Sample records for content kinetic complexity

  1. Prediction of moisture variation during composting process: A comparison of mathematical models.

    PubMed

    Wang, Yongjiang; Ai, Ping; Cao, Hongliang; Liu, Zhigang

    2015-10-01

    This study was carried out to develop and compare three models for simulating the moisture content during composting. Model 1 described changes in water content using mass balance, while Model 2 introduced a liquid-gas transferred water term. Model 3 predicted changes in moisture content without complex degradation kinetics. Average deviations for Model 1-3 were 8.909, 7.422 and 5.374 kg m(-3) while standard deviations were 10.299, 8.374 and 6.095, respectively. The results showed that Model 1 is complex and involves more state variables, but can be used to reveal the effect of humidity on moisture content. Model 2 tested the hypothesis of liquid-gas transfer and was shown to be capable of predicting moisture content during composting. Model 3 could predict water content well without considering degradation kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Correlating the properties of different carioca bean cultivars (Phaseolus vulgaris) with their hydration kinetics.

    PubMed

    Miano, Alberto Claudio; Saldaña, Erick; Campestrini, Luciano Henrique; Chiorato, Alisson Fernando; Augusto, Pedro Esteves Duarte

    2018-05-01

    This work explained how the intrinsic properties of beans affects the hydration process. For that, different properties of six cultivars of carioca bean (a variety of common bean) were analyzed to verify the correlation with their hydration kinetics characteristics (hydration rate, lag phase time and equilibrium moisture content), using a Multiple Factorial Analysis (MFA): the chemical composition (starch, protein, lipids, minerals (Mg, P, S, K, Ca, Mn, Fe, Cu, Zn), functional groups from the seed coat analyzed by FT-IR), physical properties (size, 1000 grain weight, seed coat thickness, energy to penetrate the bean) and microstructure. Only few properties correlated with the hydration kinetics characteristics of the studied bean, comprising both composition and structure. The fat content, potassium content, specific surface, and the protein to lipids ratio correlated with the lag phase time, which is related with the seed coat impermeability to water. The necessary energy to perforate the seed coat correlated negatively with the hydration rate. It was concluded that the hydration of beans process is a complex phenomenon and that despite being from the same variety of legume, any change due to agronomic enhancement may affect their hydration process kinetics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Roles of divergent and rotational winds in the kinetic energy balance during intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Browning, P. A.

    1983-01-01

    Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.

  4. Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment

    NASA Technical Reports Server (NTRS)

    Browning, P. A.; Fuelberg, H. E.

    1983-01-01

    Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters.

  5. Statistical and Microscopic Approach to Gas Phase Chemical Kinetics.

    ERIC Educational Resources Information Center

    Perez, J. M.; Quereda, R.

    1983-01-01

    Describes advanced undergraduate laboratory exercise examining the dependence of the rate constants and the instantaneous concentrations with the nature and energy content in a gas-phase complex reaction. Computer program (with instructions and computation flow charts) used with the exercise is available from the author. (Author/JN)

  6. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium.

    PubMed

    Nievas, M L; Commendatore, M G; Esteves, J L; Bucalá, V

    2008-06-15

    The biodegradation of a hazardous waste (bilge waste), a fuel oil-type complex residue from normal ship operations, was studied in a batch bioreactor using a microbial consortium in seawater medium. Experiments with initial concentrations of 0.18 and 0.53% (v/v) of bilge waste were carried out. In order to study the biodegradation kinetics, the mass of n-alkanes, resolved hydrocarbons and unresolved complex mixture (UCM) hydrocarbons were assessed by gas chromatography (GC). Emulsification was detected in both experiments, possibly linked to the n-alkanes depletion, with differences in emulsification start times and extents according to the initial hydrocarbon concentration. Both facts influenced the hydrocarbon biodegradation kinetics. A sequential biodegradation of n-alkanes and UMC was found for the higher hydrocarbon content. Being the former growth associated, while UCM biodegradation was a non-growing process showing enzymatic-type biodegradation kinetics. For the lower hydrocarbon concentration, simultaneous biodegradation of n-alkanes and UMC were found before emulsification. Nevertheless, certain UCM biodegradation was observed after the medium emulsification. According to the observed kinetics, three main types of hydrocarbons (n-alkanes, biodegradable UCM and recalcitrant UCM) were found adequate to represent the multicomponent substrate (bilge waste) for future modelling of the biodegradation process.

  7. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    PubMed

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effects of kinetic structure and micrograph content on achievement in reading micrographs by college biology students

    NASA Astrophysics Data System (ADS)

    Johnson, Virginia Abbott; Lockard, J. David

    The effects of kinetic structure and micrograph content on student achievement of reading micrograph skills were examined. The purpose of the study was to determine which form of kinetic structure, high or low, and/or micrograph content, unified or varied, was most effective and if there were any interactive effects. Randomly assigned to four treatment groups, 100 introductory college biology students attended three audiovisual presentations and practice sessions on reading light, transmission electron, and scanning electron micrographs. The micrograph skills test, administered at two points in time, assessed knowledge acquisition and retention. The test measured general concept skills and actual reading micrograph skills separately. All significant tests were considered with an = 0.05. High kinetic structure was found to be more effective than low kinetic structure in developing general concepts about micrographs. This finding supports Anderson's kinetic theory research. High kinetic structure instruction does not affect actual reading micrograph skills, but micrograph content does. Unified micrograph content practice sessions were more effective than varied micrograph content practice sessions. More attention should be given to the visual components of perceptual learning tasks.

  9. Complexity analysis and mathematical tools towards the modelling of living systems.

    PubMed

    Bellomo, N; Bianca, C; Delitala, M

    2009-09-01

    This paper is a review and critical analysis of the mathematical kinetic theory of active particles applied to the modelling of large living systems made up of interacting entities. The first part of the paper is focused on a general presentation of the mathematical tools of the kinetic theory of active particles. The second part provides a review of a variety of mathematical models in life sciences, namely complex social systems, opinion formation, evolution of epidemics with virus mutations, and vehicular traffic, crowds and swarms. All the applications are technically related to the mathematical structures reviewed in the first part of the paper. The overall contents are based on the concept that living systems, unlike the inert matter, have the ability to develop behaviour geared towards their survival, or simply to improve the quality of their life. In some cases, the behaviour evolves in time and generates destructive and/or proliferative events.

  10. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.

    PubMed Central

    Hansen, M T

    1978-01-01

    The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572

  11. Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol

    NASA Astrophysics Data System (ADS)

    Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian

    2018-02-01

    The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.

  12. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  13. Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases

    NASA Astrophysics Data System (ADS)

    Grossman, Jarod N.; Stern, Adam P.; Kirich, Makena L.; Kahan, Tara F.

    2016-03-01

    Condensed phases in the atmosphere, such as cloud droplets and aerosols, often contain both water and organic matter (OM). Reactivity can differ significantly between aqueous and organic phases. We have measured photolysis kinetics of the polycyclic aromatic hydrocarbons (PAHs) anthracene and pyrene in several organic solvents and in water, as well as in miscible and phase-separated aqueous-organic mixtures at atmospherically-relevant wavelengths. Photolysis rate constants generally increased with increasing solvent polarity; photolysis of both PAHs was more than ten times faster in water than in octanol. Local polarity had a much greater effect on PAH photolysis kinetics than changes in PAH absorptivity or singlet oxygen concentrations. Photolysis kinetics in homogeneous aqueous-organic mixtures varied monotonically with2 OM volume fraction. Kinetics in immiscible (phase-separated) solutions were more complex, with different dependences on OM content observed in stagnant and turbulent solutions. Our results suggest that OM could greatly affect the photochemical lifetimes of PAHs in atmospheric condensed phases such as aerosols, even if the OM does not itself absorb photons.

  14. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam

    NASA Astrophysics Data System (ADS)

    Postma, Dieke; Pham, Thi Kim Trang; Sø, Helle Ugilt; Hoang, Van Hoan; , Mai Lan, Vi; Nguyen, Thi Thai; Larsen, Flemming; Pham, Hung Viet; Jakobsen, Rasmus

    2016-12-01

    Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content.

  15. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam

    PubMed Central

    Trang, Pham Thi Kim; Sø, Helle Ugilt; Van Hoan, Hoang; Lan, Vi Mai; Thai, Nguyen Thi; Larsen, Flemming; Viet, Pham Hung; Jakobsen, Rasmus

    2016-01-01

    Aquifers on the Red River flood plain with burial ages ranging from 500 to 6000 years show, with increasing age, the following changes in solute concentrations; a decrease in arsenic, increase in Fe(II) and decreases in both pH, Ca and bicarbonate. These changes were interpreted in terms of a reaction network comprising the kinetics of organic carbon degradation, the reduction kinetics of As containing Fe-oxides, the sorption of arsenic, the kinetics of siderite precipitation and dissolution, as well as of the dissolution of CaCO3. The arsenic released from the Fe-oxide is preferentially partitioned into the water phase, and partially sorbed, while the released Fe(II) is precipitated as siderite. The reaction network involved in arsenic mobilization was analyzed by 1-D reactive transport modeling. The results reveal complex interactions between the kinetics of organic matter degradation and the kinetics and thermodynamic energy released by Fe-oxide reduction. The energy released by Fe-oxide reduction is strongly pH dependent and both methanogenesis and carbonate precipitation and dissolution have important influences on the pH. Overall it is the rate of organic carbon degradation that determines the total electron flow. However, the kinetics of Fe-oxide reduction determines the distribution of this flow of electrons between methanogenesis, which is by far the main pathway, and Fe-oxide reduction. Modeling the groundwater arsenic content over a 6000 year period in a 20 m thick aquifer shows an increase in As during the first 1200 years where it reaches a maximum of about 600 μg/L. During this initial period the release of arsenic from Fe-oxides actually decreases but the adsorption of arsenic onto the sediment delays the build-up in the groundwater arsenic concentration. After 1200 years the groundwater arsenic content slowly decreases controlled both by desorption and continued further, but diminishing, release from Fe-oxide being reduced. After 6000 years the arsenic content has decreased to 33 μg/L. The modeling enables a quantitative description of how the aquifer properties, the reactivity of organic carbon and Fe-oxides, the number of sorption sites and the buffering mechanisms change over a 6000 year period and how the combined effect of these interacting processes controls the groundwater arsenic content. PMID:27867210

  16. Ultrafast Primary Reactions in the Photosystems of Oxygen-Evolving Organisms

    NASA Astrophysics Data System (ADS)

    Holzwarth, A. R.

    In oxygen-evolving photosynthetic organisms (plants, green algae, cyanobacteria), the primary steps of photosynthesis occur in two membrane-bound protein supercomplexes, Photosystem I (PS I) and Photosystem II (PS II), located in the thylakoid membrane (c.f. Fig. 7.1) along with two other important protein complexes, the cytochrome b6/f complex and the ATP-synthase [1]. Each of the photosystems consists of a reaction center (RC) where the photoinduced early electron transfer processes occur, of a so-called core antenna consisting of chlorophyll (Chl) protein complexes responsible for light absorption and ultrafast energy transfer to the RC pigments, and additional peripheral antenna complexes of various kinds that increase the absorption cross-section. The peripheral complexes are Chl a/b-protein complexes in higher plants and green algae (LHC I or LHC II for PS I or PS II, respectively) and so-called phycobilisomes in cyanobacteria and red algae [2-4]. The structures and light-harvesting functions of these antenna systems have been extensively reviewed [2, 5-9]. Recently, X-ray structures of both PS I and PS II antenna/RC complexes have been determined, some to atomic resolution. Although many details of the pigment content and organization of the RCs and antenna systems of PS I and PS II have been known before, the high resolution structures of the integral complexes allow us for the first time to try to understand structure/function relationships in detail. This article covers our present understanding of the ultrafast energy transfer and early electron transfer processes occurring in the photosystems of oxygen-evolving organisms. The main emphasis will be on the electron transfer processes. However, in both photosystems the kinetics of the energy transfer processes in the core antennae is intimately interwoven with the kinetics of the electron transfer steps. Since both types of processes occur on a similar time scale, their kinetics cannot be considered separately in any experiment and consequently they have to be discussed together.

  17. Fluorinated graphenes as advanced biosensors - effect of fluorine coverage on electron transfer properties and adsorption of biomolecules

    NASA Astrophysics Data System (ADS)

    Urbanová, Veronika; Karlický, František; Matěj, Adam; Šembera, Filip; Janoušek, Zbyněk; Perman, Jason A.; Ranc, Václav; Čépe, Klára; Michl, Josef; Otyepka, Michal; Zbořil, Radek

    2016-06-01

    Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms.Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms. Electronic supplementary information (ESI) available: SEM, HRTEM, and AFM images the sheet in pristine graphene sample, survey XPS spectrum, high resolution C 1s XPS spectrum, and Raman spectrum of pristine graphene precursor used for controlled fluorination, survey and high resolution F 1s XPS spectra of the CF0.084, CF0.158, and CF0.218 samples, EDS chemical mapping of fluorine in CF0.158, contact angle measurement of CF0.084, CF0.158, CF0.218, and HOPG, and additional electrochemical data. See DOI: 10.1039/c6nr00353b

  18. Influence of cobalt and manganese content on the dehydrogenation capacity and kinetics of air-exposed LaNi 5+ x-type alloys in solid gas and electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Raekelboom, E.; Cuevas, F.; Knosp, B.; Percheron-Guégan, A.

    The effect of cobalt and manganese content on the dehydrogenation properties of air-exposed MmB 5+ x-type (Mm = mischmetal; B = Ni, Al, Co and Mn) alloys was investigated both in solid gas and electrochemical reactions. The cobalt and manganese content were varied separately while keeping constant the plateau pressure of the hydrides. The increase of the cobalt content leads to a decrease of the hydrogen capacity whereas the manganese content has no much effect. In solid gas reactions, the kinetics were found to be limited by the hydrogen diffusion through the surface oxidation layer. As for the electrochemistry, the kinetics are limited by a corrosion layer formed in alkaline medium. The desorption rates for both processes increase as the cobalt or manganese content decreases. This is thought to be due to an enhancement of the hydrogen diffusivity through the oxidation layer. As a result, a low cobalt or manganese content in MmB 5+ x alloys is found to be beneficial for the hydrogen desorption kinetics in both processes.

  19. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  20. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  1. Kinetic improvement of olive leaves' bioactive compounds extraction by using power ultrasound in a wide temperature range.

    PubMed

    Khemakhem, Ibtihel; Ahmad-Qasem, Margarita Hussam; Catalán, Enrique Barrajón; Micol, Vicente; García-Pérez, Jose Vicente; Ayadi, Mohamed Ali; Bouaziz, Mohamed

    2017-01-01

    In this study, the effect of temperature and ultrasonic application on extraction kinetics of polyphenols from dried olive leaf was investigated. Conventional (CVE) and ultrasonic-assisted extraction (UAE) were performed at 10, 20, 30, 50 and 70°C using water as solvent. Extracts were characterized by measuring the total phenolic content, the antioxidant capacity and the oleuropein content (HPLC-DAD/MS-MS). Moreover, Naik's model was used to mathematically describe the extraction kinetics. The experimental results showed that phenolic extraction was faster in UAE (ultrasonic-assisted extraction) than in CVE (conventional extraction), being extraction kinetics satisfactorily described using Naik model (include VAR>98%). Besides, the total phenolic content, the antioxidant capacity and the oleuropein content were significantly (p<0.05) improved by increasing the temperature in both CVE and UAE. Oleuropein content reached 6.57±0.18 being extracted approximately 88% in the first minute for UAE experiments. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Change of the binding mode of the DNA/proflavine system induced by ethanol.

    PubMed

    García, Begoña; Leal, José M; Ruiz, Rebeca; Biver, Tarita; Secco, Fernando; Venturini, M

    2010-07-01

    The equilibria and kinetics of the binding of proflavine to poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) were investigated in ethanol/water mixtures using spectrophotometric, circular dichroism, viscometric, and T-jump methods. All methods concur in showing that two modes of interaction are operative: intercalation and surface binding. The latter mode is favored by increasing ethanol and/or the proflavine content. Both static and kinetic experiments show that, concerning the poly(dG-dC).poly(dG-dC)/proflavine system, intercalation largely prevails up to 20% EtOH. For higher EtOH levels surface binding becomes dominant. Concerning the poly(dA-dT).poly(dA-dT)/proflavine system, melting experiments show that addition of proflavine stabilizes the double stranded structure, but the effect is reduced in the presence of EtOH. The DeltaH degrees and DeltaS degrees values of the melting process, measured at different concentrations of added proflavine, are linearly correlated, revealing the presence of the enthalpy-entropy compensation phenomenon (EEC). The nonmonotonicity of the "entropic term" of the EEC reveals the transition between the two binding modes. T-jump experiments show two relaxation effects, but at the highest levels of EtOH (>25%) the kinetic curves become monophasic, confirming the prevalence of the surface complex. A branched mechanism is proposed where diffusion controlled formation of a precursor complex occurs in the early stage of the binding process. This evolves toward the surface and/or the intercalated complex according to two rate-determining parallel steps. CD spectra suggest that, in the surface complex, proflavine is bound to DNA in the form of an aggregate.

  3. Effects of relaxation of gluten network on rehydration kinetics of pasta.

    PubMed

    Ogawa, Takenobu; Hasegawa, Ayako; Adachi, Shuji

    2014-01-01

    The aim of this study was to investigate the effects of the relaxation of the gluten network on pasta rehydration kinetics. The moisture content of pasta, under conditions where the effects of the diffusion of water on the moisture content were negligible, was estimated by extrapolating the average moisture content of pasta of various diameters to 0 mm. The moisture content of imaginary, infinitely thin pasta did not reach equilibrium even after 1 h of rehydration. The rehydration of pasta made of only gluten was also measured. The rate constants estimated by the Long and Richman equation for both the pasta indicated that the rehydration kinetics of infinitely thin pasta were similar to those of gluten pasta. These results suggest that the swelling of starch by fast gelatinization was restricted by the honeycomb structural network of gluten and the relaxation of the gluten network controlled pasta rehydration kinetics.

  4. Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-Chi

    2012-06-01

    Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).

  5. Effect of Initial FeO Content and CaO:SiO2 Ratio on the Reduction Smelting Kinetics of the CaO-SiO2-MgOsatd.-FeO Slag System

    NASA Astrophysics Data System (ADS)

    Kim, Jong Bae; Sohn, Il

    2018-02-01

    The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.

  6. A mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition.

    PubMed

    Bushuev, Mark B; Pishchur, Denis P; Logvinenko, Vladimir A; Gatilov, Yuri V; Korolkov, Ilya V; Shundrina, Inna K; Nikolaenkova, Elena B; Krivopalov, Viktor P

    2016-01-07

    The system [FeL2](BF4)2 (1)-EtOH-H2O (L is 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)-6-methylpyrimidine) shows a complicated balance between the relative stabilities of solvatomorphs and polymorphs of the complex [FeL2](BF4)2. New solvatomorphs, 1(LS)·EtOH·H2O and β-1(LS)·xH2O, were isolated in this system. They were converted into four daughter phases, 1(A/LS), 1(D/LS), 1(E/LS)·yEtOH·zH2O and 1(F/LS). On thermal cycling in sealed ampoules, the phases 1(LS)·EtOH·H2O and β-1(LS)·xH2O transform into the anhydrous phase 1(A/LS). The hysteresis loop width for the (A/LS) ↔ (A/HS) spin transition depends on the water and ethanol contents in the ampoule and varies from ca. 30 K up to 145 K. The reproducible hysteresis loop of 145 K is the widest ever reported one for a spin crossover complex. The phase 1(A/LS) combines the outstanding spin crossover properties with thermal robustness allowing for multiple cycling in sealed ampoules without degradation. The kinetics of the 1(A/LS) → 1(A/HS) transition is sigmoidal which is indicative of strong cooperative interactions. The cooperativity of the 1(A/LS) → 1(A/HS) transition is related to the formation of a 2D supramolecular structure of the phase 1(A/LS). The activation energy for the spin transition is very high (hundreds of kJ mol(-1)). The kinetics of the 1(A/HS) → 1(A/LS) transition can either be sigmoidal or exponential depending on the water and ethanol contents in the ampoule. The phases 1(D/LS) and 1(F/LS) show gradual crossover, whereas the phase 1(E/LS)·yEtOH·yH2O shows a reversible hysteretic transition associated with the solvent molecule release and uptake.

  7. Preparation, characterization, non-isothermal reaction kinetics, thermodynamic properties, and safety performances of high nitrogen compound: hydrazine 3-nitro-1,2,4-triazol-5-one complex.

    PubMed

    Yi, Jian-Hua; Zhao, Feng-Qi; Gao, Hong-Xu; Xu, Si-Yu; Wang, Min-Chang; Hu, Rong-Zu

    2008-05-01

    A new high nitrogen compound hydrazine 3-nitro-1,2,4-triazol-5-one complex (HNTO) was prepared by the reaction of 3-nitro-1,2,4-triazol-5-one with hydrazine hydrate, and its structure was characterized by means of organic elemental analyzer, FT-IR, XRD, (13)C NMR and (15)N NMR. The non-isothermal reaction kinetics of the main exothermic decomposition reaction of HNTO was investigated by means of DSC. The thermodynamic properties of HNTO were calculated. The results showed that the formation of HNTO is achieved by proton transfer of N(4) atom, and it makes a higher nitrogen content and lower acidity. The reaction mechanism of HNTO is classified as nucleation and growth, and the mechanism function is Avramo-Erofeev equation with n=2/5. The kinetic parameters of the reaction are E(a)=195.29 kJ mol(-1), lg(A (s(-1)))=19.37, respectively. The kinetic equation can be expressed as: d(alpha)/d(t) = 10(18.97)(1 - alpha)[-ln(1 - alpha)](3/5) e(-2.35 x 10(4)/T). The safety performances of HNTO were carried out. The critical temperature of thermal explosion are 464.26 and 474.37 K, the adiabatic time-to-explosion is 262s, the impact sensitivity H(50)=45.7 cm, the friction sensitivity P=20% and the electrostatic spark sensitivity E(50)>5.4J (no ignition). It shows that HNTO has an insensitive nature as RDX and NTO, etc.

  8. Effect of moisture on disintegration kinetics during anaerobic digestion of complex organic substrates.

    PubMed

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2014-01-01

    The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.

  9. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    PubMed

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  10. Comparison of the fluorescence kinetics of detergent-solubilized and membrane-reconstituted LH2 complexes from Rps. acidophila and Rb. sphaeroides.

    PubMed

    Pflock, Tobias; Dezi, Manuela; Venturoli, Giovanni; Cogdell, Richard J; Köhler, Jürgen; Oellerich, Silke

    2008-01-01

    Picosecond time-resolved fluorescence spectroscopy has been used in order to compare the fluorescence kinetics of detergent-solubilized and membrane-reconstituted light-harvesting 2 (LH2) complexes from the purple bacteria Rhodopseudomonas (Rps.) acidophila and Rhodobacter (Rb.) sphaeroides. LH2 complexes were reconstituted in phospholipid model membranes at different lipid:protein-ratios and all samples were studied exciting with a wide range of excitation densities. While the detergent-solubilized LH2 complexes from Rps. acidophila showed monoexponential decay kinetics (tau(f )= 980 ps) for excitation densities of up to 3.10(13) photons/(pulse.cm(2)), the membrane-reconstituted LH2 complexes showed multiexponential kinetics even at low excitation densities and high lipid:protein-ratios. The latter finding indicates an efficient clustering of LH2 complexes in the phospholipid membranes. Similar results were obtained for the LH2 complexes from Rb. sphaeroides.

  11. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils.

    PubMed Central

    Deaton, J D; Guerrero, T; Howard, T H

    1992-01-01

    In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent. PMID:1337290

  12. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils.

    PubMed

    Deaton, J D; Guerrero, T; Howard, T H

    1992-12-01

    In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.

  13. Observing changes in atmospheric heat content

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-10-01

    Globally, air temperatures near the surface over land have been rising in recent decades, and this has been presented as solid evidence of global warming. However, some scientists have argued that total heat content (energy), rather than temperature, should be used as a metric of warming trends. Surface air temperature is only one component of the energy content of the surface atmosphere—kinetic energy and latent heat also contribute. Peterson et al. present the first study to use observational data to estimate global changes in surface energy of the atmosphere over time. They include temperature, kinetic energy, and latent heat in their analysis. The authors found that total global surface atmospheric energy and heat content have increased since the 1970s, even though kinetic energy decreased slightly and in some regions latent heat declined while temperature increased.

  14. Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste.

    PubMed

    Dhyani, Vaibhav; Kumar Awasthi, Mukesh; Wang, Quan; Kumar, Jitendra; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Wang, Meijing; Bhaskar, Thallada; Zhang, Zengqiang

    2018-03-01

    In this work, the influence of composting on the thermal decomposition behavior and decomposition kinetics of pig manure-derived solid wastes was analyzed using thermogravimetry. Wheat straw, biochar, zeolite, and wood vinegar were added to pig manure during composting. The composting was done in the 130 L PVC reactors with 100 L effective volume for 50 days. The activation energy of pyrolysis of samples before and after composting was calculated using Friedman's method, while the pre-exponential factor was calculated using Kissinger's equation. It was observed that composting decreased the volatile content of all the samples. The additives when added together in pig manure lead to a reduction in the activation energy of decomposition, advocating the presence of simpler compounds in the compost material in comparison with the complex feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    PubMed

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  16. Solute segregation kinetics and dislocation depinning in a binary alloy

    NASA Astrophysics Data System (ADS)

    Dontsova, E.; Rottler, J.; Sinclair, C. W.

    2015-06-01

    Static strain aging, a phenomenon caused by diffusion of solute atoms to dislocations, is an important contributor to the strength of substitutional alloys. Accurate modeling of this complex process requires both atomic spatial resolution and diffusional time scales, which is very challenging to achieve with commonly used atomistic computational methods. In this paper, we use the recently developed "diffusive molecular dynamics" (DMD) method that is capable of describing the kinetics of the solute segregation process at the atomic level while operating on diffusive time scales in a computationally efficient way. We study static strain aging in the Al-Mg system and calculate the depinning shear stress between edge and screw dislocations and their solute atmospheres formed for various waiting times with different solute content and for a range of temperatures. A simple phenomenological model is also proposed that describes the observed behavior of the critical shear stress as a function of segregation level.

  17. Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds

    NASA Astrophysics Data System (ADS)

    Koledina, K. F.; Gubaidullin, I. M.

    2016-05-01

    The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.

  18. Molecular Interactions between (−)-Epigallocatechin Gallate Analogs and Pancreatic Lipase

    PubMed Central

    Wang, Shihui; Sun, Zeya; Dong, Shengzhao; Liu, Yang; Liu, Yun

    2014-01-01

    The molecular interactions between pancreatic lipase (PL) and four tea polyphenols (EGCG analogs), like (−)-epigallocatechin gallate (EGCG), (−)-gallocatechin gallate (GCG), (−)-epicatechin gallate (ECG), and (−)-epigallocatechin (EC), were studied from PL activity, conformation, kinetics and thermodynamics. It was observed that EGCG analogs inhibited PL activity, and their inhibitory rates decreased by the order of EGCG>GCG>ECG>EC. PL activity at first decreased rapidly and then slowly with the increase of EGCG analogs concentrations. α-Helix content of PL secondary structure decreased dependent on EGCG analogs concentration by the order of EGCG>GCG>ECG>EC. EGCG, ECG, and EC could quench PL fluorescence both dynamically and statically, while GCG only quenched statically. EGCG analogs would induce PL self-assembly into complexes and the hydrodynamic radii of the complexes possessed a close relationship with the inhibitory rates. Kinetics analysis showed that EGCG analogs non-competitively inhibited PL activity and did not bind to PL catalytic site. DSC measurement revealed that EGCG analogs decreased the transition midpoint temperature of PL enzyme, suggesting that these compounds reduced PL enzyme thermostability. In vitro renaturation through urea solution indicated that interactions between PL and EGCG analogs were weak and non-covalent. PMID:25365042

  19. Time- and Space-Resolved SAXS Experiments Inform on Phase Transition Kinetics in Hydrated, Liquid-Crystalline Films of Polyion-Surfactant Ion "Complex Salts".

    PubMed

    Li, Joaquim; Gustavsson, Charlotte; Piculell, Lennart

    2016-05-24

    Detailed time- and space-resolved SAXS experiments show the variation with hydration of liquid crystalline structures in ethanol-cast 5-80 μm thick films of polyion-surfactant ion "complex salts" (CS). The CS were dodecyl- (C12) or hexadecyl- (C16) trimethylammonium surfactants with polyacrylate (DP 25 or 6000) counter-polyions. The experiments were carried out on vertical films in humid air above a movable water bath, so that gradients of hydration were generated, which could rapidly be altered. Scans over different positions along a film, kept fixed relative to the bath, showed that the surfactant aggregates of the various liquid-crystalline CS structures grow in cross-sectional area with decreasing hydration. This behavior is attributed to the low water content. Studies of films undergoing rapid dehydration, made possible by the original experimental setup, gave strong evidence that some of the investigated systems remain kinetically trapped for minutes in a nonequilibrium Pm3n micellar cubic phase before switching to the equilibrium P6mm 2D hexagonal phase. Both the length of the polyion and the length of the surfactant hydrocarbon "tail" affect the kinetics of the phase transition. The slowness of the cubic-to-hexagonal structural transition is attributed to the fact that it requires major rearrangements of the polyions and surfactant ions relative to each other. By contrast, other structure changes, such as between the hexagonal and rectangular phases, were observed to occur much more rapidly.

  20. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-07

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.

  1. Devitrification and recrystallization of nanoparticle-containing glycerol and PEG-600 solutions.

    PubMed

    Lv, Fukou; Liu, Baolin; Li, Weijie; Jaganathan, Ganesh K

    2014-02-01

    Nanoparticles in solution offer unique electrical, mechanical and thermal properties due to their physical presence and interaction with the state of dispersion. This work is aimed to study the effects of hydroxyapatite (HA) nanoparticles on the devitrification and recrystallization events of two important cryoprotective solutions used in cell and tissue preservation namely glycerol (60%w/w) and PEG-600 (50%w/w). HA nanoparticles (20, 40 or 60 nm) were incorporated into solutions at the content of 0.1% or 0.5%(w/w), and were studied by differential scanning calorimeter (DSC) and cryomicroscopy. The presence of nanoparticles does not change the glass transition temperatures and melting temperatures of quenched solutions, but significantly affects the behavior of devitrification and recrystallization upon warming. Cryomicroscopic investigation showed the complex interactions among solution type, nanoparticle size and nanoparticle content, which apparently influence ice crystal growth or recrystallization in the quenched dispersions. These findings have significant implications for biomaterial cryopreservation, cryosurgery, and food manufacturing. The complexity of ice crystal growth kinetics in nanoparticle-containing dispersions remains to be poorly understood at the moment. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Investigating High-School Chemical Kinetics: The Greek Chemistry Textbook and Students' Difficulties

    ERIC Educational Resources Information Center

    Gegios, Theodoros; Salta, Katerina; Koinis, Spyros

    2017-01-01

    In this study we present an analysis of how the structure and content of the Greek school textbook approaches the concepts of chemical kinetics, and an investigation of the difficulties that 11th grade Greek students face regarding these concepts. Based on the structure and content of the Greek textbook, a tool was developed and applied to…

  3. The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions

    NASA Astrophysics Data System (ADS)

    Nigmatullin, R. R.; Arbuzov, A. A.; Salehli, F.; Giz, A.; Bayrak, I.; Catalgil-Giz, H.

    2007-01-01

    For the first time we achieved incontestable evidence that the real process of dielectric relaxation during the polymerization reaction of polyvinylpyrrolidone (PVP) is described in terms of the fractional kinetic equations containing complex-power-law exponents. The possibility of the existence of the fractional kinetics containing non-integer complex-power-law exponents follows from the general theory of dielectric relaxation that has been suggested recently by one of the authors (R.R.N). Based on the physical/geometrical meaning of the fractional integral with complex exponents there is a possibility to develop a general theory of dielectric relaxation based on the self-similar (fractal) character of the reduced (averaged) microprocesses that take place in the mesoscale region. This theory contains some essential predictions related to existence of the non-integer power-law kinetics and the results of this paper can be considered as the first confirmation of existence of the kinetic phenomena that are described by fractional derivatives with complex-power-law exponents. We want to stress here that with the help of a new complex fitting function for the complex permittivity it becomes possible to describe the whole process for real and imaginary parts simultaneously throughout the admissible frequency range (30 Hz-13 MHz). The fitting parameters obtained for the complex permittivity function for three temperatures (70, 90 and 110 °C) confirm in general the picture of reaction that was known qualitatively before. They also reveal some new features, which improve the interpretation of the whole polymerization process. We hope that these first results obtained in the paper will serve as a good stimulus for other researches to find the traces of the existence of new fractional kinetics in other relaxation processes unrelated to the dielectric relaxation. These results should lead to the reconsideration and generalization of irreversibility and kinetic phenomena that can take place for many linear non-equilibrium systems.

