lee, Kwang-Sik; Choi, Man-Sik

    2012-01-15

    A total of 54 Korean bottled waters were investigated to characterize their origins and types using elemental and isotopic composition, as well as to identify elemental and isotopic changes in desalinated marine water that arise due to desalination. The different types of bottled water displayed a wide pH range (3.42 to 7.21). The elemental compositions of still and sparkling waters were quite similar, whereas desalinated marine water was clearly distinguished by its high concentrations of Ca, Mg, B, and Cl. In addition, desalinated marine water had much higher isotope ratios of oxygen and hydrogen (-0.5 and -2‰, respectively) than still and sparkling waters (-8.4 and -57‰). The elemental composition of desalinated marine water was adjusted through post-treatment procedures; in particular, boron was greatly enriched during desalination processes. The carbon isotope compositions of dissolved inorganic carbon (δ(13)C(DIC) values) varied widely according to the origins of the bottled waters (-25.6 to -13.6‰ for still water, -31.2 to -26.7‰ for sparkling water, and -24.1 to -6.3‰ for desalinated marine water). This indicates that carbon isotopes in dissolved inorganic carbon are significantly fractionated by desalination processes and re-modified through post-treatment procedures. The results suggest that combined elemental and stable isotopic tracers are useful for identifying the origin of bottled water, verifying elemental and isotopic modifications during desalination processes, and characterizing various water types of bottled waters.

  14. Determining the geographical origin of Chinese cabbages using multielement composition and strontium isotope ratio analyses.

    PubMed

    Bong, Yeon-Sik; Shin, Woo-Jin; Gautam, Mukesh Kumar; Jeong, Youn-Joong; Lee, A-Reum; Jang, Chang-Soon; Lim, Yong-Pyo; Chung, Gong-Soo; Lee, Kwang-Sik

    2012-12-15

    Recently, the Korean market has seen many cases of Chinese cabbage (Brassica rapa ssp. pekinensis) that have been imported from China, yet are sold as a Korean product to illegally benefit from the price difference between the two products. This study aims to establish a method of distinguishing the geographical origin of Chinese cabbage. One hundred Chinese cabbage heads from Korea and 60 cabbage heads from China were subjected to multielement composition and strontium isotope ratio ((87)Sr/(86)Sr) analyses. The (87)Sr/(86)Sr ratio differed, based on the geological characteristics of their district of production. In addition, the content of many elements differed between cabbages from Korea and China. In particular, the difference in the content of Sr and Ti alone and the combination of Sr, Ca, and Mg allowed us to distinguish relatively well between Korea and China as the country of origin. The present study demonstrates that the chemical and Sr isotopic analyses exactly reflect the geology of the production areas of Chinese cabbage.

  15. Determining the geographical origin of Chinese cabbages using multielement composition and strontium isotope ratio analyses

    NASA Astrophysics Data System (ADS)

    BONG, Y.; Shin, W.; Gautam, M. K.; Jeong, Y.; Lee, A.; Jang, C.; Lim, Y.; Chung, G.; Lee, K.

    2012-12-01

    Recently, the Korean market has seen many cases of Chinese cabbage (Brassica rapa ssp. pekinensis) that have been imported from China, yet are sold as a Korean product to illegally benefit from the price difference between the two products. This study aims to establish a method of distinguishing the geographical origin of Chinese cabbage. One hundred Chinese cabbage heads from Korea and 60 cabbage heads from China were subjected to multielement composition and strontium isotope ratio (87Sr/86Sr) analyses. The 87Sr/86Sr ratio differed, based on the geological characteristics of their district of production. In addition, the content of many elements differed between cabbages from Korea and China. In particular, the difference in the content of Sr and Ti alone and the combination of Sr, Ca, and Mg allowed us to distinguish relatively well between Korea and China as the country of origin. The present study demonstrates that the chemical and Sr isotopic analyses exactly reflect the geology of the production areas of Chinese cabbage. Also, multivariate statistical analyses of multiple elements were found to be very effective in distinguishing the geographical origin of Chinese cabbages.

  16. Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012

    SciTech Connect

    Puscas, R.; Feurdean, V.; Simon, V.

    2013-11-13

    The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviated from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.

  17. Pb isotopic composition, colour, and microstructure of monazites from a polymetamorphic rock in Antarctica

    NASA Astrophysics Data System (ADS)

    Black, Lance P.; Fitzgerald, John D.; Harley, Simon L.

    1984-02-01

    A moderate- to high-grade regionally metamorphosed paragneiss from Antarctica contains monazites of several different colours — brown, yellow and grey. Each colour type has a distinctive U-Pb isotopic composition which appears to result from different proportions of radiogenic Pb loss. Isotopic differences are neither related to La, Nd, Ce, P, Ca, Ti (and/or Ba), nor to U or Th content. All colour types have similar structures at the submicron scale, as determined by both conventional and high-resolution transmission electron microscopy (TEM). These show that the grains are essenttially non-metamict but are composed of 100 Å crystalline domains misoriented from each other by no more than 2× 10-3 radians, and separated by narrow confused boundary regions where misorientation is probably accommodated by imperfect atomic arrangements. These regions of mismatch form potential zones of high permeability/diffusivity which are believed to be fundamental to the isotopic and colour differences between grains. Colour type is apparently related to the capacity of different minerals to shield included monazite grains from fluids circulating in the rock system. The well aligned monazite U — Pb analyses produce concordia intercepts of 2429{-16/+17}Ma and 1087±29 Ma. Both ages are comparable to those of major geological events in this part of Antarctica. They are interpreted in terms of isotopic resetting through Pb loss, and original monazite crystallisation is thought to have occurred somewhat earlier, possibly at the time this terrain first underwent granulite-facies metamorphism, about 3070 Ma ago.

  18. Osmium Isotopic Composition of the K/T Boundary Sediments from Sumbar: A Progress Report

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1993-07-01

    Osmium isotope measurements have been performed on the boundary clay at different Cretaceous-Tertiary boundary (KTB) sites [1-5] since [6] suggested that Os isotopes are an indicator of an extraterrestrial component. The debate over "impact vs. volcanic" could not be resolved, but an isotope ratio close to chondritic could be demonstrated. The study of the distribution of iridium in the stratigraphy of the KTB cannot distinguish the contribution of chondritic and/or terrestrial Ir respectively, whereas the Os isotopes allow us to better constrain a mixing model. The ^187Os/^186Os ratio of the continental crust and chondritic reservoirs differ by at least 10-30 times. Assuming certain parameters, we should be able to calculate the proportion of the reservoirs making up the sediments of the KTB section. We studied a complete section of the KTB of Sumbar, Turkmenistan [7], for its Os isotopic composition. In the section 0-30 cm above the boundary clay, the ^187Os/^186Os ratio increases from 1.15 to 1.47, whereas the Ir concentration decreases from 66 to 1.4 ng/g or 66 to 4.7 ng/g on a carbonate-free basis respectively. Calculations show that the chondritic component makes up 9% at the boundary layer and decreases down to 0.6% at +30 cm. The data cannot be simply explained by varying admixtures of a chondritic component to a sediment of constant Os concentration and isotopic signature. To explain the Os ratios completely it is necessary to consider a mixture of four components (extraterrestrial, ejecta material, local terrigeneous, and carbonacous sediments) with certain assumptions: (1) The extraterrestrial source is chondritic in its Os and Re content and has an initial Os isotope ratio of 1.12 at 65 Ma (time of impact), which is above the average for normal chondrites but is within the range measured so far (e.g., Murray). (2) The ejecta material has a higher Os concentration (0.2 ng/g) than the sediments and is only present in the first 5 cm of the sequence above

  19. Controls on the stable isotope compositions of travertine from hyperalkaline springs in Oman: Insights from clumped isotope measurements

    NASA Astrophysics Data System (ADS)

    Falk, E. S.; Guo, W.; Paukert, A. N.; Matter, J. M.; Mervine, E. M.; Kelemen, P. B.

    2016-11-01

    Carbonate formation at hyperalkaline springs is typical of serpentinization in peridotite massifs worldwide. These travertines have long been known to exhibit large variations in their carbon and oxygen isotope compositions, extending from apparent equilibrium values to highly depleted values. However, the exact causes of these variations are not well constrained. We analyzed a suite of well-characterized fresh carbonate precipitates and travertines associated with hyperalkaline springs in the peridotite section of the Samail ophiolite, Sultanate of Oman, and found their clumped isotope compositions vary systematically with formation environments. Based on these findings, we identified four main processes controlling the stable isotope compositions of these carbonates. These include hydroxylation of CO2, partial isotope equilibration of dissolved inorganic carbon, mixing between isotopically distinct carbonate end-members, and post-depositional recrystallization. Most notably, in fresh crystalline films on the surface of hyperalkaline springs and in some fresh carbonate precipitates from the bottom of hyperalkaline pools, we observed large enrichments in Δ47 (up to ∼0.2‰ above expected equilibrium values) which accompany depletions in δ18O and δ13C, yielding about 0.01‰ increase in Δ47 and 1.1‰ decrease in δ13C for every 1‰ decrease in δ18O, relative to expected equilibrium values. This disequilibrium trend, also reflected in preserved travertines ranging in age from modern to ∼40,000 years old, is interpreted to arise mainly from the isotope effects associated with the hydroxylation of CO2 in high-pH fluids and agrees with our first-order theoretical estimation. In addition, in some fresh carbonate precipitates from the bottom of hyperalkaline pools and in subsamples of one preserved travertine terrace, we observed additional enrichments in Δ47 at intermediate δ13C and δ18O, consistent with mixing between isotopically distinct carbonate end

  20. Changes in the HOAr isotope composition of clays during retrograde alteration

    USGS Publications Warehouse

    Wilson, M.R.; Kyser, T.K.; Mehnert, H.H.; Hoeve, J.

    1987-01-01

    K-Ar ages of illite alteration associated with Middle Proterozoic Athabasca unconformity-type U deposits in Saskatchewan range from 414 to 1493 Ma. The K-Ar ages correlate with water contents and ??D values such that illites with young K-Ar ages have ??D values as low as -169 and water contents as high as 7.7 wt.% whereas illites with older ages have ??D values near -70 and water contents near 4 wt.%. Water extracted at 400??C from illites with low ??D values and high water contents has low ??D and ??18O values similar to those of modern meteoric water suggesting that some of the illites associated with the original deposition of the ore underwent varying degrees of retrograde alteration. The alteration is initiated by hydration of sites in the interlayer region of the illite which results in the partial resetting of the K-Ar ages and introduction of excess structural water in the form of interlamellar water. The interlamellar water is enriched in 18O by about 7 per mil relative to the water that physically surrounded the clay particle. Further alteration decreases the ??D value and increases the ??18O value of the illite by isotopic exchange between the mineral and the interlamellar water. Although the chemical compositions and XRD patterns of the altered illites indicate that no detectable smectite component is present in the samples, the isotopic results suggest that the altered illites may be an early precursor in the formation of mixed-layer illite/smectite by retrograde alteration of pure illite. The wide variation of ??D values of chlorite and kaolinite from these U deposits is analogous to that of the illite suggesting that retrograde alteration of clays by meteoric water can be substantial. The general association of altered clays with areas containing the highest concentrations of U is probably related to localized permeability within the ore zone. ?? 1987.

  1. Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi.

    PubMed

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K; Wu, Michael

    2016-01-01

    Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead contents were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the use of leaded petrol for automobiles in Australia from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in (206)Pb/(207)Pb values from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi (206)Pb/(207)Pb values increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region.

  2. Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi.

    PubMed

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K; Wu, Michael

    2016-01-01

    Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead contents were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the use of leaded petrol for automobiles in Australia from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in (206)Pb/(207)Pb values from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi (206)Pb/(207)Pb values increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region. PMID:26608874

  3. Factors affecting the hydrogen isotopic composition of dissolved organic matter along a salinity gradient

    NASA Astrophysics Data System (ADS)

    Debond, A. A.; Ziegler, S. E.; Fogel, M. L.; Morrill, P. L.; Bowden, R.

    2010-12-01

    The role of terrestrial dissolved organic matter (DOM) in regulating estuarine ecosystem processes is poorly understood, in part due to difficulties in tracking terrestrial DOM in marine environments. Analysis of multiple stable isotopes (C, N, S) is often required due to poor separation of the carbon isotope signatures of marine and terrestrial sources. However, hydrogen isotopes exhibit greater fractionation. Marine DOM sources have a hydrogen isotope signature of 0‰ while terrestrial DOM can have signatures of up to -270‰ at the poles. Some challenges must be addressed before hydrogen isotopes can be used to track terrestrial DOM in aquatic environments. Hydrogen isotopes may undergo exchange between water and organic matter, obscuring terrestrial signatures. Riverine discharge into marine environments introduces terrestrial DOM to water of different chemical and isotopic compositions which could influence the isotopic composition of the terrestrial DOM. We investigate the effects of changes in water isotopic composition on DOM by introducing terrestrial DOM to freshwaters of isotopic compositions up to +1000‰ for up to two months. We also use surface water samples along a salinity transect at the Salmonier Arm, Newfoundland, Canada to investigate the effects of changes in water mass conditions (pH, salinity and water isotopes) on terrestrial DOM. In addition to changes in water mass conditions, methods for isolating estuarine DOM may regulate affect its isotopic composition. Ultrafiltration (UF), a size-exclusion technique, has been shown to isolate and concentrate the largest proportion of DOM in estuarine environments. UF separates DOM into low molecular weight (LMW, <1kDa) and high molecular weight (HMW, >1kDa) fractions. However, under certain processing conditions, some LMW DOM can be retained. During desalting (diafiltration), LMW DOM continues to be removed from the concentrate, whereas HMW DOM is retained. The proportion of LMW DOM retained

  4. Relative Humidity Recorded in the hydrogen and oxygen isotopic compositions of treerings

    NASA Astrophysics Data System (ADS)

    Shu, Y.; Feng, X.

    2002-12-01

    Many paleoclimate proxies have been developed to reconstruct continental surface temperatures. Examples are oxygen or hydrogen isotope ratios in ice cores, groundwater, and treerings, oxygen isotopes in stalagmites, tree-ring width and density, and pollen distributions in lake sediment cores. Several proxies listed above are also indicative of amount of precipitation. However, to our knowledge, a proxy indicator for air humidity does not yet exist. Humidity is related to the moisture content in the atmosphere, which plays an important role in the energy budget determining the planetary climate. Here we describe a study of oxygen and hydrogen isotopic compositions in modern treerings collected from trees growing along a transect of precipitation in Olympic Peninsula, Washington, USA. We are consciously optimistic that reconstruction of relative humidity may be possible if both oxygen and hydrogen isotopic compositions in tree cellulose are determined. Douglas-fir (Pseudotsuga menziesii) and subalpine fir (Abies lasiocarpa) trees were sampled at five sites within the Olympic Mountains. Among these sites, the annual precipitation varies from over three meters on the westside of the mountains to less than one meter on the eastside. The δ18O and δD in the surface water of these sites follow the trend of precipitation, decreasing from west to east. Annual treerings from seven trees were analyzed for δ18O and δD values. The number of rings from each tree ranges from 23 (1963-1985) to 48 (1949-1996). No significant correlation was found between the δD and δ18O values within each tree. This is expected because the range of variation in the isotopic ratios of source water at a given site is limited, and other factors such as humidity and soil hydrology may upset the one-to-one relationship between the δD and δ18O in the source water and those in treerings. However, the mean δD and δ18O values from each tree are weakly correlated with a slope of 19. This slope is

  5. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Madurell, T.; Fanelli, E.; Cartes, J. E.

    Stable isotope (δ 13C and δ 15N) analyses were performed on suprabenthic fauna collected in the western Mediterranean (NW Balearic Islands), at depths ranging between 350 and 780 m. Samples were collected seasonally at bi-monthly intervals during six cruises performed between August 2003 and June 2004, using a Macer-GIROQ suprabenthic sledge (0.5 mm mesh size). Twenty-four separate species (5 mysids, 12 amphipods, 2 cumaceans, 2 isopods, 1 euphausiid, 1 decapod and 1 fish) and bulk copepods were analyzed on a seasonal basis for stable carbon and nitrogen isotopes. Stable nitrogen isotope ratios (δ 15N) ranged from 2.3‰ (the amphipod Lepechinella manco in September 2003) to 13.0‰ (the amphipod Rhachotropis caeca in August 2003). δ 13C values ranged from - 24.2 (the cumacean Campylaspis sulcata in June 2004) to - 16.1 (the amphipod Bruzelia typica in November 2006). Both δ 13C and δ 15N values suggest that there are three trophic levels within the suprabenthic community. However, considering the bathymetric range of the species, the results suggest that the deepest assemblage supported only two trophic levels. The stable isotope ratios of suprabenthic fauna displayed a continuum of values and confirmed a wide spectrum of feeding types (from filter-feeders to predators). In general, and in spite of the poor knowledge about diets available for most suprabenthic species, higher δ 15N were found for carnivorous amphipods (e.g. Rhachotropis spp., Nicippe tumida) consuming copepods. Low overlap for δ 13C and δ 15N values was observed, though δ 15N values where less variable than δ 13C, which suggests high resource partitioning in this assemblage. Seasonal variations in isotopic composition for both δ 13C and δ 15N were low (less than 1‰ and 3‰, respectively) and variable depending on species. Low correlations between δ 13C and δ 15N of suprabenthic fauna were found for all periods studied, though increasing from February 2004 to June 2004 (after the

  6. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Ding, T.; Wan, D.; Wang, C.; Zhang, F.

    2004-01-01

    Silicon isotope compositions of main channel samples of the Yangtze River were systematically investigated along with their chemical compositions. The concentration of suspended matter in the Yangtze River tends to decrease from the upper reaches to the lower reaches, corresponding to settling of the sediments in the lakes and reservoirs due to reduction of the velocity of water flow. The silica contents of suspended matter vary from 52.1% to 56.9% and their δ 30Si values vary from 0 to -0.7‰, both similar to those of shales. From the upper to lower reaches, the silica contents of suspended matter tend to increase, whilst their δ 30Si values tend to decrease. Both trends reflect the increase of clay minerals and decrease of carbonates in suspended matter. The concentrations of dissolved silicon vary from 97 to 121 μmol/L and their δ 30Si values vary over a wide range from 0.7 to 3.4‰. From the upper to lower reaches, dissolved silica concentrations tend to decrease and their δ 30Si values tend to increase. These trends mainly reflect the change of chemical and isotopic characteristics of the tributaries from the upper to lower reaches. The major factors responsible for these changes may be the high meteoric precipitation and significant silicon absorption by grass (in wetlands) and rice (in paddy fields) in drainage areas of the middle and lower reaches. There is no correlation between δ 30Si of dissolved silicon and that of suspended matter. The Δ 30Si Diss-SPM values vary over a wide range of 1.0-3.7‰, indicating that (1) they are out of isotopic equilibrium, (2) dissolved silicon and the associated suspended matter do not belong to one physico-chemical system, and (3) isotopic exchange rate between them is very slow. The δ 30Si value of dissolved silicon output from the Yangtze River to the East Sea is estimated to be 3.0‰, much higher than the values reported for the Amazon and Congo rivers. This increases the δ 30Si range of dissolved silicon

  7. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology

    SciTech Connect

    Kohn, M.J.; Valley, J.W.; Schoeninger, M.J.

    1996-10-01

    The applicability of rapid and precise laser probe analysis of tooth enamel for {delta}{sup 18}O has been verified, and the method has been applied to different modern herbivores in East Africa. Sampling and pretreatment procedures involve initial bleaching and grinding of enamel to <75 {mu}m, and elimination of adsorbed water and organic compounds with BrF{sub 5}. Typical analytical reproducibilities for 0.5-2 mg samples are {+-}0.08{per_thousand} ({+-} 1{sigma}). Chemical and spectroscopic characterization of pretreated but unanalyzed samples show no alteration compared to fresh enamel. Solid reaction products are nearly pure CaF{sub 2} with little evidence for residual O{sub 2}. Because laser probe fluorination extracts oxygen from all sites in the apatite structure (phosphate, structural carbonate, and hydroxyl), only unaltered tooth enamel ( >95% apatite) can be analyzed reliably. Different East African herbivores exhibit previously unsuspected compositional differences. Average enamel {delta}{sup 18}O values (V-SMOW) are approximately: 25{per_thousand} (goat). 27{per_thousand} (oryx), 28{per_thousand} (dikdik and zebra), 29{per_thousand} (topi), 30{per_thousand} (gerenuk), and 32{per_thousand} (gazelle). These compositions differ from generalized theoretical models, but are broadly consistent with expected isotope effects associated with differences in how much each animal (a) drinks, (b) eats C3 vs. C4 plants, and (c) pants vs. sweats. Consideration of diet, water turnover. and animal physiology will allow the most accurate interpretation of ancient teeth and targeting of environmentally-sensitive animals in paleoclimate studies. 66 refs., 2 figs., 2 tabs.

  8. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    NASA Astrophysics Data System (ADS)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  9. Oxygen isotopic composition and U-Pb discordance in zircon

    USGS Publications Warehouse

    Booth, A.L.; Kolodny, Y.; Chamberlain, C.P.; McWilliams, M.; Schmitt, A.K.; Wooden, J.

    2005-01-01

    We have investigated U-Pb discordance and oxygen isotopic composition of zircon using high-spatial resolution ??18O measurement by ion microprobe. ??18O in both concordant and discordant zircon grains provides an indication of the relationship between fluid interaction and discordance. Our results suggest that three characteristics of zircon are interrelated: (1) U-Pb systematics and concomitant age discordance, (2) ??18O and the water-rock interactions implied therein, and (3) zircon texture, as revealed by cathodoluminescence and BSE imaging. A key observation is that U-Pb-disturbed zircons are often also variably depleted in 18O, but the relationship between discordance and ??18O is not systematic. ??18O values of discordant zircons are generally lighter but irregular in their distribution. Textural differences between zircon grains can be correlated with both U-Pb discordance and ??18O. Discordant grains exhibit either a recrystallized, fractured, or strongly zoned CL texture, and are characteristic of 18O depletion. We interpret this to be a result of metamictization, leading to destruction of the zircon lattice and an increased susceptibility to lead loss. Conversely, grains that are concordant have less-expressed zoning and a smoother CL texture and are enriched in 18O. From this it is apparent that various stages of water-rock interaction, as evidenced by systematic variations in ??18O, leave their imprint on both the texture and U-Pb systematics of zircon. Copyright ?? 2005 Elsevier Ltd.

  10. Chemostratigraphies of carbon, oxygen and strontium isotopes and oxygen contents across the Precambrian-Cambrian boundary

    NASA Astrophysics Data System (ADS)

    Komiya, T.; Sawaki, Y.; Ishikawa, T.

    2007-12-01

    The Precambrian-Cambrian (PC-C) boundary is one of the most important intervals for evolution of life. However, the scarcity of well-preserved outcrops through the boundary makes it ambiguous to decode change of the surface environment and biological evolution. In south China, strata through the PC-C boundary are continuously exposed and contain many fossils, suitable for study of environmental and biological change. In addition, we conducted excavations at four sites of Three Gorge area to obtain continuous and fresh samples. We measured the delta13C, delta18O and 87Sr/86Sr values of the drill core samples and REE compositions of fresh carbonate rocks, respectively. We identified two positive and two negative isotope excursions of delta13Ccarb within this interval: a moderate increase from 0 to +2 permil and a subsequent dramatic drop to -7 permil at the PC-C boundary, and a continuous increase to +5 permil at the upper part of the Nemakit-Daldynian (ND) stage and the subsequent sharp decrease to -9 permil just below the basal Tommotian unconformity, respectively. The continuous pattern of the delta13C shift is irrespective of lithotype and is comparable to fragmented records of other sections within and outside of the Yangtze Platform, indicating that the profile represents global change of seawater chemistry. A chemostratigraphy of 87Sr/86Sr ratios of the drilled samples also displays a smooth curve and its large positive anomaly just below the PC-C boundary. The estimate of oxygen content of seawater from REE composition of carbonate minerals shows significant decreases around PC-C and ND-Tommotian boundaries, respectively. The combination of chemostratigraphies of delta13C, 87Sr/86Sr and pO2 indicates that the 87Sr/86Sr excursions preceded the delta13C negative excursion at PC-C boundary, and suggests that global regression or formation of the Gondwana supercontinent, evident in increase of influx of continental materials, caused biological depression together

  11. The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Savage, Paul S.; Moynier, Frédéric

    2014-10-01

    Despite their unusual chemical composition, it is often proposed that the enstatite chondrites represent a significant component of Earth’s building materials, based on their terrestrial similarity for numerous isotope systems. In order to investigate a possible genetic relationship between the Fe isotope composition of enstatite chondrites and the Earth, we have analyzed 22 samples from different subgroups of the enstatite meteorites, including EH and EL chondrites, aubrites (main group and Shallowater) and the Happy Canyon impact melt. We have also analyzed the Fe isotopic compositions of separated (magnetic and non-magnetic) phases from both enstatite chondrites and achondrites. On average, EH3-5 chondrites (δ56Fe = 0.003 ± 0.042‰; 2 standard deviation; n = 9; including previous literature data) as well as EL3 chondrites (δ56Fe = 0.030 ± 0.038‰; 2 SD; n = 2) have identical and homogeneous Fe isotopic compositions, indistinguishable from those of the carbonaceous chondrites and average terrestrial peridotite. In contrast, EL6 chondrites display a larger range of isotopic compositions (-0.180‰ < δ56Fe < 0.181‰; n = 11), a result of mixing between isotopically distinct mineral phases (metal, sulfide and silicate). The large Fe isotopic heterogeneity of EL6 is best explained by chemical/mineralogical fragmentation and brecciation during the complex impact history of the EL parent body. Enstatite achondrites (aubrites) also exhibit a relatively large range of Fe isotope compositions: all main group aubrites are enriched in the light Fe isotopes (δ56Fe = -0.170 ± 0.189‰; 2 SD; n = 6), while Shallowater is, isotopically, relatively heavy (δ56Fe = 0.045 ± 0.101‰; 2 SD; n = 4; number of chips). We take this variation to suggest that the main group aubrite parent body formed a discreet heavy Fe isotope-enriched core, whilst the Shallowater meteorite is most likely from a different parent body where core and silicate material remixed. This could be

  12. Soil drying effects on the carbon isotope composition of soil respiration

    EPA Science Inventory

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  13. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    NASA Astrophysics Data System (ADS)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  14. Hydrogeochemical and Isotopic Composition of Pasinler Geothermal Water (Erzurum, Turkey)

    NASA Astrophysics Data System (ADS)

    Hatipoglu, E.; Sunnetci, M. O.; Gultekin, F.