  4. Reticulation of Aqueous Polyurethane Systems Controlled by DSC Method

    PubMed Central

    Cakic, Suzana; Lacnjevac, Caslav; Rajkovic, Milos B.; Raskovic, Ljiljana; Stamenkovic, Jakov

    2006-01-01

    The DSC method has been employed to monitor the kinetics of reticulation of aqueous polyurethane systems without catalysts, and with the commercial catalyst of zirconium (CAT®XC-6212) and the highly selective manganese catalyst, the complex Mn(III)-diacetylacetonemaleinate (MAM). Among the polyol components, the acrylic emulsions were used for reticulation in this research, and as suitable reticulation agents the water emulsible aliphatic polyisocyanates based on hexamethylendoisocyanate with the different contents of NCO-groups were employed. On the basis of DSC analysis, applying the methods of Kissinger, Freeman-Carroll and Crane-Ellerstein the pseudo kinetic parameters of the reticulation reaction of aqueous systems were determined. The temperature of the examination ranged from 50°C to 450°C with the heat rate of 0.5°C/min. The reduction of the activation energy and the increase of the standard deviation indicate the catalytic action of the selective catalysts of zirconium and manganese. The impact of the catalysts on the reduction of the activation energy is the strongest when using the catalysts of manganese and applying all the three afore-said methods. The least aberrations among the stated methods in defining the kinetic parameters were obtained by using the manganese catalyst.

  5. Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications

    USGS Publications Warehouse

    Bada, J.L.; Shou, M.-Y.; Man, E.H.; Schroeder, R.A.

    1978-01-01

    The diagenesis of the hydroxy amino acids serine and threonine in foraminiferal tests has been investigated. The decomposition pathways of these amino acids are complex; the principal reactions appear to be dehydration, aldol cleavage and decarboxylation. Stereochemical studies indicate that the ??-amino-n-butyric acid (ABA) detected in foraminiferal tests is the end product of threonine dehydration pathway. Decomposition of serine and threonine in foraminiferal tests from two well-dated Caribbean deep-sea cores, P6304-8 and -9, has been found to follow irreversible first-order kinetics. Three empirical equations were derived for the disappearance of serine and threonine and the appearance of ABA. These equations can be used as a new geochronological method for dating foraminiferal tests from other deep-sea sediments. Preliminary results suggest that ages deduced from the ABA kinetics equation are most reliable because "species effect" and contamination problems are not important for this nonbiological amino acid. Because of the variable serine and threonine contents of modern foraminiferal species, it is likely that the accurate age estimates can be obtained from the serine and threonine decomposition equations only if a homogeneous species assemblage or single species sample isolated from mixed natural assemblages is used. ?? 1978.

  6. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  7. Complications in complexation kinetics for lanthanides with DTPA using dye probe molecules in aqueous solution

    DOE PAGES

    Larsson, K.; Cullen, T. D.; Mezyk, S. P.; ...

    2017-05-17

    The complexation kinetics for the polyaminopolycarboxylic ligand DTPA to lanthanides in acidic aqueous solution were investigated using the dye ligand displacement technique and stopped-flow spectroscopy. Significant rate differences were obtained for different dye probes used, indicating that the kinetics of the dissociation of the dye molecule significantly impacts the overall measured kinetics when using this common methodology. The conditions of the solution also influenced the dye-lanthanide-DTPA interactions, which reconciled previously disparate data in the literature.

  8. Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies

    NASA Astrophysics Data System (ADS)

    Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.

  9. Unfolding Kinetics of β-Lactoglobulin Induced by Surfactant and Denaturant: A Stopped-Flow/Fluorescence Study

    PubMed Central

    Viseu, Maria Isabel; Melo, Eduardo P.; Carvalho, Teresa Isabel; Correia, Raquel F.; Costa, Sílvia M. B.

    2007-01-01

    The β→α transition of β-lactoglobulin, a globular protein abundant in the milk of several mammals, is investigated in this work. This transition, induced by the cationic surfactant dodecyltrimethylammonium chloride (DTAC), is accompanied by partial unfolding of the protein. In this work, unfolding of bovine β-lactoglobulin in DTAC is compared with its unfolding induced by the chemical denaturant guanidine hydrochloride (GnHCl). The final protein states attained in the two media have quite different secondary structure: in DTAC the α-helical content increases, leading to the so-called α-state; in GnHCl the amount of ordered secondary-structure decreases, resulting in a random coil-rich final state (denatured, or D, state). To obtain information on both mechanistic routes, in DTAC and GnHCl, and to characterize intermediates, the kinetics of unfolding were investigated in the two media. Equilibrium and kinetic data show the partial accumulation of an on-pathway intermediate in each unfolding route: in DTAC, an intermediate (I1) with mostly native secondary structure but loose tertiary structure appears between the native (β) and α-states; in GnHCl, another intermediate (I2) appears between states β and D. Kinetic rate constants follow a linear Chevron-plot representation in GnHCl, but show a more complex mechanism in DTAC, which acts like a stronger binding species. PMID:17693475

  10. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komm, Rudolf; Gosain, Sanjay, E-mail: komm@nso.edu

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%,more » respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign.« less

  11. Acetyl-CoA carboxylase in Reuber hepatoma cells: variation in enzyme activity, insulin regulation, and cellular lipid content.

    PubMed

    Bianchi, A; Evans, J L; Nordlund, A C; Watts, T D; Witters, L A

    1992-01-01

    Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.

  12. MULTISUBSTRATE BIODEGRADATION KINETICS FOR BINARY AND COMPLEX MIXTURES OF POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    Biodegradation kinetics were studied for binary and complex mixtures of nine polycyclic aromatic hydrocarbons (PAHs): naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 2-ethylnaphthalene, phenanthrene, anthracene, pyrene, fluorene and fluoranthene. Discrepancies between the ...

  13. Transient kinetic studies of pH-dependent hydrolyses by exo-type carboxypeptidase P on a 27-MHz quartz crystal microbalance.

    PubMed

    Furusawa, Hiroyuki; Takano, Hiroki; Okahata, Yoshio

    2008-02-15

    pH-Dependent kinetic parameters (k(on), k(off), and k(cat)) of protein (myoglobin) hydrolyses catalyzed by exo-enzyme (carboxypeptidase P, CPP) were obtained by using a protein-immobilized quartz crystal microbalance (QCM) in acidic aqueous solutions. The formation of the enzyme-substrate (ES) complex (k(on)), the decay of the ES complex (k(off)), and the formation of the product (k(cat)) could be analyzed by transient kinetics as mass changes on the QCM plate. The Kd (k(off)/k(on)) value was different from the Michaelis constant Km calculated from (k(off) + k(cat))/k(on) due to k(cat) > k(off). The rate-determining step was the binding step (k(on), and the catalytic rate k(cat) was faster than other k(on) and k(off) values. In the range of pH 2.5-5.0, values of k(on) gradually increased with decreasing pH showing a maximum at pH 3.7, values of k(off) were independent of pH, and k(cat) increased gradually with decreasing pH. As a result, the apparent rate constant (k(cat)/Km) showed a maximum at pH 3.7 and gradually increased with decreasing pH. The optimum pH at 3.7 of k(on) is explained by the optimum binding ability of CPP to the COOH terminus of the substrate with hydrogen bonds. The increase of k(cat) at the lower pH correlated with the decrease of alpha-helix contents of the myoglobin substrate on the QCM.

  14. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    PubMed

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  15. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    PubMed

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  16. TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability.

    PubMed

    Hieb, Aaron R; Halsey, Wayne A; Betterton, Meredith D; Perkins, Thomas T; Kugel, Jennifer F; Goodrich, James A

    2007-09-21

    Eukaryotic mRNA transcription by RNA polymerase II is a highly regulated complex reaction involving numerous proteins. In order to control tissue and promoter specific gene expression, transcription factors must work in concert with each other and with the promoter DNA to form the proper architecture to activate the gene of interest. The TATA binding protein (TBP) binds to TATA boxes in core promoters and bends the TATA DNA. We have used quantitative solution fluorescence resonance energy transfer (FRET) and gel-based FRET (gelFRET) to determine the effect of TFIIA on the conformation of the DNA in TBP/TATA complexes and on the kinetic stability of these complexes. Our results indicate that human TFIIA decreases the angle to which human TBP bends consensus TATA DNA from 104 degrees to 80 degrees when calculated using a two-kink model. The kinetic stability of TBP/TATA complexes was greatly reduced by increasing the KCl concentration from 50 mM to 140 mM, which is more physiologically relevant. TFIIA significantly enhanced the kinetic stability of TBP/TATA complexes, thereby attenuating the effect of higher salt concentrations. We also found that TBP bent non-consensus TATA DNA to a lesser degree than consensus TATA DNA and complexes between TBP and a non-consensus TATA box were kinetically unstable even at 50 mM KCl. Interestingly, TFIIA increased the calculated bend angle and kinetic stability of complexes on a non-consensus TATA box, making them similar to those on a consensus TATA box. Our data show that TFIIA induces a conformational change within the TBP/TATA complex that enhances its stability under both in vitro and physiological salt conditions. Furthermore, we present a refined model for the effect that TFIIA has on DNA conformation that takes into account potential changes in bend angle as well as twist angle.

  17. Quantification of trace metals in water using complexation and filter concentration.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Japarov, Julia; Elish, Eyal; Edri, Elad; Schechter, Israel

    2010-06-15

    Various metals undergo complexation with organic reagents, resulting in colored products. In practice, their molar absorptivities allow for quantification in the ppm range. However, a proper pre-concentration of the colored complex on paper filter lowers the quantification limit to the low ppb range. In this study, several pre-concentration techniques have been examined and compared: filtering the already complexed mixture, complexation on filter, and dipping of dye-covered filter in solution. The best quantification has been based on the ratio of filter reflectance at a certain wavelength to that at zero metal concentration. The studied complex formations (Ni ions with TAN and Cd ions with PAN) involve production of nanoparticle suspensions, which are associated with complicated kinetics. The kinetics of the complexation of Ni ions with TAN has been investigated and optimum timing could be found. Kinetic optimization in regard to some interferences has also been suggested.

  18. Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons.

    PubMed

    Velimirovic, Milica; Larsson, Per-Olof; Simons, Queenie; Bastiaens, Leen

    2013-11-01

    Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. An energy-limited model of algal biofuel production: Toward the next generation of advanced biofuels

    DOE PAGES

    Dunlop, Eric H.; Coaldrake, A. Kimi; Silva, Cory S.; ...

    2013-10-22

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  20. Kinetics of the reduction of cobalt(III) amine complexes by 1-hydroxy-1-methylethyl radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusaba, K.; Ogino, Hiroshi; Bakac, A.

    1989-03-08

    In order to better understand the rate constants for the reduction of several cobalt complexes by 1-hydroxy-1-methylene radicals ({sup {sm bullet}}C(CH{sub 3}){sub 2}OH), the reactions of {sup {sm bullet}}(CH{sub 3}){sub 2}OH with several cobalt(III) complexes of bidentate amines have been studied. The Marcus-Hush theory was deemed the most appropriate for analysis of the kinetic data. The correlation between the kinetics of the reduction of the Co(III) amines by C(CH{sub 3}){sub 2}OH and the reduction of the first d-d band for Co(III) complexes is discussed. 21 refs., 2 figs., 1 tab.

  1. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  2. Convective drying kinetics of strawberry (Fragaria ananassa): Effects on antioxidant activity, anthocyanins and total phenolic content.

    PubMed

    Méndez-Lagunas, Lilia; Rodríguez-Ramírez, Juan; Cruz-Gracida, Marlene; Sandoval-Torres, Sadoth; Barriada-Bernal, Gerardo

    2017-09-01

    The thermal drying effects on strawberries were investigated in terms of the kinetics of antioxidant activity (AA), anthocyanins (A) and total phenolic compound content (TPC), as well as the final colour. The evaluated drying temperatures were 50 and 60°C with an air rate of 1.5m/s. The 2,2-diphenyl-2-picryl-hydrazyl, pH differential and Folin-Ciocalteu methods were used to assess the antioxidant properties. The kinetics of TPC and AA showed an initial and final period of degradation attributed to inhibition of enzymes. A plateau between these two periods suggests that under certain conditions of temperature and water content, no degradation reactions occurred. Final losses of up to 74, 45 and 78% were found for AA, A and TPC, respectively. The total colour change (ΔE) was lesser degree at 60 than 50°C. Thermal degradation of the antioxidant compounds followed a first-order reaction kinetics and the degradation rate constants (k) were calculated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Continuous monitoring of enzymatic activity within native electrophoresis gels: Application to mitochondrial oxidative phosphorylation complexes

    PubMed Central

    Covian, Raul; Chess, David; Balaban, Robert S.

    2012-01-01

    Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction media recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase where catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. PMID:22975200

  4. Continuous monitoring of enzymatic activity within native electrophoresis gels: application to mitochondrial oxidative phosphorylation complexes.

    PubMed

    Covian, Raul; Chess, David; Balaban, Robert S

    2012-12-01

    Native gel electrophoresis allows the separation of very small amounts of protein complexes while retaining aspects of their activity. In-gel enzymatic assays are usually performed by using reaction-dependent deposition of chromophores or light-scattering precipitates quantified at fixed time points after gel removal and fixation, limiting the ability to analyze the enzyme reaction kinetics. Herein, we describe a custom reaction chamber with reaction medium recirculation and filtering and an imaging system that permits the continuous monitoring of in-gel enzymatic activity even in the presence of turbidity. Images were continuously collected using time-lapse high-resolution digital imaging, and processing routines were developed to obtain kinetic traces of the in-gel activities and analyze reaction time courses. This system also permitted the evaluation of enzymatic activity topology within the protein bands of the gel. This approach was used to analyze the reaction kinetics of two mitochondrial complexes in native gels. Complex IV kinetics showed a short initial linear phase in which catalytic rates could be calculated, whereas Complex V activity revealed a significant lag phase followed by two linear phases. The utility of monitoring the entire kinetic behavior of these reactions in native gels, as well as the general application of this approach, is discussed. Published by Elsevier Inc.

  5. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Reduction behavior and kinetics of vanadium-titanium sinters under high potential oxygen enriched pulverized coal injection

    NASA Astrophysics Data System (ADS)

    Ma, Jin-fang; Wang, Guang-wei; Zhang, Jian-liang; Li, Xin-yu; Liu, Zheng-jian; Jiao, Ke-xin; Guo, Jian

    2017-05-01

    In this work, the reduction behavior of vanadium-titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was established to analyze the reduction kinetics. The results show that the reduction rate of sinters was accelerated by an increase of CO and H2 contents. Meanwhile, with the increase in CO and H2 contents, the increasing range of the medium reduction index (MRE) of sinters decreased. The increasing oxygen enrichment ratio played a diminishing role in improving the reduction behavior of the sinters. The reducing process kinetic parameters were solved using the modified random role model. The results indicated that, with increasing oxygen enrichment, the contents of CO and H2 in the reducing gas increased. The reduction activation energy of the sinters decreased to between 20.4 and 23.2 kJ/mol.

  7. Genotype-specific relationships among phosphorus use, growth and abundance in Daphnia pulicaria

    PubMed Central

    Chowdhury, Priyanka Roy; Baker, Kristina D.; Weider, Lawrence J.; Jeyasingh, Punidan D.

    2017-01-01

    The framework ecological stoichiometry uses elemental composition of species to make predictions about growth and competitive ability in defined elemental supply conditions. Although intraspecific differences in stoichiometry have been observed, we have yet to understand the mechanisms generating and maintaining such variation. We used variation in phosphorus (P) content within a Daphnia species to test the extent to which %P can explain variation in growth and competition. Further, we measured 33P kinetics (acquisition, assimilation, incorporation and retention) to understand the extent to which such variables improved predictions. Genotypes showed significant variation in P content, 33P kinetics and growth rate. P content alone was a poor predictor of growth rate and competitive ability. While most genotypes exhibited the typical growth penalty under P limitation, a few varied little in growth between P diets. These observations indicate that some genotypes can maintain growth under P-limited conditions by altering P use, suggesting that decomposing P content of an individual into physiological components of P kinetics will improve stoichiometric models. More generally, attention to the interplay between nutrient content and nutrient-use is required to make inferences regarding the success of genotypes in defined conditions of nutrient supply. PMID:29308224

  8. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice.

    PubMed

    Elik, Aysel; Yanık, Derya Koçak; Maskan, Medeni; Göğüş, Fahrettin

    2016-05-01

    The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content.

  9. Kinetic controls on the complexation between mercury and dissolved organic matter in a contaminated environment.

    PubMed

    Miller, Carrie L; Southworth, George; Brooks, Scott; Liang, Liyuan; Gu, Baohua

    2009-11-15

    The interaction of mercury (Hg) with dissolved natural organic matter (NOM) under equilibrium conditions is the focus of many studies but the kinetic controls on Hg-NOM complexation in aquatic systems have often been overlooked. We examined the rates of Hg-NOM complexation both in a contaminated Upper East Fork Poplar Creek (UEFPC) in Oak Ridge, Tennessee, and in controlled laboratory experiments using reducible Hg (Hg(R)) measurements and C(18) solid phase extraction techniques. Of the filterable Hg at the headwaters of UEFPC, >90% was present as Hg(R) and this fraction decreased downstream but remained >29% of the filterable Hg at all sites. The presence of higher Hg(R) concentrations than would be predicted under equilibrium conditions in UEFPC and in experiments with a NOM isolate suggests that kinetic reactions are controlling the complexation between Hg and NOM. The slow formation of Hg-NOM complexes is attributed to competitive ligand exchange among various moieties and functional groups in NOM with a range of binding strengths and configurations. This study demonstrates the need to consider the effects of Hg-NOM complexation kinetics on processes such as Hg methylation and solid phase partitioning.

  10. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    PubMed

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  11. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    PubMed Central

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066

  12. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis

    USGS Publications Warehouse

    Lewan, M.D.; Ruble, T.E.

    2002-01-01

    This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.

  13. Biophysical comparison of ATP synthesis mechanisms shows a kinetic advantage for the rotary process.

    PubMed

    Anandakrishnan, Ramu; Zhang, Zining; Donovan-Maiye, Rory; Zuckerman, Daniel M

    2016-10-04

    The ATP synthase (F-ATPase) is a highly complex rotary machine that synthesizes ATP, powered by a proton electrochemical gradient. Why did evolution select such an elaborate mechanism over arguably simpler alternating-access processes that can be reversed to perform ATP synthesis? We studied a systematic enumeration of alternative mechanisms, using numerical and theoretical means. When the alternative models are optimized subject to fundamental thermodynamic constraints, they fail to match the kinetic ability of the rotary mechanism over a wide range of conditions, particularly under low-energy conditions. We used a physically interpretable, closed-form solution for the steady-state rate for an arbitrary chemical cycle, which clarifies kinetic effects of complex free-energy landscapes. Our analysis also yields insights into the debated "kinetic equivalence" of ATP synthesis driven by transmembrane pH and potential difference. Overall, our study suggests that the complexity of the F-ATPase may have resulted from positive selection for its kinetic advantage.

  14. Real-Time Kinetic Probes Support Monothiol Glutaredoxins As Intermediate Carriers in Fe-S Cluster Biosynthetic Pathways.

    PubMed

    Vranish, James N; Das, Deepika; Barondeau, David P

    2016-11-18

    Iron-sulfur (Fe-S) clusters are protein cofactors that are required for many essential cellular functions. Fe-S clusters are synthesized and inserted into target proteins by an elaborate biosynthetic process. The insensitivity of most Fe-S assembly and transfer assays requires high concentrations for components and places major limits on reaction complexity. Recently, fluorophore labels were shown to be effective at reporting cluster content for Fe-S proteins. Here, the incorporation of this labeling approach allowed the design and interrogation of complex Fe-S cluster biosynthetic reactions that mimic in vivo conditions. A bacterial Fe-S assembly complex, composed of the cysteine desulfurase IscS and scaffold protein IscU, was used to generate [2Fe-2S] clusters for transfer to mixtures of putative intermediate carrier and acceptor proteins. The focus of this study was to test whether the monothiol glutaredoxin, Grx4, functions as an obligate [2Fe-2S] carrier protein in the Fe-S cluster distribution network. Interestingly, [2Fe-2S] clusters generated by the IscS-IscU complex transferred to Grx4 at rates comparable to previous assays using uncomplexed IscU as a cluster source in chaperone-assisted transfer reactions. Further, we provide evidence that [2Fe-2S]-Grx4 delivers clusters to multiple classes of Fe-S targets via direct ligand exchange in a process that is both dynamic and reversible. Global fits of cluster transfer kinetics support a model in which Grx4 outcompetes terminal target proteins for IscU-bound [2Fe-2S] clusters and functions as an intermediate cluster carrier. Overall, these studies demonstrate the power of chemically conjugated fluorophore reporters for unraveling mechanistic details of biological metal cofactor assembly and distribution networks.

  15. Kinetics of enzymatic high-solid hydrolysis of lignocellulosic biomass studied by calorimetry.

    PubMed

    Olsen, Søren N; Lumby, Erik; McFarland, Kc; Borch, Kim; Westh, Peter

    2011-03-01

    Enzymatic hydrolysis of high-solid biomass (>10% w/w dry mass) has become increasingly important as a key step in the production of second-generation bioethanol. To this end, development of quantitative real-time assays is desirable both for empirical optimization and for detailed kinetic analysis. In the current work, we have investigated the application of isothermal calorimetry to study the kinetics of enzymatic hydrolysis of two substrates (pretreated corn stover and Avicel) at high-solid contents (up to 29% w/w). It was found that the calorimetric heat flow provided a true measure of the hydrolysis rate with a detection limit of about 500 pmol glucose s(-1). Hence, calorimetry is shown to be a highly sensitive real-time method, applicable for high solids, and independent on the complexity of the substrate. Dose-response experiments with a typical cellulase cocktail enabled a multidimensional analysis of the interrelationships of enzyme load and the rate, time, and extent of the reaction. The results suggest that the hydrolysis rate of pretreated corn stover is limited initially by available attack points on the substrate surface (<10% conversion) but becomes proportional to enzyme dosage (excess of attack points) at later stages (>10% conversion). This kinetic profile is interpreted as an increase in polymer end concentration (substrate for CBH) as the hydrolysis progresses, probably due to EG activity in the enzyme cocktail. Finally, irreversible enzyme inactivation did not appear to be the source of reduced hydrolysis rate over time.

  16. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    PubMed

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.

    PubMed

    Andruchov, Oleg; Andruchova, Olena; Wang, Yishu; Galler, Stefan

    2006-02-15

    Cross-bridge kinetics underlying stretch-induced force transients was studied in fibres with different myosin light chain (MLC) isoforms from skeletal muscles of rabbit and rat. The force transients were induced by stepwise stretches (< 0.3% of fibre length) applied on maximally Ca2+-activated skinned fibres. Fast fibre types IIB, IID (or IIX) and IIA and the slow fibre type I containing the myosin heavy chain isoforms MHC-IIb, MHC-IId (or MHC-IIx), MHC-IIa and MHC-I, respectively, were investigated. The MLC isoform content varied within fibre types. Fast fibre types contained the fast regulatory MLC isoform MLC2f and different proportions of the fast alkali MLC isoforms MLC1f and MLC3f. Type I fibres contained the slow regulatory MLC isoform MLC2s and the slow alkali MLC isoform MLC1s. Slow MLC isoforms were also present in several type IIA fibres. The kinetics of force transients differed by a factor of about 30 between fibre types (order from fastest to slowest kinetics: IIB > IID > IIA > I). The kinetics of the force transients was not dependent on the relative content of MLC1f and MLC3f. Type IIA fibres containing fast and slow MLC isoforms were about 1.2 times slower than type IIA fibres containing only fast MLC isoforms. We conclude that while the cross-bridge kinetics is mainly determined by the MHC isoforms present, it is affected by fast and slow MLC isoforms but not by the relative content of MLC1f and MLC3f. Thus, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the cross-bridge kinetics.

  18. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes.

    PubMed

    Wang, Dawei; Kou, Ronghui; Ren, Yang; Sun, Cheng-Jun; Zhao, Hu; Zhang, Ming-Jian; Li, Yan; Huq, Ashifia; Ko, J Y Peter; Pan, Feng; Sun, Yang-Kook; Yang, Yong; Amine, Khalil; Bai, Jianming; Chen, Zonghai; Wang, Feng

    2017-10-01

    Nickel-rich layered transition metal oxides, LiNi 1- x (MnCo) x O 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7 Mn 0.15 Co 0.15 O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dawei; Kou, Ronghui; Ren, Yang

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)(x)O-2 (1-x >= 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationicmore » ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs.« less

  20. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dawei; Kou, Ronghui; Ren, Yang

    Nickel-rich layered transition metal oxides, LiNi 1-x(MnCo) xO 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7Mn 0.15Co 0.15O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strongmore » temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs« less

  1. Membrane omega-3 fatty acids modulate the oligomerisation kinetics of adenosine A2A and dopamine D2 receptors

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Javanainen, Matti; Gómez-Soler, Maricel; Cordobilla, Begoña; Domingo, Joan Carles; Sanz, Ferran; Pastor, Manuel; Ciruela, Francisco; Martinez-Seara, Hector; Selent, Jana

    2016-01-01

    Membrane levels of docosahexaenoic acid (DHA), an essential omega-3 polyunsaturated fatty acid (ω-3 PUFA), are decreased in common neuropsychiatric disorders. DHA modulates key cell membrane properties like fluidity, thereby affecting the behaviour of transmembrane proteins like G protein-coupled receptors (GPCRs). These receptors, which have special relevance for major neuropsychiatric disorders have recently been shown to form dimers or higher order oligomers, and evidence suggests that DHA levels affect GPCR function by modulating oligomerisation. In this study, we assessed the effect of membrane DHA content on the formation of a class of protein complexes with particular relevance for brain disease: adenosine A2A and dopamine D2 receptor oligomers. Using extensive multiscale computer modelling, we find a marked propensity of DHA for interaction with both A2A and D2 receptors, which leads to an increased rate of receptor oligomerisation. Bioluminescence resonance energy transfer (BRET) experiments performed on living cells suggest that this DHA effect on the oligomerisation of A2A and D2 receptors is purely kinetic. This work reveals for the first time that membrane ω-3 PUFAs play a key role in GPCR oligomerisation kinetics, which may have important implications for neuropsychiatric conditions like schizophrenia or Parkinson’s disease.

  2. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE PAGES

    Wang, Dawei; Kou, Ronghui; Ren, Yang; ...

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi 1-x(MnCo) xO 2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi 0.7Mn 0.15Co 0.15O 2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strongmore » temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs« less

  3. A multiplexed method for kinetic measurements of apoptosis and proliferation using live-content imaging.

    PubMed

    Artymovich, Katherine; Appledorn, Daniel M

    2015-01-01

    In vitro cell proliferation and apoptosis assays are widely used to study cancer cell biology. Commonly used methodologies are however performed at a single, user-defined endpoint. We describe a kinetic multiplex assay incorporating the CellPlayer(TM) NucLight Red reagent to measure proliferation and the CellPlayer(TM) Caspase-3/7 reagent to measure apoptosis using the two-color, live-content imaging platform, IncuCyte(TM) ZOOM. High-definition phase-contrast images provide an additional qualitative validation of cell death based on morphological characteristics. The kinetic data generated using this strategy can be used to derive informed pharmacology measurements to screen potential cancer therapeutics.

  4. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH.

    PubMed

    Fujii, Manabu; Imaoka, Akira; Yoshimura, Chihiro; Waite, T D

    2014-04-15

    Thermodynamic and kinetic parameters for ferric iron (Fe[III]) complexation by well-characterized humic substances (HS) from various origins were determined by a competitive ligand method with 5-sulfosalicylic acid at circumneutral pH (6.0-8.0) and an ionic strength of ∼0.06 M. The measured Fe binding properties including conditional stability constants and complexation capacities ranged over more than 2 orders of magnitude, depending on the origin and the particular operationally defined fraction of HS examined. Statistical comparison of the complexation parameters to a range of chemical properties of the HS indicated a strong positive correlation between Fe(III) complexation capacity and aromatic carbon content in the HS at all pHs examined. In contrast, the complexation capacity was determined to be up to a few orders of magnitude smaller than the concentration of carboxylic and phenolic groups present. Therefore, specific functional groups including those resident in the proximity of aromatic structures within the HS are likely preferable for Fe(III) coordination under the conditions examined. Overall, our results suggest that the concentration of dissolved Fe(III) complexes in natural waters is substantially influenced by variation in HS characteristics in addition to other well-known factors such as HS concentration and nature and concentration of competing cations present.

  5. Beta-lactamase-catalyzed aminolysis of depsipeptides: Proof of the nonexistence of a specific D-phenylalanine/enzyme complex by double-label isotope trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pazhanisamy, S.; Pratt, R.F.

    The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-(((phenylacetyl)glycyl)oxy)benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presencemore » of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed.« less

  6. On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    DOE PAGES

    Tang, J. Y.

    2015-09-03

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state formore » the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ] T of v with respect the total enzyme concentration [ E ] T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ] T of v with respect to the total substrate concentration [ S ] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently under-predicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E ] T, and persistently over-predicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S ] T. In contrast, the Equilibrium Chemistry Approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E ] T and ∂ ln v / ∂ ln [ S ] T. Since the Equilibrium Chemistry Approximation kinetics includes the advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, soil biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less

  7. An Intuitive Approach to Steady-State Kinetics.

    ERIC Educational Resources Information Center

    Raines, Ronald T.; Hansen, David E.

    1988-01-01

    Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)

  8. Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies.

    PubMed

    Rahman, N K; Kamaruddin, A H; Uzir, M H

    2011-08-01

    The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.

  9. Kinetic model for astaxanthin aggregation in water-methanol mixtures

    NASA Astrophysics Data System (ADS)

    Giovannetti, Rita; Alibabaei, Leila; Pucciarelli, Filippo

    2009-07-01

    The aggregation of astaxanthin in hydrated methanol was kinetically studied in the temperature range from 10 °C to 50 °C, at different astaxanthin concentrations and solvent composition. A kinetic model for the formation and transformation of astaxanthin aggregated has been proposed. Spectrophotometric studies showed that monomeric astaxanthin decayed to H-aggregates that after-wards formed J-aggregates when water content was 50% and the temperature lower than 20 °C; at higher temperatures, very stable J-aggregates were formed directly. Monomer formed very stable H-aggregates when the water content was greater than 60%; in these conditions H-aggregates decayed into J-aggregates only when the temperature was at least 50 °C. Through these findings it was possible to establish that the aggregation reactions took place through a two steps consecutive reaction with first order kinetic constants and that the values of these depended on the solvent composition and temperature.

  10. The kinetic of key phytochemical compounds of non-heading and heading leafy Brassica oleracea landraces as affected by traditional cooking methods.

    PubMed

    Giambanelli, Elisa; Verkerk, Ruud; D'Antuono, L Filippo; Oliviero, Teresa

    2016-11-01

    Kales are often a key ingredient of traditional foods, containing high amounts of indolic glucosinolates (precursors of indole-3-carbinol and ascorbigen), carotenoids and phenolics. The present trend to associate traditional foods crops with health-promoting properties suggested to investigate the degradation kinetic of three Brassica oleracea landraces' phytochemicals subjected to boiling, steaming and stir-frying. Boiling led to substantial losses due to leaching. Glucosinolates followed a second-order degradation kinetic (20% of their initial values after 10 min in Nero di Toscana). Phenolic content in leaves + cooking water remained unchanged, whereas their antioxidant capacity was reduced. Carotenoid content increased during the first minutes of boiling. Steaming showed the highest retention of phytochemicals, with often zero-order degradation kinetic, having however a strong effect on colour. Stir-frying produced high losses for all measured compounds; also, β-carotene reduced its content to 10-23% independently of variety. Conversion values for indole-derived compounds ranged from non-detectable to 23.5%. Variety strongly affected observed degradation rates because of a different glucosinolate composition and leaf structure. With this research, more information has been gained on the degradation kinetic of B. oleracea landraces' phytochemical compounds upon cooking, highlighting the possibility of improving bioactive component retention. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface.

    PubMed

    Kyung, Daeseung; Lim, Hyung-Kyu; Kim, Hyungjun; Lee, Woojin

    2015-01-20

    In this study, we investigated experimentally and computationally the effect of organo-mineral complexes on the nucleation kinetics of CO2 hydrate. These complexes formed via adsorption of zwitter-ionic glycine (Gly-zw) onto the surface of sodium montmorillonite (Na-MMT). The electrostatic attraction between the −NH3(+) group of Gly-zw, and the negatively charged Na-MMT surface, provides the thermodynamic driving force for the organo-mineral complexation. We suggest that the complexation of Gly-zw on the Na-MMT surface accelerates CO2 hydrate nucleation kinetics by increasing the mineral–water interfacial area (thus increasing the number of effective hydrate-nucleation sites), and also by suppressing the thermal fluctuation of solvated Na(+) (a well-known hydrate formation inhibitor) in the vicinity of the mineral surface by coordinating with the −COO(–) groups of Gly-zw. We further confirmed that the local density of hydrate-forming molecules (i.e., reactants of CO2 and water) at the mineral surface (regardless of the presence of Gly-zw) becomes greater than that of bulk phase. This is expected to promote the hydrate nucleation kinetics at the surface. Our study sheds new light on CO2 hydrate nucleation kinetics in heterogeneous marine environments, and could provide knowledge fundamental to successful CO2 sequestration under seabed sediments.

  12. Kinetics of mass transfer during deep fat frying of yellow fleshed cassava root slices

    NASA Astrophysics Data System (ADS)

    Oyedeji, A. B.; Sobukola, O. P.; Henshaw, F. O.; Adegunwa, M. O.; Sanni, L. O.; Tomlins, K. I.

    2016-05-01

    Kinetics of mass transfer [moisture content, oil uptake, total carotenoid (TC) and shrinkage] during frying of yellow fleshed cassava roots (TMS 01/1371) was investigated. Slices were divided into (i) fresh and (ii) pre-dried to 75 % moisture content before atmospheric frying and (iii) vacuum fried. Percentage TC and activation energies of vacuum, fresh and pre-dried fried samples were 76, 63 and 61 %; and 82, 469.7, 213.7 kJ/mol, respectively.

  13. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride.

    PubMed

    Abdellaziz, Lobna M; Hosny, Mervat M

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe(3+) ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2' bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange-red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8-6, 0.8-4) for methods A and B, (16-96, 16-96 and 16-72) for procedures 1-3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations without interference from the common excipients. The results obtained by the proposed methods were comparable with those obtained by the reference method.

  14. Development and Validation of Spectrophotometric, Atomic Absorption and Kinetic Methods for Determination of Moxifloxacin Hydrochloride

    PubMed Central

    Abdellaziz, Lobna M.; Hosny, Mervat M.

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations without interference from the common excipients. The results obtained by the proposed methods were comparable with those obtained by the reference method. PMID:22219661

  15. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Unique nucleation activity of inorganic fullerene-like WS2 nanoparticles in polyphenylene sulfide nanocomposites: isokinetic and isoconversional study of dynamic crystallization kinetics.

    PubMed

    Naffakh, Mohammed; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio

    2009-05-21

    The dynamic crystallization kinetics of polyphenylene sulfide (PPS) nanocomposites with inorganic fullerene WS2 nanopartices (IF-WS2) content varying from 0.05 to 8 wt % has been studied using differential scanning calorimetry (DSC). The analysis of the crystallization at different cooling rates demonstrates that the completely isokinetic description of the crystallization process is not possible. However, the isoconversional methods in combination with the JMAEK equation provide a better understanding of the kinetics of the dynamic crystallization process. The addition of IF-WS2 influences the crystallization kinetics of PPS but in ways unexpected for polymer nanocomposites. A drastic change from retardation to promotion of crystallization is observed with increasing nanoparticle content. In the same way, the results of the nucleation activity and the effective energy barrier confirmed the unique dependence of the crystallization behavior of PPS on composition. In addition, the morphological data obtained from the polarized optical microscopy (POM) and time-resolved synchrotron X-ray diffraction is consistent with results of the crystallization kinetics of PPS/IF-WS2 nanocomposites.

  17. Oxygen Atom Exchange between H2O and Non-Heme Oxoiron(IV) Complexes: Ligand Dependence and Mechanism.

    PubMed

    Puri, Mayank; Company, Anna; Sabenya, Gerard; Costas, Miquel; Que, Lawrence

    2016-06-20

    Detailed studies of oxygen atom exchange (OAE) between H2(18)O and synthetic non-heme oxoiron(IV) complexes supported by tetradentate and pentadentate ligands provide evidence that they proceed by a common mechanism but within two different kinetic regimes, with OAE rates that span 2 orders of magnitude. The first kinetic regime involves initial reversible water association to the Fe(IV) complex, which is evidenced by OAE rates that are linearly dependent on [H2(18)O] and H2O/D2O KIEs of 1.6, while the second kinetic regime involves a subsequent rate determining proton-transfer step between the bound aqua and oxo ligands that is associated with saturation behavior with [H2(18)O] and much larger H2O/D2O KIEs of 5-6. [Fe(IV)(O)(TMC)(MeCN)](2+) (1) and [Fe(IV)(O)(MePy2TACN)](2+) (9) are examples of complexes that exhibit kinetic behavior in the first regime, while [Fe(IV)(O)(N4Py)](2+) (3), [Fe(IV)(O)(BnTPEN)](2+) (4), [Fe(IV)(O)(1Py-BnTPEN)](2+) (5), [Fe(IV)(O)(3Py-BnTPEN)](2+) (6), and [Fe(IV)(O)(Me2Py2TACN)](2+) (8) represent complexes that fall in the second kinetic regime. Interestingly, [Fe(IV)(O)(PyTACN)(MeCN)](2+) (7) exhibits a linear [H2(18)O] dependence below 0.6 M and saturation above 0.6 M. Analysis of the temperature dependence of the OAE rates shows that most of these complexes exhibit large and negative activation entropies, consistent with the proposed mechanism. One exception is complex 9, which has a near-zero activation entropy and is proposed to undergo ligand-arm dissociation during the RDS to accommodate H2(18)O binding. These results show that the observed OAE kinetic behavior is highly dependent on the nature of the supporting ligand and are of relevance to studies of non-heme oxoiron(IV) complexes in water or acetonitrile/water mixtures for applications in photocatalysis and water oxidation chemistry.

  18. Beta-lactamase-catalyzed aminolysis of depsipeptides: proof of the nonexistence of a specific D-phenylalanine/enzyme complex by double-label isotope trapping.

    PubMed

    Pazhanisamy, S; Pratt, R F

    1989-08-22

    The steady-state kinetics of the Enterobacter cloacae P99 beta-lactamase-catalyzed aminolysis of the depsipeptide m-[[(phenylacetyl)glycyl]oxy]benzoic acid by D-phenylalanine were consistent with an ordered sequential mechanism with D-phenylalanine binding first [Pazhanisamy, S., Govardhan, C. P., & Pratt, R. F. (1989) Biochemistry (first of three papers in this issue)]. In terms of this mechanism, the kinetics data required that in 20 mM MOPS buffer, pH 7.5, the dissociation constant of the initially formed enzyme/D-phenylalanine complex be around 1.3 mM; at pH 9.0 in 0.1 M carbonate buffer, the complex should be somewhat more stable. Attempts to detect this complex in a binary mixture by spectroscopic methods (fluorescence, circular dichroic, and nuclear magnetic resonance spectra) failed. Kinetic methods were also unsuccessful--the presence of 20 mM D-phenylalanine did not appear to affect beta-lactamase activity nor inhibition of the enzyme by phenylmethanesulfonyl fluoride, phenylboronic acid, or (3-dansylamidophenyl)boronic acid. Equilibrium dialysis experiments appeared to indicate that the dissociation constant of any binary enzyme/D-phenylalanine complex must be somewhat higher than the kinetics allowed (greater than 2 mM). Since the kinetics also required that, at high depsipeptide concentrations, and again with the assumption of the ordered sequential mechanism, the reaction of the enzyme/D-phenylalanine complex to aminolysis products be faster than its reversion to enzyme and D-phenylalanine, a double-label isotope-trapping experiment was performed.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data.

    PubMed

    Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech

    2017-04-01

    The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  20. The impact of whole human blood on the kinetic inertness of platinum(iv) prodrugs - an HPLC-ICP-MS study.

    PubMed

    Theiner, Sarah; Grabarics, Márkó; Galvez, Luis; Varbanov, Hristo P; Sommerfeld, Nadine S; Galanski, Markus; Keppler, Bernhard K; Koellensperger, Gunda

    2018-04-17

    The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.

  1. Heat and Kinetic Theory in 19th-Century Physics Textbooks: The Case of Spain.

    ERIC Educational Resources Information Center

    Vaquero, Jose M.; Santos, Andres

    2001-01-01

    Presents an analysis of the contents of 19th century Spanish textbooks. These textbooks are centered on imponderable fluids, the concept of energy, the mechanical theory of heat, and the kinetic theory of gases. (SAH)

  2. Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.

    PubMed

    Zhang, Ziyang; Li, Haiyan; Liu, Huijuan

    2018-03-01

    In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.

  3. Biogas production from rice straw by solid-state anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Shitophyta, Lukhi Mulia; Budiyono, Fuadi, Ahmad M.

    2015-12-01

    Biogas production from lignocellulosic biomass can be used as an alternative fuel to replace fossil fuels. Lignocellulose can be obtained from agricultural crop residues, such as rice straw. The aims of this study were to determine the effects of F/I ratio, total solid content, and physical pretreatment on biogas production by solid-state anaerobic digestion. The kinetics of biogas production were also examined in this study. The results showed that the biogas yield decreased by the increasing of F/I ratio. Meanwhile, the increase TS content of 22% to 24% also decreased the biogas yield. Physical pretreatment had no a significant effect on biogas yield (p > 0.05). The highest biogas yield of 248.4 L/kg VS was obtained at an F/I ratio of 2, TS content of 22%, and particle size of 2 mm. The kinetics of biogas production from rice straw followed the first-order kinetic model with the highest rate constant (k) of 0.0861 day-1.

  4. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    NASA Astrophysics Data System (ADS)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  5. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, J. Y.

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [ E] T of v with respect the total enzyme concentration [ E] T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [ S] T of v with respect to the total substrate concentration [ S] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E] T, and persistently overpredicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S] T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E] T, and ∂ ln v / ∂ ln [ S] T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less

  6. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE PAGES

    Tang, J. Y.

    2015-12-01

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [ E] T of v with respect the total enzyme concentration [ E] T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [ S] T of v with respect to the total substrate concentration [ S] T. Meanwhile, the reverse Michaelis–Menten kinetics persistently underpredicts ∂ ln v / ∂ ln k 2 + and ∂ ln v / ∂ ln [ E] T, and persistently overpredicts ∂ ln v / ∂ ln k 1 + and ∂ ln v / ∂ ln [ S] T. In contrast, the equilibrium chemistry approximation kinetics always gives consistent predictions of ∂ ln v / ∂ ln k 2 +, ∂ ln v / ∂ ln k 1 +, ∂ ln v / ∂ ln [ E] T, and ∂ ln v / ∂ ln [ S] T, indicating that ECA-based models will be more calibratable if the modeled processes do obey the law of mass action. Since the equilibrium chemistry approximation kinetics includes advantages from both the Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics and it is applicable for almost the whole range of substrate and enzyme abundances, land biogeochemical modelers therefore no longer need to choose when to use the Michaelis–Menten kinetics or the reverse Michaelis–Menten kinetics. I expect that removing this choice ambiguity will make it easier to formulate more robust and consistent land biogeochemical models.« less

  7. Role of BRCA1 in Controlling Mitotic Arrest in Ovarian Cystadenoma Cells

    PubMed Central

    Yu, Vanessa M.; Marion, Christine M.; Austria, Theresa M.; Yeh, Jennifer; Schönthal, Axel H.; Dubeau, Louis

    2011-01-01

    Cancers that develop in BRCA1 mutation carriers are usually near tetraploid/polyploid. This led us to hypothesize that BRCA1 controls the mitotic checkpoint complex, as loss of such control could lead to mitotic errors resulting in tetraploidy/polyploidy with subsequent aneuploidy. We used an in vitro system mimicking pre-malignant conditions, consisting of cell strains derived from the benign counterparts of serous ovarian carcinomas (cystadenomas) and expressing SV40 large T antigen, conferring the equivalent of a p53 mutation. We previously showed that such cells undergo one or several doublings of their DNA content as they age in culture and approach the phenomenon of in vitro crisis. Here we show that such increase in DNA content reflects a cell cycle arrest possibly at the anaphase promoting complex, as evidenced by decreased BrdU incorporation and increased expression of the mitotic checkpoint complex. Down-regulation of BRCA1 in cells undergoing crisis leads to activation of the anaphase promoting complex and resumption of growth kinetics similar to those seen in cells before they reach crisis. Cells recovering from crisis after BRCA1 down-regulation become multinucleated, suggesting that reduced BRCA1 expression may lead to initiation of a new cell cycle without completion of cytokinesis. This is the first demonstration that BRCA1 controls a physiological arrest at the M phase apart from its established role in DNA damage response, a role that could represent an important mechanism for acquisition of aneuploidy during tumor development. This may be particularly relevant to cancers that have a near tetraploid/polyploid number of chromosomes. PMID:21792894

  8. Ferrocene Derivatives Included in a Water-Soluble Cavitand: Are They Electroinactive?

    PubMed Central

    Podkoscielny, Dagmara; Hooley, Richard J.; Rebek, Julius; Kaifer, Angel E.

    2009-01-01

    The formation in aqueous solution of kinetically stable inclusion complexes between a deep-cavity cavitand and several redox active ferrocene derivatives was demonstrated using 1H NMR spectroscopy. The electrochemical kinetics of the inclusion complexes was strongly attenuated as compared to that observed with the free guests. PMID:18537255

  9. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  10. Characterization of the atrazine sorption process on Andisol and Ultisol volcanic ash-derived soils: kinetic parameters and the contribution of humic fractions.

    PubMed

    Báez, María E; Fuentes, Edwar; Espinoza, Jeannette

    2013-07-03

    Atrazine sorption was studied in six Andisol and Ultisol soils. Humic and fulvic acids and humin contributions were established. Sorption on soils was well described by the Freundlich model. Kf values ranged from 2.2-15.6 μg(1-1/n)mL(1/n)g⁻¹. The relevance of humic acid and humin was deduced from isotherm and kinetics experiments. KOC values varied between 221 and 679 mLg⁻¹ for these fractions. Fulvic acid presented low binding capacity. Sorption was controlled by instantaneous equilibrium followed by a time-dependent phase. The Elovich equation, intraparticle diffusion model, and a two-site nonequilibrium model allowed us to conclude that (i) there are two rate-limited phases in Andisols related to intrasorbent diffusion in organic matter and retarded intraparticle diffusion in the organo-mineral complex and that (ii) there is one rate-limited phase in Ultisols attributed to the mineral composition. The lower organic matter content of Ultisols and the slower sorption rate and mechanisms involved must be considered to assess the leaching behavior of atrazine.

  11. Kinetic release of hydrogen peroxide from different whitening products.

    PubMed

    da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte

    2012-01-01

    The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme™ 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P < 0.05 were taken as significant. Titrated HP revealed an increased content when compared to the manufacturer's specifications for all the products tested (P < 0.05), although only products from one manufacturer produced significantly higher results. All products presented a significant (P < 0.05) and sustained release of HP. However, the product with paint-on cellulose-based matrix resulted in significantly (P < 0.05) faster kinetics when compared to other products tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations.

  12. Gallium(III) complexes of DOTA and DOTA-monoamide: kinetic and thermodynamic studies.

    PubMed

    Kubícek, Vojtech; Havlícková, Jana; Kotek, Jan; Tircsó, Gyula; Hermann, Petr; Tóth, Eva; Lukes, Ivan

    2010-12-06

    Given the practical advantages of the (68)Ga isotope in positron emission tomography applications, gallium complexes are gaining increasing importance in biomedical imaging. However, the strong tendency of Ga(3+) to hydrolyze and the slow formation and very high stability of macrocyclic complexes altogether render Ga(3+) coordination chemistry difficult and explain why stability and kinetic data on Ga(3+) complexes are rather scarce. Here we report solution and solid-state studies of Ga(3+) complexes formed with the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, (DOTA)(4-), and its mono(n-butylamide) derivative, (DO3AM(Bu))(3-). Thermodynamic stability constants, log K(GaDOTA) = 26.05 and log K(GaDO3AM(Bu)) = 24.64, were determined by out-of-cell pH-potentiometric titrations. Due to the very slow formation and dissociation of the complexes, equilibration times of up to ∼4 weeks were necessary. The kinetics of complex dissociation were followed by (71)Ga NMR under both acidic and alkaline conditions. The GaDOTA complex is significantly more inert (τ(1/2) ∼12.2 d at pH = 0 and τ(1/2) ∼6.2 h at pH = 10) than the GaDO3AM(Bu) analogue (τ(1/2) ∼2.7 d at pH = 0 and τ(1/2) ∼0.7 h at pH = 10). Nevertheless, the kinetic inertness of both chelates is extremely high and approves the application of Ga(3+) complexes of such DOTA-like ligands in molecular imaging. The solid-state structure of the GaDOTA complex, crystallized from a strongly acidic solution (pH < 1), evidenced a diprotonated form with protons localized on the free carboxylate pendants.

  13. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA

    PubMed Central

    Lapakko, Kim A.; Wenz, Zachary J.; Olson, Michael C.; Roepke, Elizabeth W.; Novak, Paige J.; Bailey, Jake V.

    2017-01-01

    ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. PMID:28600313

  14. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA.

    PubMed

    Jones, Daniel S; Lapakko, Kim A; Wenz, Zachary J; Olson, Michael C; Roepke, Elizabeth W; Sadowsky, Michael J; Novak, Paige J; Bailey, Jake V

    2017-08-15

    The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula , as well as from diverse clades of uncultivated Chloroflexi , Acidobacteria , and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. Copyright © 2017 American Society for Microbiology.

  15. Modification of 1,2,4,5-tetrazine with cationic rhenium(I) polypyridine units to afford phosphorogenic bioorthogonal probes with enhanced reaction kinetics.

    PubMed

    Choi, Alex Wing-Tat; Tso, Karson Ka-Shun; Yim, Vicki Man-Wai; Liu, Hua-Wei; Lo, Kenneth Kam-Wing

    2015-02-25

    New phosphorogenic bioorthogonal probes derived from mononuclear and binuclear rhenium(I) polypyridine complexes containing a 1,2,4,5-tetrazine moiety were designed; these complexes displayed substantial dienophile-induced emission enhancement, and accelerated reaction kinetics and could target a protein conjugate in living cells.

  16. Kinetic model of water vapour adsorption by gluten-free starch

    NASA Astrophysics Data System (ADS)

    Ocieczek, Aneta; Kostek, Robert; Ruszkowska, Millena

    2015-01-01

    This study evaluated the kinetics of water vapour adsorption on the surface of starch molecules derived from wheat. The aim of the study was to determine an equation that would allow estimation of water content in tested material in any timepoint of the adsorption process aimed at settling a balance with the environment. An adsorption isotherm of water vapour on starch granules was drawn. The parameters of the Guggenheim, Anderson, and De Boer equation were determined by characterizing the tested product and adsorption process. The equation of kinetics of water vapour adsorption on the surface of starch was determined based on the Guggenheim, Anderson, and De Boer model describing the state of equilibrium and on the model of a first-order linear inert element describing the changes in water content over time.

  17. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  18. Transporters, channels, or simple diffusion? Dogmas, atypical roles and complexity in transport systems.

    PubMed

    Conde, Artur; Diallinas, George; Chaumont, François; Chaves, Manuela; Gerós, Hernâni

    2010-06-01

    The recent breakthrough discoveries of transport systems assigned with atypical functions provide evidence for complexity in membrane transport biochemistry. Some channels are far from being simple pores creating hydrophilic passages for solutes and can, unexpectedly, act as enzymes, or mediate high-affinity uptake, and some transporters are surprisingly able to function as sensors, channels or even enzymes. Furthermore, numerous transport studies have demonstrated complex multiphasic uptake kinetics for organic and mineral nutrients. The biphasic kinetics of glucose uptake in Saccharomyces cerevisiae, a result of several genetically distinct uptake systems operating simultaneously, is a classical example that is a subject of continuous debate. In contrast, some transporters display biphasic kinetics, being bona fidae dual-affinity transporters, their kinetic properties often modulated by post-translational regulation. Also, aquaporins have recently been reported to exhibit diverse transport properties and can behave as highly adapted, multifunctional channels, transporting solutes such as CO(2), hydrogen peroxide, urea, ammonia, glycerol, polyols, carbamides, purines and pyrimidines, metalloids, glycine, and lactic acid, rather than being simple water pores. The present review provides an overview on some atypical functions displayed by transporter proteins and discusses how this novel knowledge on cellular uptake systems may be related to complex multiphasic uptake kinetics often seen in a wide variety of living organisms and the intriguing diffusive uptake of sugars and other solutes. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Prospects of in vivo singlet oxygen luminescence monitoring: Kinetics at different locations on living mice.

    PubMed

    Pfitzner, Michael; Schlothauer, Jan C; Bastien, Estelle; Hackbarth, Steffen; Bezdetnaya, Lina; Lassalle, Henri-Pierre; Röder, Beate

    2016-06-01

    Singlet oxygen observation is considered a valuable tool to assess and optimize PDT treatment. In complex systems, such as tumors in vivo, only the direct, time-resolved singlet oxygen luminescence detection can give reliable information about generation and interaction of singlet oxygen. Up to now, evaluation of kinetics was not possible due to insufficient signal-to-noise ratio. Here we present high signal-to-noise ratio singlet oxygen luminescence kinetics obtained in mouse tumor model under PDT relevant conditions. A highly optimized system based on a custom made laser diode excitation source and a high aperture multi-furcated fiber, utilizing a photomultiplier tube with a multi photon counting device was used. Luminescence kinetics with unsurpassed signal-to-noise ratio were gained from tumor bearing nude mice in vivo upon topic application, subcutaneous injection as well as intravenous injection of different photosensitizers (chlorin e6 and dendrimer formulations of chlorin e6). Singlet oxygen kinetics in appropriate model systems are discussed to facilitate the interpretation of complex kinetics obtained from in vivo tumor tissue. This is the first study addressing the complexity of singlet oxygen luminescence kinetics in tumor tissue. At present, further investigations are needed to fully explain the processes involved. Nevertheless, the high signal-to-noise ratio proves the applicability of direct time-resolved singlet oxygen luminescence detection as a prospective tool for monitoring photodynamic therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Structure–kinetic relationship study of CDK8/CycC specific compounds

    PubMed Central

    Schneider, Elisabeth V.; Böttcher, Jark; Huber, Robert; Maskos, Klaus; Neumann, Lars

    2013-01-01

    In contrast with the very well explored concept of structure–activity relationship, similar studies are missing for the dependency between binding kinetics and compound structure of a protein ligand complex, the structure–kinetic relationship. Here, we present a structure–kinetic relationship study of the cyclin-dependent kinase 8 (CDK8)/cyclin C (CycC) complex. The scaffold moiety of the compounds is anchored in the kinase deep pocket and extended with diverse functional groups toward the hinge region and the front pocket. These variations can cause the compounds to change from fast to slow binding kinetics, resulting in an improved residence time. The flip of the DFG motif (“DMG” in CDK8) to the inactive DFG-out conformation appears to have relatively little influence on the velocity of binding. Hydrogen bonding with the kinase hinge region contributes to the residence time but has less impact than hydrophobic complementarities within the kinase front pocket. PMID:23630251

  1. Thermodynamic stability and kinetic inertness of a Gd-DTPA bisamide complex grafted onto gold nanoparticles.

    PubMed

    Mogilireddy, Vijetha; Déchamps-Olivier, Isabelle; Alric, Christophe; Laurent, Gautier; Laurent, Sophie; Vander Elst, Luce; Muller, Robert; Bazzi, Rana; Roux, Stéphane; Tillement, Olivier; Chuburu, Françoise

    2015-01-01

    Gold nanoparticles coated by gadolinium (III) chelates (Au@DTDTPA) where DTDTPA is a dithiolated bisamide derivative of diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA), constituted contrast agents for both X-ray computed tomography and magnetic resonance imaging. In an MRI context, highly stable Gd(3+) complexes are needed for in vivo applications. Thus, knowledge of the thermodynamic stability and kinetic inertness of these chelates, when grafted onto gold nanoparticles, is crucial since bisamide DTPA chelates are usually less suited for Gd(3+) coordination than DTPA. Therefore, these parameters were evaluated by means of potentiometric titrations and relaxivity measurements. The results showed that, when the chelates were grafted onto the nanoparticle, not only their thermodynamic stability but also their kinetic inertness were improved. These positive effects were correlated to the chelate packing at the nanoparticle surface that stabilized the corresponding Gd(3+) complexes and greatly enhanced their kinetic inertness. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Kinetic and mechanism formation reaction of complex compound Cu with di-n-buthildithiocarbamate (dbdtc) ligand

    NASA Astrophysics Data System (ADS)

    Haryani, S.; Kurniawan, C.; Kasmui

    2018-04-01

    Synthesis of complex compound is one field of research which intensively studied. Metal-dithiocarbamate complexes find wide-ranging applications in nanomaterial and metal separation science, and have potential use as chemotherapeutic, pesticides, and as additives to lubricants. However, the information about is reaction kinetic and mechanism are very much lacking. The research and analyzes results show that reaction synthesis ligand DBDTC and complex compounds Cu-DBDTC. Optimum reaction condition of formation of complex compounds Cu with DBDTC at pH=3, [DBDTC] = 4.10-3 M, and the time of reaction 5 minutes. Based the analysis varian reaction of complex compounds at pH 3 and 4, diffrence significance at the other pH: 5; 5,5; 6; 6,5 ; 7; and 8. The various of mole with reactants comosition difference sigbificance, those the time reaction for 5 and 6 minutes diffrence by significance with the other time, it is 3,4,8, and 10 minutes. The great product to at condition pH 6, the time optimum at 5 minutes and molar ratio of logam: ligand = 1:2. The reaction kinetic equation of complex compound Cu with chelathing ligand DBDTC is V=0.917106 [Cu2+]0.87921 [DBDTC]2.03021. Based on the kinetic data, and formed complex compounds estimation, the mechanism explaining by 2 stages. In the first stage formation of [Cu(DBDTC)], and then [Cu(DBDTC)2] with the last structure geomethry planar rectangle. The result of this research will be more useful if an effort is being done in reaction mechanism by chemical computation method for obtain intermediate, and for constant “k” in same stage, k1.k2. and compound complex constanta (β).

  3. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview.

    PubMed

    Vavilin, V A; Fernandez, B; Palatsi, J; Flotats, X

    2008-01-01

    The applicability of different kinetics to the hydrolysis of particulate organic material in anaerobic digestion is discussed. Hydrolysis has traditionally been modelled according to the first-order kinetics. For complex substrate, the first-order kinetics should be modified in order to take into account hardly degradable material. It has been shown that models in which hydrolysis is coupled to the growth of hydrolytic bacteria work well at high or at fluctuant organic loading. In particular, the surface-related two-phase and the Contois models showed good fits to experimental data from a wide range of organic waste. Both models tend to the first-order kinetics at a high biomass-to-waste ratio and, for this reason, they can be considered as more general models. Examples on different inhibition processes that might affect the degradation of solid waste are reported. Acetogenesis or methanogenesis might be the rate-limiting stages in complex waste. In such cases, stimulation of hydrolysis (mechanically, chemically or biologically) may lead to a further inhibition of these stages, which ultimately affects hydrolysis as well. Since the hydrolysis process is characterized by surface and transport phenomena, new developments in spatially distributed models are considered fundamental to provide new insights in this complex process.

  4. A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions

    PubMed Central

    Saa, Pedro; Nielsen, Lars K.

    2015-01-01

    Kinetic models provide the means to understand and predict the dynamic behaviour of enzymes upon different perturbations. Despite their obvious advantages, classical parameterizations require large amounts of data to fit their parameters. Particularly, enzymes displaying complex reaction and regulatory (allosteric) mechanisms require a great number of parameters and are therefore often represented by approximate formulae, thereby facilitating the fitting but ignoring many real kinetic behaviours. Here, we show that full exploration of the plausible kinetic space for any enzyme can be achieved using sampling strategies provided a thermodynamically feasible parameterization is used. To this end, we developed a General Reaction Assembly and Sampling Platform (GRASP) capable of consistently parameterizing and sampling accurate kinetic models using minimal reference data. The former integrates the generalized MWC model and the elementary reaction formalism. By formulating the appropriate thermodynamic constraints, our framework enables parameterization of any oligomeric enzyme kinetics without sacrificing complexity or using simplifying assumptions. This thermodynamically safe parameterization relies on the definition of a reference state upon which feasible parameter sets can be efficiently sampled. Uniform sampling of the kinetics space enabled dissecting enzyme catalysis and revealing the impact of thermodynamics on reaction kinetics. Our analysis distinguished three reaction elasticity regions for common biochemical reactions: a steep linear region (0> ΔGr >-2 kJ/mol), a transition region (-2> ΔGr >-20 kJ/mol) and a constant elasticity region (ΔGr <-20 kJ/mol). We also applied this framework to model more complex kinetic behaviours such as the monomeric cooperativity of the mammalian glucokinase and the ultrasensitive response of the phosphoenolpyruvate carboxylase of Escherichia coli. In both cases, our approach described appropriately not only the kinetic behaviour of these enzymes, but it also provided insights about the particular features underpinning the observed kinetics. Overall, this framework will enable systematic parameterization and sampling of enzymatic reactions. PMID:25874556

  5. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.

    2017-12-01

    The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.

  6. Variation of iron redox kinetics and its relation with molecular composition of standard humic substances at circumneutral pH.

    PubMed

    Lee, Ying Ping; Fujii, Manabu; Kikuchi, Tetsuro; Terao, Koumei; Yoshimura, Chihiro

    2017-01-01

    Oxidation and reduction kinetics of iron (Fe) and proportion of steady-state Fe(II) concentration relative to total dissolved Fe (steady-state Fe(II) fraction) were investigated in the presence of various types of standard humic substances (HS) with particular emphasis on the photochemical and thermal reduction of Fe(III) and oxidation of Fe(II) by dissolved oxygen (O2) and hydrogen peroxide (H2O2) at circumneutral pH (pH 7-8). Rates of Fe(III) reduction were spectrophotometrically determined by a ferrozine method under the simulated sunlight and dark conditions, whereas rates of Fe(II) oxidation were examined in air-saturated solution using luminol chemiluminescence technique. The reduction and oxidation rate constants were determined to substantially vary depending on the type of HS. For example, the first-order rate constants varied by up to 10-fold for photochemical reduction and 7-fold for thermal reduction. The degree of variation in Fe(II) oxidation was larger for the H2O2-mediated reaction compared to the O2-mediated reaction (e.g., 15- and 3-fold changes for the former and latter reactions, respectively, at pH 8). The steady-state Fe(II) fraction under the simulated sunlight indicated that the Fe(II) fraction varies by up to 12-fold. The correlation analysis indicated that variation of Fe(II) oxidation is significantly associated with aliphatic content of HS, suggesting that Fe(II) complexation by aliphatic components accelerates Fe(II) oxidation. The reduction rate constant and steady-state Fe(II) fractions in the presence of sunlight had relatively strong positive relations with free radical content of HS, possibly due to the reductive property of radical semiquinone in HS. Overall, the findings in this study indicated that the Fe reduction and oxidation kinetics and resultant Fe(II) formation are substantially influenced by chemical properties of HS.

  7. Study of strength kinetics of sand concrete system of accelerated hardening

    NASA Astrophysics Data System (ADS)

    Sharanova, A. V.; Lenkova, D. A.; Panfilova, A. D.

    2018-04-01

    Methods of calorimetric analysis are used to study the dynamics of the hydration processes of concretes with different accelerator contents. The efficiency of the isothermal calorimetry method is shown for study of strength kinetics of concrete mixtures of accelerated hardening, promising for additive technologies in civil engineering.

  8. Effect of total solids content on methane and volatile fatty acid production in anaerobic digestion of food waste.

    PubMed

    Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco; Pontoni, Ludovico

    2014-10-01

    This work investigates the role of the moisture content on anaerobic digestion of food waste, as representative of rapidly biodegradable substrates, analysing the role of volatile fatty acid production on process kinetics. A range of total solids from 4.5% to 19.2% is considered in order to compare methane yields and kinetics of reactors operated under wet to dry conditions. The experimental results show a reduction of the specific final methane yield of 4.3% and 40.8% in semi-dry and dry conditions compared with wet conditions. A decreasing trend of the specific initial methane production rate is observed when increasing the total solids concentration. Because of lack of water, volatile fatty acids accumulation occurs during the first step of the process at semi-dry and dry conditions, which is considered to be responsible for the reduction of process kinetic rates. The total volatile fatty acids concentration and speciation are proposed as indicators of process development at different total solids content. © The Author(s) 2014.

  9. Impact of ultrasound on hydrophobic interactions in solutions: ultrasonic retardation of benzoin condensation.

    PubMed

    Hagu, Hannes; Salmar, Siim; Tuulmets, Ants

    2007-04-01

    Kinetics of the benzoin condensation of benzaldehyde in presence of KCN as the catalyst in water and in ethanol-water binary solutions were investigated without sonication and under ultrasound at 22 kHz. A statistically significant 20% decrease of the rate was observed in water. The retardation effect of ultrasound gradually decreases up to 45 wt% ethanol content. We report an evidence of ultrasonic retardation of reactions and thereby a direct evidence for sonochemical processes in the bulk solution. Ultrasound can disturb solvation of the species in the solution. If breaking down the stabilization of the encounter complexes between the reagents, sonication hinders the reaction while perturbation of the solvent-stabilization of the reagents accelerates the reaction.

  10. Controlling the Sn-C bonds content in SnO2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics.

    PubMed

    Cheng, Yayi; Huang, Jianfeng; Qi, Hui; Cao, Liyun; Luo, Xiaomin; Li, Jiayin; Xu, Zhanwei; Yang, Jun

    2017-12-07

    The Sn-C bonding content between the SnO 2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO 2 @CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO 2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO 2 . The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO 2 @CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.

  11. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.

    PubMed

    Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu

    2017-09-01

    The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0  = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

  12. Quantitative calculations of fluorescence polarization and absorption anisotropy kinetics of double- and triple-chromophore complexes with energy transfer.