    2013-12-01

    In this investigation Pasinler (Erzurum) hot water spring has been studied from the point of geology and environmental isotopes. The Pasinler geothermal field is located 37 km east of Erzurum Province. The basement of Pasinler Geothermal field consists of Upper Cretaceous ophiolitic melange, shale, claystone, marl, and limestones, Eocene gabbro, andesite, basalt, trachyandesite, Oligocene andesite and basalt, Lower Miocene reef limestones, Upper Miocene pyroclastics, Plio- Quaternary (sandstone, marl, conglomerate) and Quaternary alluvium. The rhyolite is the reservoir for the geothermal fluid. The tuffs and marls are cap rocks of the system. The fault and related fractures around the Pasinler geothermal field provide pathways for the upward flow of geothermal fluid to the surface. The Alluvium around the Hasankale River is the most important unit as cold groundwater deposits in the study area. The thermal waters in the Pasinler geothermal fields have outlet temperatures of 23 to 35°C in springs. But discharge temperatures in the wells vary between 38-52°C. Geothermal well waters belong to the Na-Ca-Cl-HCO3 type. The Pasinler geothermal water has discharge pH values of 6 to 6.6, electrical conductivity (EC) of 970 to 6233 μS/cm, and TDS values between 635 and 4304 mg/l. δ18O, δ2H and δ3H isotope analyses were carried out to determine the origin of waters, recharge altitude, precipitation types, and groundwater circulation. In the 18O-δ 2H diagram all of the waters in the study area situated near the Globol Meteoric Water Line (GMWL) and indicate meteoric origin with little to no evaporation. According to the δ18O - temperature relation all water samples recharged at the same elevation in the plain. Low tritium coupled with high electrical conductivity and high Cl-value in the Pasinler thermal spring indicate that this spring has deep circulation. In order to determinate the origin of sulphure (SO4) and carbon in the waters, all waters were analysed for

  15. Modification of lignin content and composition in plants

    DOEpatents

    Ye, Zheng-Hua

    2002-01-01

    Plants and methods of preparing plants having reduced lignin content and/or altered lignin composition are provided. The activities of caffeoyl-CoA O-methyltransferase and/or caffeic acid O-methyltransferase enzymes in the modified plants are reduced.

  16. Titanium and Oxygen Isotope Compositions of Individual Chondrules from Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Bauer, K. K.; Schönbächler, M.; Fehr, M. A.; Vennemann, T.; Chaumard, N.; Zanda, B.

    2016-08-01

    We measured Ti and triple-O isotope compositions of individual chondrules (characterized by CT scanning) from ordinary chondrites. We will discuss correlations between Ti and ∆17O and their implication for the origin of nucleosynthetic anomalies.

  17. Magnesium, Silicon, and Oxygen Isotopic Consequences of CAI Evaporation and Inversion for Primordial Melt Compositions

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Shahar, A.

    2012-03-01

    We show how realistic activity-composition relationships in CMAS melts can be used to invert silicon- and magnesium-isotope ratios for evaporation histories of CAIs. Results suggest igneous CAIs were indeed condensates from a solar gas.

  18. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    NASA Astrophysics Data System (ADS)

    Sveinbjörnsdottir, Arny E.; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Johnsen, Sigfus J.

    2013-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  19. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Sveinbjörnsdottir, A. E.; Jónsson, T. H.; Johnsen, S. J.

    2012-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  20. Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution

    NASA Astrophysics Data System (ADS)

    Lewicki, Jennifer L.; Fischer, Tobias; Williams, Stanley N.

    2000-08-01

    We present chemical and isotopic data for fumarolic vapor and thermal spring discharges from Cumbal Volcano, SW Colombia. In 1988 Cumbal showed signs of apparent reactivation. Gases and steam condensates were sampled from summit fumaroles (83-375°C) of Cumbal in 1988-1996 and discharges from thermal springs (15-37°C) on its flanks in 1995-1996. Based on relative CO2, total S (H2S+SO2), and HCl contents, fumarolic discharges are principally magmatic in composition. Fumarolic steam condensates (1993-1996) have δ18O values of -11.4 to +2.5‰ and δD values of -91 to -43‰. δ18O and δD compositions indicate mixing between local meteoric and magmatic waters. 3He/4He ratios in 1993-1996 samples (5.3-7.9 Rcor) are consistent with addition of mantle-derived helium. δ13CCO2 values for 1996 samples (-6.7 to -5.0‰) likely indicate contribution of marine-carbonate, organic sediment, and mantle-derived CO2. δ34SStotal compositions (-4.6 to +5.6‰) of 1988-1996 fumarolic discharges have magmatic signatures and may reflect cycles of deposition and remobilization of native sulfur. Thermal waters are acid-sulfate or bicarbonate in composition. Relative concentrations of chemical constituents of thermal waters imply that the composition of waters is controlled by absorption of magmatic volatiles into shallow ground- and surface waters, dilution with meteoric waters along flow paths, and dissolution of host rocks. δ18O and δD compositions are consistent with a meteoric origin of waters. δ34SStotal values for thermal spring gas discharges (9.6-10.5‰) suggest deposition of δ34S-depleted sulfur minerals along flow paths. Chemical and isotopic compositions of 1988-1995 fumarolic discharges provide evidence for input of magmatic volatiles into the Cumbal hydrothermal system. From 1995 to 1996, geochemical data show increasing hydrothermal signatures, suggesting a decline in magmatic volatile input.

  1. Isotopic composition of Pb and Th in interplinian volcanics from Somma-Vesuvius volcano, Italy

    USGS Publications Warehouse

    Cortini, M.; Ayuso, R.A.; de Vivo, B.; Holden, P.; Somma, R.

    2004-01-01

    We present a detailed isotopic study of volcanic rocks emitted from Somma-Vesuvius volcano during three periods of interplinian activity: "Protohistoric" (3550 y B.P. to 79 A.D.), "Ancient Historic" (79 to 472 A.D.) and "Medieval" (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analysed for Th isotopes. 232Th/238U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the Earth; they range from 3.9 to 4.1. 232Th/238U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source. The behaviour of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic compositions

  2. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  3. Isotopic Composition of Presolar Silicon Carbide Grains Analyzed with CHILI

    NASA Astrophysics Data System (ADS)

    Stephan, T.; Trappitsch, R.; Davis, A. M.; Pellin, M. J.; Rost, D.; Savina, M. R.; Jadhav, M.; Kelly, C. H.

    2015-07-01

    Twenty-two presolar SiC grains were analyzed for Sr, Zr, and Ba isotopes with the Chicago Instrument for Laser Ionization. Most grains showed isotope patterns consistent with formation in AGB star like observed previously. One grain is a supernova grain.

  4. Isotopic composition of cattle pancreatic stones: biological and geochemical implications.

    PubMed

    Longinelli, A; Verine, H J

    1977-11-15

    Latitudinal variations of the O18/O16-ratios of carbonate and phosphate of cattle pancreatic stones parallel a similar pattern of oxygen isotope values in rain water. C13/C12-ratios were virtually identical for the 7 cases studied. Isotopic measurements of mammalian hard tissues may be used for studying short-term climatic variations through Quaternary.

  5. Carbon and nitrogen isotope composition of core catcher samples from the ICDP deep drilling at Laguna Potrok Aike (Patagonia, Argentina)

    NASA Astrophysics Data System (ADS)

    Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team

    2010-05-01

    The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late

  6. The effect of small scale variablity in isotopic composition of precipitation on hydrograph separation results

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Understanding runoff processes is important for predictions of streamflow quantity and quality. The two-component isotope hydrograph separation (IHS) method is a valuable tool to study how catchments transform rainfall into runoff. IHS allows the stormflow hydrograph to be separated into rainfall (event water) and water that was stored in the catchment before the event (pre-event water). To be able to perform an IHS, water samples of baseflow (pre-event water) and stormflow are collected at the stream outlet. Rainfall is usually collected at one location by hand as an event total or sampled sequentially during the event. It is usually assumed that the spatial variability in rainfall and the isotopic composition of rainfall are negligible for small (<10km2) catchments. However, different studies have shown that precipitation can vary within short distances. Subsequently it remains unclear how the spatio-temproal variability of rainfall and the stable isotope composition of rainfall affect the results of an IHS. In this study, we investigated the effects of the spatio-temporal variability in the isotopic composition of rainfall across a small headwater catchment in Switzerland. Rainfall was measured at eight locations and three streams (catchment area of 0.15, 0.23, and 0.7 km2). The isotopic composition of rainfall and streamflow were sampled for 10 different rain events (P: 5 mm intervals, Q: 12 to 51 samples per events). This dataset was used to perform a two-component isotope hydrograph separation. The results show that for some events the spatial variability in total rainfall, mean and maximum rainfall intensity and stable isotope composition of rainfall was high. There was no relation between the stable isotope composition of rainfall and the rainfall sum, rainfall intensity or altitude. The spatial variability of the isotopic composition of rainfall was for 4 out of the 10 events as large as the temporal variability in the isotopic composition. Different

  7. Source indicators of humic substances and proto-kerogen - Stable isotope ratios, elemental compositions and electron spin resonance spectra

    NASA Technical Reports Server (NTRS)

    Stuermer, D. H.; Peters, K. E.; Kaplan, I. R.

    1978-01-01

    Stable isotope ratios of C, N and H, elemental compositions, and electron spin resonance (ESR) data of humic acids and proto-kerogens from twelve widely varying sampling locations are presented. Humic acids and proto-kerogens from algal sources are more aliphatic and higher in N than those from higher plant sources. Oxygen content appears to represent a measure of maturation, even in Recent sediments, and S content may reflect redox conditions in the environment of deposition. The ESR data indicate that the transformation of humic substances to proto-kerogens in Recent sediments is accompanied by an increase in aromatic character. A combination of stable carbon isotope ratio and H/C ratio may be a simple but reliable source indicator which allows differentiation of marine-derived from terrestrially-derived organic matter. The stable nitrogen isotope ratios are useful indicators of nitrogen nutrient source. Deuterium/hydrogen isotope ratios appear to reflect variations in meteoric waters and are not reliable source indicators.

  8. Isotopic composition of strontium in three basalt-andesite centers along the Lesser Antilles arc

    USGS Publications Warehouse

    Hedge, C.E.; Lewis, J.F.

    1971-01-01

    Si87/Sr86 ratios have been determined for lavas and py lastic rocks from three basalt-andesite centers along the Lesser Antilles arc-Mt. Misery on the island of St. Kitts, Soufriere on the island of St. Vincent, and Carriacou, an island of The Grenadines. The average Si87/Sr86 content of these rocks is 0.7038 for Mt. Misery, 0.7041 for Soufriere, and 0.7053 for Carriacou. All the Sr87/Sr86 values from each center are the same within analytical uncertainty (??0.0002). The constancy of strontium isotopic data within each center supports the hypothesis that basalts and andesites for each specific center investigated are generated from the same source - in agreement with petrographic and major- and minor-element data. Strontium isotopic compositions and elemental concentrations, particularly of strontium and nickel, indicate that this source was mantle peridotite and that the relationship between the respective basalts and andesites is probably fractional crystallization. ?? 1971 Springer-Verlag.

  9. Osmium Isotope and Highly Siderophile Element Compositions of Lunar Orange and Green Glasses

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; Horan, M. F.; Shearer, C. K.; Papike, J. J.

    2003-01-01

    The absolute and relative abundances of the highly siderophile elements (HSE) present in planetary mantles are primarily controlled by: 1) silicate-metal partitioning during core-mantle differentiation, 2) the subsequent addition of HSE to mantles via continued planetary accretion. Consequently, constraints on the absolute and relative abundances of the HSE in the lunar mantle will provide unique insights to the formation and late accretionary history of not only the Moon, but also Earth. Determining the HSE content of the lunar mantle, however, has proven difficult, because no bona fide mantle rocks have been collected from the moon. The only materials presently available for constraining mantle abundances are lunar volcanic rocks. Lunar basalts typically have very low concentrations of HSE and highly fractionated HSE patterns. Because of our extremely limited understanding of mantle melt partitioning of the HSE, even for terrestrial systems, extrapolations to mantle compositions from basaltic compositions are difficult, except possibly for the less compatible HSE Pt and Pd. Primitive, presumably less fractionated materials, such as picritic glasses are potentially more diagnostic of the lunar interior. Here we report Os isotopic composition data and Re, Os, Ir, Ru, Pt and Pd concentration data for green glass (15426,164) and orange glass (74001,1217). As with previous studies utilizing neutron activation analysis, we are examining different size fractions of the spherules to assess the role of surface condensation in the generation of the HSE abundances.

  10. Changes in Oxygen Isotopes Composition of Precipitation over Tibetan Plateau during Cenozoic

    NASA Astrophysics Data System (ADS)

    Botsyun, S.; Sepulchre, P.; Donnadieu, Y.; Risi, C. M.; Fluteau, F.

    2014-12-01

    Despite the increasing role of the stable oxygen isotopes measurements for reconstructing mountains belts paleoelevation, some issues remain that lead to a large uncertainty in paleoelevation estimationes. Among them, the use of modern isotopic lapse rate with no account of climate change linked to lower topography can lead to misinterpretation of uplift rates. In this study, we use the atmospheric general circulation model LMDZ-iso to simulate changes in isotopic composition of precipitation due to uplift of the Himalayas and Tibetan plateau. Various scenarios of TP growth have been applied together with Paleocene, Eocene, Oligocene and Miocene boundary conditions. Our simulations allow us to estimate the magnitude of precipitation, temperature and wind field changes related to the spatial and temporal evolution of the Tibetan Plateau and Himalayas. Such changes affected the isotopic composition of precipitation during the Cenozoic.We investigate the impact of these changes on the isotopic lapse rate and the implications for paleoelevation estimates.

  11. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Chen, Jiubin

    2014-05-20

    Total mercury (Hg) concentrations (THg) and stable mercury isotopic compositions were measured in coal samples (n = 61) from major coal producing fields in China. The THg concentrations in coals ranged from 0.05 to 0.78 μg g(-1), with a geometric mean of 0.22 μg g(-1). Hg isotopic compositions in coals showed large variations both in mass-dependent fractionation (MDF, δ(202)Hg: -2.36 to -0.14‰) and mass-independent fractionation (MIF, Δ(199)Hg: -0.44 to +0.38‰). The MIF signatures in coals may reveal important information on the coal-forming conditions (e.g., humic and sapropelic). The Δ(199)Hg/Δ(201)Hg of ∼1 determined in coals indicated that a portion of Hg has been subjected to photoreduction process prior to being incorporated to coals. On the basis of THg, Hg isotopic signatures, and other geological factors (e.g., total ash content and total sulfur content), the potential sources of Hg in coals from different coal producing regions were estimated. The main source of Hg in coals from southwestern China and eastern part of northern China is likely geogenic Hg, whereas the source of Hg in coals from other parts of northern China is mainly biogenic Hg. Finally, we estimated that Hg emission from coal combustion in China is characterized by diagnostic Hg isotopic signatures (δ(202)Hg: ∼-0.70‰ and Δ(199)Hg: ∼-0.05‰). The present study demonstrates that Hg isotopes can serve as a tool in understanding the sources and transformation of Hg in coals and may also be used as a tracer to quantify Hg emissions from coal combustion.

  12. The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses.

    PubMed Central

    Dickson, J H; Oeggl, K; Holden, T G; Handley, L L; O'Connell, T C; Preston, T

    2000-01-01

    The contents of the colon of the Tyrolean Iceman who lived ca. 5300 years ago include muscle fibres, cereal remains, a diversity of pollen, and most notably that of the hop hornbeam (Ostrya carpinifolia) retaining cellular contents, as well as a moss leaf (Neckera complanata) and eggs of the parasitic whipworm (Trichuris trichiura). Based almost solely on stable isotope analyses and ignoring the work on the colon contents, two recently published papers on the Iceman's diet draw ill-founded conclusions about vegetarianism and even veganism. Neither the pollen nor the moss is likely to have been deliberately consumed as food by the Iceman. All the available evidence concerning the Iceman's broad-based diet is reviewed and the significance of the colon contents for matters other than assessment of food intake is outlined. PMID:11205345

  13. The omnivorous Tyrolean Iceman: colon contents (meat, cereals, pollen, moss and whipworm) and stable isotope analyses.

    PubMed

    Dickson, J H; Oeggl, K; Holden, T G; Handley, L L; O'Connell, T C; Preston, T

    2000-12-29

    The contents of the colon of the Tyrolean Iceman who lived ca. 5300 years ago include muscle fibres, cereal remains, a diversity of pollen, and most notably that of the hop hornbeam (Ostrya carpinifolia) retaining cellular contents, as well as a moss leaf (Neckera complanata) and eggs of the parasitic whipworm (Trichuris trichiura). Based almost solely on stable isotope analyses and ignoring the work on the colon contents, two recently published papers on the Iceman's diet draw ill-founded conclusions about vegetarianism and even veganism. Neither the pollen nor the moss is likely to have been deliberately consumed as food by the Iceman. All the available evidence concerning the Iceman's broad-based diet is reviewed and the significance of the colon contents for matters other than assessment of food intake is outlined.

  14. Magnesium and Titanium Isotopic Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende: It Is Fun

    NASA Technical Reports Server (NTRS)

    Liu, M.-C.; Keller, L. P.; McKeegan, K. D.

    2016-01-01

    of (sup 26) Al. Delta (sup 25) Mg (mass-dependent fractionation) in hibonite is approximately -5 per mille per atomic mass unit relative to Madagascar hibonite, but is not well constrained for perovskite due to very large uncertainties owing to extremely low Mg contents. Similar to Mg isotopes, SHAL hibonite and perovskite show essentially the same Ti isotopic compositions, with anomalies in (sup 50) Ti of approximately 14 per mille, but the former shows greater Ti isotope fractionation than the latter (2.5 per mille per atomic mass unit versus 0 per mille). Discussion and Conclusions: The Al-Mg and Ti isotopic compositions of SHAL hibonite are consistent with those of HAL, suggesting that SHAL hibonite is a FUN inclusion and likely formed prior to homogenization of (sup 26) Al and Ti isotope variations in the solar nebula. However, the formation mechanisms for SHAL and HAL differ, given the differences in the REE patterns and degrees of oxygen mass-dependent fractionation. The Group-II to Group-III like REE patterns, the Yb depletions, and negative delta (sup 25) Mg observed in SHAL hibonite are all consistent with condensation of the hibonite precursor in a reducing environment.. The lack of large Ce depletions in SHAL hibonite implies that distillation processes that fractionated hibonite's oxygen isotopes must have taken place under a reducing condition, but the extent to which SHAL hibonite was distilled appears to be less than HAL because of the smaller degree of oxygen mass-dependent fractionation. The perovskite shares essentially the same Ti and Mg isotopic compositions as hibonite and probably formed in the same reservoir.. The ultrarefractory REE pattern seen in perovskite likely resulted from gas-solid fractionation which depleted HREEs in this reservoir. This process also explains why SHAL hibonite is generally depleted in HREEs relative to LREEs.

  15. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    NASA Technical Reports Server (NTRS)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  16. Nitrogen Isotopic Composition of Metal and Graphite Separates from the EL Taco (IAB) Iron Meteorite

    NASA Astrophysics Data System (ADS)

    Zipfel, J.; Mathew, K. J.; Marti, K.

    1996-03-01

    Nitrogen isotopic compositions of iron meteorites were studied by several authors to address the question of the origin of iron meteorites and their genetic relationships. It was concluded that parent body processes have only a slight effect on the primary signatures. All these results are only based on the N composition of the matrix metal. No systematic study has been performed to determine effects of parent body processes on the N isotopes in the presence of silicate inclusions. Nitrogen signatures, reflecting isotopic disequilibrium, were previously observed in Acapulco. We report first results of a detailed study of the N isotopic composition in silicate and metal phases of the IAB iron El Taco. Metal and graphite separates were analyzed by stepwise pyrolysis followed by several combustion steps using a static mass spectrometer. The new data reveal a large scale disequilibrium among the investigated phases.

  17. Simultaneous Determination of Si and Mg Isotopic Composition in Meteorites

    NASA Astrophysics Data System (ADS)

    Sikdar, J.; Rai, V. K.

    2016-08-01

    This paper utilizes simultaneous Si and Mg isotopic analyses of different classes of bulk meteorites including CC, OC, EC and HED with aim to understand the cause of enrichment of heavy Si in Bulk Silicate Earth relative to chondrites.

  18. The Isotopic Composition of Cosmic-Ray Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.; Binns, W.; Christian, E.; Cummings, A.; George, J.; Hink, P.; Klarmann, J.; Leske, R.; Lijowski, M.; Mewaldt, R.; Stone, E.; Rosenvinge, T. von

    2000-01-01

    Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive contraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport.

  19. Calcium and Oxygen Isotopic Composition of Calcium Carbonates

    NASA Astrophysics Data System (ADS)

    Niedermayr, Andrea; Eisenhauer, Anton; Böhm, Florian; Kisakürek, Basak; Balzer, Isabelle; Immenhauser, Adrian; Jürgen Köhler, Stephan; Dietzel, Martin

    2016-04-01

    Different isotopic systems are influenced in multiple ways corresponding to the crystal structure, dehydration, deprotonation, adsorption, desorption, isotope exchange and diffusion processes. In this study we investigated the structural and kinetic effects on fractionation of stable Ca- and O-isotopes during CaCO3 precipitation. Calcite, aragonite and vaterite were precipitated using the CO2 diffusion technique[1]at a constant pH of 8.3, but various temperatures (6, 10, 25 and 40° C) and precipitation rates R (101.5 to 105 μmol h-1 m-2). The calcium isotopic fractionation between solution and vaterite is lower (Δ44/40Ca= -0.10 to -0.55 ‰) compared to calcite (-0.69 to -2.04 ‰) and aragonite (-0.91 to -1.55 ‰). In contrast the fractionation of oxygen isotopes is highest for vaterite (32.1 ‰), followed by aragonite (29.2 ‰) and calcite (27.6 ‰) at 25° C and equilibrium. The enrichment of 18O vs. 16O in all polymorphs decreases with increasing precipitation rate by around -0.7 ‰ per log(R). The calcium isotopic fractionation between calcite/ vaterite and aqueous Ca2+ increases with increasing precipitation rate by ˜0.45 ‰ per log(R) and ˜0.1 ‰ per log(R) at 25° C and 40° C, respectively. In contrast the fractionation of Ca-isotopes between aragonite and aqueous Ca2+ decreases with increasing precipitation rates. The large enrichment of 18O vs. 16O isotopes in carbonates is related to the strong bond of oxygen to the small and highly charged C4+-ion. In contrast equilibrium isotopic fractionation between solution and calcite or vaterite is nearly zero as the Ca-O bond length is similar for calcite, vaterite and the hydrated Ca. Aragonite incorporates preferentially the lighter 40Ca isotope as it has very large Ca-O bonds in comparison to the hydrated Ca. At the crystal surface the lighter 40Ca isotopes are preferentially incorporated as dehydration and diffusion of lighter isotopes are faster. Consequently, the surface becomes enriched in 40

  20. Calcium and Oxygen Isotopic Composition of Calcium Carbonates

    NASA Astrophysics Data System (ADS)

    Niedermayr, Andrea; Eisenhauer, Anton; Böhm, Florian; Kisakürek, Basak; Balzer, Isabelle; Immenhauser, Adrian; Jürgen Köhler, Stephan; Dietzel, Martin

    2016-04-01

    Different isotopic systems are influenced in multiple ways corresponding to the crystal structure, dehydration, deprotonation, adsorption, desorption, isotope exchange and diffusion processes. In this study we investigated the structural and kinetic effects on fractionation of stable Ca- and O-isotopes during CaCO3 precipitation. Calcite, aragonite and vaterite were precipitated using the CO2 diffusion technique[1]at a constant pH of 8.3, but various temperatures (6, 10, 25 and 40° C) and precipitation rates R (101.5 to 105 μmol h‑1 m‑2). The calcium isotopic fractionation between solution and vaterite is lower (Δ44/40Ca= -0.10 to -0.55 ‰) compared to calcite (-0.69 to -2.04 ‰) and aragonite (-0.91 to -1.55 ‰). In contrast the fractionation of oxygen isotopes is highest for vaterite (32.1 ‰), followed by aragonite (29.2 ‰) and calcite (27.6 ‰) at 25° C and equilibrium. The enrichment of 18O vs. 16O in all polymorphs decreases with increasing precipitation rate by around -0.7 ‰ per log(R). The calcium isotopic fractionation between calcite/ vaterite and aqueous Ca2+ increases with increasing precipitation rate by ˜0.45 ‰ per log(R) and ˜0.1 ‰ per log(R) at 25° C and 40° C, respectively. In contrast the fractionation of Ca-isotopes between aragonite and aqueous Ca2+ decreases with increasing precipitation rates. The large enrichment of 18O vs. 16O isotopes in carbonates is related to the strong bond of oxygen to the small and highly charged C4+-ion. In contrast equilibrium isotopic fractionation between solution and calcite or vaterite is nearly zero as the Ca-O bond length is similar for calcite, vaterite and the hydrated Ca. Aragonite incorporates preferentially the lighter 40Ca isotope as it has very large Ca-O bonds in comparison to the hydrated Ca. At the crystal surface the lighter 40Ca isotopes are preferentially incorporated as dehydration and diffusion of lighter isotopes are faster. Consequently, the surface becomes enriched in

  1. Stable isotope, chemical, and mineral compositions of the Middle Proterozoic Lijiaying Mn deposit, Shaanxi Province, China

    USGS Publications Warehouse

    Yeh, Hsueh-Wen; Hein, James R.; Ye, Jie; Fan, Delian

    1999-01-01

    The Lijiaying Mn deposit, located about 250 km southwest of Xian, is a high-quality ore characterized by low P and Fe contents and a mean Mn content of about 23%. The ore deposit occurs in shallow-water marine sedimentary rocks of probable Middle Proterozoic age. Carbonate minerals in the ore deposit include kutnahorite, calcite, Mn calcite, and Mg calcite. Carbon (−0.4 to −4.0‰) and oxygen (−3.7 to −12.9‰) isotopes show that, with a few exceptions, those carbonate minerals are not pristine low-temperature marine precipitates. All samples are depleted in rare earth elements (REEs) relative to shale and have negative Eu and positive Ce anomalies on chondrite-normalized plots. The Fe/Mn ratios of representative ore samples range from about 0.034 to <0.008 and P/Mn from 0.0023 to <0.001. Based on mineralogical data, the low ends of those ranges of ratios are probably close to ratios for the pure Mn minerals. Manganese contents have a strong positive correlation with Ce anomaly values and a moderate correlation with total REE contents. Compositional data indicate that kutnahorite is a metamorphic mineral and that most calcites formed as low-temperature marine carbonates that were subsequently metamorphosed. The braunite ore precursor mineral was probably a Mn oxyhydroxide, similar to those that formed on the deep ocean-floor during the Cenozoic. Because the Lijiaying precursor mineral formed in a shallow-water marine environment, the atmospheric oxygen content during the Middle Proterozoic may have been lower than it has been during the Cenozoic.