    PubMed Central

    Demidov, A A

    1994-01-01

    A new method is presented for calculation of the fluorescence depolarization and kinetics of absorption anisotropy for molecular complexes with a limited number of chromophores. The method considers absorption and emission of light by both chromophores, and also energy transfer between them, with regard to their mutual orientations. The chromophores in each individual complex are rigidly positioned. The complexes are randomly distributed and oriented in space, and there is no energy transfer between them. The new "practical" formula for absorption anisotropy and fluorescence depolarization kinetics, P(t) = [3B(t) - 1 + 2A(t)]/[3 + B(t) + 4A(t)], is derived both for double- and triple-chromophore complexes with delta-pulse excitation. The parameter B(t) is given by (a) B(t) = cos2(theta) for double-chromophore complexes, and (b) B(t) = q12(t)cos2(theta 12) + q13(t)-cos2(theta 13) + q23(t)cos2(theta 23) for triple-chromophore complexes, where q12(t) + q13(t) + q23(t) = 1. Here theta ij are the angles between the chromophore transition dipole moments in the individual molecular complex. The parameters qij(t) and A(t) are dependent on chromophore spectroscopic features and on the rates of energy transfer. PMID:7696461

  13. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition.

    PubMed

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-05

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L(1)-L(4)), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL(1)⋅DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO5-H>5-Br>5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL(1)⋅DMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L(1) ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Purification and properties of two terminal oxidase complexes of Escherichia coli aerobic respiratory chain.

    PubMed

    Kita, K; Konishi, K; Anraku, Y

    1986-01-01

    Two terminal oxidase complexes, cytochrome b-562-o complex and cytochrome b-558-d complex, are isolated in highly purified forms which show ubiquinol oxidase activities. From the result of steady-state kinetics of cytochromes in the membrane and E'm values of purified cytochromes, we propose a branched arrangement of the late exponential phase of aerobic growth, as shown in Fig. 10. Cytochrome b-556 is reduced by several dehydrogenases and the gene for this cytochrome (cybA) is located in the sdh gene cluster. Recently, we found another low-potential b-type cytochrome, cytochrome b-561 (Em' = 20 mV), which is also reduced by dehydrogenases. The position of this new cytochrome in the aerobic respiratory chain is under investigation. Two terminal oxidase complexes branch at the site of ubiquinone-8, and the Km value for oxygen of the purified cytochrome b-558-d complex is about 8-fold lower than that of the purified cytochrome b-562-o complex when ubiquinol-1 is used as substrate. This result is consistent with the idea that the cytochrome b-558-d complex is synthesized as an alternative oxidase for more efficient utilization of oxygen at low oxygen concentration. Thus, E. coli cells can maintain efficient oxidative energy conservation over a wide range of oxygen pressures by simply changing the contents of the two terminal oxidases, each of which functions as a coupling site.

  15. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents.

    PubMed

    Wang, Zhengzhi; Landis, Forrest A; Giuseppetti, Anthony A M; Lin-Gibson, Sheng; Chiang, Martin Y M

    2014-12-01

    Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈80% (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites. Published by Elsevier Ltd.

  16. Simultaneous Measurement of Polymerization Stress and Curing Kinetics for Photo-polymerized Composites with High Filler Contents

    PubMed Central

    Wang, Zhengzhi; Landis, Forrest A.; Giuseppetti, Anthony A.M.; Lin-Gibson, Sheng; Chiang, Martin Y.M.

    2015-01-01

    Objectives Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). Methods Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. Results Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈ 80 % (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. Significance The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites. PMID:25443160

  17. Interactions with the Bifunctional Interface of the Transcriptional Coactivator DCoH1 Are Kinetically Regulated

    DOE PAGES

    Wang, Dongli; Coco, Matthew W.; Rose, Robert B.

    2014-12-23

    Pterin-4a-carbinolamine dehydratase (PCD) is a highly conserved enzyme that evolved a second, unrelated function in mammals, as a transcriptional coactivator. As a coactivator, PCD is known as DCoH or dimerization cofactor of the transcription factor HNF-1. These two activities are associated with a change in oligomeric state: from two dimers interacting as an enzyme in the cytoplasm to a dimer interacting with a dimer of HNF-1 in the nucleus. The same interface of DCoH forms both complexes. To determine how DCoH partitions between its two functions, we studied in this paper the folding and stability of the DCoH homotetramer. Wemore » show that the DCoH1 homotetramer is kinetically trapped, meaning once it forms it will not dissociate to interact with HNF-1. In contrast, DCoH2, a paralog of DCoH1, unfolds within hours. A simple mutation in the interface of DCoH2 from Ser-51 to Thr, as found in DCoH1, increases the kinetic stability by 9 orders of magnitude, to τ½ ~2 million years. This suggests that the DCoH1·HNF-1 complex must co-fold to interact. We conclude that simple mutations can dramatically affect the dissociation kinetics of a complex. Residue 51 represents a “kinetic hot spot” instead of a “thermodynamic hot spot.” Kinetic regulation allows PCD to adopt two distinct functions. Finally, mutations in DCoH1 associated with diabetes affect both functions of DCoH1, perhaps by disrupting the balance between the two DCoH complexes.« less

  18. Thermal inactivation kinetics of β-galactosidase during bread baking.

    PubMed

    Zhang, Lu; Chen, Xiao Dong; Boom, Remko M; Schutyser, Maarten A I

    2017-06-15

    In this study, β-galactosidase was utilized as a model enzyme to investigate the mechanism of enzyme inactivation during bread baking. Thermal inactivation of β-galactosidase was investigated in a wheat flour/water system at varying temperature-moisture content combinations, and in bread during baking at 175 or 205°C. In the wheat flour/water system, the thermostability of β-galactosidase increased with decreased moisture content, and a kinetic model was accurately fitted to the corresponding inactivation data (R 2 =0.99). Interestingly, the residual enzyme activity in the bread crust (about 30%) was hundredfold higher than that in the crumb (about 0.3%) after baking, despite the higher temperature in the crust throughout baking. This result suggested that the reduced moisture content in the crust increased the thermostability of the enzyme. Subsequently, the kinetic model reasonably predicted the enzyme inactivation in the crumb using the same parameters derived from the wheat flour/water system. However, the model predicted a lower residual enzyme activity in the crust compared with the experimental result, which indicated that the structure of the crust may influence the enzyme inactivation mechanism during baking. The results reported can provide a quantitative understanding of the thermal inactivation kinetics of enzyme during baking, which is essential to better retain enzymatic activity in bakery products supplemented with heat-sensitive enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-12-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  20. Mineralization of LCFA associated with anaerobic sludge: Kinetics, enhancement of methanogenic activity, and effect of VFA.

    PubMed

    Pereira, M A; Sousa, D Z; Mota, M; Alves, M M

    2004-11-20

    Long-chain fatty acids (LCFA) associated with anaerobic sludge by mechanisms of precipitation, adsorption, or entrapment can be biodegraded to methane. The mineralization kinetics of biomass-associated LCFA were established according to an inhibition model based on Haldane's enzymatic inhibition kinetics. A value around 1,000 mg COD-LCFA..g VSS(-1) was obtained for the optimal specific LCFA content that allowed the maximal mineralization rate. For sludge with specific LCFA contents of 2,838 +/- 63 and 4,571 +/- 257 mg COD-LCFA..g VSS(-1), the specific methanogenic activities in the presence of acetate, butyrate, and H(2)/CO(2) were significantly enhanced after the mineralization of the biomass-associated LCFA. For sludge with a specific LCFA content near the optimal value defined by the kinetic model, the effect of adding VFA to the medium was studied during the mineralization of the biomass-associated LCFA. Different patterns were obtained for each individual substrate. Acetate and butyrate were preferentially consumed by the consortium, but in the case of propionate no evidence of a sequential consumption pattern could be withdrawn. It was concluded that LCFA do not exert a bactericidal neither a permanent toxic effect toward the anaerobic consortia. A discussion is addressed to the relative roles of a reversible inhibitory effect and a transport limitation effect imposed by the LCFA surrounding the cells. (c) 2004 Wiley Periodicals, Inc

  1. Formulation and closure of compressible turbulence equations in the light of kinetic theory

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Sagara, K.

    1976-01-01

    Fluid-dynamic moment equations, based on a kinetic hierarchy system, are derived governing the interaction between turbulent and thermal fluctuations. The kinetic theory is shown to reduce the inherent complexity of the conventional formalism of compressible turbulence theory and to minimize arbitrariness in formulating the closure condition.

  2. The role of multivalency in the association kinetics of patchy particle complexes.

    PubMed

    Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G

    2017-06-21

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  3. The role of multivalency in the association kinetics of patchy particle complexes

    NASA Astrophysics Data System (ADS)

    Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.

    2017-06-01

    Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.

  4. Rapid kinetics of iron responsive element (IRE) RNA/iron regulatory protein 1 and IRE-RNA/eIF4F complexes respond differently to metal ions.

    PubMed

    Khan, Mateen A; Ma, Jia; Walden, William E; Merrick, William C; Theil, Elizabeth C; Goss, Dixie J

    2014-06-01

    Metal ion binding was previously shown to destabilize IRE-RNA/IRP1 equilibria and enhanced IRE-RNA/eIF4F equilibria. In order to understand the relative importance of kinetics and stability, we now report rapid rates of protein/RNA complex assembly and dissociation for two IRE-RNAs with IRP1, and quantitatively different metal ion response kinetics that coincide with the different iron responses in vivo. kon, for FRT IRE-RNA binding to IRP1 was eight times faster than ACO2 IRE-RNA. Mn(2+) decreased kon and increased koff for IRP1 binding to both FRT and ACO2 IRE-RNA, with a larger effect for FRT IRE-RNA. In order to further understand IRE-mRNA regulation in terms of kinetics and stability, eIF4F kinetics with FRT IRE-RNA were determined. kon for eIF4F binding to FRT IRE-RNA in the absence of metal ions was 5-times slower than the IRP1 binding to FRT IRE-RNA. Mn(2+) increased the association rate for eIF4F binding to FRT IRE-RNA, so that at 50 µM Mn(2+) eIF4F bound more than 3-times faster than IRP1. IRP1/IRE-RNA complex has a much shorter life-time than the eIF4F/IRE-RNA complex, which suggests that both rate of assembly and stability of the complexes are important, and that allows this regulatory system to respond rapidly to change in cellular iron. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Kinetic control of TolC recruitment by multidrug efflux complexes.

    PubMed

    Tikhonova, Elena B; Dastidar, Vishakha; Rybenkov, Valentin V; Zgurskaya, Helen I

    2009-09-22

    In Gram-negative pathogens, multidrug efflux pumps that provide clinically significant levels of antibiotic resistance function as three-component complexes. They are composed of the inner membrane transporters belonging to one of three superfamilies of proteins, RND, ABC, or MF; periplasmic proteins belonging to the membrane fusion protein (MFP) family; and outer membrane channels exemplified by the Escherichia coli TolC. The three-component complexes span the entire two-membrane envelope of Gram-negative bacteria and expel toxic molecules from the cytoplasmic membrane to the medium. The architecture of these complexes is expected to vary significantly because of the structural diversity of the inner membrane transporters. How the three-component pumps are assembled, their architecture, and their dynamics remain unclear. In this study, we reconstituted interactions and compared binding kinetics of the E. coli TolC with AcrA, MacA, and EmrA, the periplasmic MFPs that function in multidrug efflux with transporters from the RND, ABC, and MF superfamilies, respectively. By using surface plasmon resonance, we demonstrate that TolC interactions with MFPs are highly dynamic and sensitive to pH. The affinity of TolC to MFPs decreases in the order MacA > EmrA > AcrA. We further show that MFPs are prone to oligomerization, but differ dramatically from each other in oligomerization kinetics and stability of oligomers. The propensity of MFPs to oligomerize correlates with the stability of MFP-TolC complexes and structural features of inner membrane transporters. We propose that recruitment of TolC by various MFPs is determined not only by kinetics of MFP-TolC interactions but also by oligomerization kinetics of MFPs and pH.

  6. The Characterization of Cognitive Processes Involved in Chemical Kinetics Using a Blended Processing Framework

    ERIC Educational Resources Information Center

    Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H.

    2018-01-01

    Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…

  7. The arbuscular mycorrhizal fungus Glomus intraradices is haploid and has a small genome size in the lower limit of eukaryotes.

    PubMed

    Hijri, Mohamed; Sanders, Ian R

    2004-02-01

    The genome size, complexity, and ploidy of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was determined using flow cytometry, reassociation kinetics, and genomic reconstruction. Nuclei of G. intraradices from in vitro culture, were analyzed by flow cytometry. The estimated average length of DNA per nucleus was 14.07+/-3.52 Mb. Reassociation kinetics on G. intraradices DNA indicated a haploid genome size of approximately 16.54 Mb, comprising 88.36% single copy DNA, 1.59% repetitive DNA, and 10.05% fold-back DNA. To determine ploidy, the DNA content per nucleus measured by flow cytometry was compared with the genome estimate of reassociation kinetics. G. intraradices was found to have a DNA index (DNA per nucleus per haploid genome size) of approximately 0.9, indicating that it is haploid. Genomic DNA of G. intraradices was also analyzed by genomic reconstruction using four genes (Malate synthase, RecA, Rad32, and Hsp88). Because we used flow cytometry and reassociation kinetics to reveal the genome size of G. intraradices and show that it is haploid, then a similar value for genome size should be found when using genomic reconstruction as long as the genes studied are single copy. The average genome size estimate was 15.74+/-1.69 Mb indicating that these four genes are single copy per haploid genome and per nucleus of G. intraradices. Our results show that the genome size of G. intraradices is much smaller than estimates of other AMF and that the unusually high within-spore genetic variation that is seen in this fungus cannot be due to high ploidy.

  8. A comparison of observed and numerically predicted eddy kinetic energy budgets for a developing extratropical cyclone

    NASA Technical Reports Server (NTRS)

    Dare, P. M.; Smith, P. J.

    1983-01-01

    The eddy kinetic energy budget is calculated for a 48-hour forecast of an intense occluding winter cyclone associated with a strong well-developed jet stream. The model output consists of the initialized (1200 GMT January 9, 1975) and the 12, 24, 36, and 48 hour forecast fields from the Drexel/NCAR Limited Area Mesoscale Prediction System (LAMPS) model. The LAMPS forecast compares well with observations for the first 24 hours, but then overdevelops the low-level cyclone while inadequately developing the upper-air wave and jet. Eddy kinetic energy was found to be concentrated in the upper-troposphere with maxima flanking the primary trough. The increases in kinetic energy were found to be due to an excess of the primary source term of kinetic energy content, which is the horizontal flux of eddy kinetic energy over the primary sinks, and the generation and dissipation of eddy kinetic energy.

  9. Complexation of Arsenite with Humic Acid in the Presence of Ferric Iron

    PubMed Central

    Liu, Guangliang; Fernandez, Aymara; Cai, Yong

    2011-01-01

    In the presence of iron (Fe), dissolved organic matter (DOM) may bind considerable amounts of arsenic (As), through formation of Fe-bridged As-Fe-DOM complexes and surface complexation of As on DOM-stabilized Fe-colloids (collectively referred to as As-Fe-DOM complexation). However, direct (e.g., chromatographic and spectroscopic) evidence and fundamental kinetic and stability constants have been rarely reported for this As-Fe-DOM complexation. Using a size exclusion chromatography (SEC)-UV-inductively coupled plasma mass spectrometry (ICP-MS) technique, arsenite (AsIII)-Fe-DOM complexation was investigated after adding AsIII into the priorly prepared Fe-DOM. A series of evidence, including coelution of As, Fe, and DOM from the SEC column and coretention of As, Fe, and DOM by 3 kDa MWCO centrifugal filtration membrane, demonstrated the occurrence of AsIII-Fe-DOM complexation. The kinetic data of AsIII-Fe-DOM complexation were well described by a pseudo-first order rate equation (R2 = 0.95), with the rate constant (k′) being 0.17±0.04 1/h. Stability of AsIII-Fe-DOM complexation was characterized by apparent stability constant (Ks) derived from two-site ligand binding model, with log Ks ranging from 4.4±0.2 to 5.6±0.4. Considering the kinetics (within hours) and stability (similar to typical metal-humates) of AsIII-Fe-DOM complexation, this complexation needs to be included when evaluating As mobility in Fe and DOM rich environments. PMID:21322632

  10. The kinetics and mechanism of the organo-iridium catalysed racemisation of amines.

    PubMed

    Stirling, Matthew J; Mwansa, Joseph M; Sweeney, Gemma; Blacker, A John; Page, Michael I

    2016-08-07

    The dimeric iodo-iridium complex [IrCp*I2]2 (Cp* = pentamethylcyclopentadiene) is an efficient catalyst for the racemisation of secondary and tertiary amines at ambient and higher temperatures with a low catalyst loading. The racemisation occurs with pseudo-first-order kinetics and the corresponding four rate constants were obtained by monitoring the time dependence of the concentrations of the (R) and (S) enantiomers starting with either pure (R) or (S) and show a first-order dependence on catalyst concentration. Low temperature (1)H NMR data is consistent with the formation of a 1 : 1 complex with the amine coordinated to the iridium and with both iodide anions still bound to the metal-ion, but at the higher temperatures used for kinetic studies binding is weak and so no saturation zero-order kinetics are observed. A cross-over experiment with isotopically labelled amines demonstrates the intermediate formation of an imine which can dissociate from the iridium complex. Replacing the iodides in the catalyst by other ligands or having an amide substituent in Cp* results in a much less effective catalysts for the racemisation of amines. The rate constants for a deuterated amine yield a significant primary kinetic isotope effect kH/kD = 3.24 indicating that hydride transfer is involved in the rate-limiting step.

  11. Theoretical study of the kinetics of chlorine atom abstraction from chloromethanes by atomic chlorine.

    PubMed

    Brudnik, Katarzyna; Twarda, Maria; Sarzyński, Dariusz; Jodkowski, Jerzy T

    2013-10-01

    Ab initio calculations at the G3 level were used in a theoretical description of the kinetics and mechanism of the chlorine abstraction reactions from mono-, di-, tri- and tetra-chloromethane by chlorine atoms. The calculated profiles of the potential energy surface of the reaction systems show that the mechanism of the studied reactions is complex and the Cl-abstraction proceeds via the formation of intermediate complexes. The multi-step reaction mechanism consists of two elementary steps in the case of CCl4 + Cl, and three for the other reactions. Rate constants were calculated using the theoretical method based on the RRKM theory and the simplified version of the statistical adiabatic channel model. The temperature dependencies of the calculated rate constants can be expressed, in temperature range of 200-3,000 K as [Formula: see text]. The rate constants for the reverse reactions CH3/CH2Cl/CHCl2/CCl3 + Cl2 were calculated via the equilibrium constants derived theoretically. The kinetic equations [Formula: see text] allow a very good description of the reaction kinetics. The derived expressions are a substantial supplement to the kinetic data necessary to describe and model the complex gas-phase reactions of importance in combustion and atmospheric chemistry.

  12. Probing the Intermediacy of Covalent RNA Enzyme Complexes in RNA Modification Enzymes

    PubMed Central

    Chervin, Stephanie M.; Kittendorf, Jeffrey D.; Garcia, George A.

    2009-01-01

    Within the large and diverse group of RNA-modifying enzymes, a number of enzymes seem to form stable covalent linkages to their respective RNA substrates. A complete understanding of the chemical and kinetic mechanisms of these enzymes, some of which have identified pathological roles, is lacking. As part of our ongoing work studying the posttranscriptional modification of tRNA with queuine, we wish to understand fully the chemical and kinetic mechanisms involved in this key transglycosylation reaction. In our previous investigations, we have used a gel mobility-shift assay to characterize an apparent covalent enzyme-RNA intermediate believed to be operative in the catalytic pathway. However, the simple observation of a covalent complex is not sufficient to prove intermediacy. To be a true intermediate, the complex must be both chemically and kinetically competent. As a case study for the proof of intermediacy, we report the use of this gel-shift assay under mildly denaturing conditions to probe the kinetic competency of the covalent association between RNA and the tRNA modifying enzyme tRNA-guanine transglycosylase (TGT). PMID:17673081

  13. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    DOE PAGES

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less

  14. Unraveling reaction pathways and specifying reaction kinetics for complex systems.

    PubMed

    Vinu, R; Broadbelt, Linda J

    2012-01-01

    Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.

  15. Gas-deposit-alloy corrosion interactions in simulated combustion environments

    NASA Astrophysics Data System (ADS)

    Luer, Kevin Raymond

    High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage correlated with the initial sulfur content in the deposit. Fe3O4 in the deposit was beneficial because it acted as a sulfur getter or oxygen source. Carbon had a mixed effect. The reaction behavior was modeled using computational thermochemistry based on Gibbs free energy minimization. A calculation method was introduced to predict equilibrium corrosion microstructures and trace reaction paths in complex gas-deposit-metal environments. Kinetic factors were identified where equilibrium reaction products were not experimentally observed.

  16. Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism.

    PubMed

    Born, Karin; Comba, Peter; Daubinet, André; Fuchs, Alexander; Wadepohl, Hubert

    2007-01-01

    A mechanism for the oxidation of 3,5-di-tert-butylcatechol (dtbc) with dioxygen to the corresponding quinone (dtbq), catalyzed by bispidine-dicopper complexes (bispidines are various mono- and dinucleating derivatives of 3,7-diazabicyclo[3.3.1]nonane with bis-tertiary-amine-bispyridyl or bis-tertiary-amine-trispyridyl donor sets), is proposed on the basis of (1) the stoichiometry of the reaction as well as the stabilities and structures [X-ray, density functional theory (B3LYP, TZV)] of the bispidine-dicopper(II)-3,4,5,6-tetrachlorcatechol intermediates, (2) formation kinetics and structures (molecular mechanics, MOMEC) of the end-on peroxo-dicopper(II) complexes and (3) kinetics of the stoichiometric (anaerobic) and catalytic (aerobic) copper-complex-assisted oxidation of dtbc. This involves (1) the oxidation of the dicopper(I) complexes with dioxygen to the corresponding end-on peroxo-dicopper(II) complexes, (2) coordination of dtbc as a bridging ligand upon liberation of H(2)O(2) and (3) intramolecular electron transfer to produce dtbq, which is liberated, and the dicopper(I) catalyst. Although the bispidine complexes have reactivities comparable to those of recently published catalysts with macrocyclic ligands, which seem to reproduce the enzyme-catalyzed process in various reaction sequences, a strikingly different oxidation mechanism is derived from the bispidine-dicopper-catalyzed reaction.

  17. CarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanism

    PubMed Central

    Rammohan, Jayan; Ruiz Manzano, Ana; Garner, Ashley L.; Stallings, Christina L.; Galburt, Eric A.

    2015-01-01

    CarD is an essential and global transcriptional regulator in mycobacteria. While its biological role is unclear, CarD functions by interacting directly with RNA polymerase (RNAP) holoenzyme promoter complexes. Here, using a fluorescent reporter of open complex, we quantitate RPo formation in real time and show that Mycobacterium tuberculosis CarD has a dramatic effect on the energetics of RNAP bound complexes on the M. tuberculosis rrnAP3 ribosomal RNA promoter. The data reveal that Mycobacterium bovis RNAP exhibits an unstable RPo that is stabilized by CarD and suggest that CarD uses a two-tiered, concentration-dependent mechanism by associating with open and closed complexes with different affinities. Specifically, the kinetics of open-complex formation can be explained by a model where, at saturating concentrations of CarD, the rate of bubble collapse is slowed and the rate of opening is accelerated. The kinetics and open-complex stabilities of CarD mutants further clarify the roles played by the key residues W85, K90 and R25 previously shown to affect CarD-dependent gene regulation in vivo. In contrast to M. bovis RNAP, Escherichia coli RNAP efficiently forms RPo on rrnAP3, suggesting an important difference between the polymerases themselves and highlighting how transcriptional machinery can vary across bacterial genera. PMID:25697505

  18. Syntheses, structural, computational, and thermal analysis of acid-base complexes of picric acid with N-heterocyclic bases.

    PubMed

    Goel, Nidhi; Singh, Udai P

    2013-10-10

    Four new acid-base complexes using picric acid [(OH)(NO2)3C6H2] (PA) and N-heterocyclic bases (1,10-phenanthroline (phen)/2,2';6',2"-terpyridine (terpy)/hexamethylenetetramine (hmta)/2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz)) were prepared and characterized by elemental analysis, IR, NMR and X-ray crystallography. Crystal structures provide detailed information of the noncovalent interactions present in different complexes. The optimized structures of the complexes were calculated in terms of the density functional theory. The thermolysis of these complexes was investigated by TG-DSC and ignition delay measurements. The model-free isoconversional and model-fitting kinetic approaches have been applied to isothermal TG data for kinetics investigation of thermal decomposition of these complexes.

  19. Blood modulates the kinetics of reactive oxygen release in pancreatic ischemia-reperfusion injury.

    PubMed

    Neeff, Hannes P; Sommer, Olaf; Meyer, Sebastian; Tinelli, Anja; Scholtes, Moritz; Hopt, Ulrich T; Drognitz, Oliver; von Dobschuetz, Ernst

    2012-10-01

    Reason for the unsuccessful use of antioxidants in transplantation might be the unknown kinetics of reactive oxygen species (ROS) release. In this study, we compared the kinetics of ROS release from rat pancreata in the presence and absence of blood. In vivo, ischemia-reperfusion injury (IRI) was induced in pancreata of male Wistar rats by occlusion of the arterial blood supply for 1 or 2 hours. In vitro, isolated pancreata were single-pass perfused with Krebs-Henseleit bicarbonate solution. Reactive oxygen species were quantified by electron spin resonance spectroscopy using CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) as spin label. Thiols (glutathione), nicotinamide adenine dinucleotide phosphate-oxidase activity, myeloperoxidase activity, and adenosine triphosphate content were measured. During reperfusion, an increase in IRI-induced ROS in arterial blood was noted after 2 hours of warm ischemia. In sharp contrast, ROS release was immediate and short lived in blood-free perfused organs. The degree of tissue damage correlated with nicotinamide adenine dinucleotide phosphate-oxidase activity and adenosine triphosphate content. Antioxidative capacity of tissues was reduced. Electron spin resonance spectroscopy in conjunction with spin labels allows for the detection of ROS kinetics in pancreatic IRI. Reactive oxygen species kinetics are dependent on the length of the ischemic period and the presence or absence of blood.

  20. Crystal nucleation in amorphous (Au/100-y/Cu/y/)77Si9Ge14 alloys

    NASA Technical Reports Server (NTRS)

    Thompson, C. V.; Greer, A. L.; Spaepen, F.

    1983-01-01

    Because, unlike most metallic glasses, melt-spun alloys of the series (Au/100-y/Cu/y/)77Si9Ge14 exhibit well separated glass transition and kinetic crystallization temperatures, crystallization can be studied in the fully relaxed amorphous phase. An isothermal calorimetric analysis of the devitrification kinetics of the amorphous alloy indicates sporadic nucleation and a constant growth rate. It is found for the cases of alloys with y values lower than 25 that the classical theory of homogeneous nucleation is consistent with observations, including transient effects. An analysis of the crystallization kinetics shows that slow crystal growth rates play an important role in glass formation in these alloys. Although the reduced glass transition temperature increases with Cu content, glass formation is more difficult at high Cu contents, perhaps because of a difference in nucleus composition.

  1. Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds.

    PubMed

    Lizasoain, Javier; Trulea, Adrian; Gittinger, Johannes; Kral, Iris; Piringer, Gerhard; Schedl, Andreas; Nilsen, Paal J; Potthast, Antje; Gronauer, Andreas; Bauer, Alexander

    2017-11-01

    This study evaluated the effect of steam explosion on the chemical composition and biomethane potential of corn stover using temperatures ranging between 140 and 220°C and pretreatment times ranging between 2 and 15min. Biodegradation kinetics during the anaerobic digestion of untreated and corn stover, pretreated at two different intensities, 140°C for 5min and 180°C for 5min, were studied in tandem. Results showed that pretreatment at 160°C for 2min improved the methane yield by 22%. Harsher pretreatment conditions led to lower hemicellulose contents and methane yields, as well as higher lignin contents, which may be due to the formation of pseudo-lignin. The biodegradation kinetics trial demonstrated that steam explosion enhances the degradation of structural carbohydrates and acid insoluble lignin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Grain growth kinetics of ringwoodite and majorite garnet mixtures and implications for the rheology of the transition zone

    NASA Astrophysics Data System (ADS)

    Ezad, I.; Dobson, D. P.; Brodholt, J. P.; Thomson, A.; Hunt, S.

    2017-12-01

    The grain size of the transition zone is a poorly known but important geophysical parameter. Among others, the grain size may control the rheology, seismic attenuation and radiative thermal conductivity of the mantle. However, the grain size of the transition zone minerals ringwoodite (Mg,Fe)2SiO4 and majorite garnet MgSiO3 under appropriate zone conditions is currently unknown and there are very few experiments with which to constrain it. In order to determine the grain size of the transition zone, the grain growth kinetics must be determined for a range of mantle compositions. We have, therefore, experimentally determined the grain growth kinetics of the lowermost transition zone minerals through multi anvil experiments at University College London (UCL). This is achieved through a comprehensive set of time series experiments at pressures of 21 GPa and temperatures relevant to the transition zone. We have also determined the effect of varying water content, oxygen fugacity, iron content and aluminium content also discussed by Dobson and Mariani., (2014). Our initial grain growth experiments conducted at 1200°C and 1400°C at 18 GPa show extremely slow grain growth kinetics; time series experiments extended to 105.8 seconds are unable to produce grains larger than 100 nm. This suggests that fine-grained material at the base of the transition zone will persist on geological timescales. Such small grains size suggests that diffusion creep might be the dominant deformation mechanism in this region. Reference: Dobson, D.P., Mariani, E., 2014. The kinetics of the reaction of majorite plus ferropericlase to ringwoodite: Implications for mantle upwellings crossing the 660 km discontinuity. Earth Planet. Sci. Lett. 408, 110-118. doi:10.1016/j.epsl.2014.10.009

  3. Generation kinetics of boron-oxygen complexes in p-type compensated c-Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yichao; Yu, Xuegong, E-mail: yuxuegong@zju.edu.cn; Chen, Peng

    2014-03-10

    Kinetics characteristics of boron-oxygen complexes responsible for light-induced degradation in p-type compensated c-Si have been investigated. The generation of B-O complexes is well fitted by a fast-forming process and a slow-forming one. Activation energies of complexes generation during the fast-forming process are determined to be 0.29 and 0.24 eV in compensated and non-compensated c-Si, respectively, and those during the slow-forming process are the same, about 0.44 eV. Moreover, it is found that the pre-exponential factors of complexes generation in compensated c-Si is proportional to the square of the net doping concentration, which suggests that the latent centers should exist.

  4. Bulk Diffusion via a ``kick-out'' method for Lithium in the decomposition reaction LiAlH4/Li3AlH6

    NASA Astrophysics Data System (ADS)

    Rolih, Biljana; Ozolins, Vidvuds; Ozolins Team

    2013-03-01

    In the pursuit to find a practical system for hydrogen storage, complex metal hydrides have long been considered as viable candidates due to their high hydrogen content. However, some of the challenges faced with these types of systems are poor thermodynamics or kinetics. The underlying mechanisms, and their limiting processes, for the decomposition of these materials need to be understood. From experimental work on the decomposition of hydrogen storage materials, it has been suggested that bulk diffusion of metal species is the bottleneck for hydrogen release. In this work is the dehydrogenation we investigated the system LiAlH4  LiAlH6 with favorable hydrogen release (5.3 wt %), at moderate temperatures. Using first-principles density functional theory we found the defects facilitating mass transport by calculating individual formation energies, highest concentrations, and activation barriers for defect mobility. The mass transport of Lithium is found to be mediated by a ``kick-out'' mechanism. The results are used to further our understanding of the fundamental mechanism of mass transport and evaluate the possibility of kinetics as the limiting process in this reaction.

  5. Methodology for extracting local constants from petroleum cracking flows

    DOEpatents

    Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.

    2000-01-01

    A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.

  6. Hydrogen storage via polyhydride complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, C.M.; Zidan, R.A.

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titaniummore » doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.« less

  7. Systems approach to excitation-energy and electron transfer reaction networks in photosystem II complex: model studies for chlorophyll a fluorescence induction kinetics.

    PubMed

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi

    2015-09-07

    Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Kinetic evidence for interaction of TMPyP4 with two different G-quadruplex conformations of human telomeric DNA.

    PubMed

    Pérez-Arnaiz, Cristina; Busto, Natalia; Santolaya, Javier; Leal, José M; Barone, Giampaolo; García, Begoña

    2018-03-01

    Stabilization of G-quadruplex helices by small ligands has attracted growing attention because they inhibit the activity of the enzyme telomerase, which is overexpressed in >80% cancer cells. TMPyP4, one of the most studied G-quadruplex ligands, is used as a model to show that the ligands can exhibit different binding features with different conformations of a human telomeric specific sequence. UV-Vis, FRET melting Assay, Isothermal Titration Calorimetry, Time-resolved Fluorescence lifetime, T-Jump and Molecular Dynamics. TMPyP4 yields two different complexes with two Tel22 telomeric conformations in the presence of Na + or K + . T-Jump kinetic experiments show that the rates of formation and dissociation of these complexes in the ms time scale differ by one order of magnitude. MD simulations reveal that, in K + buffer, "hybrid 1" conformation yields kinetic constants on interaction with TMPyP4 one order lower than "hybrid 2". The binding involves π-π stacking with external loop bases. For the first time we show that for a particular buffer TMPyP4 interacts in a kinetically different way with the two Tel22 conformations even if the complexes formed are thermodynamically indistinguishable. G-quadruplexes, endowed with technological applications and potential impact on regulation mechanisms, define a new research field. The possibility of building different conformations from same sequence is a complex issue that confers G-quadruplexes very interesting features. The obtaining of reliable kinetic data constitutes an efficient tool to determine reaction mechanisms between conformations and small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. [Kinetics of Cu crossing human erythrocyte membrane].