  2. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Rosenvinge, T. T. von

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  3. Landscape variability of the stable carbon isotope composition of soil CO2 concentrations and flux in complex terrain

    NASA Astrophysics Data System (ADS)

    Riveros-Iregui, Diego; Liang, Liyin; Risk, David

    2015-04-01

    Stable isotopes are commonly used to understand how physical and biological processes mediate the exchange of carbon between terrestrial ecosystems and the atmosphere. Numerous studies have described fundamental relationships between environmental variables, the carbon isotopic composition (δ13C) of recently assimilated sugars in plants, litter, soil carbon, or recently respired CO2. However, studies that examine the landscape scale variability of the 13C content of forest soils are lacking. We report on measurements of the carbon isotopic composition of soil CO2 concentrations (δ13CC) and flux (δ13CJ) across a subalpine forest of the northern Rocky Mountains of Montana, United States. Our analysis demonstrates that soil moisture and the lateral redistribution of soil water are strong predictors of the spatial variability of both δ13CC and δ13CJ at the watershed scale. Our analysis suggests that there are concomitant yet independent effects of soil water on physical (i.e., soil gas diffusivity) and biological (i.e., photosynthetic activity) processes that mediate the 13C composition of forest soils. We show systematic spatial variability in the δ13C of forest soils at the landscape scale that can be useful to accurately predict and model land-atmosphere CO2 exchange over complex terrain.

  4. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  5. Isotopic composition of recent shark teeth as a proxy for environmental conditions

    NASA Astrophysics Data System (ADS)

    Vennemann, T. W.; Hegner, E.; Cliff, G.; Benz, G. W.

    2001-05-01

    The O, C, and Sr isotope compositions of teeth from ten species, belonging to five families, and three orders of sharks were measured to determine the influence of habitat, diet, and possible species-specific fractionation effects on the isotopic composition of biogenic phosphate from fish. The sharks were recently caught in subtropical waters off the KwaZulu-Natal (KZN) coast of South Africa, as well as from cold waters in Prince William Sound (PWS), Alaska, and Victor Bay (VB), Nunavut, Canada. δ 18O values of tooth phosphate (δ 18O P) range from 20.9 to 23.5‰ for the KZN sharks. For most species the range in measured δ 18O P values is about 0.6‰, but it may be as high as 1.1‰ for different teeth from a single shark. Dentine and enameloid within individual teeth have no apparent differences in δ 18O P values. The δ 18O P values of the KZN shark teeth reflect the typical habitat of the studied species, primarily the thermal structure of the water column off KZN at depths between 20 and 280 m. The δ 18O P values of teeth from different Greenland sharks from VB and Pacific sleeper sharks from PWS are very homogeneous, averaging 25.8 and 24.7‰, respectively. These values appear to be in equilibrium with deep (>500 m) ocean waters in each case at temperatures of about -0.3°C or less. There is little discernable evidence for species-specific fractionation effects for the oxygen isotope composition of phosphate in the studied marine fish. The oxygen isotope composition of carbonate in apatite averages about 9.1‰ higher than corresponding δ 18O P values, in agreement with equilibrium fractionation between carbonate and phosphate, but with a large variance (1σ = ±1.5‰). δ 18O C values also vary by up to 1‰ between enameloid and dentine within single teeth, but in a non-systematic way. Differences in δ 13C values between carbonate in enameloid and dentine is also large (up to 8‰) but the δ 13C values vary systematically. Enameloid is always

  6. Designing high hard block Content TPU resins for composite application

    NASA Astrophysics Data System (ADS)

    Saiani, Alberto; Nedolisa, Chinemelum; Lindsay, Christopher; Polymer and Pepties Research Group Team; Huntsman Polyurethanes Team

    2013-03-01

    Thermoplastic Polyurethanes (TPU) are linear block copolymers typically constructed of statistically alternating soft (SS) and hard (HS) segments. Due to their numerous industrial applications these materials have received considerable attention. We have recently investigated the phase behavior and morphology of a set of high hard block content polyurethanes. Using mainly calorimetry, scattering and microscopy techniques we were able to elucidate the origins of all the thermal events observed through differential scanning calorimetry and propose a new morphological model of the structure and the phase behavior of these high hard block content polyurethanes [A. Saiani et al. Macromolecules, 34, 9059-9068 (2001); 37, 1411-1421 (2004); 40, 7252-7262 (2007)]. We have now shown that these new materials can potentially be used as resins for designing fiber based composites and investigated the effect of processing on conditions the final properties of the composites

  7. Reconstruction of the isotope activity content of heterogeneous nuclear waste drums.

    PubMed

    Krings, Thomas; Mauerhofer, Eric

    2012-07-01

    Radioactive waste must be characterized in order to verify its conformance with national regulations for intermediate storage or its disposal. Segmented gamma scanning (SGS) is a most widely applied non-destructive analytical technique for the characterization of radioactive waste drums. The isotope specific activity content is generally calculated assuming a homogeneous matrix and activity distribution for each measured drum segment. However, real radioactive waste drums exhibit non-uniform isotope and density distributions most affecting the reliability and accuracy of activities reconstruction in SGS. The presence of internal shielding structures in the waste drum contributes generally to a strong underestimation of the activity and this in particular for radioactive sources emitting low energy gamma-rays independently of their spatial distribution. In this work we present an improved method to quantify the activity of spatially concentrated gamma-emitting isotopes (point sources or hot spots) in heterogeneous waste drums with internal shielding structures. The isotope activity is reconstructed by numerical simulations and fits of the angular dependent count rate distribution recorded during the drum rotation in SGS using an analytical expression derived from a geometric model. First results of the improved method and enhancements of this method are shown and are compared to each other as well as to the conventional method which assumes a homogeneous matrix and activity distribution. It is shown that the new model improves the accuracy and the reliability of the activity reconstruction in SGS and that the presented algorithm is suitable with respect to the framework requirement of industrial application.

  8. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned and incrementally heated from 25 to 900° C, in 25° intervals. The samples were then ground to a standardized grain-size (45<63μ m), and changes in bioapatite crystallinity (CI) were determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by

  9. Normal variations in the isotopic composition of metabolically relevant transition metals in human blood

    NASA Astrophysics Data System (ADS)

    Van Heghe, L.; Cloquet, C.; Vanhaecke, F.

    2012-04-01

    Cu, Fe and Zn are transition metals with great catalytic, structural and regulating importance in the human body. Hence, an aberrant metabolism of these elements can have serious implications on the health of a person. It is assumed that, due to differences in isotope fractionation, the isotopic composition of these elements in whole blood of patients can be different from that in blood of healthy subjects. Therefore, isotopic analysis of the element affected by the disease can be a promising approach for early diagnosis. A method for isotopic analysis of Cu, Fe and Zn in human whole blood was developed. The simultaneous chromatographic isolation of these elements and the conditions for isotope ratio measurement via multi-collector ICP - mass spectrometry (MC-ICP-MS) were optimized. So far, only whole blood of supposedly healthy volunteers (reference population) was analyzed. Results for Fe confirmed the known differences in isotopic composition between male and female blood. It is also shown that other parameters can have influence as well, e.g., the isotopic composition of Zn seems to be governed by the diet.

  10. Measurements of the isotopic composition of ice and vapor above a tropical convective system

    NASA Astrophysics Data System (ADS)

    O'Brien, A.; Hanisco, T. F.; Sayres, D. S.; St Clair, J.; Smith, J. B.; Weinstock, E. M.; Anderson, J.

    2011-12-01

    We present observations of the isotopic composition of condensed and vapor water in the lower tropical tropopause layer (TTL) above a large summertime tropical convective system obtained by the Hoxotope and ICOS isotope instruments flown on the NASA WB-57 during TC4. A simple ice isotopic physics model is used in conjunction with our observational data to determine the origin of the condensed phase encountered above the cloud top. Regions of ice that are characteristic of both convective lofting, where the ice is isotopically heavier than the surroundings, and in situ condensation, where the ice shows little difference in isotopic composition with respect to the vapor, are encountered above the convective cell with convective lofting being the dominant mechanism by which water is transported to this altitude. While ice lofting is an important component of water transport models in the TTL, the isotopic composition of ice has been a relatively unconstrained parameter. Observations of condensed isotopes coupled with the vertical profile of vapor in the summertime TTL suggests that there is a seasonal variation in convective timescales that needs to be accounted for in convectively-influenced trajectory models describing the transport of water in the TTL.

  11. Trihalomethanes formed from natural organic matter isolates: Using isotopic and compositional data to help understand sources

    USGS Publications Warehouse

    Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Aiken, G.R.; Kendall, C.; Silva, S.R.

    2000-01-01

    Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs. The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.

  12. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Prasad, M. Shyam; Nagashima, K.; Jones, R. H.

    2015-09-01

    Most olivine relict grains in cosmic spherules selected for the present study are pristine and have not been disturbed during their atmospheric entry, thereby preserving their chemical, mineralogical and isotopic compositions. In order to understand the origin of the particles, oxygen isotope compositions of relict olivine grains in twelve cosmic spherules collected from deep sea sediments of the Indian Ocean were studied using secondary ion mass spectrometry. Most of the data lie close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line, with Δ17O ranging from -5‰ to 0‰. The data overlap oxygen isotopic compositions of chondrules from carbonaceous chondrites such as CV, CK, CR and CM, which suggests that chondrules from carbonaceous chondrites are the source of relict grains in cosmic spherules. Chemical compositions of olivine in cosmic spherules are also very similar to chondrule olivine from carbonaceous chondrites. Several olivine relict grains in three cosmic spherules are 16O-rich (Δ17O -21.9‰ to -18.7‰), similar to oxygen isotopic compositions observed in calcium aluminum rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine grains from two cosmic spherules have δ18O values >+20‰, which could be interpreted as mixing with stratospheric oxygen during atmospheric entry.

  13. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  14. Results of elemental and stable isotopic measurements, and dietary composition of Arctic grayling (Thymallus arcticus) collected in 2000 and 2001 from the Fortymile River Watershed, Alaska

    USGS Publications Warehouse

    Crock, J.G.; Seal, R.R.; Gough, L.P.; Weber-Scannell, P.

    2003-01-01

    We report the results of the elemental and stable isotopic analyses, as well as the composition of stomach contents, of Arctic grayling (Thymallus arcticus), an ecologically important resident freshwater sport and subsistence fish in the Fortymile River Mining District of the Interior Highlands Ecoregion in eastern Alaska. These data are presented here as a data compilation with minimal interpretation or discussion. Further analyses of the data will be presented elsewhere. The study area has been mined for placer gold for over a century and is currently experiencing renewed mineral exploration activity. The results for the analysis of 40 inorganic elements are reported for grayling muscle (fillet) tissue, liver tissue, and stomach contents from 34 individuals caught at 11 sites within the watershed. The 11 sites were classified as occurring within the following lithologies: metavolcanic (7 sites), metasedimentary (3 sites), and granitic intrusion (1 site). This information (along with fish tissue stable isotope data) is critical in the assessment of the influence of regional lithology on the fish chemical composition, especially the trace metal content. We report the nitrogen, carbon, and sulfur stable isotope composition of muscle samples. Nitrogen isotopes appear homogeneous (d15N = 7.6 to 9.7 permil) whereas carbon and sulfur isotope compositions of the same samples span a range from d 13C = ?33.1 to ?25.8 permil, and d 34S = ?8.4 to 8.2 permil. Stomach content material was examined for the occurrence and frequency of macroinvertebrate composition and diversity in three individual fish. Results showed a high degree of diversity with 9 to 15 invertebrate taxa; both aquatic and terrestrial forms were represented.

  15. The influence of oxygen exchange between sulfite and water on the oxygen isotope composition of sulfate

    NASA Astrophysics Data System (ADS)

    Müller, I. A.; Brunner, B.

    2012-12-01

    Sulfate does not exchange oxygen with the water under most environmental conditions. Therefore, its oxygen isotope composition serves as an archive of past oxidative sulfur cycling. Studies on the oxygen isotope signature of sulfate produced from reduced sulfur compounds show varying relative contributions of two possible oxygen sources; molecular oxygen and water, and variable isotope fractionations relative to these two compounds. These discrepancies could be due to differences in the production and consumption of sulfuroxy intermediates which exchange oxygen with water. Thereby, the rate of oxygen exchange as well as the rate of oxidation depends on the pH. Studies on the oxygen isotope exchange effects between sulfuroxy intermediates and water and on the oxygen isotope effects during the oxidation of sulfuroxy intermediates are scarce, severely limiting the interpretability of oxygen isotope signatures in sulfate. Sulfite is often considered to be the last/final sulfuroxy intermediate in the oxidation of reduced sulfur compounds to sulfate and may, therefore, be pivotal in shaping the oxygen isotope signature of sulfate. We determined the oxygen isotope equilibrium fractionation between sulfite and water and used the obtained equilibrium value to determine the oxygen isotope effects in abiotic sulfite oxidation experiments. Our results demonstrate that natural variations in the oxygen isotope composition of sulfate produced by oxidative processes can be explained by differences in the interplay of the sulfite oxidation rate and oxygen isotope exchange rate between sulfite and water which both depend on pH conditions and availability of oxidizing agents (e.g. molecular oxygen or ferric iron). Our findings contribute to a more detailed mechanistic understanding of the oxidation of reduced sulfur compounds and underline the importance of sulfite as the final sulfuroxy intermediate in oxidative sulfur cycling.

  16. Spatially resolved Fe- and S-isotope composition of sedimentary pyrite

    NASA Astrophysics Data System (ADS)

    Rouxel, O.; Bekker, A.; Germain, Y.; Ponzevera, E.

    2012-04-01

    Past studies of iron and sulfur isotope records of sedimentary sulfides over geological time have placed important constraints on the biogeochemical cycle of sulfur and iron and the evolution of ocean chemistry. Since biogeochemical cycles of Fe and S are closely coupled in marine systems, Fe-limitation and S-limitation for pyrite formation in black shales should leave an imprint on the isotopic record of both elements. We developed a technique for accurate and spatially-resolved measurement of 34S/32S, 33S/32S, 56Fe/54Fe, and 57Fe/54Fe isotope ratios in sedimentary pyrite using a combination of solution and laser ablation analysis. Fe- and S-isotope ratios were measured by high-resolution MC-ICP-MS (ThermoElectron Neptune), enabling us to resolve major isobaric interferences on S isotopes and Fe isotopes from O2+, ArN+, and ArO+. A CETAC LSX 213 nm laser was used as the ablation source with He as the sample carrier gas. Fe- and S-isotope ratios were calibrated against several pyrite standards using the conventional "sample-standard bracketing technique". Instrumental mass bias of Fe and S isotopes were also corrected through an internal normalization technique using respectively Ni and Mg of known isotope composition. The long-term reproducibility of S- and Fe-isotope compositions was typically better than 0.2 per mil. We investigated the fine scale variations of d56Fe, d34S and d33S values of diagenetic pyrite nodules in several Devonian, Paleoproterozoic and Archean black shales in order to (1) explore biosignature potential of co-variations of Fe- and S-isotopes at the grain-size scale; (2) assess potential diagenetic effects on Fe-isotope fractionation during sulfide formation; and (3) assess potential mixing between isotopically distinct Fe- and S-pools using multiple S isotope data. Those results will be presented together with bulk stratigraphic S- and Fe-isotopic variations and Fe speciation data in order to establish an Fe isotope mass balance in black

  17. Measurement of the isotopic composition of the iron-group elements in the galactic cosmic radiation

    NASA Technical Reports Server (NTRS)

    Tarle, G.; Ahlen, S. P.; Cartwright, B. G.

    1978-01-01

    With an average mass resolution of approximately 0.65 amu the isotopic composition of Cr, Mn, Fe, and Ni in the galactic cosmic radiation has been measured for energies of about 300 to 600 MeV/amu at the detector. Large deviations from solar-system source composition reported by other workers are not observed.

  18. Ultra-depleted isotopic compositions in fertile asthenosphere-derived peridotites: constraints on the composition of the upper mantle

    NASA Astrophysics Data System (ADS)

    Byerly, B. L.; Lassiter, J. C.

    2012-12-01

    Recent studies of abyssal peridotites (AP) and OIB xenoliths have reported refractory, isotopically ultra-depleted domains within the convecting upper mantle with Nd- and Hf-isotope compositions that extend far beyond the MORB field. These results have important implications regarding the average composition of the depleted upper mantle and the genetic relationship between MORB and AP. However, the abundance of ultra-depleted domains in the mantle is unclear. In addition, recent melt extraction processes at mid-ocean ridges make it difficult to evaluate the compositions of ultra-depleted domains prior to exhumation and thus evaluate their role in melt generation. To better constrain the abundance and composition of typical convecting upper mantle, we examined a suite of spinel peridotite xenoliths from the central Rio Grande Rift (RGR) where most of the preexisting lithosphere has been convectively removed and replaced with depleted upper mantle. Seismic tomography indicates that the lithosphere beneath the RGR has been substantially removed (Gao, 2004), and geochemical evidence supports this. Two distinct populations of xenoliths are observed from Elephant Butte, central RGR. One population, interpreted to derive from residual Proterozoic lithospheric mantle, is refractory (bulk Al2O3 <2.3 wt.%), LREE- and LILE-enriched, has enriched Sr, Nd, and Pb isotopic compositions and along with xenoliths from the Eastern Colorado Plateau define a strong Lu/Hf-176Hf/177Hf "pseudo-isochron" with an apparent age of ~1.6 Ga. In contrast, the majority of the RGR xenoliths have fertile major element compositions (bulk Al2O3 ~ 4.0 wt %), low spinel Cr# (~10), and LREE-depleted trace element patterns, and overlap with composition estimates for the depleted mantle (Workman & Hart, 2005). We interpret these xenoliths to reflect recent replacement of the pre-existing lithosphere with material from the convecting upper mantle. The fertile xenoliths have cpx Sr-, Nd-, and Hf-isotope

  19. Genetic relations among basic lavas and ultramafic nodules: Evidence from oxygen isotope compositions

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.; Carmichael, I.S.E.

    1982-01-01

    ??18O values of unaltered basic lavas range from 4.9 to 8.3 but different types of basalts are usually restricted to narrow and distinct ranges of isotopic composition. The average ??18O values for Hawaiian tholeiites, mid-ocean ridge tholeiites, and alkali basalts are 5.4, 5.7, and 6.2 permil, respectively. Potassic lavas and andesites tend to be more 18O rich with ??18O values between 6.0 and 8.0 permil. The differences among the oxygen isotopic compositions of most of these lavas can be attributed to partial melting of isotopically distinct sources. The oxygen isotope compositions of the sources may be a function of prior melting events which produce 18O-depleted partial melts and 18O-enriched residues as a consequence of relatively large isotopic fractionations that exist at high temperatures. It is proposed that lavas with relatively low ??18O values are derived from primitive, 18O-depleted sources whereas 18O-rich basalts are produced from refractory sources that have already produced partial melts. High temperature fractionations among silicate liquids and coexisting minerals can be used in conjunction with the oxygen isotope compositions of ultramafic nodules to place constraints on the genetic relations between some nodules and different types of basic lavas. ?? 1982 Springer-Verlag.

  20. Coupled isotopes of plant wax and hemicellulose markers record information on relative humidity and isotopic composition of precipitation

    NASA Astrophysics Data System (ADS)

    Tuthorn, M.; Zech, R.; Ruppenthal, M.; Oelmann, Y.; Kahmen, A.; del Valle, H. F.; Eglinton, T.; Zech, M.

    2015-02-01

    The δ2H isotopic composition of leaf waxes is used increasingly for paleohydrological and -climate reconstructions. However, it is challenging to disentangle past changes in the isotopic composition of precipitation and changes in evapotranspirative enrichment of leaf water. We analyzed δ2H on n-alkanes and fatty acids in topsoils along a climate transect in Argentina, for which we had previously measured δ18O on plant-derived sugars. Our results indicate that leaf wax biomarker δ2H values (δ2Hlipids) primarily reflect δ2Hsource water (precipitation), but are modulated by evapotranspirative enrichment. A mechanistic model is able to produce the main trends in δ2Hlipids along the transect, but seems to slightly underestimate evapotranspirative enrichment in arid regions and overestimate it in grass-dominated ecosystems. Furthermore, the (i) coupling of the δ2Hlipid and δ18Osugar biomarker results and (ii) application of biosynthetic fractionation factors allows calculating the δ2H-δ18O isotopic composition of leaf water along the transect. This also yields the deuterium excess (d excess) of leaf water, which mainly reflects evapotranspirative enrichment, and can be used to model relative air humidity (RH). The high correlation of modeled (reconstructed based on biomarker results) and measured RH, as well as the good agreement between modeled and actual δ2H and δ18O of precipitation along the transect lends support to the coupled δ2Hlipid and δ18Osugar biomarker approach for future paleoclimate research.

  1. Petrology and oxygen isotope compositions of chondrules in E3 chondrites

    NASA Astrophysics Data System (ADS)

    Weisberg, Michael K.; Ebel, Denton S.; Connolly, Harold C.; Kita, Noriko T.; Ushikubo, Takayuki

    2011-11-01

    Chondrules in E3 chondrites differ from those in other chondrite groups. Many contain near-pure endmember enstatite (Fs <1). Some contain Si-bearing FeNi metal, Cr-bearing troilite, and, in some cases Mg, Mn- and Ca-sulfides. Olivine and more FeO-rich pyroxene grains are present but much less common than in ordinary or carbonaceous chondrite chondrules. In some cases, the FeO-rich grains contain dusty inclusions of metal. The oxygen three-isotope ratios (δ 18O, δ 17O) of olivine and pyroxene in chondrules from E3 chondrites, which are measured using a multi-collection SIMS, show a wide range of values. Most enstatite data plots on the terrestrial fractionation (TF) line near whole rock values and some plot near the ordinary chondrite region on the 3-isotope diagram. Pyroxene with higher FeO contents (˜2-10 wt.% FeO) generally plots on the TF line similar to enstatite, suggesting it formed locally in the EC (enstatite chondrite) region and that oxidation/reduction conditions varied within the E3 chondrite chondrule-forming region. Olivine shows a wide range of correlated δ 18O and δ 17O values and data from two olivine-bearing chondrules form a slope ˜1 mixing line, which is approximately parallel to but distinct from the CCAM (carbonaceous chondrite anhydrous mixing) line. We refer to this as the ECM (enstatite chondrite mixing) line but it also may coincide with a line defined by chondrules from Acfer 094 referred to as the PCM (Primitive Chondrite Mineral) line ( Ushikubo et al., 2011). The range of O isotope compositions and mixing behavior in E3 chondrules is similar to that in O and C chondrite groups, indicating similar chondrule-forming processes, solid-gas mixing and possibly similar 16O-rich precursors solids. However, E3 chondrules formed in a distinct oxygen reservoir. Internal oxygen isotope heterogeneity was found among minerals from some of the chondrules in E3 chondrites suggesting incomplete melting of the chondrules, survival of minerals from

  2. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  3. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has

  4. Carbon isotope composition of individual amino acids in the Murchison meteorite

    SciTech Connect

    Engel, M.H.; Macko, S.A.; Silter, J.A.

    1996-07-01

    A SIGNIFICANT parties of prebiotic organic matter on the early Earth may have been introduced by carbonaceous asteroids and comets.{sup 1} The distribution and stable-isotope composition of individual organic compounds in carbonaceous meteorites, which are thought to be derived from asteroidal parent bodies, may therefore provide important information concerning mechanistic pathways for prebiotic synthesis{sup 2} and the composition of organic matter on Earth before living systems developed.{sup 3} Previous studies{sup 11,12} have shown that meteorite amino acids are enriched in {sup 13}C relatives to their terrestrial counterparts, but individual species were not distinguished. Here we report the {sup 13}C contents of individual amino acids in the Murchison meteorite. The amino acids are enriched in {sup 13}C, indicating an extraterrestrial origin. Alanine is not racemic, and the {sup 13}C enrichment of its D- and L-enantiomers implies that the excess of the L-enantiomer is indigenous rather than terrestrial contamination, suggesting that optically active materials were present in the early Solar System before life began. {copyright} {ital 1996 American Institute of Physics.}

  5. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Kimura, M.; El Goresy, A.; Palme, H.; Zinner, E.

    1993-05-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  6. The minor sulfur isotope composition of Cretaceous and Cenozoic seawater sulfate

    NASA Astrophysics Data System (ADS)

    Masterson, A. L.; Wing, Boswell A.; Paytan, Adina; Farquhar, James; Johnston, David T.

    2016-06-01

    The last 125 Myr capture major changes in the chemical composition of the ocean and associated geochemical and biogeochemical cycling. The sulfur isotopic composition of seawater sulfate, as proxied in marine barite, is one of the more perplexing geochemical records through this interval. Numerous analytical and geochemical modeling approaches have targeted this record. In this study we extend the empirical isotope record of seawater sulfate to therefore include the two minor sulfur isotopes, 33S and 36S. These data record a distribution of values around means of Δ33S and Δ36S of 0.043 ± 0.016‰ and -0.39 ± 0.15‰, which regardless of δ34S-based binning strategy is consistent with a signal population of values throughout this interval. We demonstrate with simple box modeling that substantial changes in pyrite burial and evaporite sulfate weathering can be accommodated within the range of our observed isotopic values.

  7. Clumped Isotope Composition of Cold-Water Corals: A Role for Vital Effects?

    NASA Astrophysics Data System (ADS)

    Spooner, P.; Guo, W.; Robinson, L. F.

    2014-12-01

    Measurements on a set of cold-water corals (mainly Desmophyllum dianthus) have suggested that their clumped isotope composition could serve as a promising proxy for reconstructing paleocean temperatures. Such measurements have also offered support for certain isotope models of coral calcification. However, there are differences in the clumped isotope compositions between warm-water and cold-water corals, suggesting that different kinds of corals could have differences in their biocalcification processes. In order to understand the systematics of clumped isotope variations in cold-water corals more fully, we present clumped isotope data from a range of cold-water coral species from the tropical Atlantic and the Southern Ocean.Our samples were either collected live or recently dead (14C ages < 1,000 yrs) with associated temperature data. They include a total of 11 solitary corals and 1 colonial coral from the Atlantic, and 8 solitary corals from the Southern Ocean. The data indicate that coral clumped isotope systematics may be more complicated than previously thought. For example, for the genus Caryophyllia we observe significant variations in clumped isotope compositions for corals which grew at the same temperature with an apparent negative correlation between Δ47 and δ18O, different to patterns previously observed in Desmophyllum. These results indicate that existing isotope models of biocalcification may not apply equally well to all corals. Clumped isotope vital effects may be present in certain cold-water corals as they are in warm-water corals, complicating the use of this paleoclimate proxy.

  8. High continental weathering rate during Early Cambrian: Evidence from Os isotopic composition of Early Cambrian Ocean

    NASA Astrophysics Data System (ADS)

    Jiang, S.-Y.; Yang, J.-H.; Ling, H.-F.; Feng, H.-Z.; Chen, Y.-Q.; Chen, J.-H.

    2003-04-01

    The paleo-ocean environmental change during the Precambrian-Cambrian transition is a key issue related to the causes for an explosive radiation of different metazoan phyla during Early Cambrian. The chemical and isotopic compositions of marine sediments and chemical precipitates such as carbonates, phosphorites, siliceous rocks, and black shales record the changing composition and physical conditions of the seawater in which these rocks accumulated. Organic carbon-rich black shales from marine environments are commonly enriched in a number of trace elements such as Ni, Mo, V, Co, Cr, Au, U, As, Pb, Zn, Cu, Re, and platinum-group-elements (PGE). Recent researches have demonstrated that Re-Os isotopes and PGE contents in black shales are useful proxies for seawater chemistry. It is believed that Re and Os in orgainc-carbon rich black shales are mostly hydrogeneous in origin which were largely sequestered from seawater at the time of deposition. In South China, the Lower Cambrian black shale sequence of the Niutitang Formation (and lateral equivalents) exists broadly several thousands kilometers. The lowermost sequence of this formation contain a thin sulfide ore horizon with an apparently unique and extreme case of metal enrichments such as Mo, Ni, Se, Re, Os, As, Hg, Sb, Ag, Au, Pt, and Pd. In this study, we conducted a preliminary investigation of Re-Os isotopes and Plantium Group Element (PGE) distribution patterns of the balck shales and intercalated Ni-Mo polymetallic sulfide bed from Guizhou and Hunan Provinces. The high rOs(t) values of the black shales indicate that the Early Cambrian ocean in Yangtze Platform had a highly radiogenic Os, possibly as a result of high continental weathering rate at that time. The Ni-Mo polymetallic sulfide ores within the black shales have lower rOs(t) values than the black shales, and they show similar REE and PGE patterns as the hydrothermal siliceous rocks within the Lower Cambrian strata, which suggest that the Ni

  9. Variation in the terrestrial isotopic composition and atomic weight of argon

    USGS Publications Warehouse

    Böhlke, John Karl

    2014-01-01

    The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.

  10. Clumped isotope composition of cold-water corals: A role for vital effects?

    NASA Astrophysics Data System (ADS)

    Spooner, Peter T.; Guo, Weifu; Robinson, Laura F.; Thiagarajan, Nivedita; Hendry, Katharine R.; Rosenheim, Brad E.; Leng, Melanie J.

    2016-04-01

    The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes 'clumping' into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope 'vital effects' are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals' calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.

  11. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  12. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    NASA Technical Reports Server (NTRS)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  13. Zirconium isotope constraints on the composition of Theia and current Moon-forming theories

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.

    2016-09-01

    The giant impact theory is the most widely recognized formation scenario of the Earth's Moon. Giant impact models based on dynamical simulations predict that the Moon acquired a significant amount of impactor (Theia) material, which is challenging to reconcile with geochemical data for O, Si, Cr, Ti and W isotopes in the Earth and Moon. Three new giant impact scenarios have been proposed to account for this discrepancy - hit-and-run impact, impact with a fast-spinning protoEarth and massive impactors - each one reducing the proportion of the impactor in the Moon compared to the original canonical giant impact model. The validity of each theory and their different dynamical varieties are evaluated here using an integrated approach that considers new high-precision Zr isotope measurements of lunar rocks, and quantitative geochemical modelling of the isotopic composition of the impactor Theia. All analysed lunar samples (whole-rock, ilmenite and pyroxene separates) display identical Zr isotope compositions to that of the Earth within the uncertainty of 13 ppm for 96Zr/90Zr (2σ weighted average). This 13 ppm upper limit is used to infer the most extreme isotopic composition that Theia could have possessed, relative to the Earth, for each of the proposed giant impact theories. The calculated Theian composition is compared with the Zr isotope compositions of different solar system materials in order to constrain the source region of the impactor. As a first order approximation, we show that all considered models (including the canonical) are plausible, alleviating the initial requirement for the new giant impact models. Albeit, the canonical and hit-and-run models are the most restrictive, suggesting that the impactor originated from a region close to the Earth. The fast-spinning protoEarth and massive impactor models are more relaxed and increase the allowed impactor distance from the Earth. Similar calculations carried out for O, Cr, Ti and Si isotope data support

  14. Is my C isotope excursion global, local, or both? Insights from the Mg and Ca isotopic composition of primary, diagenetic, and authigenic carbonates

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Blättler, C. L.; Husson, J. M.

    2014-12-01

    The C isotopic composition of ancient limestones and dolomites is a widely used proxy for the global geochemical cycles of carbon and oxygen in the ocean-atmosphere system and a critical tool for chemostratigraphy in Precambrian rocks. Although relatively robust to diagenesis, the C isotopic composition of bulk carbonates can be reset when conditions favor high water-to-rock ratios or fluids with high C concentrations and distinct isotopic compositions. Authigenic carbonates and different pools of primary carbonate (e.g. calcite vs. aragonite) may also bias the C isotopic composition of bulk carbonates if they are both abundant and isotopically distinct. New approaches to quantifying contributions from diagenesis, authigenesis, and mixing of primary carbonates to the C isotopic composition of bulk sedimentary carbonates are needed. Here we present preliminary Mg and Ca isotope data sets of primary, diagenetic, and authigenic carbonates, both modern and ancient. We show that recrystallization, dolomitization, and authigenesis produce Mg and Ca isotope fingerprints that may be used to identify and characterize these processes in ancient carbonate sediments.

  15. The carbon isotopes ratio and trace metals content determinations in some Transylvanian fruit juices

    NASA Astrophysics Data System (ADS)

    Dehelean, A.; Magdas, D. A.; Cristea, G.

    2012-02-01

    This work presents a preliminary study on the carbon isotope signature and trace metal content investigated on the soil-plant-fruit pulp chain. The samples were collected from two Transylvanian areas namely Alba and Salaj. The average value of the δ13C at the soil surface was around δ13C ≈ -27%° and important differences of the δ13C values between the two studied areas were not observed. Meanwhile, differences between fruit pulp of grape juice and the pulp of pear juice relived a difference of about 1.5%° for δ13C values.

  16. The Isotopic Composition of Nitrate in West Antarctica at Present and Since the Last Glacial Stage

    NASA Astrophysics Data System (ADS)

    Buffen, A.; Hastings, M. G.

    2014-12-01

    Nitrate is one of the major ions found in polar and alpine snow. The oxygen isotopic composition of nitrate offers unique potential for examining the oxidation chemistry of past atmospheres. Additionally, nitrogen isotope ratios may contain information abut the contribution of the nitrogen oxide precursors (NOx = NO + NO2) to atmospheric nitrate from different sources (e.g., fossil fuel combustion, biomass burning, soil microbial emissions, lightning and stratospheric injection). Nitrate in snow, however, is sensitive to post-depositional processing and isotopic alteration, thereby obscuring the atmospheric record ultimately archived in an ice core. At sites with very low snow accumulation rates (such as East Antarctica), nitrate is particularly vulnerable to photolytic loss due to long residence times near the surface. However, under higher accumulation regimes (such as Summit, Greenland), previous work has shown that loss can be more limited and nitrate isotopic composition preserved. Here we present results from a two-part study assessing the modern and paleo isotopic composition of nitrate in West Antarctica. We present seasonally-resolved snowpit and shallow core records from 7 West Antarctic sites which span a range of accumulation rates in order to evaluate the spatial heterogeneity of deposited nitrate and how preservation varies with snowfall. This work is requisite to an accurate interpretation of a new nitrate isotopic record from the West Antarctic Ice Sheet Divide deep ice core, from which we show decadal- to centennial-scale measurements since the last glacial stage.

  17. The isotopic composition of anthropogenic boron and its potential impact on the environment.

    PubMed

    Vengosh, A

    1998-01-01

    The present study investigates the isotopic composition of anthropogenic boron (B) and its potential affects on the environment. The isotopic ratios of B in synthetic products from the main ores in the world have been measured by negative thermal ionization mass spectrometry. The data show that the isotopic compositions of Na-borate products and washing powders overlap with those of natural Na-borate minerals. In contrast, the 11B/10B ratios of synthetic Ca-borate and Na/Ca borate products are significantly lower (by 15 permil) and overlap with those of the natural Ca-borate minerals. Consequently, the original isotopic signature of natural borate minerals is not modified during the manufacturing process of synthetic products. The B isotopic composition of domestic wastewater from Israel and Riverside, California suggests that B in sewage is derived from Na-borate components used in detergents. Since B, like other inorganic ions, is not removed during conventional sewage treatment, it accumulates in domestic wastewater. Although the B concentration in pristine groundwaters is generally low (<0.05 mg/L), contaminant sources (e.g., wastewater) are relatively enriched in B (0.5-1 mg/L). The isotopically distinguished signature of borate compounds is used to trace groundwater contamination.

  18. Lithium isotope compositions of chondrules, CAI and a dark inclusion from Allende and ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Seitz, Hans-Michael; Zipfel, Jutta; Brey, Gerhard P.; Ott, Ulrich

    2012-05-01

    Bulk carbonaceous and ordinary chondrites have distinct Li isotope compositions, indicating the existence of local reservoirs and distinct formation conditions in the early solar system. These differences may be also recorded in the components that compose chondrites. Here, Li concentrations and Li isotope compositions of 89 chondrules, 10 CAI and 1 dark inclusion (DI) from the Allende (CV3) meteorite and from 5 ordinary chondrites of low petrologic types Semarkona, Bishunpur, Saratov, Bjurböle and Bremervörde are presented. In general, chondrules have highly variable Li isotope compositions, ranging from δ7Li of - 8.5 to + 10‰, whereby the mean isotope composition of chondrules separated from a single chondrite is slightly lighter than its bulk. Remarkable, however, are the differences in Li concentrations between bulk chondrite and chondrules. Of the entire set studied here, 98% of the chondrules have significantly lower Li abundances (in the range of 0.2 to 0.75 μg/g) than their hosts (typically around 1.5 μg/g). Our results indicate that Li elemental and isotopic fractionation has not occurred extensively during chondrule formation. Low, but highly variable Li abundances as well as the relatively large range in Li isotopes point to small-scale heterogeneities in the chondrule-forming reservoir. With respect to Li, such a non-chondritic reservoir is unique to all chondrules. The compositional differences in Li isotopes between bulk carbonaceous and ordinary chondrites (Seitz et al., 2007) are likely to be the result of mixing chondrules, CAI and matrix in different proportions.

  19. A REFINED LOOK AT THE IRON ISOTOPE COMPOSITION OF THE MOON

    NASA Astrophysics Data System (ADS)

    Poitrasson, F.; Zambardi, T.; Magna, T.; Neal, C. R.

    2009-12-01

    It is difficult to estimate the bulk chemical and isotopic properties of planets, especially for the Moon for which our sampling is far more limited than for the Earth. As a result, there is currently a debate on the bulk Fe isotope composition of the Moon: Whereas in a first study we proposed that the bulk lunar Fe isotope composition (δ57Fe ~0.2‰) was twice as heavy as that of the Earth (δ57Fe ~0.1‰) relative to chondrites (δ57Fe ~0‰), normalized to IRMM-14, others proposed that there is no difference between Earth and Moon. This question is of crucial importance because the first case may track the Moon-forming giant interplanetary impact, whereas the alternative situation may also result from a very high pressure metal-silicate fractionation during the Earth’s core formation, assuming that the Moon subsequently inherited the Earth Fe isotope composition. To reassess this question, we analyzed a suite of 18 mare basalts (both high- and low-Ti) by MC-ICP-MS using the nickel doping technique developed at LMTG. Combined with our previous measurements of lunar rocks, we obtained a mean δ57Fe of 0.138±0.035‰ (2SE, n=11) for low-Ti basalts, 0.269±0.026‰ (2SE, n=16) for high-Ti ones and 0.177±0.036‰ (2SE, n=6) for highland rocks. T-tests confirm that averages of low- and high-Ti basalts are significantly different at the 95% confidence level. Similarly, t-tests indicate that highland rocks are significantly different from high-Ti basalts, but not from low-Ti ones. These new data therefore confirm suggestion from previous groups that low- and high-Ti basalts contain distinct Fe isotope signatures. This shows that on the Moon, high temperature processes can significantly change the Fe isotope composition of bulk mafic rocks at the planetary scale. This cannot result from simple equilibrium magmatic fractionation or assimilation of ilmenite given its Fe isotope fractionation factor, however. We conclude that another process, yet to be identified, is

  20. D/H ratios in speleothem fluid inclusions: A guide to variations in the isotopic composition of meteoric precipitation?

    USGS Publications Warehouse

    Harmon, R.S.; Schwarcz, H.P.; O'Neil, J.R.

    1979-01-01

    D/H ratios of fluid inclusion waters extracted from 230Th/234U-dated speleothems that were originally deposited under conditions of isotopic equilibrium should provide a direct estimate of the hydrogen isotopic composition of ancient meteoric waters. We present here D/H ratios for 47 fluid inclusion samples from thirteen speleothems deposited over the past 250,000 years at cave sites in Iowa, West Virginia, Kentucky and Missouri. At each site glacial-age waters are depleted in deuterium relative to those of interglacial age. The average interglacial/glacial shift in the hydrogen isotopic composition of meteoric precipitation over ice-free areas of east-central North America is estimated to be -12???. This shift is consistent with the present climatic models and can be explained in terms of the prevailing pattern of atmospheric circulation and an increased ocean-continent temperature gradient during glacial times which more than compensated for the increase in deuterium content of the world ocean. ?? 1979.

  1. High Temporal Resolution Measurements and Modeling of the Isotopic Composition of Methane in Europe

    NASA Astrophysics Data System (ADS)

    Popa, E.; Röckmann, T.; Eyer, S.; van der Veen, C.; Tuzson, B.; Monteil, G.; Houweling, S.; Harris, E. J.; Brunner, D.; Fischer, H.; Fisher, R. E.; Lowry, D.; Nisbet, E. G.; Emmenegger, L.; Mohn, J.

    2015-12-01

    Isotope measurements can help constraining the atmospheric budget of methane because different sources emit methane with slightly different isotopic composition. In the past, high precision isotope measurements have primarily been carried out by isotope ratio mass spectrometry on flask samples that are usually collected at relatively low temporal resolution. During the EU project INGOS, we have deployed a fully automated gas chromatography - isotope ratio mass spectrometry system (GC-IRMS), together with two laser instruments, during a 4-months campaign in the field at the Cabauw Experimental Site for Atmospheric Research (CESAR). More than 1600 measurements for δ13C and δD were obtained with IRMS during this period. Measurements show clear isotope signals associated with methane elevations both on the diurnal as well as the synoptic scale. In order to assess the added value of such measurements for constraining the CH4 budget, we performed coupled simulations of CH4 and δ13C-CH4 using the chemistry transport model TM5. We specifically assessed the relative impact of uncertainties in i) CH4 emissions, ii) CH4 isotope source signatures and iii) methane transport and chemistry throughout the atmosphere. By randomly perturbing CH4 emissions and δ13C source signatures, we identified areas where simulated variations are dominated by uncertainties in the emission strength and areas where uncertainties in the isotope signatures dominate. At observation sites where the uncertainties in CH4 emissions dominate the other sources of uncertainty, isotope observations should provide useful additional constraints on CH4 emissions. At locations where uncertainties in the isotope signatures dominate, the isotope measurements will be useful to better constrain the source signatures themselves.

  2. Natural gas constituent and carbon isotopic composition in petroliferous basins, China

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyou; Wang, Zhengjun; Dai, Jinxing; Su, Jing

    2014-02-01

    There are abundant gas resources in petroliferous basins of China. Large to midsize gas fields are found in Eastern, central and Western of China. However, origin, constituents and isotopic composition of natural gas in different gas fields are varied distinctly, and some present strong chemical secondary alteration and show variation both in age and space. Based on the systematic analysis of constituents and carbon isotope of a large number of gas samples, combined with the geological characteristics, this paper classifies the origins of the gases, explores the gas isotope characteristics and evolutionary regulation with the variation time and space, and further discusses the distinctive geochemistry of the gases in China. These gases are dominated by dry gas, its methane carbon isotope values range from -10‰ to -70‰, ethane from -16‰ to -52‰, propane from -13‰ to -43‰, and butane from -18‰ to -34‰. The carbon isotopes of most gases show the characteristics of humic-derived gas and crude oil cracked gas. In addition, large primary biogenic gas fields have been discovered in the Qaidam basin; inorganic-derived alkane gases have been discovered in deep of the Songliao Basin. Half of these gas fields are characterized by the alkane carbon isotope reversal in different degrees. Research indicates there are several reasons can result in carbon isotope reversal. Firstly, gas charge of different genetic types or different source in one gas reservoir may cause carbon isotope reversal. Besides, high-over mature evolution of gas can also lead to the carbon isotopic reversal of alkanes. Thirdly, secondary alteration of hydrocarbons may also result in abnormal distribution of carbon isotope, isotope transforms to unusual light and heavy.

  3. The multiple sulfur isotopic composition of iron meteorites: Implications for nebular evolution

    NASA Astrophysics Data System (ADS)

    Antonelli, Michael Ariel

    2013-12-01

    Multiple sulfur isotopic measurements of troilite from 61 different iron meteorites were undertaken in order to test for sulfur isotopic homogeneity within (and between) 8 different iron meteorite groups. It was found that different members within a given group of iron meteorites have homogeneous Delta 33S compositions, but that these Delta33S compositions differ between groups. This thesis shows that iron meteorites from the groups IC, IIAB, IIIAB, IIIF, and IVA have small yet resolvable enrichments or depletions in Delta33S relative to Canyon Diablo Troilite (CDT) and troilite from other non-magmatic (IAB and IIE) iron meteorites. The observed anomalous sulfur isotopic compositions in magmatic iron meteorites are most consistent with Lyman-alpha photolysis of H2S, pointing towards inheritance of an unexpected photolytically-derived sulfur component in magmatic iron meteorite groups which is absent in non-magmatic iron meteorites, chondrites, and the Earth-Moon System.

  4. The oxygen isotopic composition of the Sun inferred from captured solar wind.

    PubMed

    McKeegan, K D; Kallio, A P A; Heber, V S; Jarzebinski, G; Mao, P H; Coath, C D; Kunihiro, T; Wiens, R C; Nordholt, J E; Moses, R W; Reisenfeld, D B; Jurewicz, A J G; Burnett, D S

    2011-06-24

    All planetary materials sampled thus far vary in their relative abundance of the major isotope of oxygen, (16)O, such that it has not been possible to define a primordial solar system composition. We measured the oxygen isotopic composition of solar wind captured and returned to Earth by NASA's Genesis mission. Our results demonstrate that the Sun is highly enriched in (16)O relative to the Earth, Moon, Mars, and bulk meteorites. Because the solar photosphere preserves the average isotopic composition of the solar system for elements heavier than lithium, we conclude that essentially all rocky materials in the inner solar system were enriched in (17)O and (18)O, relative to (16)O, by ~7%, probably via non-mass-dependent chemistry before accretion of the first planetesimals. PMID:21700868

  5. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOEpatents

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  6. Isotopic and Elemental Composition of Roasted Coffee as a Guide to Authenticity and Origin.

    PubMed

    Carter, James F; Yates, Hans S A; Tinggi, Ujang

    2015-06-24

    This study presents the stable isotopic and elemental compositions of single-origin, roasted coffees available to retail consumers. The δ(13)C, δ(15)N, and δ(18)O compositions were in agreement with those previously reported for green coffee beans. The δ(15)N composition was seen to be related to organic cultivation, reflected in both δ(2)H and δ(18)O compositions. The δ(13)C composition of extracted caffeine differed little from that of the bulk coffee. Stepwise discriminant analysis with jackknife tests, using isotopic and elemental data, provided up to 77% correct classification of regions of production. Samples from Africa and India were readily classified. The wide range in both isotopic and elemental compositions of samples from other regions, specifically Central/South America, resulted in poor discrimination between or within these regions. Simpler X-Y and geo-spatial plots of the isotopic data provided effective visual means to distinguish between coffees from different regions. PMID:26001050

  7. Ripening influences banana and plantain peels composition and energy content.

    PubMed

    Emaga, Thomas Happi; Bindelle, Jérôme; Agneesens, Richard; Buldgen, André; Wathelet, Bernard; Paquot, Michel

    2011-01-01

    Musa sp. peels are widely used by smallholders as complementary feeds for cattle in the tropics. A study of the influence of the variety and the maturation stage of the fruit on fermentability and metabolisable energy (ME) content of the peels was performed using banana (Yangambi Km5) and plantain (Big Ebanga) peels at three stages of maturation in an in vitro model of the rumen. Peel samples were analysed for starch, free sugars and fibre composition. Samples were incubated in the presence of rumen fluid. Kinetics of gas production were modelled, ME content was calculated using prediction equation and short-chain fatty acids production and molar ratio were measured after 72 h of fermentation. Final gas production was higher in plantain (269-339 ml g(-1)) compared to banana (237-328 ml g(-1)) and plantain exhibited higher ME contents (8.9-9.7 MJ/kg of dry matter, DM) compared to banana (7.7-8.8 MJ/kg of DM). Butyrate molar ratio decreased with maturity of the peels. The main influence of the variety and the stage of maturation on all fermentation parameters as well as ME contents of the peels was correlated to changes in the carbohydrate fraction of the peels, including starch and fibre. PMID:20725857

  8. Ripening influences banana and plantain peels composition and energy content.

    PubMed

    Emaga, Thomas Happi; Bindelle, Jérôme; Agneesens, Richard; Buldgen, André; Wathelet, Bernard; Paquot, Michel

    2011-01-01

    Musa sp. peels are widely used by smallholders as complementary feeds for cattle in the tropics. A study of the influence of the variety and the maturation stage of the fruit on fermentability and metabolisable energy (ME) content of the peels was performed using banana (Yangambi Km5) and plantain (Big Ebanga) peels at three stages of maturation in an in vitro model of the rumen. Peel samples were analysed for starch, free sugars and fibre composition. Samples were incubated in the presence of rumen fluid. Kinetics of gas production were modelled, ME content was calculated using prediction equation and short-chain fatty acids production and molar ratio were measured after 72 h of fermentation. Final gas production was higher in plantain (269-339 ml g(-1)) compared to banana (237-328 ml g(-1)) and plantain exhibited higher ME contents (8.9-9.7 MJ/kg of dry matter, DM) compared to banana (7.7-8.8 MJ/kg of DM). Butyrate molar ratio decreased with maturity of the peels. The main influence of the variety and the stage of maturation on all fermentation parameters as well as ME contents of the peels was correlated to changes in the carbohydrate fraction of the peels, including starch and fibre.