    PubMed

    Dun, Zhu Ci Ren

    2014-12-01

    This study was aimed to investigate various factors influencing the proceduction of Cu(II) crossing human erythrocyte membrane, including concentration of Cu²⁺, pH value of the medium, temperature and time of incubation, and to derive kinetic equation of Cu(II) crossing human erythrocyte membrane. Suspension red blood cells were incubated by Cu²⁺, then content of Cu²⁺ crossed human erythrocyte membrane was determined by atomic absorption spectrometry under various conditions after digestion. The results showed that content of Cu²⁺ crossed human erythrocyte membrane increased with the increase of extracellular Cu²⁺ and enhancement of incubation temperature, and the content of Cu²⁺ crossed human erythrocyte membrane showed a increasing tendency when pH reached to 6.2-7.4, and to maximum at pH 7.4, then gradually decreased at range of pH 7.4-9.2. It is concluded that the Cu²⁺ crossing human erythrocyte has been confirmed to be the first order kinetics characteristics within 120 min, and the linear equation is 10³ × Y = 0.0497t +6.5992.

  10. Microbial Methane Fermentation Kinetics for Toxicant Exposure.

    DTIC Science & Technology

    1981-08-31

    percent of digester contents daily. Bauchcp (1967) used chloroform as a specific inhibitor for methane formation in suspensions of rumen fluid. Other...washout. -wt 113 ,YO. it i L ,. . , . . . - _ TABLE OF CONTENTS I temn Page ABSTRACT................ . . ...... . ... .. .. .. .. .. .. .. INTRODUCTION...several environmental factors (McCarty, 1964; Dague, 1968; Metcalf and Eddy, 1979). The reactor contents should be free of dis- solved oxygen and other

  11. Spectrofluorometric Determination of Putrescine: Optimization of the Putrescine-Orthophthaldehyde Complex Using Spectrofluorometry.

    PubMed

    Oyelakin, Oladele; Traoré, Moumouny; Mbye, El Hadji Babacar; Khonté, Abdourahmane; Cisse, Lamine; Faye, Abdoulaye N; Faye, Ousman; Mbaye, Moussa; Kital, Khemesse; Gaye-Seye, Mame Diabou; Coly, Atanasse; Tine, Alphonse; Delattre, François

    2016-11-01

    In alkaline medium, the complex formed between putrescine and orthophthalaldehyde was studied using spectrofluorescence. The derivative is kinetically stable 24 h after complexation. The stoichiometry of the complex is 1:1 at maximum fluorescence intensity, also 24 h after complexation.

  12. Enzyme Kinetics Experiment with the Multienzyme Complex Viscozyme L and Two Substrates for the Accurate Determination of Michaelian Parameters

    ERIC Educational Resources Information Center

    Guerra, Nelson Pérez

    2017-01-01

    A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…

  13. Kinetics, Reaction Orders, Rate Laws, and Their Relation to Mechanisms: A Hands-On Introduction for High School Students Using Portable Spectrophotometry

    ERIC Educational Resources Information Center

    Carraher, Jack M.; Curry, Sarah M.; Tessonnier, Jean-Philippe

    2016-01-01

    Teaching complex chemistry concepts such as kinetics using inquiry-based learning techniques can be challenging in a high school classroom setting. Access to expensive laboratory equipment such as spectrometers is typically limited and most reaction kinetics experiments have been designed for advanced placement (AP) or first-year undergraduate…

  14. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.

    PubMed

    Zielinska, Magdalena; Michalska, Anna

    2016-12-01

    The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Composition, physicochemical properties and thermal inactivation kinetics of polyphenol oxidase and peroxidase from coconut (Cocos nucifera) water obtained from immature, mature and overly-mature coconut.

    PubMed

    Tan, Thuan-Chew; Cheng, Lai-Hoong; Bhat, Rajeev; Rusul, Gulam; Easa, Azhar Mat

    2014-01-01

    Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  17. The kinetics of thermal generation of flavour.

    PubMed

    Parker, Jane K

    2013-01-01

    Control and optimisation of flavour is the ultimate challenge for the food and flavour industry. The major route to flavour formation during thermal processing is the Maillard reaction, which is a complex cascade of interdependent reactions initiated by the reaction between a reducing sugar and an amino compound. The complexity of the reaction means that researchers turn to kinetic modelling in order to understand the control points of the reaction and to manipulate the flavour profile. Studies of the kinetics of flavour formation have developed over the past 30 years from single- response empirical models of binary aqueous systems to sophisticated multi-response models in food matrices, based on the underlying chemistry, with the power to predict the formation of some key aroma compounds. This paper discusses in detail the development of kinetic models of thermal generation of flavour and looks at the challenges involved in predicting flavour. Copyright © 2012 Society of Chemical Industry.

  18. Characterization of Discontinuous Coarsening Reaction Products in INCONEL® Alloy 740H® Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; Dupont, John N.; Watanabe, Masashi; de Barbadillo, John J.

    2017-04-01

    Characterization of γ' coarsened zones (CZs) in alloy 740H fusion welds via a variety of electron microscopy techniques was conducted. The effects of solute partitioning during nonequilibrium solidification on the amount of strengthening precipitates along the grain boundaries were evaluated via electron-probe microanalysis and scanning electron microscopy. Electron backscatter diffraction was used to present evidence for the preferential growth of CZs toward regions of lower γ' content, even if growth in that direction increases grain boundary area. Scanning electron microscopy and image analysis were used to quantify the propensity for CZs to develop along certain segments of the grain boundaries, as governed by the local variations in γ' content. Scanning transmission electron microscopy with X-ray energy-dispersive spectrometry (XEDS) was used to assess the compositions of the matrix and precipitate phases within the CZs and to quantify the segregation of alloying components to the reaction front. Thermodynamic and kinetic modeling were used to compare calculated and experimental compositions. The work presented here provides new insight into the progression of the discontinuous coarsening (DC) reaction in a complex engineering alloy.

  19. The Control Based on Internal Average Kinetic Energy in Complex Environment for Multi-robot System

    NASA Astrophysics Data System (ADS)

    Yang, Mao; Tian, Yantao; Yin, Xianghua

    In this paper, reference trajectory is designed according to minimum energy consumed for multi-robot system, which nonlinear programming and cubic spline interpolation are adopted. The control strategy is composed of two levels, which lower-level is simple PD control and the upper-level is based on the internal average kinetic energy for multi-robot system in the complex environment with velocity damping. Simulation tests verify the effectiveness of this control strategy.

  20. Extracellular enzyme kinetics scale with resource availability

    EPA Science Inventory

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  1. Kinematic analyses of the golf swing hub path and its role in golfer/club kinetic transfers.

    PubMed

    Nesbit, Steven M; McGinnis, Ryan

    2009-01-01

    This study analyzed the fundamental geometric and kinematic characteristics of the swing hub path of the golf shot for four diverse subjects. In addition, the role of the hub path geometry in transferring the kinetic quantities from the golfer to the club were investigated. The hub path was found to have a complex geometry with significantly changing radii, and a constantly moving center-of-curvature during the downswing for all subjects. While the size and shape of the hub path differed considerably among the subjects, a three phase radius-based pattern was revealed that aligned with distinct stages of the downswing. Artificially controlling and optimizing the hub path of the better golfer in the group indicated that a non-circular hub path was superior to a constant radius path in minimizing the kinetic loading while generating the highest possible club head velocity. The shape and purpose of the hub path geometry appears to result from a complex combination of achieving equilibrium between the golfer and the club, and a purposeful configuring of the path to control the outward movement of the club while minimizing the kinetic loading on the golfer yet transferring the maximum kinetic quantities to the club. Describing the downswing relative to the hub path phasing is presented and was found to be informative since the phases align with significant swing, kinetic and kinematic markers. These findings challenge golf swing modeling methodologies which fix the center-of-curvature of the hub path thus constraining it to constant radius motion. Key pointsThe golf swing hub path was found to have a complex geometry with significantly changing radii, and a constantly moving center-of-curvature during the downswing.The hub path differed considerably among subjects, however a three phase radius-based pattern was revealed that aligned with distinct stages of the downswing.The shape and purpose of the hub path geometry appears to result from a complex combination of achieving equilibrium between the golfer and the club, and a purposeful configuring of the path to control the outward movement of the club while minimizing the kinetic loading on the golfer yet transferring the maximum kinetic quantities to the club.

  2. Dissociation kinetics of Mn2+ complexes of NOTA and DOTA.

    PubMed

    Drahoš, Bohuslav; Kubíček, Vojtěch; Bonnet, Célia S; Hermann, Petr; Lukeš, Ivan; Tóth, Éva

    2011-03-07

    The kinetics of transmetallation of [Mn(nota)](-) and [Mn(dota)](2-) was investigated in the presence of Zn(2+) (5-50-fold excess) at variable pH (3.5-5.6) by (1)H relaxometry. The dissociation is much faster for [Mn(nota)](-) than for [Mn(dota)](2-) under both experimental and physiologically relevant conditions (t(½) = 74 h and 1037 h for [Mn(nota)](-) and [Mn(dota)](2-), respectively, at pH 7.4, c(Zn(2+)) = 10(-5) M, 25 °C). The dissociation of the complexes proceeds mainly via spontaneous ([Mn(nota)](-)k(0) = (2.6 ± 0.5) × 10(-6) s(-1); [Mn(dota)](2-)k(0) = (1.8 ± 0.6) × 10(-7) s(-1)) and proton-assisted pathways ([Mn(nota)](-)k(1) = (7.8 ± 0.1) × 10(-1) M(-1) s(-1); [Mn(dota)](2-)k(1) = (4.0 ± 0.6) × 10(-2) M(-1) s(-1), k(2) = (1.6 ± 0.1) × 10(3) M(-2) s(-1)). The observed suppression of the reaction rates with increasing Zn(2+) concentration is explained by the formation of a dinuclear Mn(2+)-L-Zn(2+) complex which is about 20-times more stable for [Mn(dota)](2-) than for [Mn(nota)](-) (K(MnLZn) = 68 and 3.6, respectively), and which dissociates very slowly (k(3)∼10(-5) M(-1) s(-1)). These data provide the first experimental proof that not all Mn(2+) complexes are kinetically labile. The absence of coordinated water makes both [Mn(nota)](-) and [Mn(dota)](2-) complexes inefficient for MRI applications. Nevertheless, the higher kinetic inertness of [Mn(dota)](2-) indicates a promising direction in designing ligands for Mn(2+) complexation.

  3. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(III) DOTA complexes.

    PubMed

    Tei, Lorenzo; Baranyai, Zsolt; Gaino, Luca; Forgács, Attila; Vágner, Adrienn; Botta, Mauro

    2015-03-28

    A complete thermodynamic and kinetic solution study on lanthanide(III) complexes with monoacetamide (DOTAMA, L1) and monopropionamide (DOTAMAP, L2) derivatives of DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was undertaken with the aim to elucidate their stability and inertness in aqueous media. The stability constants of GdL1 and GdL2 are comparable, whereas a more marked difference is found in the kinetic inertness of the two complexes. The formation of the Eu(III) and Ce(III) complexes takes place via the formation of the protonated intermediates which can deprotonate and transform into the final complex through a OH(-) assisted pathway. GdL2 shows faster rates of acid catalysed decomplexation with respect to GdL1, which has a kinetic inertness comparable to GdDOTA. Nevertheless, GdL2 is one order of magnitude more inert than GdDO3A. A novel DOTAMAP-based bifunctional chelating ligand and its deoxycholic acid derivative (L5) were also synthesized. Since the coordinated water molecule in GdL2 is characterized by an exchange rate ca. two orders of magnitude greater than in GdL1, the relaxivity of the macromolecular derivatives of L5 should not be limited by the slow water exchange process. The relaxometric properties of the supramolecular adduct of GdL5 with human serum albumin (HSA) were investigated in aqueous solution by measuring the magnetic field dependence of the (1)H relaxivity which, at 20 MHz and 298 K, shows a 430% increase over that of the unbound GdL5 chelate. Thus, Gd(III) complexes with DOTAMAP macrocyclic ligands can represent good candidates for the development of stable and highly effective bioconjugate systems for molecular imaging applications.

  4. Reaction with cyanide of hydroxylamine oxidoreductase of Nitrosomonas europaea.

    PubMed

    Logan, M S; Balny, C; Hooper, A B

    1995-07-18

    Hydroxylamine oxidoreductase (HAO) catalyzes the reaction NH2OH+H2O-->HNO2+4e- + 4H+, a step in the energy-generating oxidation of ammonia to nitrite by the bacterium Nitrosomonas europaea. Each subunit of HAO contains 7 c-hemes and 1 heme P460. The latter, c-heme cross-linked from a methylene carbon to the ring of a protein tyrosine, forms part of the active site. The iron of heme P460 is probably linked by a bridging ligand to the iron of a c-heme. Here, the reaction of cyanide with ferric HAO was studied by optical, transient, and steady state kinetic techniques. The molecules, F-, Cl-, Br-, N3-, SCN-, and OCN- did not react with HAO. A single molecule of cyanide bound with high affinity to heme P460 of HAO. The optical and kinetic characteristics of formation of the monocyano complex of HAO resembled those of cyanide derivatives of other heme proteins. Cyanide, in the monocyano complex, was a noncompetitive inhibitor and remained bound during turnover. HAO was found in two forms. The most common form, HAO-A, formed only the monocyano derivative of heme P460, whereas the other, HAO-B, formed a mono- and dicyano complex. The optical properties and kinetics of formation of the mono- and dicyano complexes were different enough to easily allow independent analysis. The optical and kinetic characteristics of formation of the monocyano complex of heme P460 of HAO A and B were very similar. The dicyano complex of HAO-B appeared to result from the addition of a second molecule of cyanide to heme P460. The rate of conversion of the monocyano to the dicyano complex was stimulated 100-fold by the binding of substrate. Formation of the monoheme complex inhibited enzyme activity. The kinetic constants for the first-order formation of the monocyano derivative and the inhibition of substrate oxidation (under either transient or steady-state conditions) were different. The apparent discrepancy could be resolved by the hypothesis that HAO is functionally a dimer in which electrons rapidly equilibrate between the c-hemes of each subunit but not between oligomers. The results form the basis for the use of cyanide as a probe of the active site of HAO.

  5. Kinetics and its accompanying thermodynamics studies on simultaneous complexation of heterobimetallic neodymium (III) with zinc (II) and L-tryptophan in aquated DMF using 4f-4f absorption spectra.

    PubMed

    Huidrom, Bimola; Singh, N Rajmuhon

    2014-01-24

    The 4f-4f absorption spectra of the simultaneous heterobimetallic complexation of trivalent neodymium ion with l-tryptophan and divalent zinc ion in aquated DMF (50%, v/v) at pH 6.0 was recorded at the time interval of 1h. From the observed absorption spectra, the values of intensity parameters such as oscillator strength (P) and Judd-Ofelt intensity (Tλ) parameters, kinetics and thermodynamics parameters were evaluated. The rate constant increases with an increase in the temperature along with the oscillator strengths and Judd-Ofelt intensity parameters. The positive values of the change in the standard enthalpy (ΔH°) and entropy (ΔS°) indicate that the complexation is endothermic. The negative values of the change in the standard free energy (ΔG°) in the range from 293.15 K to 308.15 K, indicate that the reaction occurs spontaneously and hence the formation of heterobimetallic complex in the solution is favored kinetically and thermodynamically. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Kinetics and its accompanying thermodynamics studies on simultaneous complexation of heterobimetallic neodymium (III) with zinc (II) and L-tryptophan in aquated DMF using 4f-4f absorption spectra

    NASA Astrophysics Data System (ADS)

    Huidrom, Bimola; Rajmuhon Singh, N.

    2014-01-01

    The 4f-4f absorption spectra of the simultaneous heterobimetallic complexation of trivalent neodymium ion with L-tryptophan and divalent zinc ion in aquated DMF (50%, v/v) at pH 6.0 was recorded at the time interval of 1 h. From the observed absorption spectra, the values of intensity parameters such as oscillator strength (P) and Judd-Ofelt intensity (Tλ) parameters, kinetics and thermodynamics parameters were evaluated. The rate constant increases with an increase in the temperature along with the oscillator strengths and Judd-Ofelt intensity parameters. The positive values of the change in the standard enthalpy (ΔH°) and entropy (ΔS°) indicate that the complexation is endothermic. The negative values of the change in the standard free energy (ΔG°) in the range from 293.15 K to 308.15 K, indicate that the reaction occurs spontaneously and hence the formation of heterobimetallic complex in the solution is favored kinetically and thermodynamically.

  7. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    DOE PAGES

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun; ...

    2015-12-18

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so evenmore » when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.« less

  8. A single mutation at the catalytic site of TF1-alpha3beta3gamma complex switches the kinetics of ATP hydrolysis from negative to positive cooperativity.

    PubMed

    Muneyuki, E; Odaka, M; Yoshida, M

    1997-08-11

    Previously, we reported the substitution of Tyr341 of the F1-ATPase beta subunit from a thermophilic Bacillus strain PS3 with leucine, cysteine, or alanine (M. Odaka et al. J. Biochem., 115 (1994) 789-796). These mutations resulted in a great decrease in the affinity of the isolated beta subunit for ATP-Mg and an increase in the apparent Km of the alpha3beta3gamma complex in ATP hydrolysis when examined above 0.1 mM ATP. Here, we examined the ATPase activity of the mutant complexes in a wide range of ATP concentration and found that the mutants exhibited apparent positive cooperativity in ATP hydrolysis. This is the first clear demonstration that a single mutation in the catalytic sites converts the kinetics from apparent negative cooperativity in the wild-type alpha3beta3gamma complex to apparent positive cooperativity. The conversion of apparent cooperativity could be explained in terms of a simple kinetic scheme based on the binding change model proposed by Boyer.

  9. Kinetics of temperature response of PEO-b-PNIPAM-b-PAA triblock terpolymer aggregates and of their complexes with lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papagiannopoulos, Aristeidis; Meristoudi, Anastasia; Hong, Kunlun

    We present the kinetics of temperature response of a PEO-b-PNIPAM-b-PAA triblock terpolymer and of its complexes with lysozyme in aqueous solution. It is found that during the coil-to-globule transition of PNIPAM new bonds within the polymer aggregates are created, making the transition of the aggregates partially irreversible. This effect is also found for the protein loaded PEO-b-PNIPAM-b-PAA aggregates whereas in this case protein globules appear to enhance the formation of bonds, making the transition totally irreversible. The internal dynamics of both aggregates and complexes are “frozen” once the temperature is increased upon PINIPAM's LCST in water and remain so evenmore » when the temperature drops below LCST. As a result, we investigate the complexation kinetics of lysozyme and PEO-b-PNIPAM-b-PAA and observe that it occurs in two stages, one where protein globules adsorb on single pre-formed aggregates and one where protein globules cause inter-aggregate clustering.« less

  10. Illuminating the Reaction Pathways of Viromimetic Assembly.

    PubMed

    Cingil, Hande E; Boz, Emre B; Biondaro, Giovanni; de Vries, Renko; Cohen Stuart, Martien A; Kraft, Daniela J; van der Schoot, Paul; Sprakel, Joris

    2017-04-05

    The coassembly of well-defined biological nanostructures relies on a delicate balance between attractive and repulsive interactions between biomolecular building blocks. Viral capsids are a prototypical example, where coat proteins exhibit not only self-interactions but also interact with the cargo they encapsulate. In nature, the balance between antagonistic and synergistic interactions has evolved to avoid kinetic trapping and polymorphism. To date, it has remained a major challenge to experimentally disentangle the complex kinetic reaction pathways that underlie successful coassembly of biomolecular building blocks in a noninvasive approach with high temporal resolution. Here we show how macromolecular force sensors, acting as a genome proxy, allow us to probe the pathways through which a viromimetic protein forms capsids. We uncover the complex multistage process of capsid assembly, which involves recruitment and complexation, followed by allosteric growth of the proteinaceous coat. Under certain conditions, the single-genome particles condense into capsids containing multiple copies of the template. Finally, we derive a theoretical model that quantitatively describes the kinetics of recruitment and growth. These results shed new light on the origins of the pathway complexity in biomolecular coassembly.

  11. The Role of Knowledge Structures in the Ability of Preservice Elementary Teachers to Diagnose a Child's Understanding of Molecular Kinetics

    ERIC Educational Resources Information Center

    Bischoff, Paul J.

    2006-01-01

    This study explored preservice teachers' (n = 25) knowledge structures and their mastery of content knowledge in relation to their ability to diagnose the strengths and weaknesses of a fourth grader's videotaped explanations of a scientific phenomenon, i.e., molecular kinetic properties of air. Participants' knowledge structures were analyzed…

  12. Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand

    2017-10-01

    In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.

  13. Kinetics of Interaction between ADP-ribosylation Factor-1 (Arf1) and the Sec7 Domain of Arno Guanine Nucleotide Exchange Factor, Modulation by Allosteric Factors, and the Uncompetitive Inhibitor Brefeldin A

    PubMed Central

    Rouhana, Jad; Padilla, André; Estaran, Sébastien; Bakari, Sana; Delbecq, Stephan; Boublik, Yvan; Chopineau, Joel; Pugnière, Martine; Chavanieu, Alain

    2013-01-01

    The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex. PMID:23255605

  14. Kinetics of reactions of aquacobalamin with aspartic and glutamic acids and their amides in water solutions

    NASA Astrophysics Data System (ADS)

    Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.

    2017-04-01

    The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.

  15. Cell shape characterization and classification with discrete Fourier transforms and self-organizing maps.

    PubMed

    Kriegel, Fabian L; Köhler, Ralf; Bayat-Sarmadi, Jannike; Bayerl, Simon; Hauser, Anja E; Niesner, Raluca; Luch, Andreas; Cseresnyes, Zoltan

    2018-03-01

    Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not possible at all. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  16. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia.

    PubMed

    Alam, Israt S; Arrowsmith, Rory L; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W; Dilworth, Jonathan R; Carroll, Laurence; Aboagye, Eric O; Pascu, Sofia I

    2016-01-07

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under 'cold' and 'hot' biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. (68)Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration.

  17. A surprisingly complex aqueous chemistry of the simplest amino acid. A pulse radiolysis and theoretical study on H/D kinetic isotope effects in the reaction of glycine anions with hydroxyl radicals.

    PubMed

    Stefanić, I; Ljubić, I; Bonifacić, M; Sabljić, A; Asmus, K-D; Armstrong, D A

    2009-04-07

    A pulse radiolysis study was carried out of the reaction rate constants and kinetic isotope effects of hydroxyl-radical-induced H/D abstraction from the most-simple alpha-amino acid glycine in its anionic form in water. The rate constants and yields of three predominantly formed radical products, glycyl (NH2-*CH-CO2-), aminomethyl (NH2-*CH2), and aminyl (*NH-CH2-CO2-) radicals, as well as of their partially or fully deuterated analogs, were found to be of comparable magnitude. The primary, secondary, and primary/secondary H/D kinetic isotope effects on the rate constants were determined with respect to each of the three radicals. The unusual variety of products for such an elementary reaction between two small and simple species indicates a complex mechanism with several reactions taking place simultaneously. Thus, a theoretical modeling of the reaction mechanism and kinetics in the gas- and aqueous phase was performed by using the unrestricted density functional theory with the BB1K functional (employing the polarizable continuum model for the aqueous phase), unrestricted coupled cluster UCCSD(T) method, and improved canonical variational theory. Several hydrogen-bonded prereaction complexes and transition states were detected. In particular, the calculations pointed to a significant mechanistic role of the three-electron two-orbital (sigma/sigma* N therefore O) hemibonded prereaction complexes in the aqueous phase. A good agreement with the experimental rate constants and kinetic isotope effects was achieved by downshifting the calculated reaction barriers by 3 kcal mol(-1) and damping the NH(D) stretching frequency by a factor of 0.86.

  18. [Ultrastructure and cytochemistry of the pellicle and apical complexes of the kinete of Babesia bigemina and Babesia ovis in the hemolymph and oavry of the tick].

    PubMed

    Weber, G

    1980-02-01

    The term kinete is used in this paper for the cigar-shaped, motile development stages (VERMICULE") OF Babesia occurring intra- and extracellularly in hemolymph and overy (including oocytes) of vectors, hard ticks (Ixodoidea). The structure of, and cytochemical activities of hydrolases (acid phosphatase, nonspecific esterase) in the pellicle and the apical complex was studied at the fine-structural level in kinetes of Babesia bigemina Smith & Kilborne, in hemolympho of female Boophilus microplus Canestrini. The cytochemistry of acid hydrolases was studied also in kinetes of Babesia ovis (Babès) Starcovici, in hemolymph and ovary of Rhipicephalus bursa Canestrini & Fanzago. The pellicle of the B. bigemina kinetes is composted of 3 membranes (pellicular complex): an outer membrane, approximately 8 nm thick (the plasmalemma) and 2 innder ones, each approximately nm thick, lying closely together. The outer membrane appears to be covered by a structureless coat, 3 nm thick. The space between the inner double membrane and the plasmalemma is 7.5 nm. The whole pellicular complex is 30 nm in diameter. The 2 inner pellicular membranes appear to be derived from the endoplasmic reticulum (ER) for the following reasons: (a) a layer of hydrolase-active material is enclosed by these membranes; (b) in the spheroid parasite stages which transform from kinetes inside hemocytes, the inner double membrane is apparently replaced by an ER cisterna; (c) the thickness of each of the inner pellicular membranes is approximately the same as that of the ER membrane. There are circular openings in the pellicular double membrane with average diameters of 100 nm; despite some similarity to micropores, they have a specific structure. The term Intrapellikularfenster (IPF) (intrapellicular windows) or pseudomicropores is proposed for these pellicular differentiations. The margin of an IPF is formed by the 2 inner membranes folding into each other; cytoplasmic, electron-dense material is accumulated alongside this edge. Unlike that of micropores, the plasmalemma of the IPF is not invaginated. The IPF appears as a single, dark ring in tangential sections. At times, rhoptry-like bodies are associated with the openings. The function of the IPF is not known. An intrapellicular opening similar to the IPF, although wider, is present at the apex of the parasite. Its margin coincides with the inners edge of the apical ring. Typical subpellicular microtubuli were not observed in the Babesia kinetes. The apical complex of the B. bigemina kinetes consists of an Apikalschirm (apical umbrella), a crown of microtubuli beneath it, and rhoptries: micronemes are also present in large numbers. The Apikalschirm is located beneath the pellicle of the apical pole of the parasite. It is a wheel-like structure composed of spokes radiating from a wide, hub=like central ring (apical ring). It should be stressed that the apical ring is not identical with the polar ring described as an integral part of the pellicular complex in other Apicomplexa...

  19. Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions.

    PubMed

    Mao, Jia; Abushammala, Hatem; Pereira, Laura Barcellos; Laborie, Marie-Pierre

    2016-11-20

    1Butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) is efficient at extracting cellulose nanocrystals from pulp fibers. To shed some light on the respective contributions of swelling and hydrolysis of pulp fibers by [Bmim]HSO4, the physical, structural and morphological characteristics of hardwood Kraft pulp fibers were monitored under various conditions of temperature, water content and time. Swelling was largely compounded by hydrolysis at the highest temperatures (120°C) as evidenced by mass loss and reduced degree of polymerization (DPn) at this temperature. At 120°C only, water content appeared to play a significant role on the extent of hydrolysis. At this temperature, a heterogeneous kinetic model involving weak links and amorphous regions best described the experimental data. Hydrolysis rates were maximum at 25% water content in the aqueous ionic liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dewetting kinetics of metallic liquid films: Competition between unbalanced Young's force and dissolutive reaction

    NASA Astrophysics Data System (ADS)

    Lu, Gui; Lin, Lin; Hui, Sheng; Wang, Shuo-Lin; Wang, Xiao-Dong; Lee, Duu-Jong

    2017-11-01

    Dewetting kinetics of Al and NiAl metallic liquid films on NiAl (1 0 0) substrates was studied using molecular dynamics simulations. A new dewetting-spreading transitional behavior was observed for high temperature dewetting. The dewetting-spreading transition comes from the competition between unbalanced Young's force and dissolutive reaction. Without dissolutive reaction, liquid films keep dewetting, but immediately turn into spreading when the dissolutive reaction involved. The dissolutive reaction depends on the initial Ni atom contents rather than the contact areas of dewetting films. The far-away-from saturated Ni content is the main mechanism which accelerates the wetting and reverses the dewetting process at high temperatures.

  1. ABC of kink kinetics and density in a complex solution

    DOE PAGES

    Chernov, A. A.; DeYoreo, J. J.; Rashkovich, L. N.

    2007-06-14

    This tutorial lecture explains the ways supersaturation in complex solutions may be introduced to be most relevant to describe experimental data on kink and step kinetics. To do so, we express the kink rate via the frequencies of attachment and detachment of the building units and then link these frequencies to the measurable activities of these units in solution. Furthermore, possible reasons for violation of the Gibbs–Thomson law are also briefly discussed with reference to our earlier work.

  2. Combustion and kinetic parameters estimation of torrefied pine, acacia and Miscanthus giganteus using experimental and modelling techniques.

    PubMed

    Wilk, Małgorzata; Magdziarz, Aneta; Gajek, Marcin; Zajemska, Monika; Jayaraman, Kandasamy; Gokalp, Iskender

    2017-11-01

    A novel approach, linking both experiments and modelling, was applied to obtain a better understanding of combustion characteristics of torrefied biomass. Therefore, Pine, Acacia and Miscanthus giganteus have been investigated under 260°C, 1h residence time and argon atmosphere. A higher heating value and carbon content corresponding to a higher fixed carbon, lower volatile matter, moisture content, and ratio O/C were obtained for all torrefied biomass. TGA analysis was used in order to proceed with the kinetics study and Chemkin calculations. The kinetics analysis demonstrated that the torrefaction process led to a decrease in Ea compared to raw biomass. The average Ea of pine using the KAS method changed from 169.42 to 122.88kJ/mol. The changes in gaseous products of combustion were calculated by Chemkin, which corresponded with the TGA results. The general conclusion based on these investigations is that torrefaction improves the physical and chemical properties of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Complex formation between alpha-chymotrypsin and block copolymers based on ethylene and propylene oxide, induced by high pressure].

    PubMed

    Topchieva, I N; Sorokina, E M; Kurganov, B I; Zhulin, V M; Makarova, Z G

    1996-06-01

    A new method of formation of non-covalent adducts based on an amphiphilic diblock copolymer of ethylene and propylene oxides with molecular mass of 2 kDa and alpha-chymotrypsin (ChT) under high pressure, has been developed. The composition of the complexes corresponds to seven polymer molecules per one ChT molecule in the pressure range of 1.1 to 400 MPa. The complexes fully retain the catalytic activity. Kinetic constants (Km and kcat) for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester catalyzed by the complexes are identical with the corresponding values for native ChT. Analysis of kinetics of thermal inactivation of the complexes revealed that the constant of the rate of the slow inactivation step is markedly lower than for ChT.

  4. Nitrification of an industrial wastewater in a moving-bed biofilm reactor: effect of salt concentration.

    PubMed

    Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L

    2011-01-01

    Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.

  5. OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2013-09-30

    The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.

  6. Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing

    NASA Astrophysics Data System (ADS)

    Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.

    2016-12-01

    Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.

  7. Pharmaceutical quality of "party pills" raises additional safety concerns in the use of illicit recreational drugs.

    PubMed

    Young, Simon A; Thrimawithana, Thilini R; Antia, Ushtana; Fredatovich, John D; Na, Yonky; Neale, Peter T; Roberts, Amy F; Zhou, Huanyi; Russell, Bruce

    2013-06-14

    To determine the content and release kinetics of 1-benzylpiperazine (BZP) and 1-(3-trifluoromethyl-phenyl)piperazine (TFMPP) from "party pill" formulations. From these data, the possible impact of pharmaceutical quality upon the safety of such illicit formulations may be inferred. The amount of BZP and TFMPP in party pill formulations was determined using a validated HPLC method. The in-vitro release kinetics of selected party pill brands were determined using a USP dissolution apparatus (75 rpm, 37.5 degrees Celsius). The release data were then fitted to a first order release model using PLOT software and the time taken to achieve 90% release reported. Many of the tested party pill brands contained amounts of BZP and TFMPP that varied considerably from that stated on the packaging; including considerable TFMPP content in some brands not labelled to contain this drug. Dissolution studies revealed that there was considerable variability in the release kinetics between brands; in one case 90% release required >30 minutes. Lack of quality control in party pill manufacture may have led to the toxic effects reported by users unaware of the true content and release of drug from pills. More stringent regulation in the manufacture and quality control of "new generation party pills" is essential to the harm reduction campaign.

  8. Callus Growth Kinetics of Physic Nut (Jatropha curcas L.) and Content of Fatty Acids from Crude Oil Obtained In Vitro.