  9. Reconstruction of the isotope activity content of heterogeneous nuclear waste drums.

    PubMed

    Krings, Thomas; Mauerhofer, Eric

    2012-07-01

    Radioactive waste must be characterized in order to verify its conformance with national regulations for intermediate storage or its disposal. Segmented gamma scanning (SGS) is a most widely applied non-destructive analytical technique for the characterization of radioactive waste drums. The isotope specific activity content is generally calculated assuming a homogeneous matrix and activity distribution for each measured drum segment. However, real radioactive waste drums exhibit non-uniform isotope and density distributions most affecting the reliability and accuracy of activities reconstruction in SGS. The presence of internal shielding structures in the waste drum contributes generally to a strong underestimation of the activity and this in particular for radioactive sources emitting low energy gamma-rays independently of their spatial distribution. In this work we present an improved method to quantify the activity of spatially concentrated gamma-emitting isotopes (point sources or hot spots) in heterogeneous waste drums with internal shielding structures. The isotope activity is reconstructed by numerical simulations and fits of the angular dependent count rate distribution recorded during the drum rotation in SGS using an analytical expression derived from a geometric model. First results of the improved method and enhancements of this method are shown and are compared to each other as well as to the conventional method which assumes a homogeneous matrix and activity distribution. It is shown that the new model improves the accuracy and the reliability of the activity reconstruction in SGS and that the presented algorithm is suitable with respect to the framework requirement of industrial application. PMID:22134026

  10. Tracing the Geographical Origin of Onions by Strontium Isotope Ratio and Strontium Content.

    PubMed

    Hiraoka, Hisaaki; Morita, Sakie; Izawa, Atsunobu; Aoyama, Keisuke; Shin, Ki-Cheol; Nakano, Takanori

    2016-01-01

    The strontium (Sr) isotope ratio ((87)Sr/(86)Sr) and Sr content were used to trace the geographical origin of onions from Japan and other countries, including China, the United States of America, New Zealand, Australia, and Thailand. The mean (87)Sr/(86)Sr ratio and Sr content (dry weight basis) for onions from Japan were 0.70751 and 4.6 mg kg(-1), respectively, and the values for onions from the other countries were 0.71199 and 12.4 mg kg(-1), respectively. Linear discriminant analysis was performed to classify onions produced in Japan from those produced in the other countries based on the Sr data. The discriminant equation derived from linear discriminant analysis was evaluated by 10-fold cross validation. As a result, the origins of 92% of onions were correctly classified between Japan and the other countries. PMID:27396661

  11. Nitrate distribution and isotopic composition in vadose-zone sediments underlying large dairy operations

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Singleton, M. J.; Moran, J. E.; Roberts, S. K.; Barton, C. G.; Watanabe, N.; Harter, T.

    2009-12-01

    Understanding the transport and cycling of nitrate in the vadose zone is essential to 1) linking agronomic models of nitrate flux out of the root zone to groundwater models of nitrate loading at the water table, 2) quantifying the impact of vadose-zone biogeochemical processes on nitrate isotopic composition for the purpose of source attribution, and 3) constraining transport time scales through the vadose zone in order to assess the impact of changes in agricultural nutrient management on underlying groundwater quality. In this study, we have investigated the isotopic composition of water-leachable nitrate extracted from sediment cores underlying three dairy operations in the southern San Joaquin Valley of California. One of the dairy operations is new (less than ten years old) and is sited on former range land; the other two operations are older (with one having been continuously operated for over a century). All use dairy wastewater for irrigation, and have vadose zones of 25-60 meters thickness developed in sedimentary sequences dominated by alluvial fan deposits. Sediment core samples from a UC-Davis monitor well drilling program were extracted with an equal amount of ultrapure water, and analyzed for nitrate isotopic composition using the denitrifying bacteria method at LLNL. The range in nitrate isotopic composition (δ15N,air = 4.8 to 26.6 permil, δ18O,VSMOW = -0.3 to 16.2 permil) is large, comparable to isotopic compositions observed in dairy wastewater-impacted groundwaters (Singleton et al., 2007, ES&T 41:759-765), and varies from site to site. The range is the largest on the oldest operation (δ15N = 5.2 to 26.6), and most tightly clustered on the youngest operation (δ15N = 4.8 to 7.8). Leachable nitrate-δ18O correlates with nitrate-δ15N along a characteristic denitrification trend for individual cores. Leachable nitrate-δ15N is not simply correlated with leachable nitrate concentration (which is generally high in shallow sediments and decreases

  12. The isotopic composition of solar flare noble gases

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1983-01-01

    The relative elemental and isotopic abundances of noble gases provide insights into a number of topics related to the solar system. Neon is in many ways the most diagnostic of the noble gases. The diagnostic character is mainly related to the variation in the relative abundance of the two most abundant neon isotopes, Ne-20 and Ne-22. The available evidence suggests that trapped neon found in meteorites and in lunar samples consists of as many as five isotopically distinct components, including neon A, B, C, D, and E. Neon B has been shown to be due to solar wind neon which has been directly implanted into the material found in a meteorite. It appears that neon E is extrasolar in origin. There exist ambiguities regarding the origins of the remaining three components. The present investigation is concerned with a reexamination of the existing data in an effort to eliminate or at least clarify these ambiguities. It is found that neon C is apparently due to directly implanted, low-energy solar flare neon nuclei.

  13. The isotopic composition of iron-group cosmic rays

    NASA Technical Reports Server (NTRS)

    Leske, Richard A.; Milliken, Barrett; Wiedenbeck, Mark E.

    1992-01-01

    Measurements are reported of the relative abundances of Mn, Fe, Co, and Ni isotopes in Galactic cosmic rays with energies of about 325 MeV per nucleon. The observed limit (Mn-54)/(Mn-53) of less than 0.25 is significantly less than the value of about 0.8-0.9 expected if Mn-54 were stable, indicating that most of the Mn-54 produced during cosmic-ray propagation in the Galaxy has undergone radioactive decay. Relative source abundances of iron and nickel isotopes, and in particular the ratio (Fe-54)/(Fe-56) = 0.046 +/- 0.020, are generally consistent with solar system values. One exception is the source ratio (Ni-60)/(Ni-58) for which an enhancement by a factor of 2.8 +/- 1.0 over the solar value is found. The isotope (Co-59) is found to make up a sizable fraction of the observed Co, indicating a time delay more than about 100,000 yr between nucleosynthesis and acceleration if this nuclide is synthesized as (Cu-59) or (Ni-59).

  14. Hydrogen Isotope Composition of Magmatic Water: Review of Variations due to Source, Igneous Environment, and Degassing Processes

    NASA Astrophysics Data System (ADS)

    Taylor, B. E.

    2001-05-01

    The familiar "magmatic water box" frequently shown on plots of δ D vs. δ 18O both represents and misrepresents the hydrogen isotope composition of magmatic water because of the influences of different source compositions and degassing processes. On the one hand, the hydrogen isotope composition of magma source materials in arcs versus continental tectonic settings contributes to differences in the primary δ D values of magmas. On the other hand, water remaining in magmatic rocks and glass is residual, and may express large variations in δ D due either to active degassing, during depressurization associated with emplacement and/or eruption, or to passive degassing during crystallization. The magnitudes of these variations are governed by hydrogen isotope fractionations involving melts, minerals, and dissolved hydrogen (H2O + OH), by water solubility, and whether the process is dominantly a closed- or open-system one. Estimating the primary δ D value of magmatic water requires extrapolation of isotopic and water content data for a suite of co-magmatic samples to a probable undegassed composition (e.g., 5 wt.% H2O). Island arcs and continental settings comprise two principal tectonic settings in which crustal source materials can differ in their hydrogen isotope composition (and dominate over mantle sources). For example, magmas formed in island arcs derive water from subducted marine clays, metamorphosed, hydrothermally altered, and weathered oceanic crust, from pore waters, and possibly, variably metasomatized mantle. Arc magmatic water, sometimes referred to as "andesitic water", tends to have an average δ D value of ca. -30 +/- 5 ‰ , whereas the average δ D value of water from magmas in continental crust regimes can be slightly lighter (e.g. δ D of ca. -45 +/- 10 ‰ ). This difference may be ascribed largely to the fact that continental crust contains water primarily as metamorphic and igneous minerals, whose average values of δ D reflect, among others

  15. [Effect of processes in the earth's crust on evolution of photosynthesis (as indicated by data on carbon isotopic composition)].

    PubMed

    Ivlev, A A

    2010-01-01

    A probable mechanism of effect of processes occurring in the Earth's crust on evolution of photosynthesis is considered. According to the hypothesis, this effect is realized through entrance to the Earth's atmosphere of carbon dioxide that stimulates photosynthesis. Supply of CO2 is irregular and is due to irregular movements of the Earth's crust plates. This is accompanied by destruction of carbonates and conversion of carbon of the organic matter to CO2 due to processes of reduction of sulfates. The CO2 content in atmosphere rises for relatively short orogenic periods, due to intensive crust plate movement, while for the subsequent long periods, called the geosynclinal ones, of the relatively slow plate movement, the CO2 content falls due to the higher rate of its consumption for photosynthesis. Owing to the carbon isotopic fractionation accompanying photosynthesis, regular isotopic differences appear between the atmospheric CO2 and the "living" matter (Relay's effect); these differences are then transformed to isotope differences of the carbonate and organic carbon. At the appearance in atmosphere of free oxygen--product of photosynthesis--in organisms there appears photorespiration that also is accompanied by fractionation of carbon isotopes, but with effect of opposite sign. This leads to enrichment of the photosynthesizing biomass with 13C isotope at the orogenic periods. As a result, the initially pronounced isotope differences of the carbonate and organic carbon decrease by the end of the geosyclinal periods. According to the proposed model, concentrations of CO2 and O2 are exchanged in the antiphase. They lead to alternation of periods of warning up and cooling off on the Earth. The former coincide with the orogenic periods, the latter appear at the end of geosyclinal periods when oxygen is accumulated in atmosphere, while organic substance in sediments. Accumulation of organic substance leads to formation of petroleum-maternal masses. To substantiate the

  16. [Effect of processes in the earth's crust on evolution of photosynthesis (as indicated by data on carbon isotopic composition)].

    PubMed

    Ivlev, A A

    2010-01-01

    A probable mechanism of effect of processes occurring in the Earth's crust on evolution of photosynthesis is considered. According to the hypothesis, this effect is realized through entrance to the Earth's atmosphere of carbon dioxide that stimulates photosynthesis. Supply of CO2 is irregular and is due to irregular movements of the Earth's crust plates. This is accompanied by destruction of carbonates and conversion of carbon of the organic matter to CO2 due to processes of reduction of sulfates. The CO2 content in atmosphere rises for relatively short orogenic periods, due to intensive crust plate movement, while for the subsequent long periods, called the geosynclinal ones, of the relatively slow plate movement, the CO2 content falls due to the higher rate of its consumption for photosynthesis. Owing to the carbon isotopic fractionation accompanying photosynthesis, regular isotopic differences appear between the atmospheric CO2 and the "living" matter (Relay's effect); these differences are then transformed to isotope differences of the carbonate and organic carbon. At the appearance in atmosphere of free oxygen--product of photosynthesis--in organisms there appears photorespiration that also is accompanied by fractionation of carbon isotopes, but with effect of opposite sign. This leads to enrichment of the photosynthesizing biomass with 13C isotope at the orogenic periods. As a result, the initially pronounced isotope differences of the carbonate and organic carbon decrease by the end of the geosyclinal periods. According to the proposed model, concentrations of CO2 and O2 are exchanged in the antiphase. They lead to alternation of periods of warning up and cooling off on the Earth. The former coincide with the orogenic periods, the latter appear at the end of geosyclinal periods when oxygen is accumulated in atmosphere, while organic substance in sediments. Accumulation of organic substance leads to formation of petroleum-maternal masses. To substantiate the

  17. Analysis of fatty acid content and composition in microalgae.

    PubMed

    Breuer, Guido; Evers, Wendy A C; de Vree, Jeroen H; Kleinegris, Dorinde M M; Martens, Dirk E; Wijffels, René H; Lamers, Packo P

    2013-01-01

    A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes. With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of. This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other. The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification. PMID:24121679

  18. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  19. Moisture sources of precipitation over Postojna (Slovenia) and implication of its oxygen isotope composition

    NASA Astrophysics Data System (ADS)

    Krklec, Kristina; Domínguez-Villar, David; Lojen, Sonja

    2016-04-01

    The source of moisture is an important part of the hydrological cycle that affects climate system. Potentially, moisture sources are important controls of the isotope composition of precipitation, but their studies in the continental mid- and low-latitudes are still scarce due to the complexity of general circulation models with integrated isotope modules. We identify moisture uptake locations of precipitation over Postojna (Slovenia) for period from 2009 to 2013. By using HYSPLIT trajectory model of NOAA we did 5-day reconstruction of air mass history for the days with precipitation and determination of moisture uptake locations along back trajectories. Moisture uptake locations were identified along each trajectory using HYSPLIT output data and standard equations for saturation humidity mixing ratio, saturation vapour pressure and specific humidity. Although NNE winds were prevailing during the period 2001-2014, our analysis showed that during this period around 45% of the precipitation over Postojna originated from Mediterranean and south Atlantic area, with majority of locations originated in the Adriatic Sea. On the other hand, 41% of precipitation originated from moisture recycled over continents, predominantly from Pannonian basin. The comparison of monthly oxygen isotope composition of precipitation with the percentage of precipitation originated in different source regions shows a significant correlation only for the north Atlantic region. However, less than 7% of the variability of oxygen isotope composition of precipitation is associated with this moisture source. Multivariable analyses of source regions do not explain any additional variability of the oxygen isotope composition of precipitation over Postojna. This research shows that at this location, although significant, moisture sources are not important controls of the oxygen isotope composition of precipitation.

  20. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors.

    PubMed

    Kierepko, Renata; Mietelski, Jerzy W; Ustrnul, Zbigniew; Anczkiewicz, Robert; Wershofen, Herbert; Holgye, Zoltan; Kapała, Jacek; Isajenko, Krzysztof

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000km(2). We compared our original data sets from Krakow (Poland, 1990-2007) and Bialystok (Poland, 1991-2007) with the results from two other locations, Prague (Czech Republic; 1997-2004) and Braunschweig (Germany; 1990-2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for (238)Pu and for ((239+240))Pu were estimated to be a few and some tens of nBqm(-3), respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of (238)Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air.

  1. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors.

    PubMed

    Kierepko, Renata; Mietelski, Jerzy W; Ustrnul, Zbigniew; Anczkiewicz, Robert; Wershofen, Herbert; Holgye, Zoltan; Kapała, Jacek; Isajenko, Krzysztof

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000km(2). We compared our original data sets from Krakow (Poland, 1990-2007) and Bialystok (Poland, 1991-2007) with the results from two other locations, Prague (Czech Republic; 1997-2004) and Braunschweig (Germany; 1990-2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for (238)Pu and for ((239+240))Pu were estimated to be a few and some tens of nBqm(-3), respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of (238)Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air. PMID:27450248

  2. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis).

    PubMed

    Kanpanon, Nicha; Kasemsap, Poonpipope; Thaler, Philippe; Kositsup, Boonthida; Gay, Frédéric; Lacote, Régis; Epron, Daniel

    2015-11-01

    Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping. PMID:26358051

  3. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis).

    PubMed

    Kanpanon, Nicha; Kasemsap, Poonpipope; Thaler, Philippe; Kositsup, Boonthida; Gay, Frédéric; Lacote, Régis; Epron, Daniel

    2015-11-01

    Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping.

  4. Tropospheric N2O isotopic composition at Mace Head over year 2010

    NASA Astrophysics Data System (ADS)

    Potter, K. E.; Ono, S.; Prinn, R. G.

    2013-12-01

    Nitrous oxide (N2O) is a major greenhouse gas and main contributor to stratospheric ozone destruction. Surface measurements of N2O mole fractions have been used to attribute source and sink strengths, but large uncertainties remain. Stable isotope ratios of N2O linked to isotopic signatures provide additional constraints on emissions and counter-balancing stratospheric sink. However, thus far there has been inadequate exploration of the utility of N2O isotopic composition in the troposphere and few past observations. This study applies new high-precision instrumentation to conduct pilot observations of N2O isotopic composition in tropospheric air in a preliminary assessment of variations on short-term, seasonal, and annual timeframes to examine the utility of isotopic data and inform instrumentation precision and frequency requirements for future N2O isotopic composition data. Measurement capabilities needed advancement to enable useful observations for atmospheric N2O research to have sufficient precision to detect the expected subtle isotopic signals at a remote station with high-frequency, fully automated capabilities. The pre-concentration system (';Stheno') interfaced to continuous flow isotope ratio mass spectrometry (CFIRMS) achieves superior precision for 15N site-specific composition to that reported in all other systems, while also yielding design features for use with other detectors (e.g. laser-based optical methods) and with fully automated liquid-cryogen-free technology to make high-frequency in situ observations feasible. The Stheno+CFIRMS instrument analyzed flask air samples collected at Mace Head, Ireland Atmospheric Research Station from January 2010 to January 2011 to produce the first set of observations spanning a full annual cycle at a single remote location informed by air origin information to follow the behavior of variation in isotopic composition. Complementary numerical bootstrap simulations of tropospheric data quantify and depict

  5. A model composition for Mars derived from the oxygen isotopic ratios of martian/SNC meteorites

    NASA Astrophysics Data System (ADS)

    Delaney, J. S.

    1994-07-01

    Oxygen is the most abundant element in most meteorites, yet the ratios of its isotopes are seldom used to constrain the compositional history of achondrites. The two major achondrite groups have O isotope signatures that differ from any plausible chondritic precursors and lie between the ordinary and carbonaceous chondrite domains. If the assumption is made that the present global sampling of chondritic meteorites reflects the variability of O reservoirs at the time of planetessimal/planet aggregation in the early nebula, then the O in these groups must reflect mixing between known chondritic reservoirs. This approach, in combination with constraints based on Fe-Mn-Mg systematics, has been used previously to model the composition of the basaltic achondrite parent body (BAP) and provides a model precursor composition that is generally consistent with previous eucrite parent body (EPB) estimates. The same approach is applied to Mars exploiting the assumption that the SNC and related meteorites sample the martian lithosphere. Model planet and planetesimal compositions can be derived by mixing of known chondritic components using O isotope ratios as the fundamental compositional constraint. The major- and minor-element composition for Mars derived here and that derived previously for the basaltic achondrite parent body are, in many respects, compatible with model compositions generated using completely independent constraints. The role of volatile elements and alkalis in particular remains a major difficulty in applying such models.

  6. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the

  7. Isotopic Content of Ground Ice in the Lower Kolyma River Valley (Eastern Siberia)

    NASA Astrophysics Data System (ADS)

    Spektor, V.; Vonk, J.; Kholodov, A. L.; Spawn, S.; Spektor, V. B.; Andreeva, V. V.; Natali, S.

    2014-12-01

    The report deals with the results of isotopic investigations in ground ice of Quaternary sediments in the Lower Kolyma River Lowland. The field works were undertaken in 2012 and 2013. Analyses of oxygen (δ18O) and hydrogen (δD) stable isotopes were obtained using the Picarro Isotopic Liquid Water Analyzer (Biogeosciences group, ETH-Zurich, Switzerland). The ground ice samples were collected both from four boreholes (BH) drilled on the right limit of the Kolyma River valley and from one section (S) in the Duvanny Yar exposure. Late Pleistocene wedge ice (Ice complex) was recovered by the BH13/1 located on a yedoma relics towering over the low thermokarst plain (N68°30.7' E161°29.6') and S12/4 in the Duvanny Yar exposure (N68°37.8' E159°08.6'). Isotopes δ18O and δD range from -31.413 to -34.05 and from -244.934 to -260.57, correspondingly. Modern wedge ice was recovered by the BH13/3 located on the joint Kolyma and Panteleikha Rivers floodplain underlain by river-bed sediments (N68°36.8', E161°21'). Isotopes range from -25.83 to -26.32(δ18O) and from -197.09 to -204.47 (δD). Oblique segregated ice layers adjacent to a modern ice wedge were recovered by the BH12/2 on the annually flooded thermokarst plain (N68˚30.8' E161˚30). Isotopes range from -18.778 to -20.897 (δ18O) and from -149.883 to -168.901 (δD). The δD contents are the lowest here, resulting possibly from mixed (ice wedging and segregation) mechanism of ice lenses formation. Segregated ice was recovered by the BH13/2 on the Schuch'e lake alas (N68°44.77', E161°23.3') and S12/4 in the transition layer of the Duvanny Yar. Isotopes range from -19.63 to -23.43 (δ18O) and from -146.77 to -177.23 (δD). Preliminary results are as follows: 1) all samples are distributed near the line of meteoric water providing evidence for atmospheric origin of ground ice in the region; 2) isotope distribution exhibits a clear distinction between Late Pleistocene wedge ice, modern wedge ice, segregated ice

  8. Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Okuda, Tomoaki; Kumata, Hidetoshi; Zakaria, Mohamad Pauzi; Naraoka, Hiroshi; Ishiwatari, Ryoshi; Takada, Hideshige

    We report measurements of molecular and carbon isotopic compositions of Malaysian atmospheric polycyclic aromatic hydrocarbons (PAHs) in smoke haze from the 1997 Indonesian forest fire. Comparison of the carbon isotopic compositions ( δ13C) of individual PAHs from the smoke haze, with those from other PAHs sources (soot collected from gasoline and diesel vehicle muffler, woodburning smoke), enables us to discriminate among the diverse sources of atmospheric PAHs. Soot PAHs extracted from gasoline and diesel vehicles show heavy isotopic signatures with a large inter-species δ13C variation from -12.9‰ to -26.6‰, compared to soot PAHs extracted from woodburning smoke which are isotopically light, and have a small inter-species δ13C variation from -26.8‰ to -31.6‰. Values from -17.7‰ to -27.9‰ were obtained for the corresponding PAHs extracted from the smoke haze, indicating that they are derived mainly from automotive exhaust. Molecular and isotopic compositions of PAHs extracted from smoke haze were similar to those extracted from non-haze aerosol. Quantitative estimation shows that woodburning contribution to Malaysian atmospheric PAHs ranges from 25% to 35% with no relation to haze intensity, while automotive contribution ranges from 65% to 75%. These results suggest that the major contributor of PAHs in Malaysian air is automotive exhaust whether smoke haze is observed or not.

  9. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide.

    PubMed

    Wiegel, Aaron A; Cole, Amanda S; Hoag, Katherine J; Atlas, Elliot L; Schauffler, Sue M; Boering, Kristie A

    2013-10-29

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in (17)O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the (17)O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O((1)D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of (17)O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2. PMID:23940331

  10. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.

    2013-10-01

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  11. Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation

    USGS Publications Warehouse

    Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K.

    1984-01-01

    The formation of acid waters by oxidation of pyrite-bearing ore deposits, mine tailing piles, and coal measures is a complex biogeochemical process and is a serious environmental problem. We have studied the oxygen and sulphur isotope geochemistry of sulphides, sulphur, sulphate and water in the field and in experiments to identify sources of oxygen and reaction mechanisms of sulphate formation. Here we report that the oxygen isotope composition of sulphate in acid mine drainage shows a large variation due to differing proportions of atmospheric- and water-derived oxygen from both chemical and bacterially-mediated oxidation. 18O-enrichment of sulphate results from pyrite oxidation facilitated by Thiobacillus ferrooxidans in aerated environments. Oxygen isotope analysis may therefore be useful in monitoring the effectiveness of abatement programmes designed to inhibit bacterial oxidation. Sulphur isotopes show no significant fractionation between pyrite and sulphate, indicating the quantitative insignificance of intermediate oxidation states of sulphur under acid conditions. ?? 1984 Nature Publishing Group.

  12. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  13. The He isotope composition of the earliest picrites erupted by the Ethiopia plume, implications for mantle plume source

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay; Rogers, Nick; Davies, Marc

    2016-04-01

    The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a

  14. Oxygen and carbon isotopic compositions of gases respired by humans

    SciTech Connect

    Epstein, S.; Zeiri, L. )

    1988-03-01

    Oxygen-isotope fractionation associated with respiration in human individuals at rest is linearly related to the fraction of the O{sub 2} utilized in the respiration process. The slope of this relationship is affected by a history of smoking, by vigorous exercise, and by the N{sub 2}/O{sub 2} ratio of the inhaled gas. For patients who suffer anemia-related diseases, the slope of this relationship is directly proportional to their level of hemoglobin. These results introduce a new approach for studying the mechanisms of O{sub 2} consumption in human respiration and how they are affected by related diseases.

  15. Satellite measurements of the isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of galactic cosmic ray Ne, Mg, and Si at 100 MeV/nucleon were clearly resolved with an rms mass resolution of 0.20 amu. The results suggest the cosmic ray source is enriched in Ne-22, Mg-25, and Mg-26 when compared to the solar system. The ratio of (Mg-25)+(Mg-26) to Mg-24, which is approximately 0.49 compared to the solar system value of 0.27, suggest that the cosmic ray source and solar system material were synthesized under different conditions.

  16. Lead contamination and transfer in urban environmental compartments analyzed by lead levels and isotopic compositions.

    PubMed

    Hu, Xin; Sun, Yuanyuan; Ding, Zhuhong; Zhang, Yun; Wu, Jichun; Lian, Hongzhen; Wang, Tijian

    2014-04-01

    Lead levels and isotopic compositions in atmospheric particles (TSP and PM2.5), street dust and surface soil collected from Nanjing, a mega city in China, were analyzed to investigate the contamination and the transfer of lead in urban environmental compartments. The lead contents in TSP and PM2.5 are significantly higher than them in the surface soil and street dust (p < 0.05). The enrichment factor using the mass ratio of lead to the major crustal elements (Al, Sr, Ti and Fe) indicates significant lead enrichment in atmospheric particles. The plots of (206)Pb/(207)Pb vs.(208)Pb/(206)Pb and (206)Pb/(207)Pb vs. 1/Pb imply that the street dust and atmospheric particles (TSP and PM2.5) have very similar lead sources. Coal emissions and smelting activities may be the important lead sources for street dust and atmospheric particles (TSP and PM2.5), while the deposition of airborne lead is an important lead source for urban surface soil.

  17. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; Popa, Maria E.; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2016-08-01

    High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04) ‰ for δ13C and (-4.3 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for the entire European domain.

  18. The stable isotope composition of transpired water and the rate of change in leaf water enrichment in response to variable environments

    NASA Astrophysics Data System (ADS)

    Simonin, K. A.; Roddy, A. B.; Link, P.; Apodaca, R. L.; Tu, K. P.; Hu, J.; Dawson, T. E.; Barbour, M.

    2012-12-01

    Previous research has shown that during daylight hours the isotope composition of leaf water is generally well approximated by steady-state leaf water isotope enrichment models. However, there is little direct confirmation of isotopic steady state (ISS) transpiration. Here we use a novel method to evaluate the frequency (or infrequency) of ISS transpiration and the rate of change in leaf water enrichment when leaves are exposed to a variable environment. Specifically, our study had three goals. First, we wanted to develop a new method to measure the isotope fluxes of transpiration that relies on isotope ratio infrared spectroscopy (IRIS) and highlight how an IRIS instrument can be coupled to plant gas exchange systems. In doing so, we also developed a method for controlling the absolute humidity entering the gas exchange cuvettes across a wide range of concentrations (approximately 4000 ppmv to 22000 ppmv) without changing the isotope composition of water vapour entering the cuvette. Second, we quantified variation in the isotope composition of transpired water vapor and the rate of change in leaf water enrichment that can occur as a result of changes in relative humidity, leaf surface conductance to water vapour, leaf temperature and the isotope composition of atmospheric water vapor. Third, we examine the differences between steady state and non-steady state model predictions of leaf water enrichment at the site of evaporation. In our measurements the isotopic compositions of transpired water were neither stable nor equal to source water until leaves had been maintained at physiological steady state for at least 40 minutes. Additionally when transpiration was not at ISS, the steady state model predictions of leaf water enrichment at the site of evaporation exceeded non steady-state model predictions by up to 8 per mil. Further, the rate of change in leaf water enrichment was highly sensitive to variation in leaf water content. Our results suggest that a variable

  19. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The "Multigroup γ-ray Analysis Method for Uranium" (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  20. Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.

    2013-01-01

    The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.

  1. Abnormal composition of carbon isotopes in underground alkaline waters of Kuzbass

    NASA Astrophysics Data System (ADS)

    Shvartsev, S. L.; Lepokurova, O. E.; Ponomarchuk, V. A.; Domrocheva, E. V.; Sizikov, D. A.

    2016-08-01

    The first data on abnormally high δ13C values in hydrocarbonates (HCO 3 - ) dissolved in underground waters of coal deposits of Kuzbass (up to +30.9‰) are reported. It is shown that such an unusual isotope composition of waters results from the long, strictly directed interaction in the water-rock-gas-organic material system occurring under the conditions of hindered water exchange. Extensive fractionation of C isotopes is the result of the evolution of the water-rock-gas-coal system after penetration of infiltration waters into the coal deposits and their long interaction with all these components, rather than metamorphism of organic material upon its transformation into coal. With respect to such an approach, the isotope composition of dissolved C may indicate the duration of the evolution in the water-rock-gas-organic material system.

  2. Isotopic composition of lead and strontium from Ascension and Gough Islands

    USGS Publications Warehouse

    Gast, P.W.; Tilton, G.R.; Hedge, C.

    1964-01-01

    Isotopic composition of lead and strontium has been determined in a series of rock samples from two islands on the Mid-Atlantic Ridge. Both inter-and intra-island variations exist in the abundance of radiogenic isotopes of both elements. Lead from basalt of Ascension Island has a Pb206-Pb 204 ratio of 19.5, while the corresponding ratio at Gough Island is only 18.4. The Pb208-Pb204 ratios from the two islands do not differ. Conversely, strontium from basalt of Ascension Island is less radiogenic than that from Gough Island basalts. The trachytes of both islands have lead and strontium that is more radiogenic than that found in the basalts. The inter-island differences indicate the existence of regional variations in the uranium-lead and rubidium-strontium ratios of the upper mantle source of these rocks and show that isotope compositions are a means for investigating chemical heterogeneities in the mantle.

  3. Abnormal composition of carbon isotopes in underground alkaline waters of Kuzbass

    NASA Astrophysics Data System (ADS)

    Shvartsev, S. L.; Lepokurova, O. E.; Ponomarchuk, V. A.; Domrocheva, E. V.; Sizikov, D. A.

    2016-08-01

    The first data on abnormally high δ13C values in hydrocarbonates (HCO3 - ) dissolved in underground waters of coal deposits of Kuzbass (up to +30.9‰) are reported. It is shown that such an unusual isotope composition of waters results from the long, strictly directed interaction in the water-rock-gas-organic material system occurring under the conditions of hindered water exchange. Extensive fractionation of C isotopes is the result of the evolution of the water-rock-gas-coal system after penetration of infiltration waters into the coal deposits and their long interaction with all these components, rather than metamorphism of organic material upon its transformation into coal. With respect to such an approach, the isotope composition of dissolved C may indicate the duration of the evolution in the water-rock-gas-organic material system.

  4. Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: Long-term culture of Porites spp.

    NASA Astrophysics Data System (ADS)

    Omata, Tamano; Suzuki, Atsushi; Sato, Takanori; Minoshima, Kayo; Nomaru, Eriko; Murakami, Akio; Murayama, Shohei; Kawahata, Hodaka; Maruyama, Tadashi

    2008-06-01

    Whereas the oxygen isotope ratio of the coral skeleton is used for reconstruction of past information on seawater, the carbon isotope ratio is considered a proxy for physiological processes, principally photosynthesis and respiration. However, the fractionation of carbon isotopes in biogenic carbonate such as coral skeleton is still unclear. We conducted a long-term culture experiment of Porites spp. corals at different light dosages (light intensity, 100, 300, or 500 μmol m-2 s-1; daily light period, 10 or 12 h) at 25 ± 0.6°C to examine the contribution of photosynthetic activity to skeletal carbon isotope composition. Corals were grown in sand-filtered seawater and not fed; thus, they subsisted from photosynthesis of symbiotic algae. As the daily dose of photosynthetically active radiation increased, the rate of annual extension also increased. Mean isotope compositions shifted; the carbon isotope compositions (δ13C) became heavier and the oxygen isotope compositions (δ18O) became lighter at higher radiation dose. Skeletal δ18O decrease coincided with increasing skeletal growth rate, indicating the influence of so-called kinetic isotope effects. The observed δ13C increase should be subject to both kinetic and metabolic isotope effects, with the latter reflecting skeletal δ13C enrichment due to photosynthesis by symbiotic algae. Using a vector approach in the δ13C-δ18O plane, we discriminated between kinetic and metabolic isotope effects on δ13C. The calculated δ13C changes from metabolic isotope effects were light dose dependent. The δ13C fractionation curve related to metabolic isotope effects is very similar to the photosynthesis-irradiance curve, indicating the direct contribution of photosynthetic activity to metabolic isotope effects. In contrast, δ13C fractionation related to kinetic isotope effects gradually increased as the growth rate increased. Our experiment demonstrated that the kinetic and metabolic isotope effects in coral skeleton

  5. The isotopic composition of methane in polar ice cores

    NASA Technical Reports Server (NTRS)

    Craig, H.; Chou, C. C.; Welhan, J. A.; Stevens, C. M.; Engelkemeir, A.

    1988-01-01

    Air bubbles in polar ice cores indicate that about 300 years ago the atmospheric mixing ratio of methane began to increase rapidly. Today the mixing ratio is about 1.7 parts per million by volume, and, having doubled once in the past several hundred years, it will double again in the next 60 years if current rates continue. Carbon isotope ratios in methane up to 350 years in age have been measured with as little as 25 kilograms of polar ice recovered in 4-meter-long ice-core segments. The data show that: (1) in situ microbiology or chemistry has not altered the ice-core methane concentrations, and (2) that the carbon-13 to carbon-12 ratio of atmospheric CH4 in ice from 100 years and 300 years ago was about 2 per mil lower than at present. Atmospheric methane has a rich spectrum of isotopic sources: the ice-core data indicate that anthropogenic burning of the earth's biomass is the principal cause of the recent C-13H4 enrichment, although other factors may also contribute.

  6. Sulphur isotopic compositions of deep-sea hydrothermal vent animals

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1983-01-01

    The S-34/S-32 ratios of tissues from vestimentiferan worms, brachyuran crabs, and giant clams living around deep hydrothermal vents are reported. Clean tissues were dried, ground, suspended in 0.1 M LiCl, shaken twice at 37 C to remove seawater sulfates, dried at 60 C, combusted in O2 in a Parr bomb. Sulfur was recovered as BaSO4, and the isotopic abundances in SO2 generated by thermal decomposition of 5-30-mg samples were determined using an isotope-ratio mass spectrometer. The results are expressed as delta S-34 and compared with values measured in seawater sulfates and in normal marine fauna. The values ranged from -4.7 to 4.7 per thousand, comparable to vent sulfide minerals (1.3-4.1 per thousand) and distinct from seawater sulfates (20.1 per thousand) and normal marine fauna (about 13-20 per thousand). These results indicate that vent sulfur rather than seawater sulfur is utilized by these animals, a process probably mediated by chemoautotrophic bacteria which can use inorganic sulfur compounds as energy sources.

  7. What Was the Oxygen Isotopic Composition of Cretaceous Arctic Precipitation?

    NASA Astrophysics Data System (ADS)

    Ludvigson, G. A.; Gonzalez, L. A.; Lollar, J. C.; McCarthy, P. J.

    2010-12-01

    Siderite-bearing paleosols in the Albian Nanushuk Fm, North Slope, Alaska (AK; > 75°N paleolatitude) were used to pioneer isotopic studies of Arctic precipitation in the Cretaceous greenhouse world. From siderite δ18O values ranging between -17.6‰ to -14.3‰ VPDB, Ufnar et al. (2004; GSA Bull 116:463-473) estimated paleoprecipitation δ18O values for North Slope AK as ranging from -23.0‰ to -19.5‰ VSMOW. This characterization of Cretaceous Arctic rainfall with very light δ18O values led to interpretation of an intensified Cretaceous hydrologic cycle, with increased rainout of 18O from atmospheric moisture during poleward transport from the tropics (Ufnar et al., 2002, Palaeo-3 188:51-71). However, using the GENESIS 2.3 Earth System model with water isotope module, Poulsen et al. (2007; Geology 35:199-202) predicted siderite δ18O values for North Slope AK as ranging between -7 to -8‰ VPDB for 2x and 8x CO2 simulations; a significant discrepancy with the published data. There is uncertainty about whether the light siderite δ18O values reported from the Nanushuk Fm are actually representative of zonal mean Arctic paleoprecipitation, or a result of local orographic effects related to the ancestral Brooks Range, or even possibly effects of a dilute freshwater cap on the Arctic Ocean. In order to address uncertainties, we expanded the paleogeographic range of sampling in the Cretaceous Colville foreland basin in North Slope AK. The data of Ufnar et al. (2004) were produced from the USGS Grandstand #1 core, located about 80 km from the Brooks Range thrust front. In order to test the idea of local orographic influences on data from the Grandstand #1 core, we produced data from the Nanushuk Fm in the USGS Tunalik and Wainwright cores from the National Petroleum Reserve, AK (NPRA), drillsites located from 210 to 240 km from the Brooks Range thrust front. Siderite horizons from the Wainwright core produce meteoric sphaerosiderite line (MSL) trends with δ18O

  8. Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope 'mantle array' in chemical geodynamics

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Cartigny, P.; Jackson, M. G.

    2015-05-01

    To better address how subducted protoliths drive the Earth's mantle sulfur isotope heterogeneity, we report new data for sulfur (S) and copper (Cu) abundances, S speciation and multiple S isotopic compositions (32S, 33S, 34S, 36S) in 15 fresh submarine basaltic glasses from the Samoan archipelago, which defines the enriched-mantle-2 (EM2) endmember. Bulk S abundances vary between 835 and 2279 ppm. About 17 ± 11% of sulfur is oxidized (S6+) but displays no consistent trend with bulk S abundance or any other geochemical tracer. The S isotope composition of both dissolved sulfide and sulfate yield homogeneous Δ33S and Δ36S values, within error of Canyon Diablo Troilite (CDT). In contrast, δ34S values are variable, ranging between +0.11 and +2.79‰ (±0.12‰ 1σ) for reduced sulfur, whereas oxidized sulfur values vary between +4.19 and +9.71‰ (±0.80‰, 1σ). Importantly, δ34S of the reduced S pool correlates with the 87Sr/86Sr ratios of the glasses, in a manner similar to that previously reported for South-Atlantic MORB, extending the trend to δ34S values up to + 2.79 ± 0.04 ‰, the highest value reported for undegassed oceanic basalts. As for EM-1 basalts from the South Atlantic ridge, the linear δ34S-87Sr/86Sr trend requires the EM-2 endmember to be relatively S-rich, and only sediments can account for these isotopic characteristics. While many authors argue that both the EM-1 and EM-2 mantle components record subduction of various protoliths (e.g. upper or lower continental crust, lithospheric mantle versus intra-metasomatized mantle, or others), it is proposed here that they primarily reflect sediment recycling. Their distinct Pb isotope variation can be accounted for by varying the proportion of S-poor recycled oceanic crust in the source of mantle plumes.

  9. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    PubMed

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  10. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    NASA Astrophysics Data System (ADS)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  11. Chemical and stable-radiogenic isotope compositions of Polatlı-Haymana thermal waters (Ankara, Turkey)

    NASA Astrophysics Data System (ADS)

    Akilli, Hafize; Mutlu, Halim

    2016-04-01

    Complex tectono-magmatic evolution of the Anatolian land resulted in development of numerous geothermal areas through Turkey. The Ankara region in central Anatolia is surrounded by several basins which are filled with upper Cretaceous-Tertiary sediments. Overlying Miocene volcanics and step faulting along the margins of these basins played a significant role in formation of a number of low-enthalpy thermal waters. In this study, chemical and isotopic compositions of Polatlı and Haymana geothermal waters in the Ankara region are investigated. The Polatlı-Haymana waters with a temperature range of 24 to 43 °C are represented by Ca-(Na)-HCO3 composition implying derivation from carbonate type reservoir rocks. Oxygen-hydrogen isotope values of the waters are conformable with the Global Meteoric Water Line and point to a meteoric origin. The carbon isotopic composition in dissolved inorganic carbon (DIC) of the studied waters is between -21.8 and -1.34 permil (vs. VPDB). Marine carbonates and organic rocks are the main sources of carbon. There is a high correlation between oxygen (3.7 to 15.0 permil; VSMOW) and sulfur (-9.2 to 19.5 permil; VCDT) isotope compositions of sulfate in waters. The mixing of sulfate from dissolution of marine carbonates and terrestrial evaporite units is the chief process behind the observed sulfate isotope systematics of the samples. 87Sr/86Sr ratios of waters varying from 0.705883 to 0.707827 are consistent with those of reservoir rocks. The temperatures calculated by SO4-H2O isotope geothermometry are between 81 and 138 °C nearly doubling the estimates from chemical geothermometers.

  12. Molecular Paleohydrology: Interpreting the Hydrogen-Isotopic Composition of Lipid Biomarkers from Photosynthesizing Organisms

    NASA Astrophysics Data System (ADS)

    Sachse, Dirk; Billault, Isabelle; Bowen, Gabriel J.; Chikaraishi, Yoshito; Dawson, Todd E.; Feakins, Sarah J.; Freeman, Katherine H.; Magill, Clayton R.; McInerney, Francesca A.; van der Meer, Marcel T. J.; Polissar, Pratigya; Robins, Richard J.; Sachs, Julian P.; Schmidt, Hanns-Ludwig; Sessions, Alex L.; White, James W. C.; West, Jason B.; Kahmen, Ansgar

    2012-05-01

    Hydrogen-isotopic abundances of lipid biomarkers are emerging as important proxies in the study of ancient environments and ecosystems. A decade ago, pioneering studies made use of new analytical methods and demonstrated that the hydrogen-isotopic composition of individual lipids from aquatic and terrestrial organisms can be related to the composition of their growth (i.e., environmental) water. Subsequently, compound-specific deuterium/hydrogen (D/H) ratios of sedimentary biomarkers have been increasingly used as paleohydrological proxies over a range of geological timescales. Isotopic fractionation observed between hydrogen in environmental water and hydrogen in lipids, however, is sensitive to biochemical, physiological, and environmental influences on the composition of hydrogen available for biosynthesis in cells. Here we review the factors and processes that are known to influence the hydrogen-isotopic compositions of lipids—especially n-alkanes—from photosynthesizing organisms, and we provide a framework for interpreting their D/H ratios from ancient sediments and identify future research opportunities.

  13. Soil moisture effects on the carbon isotopic composition of soil respiration

    EPA Science Inventory

    The carbon isotopic composition ( 13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the 13C of soil respiration, which suggests indir...

  14. Nitrogen sources and cycling in the San Francisco Bay estuary: A nitrate dual isotopic composition approach

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, C.; Francis, C.A.; Paytan, A.

    2006-01-01

    We used the dual isotopic composition of nitrate (??15N and ??18O) within the estuarine system of San Francisco (SF) Bay, California, to explore the utility of this approach for tracing sources and cycling of nitrate (NO3-). Surface water samples from 49 sites within the estuary were sampled during July-August 2004. Spatial variability in the isotopic composition suggests that there are multiple sources of nitrate to the bay ecosystem including seawater, several rivers and creeks, and sewage effluent. The spatial distribution of nitrate from these sources is heavily modulated by the hydrodynamics of the estuary. Mixing along the estuarine salinity gradient is the main control on the spatial variations in isotopic composition of nitrate within the northern arm of SF Bay. However, the nitrate isotopic composition in the southern arm of SF Bay exhibited a combination of source mixing and phytoplankton drawdown due mostly to the long residence time during the summer study period. Very low ?? 18ONO3 values (as low as -5.0???) at the Sacramento-San Joaquin River delta region give rise to a wide range of ??18ONO3 values in the SF Bay system. The range in ??18ONO3 values is more than twice that of (??15NNO3, suggesting that ??18O NO3 is an even more sensitive tool for tracing nitrate sources and cycling than ??15NNO3. ?? 2006, by the American Society of Limnology and Oceanography, Inc.

  15. Habitat use and trophic position effects on contaminant bioaccumulation in fish indicated by stable isotope composition

    EPA Science Inventory

    The objective of our study was to determine the relationship between fish tissue stable isotope composition and total mercury or polychlorinated biphenyl (PCB) concentrations in a Great Lakes coastal food web. We sampled two resident fishes, Yellow Perch (Perca flavescens) and Bl...

  16. The atomic weight and isotopic composition of boron and their variation in nature

    SciTech Connect

    Holden, N.E.

    1993-08-01

    The boron isotopic composition and atomic weight value and their variation in nature are reviewed. Questions are raised about the previously recommended value and the uncertainty for the atomic weight. The problem of what constitutes an acceptable range for normal material and what should then be considered geologically exceptional is discussed. Recent measurements make some previous decisions in need of re-evaluation.

  17. New approach to global barium cycle understanding: barium isotopic composition of marine carbonates and seawater.

    NASA Astrophysics Data System (ADS)

    Pretet, Chloé; Nägler, Thomas F.; Reynaud, Stéphanie; de Lange, Gert J.; Turpin, Mélanie; Immenhauser, Adrian; Böttcher, Michael E.; Samankassou, Elias

    2013-04-01

    In this communication we present the Ba isotope fractionation (delta137/134Ba) study on marine carbonates and seawater, initiated to gain a first order view of the marine Ba isotope cycle. A special focus is the question whether the nutrient type distribution of Ba in the water column, as well as different Ba sources, are reflected in Ba isotope ratios of carbonate archives. The approach ultimately aims to provide an improved Ba based paleonutrient proxy. The data set is composed of carbonates (micrites and limestone standard), coral skeleton and seawater (IAPSO standard and Mediterranean seawater). Part of the corals were cultured in monitored environments (CSM, Monaco) others originate from natural environments (shallow and warm water corals from the Bahamas/Florida and cold water corals from the Norwegian shelf). The analytical procedure includes the application of a 130Ba/135Ba double spike, a cation exchange column followed by isotope measurements on a Nu Instruments Multicollector ICP-MS. The Ba fractionation of the samples is compared to a Ba nitrate standard solution and a standard natural limestone BSC-CRM 393 (0.05 ± 0.04 ‰, 2SEM). No isotopic fractionation has been observed in the limestone standard and micrites (N=8) (-0.01 ± 0.04 ‰, 2SEM) compared to the Ba nitrate standard. On the contrary, coral skeletons show a significant positive fractionation (mean = 0.4 ± 0.05 ‰, 2 SEM). No significant difference was found between different cultured coral species. Thus no species-specific fractionation is identified within the same environmental conditions. Diagenetic influence on Ba isotopic composition was further tested on 5 natural samples with varying calcite to aragonite ratios (0 to 0.3). No significant effect was observed. Moreover, the Ba isotope composition seems independant from the Ba concentration in the studied coral skeleton, within our measurement resolution. Seawater isotopic composition (-0.05 ± 0.07 ‰, 2SD) is lighter than coral

  18. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, Anna; Borrok, David M.

    2016-01-01

    In order to better understand the factors influencing zinc (Zn) isotope composition in hydrological systems, we analyzed the δ66Zn of dissolved Zn in the streams and groundwater of the Upper and Middle Rio Grande watershed in Colorado and New Mexico, United States. The stream water samples have a wider variation of δ66Zn (-0.57 to + 0.41 ‰ relative to the JMC 3-0749-Lyon standard) than groundwater samples (-0.13 to + 0.12 ‰) and than samples from streams that are in close proximity to abandoned mining sites (+0.24 to + 0.40 ‰). Regional changes of bedrock geology, from primarily igneous rocks to primarily sedimentary rocks, have no resolvable effect on the δ66Zn of aqueous samples. Instead, an increase in water pH from 7.5 to 8.5 corresponds to a considerable decrease in the δ66Zn of dissolved Zn (R2 = - 0.37, p = 0.003, n = 22). Consequently, we link the observed Zn isotope variations to the process of adsorption of Zn onto suspended sediment and bedrock minerals (average Δ66Znadsorbed-dissolved = + 0.31 ‰). Our results are in good agreement with previous experimental and empirical studies suggesting that Zn adsorption leads to a residual dissolved pool enriched in light Zn isotopes. Given that anthropogenic Zn sources can also be responsible for lowering of δ66Zn, and may overlap with the pH/adsorption effect on δ66Zn, the latter needs to be carefully considered in future studies to differentiate between natural and anthropogenic factors influencing Zn isotopes in this and other aquatic systems.