    PubMed

    da Luz Costa, Jefferson; da Silva, André Luís Lopes; Bier, Mário César Jucoski; Brondani, Gilvano Ebling; Gollo, André Luiz; Letti, Luiz Alberto Junior; Erasmo, Eduardo Andrea Lemus; Soccol, Carlos Ricardo

    2015-06-01

    The callus growth kinetics allows identifying the appropriate moment for callus pealing and monitoring the accumulation of primary and secondary metabolites. The physic nut (Jatropha curcas L.) is a plant species used for biofuel production due to its high oil content; however, this plant presents a great amount of bioactive compounds which can be useful for industry. The aim of this research was to establish a calli growth curve and to evaluate the fatty acid profile of crude oil extracted from callus. The callus growth kinetics presented a sigmoid standard curve with six distinct phases: lag, exponential, linear, deceleration, stationary, and decline. Total soluble sugars were higher at the inoculation day. Reducing sugars were higher at the inoculation day and at the 80th day. The highest percentage of ethereal extract (oil content) was obtained at the 120th day of culture, reaching 18 % of crude oil from the callus. The calli produced medium-chain and long-chain fatty acids (from 10 to 18 carbon atoms). The palmitic acid was the fatty acid with the highest proportion in oil (55.4 %). The lipid profile obtained in callus oil was different from the seed oil profile.

  9. Selenium deposition kinetics of different selenium sources in muscle and feathers of broilers.

    PubMed

    Couloigner, Florian; Jlali, Maamer; Briens, Mickael; Rouffineau, Friedrich; Geraert, Pierre-André; Mercier, Yves

    2015-11-01

    The objective of this study was to determine selenium (Se) deposition kinetics in muscles and feathers of broilers in order to develop a rapid method to compare bioavailability of selenium sources. Different Se sources such as 2-hydroxy-4-methylselenobutanoic acid (HMSeBA, SO), sodium selenite (SS) and seleno-yeast (SY) were compared for their kinetics on Se deposition in muscles and feathers in broiler chicks from 0 to 21 d of age. A total of 576 day-old broilers were divided into four treatments with 8 replicates of 18 birds per pen. The diets used in the experiment were a negative control (NC) not supplemented with Se and 3 diets supplemented with 0.2 mg Se/kg as SS, SY or SO. Total Se content in breast muscle and feathers were assessed on days 0, 7, 14 and 21. At 7 d of age, SO increased muscle Se content compared to D0 (P < 0.05), whereas with the other treatments, muscle Se concentration decreased (P < 0.05). After 21 days, organic Se sources maintained (SY) or increased (SO) (P < 0.05) breast muscle Se concentration compared to hatch value whereas inorganic source (SS) or non-supplemented group (NC) showed a significant decrease in tissue Se concentration (P < 0.05). At D21, Se contents of muscle and feathers were highly correlated (R(2) = 0.927; P < 0.0001). To conclude, these results indicate that efficiency of different Se sources can be discriminated through a 7 d using muscle Se content in broiler chickens. Muscle and feathers Se contents were highly correlated after 21 days. Also feather sampling at 21 days of age represents a reliable and non-invasive procedure for Se bioefficacy comparison. © 2015 Poultry Science Association Inc.

  10. Analyzing milestoning networks for molecular kinetics: definitions, algorithms, and examples.

    PubMed

    Viswanath, Shruthi; Kreuzer, Steven M; Cardenas, Alfredo E; Elber, Ron

    2013-11-07

    Network representations are becoming increasingly popular for analyzing kinetic data from techniques like Milestoning, Markov State Models, and Transition Path Theory. Mapping continuous phase space trajectories into a relatively small number of discrete states helps in visualization of the data and in dissecting complex dynamics to concrete mechanisms. However, not only are molecular networks derived from molecular dynamics simulations growing in number, they are also getting increasingly complex, owing partly to the growth in computer power that allows us to generate longer and better converged trajectories. The increased complexity of the networks makes simple interpretation and qualitative insight of the molecular systems more difficult to achieve. In this paper, we focus on various network representations of kinetic data and algorithms to identify important edges and pathways in these networks. The kinetic data can be local and partial (such as the value of rate coefficients between states) or an exact solution to kinetic equations for the entire system (such as the stationary flux between vertices). In particular, we focus on the Milestoning method that provides fluxes as the main output. We proposed Global Maximum Weight Pathways as a useful tool for analyzing molecular mechanism in Milestoning networks. A closely related definition was made in the context of Transition Path Theory. We consider three algorithms to find Global Maximum Weight Pathways: Recursive Dijkstra's, Edge-Elimination, and Edge-List Bisection. The asymptotic efficiency of the algorithms is analyzed and numerical tests on finite networks show that Edge-List Bisection and Recursive Dijkstra's algorithms are most efficient for sparse and dense networks, respectively. Pathways are illustrated for two examples: helix unfolding and membrane permeation. Finally, we illustrate that networks based on local kinetic information can lead to incorrect interpretation of molecular mechanisms.

  11. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    PubMed Central

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load synaptic protein turnover places on individual neurons is very substantial. PMID:23658807

  12. IR spectroscopy study of SBA-15 silicas functionalized with the ethylthiocarbamidepropyl groups and their interactions with Ag(I) and Hg(II) ions

    NASA Astrophysics Data System (ADS)

    Melnyk, Inna V.; Nazarchuk, Galyna I.; Václavíková, Miroslava; Zub, Yuriy L.

    2018-04-01

    Mesoporous structure of silica is determined by the type of template, but the introduction of functional groups during the synthesis has additional influence. The structure of SBA-15 may be violated by the introduction of long functions, such as ≡Si(CH2)3NHC(=S)NHC2H5. These ethylthiocarbamidepropyl groups can form complexes with metal ions in thiol or thione tautomeric forms. We determined that the 2D hexagonal p6 mm structure is preserved for SBA-15 with thiourea groups at maximal TEOS:trifunctional silane ratio (mol) = 10:2, which was confirmed by TEM and by the presence of an intense reflex in the small-angle region of diffractograms of the final product. It was shown that the obtained sorbents possess high kinetic characteristics. The experimental data fit pseudo-second-order kinetic equation, but the rate constants depend on the content of functional groups in the surface layer. Template Pluronic P-123 defines the porosity of functional mesoporous silica materials even at increasing content of trifunctional silane in the initial solution. Infrared spectroscopy analysis showed that thione form of thiourea ligand is prevalent on the surface of pores of mesoporous samples. However, during the sorption of silver(I) ions, there are both thione and thiol forms on the surface. Thione form is transformed into thiol with increasing concentration of mercury(II) ions in the sorption solution. Adsorption experiments showed that the SBA-15 silicas functionalized with ethylthiocarbamidepropyl groups had high selectivity for silver(I) ions and could concentrate Ag(I) ions from metal ions mixture at pH 2.

  13. Unraveling the diversity in arc volcanic eruption styles: Examples from the Aleutian volcanic arc, Alaska

    NASA Astrophysics Data System (ADS)

    Larsen, Jessica F.

    2016-11-01

    The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.

  14. Simulating complex atomistic processes: On-the-fly kinetic Monte Carlo scheme with selective active volumes

    NASA Astrophysics Data System (ADS)

    Xu, Haixuan; Osetsky, Yury N.; Stoller, Roger E.

    2011-10-01

    An accelerated atomistic kinetic Monte Carlo (KMC) approach for evolving complex atomistic structures has been developed. The method incorporates on-the-fly calculations of transition states (TSs) with a scheme for defining active volumes (AVs) in an off-lattice (relaxed) system. In contrast to conventional KMC models that require all reactions to be predetermined, this approach is self-evolving and any physically relevant motion or reaction may occur. Application of this self-evolving atomistic kinetic Monte Carlo (SEAK-MC) approach is illustrated by predicting the evolution of a complex defect configuration obtained in a molecular dynamics (MD) simulation of a displacement cascade in Fe. Over much longer times, it was shown that interstitial clusters interacting with other defects may change their structure, e.g., from glissile to sessile configuration. The direct comparison with MD modeling confirms the atomistic fidelity of the approach, while the longer time simulation demonstrates the unique capability of the model.

  15. Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design.

    PubMed

    Ogi, Soichiro; Fukui, Tomoya; Jue, Melinda L; Takeuchi, Masayuki; Sugiyasu, Kazunori

    2014-12-22

    Far-from-equilibrium thermodynamic systems that are established as a consequence of coupled equilibria are the origin of the complex behavior of biological systems. Therefore, research in supramolecular chemistry has recently been shifting emphasis from a thermodynamic standpoint to a kinetic one; however, control over the complex kinetic processes is still in its infancy. Herein, we report our attempt to control the time evolution of supramolecular assembly in a process in which the supramolecular assembly transforms from a J-aggregate to an H-aggregate over time. The transformation proceeds through a delicate interplay of these two aggregation pathways. We have succeeded in modulating the energy landscape of the respective aggregates by a rational molecular design. On the basis of this understanding of the energy landscape, programming of the time evolution was achieved through adjusting the balance between the coupled equilibria. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dissociation kinetics of Fe(III)- and Al(III)-natural organic matter complexes at pH 6.0 and 8.0 and 25 °C

    NASA Astrophysics Data System (ADS)

    Jones, Adele M.; Pham, A. Ninh; Collins, Richard N.; Waite, T. David

    2009-05-01

    The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.

  17. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-03-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  18. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-06-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  19. A network dynamics approach to chemical reaction networks

    NASA Astrophysics Data System (ADS)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  20. Formation kinetics and mechanism of metastable vacancy-dioxygen complex in neutron irradiated Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Wang, Rong; Yu, Xuegong; Chen, Lin; Ma, Xiangyang; Yang, Deren

    2017-07-01

    We have quantitatively investigated the formation kinetics of metastable vacancy-dioxygen (VO2) complex in a structure of [VO + Oi], where a VO complex is trapped in a next-neighbor position to an interstitial oxygen atom (Oi). It is found that the VO annihilation is accompanied by the generation of metastable [VO + Oi] complex during annealing in the temperature range of 220-250 °C. The activation energy for [VO + Oi] generation appears at around 0.48 eV, which is much lower than the counterpart of stable VO2 complex. This indicates that the formation of [VO + Oi] complex originates from the reaction between VO and Oi. The ab initio calculations show that the formation energy of [VO + Oi] complex is larger than that of VO2 complex, which means that [VO + Oi] complex is thermodynamically unfavorable as compared to VO2 complex. However, the binding energy of [VO + Oi] complex is positive, indicating that [VO + Oi] complex is stable against decomposition of VO and Oi in silicon. It is believed that [VO + Oi] complex serves as the intermediate for VO to VO2 conversion.

  1. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites.

    PubMed

    Lu, Helen H; Tang, Amy; Oh, Seong Cheol; Spalazzi, Jeffrey P; Dionisio, Kathie

    2005-11-01

    Biodegradable polymer-ceramic composites are attractive systems for bone tissue engineering applications. These composites have the combined advantages of the component phases, as well as the inherent ease in optimization where desired material properties can be tailored in a well-controlled manner. This study focuses on the optimization of a polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) composite for bone tissue engineering. The first objective is to examine the effects of composition or overall BG content on the formation of a Ca-P layer on the PLAGA-BG composite. It is expected that with increasing BG content (0%, 10%, 25%, 50% by weight), the required incubation time in a simulated body fluid (SBF) for the composite to form a detectable surface Ca-P layer will decrease. Both the kinetics and the chemistry will be determined using SEM+EDAX, FTIR, and mu-CT methods. Solution phosphorous and calcium concentrations will also be measured. The second objective of the study is to determine the effects of BG content on the maturation of osteoblast-like cells on the PLAGA-BG composite. It is hypothesized that mineralization will increase with increasing BG content, and the composite will support the proliferation and differentiation of osteoblasts. Specifically, cell proliferation, alkaline phosphatase activity and mineralization will be monitored as a function of BG content (0%, 10%, 50% by weight) and culturing time. It was found that the kinetics of Ca-P layer formation and the resulting Ca-P chemistry were dependent on BG content. The response of human osteoblast-like cells to the PLAGA-BG composite was also a function of BG content. The 10% and 25% BG composite supported greater osteoblast growth and differentiation compared to the 50% BG group. The results of this study suggest that there is a threshold BG content which is optimal for osteoblast growth, and the interactions between PLAGA and BG may modulate the kinetics of Ca-P formation and the overall cellular response.

  2. Kinetic, Thermodynamic, and Structural Characterizations of the Association between Nrf2-DLGex Degron and Keap1

    PubMed Central

    Fukutomi, Toshiaki; Takagi, Kenji; Mizushima, Tsunehiro; Ohuchi, Noriaki

    2014-01-01

    Transcription factor Nrf2 (NF-E2-related factor 2) coordinately regulates cytoprotective gene expression, but under unstressed conditions, Nrf2 is degraded rapidly through Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination. Nrf2 harbors two Keap1-binding motifs, DLG and ETGE. Interactions between these two motifs and Keap1 constitute a key regulatory nexus for cellular Nrf2 activity through the formation of a two-site binding hinge-and-latch mechanism. In this study, we determined the minimum Keap1-binding sequence of the DLG motif, the low-affinity latch site, and defined a new DLGex motif that covers a sequence much longer than that previously defined. We have successfully clarified the crystal structure of the Keap1-DC-DLGex complex at 1.6 Å. DLGex possesses a complicated helix structure, which interprets well the human-cancer-derived loss-of-function mutations in DLGex. In thermodynamic analyses, Keap1-DLGex binding is characterized as enthalpy and entropy driven, while Keap1-ETGE binding is characterized as purely enthalpy driven. In kinetic analyses, Keap1-DLGex binding follows a fast-association and fast-dissociation model, while Keap1-ETGE binding contains a slow-reaction step that leads to a stable conformation. These results demonstrate that the mode of DLGex binding to Keap1 is distinct from that of ETGE structurally, thermodynamically, and kinetically and support our contention that the DLGex motif serves as a converter transmitting environmental stress to Nrf2 induction as the latch site. PMID:24366543

  3. Unusual large-pitch banding in poly(L-lactic acid): Effects of composition and geometry confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Eamor M.; Lugito, Graecia; Hsieh, Ya-Ting

    2014-02-24

    Lamellar patterns and orientations in blends of two crystalline polymers: poly(ethylene oxide) (PEO) and low-molecular-weight poly(L-lactic acid) (PLLA) were investigated using polarizing light optical microscopy (POM), and atomic and scanning electron microscopy (AFM, SEM). Specific etching off of PEO was used to reveal the complex earlier-grown PLLA lamellae patterns with various PEO content in blends. Banding of extremely long pitch (50 μm) in crystallized PLLA spherulites was induced by two kinetic factors: geometry confinement by top cover and introduction of diluent such as PEO. The mechanisms and correlation among the lamellar assembly, ring bands, and cracks are exemplified. Lamellar patternsmore » and ring-band types in blends were found to vary with respect to not only blend compositions, but also confinement of top-cover.« less

  4. Effect of γ-IRRADIATION on the Mechanical Properties of Al-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Abo-Elsoud, M.; Ismail, H.; Sobhy, Maged S.

    SEM observations and Vickers hardness tests were performed to identify the irradiation effects. γ-irradiation effect during the aging hardening process can be explained depending on the composition of the alloy and is used to derive quantitative information on the kinetics of the transformation precipitates. Increasing the Cu content of an Al-Cu alloy can improve the aging hardness. The present results of the hardness behavior, with SEM observations of surveillance specimens at different doses, suggest that the radiation-induced defects are probably complex valence-solute clusters. These clusters act as nuclei for the precipitation of θ-Al2Cu type. This can be effectively utilized to study the systematics of nucleation of precipitates at vacancy-type defects. γ-irradiation probably plays the key role in defects responsible for material strengthening and embrittlement.

  5. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fdez-Gueelfo, L.A., E-mail: alberto.fdezguelfo@uca.es; Alvarez-Gallego, C.; Sales, D.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71more » g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.« less

  6. Impaired Insulin Suppression of VLDL-Triglyceride Kinetics in Nonalcoholic Fatty Liver Disease.

    PubMed

    Poulsen, Marianne K; Nellemann, Birgitte; Stødkilde-Jørgensen, Hans; Pedersen, Steen B; Grønbæk, Henning; Nielsen, Søren

    2016-04-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with glucose and lipid metabolic abnormalities. However, insulin suppression of very low-density lipoprotein-triglyceride (VLDL-TG) kinetics is not fully understood. The objective of the study was to determine VLDL-TG, glucose, and palmitate kinetics during fasting and hyperinsulinemia in men with (NAFLD+) and without NAFLD (NAFLD−). Twenty-seven nondiabetic, upper-body obese (waist to hip ratio > 0.9, body mass index > 28 kg/m2) men, 18 NAFLD+, and nine NAFLD− determined by magnetic resonance spectroscopy were enrolled.14C-labeled VLDL-TG and 3H-labeled glucose and palmitate tracers were applied in combination with indirect calorimetry and breath samples to assess kinetics and substrate oxidations postabsorptively and during a hyperinsulinemic-euglycemic clamp. Dual-X-ray absorptiometry and magnetic resonance imaging assessed body composition. Liver fat content was greater in NAFLD+ than NAFLD− men (21.0% vs 3.7%), even though body composition, metabolites (except triglycerides), and insulin were similar in the groups. Insulin suppression of VLDL-TG secretion (P = .0001), oxidation (P = .0003), and concentration (P= .008) as well as percentage decreases were lower in NAFLD+ than NAFLD− men (secretion: 31.9% ± 17.2% vs 64.7% ± 19.9%; oxidation: −9.0% ± 24.7% vs 46.5% ± 36.6%; concentration: 11.9% ± 20.7% vs 56.2% ± 22.9%, all P < .001). Likewise, lower insulin suppression of very low-density lipoprotein particle size was present in NAFLD+ than NAFLD− men (P = .0002). Conversely, insulin suppression of endogenous glucose production was similar in the groups. Compared with endogenous glucose production, the inability of NAFLD+ men to suppress VLDL-TG kinetics to compensate for the increased liver fat content seems to be an early pathophysiological manifestation of male NAFLD+. These data suggest therapeutic targets reducing liver fat content may ameliorate metabolic abnormalities associated with NAFLD and presumably diabetes.

  7. Kinetically inert Cu in coastal waters.

    PubMed

    Kogut, Megan B; Voelker, Bettina M

    2003-02-01

    Many studies have shown that Cu and other metals in natural waters are mostly bound by unidentified compounds interpreted to be strong ligands reversibly complexing a given metal. However, commonly applied analytical techniques are not capable of distinguishing strongly but reversibly complexed metal from metal bound in kinetically inert compounds. In this work, we use a modified competitive ligand exchange adsorptive cathodic stripping voltammetry method combined with size fractionation to show that most if not all of the apparently very strongly (log K > or = 13) bound Cu in samples from five New England coastal waters (1-18 nM, 10-60% of total Cu) is actually present as kinetically inert compounds. In three of the five samples examined by ultrafiltration, a significant portion of the 0.2-microm-filtrable inert Cu was retained by a 0.02-microm-pore size filter, suggesting that at least some of the Cu was kinetically inert because it was physically sequestered in colloidal material. The rest of the ambient Cu, and Cu added in titrations, were reversibly bound in complexes that could be modeled as having conditional stability constants of 10(10)-10(13). The Cu-binding ability of these complexes was equivalent to that of seawater containing reasonable concentrations of humic substances from terrestrial sources, approximately 0.15-0.45 mg of C/L. Both the inert compounds and the reversible ligands were important for determining [Cu2+] at ambient Cu levels in our samples.

  8. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.

    PubMed

    Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang

    2016-01-01

    The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Kinetics and mechanism of oxidation of super-reduced cobalamin and cobinamide species by thiosulfate, sulfite and dithionite.

    PubMed

    Dereven'kov, Ilia A; Salnikov, Denis S; Makarov, Sergei V; Boss, Gerry R; Koifman, Oskar I

    2013-11-21

    We studied the kinetics of reactions of cob(I)alamin and cob(I)inamide with thiosulfate, sulfite, and dithionite by UV-Visible (UV-Vis) and stopped-flow spectroscopy. We found that the two Co(I) species were oxidized by these sulfur-containing compounds to Co(II) forms: oxidation by excess thiosulfate leads to penta-coordinate complexes and oxidation by excess sulfite or dithionite leads to hexa-coordinate Co(II)-SO2(-) complexes. The net scheme involves transfer of three electrons in the case of oxidation by thiosulfate and one electron for oxidation by sulfite and dithionite. On the basis of kinetic data, the nature of the reactive oxidants was suggested, i.e., HS2O3(-) (for oxidation by thiosulfate), S2O5(2-), HSO3(-), and aquated SO2 (for oxidation by sulfite), and S2O4(2-) and SO2(-) (for oxidation by dithionite). No difference was observed in kinetics with cob(i)alamin or cob(i)inamide as reductants.

  10. A normalized plot as a novel and time-saving tool in complex enzyme kinetic analysis.

    PubMed

    Bravo, I G; Busto, F; De Arriaga, D; Ferrero, M A; Rodríguez-Aparicio, L B; Martínez-Blanco, H; Reglero, A

    2001-09-15

    A new data treatment is described for designing kinetic experiments and analysing kinetic results for multi-substrate enzymes. Normalized velocities are plotted against normalized substrate concentrations. Data are grouped into n + 1 families across the range of substrate or product tested, n being the number of substrates plus products assayed. It has the following advantages over traditional methods: (1) it reduces to less than a half the amount of data necessary for a proper description of the system; (2) it introduces a self-consistency checking parameter that ensures the 'scientific reliability' of the mathematical output; (3) it eliminates the need for a prior knowledge of Vmax; (4) the normalization of data allows the use of robust and fuzzy methods suitable for managing really 'noisy' data; (5) it is appropriate for analysing complex systems, as the complete general equation is used, and the actual influence of effectors can be typified; (6) it is amenable to being implemented as a software that incorporates testing and electing among rival kinetic models.

  11. Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis

    PubMed Central

    Pudasaini, Ashutosh; Shim, Jae Sung; Song, Young Hun; Shi, Hua; Kiba, Takatoshi; Somers, David E; Imaizumi, Takato; Zoltowski, Brian D

    2017-01-01

    A LOV (Light, Oxygen, or Voltage) domain containing blue-light photoreceptor ZEITLUPE (ZTL) directs circadian timing by degrading clock proteins in plants. Functions hinge upon allosteric differences coupled to the ZTL photocycle; however, structural and kinetic information was unavailable. Herein, we tune the ZTL photocycle over two orders of magnitude. These variants reveal that ZTL complexes with targets independent of light, but dictates enhanced protein degradation in the dark. In vivo experiments definitively show photocycle kinetics dictate the rate of clock component degradation, thereby impacting circadian period. Structural studies demonstrate that photocycle dependent activation of ZTL depends on an unusual dark-state conformation of ZTL. Crystal structures of ZTL LOV domain confirm delineation of structural and kinetic mechanisms and identify an evolutionarily selected allosteric hinge differentiating modes of PAS/LOV signal transduction. The combined biochemical, genetic and structural studies provide new mechanisms indicating how PAS/LOV proteins integrate environmental variables in complex networks. DOI: http://dx.doi.org/10.7554/eLife.21646.001 PMID:28244872

  12. Effect of the porous structure of activated carbon on the adsorption kinetics of gold(I) cyanide complex

    NASA Astrophysics Data System (ADS)

    Ibragimova, P. I.; Grebennikov, S. F.; Gur'yanov, V. V.; Fedyukevich, V. A.; Vorob'ev-Desyatovskii, N. V.

    2014-06-01

    The effect the porous structure of activated carbons obtained from furfural and coconut shells has on the kinetics of [Au(CN)2]- ion adsorption is studied. Effective diffusion coefficients for [Au(CN)2]- anions in transport and adsorbing pores and mass transfer coefficients in a transport system of the pores and in microporous zones are calculated using the statistical moments of the kinetic curve.

  13. Kinetic Theories for Biofilms (Preprint)

    DTIC Science & Technology

    2011-01-01

    2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Kinetic Theories for Biofilms 5a. CONTRACT NUMBER 5b...binary complex fluids to develop a set of hydrodynamic models for the two-phase mixture of biofilms and solvent (water). It is aimed to model...kinetics along with the intrinsic molecular elasticity of the EPS network strand modeled as an elastic dumbbell. This theory is valid in both the biofilm

  14. Effect of gamma-irradiation on thermal decomposition kinetics, X-ray diffraction pattern and spectral properties of tris(1,2-diaminoethane)nickel(II)sulphate

    NASA Astrophysics Data System (ADS)

    Jayashri, T. A.; Krishnan, G.; Rema Rani, N.

    2014-12-01

    Tris(1,2-diaminoethane)nickel(II)sulphate was prepared, and characterised by various chemical and spectral techniques. The sample was irradiated with 60Co gamma rays for varying doses. Sulphite ion and ammonia were detected and estimated in the irradiated samples. Non-isothermal decomposition kinetics, X-ray diffraction pattern, Fourier transform infrared spectroscopy, electronic, fast atom bombardment mass spectra, and surface morphology of the complex were studied before and after irradiation. Kinetic parameters were evaluated by integral, differential, and approximation methods. Irradiation enhanced thermal decomposition, lowering thermal and kinetic parameters. The mechanism of decomposition is controlled by R3 function. From X-ray diffraction studies, change in lattice parameters and subsequent changes in unit cell volume and average crystallite size were observed. Both unirradiated and irradiated samples of the complex belong to trigonal crystal system. Decrease in the intensity of the peaks was observed in the infrared spectra of irradiated samples. Electronic spectral studies revealed that the M-L interaction is unaffected by irradiation. Mass spectral studies showed that the fragmentation patterns of the unirradiated and irradiated samples are similar. The additional fragment with m/z 256 found in the irradiated sample is attributed to S8+. Surface morphology of the complex changed upon irradiation.

  15. Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase

    PubMed Central

    2011-01-01

    Background Mitochondrial 2-oxoglutarate (α-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, and metal ion cofactors (Ca2+ and Mg2+). Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H) oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function. PMID:21943256

  16. Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material

    USGS Publications Warehouse

    Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.

    1999-01-01

    Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.

  17. Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry

    NASA Astrophysics Data System (ADS)

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  18. Comprehensive investigations of kinetics of alkaline hydrolysis of TNT (2,4,6-trinitrotoluene), DNT (2,4-dinitrotoluene), and DNAN (2,4-dinitroanisole).

    PubMed

    Sviatenko, Liudmyla; Kinney, Chad; Gorb, Leonid; Hill, Frances C; Bednar, Anthony J; Okovytyy, Sergiy; Leszczynski, Jerzy

    2014-09-02

    Combined experimental and computational techniques were used to analyze multistep chemical reactions in the alkaline hydrolysis of three nitroaromatic compounds: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and 2,4-dinitroanisole (DNAN). The study reveals common features and differences in the kinetic behavior of these compounds. The analysis of the predicted pathways includes modeling of the reactions, along with simulation of UV-vis spectra, experimental monitoring of reactions using LC/MS techniques, development of the kinetic model by designing and solving the system of differential equations, and obtaining computationally predicted kinetics for decay and accumulation of reactants and products. Obtained results suggest that DNT and DNAN are more resistant to alkaline hydrolysis than TNT. The direct substitution of a nitro group by a hydroxide represents the most favorable pathway for all considered compounds. The formation of Meisenheimer complexes leads to the kinetic first-step intermediates in the hydrolysis of TNT. Janovsky complexes can also be formed during hydrolysis of TNT and DNT but in small quantities. Methyl group abstraction is one of the suggested pathways of DNAN transformation during alkaline hydrolysis.

  19. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

    PubMed

    Raper, Austin T; Stephenson, Anthony A; Suo, Zucai

    2018-02-28

    The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.

  20. Kinematic structure of the 30 Doradus giant H II region

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kennicutt, Robert C., Jr.

    1994-01-01

    We have used the echelle CCD spectrograph on the Cerro Tololo Inter-American Observatory (CTIO) 4 m telescope to map the nebular velocity field in the 30 Doradus giant H II region. The kinematics of 30 Dor are very complex. The outer regions are charaterized by a smooth velocity field, but its turbulent velocity, 30-40 km/s Full Width Half Maximum (FWHM), is considerably higher than those in most smaller H II regions. In the central 9 min core, multiple velocity components are observed at most positions. The velocity field is dominated by a large number of expanding structures, ranging in size from 1 to 100 pc and expansion velocities of 20-200 km/s, and often organized into large hierarchical networks. The integral of these complex expanding structures in 30 Dor produces a surprisingly simple profile with a broad Gaussian core and faint extended wings. Several fast-expanding shells, with diameters of 2-20 pc, expansion velocities of 100-300 km/s, and kinetic energies of 0.5-10 x 10(exp 50) ergs have been identified. The large fast-expanding shells and networks are coincident with extended X-ray sources and are probably associated with supernova remnants embedded in supershells produced by the combined effects of stellar winds and supernovae from OB associations. We have used the intensity-calibrated echelle spectra to determine the basic physical and dynamical properties of the kinematic features in 30 Dor. The expanding shells contain roughly half of the kinetic energy in the 30 Dor complex, and this energy is several times higher than the gravitational binding energy of the region. The energetic requirements of the gas are consistent with the observed stellar content of 30 Dor, if the gas is accelerated by a combination of stellar winds and supernovae. Extrapolating the current energy injection rate in the nebula over the lifetime of the OB complex suggest that 30 Dor and its vicinity will evolve into a supergiant shell as seen in the LMC and other nearby galaxies.

  1. [Study of the effect of a food additive Medetopect on metabolic kinetics of transuranic radionuclides in animal body].

    PubMed

    Kalistratova, V S; Zalikin, G A; Nisimov, P G; Romanova, I B

    1998-01-01

    The effect of Medetopect, a food additive, on the metabolic kinetics of transuranics (239Pu and 241Am) has been studied experimentally in white mongrel rats following chronic intake by ingestion. The Medetopect application has been shown to be advantageous for reduction of the 239Pu and 241Am absorption from and content of the gastrointestinal tract of the animals.

  2. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  3. Kinetics of Bacterial Growth on Chlorinated Aliphatic Compounds

    PubMed Central

    van den Wijngaard, Arjan J.; Wind, Richèle D.; Janssen, Dick B.

    1993-01-01

    With the pure bacterial cultures Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, and Pseudomonas sp. strain AD1, Monod kinetics was observed during growth in chemostat cultures on 1,2-dichloroethane (AD20, AD25, and GJ10), 2-chloroethanol (AD20 and GJ10), and 1,3-dichloro-2-propanol (AD1). Both the Michaelis-Menten constants (Km) of the first catabolic (dehalogenating) enzyme and the Monod half-saturation constants (Ks) followed the order 2-chloroethanol, 1,3-dichloro-2-propanol, epichlorohydrin, and 1,2-dichloroethane. The Ks values of strains GJ10, AD20, and AD25 for 1,2-dichloroethane were 260, 222, and 24 μM, respectively. The low Ks value of strain AD25 was correlated with a higher haloalkane dehalogenase content of this bacterium. The growth rates of strains AD20 and GJ10 in continuous cultures on 1,2-dichloroethane were higher than the rates predicted from the kinetics of the haloalkane dehalogenase and the concentration of the enzyme in the cells. The results indicate that the efficiency of chlorinated compound removal is indeed influenced by the kinetic properties and cellular content of the first catabolic enzyme. The cell envelope did not seem to act as a barrier for permeation of 1,2-dichloroethane. PMID:16348981

  4. Kinetic modeling of cell metabolism for microbial production.

    PubMed

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.

    PubMed Central

    Garrido-del Solo, C; García-Cánovas, F; Havsteen, B H; Varón-Castellanos, R

    1993-01-01

    A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended. PMID:8373361

  6. Understanding the kinetics of ligand binding to globins with molecular dynamics simulations: the necessity of multiple state models.

    PubMed

    Estarellas Martin, Carolina; Seira Castan, Constantí; Luque Garriga, F Javier; Bidon-Chanal Badia, Axel

    2015-10-01

    Residue conformational changes and internal cavity migration processes play a key role in regulating the kinetics of ligand migration and binding events in globins. Molecular dynamics simulations have demonstrated their value in the study of these processes in different haemoglobins, but derivation of kinetic data demands the use of more complex techniques like enhanced sampling molecular dynamics methods. This review discusses the different methodologies that are currently applied to study the ligand migration process in globins and highlight those specially developed to derive kinetic data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-01

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+ (1), cis-[Co(dp)2(C12H25NH2)2]3+ (2), cis-[Co(trien)(C12H25NH2)2]3+ (3), cis-[Co(bpy)2(C12H25NH2)2]3+ (4) and cis-[Co(phen)2(C12H25NH2)2]3+ (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2‧-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe2+ ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323 K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH‡ and entropy of activation ΔS‡) of the reaction have been calculated which substantiate the kinetics of the reaction.

  8. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties

    NASA Astrophysics Data System (ADS)

    Schmid, Sonja; Hugel, Thorsten

    2018-03-01

    Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.

  9. Mechanism of calmodulin recognition of the binding domain of isoform 1b of the plasma membrane Ca2+-ATPase: kinetic pathway and effects of methionine oxidation

    PubMed Central

    Slaughter, Brian D.; Bieber Urbauer, Ramona J.; Urbauer, Jeffrey L.; Johnson, Carey K.

    2008-01-01

    Calmodulin (CaM) binds to a domain near the C-terminus of the plasma-membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide (C28W(1b)) corresponding to the CaM binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or on the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism where an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the lower effectiveness of oxidized CaM in activating the Ca2+ pump. PMID:17343368

  10. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data

    PubMed Central

    2013-01-01

    Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763

  11. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; Loureiro, Susana; van Gestel, Cornelis A M

    2018-04-01

    This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k 1 ) and elimination (k 2 ) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k 1 /k 2 . Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k 1 and k 2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k 1 and k 2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Improved Efficacy of Synthesizing *MIII-Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study.

    PubMed

    Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank

    2018-05-21

    Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O values increase from Ce III to Lu III . However, the log K M(HL) H protonation constants, analogous to the log K H 2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.

  13. Wood variables affecting the friction coefficient of spruce pine on steel

    Treesearch

    Truett J. Lemoine; Charles W. McMillin; Floyd G. Manwiller

    1970-01-01

    Wood of spruce pine, Pinus glabra Walk., was factorially segregated by moisture content (0, 10, and 18 percent), specific gravity (less than 0.45 and more than 0.45), and extractive content (unextracted and extractive-freE), and the kinetic coefficient of friction on steel (having surface roughness of 9 microinches RMS) determined for tangential...

  14. Lamtoro charcoal (l. leucocephala) as bioreductor in nickel laterite reduction: performance and kinetics study

    NASA Astrophysics Data System (ADS)

    Petrus, H. T. B. M.; Diga, A.; Rhamdani, A. R.; Warmada, I. W.; Yuliansyah, A. T.; Perdana, I.

    2017-04-01

    The performance and kinetic of nickel laterite reduction were studied. In this work, the reduction of nickel laterite ores by anthracite coal, representing the high-grade carbon content matter, and lamtoro charcoal, representing the bioreductor, were conducted in air and CO2 atmosphere, within the temperature ranged from 800°C and 1000°C. XRD analysis was applied to observe the performance of anthracite and lamtoro as a reductor. Two models were applied, sphere particle geometry model and Ginstling-Brounhstein diffusion model, to study the kinetic parameters. The results indicated that the type of reductant and the reduction atmosphere used greatly influence the kinetic parameters. The obtained values of activation energy vary in the range of 13.42-18.12 kcal/mol.

  15. Stoichiometry and kinetics of mercury uptake by photosynthetic bacteria.

    PubMed

    Kis, Mariann; Sipka, Gábor; Maróti, Péter

    2017-05-01

    Mercury adsorption on the cell surface and intracellular uptake by bacteria represent the key first step in the production and accumulation of highly toxic mercury in living organisms. In this work, the biophysical characteristics of mercury bioaccumulation are studied in intact cells of photosynthetic bacteria by use of analytical (dithizone) assay and physiological photosynthetic markers (pigment content, fluorescence induction, and membrane potential) to determine the amount of mercury ions bound to the cell surface and taken up by the cell. It is shown that the Hg(II) uptake mechanism (1) has two kinetically distinguishable components, (2) includes co-opted influx through heavy metal transporters since the slow component is inhibited by Ca 2+ channel blockers, (3) shows complex pH dependence demonstrating the competition of ligand binding of Hg(II) ions with H + ions (low pH) and high tendency of complex formation of Hg(II) with hydroxyl ions (high pH), and (4) is not a passive but an energy-dependent process as evidenced by light activation and inhibition by protonophore. Photosynthetic bacteria can accumulate Hg(II) in amounts much (about 10 5 ) greater than their own masses by well-defined strong and weak binding sites with equilibrium binding constants in the range of 1 (μM) -1 and 1 (mM) -1 , respectively. The strong binding sites are attributed to sulfhydryl groups as the uptake is blocked by use of sulfhydryl modifying agents and their number is much (two orders of magnitude) smaller than the number of weak binding sites. Biofilms developed by some bacteria (e.g., Rvx. gelatinosus) increase the mercury binding capacity further by a factor of about five. Photosynthetic bacteria in the light act as a sponge of Hg(II) and can be potentially used for biomonitoring and bioremediation of mercury-contaminated aqueous cultures.

  16. Kinetic models of gene expression including non-coding RNAs

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2011-03-01

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  17. Dehydration of detomidine hydrochloride monohydrate.

    PubMed

    Veldre, K; Actiņš, A; Jaunbergs, J

    2011-10-09

    The thermodynamic stability of detomidine hydrochloride monohydrate has been evaluated on the basis of phase transition kinetics in solid state. A method free of empirical models was used for the treatment of kinetic data, and compared to several known solid state kinetic data processing methods. Phase transitions were monitored by powder X-ray diffraction (PXRD) and thermal analysis. Full PXRD profiles were used for determining the phase content instead of single reflex intensity measurements, in order to minimize the influence of particle texture. We compared the applicability of isothermal and nonisothermal methods to our investigation of detomidine hydrochlorine monohydrate dehydration. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Thermal sensitivity of some plantain micronutrients during deep-fat frying.

    PubMed

    Avallone, Sylvie; Rojas-Gonzalez, Juan A; Trystram, Gilles; Bohuon, Philippe

    2009-06-01

    The impact of deep-fat frying on the micronutrient content of plantain (Musa AAB"barraganete") was evaluated during processing of plantain chips called "tostones." Water content, micronutrients (potassium, L-ascorbic acid, alpha-carotene, beta-carotene) content, and the temperature within the food were quantified during the course of frying. A nonisothermal kinetics analysis of the 1st-order reaction (micronutrient degradation) induced by deep-fat frying, particularly in terms of the spatial distribution of temperature, was proposed. The kinetic parameters (pre-exponential factor k(0,) activation energy E(a)) were identified by nonlinear optimization, minimizing the residual variance between the experimental and theoretical micronutrient content. Agreement between model and experimental values was checked. During 1st and 2nd frying, potassium was well retained while carotenoid contents decreased significantly. Moreover, L-ascorbic acid contents decreased significantly, just during 2nd frying. k(0) was identified as well as E(a) observed for L-ascorbic acid, alpha-carotene, and beta-carotene as 68.4 to 71.5, 79.6 to 84.9, and 85.9 to 88.6 kJ/mol, respectively. beta-carotene appeared to be more heat-resistant than alpha-carotene and L-ascorbic acid. The behavior of the nutritional markers appears to be the consequence of the thermal and hydric histories of the crust and of the heart of the plantain disk related to heat transfer during preparation of the "tostones."

  19. CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study.

    PubMed

    Gupta, Ankita; Thengane, Sonal K; Mahajani, Sanjay

    2018-04-25

    In this study, the dry leaves litter from jackfruit, raintree, mango and eucalyptus trees, lignin, and cellulose were characterized, pyrolysed, and evaluated for their char reactivity towards CO 2 gasification using TGA. The differences in char reactivity were attributed to the difference in char morphology and the varying inorganic contents. The mineral analysis of biomass ash showed the presence of alkali minerals some of which could act as catalysts. The adverse effect of high silica content was also evident through the experimental results. The kinetic parameters for gasification reaction were determined using three different reaction models. A modified random pore model was investigated to account for the influence of inorganic content. The effect of external catalyst on CO 2 gasification was also studied by adding potassium carbonate to biomass char and pellets. The results obtained from this study can be conveniently used in the design of a gasifier for lignocellulosic garden waste. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Dehydration and crystallization kinetics of zirconia-yttria gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.

    1995-02-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process.more » The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ``glow effect`` reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form.« less

  1. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates.

    PubMed

    Li, Yeqing; Zhang, Ruihong; Liu, Guangqing; Chen, Chang; He, Yanfeng; Liu, Xiaoying

    2013-12-01

    The methane production potential, biodegradability, and kinetics of a wide range of organic substrates were determined using a unified and simple method. Results showed that feedstocks that contained high energy density and easily degradable substrates exhibited high methane production potential and biodegradability. Lignocellulosic biomass with high content of fibrous compositions had low methane yield and biodegradability. Feedstocks with high lignin content (≥ 15%, on a TS basis) had low first-order rate constant (0.05-0.06 1/d) compared to others. A negative linear correlation between lignin content and experimental methane yield (or biodegradability) was found for lignocellulosic and manure wastes. This could be used as a fast method to predict the methane production potential and biodegradability of fiber-rich substrates. The findings of this study provided a database for the conversion efficiency of different organic substrates and might be useful for applications of biomethane potential assay and anaerobic digestion in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil

    NASA Astrophysics Data System (ADS)

    Liu, Haorui; Yang, Heli; Yi, Fengyan

    2016-08-01

    Heavy metals such as arsenic and chromium often contaminate soils near industrialized areas. Soil samples, made with different water content and chromate pollutant concentrations, are often needed to test soil quality. Because complex resistivity and complex dielectric characteristics of these samples need to be measured, the relationship between these measurement results and chromium concentration as well as water content was studied. Based on soil sample observations, the amplitude of the sample complex resistivity decreased with an increase of contamination concentration and water content. The phase of complex resistivity takes on a tendency of initially decrease, and then increase with the increasing of contamination concentration and water content. For a soil sample with the same resistivity, the higher the amplitude of complex resistivity, the lower the water content and the higher the contamination concentration. The real and imaginary parts of the complex dielectric constant increase with an increase in contamination concentration and water content. Note that resistivity and complex resistivity methods are necessary to adequately evaluate pollution at various sites.

  3. Kinetic and mechanism of the oxidation of chromium(III) complex with anthranil- N, N-diacetic acid by periodate ion in acidic aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ali, Ismat H.

    2015-06-01

    The kinetics of oxidation of [CrIII(atda)(H2O)2] (atda = anthranil- N, N-diacetato) complex by IO{4/-} was studied spectrophotometrically in aqueous solutions with pH range 2.20-3.34, 0.30 M ionic strength and in 20.0-40.0°C temperature range. The rate law of the reaction exhibited saturation kinetics. Values of the rate constant for the electron transfer process, the equilibrium constant for dissociation of [CrIII (atda)(H2O)2] to [CrIII (atda) (H2O)OH]+ + H+ and the pre-equilibrium formation constant were calculated. The thermodynamic activation parameters are reported. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of the IVII to chromium(III).

  4. Kinetics and Mechanism of the Reaction of a Ruthenium(VI) Nitrido Complex with HSO3 (-) and SO3 (2-) in Aqueous Solution.

    PubMed

    Wang, Qian; Zhao, Hong Yan; Man, Wai-Lun; Lam, William W Y; Lau, Kai-Chung; Lau, Tai-Chu

    2016-07-25

    The kinetics and mechanism of the reaction of S(IV) (SO3 (2-) +HSO3 (-) ) with a ruthenium(VI) nitrido complex, [(L)Ru(VI) (N)(OH2 )](+) (Ru(VI) N, L=N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3 (-) and SO3 (2-) by Ru(VI) N. A deuterium isotope effect of 4.7 is observed in the HSO3 (-) pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N-S bond formation (partial N-atom transfer) between Ru(VI) N and HSO3 (-) and H(+) transfer from HSO3 (-) to a H2 O molecule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Stability of cyanocobalamin in sugar-coated tablets.

    PubMed

    Ohmori, Shinji; Kataoka, Masumi; Koyama, Hiroyoshi

    2007-06-07

    The purpose of this study was to clarify the stability of cyanocobalamin (VB(12)-CN) in sugar-coated tablets containing fursultiamine hydrochloride (TTFD-HCl), riboflavin (VB(2)), and pyridoxine hydrochloride (VB(6)), and to identify the factors affecting the stability of VB(12)-CN in these sugar-coated tablets. The stability of VB(12)-CN was investigated using high-performance liquid chromatography while decomposition was evaluated kinetically. The decomposition of VB(12)-CN in sugar-coated tablets with high equilibrium relative humidity (more than 60%) under closed conditions showed complex kinetics and followed an Avrami-Erofe'ev equation, which expresses a random nucleation (two-dimensional growth of nuclei) model. We showed that equilibrium relative humidity, the incorporation of VB(2) and VB(6), and sugar coating, are the main factors influencing decomposition and that these factors cause the complex decomposition kinetics.

  6. Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus

    PubMed Central

    Sharwood, Robert E.; Crous, Kristine Y.; Whitney, Spencer M.; Ellsworth, David S.

    2017-01-01

    Abstract Leaf-level photosynthetic processes and their environmental dependencies are critical for estimating CO2 uptake from the atmosphere. These estimates use biochemical-based models of photosynthesis that require accurate Rubisco kinetics. We investigated the effects of canopy position, elevated atmospheric CO2 [eC; ambient CO2 (aC)+240 ppm] and elevated air temperature (eT; ambient temperature (aT)+3 °C) on Rubisco content and activity together with the relationship between leaf N and Vcmax (maximal Rubisco carboxylation rate) of 7 m tall, soil-grown Eucalyptus globulus trees. The kinetics of E. globulus and tobacco Rubisco at 25 °C were similar. In vitro estimates of Vcmax derived from measures of E. globulus Rubisco content and kinetics were consistent, although slightly lower, than the in vivo rates extrapolated from gas exchange. In E. globulus, the fraction of N invested in Rubisco was substantially lower than for crop species and varied with treatments. Photosynthetic acclimation of E. globulus leaves to eC was underpinned by reduced leaf N and Rubisco contents; the opposite occurred in response to eT coinciding with growth resumption in spring. Our findings highlight the adaptive capacity of this key forest species to allocate leaf N flexibly to Rubisco and other photosynthetic proteins across differing canopy positions in response to future, warmer and elevated [CO2] climates. PMID:28064178

  7. The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA

    PubMed Central

    Law, Michael J.; Linde, Michael E.; Chambers, Eric J.; Oubridge, Chris; Katsamba, Phinikoula S.; Nilsson, Lennart; Haworth, Ian S.; Laird-Offringa, Ite A.

    2006-01-01

    Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes. PMID:16407334

  8. Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.

    PubMed

    Cisse, Mady; Vaillant, Fabrice; Acosta, Oscar; Dhuique-Mayer, Claudie; Dornier, Manuel

    2009-07-22

    Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.

  9. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus.

    PubMed

    Guo, Xin; Wu, Yiqiang; Xie, Xinfeng

    2017-10-27

    Hygroscopic behavior is an inherent characteristic of nanocellulose which strongly affects its applications. In this study, the water vapor sorption behavior of four nanocellulose samples, such as cellulose nanocrystals and nanofibers with cellulose I and II structures (cellulose nanocrystals (CNC) I, CNC II, cellulose nanofibers (CNF) I, and CNF II) were studied by dynamic vapor sorption. The highly reproducible data including the running time, real-time sample mass, target relative humidity (RH), actual RH, and isotherm temperature were recorded during the sorption process. In analyzing these data, significant differences in the total running time, equilibrium moisture content, sorption hysteresis and sorption kinetics between these four nanocellulose samples were confirmed. It was important to note that CNC I, CNC II, CNF I, and CNF II had equilibrium moisture contents of 21.4, 28.6, 33.2, and 38.9%, respectively, at a RH of 95%. Then, the sorption kinetics behavior was accurately described by using the parallel exponential kinetics (PEK) model. Furthermore, the Kelvin-Voigt model was introduced to interpret the PEK behavior and calculate the modulus of these four nanocellulose samples.

  10. Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses.

    PubMed

    Lin, Xuliang; Qiu, Xueqing; Zhu, Duming; Li, Zihao; Zhan, Ningxin; Zheng, Jieyi; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-10-01

    Effect of the molecular structure of lignin-based polyoxyethylene ether (EHL-PEG) on enzymatic hydrolysis of Avicel and corn stover was investigated. With the increase of PEG contents and molecular weight of EHL-PEG, glucose yield of corn stover increased. EHL-PEG enhanced enzymatic hydrolysis of corn stover significantly at buffer pH 4.8-5.5. Glucose yield of corn stover at 20% solid content increased from 32.8% to 63.8% by adding EHL-PEG, while that with PEG4600 was 54.2%. Effect of EHL-PEG on enzymatic hydrolysis kinetics of cellulose film was studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). An enhancing mechanism of EHL-PEG on enzymatic hydrolysis kinetics of cellulose was proposed. Cellulase aggregates dispersed by EHL-PEG excavated extensive cavities into the surface of cellulose film, making the film become more loose and exposed. After the maximum enzymatic hydrolysis rate, the film was mainly peeled off layer by layer until equilibrium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The influence of microwave-assisted drying techniques on the rehydration behavior of blueberries (Vaccinium corymbosum L.).

    PubMed

    Zielinska, Magdalena; Markowski, Marek

    2016-04-01

    The aim of this study was to determine the effect of: (a) different drying methods, (b) hot air temperature in a convection oven, and (c) the moisture content of fruits dehydrated by multi-stage drying which involves a transition between different stages of drying, on the rehydration kinetics of dry blueberries. Models describing rehydration kinetics were also studied. Blueberries dehydrated by multi-stage microwave-assisted drying, which involved a hot air pre-drying step at 80 °C until the achievement of a moisture content of 1.95 kg H2O kg(-1)DM, were characterized by significantly higher rates of initial and successive rehydration as well as smaller initial loss of soluble solids in comparison with the samples dried by other methods. The highest initial rehydration rate and the smallest loss of soluble solids after 30 min of soaking were determined at 0.46 min(-1) and 0.29 kg DM kg(-1)DM, respectively. The Peleg model and the first-order-kinetic model fit the experimental data well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Drying kinetic of tucum fruits (Astrocaryum aculeatum Meyer): physicochemical and functional properties characterization.

    PubMed

    Silva, Michele Bezerra; Perez, Victor Haber; Pereira, Nádia Rosa; Silveira, Thays da Costa; da Silva, Nathalia Ribeiro Ferreira; de Andrade, Cristilane Macharete; Sampaio, Romildo Martins

    2018-05-01

    The aim of the present study was to assess the drying kinetic of tucum fruits (epicarp and mesocarp) Astrocaryum aculeatum Meyer at three different temperatures (50, 60, and 70 °C). The physicochemical characterization, water activity, moisture content, including β-carotene and vitamin C content in - natura and dried fruits were analyzed. The fruit fractions presented high β-carotene, protein and lipid levels. Fatty acid profile showed oleic acid as the major fatty acid. Different mathematical models were computed to assess the drying process. The Page model was observed to be the best to describe the drying kinetic with the highest correlation coefficient ( R 2 ) 0.99 and the least Chi squared ( χ 2 ) close to 10 5 at the studied temperatures. The drying process reduced water activity to desirable levels in all trials and β-carotene retentions after drying remained at satisfactory levels, fact that resulted in minimum value of 63% and approximately 94% in some cases. Vitamin C retention was comparatively more around 20-40% compared to control.

  13. Non-enzymatic browning kinetics analysed through water-solids interactions and water mobility in dehydrated potato.

    PubMed

    Acevedo, Nuria C; Schebor, Carolina; Buera, Pilar

    2008-06-01

    Non-enzymatic browning (NEB) development was studied in dehydrated potato at 70°C. It was related to the macroscopic and molecular properties and to water-solid interactions over a wide range of water activities. Time resolved (1)H NMR, thermal transitions and water sorption isotherms were evaluated. Although non-enzymatic browning could be detected in the glassy state; colour development was higher in the supercooled state. The reaction rate increased up to a water content of 26g/100g of solids (aw=0.84) and then decreased at higher water contents, concomitantly with the increase of water proton mobility. The joint analyses of NEB kinetics, water sorption isotherm and proton relaxation behaviour made it evident that the point at which the reaction rate decreased, after a maximum value, could be related to the appearance of highly mobile water. The results obtained in this work indicate that the prediction of chemical reaction kinetics can be performed through the integrated analysis of water sorption, water and solids mobility and the physical state of the matrix. Copyright © 2007 Elsevier Ltd. All rights reserved.

  14. Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.

    PubMed

    Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela

    2010-02-19

    The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.

  15. Exploring between the extremes: conversion-dependent kinetics of phosphite-modified hydroformylation catalysis.

    PubMed

    Kubis, Christoph; Selent, Detlef; Sawall, Mathias; Ludwig, Ralf; Neymeyr, Klaus; Baumann, Wolfgang; Franke, Robert; Börner, Armin

    2012-07-09

    The kinetics of the hydroformylation of 3,3-dimethyl-1-butene with a rhodium monophosphite catalyst has been studied in detail. Time-dependent concentration profiles covering the entire olefin conversion range were derived from in situ high-pressure FTIR spectroscopic data for both, pure organic components and catalytic intermediates. These profiles fit to Michaelis-Menten-type kinetics with competitive and uncompetitive side reactions involved. The characteristics found for the influence of the hydrogen concentration verify that the pre-equilibrium towards the catalyst substrate complex is not established. It has been proven experimentally that the hydrogenolysis of the intermediate acyl complex remains rate limiting even at high conversions when the rhodium hydride is the predominant resting state and the reaction is nearly of first order with respect to the olefin. Results from in situ FTIR and high-pressure (HP) NMR spectroscopy and from DFT calculations support the coordination of only one phosphite ligand in the dominating intermediates and a preferred axial position of the phosphite in the electronically saturated, trigonal bipyramidal (tbp)-structured acyl rhodium complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sorption and complexation of Eu(III) on alumina: effects of pH, ionic strength, humic acid and chelating resin on kinetic dissociation study.

    PubMed

    Wang, X; Xu, D; Chen, L; Tan, X; Zhou, X; Ren, A; Chen, Ch

    2006-04-01

    The effects of pH (pH=2-12), ionic strength (0.01-2 mol/l NaNO(3)) and humic acid on the sorption and complexation of Eu(III) on alumina were investigated by using batch techniques. The experiments were carried out at room temperature and under ambient conditions. The results indicate that the sorption of Eu(III) on alumina is strongly influenced by humic acid. The sorption of Eu(III) on alumina is significantly dependent on pH values and independent of ionic strength. The sorption of Eu(III) on alumina may be attributed to surface complexation. The species of Eu(III) on HA-alumina colloids is dominated by both HA and alumina, and the addition sequences of HA or Eu(III) to the ternary system do not influence the sorption of Eu(III) to HA-coated alumina. Kinetic dissociation of Eu(III) from bare and HA-coated alumina was also studied by using the chelating resin. The result was discussed by a pseudo-first-order kinetics model.

  17. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    DTIC Science & Technology

    2016-10-05

    the complexity of the air flow, plasma and combustion interaction can be obtained from papers where the ignition of supersonic and fast subsonic gas ...AFRL-AFOSR-JP-TR-2016-0083 Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism Svetlana...Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1-4064 5c.  PROGRAM ELEMENT

  18. Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1.

    PubMed

    Wu, Jiun-Yan; Liao, Jen-Hung; Shieh, Chwen-Jen; Hsieh, Feng-Chia; Liu, Yung-Chuan

    2018-06-12

    In this study, the precursor effect for iturin A production was quantitatively analyzed. A strain identified as Bacillus amyloliquefaciens BPD1 (Ba-BPD1) was selected due to its ability to produce iturin A. The enhancement of iturin A production in a submerged culture was tested using various additives, including palmitic acid, oils, and complex amino acids. Among these, complex amino acids triggered the highest yield at 559 mg/L. The respective amino acids that contribute to the structure of iturin A were used as precursors. In fact, it was found that the addition of l-proline, l-glutamine, l-asparagine and l-serine could improve iturin A yield in the defined medium. However, during the kinetic analysis, all the amino acids exhibited a lower saturation level than l-serine, which exhibited a high saturation level at 1.2% resulting in an iturin A yield of 914 mg/L. In contrast, a negative effect was observed following the addition of l-tyrosine. To analyze the kinetic behavior of l-serine, three kinetic models were adopted: the kinetic order equation, the Langmuir kinetic equation, and a modified logistic equation. The regression results showed that the modified logistic model was the best fit for the kinetic behavior of l-serine as the major precursor, which could be further referred to the biosynthesis pathway of iturin A. Among the proposed processes for iturin A production, this study achieved the highest iturin A levels as a result of the addition of precursors. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Computer-Aided Construction of Chemical Kinetic Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, William H.

    2014-12-31

    The combustion chemistry of even simple fuels can be extremely complex, involving hundreds or thousands of kinetically significant species. The most reasonable way to deal with this complexity is to use a computer not only to numerically solve the kinetic model, but also to construct the kinetic model in the first place. Because these large models contain so many numerical parameters (e.g. rate coefficients, thermochemistry) one never has sufficient data to uniquely determine them all experimentally. Instead one must work in “predictive” mode, using theoretical rather than experimental values for many of the numbers in the model, and as appropriatemore » refining the most sensitive numbers through experiments. Predictive chemical kinetics is exactly what is needed for computer-aided design of combustion systems based on proposed alternative fuels, particularly for early assessment of the value and viability of proposed new fuels before those fuels are commercially available. This project was aimed at making accurate predictive chemical kinetics practical; this is a challenging goal which requires a range of science advances. The project spanned a wide range from quantum chemical calculations on individual molecules and elementary-step reactions, through the development of improved rate/thermo calculation procedures, the creation of algorithms and software for constructing and solving kinetic simulations, the invention of methods for model-reduction while maintaining error control, and finally comparisons with experiment. Many of the parameters in the models were derived from quantum chemistry calculations, and the models were compared with experimental data measured in our lab or in collaboration with others.« less

  20. On the existence of free and metal complexed sulfide in the Arabian Sea and its oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Theberge, Stephen M.; Luther, George W.; Farrenkopf, Anna M.

    Free hydrogen sulfide was not detected in the oxygen minimum zone (OMZ) of the Arabian Sea during legs D1 (September 1992) and D3 (October-November 1992) of the Netherlands Indian Ocean Programme (NIOP). However, sulfide complexed to metals was detected by cathodic stripping square wave voltammetry at 2 nM or less throughout the water column. A slight increase in sulfide was measured in the OMZ relative to the surface waters and may be related to sulfur release from organic matter during decomposition. Sulfide complexes are of two general types at low concentrations of metal and sulfide. First, metals such as Mn, Fe, Co and Ni form complexes with bisulfide ion (HS -) that are kinetically labile to dissociation and are reactive. Second, metals such as Cu and Zn form multinuclear complexes with sulfide (S 2-) that are kinetically inert to dissociation; thus, they are less reactive than free (bi)sulfide and the labile metal bisulfide complexes. Zinc and copper sulfide complexes are important in allowing hydrogen sulfide to persist in seawater which contains measurable oxygen.

  1. Determination of in vivo regulation kinetics of small non-coding RNA in bacteria

    NASA Astrophysics Data System (ADS)

    Fei, Jingyi

    Small RNAs (sRNAs) play important roles in regulating gene expression through a variety of mechanisms. As one of the most common strategies, sRNA induced target messenger RNA (mRNA) includes two major steps: target search by base-pairing interactions with the and downstream execution by modulating translation or the stability of the mRNA. Here we describe a new imaging and analysis platform based on super-resolution fluorescence microscopy, which enabled the first in vivo kinetic measurement of sRNA-mediated gene regulation. Specifically, this platform was used to investigate a sugar-phosphate stress-induced bacterial sRNA that induces the degradation of target mRNAs. The data reveal that the sRNA binds to a primary target mRNA in a reversible and dynamic fashion, and that formation of the sRNA-mRNA complexes is the rate-limiting step, dictating the overall efficiency of regulation in vivo; whereas the downstream co-degradation of sRNA-mRNA complex can kinetically compete with the fast complex disassembly. Examination of a secondary target of this sRNA indicated that differences in the target search kinetics contribute to setting the regulation priority among different target mRNAs. This super-resolution imaging and analysis approach provides a conceptual framework that can be generalized to other sRNA systems and other target search processes.

  2. Highly resolved fluid flows: "liquid plasmas" at the kinetic level.

    PubMed

    Morfill, Gregor E; Rubin-Zuzic, Milenko; Rothermel, Hermann; Ivlev, Alexei V; Klumov, Boris A; Thomas, Hubertus M; Konopka, Uwe; Steinberg, Victor

    2004-04-30

    Fluid flow around an obstacle was observed at the kinetic (individual particle) level using "complex (dusty) plasmas" in their liquid state. These "liquid plasmas" have bulk properties similar to water (e.g., viscosity), and a comparison in terms of similarity parameters suggests that they can provide a unique tool to model classical fluids. This allows us to study "nanofluidics" at the most elementary-the particle-level, including the transition from fluid behavior to purely kinetic transport. In this (first) experimental investigation we describe the kinetic flow topology, discuss our observations in terms of fluid theories, and follow this up with numerical simulations.

  3. Kinetics of Mixed Microbial Assemblages Enhance Removal of Highly Dilute Organic Substrates

    PubMed Central

    Lewis, David L.; Hodson, Robert E.; Hwang, Huey-Min

    1988-01-01

    Our experiments with selected organic substrates reveal that the rate-limiting process governing microbial degradation rates changes with substrate concentration, S, in such a manner that substrate removal is enhanced at lower values of S. This enhancement is the result of the dominance of very efficient systems for substrate removal at low substrate concentrations. The variability of dominant kinetic parameters over a range of S causes the kinetics of complex assemblages to be profoundly dissimilar to those of systems possessing a single set of kinetic parameters; these findings necessitate taking a new approach to predicting substrate removal rates over wide ranges of S. PMID:16347715

  4. An Analogy Using Pennies and Dimes to Explain Chemical Kinetics Concepts

    ERIC Educational Resources Information Center

    Cortes-Figueroa, Jose E.; Perez, Wanda I.; Lopez, Jose R.; Moore-Russo, Deborah A.

    2011-01-01

    In this article, the authors present an analogy that uses coins and graphical analysis to teach kinetics concepts and resolve pseudo-first-order rate constants related to transition-metal complexes ligand-solvent exchange reactions. They describe an activity that is directed to upper-division undergraduate and graduate students. The activity…

  5. Introducing Michaelis-Menten Kinetics through Simulation

    ERIC Educational Resources Information Center

    Halkides, Christopher J.; Herman, Russell

    2007-01-01

    We describe a computer tutorial that introduces the concept of the steady state in enzyme kinetics. The tutorial allows students to produce graphs of the concentrations of free enzyme, enzyme-substrate complex, and product versus time in order to learn about the approach to steady state. By using a range of substrate concentrations and rate…

  6. Multienzyme kinetics and sequential metabolism.

    PubMed

    Wienkers, Larry C; Rock, Brooke

    2014-01-01

    Enzymes are the catalysts of biological systems and are extremely efficient. A typical enzyme accelerates the rate of a reaction by factors of at least a million compared to the rate of the same reaction in the absence of the enzyme. In contrast to traditional catalytic enzymes, the family of cytochrome P450 (CYP) enzymes are catalytically promiscuous, and thus they possess remarkable versatility in substrates. The great diversity of reactions catalyzed by CYP enzymes appears to be based on two unique properties of these heme proteins, the ability of their iron to exist under multiple oxidation states with different reactivities and a flexible active site that can accommodate a wide variety of substrates. Herein is a discussion of two distinct types of kinetics observed with CYP enzymes. The first example is of CYP complex kinetic profiles when multiple CYP enzymes form the sample product. The second is sequential metabolism, in other words, the formation of multiple products from one CYP enzyme. Given the degree of CYP enzyme promiscuity, it is hardly surprising that there is also a high degree of complex kinetic profiles generated during the catalytic cycle.

  7. Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling.

    PubMed Central

    Cakir-Kiefer, C; Muller-Steffner, H; Oppenheimer, N; Schuber, F

    2001-01-01

    CD38/NAD(+) glycohydrolase is a type II transmembrane glycoprotein widely used to study T- and B-cell activation and differentiation. CD38 is endowed with two different activities: it is a signal transduction molecule and an ectoenzyme that converts NAD(+) into ADP-ribose (NAD(+) glycohydrolase activity) and small proportions of cADP-ribose (cADPR; ADP-ribosyl cyclase activity), a calcium-mobilizing metabolite, which, ultimately, can also be hydrolysed (cADPR hydrolase activity). The relationship between these two properties, and strikingly the requirement for signalling in the formation of free or enzyme-complexed cADPR, is still ill-defined. In the present study we wanted to test whether the CD38-cADPR complex is kinetically competent in the conversion of NAD(+) into the reaction product ADP-ribose. In principle, such a complex could be invoked for cross-talk, via conformational changes, with neighbouring partner(s) of CD38 thus triggering the signalling phenomena. Analysis of the kinetic parameters measured for the CD38/NAD(+) glycohydrolase-catalysed hydrolysis of 2'-deoxy-2'-aminoribo-NAD(+) and ADP-cyclo[N1,C1']-2'-deoxy-2'-aminoribose (slowly hydrolysable analogues of NAD(+) and cADPR respectively) ruled out that the CD38-cADPR complex can accumulate under steady-state conditions. This was borne out by simulation of the prevalent kinetic mechanism of CD38, which involve the partitioning of a common E.ADP-ribosyl intermediate in the formation of the enzyme-catalysed reaction products. Using this mechanism, microscopic rate conditions were found which transform a NAD(+) glycohydrolase into an ADP-ribosyl cyclase. Altogether, the present work shows that if the cross-talk with a partner depends on a conformational change of CD38, this is most probably not attributable to the formation of the CD38-cADPR complex. In line with recent results on the conformational change triggered by CD38 ligands [Berthelier, Laboureau, Boulla, Schuber and Deterre (2000) Eur. J. Biochem. 267, 3056-3064], we believe that the Michaelis CD38-NAD(+) complex could play such a role instead. PMID:11513738

  8. An Investigation of the Relationship between Cohesion and Syntactic Complexity of Take-Away Writing and Advanced Content Complexity and Depth

    ERIC Educational Resources Information Center

    Gardner, Matthew Thomas

    2017-01-01

    In secondary and post-secondary content courses, the use of writing to facilitate complex learning in advanced content areas, which is called writing to learn content, can help students to evaluate their understanding, higher order cognition, and thinking about the content to learned (Carifio, 2005; Hayes, 2006; Carifio, 2015). The primary focus…

  9. Lithium secondary batteries: Role of polymer cathode morphology

    NASA Astrophysics Data System (ADS)

    Naoi, Katsuhiko; Osaka, Tetsuya; Owens, Boone B.