  19. The uranium isotopic composition of the Earth and the Solar System

    NASA Astrophysics Data System (ADS)

    Goldmann, Alexander; Brennecka, Gregory; Noordmann, Janine; Weyer, Stefan; Wadhwa, Meenakshi

    2015-01-01

    Recent high-precision mass spectrometric studies of the uranium isotopic composition of terrestrial and meteoritic materials have shown significant variation in the 238U/235U ratio, which was previously assumed to be invariant (=137.88). In this study, we have investigated 27 bulk meteorite samples from different meteorite groups and types, including carbonaceous (CM1 and CV3), enstatite (EH4) and ordinary (H-, L-, and LL-) chondrites, as well as a variety of achondrites (angrites, eucrites, and ungrouped) to constrain the distribution of U isotopic heterogeneities and to determine the average 238U/235U for the Solar System. The investigated bulk meteorites show a range in 238U/235U between 137.711 and 137.891 (1.3‰) with the largest variations among ordinary chondrites (OCs). However, the U isotope compositions of 20 of the 27 meteorites analyzed here overlap within analytical uncertainties with the narrow range defined by terrestrial basalts (137.778-137.803), which are likely the best representatives for the U isotope composition of the bulk silicate Earth. Furthermore, the average 238U/235U of all investigated meteorite groups overlaps with that of terrestrial basalts (137.795 ± 0.013). The bulk meteorite samples studied here do not show a negative correlation of 238U/235U with Nd/U or Th/U (used as proxies for the Cm/U ratio), as would be expected if radiogenic 235U was generated by the decay of extant 247Cm in the early Solar System. Rather, ordinary chondrites show a positive correlation of 238U/235U with Nd/U and with 1/U. The following conclusions can be drawn from this study: (1) The Solar System has a broadly homogeneous U isotope composition, and bulk samples of only a limited number of meteorites display detectable U isotope variations; (2) Bulk planetary differentiation has no significant effect on the 238U/235U ratio since the Earth, achondrites, and chondrites have indistinguishable U isotope compositions in average. (3) The cause of U isotopic

  20. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Zhu, Xiangkun; Yan, Bin; Kendall, Brian; Peng, Xi; Li, Jin; Algeo, Thomas J.; Romaniello, Stephen

    2015-11-01

    The nature of ocean redox chemistry between the Cryogenian Sturtian and Marinoan glaciations (ca. 663-654 Ma) is important for understanding the relationship between environmental conditions and the subsequent emergence and expansion of early animals. The Cryogenian-to-Ediacaran stratigraphic succession of the Nanhua Basin in South China provides a nearly complete sedimentary record of the Cryogenian, including a continuous record of interglacial sedimentation. Here, we present a high-resolution pyrite Fe isotope record for a ∼120-m-long drill-core (ZK105) through Sturtian glacial diamictites and the overlying interglacial sediments in the Nanhua Basin to explore changes in marine chemistry during the late Cryogenian. Our pyrite Fe isotope profile exhibits significant stratigraphic variation: Interval I, comprising middle to upper Tiesi'ao diamictites (correlative with the Sturtian glaciation), is characterized by light, modern seawater-like Fe isotope compositions; Interval II, comprising uppermost Tiesi'ao diamictites and the basal organic-rich Datangpo Formation, is characterized by an abrupt shift to heavier Fe isotope compositions; and Interval III, comprising organic-poor grey shales in the middle Datangpo Formation, is characterized by the return of lighter, seawater-like Fe isotope compositions. We infer that Interval I pyrite was deposited in a predominantly anoxic glacial Nanhua Basin through reaction of dissolved Fe2+ and H2S mediated by microbial sulfate reduction (MSR). The shift to heavier pyrite Fe isotope values in Interval II is interpreted as partial oxidation of ferrous iron to ferric iron and subsequent near-quantitative reduction and transformation of Fe-oxyhydroxides to pyrite through coupling with oxidation of organic matter in the local diagenetic environment. In Interval III, near-quantitative oxidation of ferrous iron to Fe-oxyhydroxides followed by near-quantitative reduction and conversion to pyrite in the local diagenetic environment

  1. Isotopic composition and neutronics of the Okelobondo natural reactor

    NASA Astrophysics Data System (ADS)

    Palenik, Christopher Samuel

    The Oklo-Okelobondo and Bangombe uranium deposits, in Gabon, Africa host Earth's only known natural nuclear fission reactors. These 2 billion year old reactors represent a unique opportunity to study used nuclear fuel over geologic periods of time. The reactors in these deposits have been studied as a means by which to constrain the source term of fission product concentrations produced during reactor operation. The source term depends on the neutronic parameters, which include reactor operation duration, neutron flux and the neutron energy spectrum. Reactor operation has been modeled using a point-source computer simulation (Oak Ridge Isotope Generation and Depletion, ORIGEN, code) for a light water reactor. Model results have been constrained using secondary ionization mass spectroscopy (SIMS) isotopic measurements of the fission products Nd and Te, as well as U in uraninite from samples collected in the Okelobondo reactor zone. Based upon the constraints on the operating conditions, the pre-reactor concentrations of Nd (150 ppm +/- 75 ppm) and Te (<1 ppm) in uraninite were estimated. Related to the burnup measured in Okelobondo samples (0.7 to 13.8 GWd/MTU), the final fission product inventories of Nd (90 to 1200 ppm) and Te (10 to 110 ppm) were calculated. By the same means, the ranges of all other fission products and actinides produced during reactor operation were calculated as a function of burnup. These results provide a source term against which the present elemental and decay abundances at the fission reactor can be compared. Furthermore, they provide new insights into the extent to which a "fossil" nuclear reactor can be characterized on the basis of its isotopic signatures. In addition, results from the study of two other natural systems related to the radionuclide and fission product transport are included. A detailed mineralogical characterization of the uranyl mineralogy at the Bangombe uranium deposit in Gabon, Africa was completed to improve

  2. Hydrogen and oxygen isotopic compositions of waters from fumaroles at Kilauea summit, Hawaii

    USGS Publications Warehouse

    Hinkley, T.K.; Quick, J.E.; Gregory, R.T.; Gerlach, T.M.

    1995-01-01

    Condensate samples were collected in 1992 from a high-temperature (300?? C) fumarole on the floor of the Halemaumau Pit Crater at Kilauea. The emergence about two years earlier of such a hot fumarole was unprecedented at such a central location at Kilauea. The condensates have hydrogen and oxygen isotopic compositions which indicate that the waters emitted by the fumarole are composed largely of meteoric water, that any magmatic water component must be minor, and that the precipitation that was the original source to the fumarole fell on a recharge area on the slopes of Mauna Loa Volcano to the west. However, the fumarole has no tritium, indicating that it taps a source of water that has been isolated from atmospheric water for at least 40 years. It is noteworthy, considering the unstable tectonic environment and abundant local rainfall of the Kilauea and Mauna Loa regions, that waters which are sources to the hot fumarole remain uncontaminated from atmospheric sources over such long times and long transport distances. As for the common, boiling point fumaroles of the Kilauea summit region, their 18O, D and tritium concentrations indicate that they are dominated by recycling of present day meteoric water. Though the waters of both hot and boiling point fumaroles have dominantly meteoric sources, they seem to be from separate hydrological regimes. Large concentrations of halogens and sulfur species in the condensates, together with the location at the center of the Kilauea summit region and the high temperature, initially suggested that much of the total mass of the emissions of the hot fumarole, including the H2O, might have come directly from a magma body. The results of the present study indicate that it is unreliable to infer a magmatic origin of volcanic waters based solely on halogen or sulfur contents, or other aspects of chemical composition of total condensates. ?? 1995 Springer-Verlag.

  3. Pectin content and composition from different food waste streams.

    PubMed

    Müller-Maatsch, Judith; Bencivenni, Mariangela; Caligiani, Augusta; Tedeschi, Tullia; Bruggeman, Geert; Bosch, Montse; Petrusan, Janos; Van Droogenbroeck, Bart; Elst, Kathy; Sforza, Stefano

    2016-06-15

    In the present paper, 26 food waste streams were selected according to their exploitation potential and investigated in terms of pectin content. The isolated pectin, subdivided into calcium bound and alkaline extractable pectin, was fully characterized in terms of uronic acid and other sugar composition, methylation and acetylation degree. It was shown that many waste streams can be a valuable source of pectin, but also that pectin structures present a huge structural diversity, resulting in a broad range of pectin structures. These can have different physicochemical and biological properties, which are useful in a wide range of applications. Even if the data could not cover all the possible batch by batch and country variabilities, to date this represents the most complete pectin characterization from food waste streams ever reported in the literature with a homogeneous methodology.

  4. Hf isotope compositions of U.S. Geological Survey reference materials

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Hanano, Diane; Nobre Silva, Inês; Barling, Jane; Pretorius, Wilma; Maerschalk, Claude; Mattielli, Nadine

    2007-06-01

    A systematic multi-isotopic and trace element characterization of U.S. Geological Survey reference materials has been carried out at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. Values of 176Hf/177Hf are recommended for the following reference materials (mean ±2 SD): G-2: 0.282523 ± 6; G-3: 0.282518 ± 1; GSP-2: 0.281949 ± 8; RGM-1: 0.283017 ± 13; STM-1: 0.283019 ± 12; STM-2: 0.283021 ± 5; BCR-1: 0.282875 ± 8; BCR-2: 0.282870 ± 8; BHVO-1: 0.283106 ± 12; BHVO-2: 0.283105 ± 11; AGV-1: 0.282979 ± 6; and AGV-2: 0.282984 ± 9. Reproducibility is better than 50 ppm for the granitoid compositions and better than 40 ppm for the basaltic/andesitic compositions. For the isotopic analyses acquired early in this project on glass columns, Hf isotopic analyses from several of the reference materials were significantly less reproducible than Nd and Sr isotopic analyses determined from the same sample dissolution. The 176Hf/177Hf ratios for relatively radiogenic compositions (BCR-1, 2; BHVO-1, 2; RGM-1) were shifted systematically toward lower values by 100-150 ppm when a borosilicate primary column was used. Although systematic, the shift for felsic compositions was generally within analytical error, except for GSP-2, which has a very low Hf isotopic ratio, where the shift was to higher 176Hf/177Hf. Trace element and isotopic characterization of the borosilicate glass column, borosilicate frits, and quartz columns reveals extremely variable levels of trace elements. The 176Hf/177Hf ratios for these materials are very unradiogenic (borosilicate glass <0.28220 frit = 0.28193 ± 4). The borosilicate frit material appears to be the most variable in elemental concentration and isotopic composition. The quartz material has very low levels (

  5. [Comparisons of sulfur contents and isotopes between mosses and surface soils in Jiangxi Province].

    PubMed

    Li, Nan; Xiao, Hua-Yun; Chen, Yong-Zhong; Zhou, Dan; Luo, Li; Wu, Dai-She

    2013-10-01

    In order to study the influence of atmospheric sulfur on soil sulfur, the forest surface soil samples and moss samples were collected in north areas of Jiangxi province. Contents and isotopes of sulfur in different forms (total sulfur, water-soluble sulfur, absorbed sulfur and organic sulfur) were determined. The average sulfur content of mosses was 0. 34% +/- 0. 20%. All of the delta34S values except at Fengcheng (-3. 31 per thousand) were positive, the average was 5.64 per thousand +/- 2. 23 per thousand. The average contents of soil total sulfur were between 189.0 mg.kg-1 and 793.5 mg.kg-1. The organic sulfur was the main sulfur form in surface soils and the contents of water-soluble sulfur were the lowest. The delta34S values of total sulfur were in the range of 4. 45 per thousand +/-10. 28 per thousand. The highest soil delta34S values were determined for organic sulfur and the delta34S values of water-soluble and absorbed sulfur were similar. The contents of soil total sulfur were much lower than those of the mosses. Except for organic sulfur (R = 0. 50, P >0. 05) , the delta34S values of total sulfur, water-soluble sulfur and absorbed sulfur were all significantly correlated with those of moss sulfur (R >0.7, P <0. 01). These results indicated that atmospheric sulfur directly affected the total sulfur, water-soluble sulfur and absorbed sulfur, but not the organic sulfur.

  6. Nondestructive determination of the 13C content in isotopic diamond by nuclear resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Beck, O.; Ruf, T.; Finkelstein, Y.; Cardona, M.; Anthony, T. R.; Belic, D.; Eckert, T.; Jäger, D.; Kneissl, U.; Maser, H.; Moreh, R.; Nord, A.; Pitz, H. H.; Wolpert, A.

    1998-05-01

    Nuclear resonance fluorescence excited with continuous electron bremsstrahlung from the 4.3 MV Stuttgart Dynamitron accelerator is used as a nondestructive method to determine the 13C content x of bulk isotopic diamonds (12C1-x13Cx). The smallest detectable amount of 13C in carbon or low Z matrices is on the order of 0.5 mg. The relative accuracy of absolute mass determinations is about ±7%. Errors are mainly due to uncertainties in the natural widths Γ of the 13C nuclear levels at 3089 and 3684 keV used in the measurements. The results confirm a previous calibration which is based on Raman scattering and the destructive determination of x by mass spectroscopy.

  7. Scaling of confinement with isotopic content in deuterium and tritium plasmas

    SciTech Connect

    Phillips, C.K.; Scott, S.D.; Bell, M.

    1997-01-01

    The scaling of the electron thermal diffusivity, {chi}{sub e}, with relative gyro radius, {rho}*, has been measured on TFTR by comparing nearly identical ICRF-heated discharges which differ only in hydrogenic isotopic content. Contrary to the gyro-Bohm scaling ({chi}{sub e} {approximately} {chi}{sub B}{rho}*, where {chi}{sub B} is the Bohm diffusivity) observed on DIII-D when {rho}* was varied through a scan of magnetic field strength, {chi}{sub e} is found to scale inversely with {rho}*. Hence, global energy confinement is 8--11% higher in deuterium-tritium plasmas than in deuterium only plasmas, with the higher stored energy attributed almost entirely to the electrons.

  8. Isotopic composition and fractionation of mercury in Great Lakes precipitation and ambient air.

    PubMed

    Gratz, Lynne E; Keeler, Gerald J; Blum, Joel D; Sherman, Laura S

    2010-10-15

    Atmospheric deposition is a primary pathway by which mercury (Hg) enters terrestrial and aquatic ecosystems; however, the chemical and meteorological processes that Hg undergoes from emission to deposition are not well understood. Hg stable isotope geochemistry is a growing field used to better understand Hg biogeochemical cycling. To examine the atmospheric Hg isotopic composition in the Great Lakes, precipitation and ambient vapor-phase Hg samples were collected in Chicago, IL, Holland, MI, and Dexter, MI, between April 2007 and September 2009. Precipitation samples were characterized by negative mass-dependent fractionation (MDF) (δ(202)Hg = -0.79‰ to 0.18‰), while most vapor-phase samples displayed positive MDF (δ(202)Hg = -0.59‰ to 0.43‰). Positive mass-independent fractionation (MIF) (Δ(199)Hg = 0.04‰ to 0.52‰) was observed in precipitation, whereas MIF was slightly negative in vapor-phase samples (Δ(199)Hg = -0.21‰ to 0.06‰). Significant positive MIF of (200)Hg up to 0.25‰ was also measured in precipitation. Such MIF of an even-mass Hg isotope has not been previously reported in natural samples. These results contrast with recent predictions of the isotopic composition of atmospheric Hg and suggest that, in addition to aqueous photoreduction, other atmospheric redox reactions and source-related processes may contribute to isotopic fractionation of atmospheric Hg.

  9. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.

    PubMed

    Michalski, Greg; Kolanowski, Michelle; Riha, Krystin M

    2015-01-01

    Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ(15)N values of synthetic and natural nitrates were 0 ± 2 ‰ similar to the air N2 from which they are derived. The δ(18)O values of synthetic nitrates were 23 ± 3 ‰, similar to air O2, and natural nitrate fertilizer δ(18)O values (55 ± 5 ‰) were similar to those observed in atmospheric nitrate. The Δ(17)O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ(17)O values of 18 ± 2 ‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models. PMID:26181213

  10. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.

    PubMed

    Michalski, Greg; Kolanowski, Michelle; Riha, Krystin M

    2015-01-01

    Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ(15)N values of synthetic and natural nitrates were 0 ± 2 ‰ similar to the air N2 from which they are derived. The δ(18)O values of synthetic nitrates were 23 ± 3 ‰, similar to air O2, and natural nitrate fertilizer δ(18)O values (55 ± 5 ‰) were similar to those observed in atmospheric nitrate. The Δ(17)O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ(17)O values of 18 ± 2 ‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models.

  11. Noble gas isotopic composition as a key reference parameter in a planetary atmospheric evolution model

    NASA Astrophysics Data System (ADS)

    Ozima, M.

    2010-12-01

    The isotopic composition of noble gases is a key reference parameter in discussing the evolution of planetary atmospheres. Currently, two widely occurring noble gas components are identified in the early solar system, one is the Solar Wind noble gas (SW-noble gas, hereafter) and another is the Q-noble gas in unaltered meteorites: both noble gases are characterized by their ubiquitous occurrence and high isotopic homogeneity. Since the SW-noble gas is directly ejected from the Sun, it has been assumed to be a good proxy of the average noble gas isotopic composition in the Sun, namely the solar noble gas. The systematic enrichment of the heavier isotopes in the Q-noble gas relative to the SW-noble gas is then commonly attributed to its isotopic fractionation from the SW-noble gas. However, the isotopic compositions of the SW-noble gas either implanted on lunar soils or trapped by artificial targets show considerable isotopic variation depending on the velocity of the Solar Wind. Therefore, it is important to examine how closely the SW-noble gas represents the indigenous solar noble gas component or the mean isotopic composition of noble gases of the Sun. Here we show that the isotopic composition of the SW-noble gas is substantially fractionated relative to the solar value, and therefore should not be used as a reference parameter. We further suggest that the post D-burning Q-noble gas (see below) is the better proxy of the solar noble gas, and this should be used as a reference of the Solar noble gas isotopic composition in discussing the planetary atmospheric evolution. The most distinct difference between the Q- and the SW-noble gas is apparent in a 3He/4He isotopic ratio: 4.64e-4 in Q-He [1], but 1.23e-4 in SW-He[2]. The difference is attributed to the conversion of deuteron (D) to 3He in the Sun, namely the D-burning [3], due to high temperature during the pre-main sequence stage of the Sun. With the use of recent data on D/H ratios from helio-seismology [4] and

  12. Oxygen isotope composition of modern pedogenic carbonate from the southern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Breecker, D.; Sharp, Z.; Newell, D.; Jessup, M.; Cottle, J.

    2007-12-01

    Oxygen-isotope paleoelevation estimates of large plateaus provide important geodynamic constraints on the teconic evolution of orogenic systems as well as offering insight into the dynamic feedbacks between surface uplift and regional- to global-scale climate systems. If the isotopic lapse rate (δ18O vs elevation) is known, then the oxygen isotope composition of ancient meteoric water can be used to estimate paleoelevation. The oxygen isotope composition of pedogenic carbonate preserved in paleosols has been used as a proxy for the oxygen isotope composition of soil water in order to reconstruct paleoelevation in a number of settings. Isotopic equilibrium between carbonate and water is assumed in order to calculate the δ18O value of soil water from measured δ18O values of pedogenic carbonate (δ18Opc). Uncertainties surrounding the temperature of isotopic equilibrium and the degree of evaporation of soil water limit the precision of elevation estimates from pedogenic carbonate. In this study, measurements of the oxygen isotope composition of pedogenic carbonate forming in modern soils from the Mt. Everest Region of Tibet are compared with modern meteoric water δ18O values (δ18Omw) to calibrate δ18Opc as a proxy for elevation. Pedogenic carbonate samples coating the underside of clasts were collected along depth profiles in soils at different elevations ranging from 3750 - 5200m on the southern margin of the Tibetan Plateau. Incipient soils developing in the lowest and presumably youngest river terraces were chosen for δ18Opc measurements because these are the most likely to have formed under the influence of modern precipitation. The oxygen isotope composition of modern spring and stream waters along the Bhote Kosi and Arun River were also measured in this study and agree well with previously published elevation- δ18Omw relationships for the Himalayas. Average δ18Opc values below 50 cm in the modern soils were used to calculate equilibrium δ18Omw values

  13. Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins.

    PubMed

    Balestrini, Raffaella; Polesello, Stefano; Sacchi, Elisa

    2014-07-01

    We monitored the chemical and isotopic compositions of wet depositions, at the Pyramid International Laboratory (5050 ma.s.l.), and surrounding surface waters, in the Khumbu basin, to understand precipitation chemistry and to obtain insights regarding ecosystem responses to atmospheric inputs. The major cations in the precipitation were NH4(+) and Ca(2+), whereas the main anion was HCO3(-), which constituted approximately 69% of the anions, followed by NO3(-), SO4(2-) and Cl(-). Data analysis suggested that Na(+), Cl(-) and K(+) were derived from the long-range transport of marine aerosols. Ca(2+), Mg(2+) and HCO3(-) were related to rock and soil dust contributions and the NO3(-) and SO4(2-) concentrations were derived from anthropogenic sources. Furthermore, NH4(+) was derived from gaseous NH3 scavenging. The isotopic composition of weekly precipitation ranged from -1.9 to -23.2‰ in δ(18)O, and from -0.8 to -174‰ in δ(2)H, with depleted values characterizing the central part of the monsoon period. The chemical composition of the stream water was dominated by calcite and/or gypsum dissolution. However, the isotopic composition of the stream water did not fully reflect the composition of the monsoon precipitation, which suggested that other water sources contributed to the stream flow. Precipitation contents for all ions were the lowest ones among those measured in high elevation sites around the world. During the monsoon periods the depositions were not substantially influenced by anthropogenic inputs, while in pre- and post-monsoon seasons the Himalayas could not represent an effective barrier for airborne pollution. In the late monsoon phase, the increase of ionic contents in precipitation could also be due to a change in the moisture source. The calculated atmospheric N load (0.30 kg ha(-1) y(-1)) was considerably lower than the levels that were measured in other high-altitude environments. Nevertheless, the NO3(-) concentrations in the surface waters

  14. Contents and compositions of the aroma in "Wasanbon" sugar.

    PubMed

    Matsui, T; Kitaoka, S

    1981-01-01

    "Wasanbon" sugar is handmade sugar which has been manufactured traditionally in Japan by a unique refining procedure, and is used in the making of Japanese traditional confectionary. No reports have been published on the substances responsible for the unique aroma of "Wasabon" sugar. In this paper, the contents and compositions of the aroma in "Wasabon" sugar and refinery final molasses are reported as studied by column chromatography, gas chromatography, mass spectrometry and sensory evaluation. The samples are the first press-off molasses ("Ara-mitsu" molasses) refinery final molasses, "Shiroshita" sugar (prerefined sugar) and "Wasabon" sugar. The summarized results are as follows: In the acidic fraction, the aroma of 3-phenylpropionic acid is similar to the stored aroma of "Wasabon" sugar, whereas the aroma of its methyl ester was not similar to that aroma. Although aroma contents of the weakly acidic fraction in "Wasabon" sugar and refinery final molasses are 8.5 to 8.7% of those of the acidic fraction, and their main components are cyclotene and maltol, which are formed by thermal degradation of sugar. These components show a higher preference than other weakly acidic fraction aromas, by a paired preference test. Cyclotene and maltol increased about 3.7 and 1.5 times, respectively, by the heating of "Shiroshita" sugar.

  15. Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic

    NASA Astrophysics Data System (ADS)

    Gall, L.; Williams, H. M.; Siebert, C.; Halliday, A. N.; Herrington, R. J.; Hein, J. R.

    2013-08-01

    The global variability in nickel (Ni) isotope compositions in ferromanganese crusts is investigated by analysing surface samples of 24 crusts from various ocean basins by MC-ICPMS, using a double-spike for mass bias correction. Ferromanganese crusts have δ60Ni isotopic compositions that are significantly heavier than any other samples thus far reported (-0.1‰ to 0.3 ‰), with surface scrapings ranging between 0.9 ‰ and 2.5 ‰ (relative to NIST SRM986). There is no well resolved difference between ocean basins, although the data indicate somewhat lighter values in the Atlantic than in the Pacific, nor is there any evidence that the variations are related to biological fractionation, presence of different water masses, or bottom water redox conditions. Preliminary data for laterite samples demonstrate that weathering is accompanied by isotopic fractionation of Ni, which should lead to rivers and seawater being isotopically heavy. This is consistent with the slightly heavier than average isotopic compositions recorded in crusts that are sampled close to continental regions. Furthermore, the isotopic compositions of crusts growing close to a hydrothermal source are clustered around ∼ 1.5 ‰, suggesting that hydrothermal fluids entering the ocean may have a Ni isotopic composition similar to this value. Based on these data, the heavy Ni isotopic compositions of ferromanganese crusts are likely due to input of isotopically heavy Ni to the ocean from continental weathering and possibly also from hydrothermal fluids. A depth profile through one crust, CD29-2, from the north central Pacific Ocean displays large variations in Ni isotope composition (1.1 - 2.3 ‰) through the last 76 Myr. Although there may have been some redistribution of Ni associated with phosphatisation, there is no systematic difference in Ni isotopic composition between deeper, older parts and shallower, younger parts of the crust, which may suggest that oceanic sources and sinks of Ni have

  16. Impacts of microbial community composition on isotope fractionation during reductive dechlorination of tetrachloroethylene.

    PubMed

    Dong, Yiran; Butler, Elizabeth C; Philp, R Paul; Krumholz, Lee R

    2011-04-01

    Isotope fractionation has been used with increasing frequency as a tool to quantify degradation of chlorinated aliphatic pollutants in the environment. The objective of this research was to determine if the electron donor present in enrichment cultures prepared from uncontaminated sediments influenced the extent of isotope fractionation of tetrachloroethylene (PCE), either directly, or through its influence on microbial community composition. Two PCE-degrading enrichment cultures were prepared from Duck Pond (DP) sediment and were incubated with formate (DPF) or H(2) (DPH) as electron donor. DPF and DPH were significantly different in both product distribution and extent of isotope fractionation. Chemical and isotope analyses indicated that electron donors did not directly affect the product distribution or the extent of isotope fractionation for PCE reductive dechlorination. Instead, restriction fragment length polymorphism (RFLP) and sequence analysis of the 16S rRNA clone libraries of DPF and DPH identified distinct microbial communities in each enrichment culture, suggesting that differences in microbial communities were responsible for distinct product distributions and isotope fractionation between the two cultures. A dominant species identified only in DPH was closely related to known dehalogenating species (Sulfurospirillum multivorans and Sulfurospirillum halorespirans) and may be responsible for PCE degradation in DPH. Our study suggests that different dechlorinators exist at the same site and can be preferentially stimulated by different electron donors, especially over the long-term (i.e., years), typical of in-situ ground water remediation.

  17. Stable bromine isotopic composition of methyl bromide released from plant matter

    NASA Astrophysics Data System (ADS)

    Horst, Axel; Holmstrand, Henry; Andersson, Per; Thornton, Brett F.; Wishkerman, Asher; Keppler, Frank; Gustafsson, Örjan

    2014-01-01

    Methyl bromide (CH3Br) emitted from plants constitutes a natural source of bromine to the atmosphere, and is a component in the currently unbalanced global CH3Br budget. In the stratosphere, CH3Br contributes to ozone loss processes. Studies of stable isotope composition may reduce uncertainties in the atmospheric CH3Br budget, but require well-constrained isotope fingerprints of the source end members. Here we report the first measurements of stable bromine isotopes (δ81Br) in CH3Br from abiotic plant emissions. Incubations of both KBr-fortified pectin, a ubiquitous cell-stabilizing macromolecule, and of a natural halophyte (Salicornia fruticosa), yielded an enrichment factor (ε) of -2.00 ± 0.23‰ (1σ, n = 8) for pectin and -1.82 ± 0.02‰ (1σ, n = 4) for Salicornia (the relative amount of the heavier 81Br was decreased in CH3Br compared to the substrate salt). For short incubations, and up to 10% consumption of the salt substrate, this isotope effect was similar for temperatures from 30 up to 300 °C. For longer incubations of up to 90 h at 180 °C the δ81Br values increased from -2‰ to 0‰ for pectin and to -1‰ for Salicornia. These δ81Br source signatures of CH3Br formation from plant matter combine with similar data for carbon isotopes to facilitate multidimensional isotope diagnostics of the CH3Br budget.

  18. Coordinated Oxygen Isotopic and Petrologic Studies of CAIS Record Varying Composition of Protosolar

    NASA Technical Reports Server (NTRS)

    Simon, Justin I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2012-01-01

    Ca-, Al-rich inclusions (CAIs) record the O-isotope composition of Solar nebular gas from which they grew [1]. High spatial resolution O-isotope measurements afforded by ion microprobe analysis across the rims and margin of CAIs reveal systematic variations in (Delta)O-17 and suggest formation from a diversity of nebular environments [2-4]. This heterogeneity has been explained by isotopic mixing between the O-16-rich Solar reservoir [6] and a second O-16-poor reservoir (probably nebular gas) with a "planetary-like" isotopic composition [e.g., 1, 6-7], but the mechanism and location(s) where these events occur within the protoplanetary disk remain uncertain. The orientation of large and systematic variations in (Delta)O-17 reported by [3] for a compact Type A CAI from the Efremovka reduced CV3 chondrite differs dramatically from reports by [4] of a similar CAI, A37 from the Allende oxidized CV3 chondrite. Both studies conclude that CAIs were exposed to distinct, nebular O-isotope reservoirs, implying the transfer of CAIs among different settings within the protoplanetary disk [4]. To test this hypothesis further and the extent of intra-CAI O-isotopic variation, a pristine compact Type A CAI, Ef-1 from Efremovka, and a Type B2 CAI, TS4 from Allende were studied. Our new results are equally intriguing because, collectively, O-isotopic zoning patterns in the CAIs indicate a progressive and cyclic record. The results imply that CAIs were commonly exposed to multiple environments of distinct gas during their formation. Numerical models help constrain conditions and duration of these events.

  19. The oxygen isotopic composition of captured solar wind: first results from the Genesis mission

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.; Coath, C. D.; Heber, V.; Jarzebinski, G.; Kallio, A.; Kunihiro, T.; Mao, P. H.; Burnett, D.

    2008-12-01

    Oxygen is the major constituent of rocky planets and the third most abundant element comprising the Sun, yet the solar oxygen isotopic composition has remained essentially unknown. One reason is that the usual appeal to primitive meteorites does not work because oxygen is isotopically distinct in all different classes of meteorites. The cause of this premier "isotopic anomaly" (first discovered in 1973) has been variously ascribed to nucleosynthetic input, e.g. from a nearby supernova, or to exotic isotope-selective chemistry in the solar nebula, e.g. based on molecular symmetry or UV photolysis. Knowledge of the average starting composition of the solar system, which is preserved in the Sun, would provide a baseline from which one could interpret the oxygen isotopic compositions of planetary materials. To this end, NASA flew the Genesis Mission to capture samples of the solar wind (SW) in ultra-pure target materials and return them to Earth for laboratory analysis. At UCLA, we have designed and constructed a hybrid secondary ion and accelerator mass spectrometer (SIMS/AMS), called the "MegaSIMS", specifically to tackle the unique analytical challenges posed by the Genesis samples: dilute elemental concentrations, limited sample material, and close proximity of likely surface contamination to the implanted solar wind ions. Three years after the crash- landing of the sample return capsule in the Utah desert, we have succeeded in making oxygen isotopic measurements on SW captured in a SiC target from the Genesis SW concentrator. Our preliminary data indicate that the Sun is enriched in 16O by at least 5% relative to Earth and meteorites. Implications for planetary science will be discussed.

  20. Bulk Sediment Hf-Nd Isotopic Composition Across the EOT, Northern Hemisphere Glaciation?

    NASA Astrophysics Data System (ADS)

    Duggan, B.; Buckley, W. P., Jr.; Bizimis, M.; Scher, H. D.

    2015-12-01

    In recent decades, near and far field proxies of continental ice production indicate the presence of continental ice on Antarctica. Short Antarctic glaciations blinked in and out of existence throughout the middle and late Eocene, culminating in the formation of a continental ice sheet during the Eocene Oligocene Transition (EOT; ~34 Ma). Moreover, the onset of the Antarctic glaciation coincides with pCO2 declining below a critical threshold for the accumulation of a continental ice sheet. New evidence suggesting bipolar glaciation (that is, northern and southern hemisphere) occurred through this period with ice sheets on Greenland and Antarctica. However, the pCO2 threshold for the accumulation of ice on Greenland is not reached until the late Oligocene. Preliminary hafnium-neodymium (Hf-Nd) isotope results of oxyhydroxide leachates from IODP Site U1411 on the Newfoundland Ridge points to increased weathering intensity coinciding with the EOT, marked by less radiogenic Hf isotope compositions. One interpretation of this data is that glaciation of the northern hemisphere (e.g. Greenland) coincides with that of Antarctica during the EOT. Hf-Nd isotopic composition of sediment on the Newfoundland ridge indicates a shift from incongruous chemical weathering to a more congruous mechanical weathering regime (i.e. glaciers). However, it could be suggested that the observed congruous Hf-Nd isotopic signal originates in the southern ocean and has been propagated north from the Antarctic. We are using sediment core from the equatorial Pacific to determine if a signal of glacial weathering could be transmitted though deep waters from Antarctica. The core, IODP Site 1333, is in the equatorial Pacific positioned far from either pole thus, a shift towards a less radiogenic Hf isotopic compositions is not to be expected. The absence of a shift in Hf isotopes in the oxydroxide leachates, or a shift of lesser magnitude, will strengthen the possibility of northern hemisphere

  1. Compositional and isotopic diversity in MORB crystal cargoes: the differing influence of crustal and mantle processes on separate phase populations

    NASA Astrophysics Data System (ADS)

    Winpenny, B.; Maclennan, J.

    2010-12-01

    The crystal cargo of a mid-ocean ridge basalt (MORB) may display significant heterogeneity in its isotopic and chemical compositions, both within populations of its individual crystal phases, and with respect to its carrier liquid. On one hand, such variability may reflect changes in melt composition during or after crystallisation of a particular phase, due to processes such as mixing of heterogeneous primary mantle melts or assimilation of altered crustal material. On the other hand, addition of crustal xenocrysts or hydrothermally altered crystals, or more complex processes, may affect the crystal populations. Crystal compositions from Borgarhraun, a primitive basaltic flow from the Theistareykir volcanic system, north Iceland, highlight the complex and contrasting histories recorded by different phenocryst populations from the same flow. Both olivine- and clinopyroxene-hosted melt inclusions and clinopyroxene crystal compositions adhere to a model in which these phases were entirely crystallised from heterogeneous primary mantle melts undergoing mixing in the lower Icelandic crust (albeit with the minor influence of resorption of plagioclase). Clinopyroxene and olivine phenocrysts from the most recent (September 1984) eruption of the adjacent Krafla volcanic system also appear to be related to their host flow by concurrent crystallisation and mixing of mantle melts. In contrast, the relationship between plagioclase phenocrysts and their flows appears to be complex in Borgarhraun and Krafla. These plagioclase crystals vary significantly in terms of textures, style of zoning and anorthite contents (80.8-89.4 mol% in Borgarhraun, 68.3-88.9 mol% in Krafla), indicating that the plagioclase phenocrysts are not simply recording evolution and mixing of parental melts more primitive than their carrier. In order to investigate the origins of plagioclase in Borgarhraun and Krafla, we undertook a detailed textural and micro-analytical study, including analyses of major and

  2. Mineralogy and Oxygen Isotope Compositions of Two C-Rich Hydrated Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Snead, C. J.; McKeegan, K. D.; Messenger, S.; Nakamura-Messenger, K.

    2012-01-01

    Oxygen isotopic compositions of chondrites reflect mixing between a O-16-rich reservoir and a O-17,O-18-rich reservoir produced via mass-independent fractionation. The composition of the O-16-rich reservoir is reasonably well constrained, but material representing the O-17,O-18-rich end-member is rare. Self-shielding models predict that cometary water, presumed to represent this reservoir, should be enriched in O-17 and O-18 18O by > 200%. Hydrated interplanetary dust particles (IDPs) rich in carbonaceous matter may be derived from comets; such particles likely contain the products of reaction between O-16-poor water and anhydrous silicates that formed in the inner solar system. Here we present mineralogy and oxygen isotope compositions of two C-rich hydrated IDPs, L2083E47 and L2071E35.

  3. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula.

    PubMed

    Hashizume, Ko; Chaussidon, Marc

    2005-03-31

    The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses. PMID:15800617

  4. Constraints on Phanerozoic paleotemperature and seawater oxygen isotope evolution from the carbonate clumped isotope compositions of Late Paleozoic marine fossils (Invited)

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Pérez-Huerta, A.; Shenton, B.; Yancey, T. E.

    2013-12-01

    A long-standing geoscience controversy has been the interpretation of the observed several per mil increase in the oxygen isotope compositions of marine calcites over the Phanerozoic Eon. Explanations for this trend have included decreasing seawater paleotemperatures, increasing seawater oxygen isotope values, and post-depositional calcite alteration. Carbonate clumped isotope paleothermometry is a useful geochemical tool to test these hypotheses because of its lack of dependence on the bulk isotopic composition of the water from which carbonate precipitated. This technique is increasingly applied to ancient marine invertebrate shells, which can be screened for diagenesis using chemical and microstructural approaches. After several years of clumped isotope analysis of these marine carbonates in a handful of laboratories, a long-term temperature and isotopic trend is emerging, with the results pointing to relatively invariant seawater δ18O and generally decreasing seawater temperatures through the Phanerozoic. Uncertainties remain, however, including the effects of reordering of primary clumped isotope compositions via solid-state diffusion of C and O through the mineral lattice at elevated burial temperatures over hundred million year timescales. To develop a quantitative understanding of such reordering, we present data from laboratory heating experiments of late Paleozoic brachiopod calcite. When combined with kinetic models of the reordering reaction, the results of these experiments suggest that burial temperatures less than ~120 °C allow for preservation of primary brachiopod clumped isotope compositions over geological timescales. Analyses of well-preserved Carboniferous and Permian brachiopods reinforce these results by showing that shells with apparent clumped isotope temperatures of ~150 °C are associated with deep sedimentary burial (>5 km), whereas those with putatively primary paleotemperatures in the 10-30 °C range experienced no more than ~1.5 km

  5. Isotopic Composition of Gaseous Elemental Mercury (Hg0) at Various Sites in Japan

    NASA Astrophysics Data System (ADS)

    Yamakawa, A.; Moriya, K.; Yoshinaga, J.

    2015-12-01

    Mercury (Hg) is a toxic heavy metal, which exists in various chemical forms in the environmental system. In the atmosphere, Hg exists in three forms (Hg0(g), Hg+2(g), and Hg(p)). Hg0(g) is the dominant species of atmospheric Hg, accounting for >95% of the total Hg in the atmosphere. Because Hg0(g) is highly volatile and has limited solubility in water, it cannot be easily removed by wet or dry deposition processes. Therefore, the residence time of Hg0(g) in the atmosphere is relatively long (1 to 2 years), allowing long-range transport from mercury emission source(s). Conversely, Hg+2(g) and Hg(p) are effectively removed from the atmosphere through wet and dry depositions. The determination of mercury source attribution using quantitative data is challenging because Hg0(g) may be deposited on an area upon oxidation to Hg+2(g) and associated with aerosols and particulates to form Hg(p) while the global cycling of Hg0(g). Over the last decade, the development of analytical methods of highly precise Hg isotopic measurements demonstrated mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes in environmental samples. For instance, MDF of Hg isotopes is thought to occur during various natural and industrial Hg transformations. MIF of Hg isotopes is observed during abiotic reduction, photochemical and non-photochemical, and physical and chemical processes. Such processes lead to differences in the Hg isotopic composition of different emission sources, both natural and anthropogenic, and atmospheric processes (i.e., transportation, oxidation/reduction, deposition, and reemission). Therefore, Hg isotopic compositions could be used to trace the sources and processes of atmospheric Hg. For securing the reliability and accuracy of atmospheric Hg isotope data, the methods of collection, pretreatment, and isotopic measurement for Hg0(g) were developed to obtain high recovery yield of samples with no Hg isotopic fractionation during each

  6. Regulation of Isotopic Composition of Water - way of Improvement of Cosmonauts Drinking Water Functional Properties

    NASA Astrophysics Data System (ADS)

    Kulikova, Ekaterina; Utina, Dina; Vorozhtsova, Svetlana; Severyuhin, Yuri; Abrosimova, Anna; Sinyak, Yuri; Ivanov, Alexander

    The problem in providing drinking water to cosmonauts is solved - at this moment there is a task to improve the functional properties of the water. One of the perspectives of this trend is the use of light isotopic water. The animal studies have shown that long-term consumption of water with a depletion of deuterium and oxygen heavy isotopes accelerates the rise of mass non-irradiated mice, the phase fluctuations reducing or increasing hematological parameters were having adaptive nature. These fluctuations didn’t overcome values beyond the physiological norm of this type of animal. It is established that the therapeutic use of light isotopic water with 35 - 90 ppm in deuterium increases the survival of irradiated mice by an average of 30%, contributes to the preservation of irradiated animals body weight. Treatment of acute radiation sickness with light isotopic water stimulates hematopoietic recovery. At the same time, keeping mice drinking light isotopic water for 7 - 8 days before the irradiation (from 4 to 8.5 Gr) has no effect on the level of radio resistance. Longer keeping mice on light isotopic water, for 14 -21 days - reduction in life expectancy, animal mass, bone marrow cellularity and the level of white blood cells in irradiated animals is noted. It was established that keeping mice on light isotopic water for 14 days before exposure in experimental animals causes an increase in the mitotic index and the frequency of formation of aberrant mitosis after 24 hours of Co(60) gamma radiation in doses of 1 , 2, and 4 Gr. Thus, it is clear that the regulation of the isotopic composition of drinking water - way to improve its functional properties.

  7. Potassium isotopic compositions of NIST potassium standards and 40Ar/39Ar mineral standards

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Tappa, M.; Ellam, R. M.; Mark, D. F.; Lloyd, N. S.; Higgins, J. A.; Simon, J. I.

    2013-12-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25‰ level (1σ) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards. [1] Hiess

  8. Lead Isotopic Composition and Trace Metals in Aerosols for Source Apportionment

    NASA Astrophysics Data System (ADS)

    Chien, C. T.; Paytan, A.

    2014-12-01

    Transported thousands of miles away from their source, aerosols can be dispersed and deposition throughout the Earth's surface. Aerosols from natural and industrial sources have different characteristics and health impacts thus it is important to identify their sources. The lead isotopic composition and trace metals in aerosol samples collected in different regions and periods around the world can help us better understand spatial and seasonal variation of aerosol sources. Aerosol samples collected in California, Bermuda, China and the Red Sea have been analyzed. The trace metal and Pb isotopes in these samples provide information regarding the various sources of aerosols to these sites.

  9. Southern Greenland water vapour isotopic composition at the crossroads of Atlantic and Arctic moisture

    NASA Astrophysics Data System (ADS)

    Bonne, J. L.; Steen-Larsen, H. C.; Risi, C. M.; Werner, M.; Sodemann, H.; Lacour, J. L.; Fettweis, X.; Cesana, G.; Delmotte, M.; Cattani, O.; Clerbaux, C.; Sveinbjörnsdottir, A. E.; Masson-Delmotte, V.

    2014-12-01

    Since September 2011, a continuous water vapour isotopic composition monitoring instrument has been remotely operated in Ivittuut (61.21°N, 48.17°W), southern Greenland. Meteorological parameters are monitored and precipitation has been sampled and analysed for isotopic composition, suggesting equilibrium between surface vapour and precipitation. The data depict small summer diurnal variations. δ18O and deuterium excess (d-excess) are generally anti-correlated and show important seasonal variations (with respective amplitudes of 10 and 20 ‰), and large synoptic variations associated to low-pressure systems (typically +5‰ on δ18O and -15‰ on d-excess). The moisture sources, estimated based on Lagrangian back-trajectories, are primarily influenced by the western North Atlantic, and north-eastern American continent. Notable are important seasonal and synoptic shifts of the moisture sources, and sporadic influences of the Arctic or the eastern North Atlantic. Moisture sources variations can be related to changes in water vapour isotopic composition, and the isotopic fingerprints can be attributed to the areas of moisture origins. Isotopic enabled AGCMs nudged to meteorology (LMDZiso, ECHAM5-wiso), despite biases, correctly capture the δ18O changes, but underestimate the d-excess changes. They allow to identify a high correlation between the southern Greenland d-excess and the simulated relative humidity and d-excess in the moisture source region south of Greenland. An extreme high temperature event in July 2012 affecting all Greenland, similar to ice sheet melt events during the medieval periods and one event in 1889 documented by Greenland ice core records, has been analysed regarding water vapour isotopic composition, using remote sensing (IASI) and in situ observations from Bermuda to northern Greenland (NEEM station). Our southern Greenland observations allow to track the water vapour evolution during this event along the moisture transport path

  10. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts.

    PubMed

    Rizo, Hanika; Walker, Richard J; Carlson, Richard W; Horan, Mary F; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G

    2016-05-13

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth's primary accretionary period have survived to the present. PMID:27174983

  11. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts.

    PubMed

    Rizo, Hanika; Walker, Richard J; Carlson, Richard W; Horan, Mary F; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G

    2016-05-13

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth's primary accretionary period have survived to the present.

  12. Concentration and isotopic composition of carbon and sulfur in apollo 11 lunar samples.

    PubMed

    Kaplan, I R; Smith, J W

    1970-01-30

    The concentration of carbon and sulfur in six samples ranged between 20 to 200 and 650 to 2300 parts per million, respectively. Carbon was present in gaseous, volatilizable, and nonvolatile forms, and terrestrial contaminants were recognized. Sulfur appeared to exist only as acid-volatile sulfide. The bulk fines contain a high concentration of carbon and a low concentration of sulfur. They are always enriched in the heavier isotope carbon-13 or sulfur-34. The fine-grained basaltic rocks show the reverse relation; lowest carbon, highest sulfide concentrations, and no apparent enrichment in heavy isotopes. The breccias are of intermediate composition.

  13. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  14. On the iron isotope composition of Mars and volatile depletion in the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Sossi, Paolo A.; Nebel, Oliver; Anand, Mahesh; Poitrasson, Franck

    2016-09-01

    Iron is the most abundant multivalent element in planetary reservoirs, meaning its isotope composition (expressed as δ57Fe) may record signatures of processes that occurred during the formation and subsequent differentiation of the terrestrial planets. Chondritic meteorites, putative constituents of the planets and remnants of undifferentiated inner solar system bodies, have δ57Fe ≈ 0 ‰; an isotopic signature shared with the Martian Shergottite-Nakhlite-Chassignite (SNC) suite of meteorites. The silicate Earth and Moon, as represented by basaltic rocks, are distinctly heavier, δ57Fe ≈ + 0.1 ‰. However, some authors have recently argued, on the basis of iron isotope measurements of abyssal peridotites, that the composition of the Earth's mantle is δ57Fe = + 0.04 ± 0.04 ‰, indistinguishable from the mean Martian value. To provide a more robust estimate for Mars, we present new high-precision iron isotope data on 17 SNC meteorites and 5 mineral separates. We find that the iron isotope compositions of Martian meteorites reflect igneous processes, with nakhlites and evolved shergottites displaying heavier δ57Fe (+ 0.05 ± 0.03 ‰), whereas MgO-rich rocks are lighter (δ57Fe ≈ - 0.01 ± 0.02 ‰). These systematics are controlled by the fractionation of olivine and pyroxene, attested to by the lighter isotope composition of pyroxene compared to whole rock nakhlites. Extrapolation of the δ57Fe SNC liquid line of descent to a putative Martian mantle yields a δ57Fe value lighter than its terrestrial counterpart, but indistinguishable from chondrites. Iron isotopes in planetary basalts of the inner solar system correlate positively with Fe/Mn and silicon isotopes. While Mars and IV-Vesta are undepleted in iron and accordingly have chondritic δ57Fe, the Earth experienced volatile depletion at low (1300 K) temperatures, likely at an early stage in the solar nebula, whereas additional post-nebular Fe loss is possible for the Moon and angrites.

  15. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts

    NASA Astrophysics Data System (ADS)

    Rizo, Hanika; Walker, Richard J.; Carlson, Richard W.; Horan, Mary F.; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G.

    2016-05-01

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth’s primary accretionary period have survived to the present.

  16. The Stable and Radio- Carbon Isotopic Content of Labile and Refractory Carbon in Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    McNichol, A. P.; Rosenheim, B. E.; Gerlach, D. S.; Hayes, J. M.

    2006-12-01

    Studies of the isotopic content of atmospheric particulate matter are hampered by difficulties in chemically defining the pools of carbon and analytically isolating the different pools. We are conducting studies on reference materials and atmospheric aerosol samples to develop a method to measure stable and radio- carbon isotopes on the labile and refractory carbon. We are using a flow-through combustion system that allows us to combust, collect and measure the isotopic content of the gases produced at all stages of heating/oxidizing. We compare our results to those measured using a chemothermal oxidation method (CTO) (Gustafsson et al., 2001). In this method, refractory carbon is defined as the material remaining after pre- combusting a sample at 375°C in the presence of oxygen for 24 hours. The reference materials are diesel soot, apple leaves and a hybrid of the two (DiesApple), all from NIST. These provide carbon with two well-defined fractions -- the soot provides refractory carbon that is radiocarbon dead and the apple leaves provide organic carbon that is radiocarbon modern. Radiocarbon results from DiesApple indicate that the "refractory" carbon defined by the CTO method is actually a mixture of old and modern carbon that contains over 25% modern carbon. This suggests that charred material formed from the apples leaves during the pre-combustion step is contributing to the fraction we identify as refractory carbon. We are studying this by analyzing the individual materials and the mixture using our flow-through system. First results with this system indicate that the refractory fraction trapped from the DiesApple contains much less modern carbon than the CTO method, less than 7%. We will present detailed concentration and isotopic results of the generation of carbon dioxide during programmed combustion of each of the reference materials. We studied the radiocarbon content of both the total carbon (TC) and refractory carbon in the fine particulate matter (PM

  17. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    NASA Astrophysics Data System (ADS)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  18. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  19. A Record of Oceanic Lithium Isotope Composition for the Last 7Ma

    NASA Astrophysics Data System (ADS)

    Marriott, C. S.; Henderson, G. M.

    2003-12-01

    Continental weathering plays an important role in global climate change but has proved difficult to reconstruct for the past. New geological tools with which to assess the past rate and style of weathering are therefore urgently required. One such tool is Li isotope fractionation. Recent studies [1,2] have shown preferential release of 7Li into the aqueous phase and retention/adsorption of 6Li during weathering processes such as partial dissolution and secondary mineral formation. Lithium behaves conservatively in the oceans, with a residence time of ˜1Ma, so that a history of ocean Li isotope composition provides information about the average rate and style of global continental weathering on long timescales. The incorporation of lithium as a trace element in marine carbonates enables the construction of a record of oceanic Li-isotopic variation and is the focus of this work. Carbonate Li-isotope compositions are lighter than seawater by ˜8 per mil, but this fractionation is not temperature dependent. This has been demonstrated by measurement of Li isotopes in inorganically precipitated calcites (5-30° C) [3], in coralline aragonite (25-30° C) [3] and in benthic foraminifera Uvigerina (7-23° C). This lack of T-dependent fractionation suggests that the variation in the isotope composition of planktonic foraminifera will solely reflect changes in oceanic Li isotope composition, which in turn is strongly influence by changes in continental weathering. ODP site 758, located on the Ninetyeast Ridge in the Indian Ocean (5° N, 90° E; 2925m), was sampled at 2m intervals, over a depth corresponding to the last 7Ma, to produce 55 samples with a temporal resolution of approximately 130Ka. Site 758 is previously well studied with an existing chronology and high resolution Sr, O and Nd isotope data. Individual foram species in the core top were first investigated to assess inter-species fractionation effects. Down core lithium isotope variation was examined by

  20. Determining the Importance of Microbial Processes on Gas Composition in Debris-Rich Antarctic Basal Ice Using Isotope