    1988-06-01

    Electrically conducting polymers have been utilized both as the cathode and as the electrolyte element of Li secondary cells. Polymer cathodes were limited in their suitability for batteries because of the low energy content associated with low levels of doping and the inclusion of complex ionic species in the cathode. Recent studies have indicated that doping levels up to 100 percent can be achieved in polyanilene. High doping levels in combination with controlled morphologies have been found to improve the energy and rate capabilities of polymer cathodes. A morphology-modifying technique was utilized to enhance the charge/discharge characteristics of Li/liquid electrolyte polypyrrole cells. The polymer is electropolymerized in a preferred orientation morphology when the substrate is first precoated with an insulating film of nitrile butadiene rubber (NBR). Modification of the kinetic behavior of the electrode results from variations in the chemical composition of the NBR.

  10. The effect of vortex merging and non-merging on the transfer of modal turbulent kinetic energy content

    NASA Astrophysics Data System (ADS)

    Ground, Cody; Vergine, Fabrizio; Maddalena, Luca

    2016-08-01

    A defining feature of the turbulent free shear layer is that its growth is hindered by compressibility effects, thus limiting its potential to sufficiently mix the injected fuel and surrounding airstream at the supersonic Mach numbers intrinsic to the combustor of air-breathing hypersonic vehicles. The introduction of streamwise vorticity is often proposed in an attempt to counteract these undesired effects. This fact makes the strategy of introducing multiple streamwise vortices and imposing upon them certain modes of mutual interaction in order to potentially enhance mixing an intriguing concept. However, many underlying fundamental characteristics of the flowfields in the presence such interactions are not yet well understood; therefore, the fundamental physics of these flowfields should be independently investigated before the explicit mixing performance is characterized. In this work, experimental measurements are taken with the stereoscopic particle image velocimetry technique on two specifically targeted modes of vortex interaction—the merging and non-merging of two corotating vortices. The fluctuating velocity fields are analyzed utilizing the proper orthogonal decomposition (POD) in order to identify the content, organization, and distribution of the modal turbulent kinetic energy content of the fluctuating velocity eigenmodes. The effects of the two modes of vortex interaction are revealed by the POD analysis which shows distinct differences in the modal features of the two cases. When comparing the low-order eigenmodes of the two cases, the size of the structures contained within the first ten modes is seen to increase as the flow progresses downstream for the merging case, whereas the opposite is true for the non-merging case. Additionally, the relative modal energy contribution of the first ten eigenmodes increases as the vortices evolve downstream for the merging case, whereas in the non-merging case the relative modal energy contribution decreases. The POD results show that the vortex merging process reorients and redistributes the relative turbulent kinetic energy content toward the larger-scale structures within the low-order POD eigenmodes. This result suggests that by specifically designing the vortex generation system to impose preselected modes of vortex interaction upon the flow it is possible to exert some form of control over the downstream evolution and distribution of the global and modal turbulent kinetic energy content.

  11. Interplay of bistable kinetics of gene expression during cellular growth

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2009-02-01

    In cells, the bistable kinetics of gene expression can be observed on the level of (i) one gene with positive feedback between protein and mRNA production, (ii) two genes with negative mutual feedback between protein and mRNA production, or (iii) in more complex cases. We analyse the interplay of two genes of type (ii) governed by a gene of type (i) during cellular growth. In particular, using kinetic Monte Carlo simulations, we show that in the case where gene 1, operating in the bistable regime, regulates mutually inhibiting genes 2 and 3, also operating in the bistable regime, the latter genes may eventually be trapped either to the state with high transcriptional activity of gene 2 and low activity of gene 3 or to the state with high transcriptional activity of gene 3 and low activity of gene 2. The probability to get to one of these states depends on the values of the model parameters. If genes 2 and 3 are kinetically equivalent, the probability is equal to 0.5. Thus, our model illustrates how different intracellular states can be chosen at random with predetermined probabilities. This type of kinetics of gene expression may be behind complex processes occurring in cells, e.g., behind the choice of the fate by stem cells.

  12. The adsorption kinetics of metal ions onto different microalgae and siliceous earth.

    PubMed

    Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C

    2001-03-01

    In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.

  13. Consequences of inducing intrinsic disorder in a high-affinity protein-protein interaction.

    PubMed

    Papadakos, Grigorios; Sharma, Amit; Lancaster, Lorna E; Bowen, Rebecca; Kaminska, Renata; Leech, Andrew P; Walker, Daniel; Redfield, Christina; Kleanthous, Colin

    2015-04-29

    The kinetic and thermodynamic consequences of intrinsic disorder in protein-protein recognition are controversial. We address this by inducing one partner of the high-affinity colicin E3 rRNase domain-Im3 complex (K(d) ≈ 10(-12) M) to become an intrinsically disordered protein (IDP). Through a variety of biophysical measurements, we show that a single alanine mutation at Tyr507 within the hydrophobic core of the isolated colicin E3 rRNase domain causes the enzyme to become an IDP (E3 rRNase(IDP)). E3 rRNase(IDP) binds stoichiometrically to Im3 and forms a structure that is essentially identical to the wild-type complex. However, binding of E3 rRNase(IDP) to Im3 is 4 orders of magnitude weaker than that of the folded rRNase, with thermodynamic parameters reflecting the disorder-to-order transition on forming the complex. Critically, pre-steady-state kinetic analysis of the E3 rRNase(IDP)-Im3 complex demonstrates that the decrease in affinity is mostly accounted for by a drop in the electrostatically steered association rate. Our study shows that, notwithstanding the advantages intrinsic disorder brings to biological systems, this can come at severe kinetic and thermodynamic cost.

  14. Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis

    PubMed Central

    Henriksson-Peltola, Petri; Sehlén, Wilhelmina; Haggård-Ljungquist, Elisabeth

    2007-01-01

    Bacteriophages P2, P2 Hy dis and WΦ are very similar but heteroimmune Escherichia coli phages. The structural genes show over 96% identity, but the repressors show between 43 and 63% identities. Furthermore, the operators, which contain two directly repeated sequences, vary in sequence, length, location relative to the promoter and spacing between the direct repeats. We have compared the in vivo effects of the wild type and mutated operators on gene expression with the complexes formed between the repressors and their wild type or mutated operators using electrophoretic mobility shift assay (EMSA), and real-time kinetics of the protein–DNA interactions using surface plasmon resonance (SPR) analysis. Using EMSA, the repressors formed different protein–DNA complexes, and only WΦ was significantly affected by point mutations. However, SPR analysis showed a reduced association rate constant and an increased dissociation rate constant for P2 and WΦ operator mutants. The association rate constants of P2 Hy dis was too fast to be determined. The P2 Hy dis dissociation response curves were shown to be triphasic, while both P2 and WΦ C were biphasic. Thus, the kinetics of complex formation and the nature of the complexes formed differ extensively between these very closely related phages. PMID:17412705

  15. An improved kinetics approach to describe the physical stability of amorphous solid dispersions.

    PubMed

    Yang, Jiao; Grey, Kristin; Doney, John

    2010-01-15

    The recrystallization of amorphous solid dispersions may lead to a loss in the dissolution rate, and consequently reduce bioavailability. The purpose of this work is to understand factors governing the recrystallization of amorphous drug-polymer solid dispersions, and develop a kinetics model capable of accurately predicting their physical stability. Recrystallization kinetics was measured using differential scanning calorimetry for initially amorphous efavirenz-polyvinylpyrrolidone solid dispersions stored at controlled temperature and relative humidity. The experimental measurements were fitted by a new kinetic model to estimate the recrystallization rate constant and microscopic geometry of crystal growth. The new kinetics model was used to illustrate the governing factors of amorphous solid dispersions stability. Temperature was found to affect efavirenz recrystallization in an Arrhenius manner, while recrystallization rate constant was shown to increase linearly with relative humidity. Polymer content tremendously inhibited the recrystallization process by increasing the crystallization activation energy and decreasing the equilibrium crystallinity. The new kinetic model was validated by the good agreement between model fits and experiment measurements. A small increase in polyvinylpyrrolidone resulted in substantial stability enhancements of efavirenz amorphous solid dispersion. The new established kinetics model provided more accurate predictions than the Avrami equation.

  16. Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Mogno, Caterina

    2018-01-01

    This paper deals with the derivation of a new discrete thermostatted kinetic framework for the modeling of complex adaptive systems subjected to external force fields (nonequilibrium system). Specifically, in order to model nonequilibrium stationary states of the system, the external force field is coupled to a dissipative term (thermostat). The well-posedness of the related Cauchy problem is investigated thus allowing the new discrete thermostatted framework to be suitable for the derivation of specific models and the related computational analysis. Applications to crowd dynamics and future research directions are also discussed within the paper.

  17. On the kinetics of transgranular particle embrittlement during simulated carburizing in steel containing grain-refining additions of aluminum and niobium plus aluminum

    DOE PAGES

    Leap, Michael Jerald

    2017-08-31

    Here, the kinetics of toughness degradation resulting from transgranular particle embrittlement are evaluated as a function of composition and processing history for simulated carburizing operations in air-melt steel containing grain-refining additions of aluminum and aluminum plus niobium. The kinetics of particle embrittlement are inherently linked to the ripening of AlN precipitates after extended austenitization in steel containing carbon contents representative of both the case and core of a carburized component. Embrittlement in steel containing AlN occurs with an activation energy similar to the value for aluminum diffusion in austenite, although an AlN volume fraction effect on the embrittlement kinetics ismore » manifested as decreases in activation energy with decreases in the [Al]/[N] ratio of steel. In contrast, the presence of niobium substantially retards the kinetics of particle embrittlement in steel containing 120–200 ppm N. Observations of AlN precipitates coated with Nb(C,N) indicate that the decreases in embrittlement kinetics are related to a reduction in the potential for AlN ripening during austenitization.« less

  18. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system.

    PubMed

    Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye

    2017-08-15

    The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. On the kinetics of transgranular particle embrittlement during simulated carburizing in steel containing grain-refining additions of aluminum and niobium plus aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leap, Michael Jerald

    Here, the kinetics of toughness degradation resulting from transgranular particle embrittlement are evaluated as a function of composition and processing history for simulated carburizing operations in air-melt steel containing grain-refining additions of aluminum and aluminum plus niobium. The kinetics of particle embrittlement are inherently linked to the ripening of AlN precipitates after extended austenitization in steel containing carbon contents representative of both the case and core of a carburized component. Embrittlement in steel containing AlN occurs with an activation energy similar to the value for aluminum diffusion in austenite, although an AlN volume fraction effect on the embrittlement kinetics ismore » manifested as decreases in activation energy with decreases in the [Al]/[N] ratio of steel. In contrast, the presence of niobium substantially retards the kinetics of particle embrittlement in steel containing 120–200 ppm N. Observations of AlN precipitates coated with Nb(C,N) indicate that the decreases in embrittlement kinetics are related to a reduction in the potential for AlN ripening during austenitization.« less

  20. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    PubMed

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  1. Improved Understanding of In Situ Chemical Oxidation. Technical Objective I: Contaminant Oxidation Kinetics Contaminant Oxidation Kinetics

    DTIC Science & Technology

    2009-05-01

    methyl tert butyl ether NAPL non-aqueous phase liquid NOD natural oxidant demand •OH hydroxide radical Ox oxidant O3 ozone PCE...and persulfate; and Technical Objective 2, assess how soil properties (e.g., soil mineralogy , natural carbon content) affect oxidant mobility and...to develop a general description of kobs vs. T because there are many reactions that can contribute to the concentration of the reactive intermediate

  2. Remediation and desorption kinetics of pyrene from kaolinite co-contaminated with heavy metals at various organic matter contents

    NASA Astrophysics Data System (ADS)

    Saeedi, Mohsen; Li, Loretta Y.; Grace, John R.

    2017-04-01

    Soils co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals are challenging for remediation. In the present study desorption of pyrene in kaolinite, co-contaminated by Ni, Pb and Zn, was examined by combinations of surfactants and chelating agents such as Triton X-100, Tween 80, Ethylene diamine tetra acetic acid (EDTA) and citric acid. Results showed that a combination of Triton X-100 (7.5 % w/w) + EDTA (0.01 M) and Tween 80 (7.5 % w/w) + EDTA (0.01 M) were effective in simultaneously desorbing both types of contaminants. Batch desorption tests were conducted using single and combined enhancing agents containing Triton X-100 and Tween 80 as non-ionic surfactants, EDTA as a chelating agent, and citric acid as an organic acid. The solution with the highest removal efficiency was the combined solution containing Triton X-100 (7.5 % w/w) + EDTA (0.01M). Triton X-100 (7.5% w/w) + EDTA (0.01M) led to removal efficiencies of 88% for pyrene in base kaolinite. Batch desorption kinetic experiments were performed using Triton X-100 (7.5% w/w) + EDTA (0.01M). During the first 24 h, desorption was rapid. Organic matter content in the kaolinite led to a reduction in the desorption rate of the contaminants. The desorption kinetic data were well fitted by a pseudo-second-order kinetic model.

  3. Aqueous extraction kinetics of soluble solids, phenolics and flavonoids from sage (Salvia fruticosa Miller) leaves.

    PubMed

    Torun, Mehmet; Dincer, Cuneyt; Topuz, Ayhan; Sahin-Nadeem, Hilal; Ozdemir, Feramuz

    2015-05-01

    In the present study, aqueous extraction kinetics of total soluble solids (TSS), total phenolic content (TPC) and total flavonoid content (TFC) from Salvia fruticosa leaves were investigated throughout 150 min. of extraction period against temperature (60-80 °C), particle size (2-8 mm) and loading percentage (1-4 %). The extract yielded 25 g/100 g TSS which contained 30 g/100 g TPC and 25 g/100 g TFC. The extraction data in time course fit with reversible first order kinetic model. All tested variables showed significant effect on the estimated kinetic parameters except equilibrium concentration. Increasing the extraction temperature resulted high extraction rate constants and equilibrium concentrations of the tested variables notably above 70 °C. By using the Arrhenius relationship, activation energy of the TSS, TPC and TFC were determined as 46.11 ± 5.61, 36.80 ± 3.12 and 33.52 ± 2.23 kj/mol, respectively. By decreasing the particle size, the extraction rate constants and diffusion coefficients exponentially increased whereas equilibrium concentrations did not change significantly. The equilibrium concentrations of the tested parameters showed linear behavior with increasing the loading percentage of the sage, however; the change in extraction rates did not show linear behavior due to submerging effect of 4 % loading.

  4. Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.

    PubMed

    Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F

    2010-04-23

    A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.

  5. Studying of kinetics of rear earth ion (REI) nanoscale complex formation by resonant energy transfer

    NASA Astrophysics Data System (ADS)

    Ignatova, Tetyana; Pristinski, Denis; Rotkin, Slava V.

    2011-03-01

    We observed formation of nanoscale complexes between multivalent REIs (Tb and Eu) and negatively charged DNA wrapped SWNTs, ionized in the water solution. Foerster Resonance Energy Transfer (FRET) was found to be an ideal method to confirm the complex formation. Because of its high sensitivity and non-destructive characterization approach FRET can be used to trace the kinetics of the complex formation. Strong dependence of SWNT photoluminescence (PL) on the REI concentration was detected and interpreted as a competition between the REI absorption on the SWNTs and subsequent FRET enhanced PL and the SWNT agglomeration followed by PL quenching. We measured the distance between REI and SWNT which appears to be much shorter than the one from their relative concentration in solution. We speculate that Manning condensation of the REIs on the SWNT/DNA surface happens thereby significantly reducing their spacing and making FRET possible.

  6. Lipid based drug delivery systems: Kinetics by SANS

    NASA Astrophysics Data System (ADS)

    Uhríková, D.; Teixeira, J.; Hubčík, L.; Búcsi, A.; Kondela, T.; Murugova, T.; Ivankov, O. I.

    2017-05-01

    N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we demonstrate structural responsivity of C12NO/dioleoylphospha-tidylethanolamine (DOPE)/DNA complexes designed as pH sensitive gene delivery vectors. Small angle neutron scattering (SANS) was employed to follow kinetics of C12NO protonization and DNA binding into C12NO/DOPE/DNA complexes in solution of 150 mM NaCl at acidic condition. SANS data analyzed using paracrystal lamellar model show the formation of complexes with stacking up to ∼32 bilayers, spacing ∼ 62 Å, and lipid bilayer thickness ∼37 Å in 3 minutes after changing pH from 7 to 4. Subsequent structural reorganization of the complexes was observed along 90 minutes of SANS mesurements.

  7. Equilibrium, Kinetic and Structural Properties of Gallium(III) and Some Divalent Metal Complexes Formed with the New DATAm and DATA5m Ligands.

    PubMed

    Farkas, Edit; Nagel, Johannes; Waldron, Bradley P; Parker, David; Tóth, Imre; Brücher, Ernő; Rösch, Frank; Baranyai, Zsolt

    2017-08-01

    The development of 68 Ge/ 68 Ga generators has made the positron-emitting 68 Ga isotope widely accessible and raised interest in new chelate complexes of Ga 3+ . The hexadentate 1,4-di(acetate)-6-methyl[amino(methyl)acetate]perhydro-1,4-diazepane (DATA m ) ligand and its bifunctional analogue, 1,4-di(acetate)-6-pentanoic acid[amino(methyl)acetate]perhydro-1,4-diazepane (DATA 5m ), rapidly form complexes with 68 Ga in high radiochemical yield. The stability constants of DATA m and DATA 5m complexes formed with Ga 3+ , Zn 2+ , Cu 2+ , Mn 2+ and Ca 2+ have been determined by using pH potentiometry, spectrophotometry (Cu 2+ ) and 1 H and 71 Ga NMR spectroscopy (Ga 3+ ). The stability constants of Ga(DATA m ) and Ga(DATA 5m ) complexes are slightly higher than those of Ga(AAZTA). The species distribution calculations indicated the predominance of Ga(L)OH mixed-hydroxo complexes at physiological pH. The 1 H and 71 Ga NMR spectroscopy studies provided information about the coordinated functional groups of ligands and on the kinetics of exchange between the Ga(L) and Ga(L)OH complexes. The transmetalation reactions between the Ga(L) complexes and Cu 2+ citrate (6

  8. Different enzyme kinetic models.

    PubMed

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    As described in Chapter 2 , a large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the V max value. In many cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 have large active sites that enable binding of multiple molecules (Wester et al. J Biol Chem 279:35630-35637, 2004; Yano et al. J Biol Chem 279:38091-38094, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies. This chapter covers enzyme kinetic reactions in which a single enzyme has multiple binding sites for substrates and/or inhibitors as well as reactions catalyzed by multiple enzymes.

  9. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumantri, Indro; Purwanto,; Budiyono

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and highmore » efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.« less

  10. Drying kinetic of industrial cassava flour: Experimental data in view.

    PubMed

    Odetunmibi, Oluwole A; Adejumo, Oluyemisi A; Oguntunde, Pelumi E; Okagbue, Hilary I; Adejumo, Adebowale O; Suleiman, Esivue A

    2017-12-01

    In this data article, laboratory experimental investigation results on drying kinetic properties: the drying temperature ( T ), drying air velocity ( V ) and dewatering time (Te), each of the factors has five levels, and the experiment was replicated three times and the output: drying rate and drying time obtained, were observed. The experiment was conducted at National Centre for Agricultural Mechanization (NCAM) for a period of eight months, in 2014. Analysis of variance was carried out using randomized complete block design with factorial experiment on each of the outputs: drying rate and drying times of the industrial cassava flour. A clear picture on each of these outputs was provided separately using tables and figures. It was observed that all the main factors as well as two and three ways interactions are significant at 5% level for both drying time and rate. This also implies that the rate of drying grated unfermented cassava mash, to produce industrial cassava flour, depend on the dewatering time (the initial moisture content), temperature of drying, velocity of drying air as well as the combinations of these factors altogether. It was also discovered that all the levels of each of these factors are significantly difference from one another. In summary, the time of drying is a function of the dewatering time which was responsible for the initial moisture content. The higher the initial moisture content the longer the time of drying, and the lower the initial moisture content, the lower the time of drying. Also, the higher the temperature of drying the shorter the time of drying and vice versa. Also, the air velocity effect on the drying process was significant. As velocity increases, rate of drying also increases and vice versa. Finally, it can be deduced that the drying kinetics are influenced by these processing factors.

  11. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    NASA Astrophysics Data System (ADS)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  12. The Gaseous Explosive Reaction : A Study of the Kinetics of Composite Fuels

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1929-01-01

    This report deals with the results of a series of studies of the kinetics of gaseous explosive reactions where the fuel under observation, instead of being a simple gas, is a known mixture of simple gases. In the practical application of the gaseous explosive reaction as a source of power in the gas engine, the fuels employed are composite, with characteristics that are apt to be due to the characteristics of their components and hence may be somewhat complex. The simplest problem that could be proposed in an investigation either of the thermodynamics or kinetics of the gaseous explosive reaction of a composite fuel would seem to be a separate study of the reaction characteristics of each component of the fuel and then a study of the reaction characteristics of the various known mixtures of those components forming composite fuels more and more complex. (author)

  13. Self-assembly kinetics of DNA functionalised liposomes

    NASA Astrophysics Data System (ADS)

    Mognetti, B. M.; Bachmann, S. J.; Kotar, J.; Parolini, L.; Petitzon, M.; Cicuta, P.; di Michele, L.

    DNA has been largely used to program state-dependent interactions between functionalised Brownian units resulting in responsive systems featuring complex phase behaviours. In this talk I will show how DNA can also be used to control aggregation kinetics in systems of liposomes functionalised by three types of linkers that can simultaneously bind. In doing so, I will present a general coarse-graining strategy that allows calculating the adhesion free energy between pairs of compliant units functionalised by mobile binders. I will highlight the important role played by bilayer deformability and will calculate the free energy contribution due to the presence of complexes made by more than two binders. Finally we will demonstrate the importance of explicitly accounting for the kinetics underlying ligand-receptor reactions when studying large-scale self-assembly. We acknowledge support from ULB, the Oppenheimer Fund, and the EPSRC Programme Grant CAPITALS No. EP/J017566/1.

  14. Ultrafast Transient Absorption Spectroscopy of Polymer-Based Organophotoredox Catalysts Mimicking Transition-Metal Complexes

    NASA Astrophysics Data System (ADS)

    Jamhawi, Abdelqader; Paul, Anam C.; Smith, Justin D.; Handa, Sachin; Liu, Jinjun

    2017-06-01

    Transition-metal complexes of rare earth metals including ruthenium and iridium are most commonly employed as visible-light photocatalysts. Despite their highly important and broad applications, they have many disadvantages including high cost associated with low abundance in earth crust, potential toxicity, requirement of specialized ligands for desired activity, and difficulty in recycling of metal contents as well as associated ligands. Polymer-based organophotoredox catalysts are promising alternatives and possess unique advantages such as easier synthesis from inexpensive starting material, longer excited state life time, broad range of activity, sustainability, and recyclability. In this research talk, time-resolved photoluminescence and femtosecond transient absorption (TA) spectroscopy measurements of three novel polymer-based organophotoredox catalysts will be presented. By our synthetic team, their catalytic activity has been proven in some highly valuable chemical transformations, that otherwise require transition metal complexes. Time-resolved spectroscopic investigations have demonstrated that photoinduced processes in these catalysts are similar to the transition metal complexes. Especially, intramolecular vibrational relaxation, internal conversion, and intersystem crossing from the S1 state to the T1 state all occur on a sub-picosecond timescale. The long lifetime of the T1 state ( 2-3 microsecond) renders these polymers potent oxidizing and reducing agents. A spectroscopic and kinetic model has been developed for global fitting of TA spectra in both the frequency and time domains. Implication of the current ultrafast spectroscopy studies of these novel molecules to their roles in photocatalysis will be discussed.

  15. Kinetic modeling of kraft delignification of Eucalyptus globulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, A.; Rodriguez, F.; Gilarranz, M.A.

    1997-10-01

    A kinetic model for the kraft pulping delignification of Eucalyptus globulus is proposed. This model is discriminated among some kinetic expressions often used in the literature, and the kinetic parameters are determined by fitting of experimental results. A total of 25 isothermal experiments at liquor-to-wood ratios of 50 and 5 L/kg have been carried out. Initial, bulk, and residual delignification stages have been observed during the lignin removal, the transitions being, referring to the lignin initial content, about 82 and 3%. Carbohydrate removal and effective alkali-metal and hydrosulfide consumption have been related with the lignin removal by means of effectivemore » stoichiometric coefficients for each stage, coefficients also being calculated by fitting of the experimental data. The kinetic model chosen has been used to simulate typical kraft pulping experiments carried out at nonisothermal conditions, using a temperature ramp. The model yields simulated values close to those obtained experimentally for the wood studied and also ably reproduces the trends of the literature data.« less

  16. Co-pyrolysis kinetics of sewage sludge and bagasse using multiple normal distributed activation energy model (M-DAEM).

    PubMed

    Lin, Yan; Chen, Zhihao; Dai, Minquan; Fang, Shiwen; Liao, Yanfen; Yu, Zhaosheng; Ma, Xiaoqian

    2018-07-01

    In this study, the kinetic models of bagasse, sewage sludge and their mixture were established by the multiple normal distributed activation energy model. Blending with sewage sludge, the initial temperature declined from 437 K to 418 K. The pyrolytic species could be divided into five categories, including analogous hemicelluloses I, hemicelluloses II, cellulose, lignin and bio-char. In these species, the average activation energies and the deviations situated at reasonable ranges of 166.4673-323.7261 kJ/mol and 0.1063-35.2973 kJ/mol, respectively, which were conformed to the references. The kinetic models were well matched to experimental data, and the R 2 were greater than 99.999%y. In the local sensitivity analysis, the distributed average activation energy had stronger effect on the robustness than other kinetic parameters. And the content of pyrolytic species determined which series of kinetic parameters were more important. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  18. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  19. Spectral and kinetic effects accompanying the assembly of core complexes of Rhodobacter sphaeroides.

    PubMed

    Freiberg, Arvi; Chenchiliyan, Manoop; Rätsep, Margus; Timpmann, Kõu

    2016-11-01

    In the present work, spectral and kinetic changes accompanying the assembly of the light-harvesting 1 (LH1) complex with the reaction center (RC) complex into monomeric RC-LH1 and dimeric RC-LH1-PufX core complexes of the photosynthetic purple bacterium Rhodobacter sphaeroides are systematically studied over the temperature range of 4.5-300K. The samples were interrogated with a combination of optical absorption, hole burning, fluorescence excitation, steady state and picosecond time resolved fluorescence spectroscopy. Fair additivity of the LH1 and RC absorption spectra suggests rather weak electronic coupling between them. A low-energy tail revealed at cryogenic temperatures in the absorption spectra of both monomeric and dimeric core complexes is proved to be due to the special pair of the RC. At selected excitation intensity and temperature, the fluorescence decay time of core complexes is shown to be a function of multiple factors, most importantly of the presence/absence of RCs, the supramolecular architecture (monomeric or dimeric) of the complexes, and whether the complexes were studied in a native membrane environment or in a detergent - purified state. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Reactivity of molecular dioxygen towards a series of isostructural dichloroiron(III) complexes with tripodal tetraamine ligands: general access to mu-oxodiiron(III) complexes and effect of alpha-fluorination on the reaction kinetics.

    PubMed

    Thallaj, Nasser K; Rotthaus, Olaf; Benhamou, Leila; Humbert, Nicolas; Elhabiri, Mourad; Lachkar, Mohammed; Welter, Richard; Albrecht-Gary, Anne-Marie; Mandon, Dominique

    2008-01-01

    We have synthesized the mono, di-, and tri-alpha-fluoro ligands in the tris(2-pyridylmethyl)amine (TPA) series, namely, FTPA, F(2)TPA and F(3)TPA, respectively. Fluorination at the alpha-position of these nitrogen-containing tripods shifts the oxidation potential of the ligand by 45-70 mV per added fluorine atom. The crystal structures of the dichloroiron(II) complexes with FTPA and F(2)TPA reveal that the iron center lies in a distorted octahedral geometry comparable to that already found in TPAFeCl(2). All spectroscopic data indicate that the geometry is retained in solution. These three isostructural complexes all react with molecular dioxygen to yield stable mu-oxodiiron(III) complexes. Crystal structure analyses are reported for each of these three mu-oxo compounds. With TPA, a symmetrical structure is obtained for a dicationic compound with the tripod coordinated in the kappa(4)N coordination mode. With FTPA, the compound is a neutral mu-oxodiiron(III) complex with a kappa(3)N coordination mode of the ligand. Oxygenation of the F(2)TPA complex gave a neutral unsymmetrical compound, the structure of which is reminiscent of that already found with the trifluorinated ligand. On reduction, all mu-oxodiiron(III) complexes revert to the starting iron(II) species. The oxygenation reaction parallels the well-known formation of mu-oxo derivatives from dioxygen in the chemistry of porphyrins reported almost three decades ago. The striking feature of the series of iron(II) precursors is the effect of the ligand on the kinetics of oxygenation of the complexes. Whereas the parent complex undergoes 90 % conversion over 40 h, the monofluorinated ligand provides a complex that has fully reacted after 30 h, whereas the reaction time for the complex with the difluorinated ligand is only 10 h. Analysis of the spectroscopic data reveals that formation of the mu-oxo complexes proceeds in two distinct reversible kinetic steps with k(1) approximately 10 k(2). For TPAFeCl(2) and FTPAFeCl(2) only small variations in the k(1) and k(2) values are observed. By contrast, F(2)TPAFeCl(2) exhibits k(1) and k(2) values that are ten times higher. These differences in kinetics are interpreted in the light of structural and electronic effects, especially the Lewis acidity at the metal center. Our results suggest coordination of dioxygen as an initial step in the process leading to formation of mu-oxodiiron(III) compounds, by contrast with an unlikely outer-sphere reduction of dioxygen, which generally occurs at negative potentials.

  1. Transition-metal-ion-mediated polymerization of dopamine: mussel-inspired approach for the facile synthesis of robust transition-metal nanoparticle-graphene hybrids.

    PubMed

    Yang, Liping; Kong, Junhua; Zhou, Dan; Ang, Jia Ming; Phua, Si Lei; Yee, Wu Aik; Liu, Hai; Huang, Yizhong; Lu, Xuehong

    2014-06-16

    Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process. Spectroscopic and electron microscopic studies reveal that the Ni(2+) ions are chelated with polydopamine (PDA) units, forming homogeneous Ni(2+)-PDA complexes. This facile one-pot approach is utilized to construct transition-metal-ion-PDA complex thin coatings on graphene oxide, which can be carbonized to produce robust hybrid nanosheets with well-dispersed metallic nickel/metallic cobalt/manganese(II) oxide nanoparticles embedded in PDA-derived thin graphitic carbon layers. The nickel-graphene hybrid prepared by using this approach shows good catalytic properties and recyclability for the reduction of p-nitrophenol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houtz, Robert, L.

    This project focused on a molecular and biochemical characterization of the protein methyltransferases responsible for methylation of the LS and SS in Rubisco, and the associated functional consequences accompanying these modifications. Our results provided some of the most informative structural and mechanistic understandings of SET domain protein methyltransferases. These results also positioned us to provide the first unambiguous assignment of the kinetic reaction mechanism for SET-domain protein methyltransferases, and to design and engineer an alternative substrate for Rubisco LSMT, enabling substrate specificity and functional significance studies. We demonstrated that the minimal substrate recognized by Rubisco LSMT is free lysine asmore » well as monomethyllysine, an observation corroborated both by structural analyses as well as enzymatic activity and subsequent product distribution analyses. Ternary complexes between Rubisco LSMT and free lysine compared to complexes with monomethyllysine demonstrated that the structural basis for multiple methyl group additions is a consequence of hydrogen-bond driven spatial shifts in the amino group of Lys-14, which maintains the direct in-line geometry necessary for SN2 nucleophilic attack. The structural observations are also consistent with the previous proposal that the multiplicity of methyl group additions takes place through a processive mechanism, with successive methyl group additions to an enzyme protein complex which does not disassociate prior to the formation of trimethyllysine. This mechanism has important implications, since the regulation of gene expression by SET domain histone methyltransferases is not only dependent on site-specific lysine methylation, but also the degree of methylation. We examined the kinetic reaction mechanism for three different types of SET domain protein methyltransferases, each under conditions supporting mono-, di-, or trimethyllysine formation corroborated by product analyses. Additionally, the tight initial binding of Rubisco LSMT to Rubisco also allowed us to design a novel immobilized complex between Rubisco and Rubisco LSMT, which allowed for an unambiguous demonstration of the requirement for trimethyllysine formation prior to disassociation of the Rubisco LSMT:Rubisco complex, and therefore proof of the processive mechanism for methyl group transfer. These kinetic studies also demonstrated that an important factor has been overlooked in all kinetic analyses of SET domain protein methyltransferases reported to date. This factor is the influence of the low turnover number for SET domain protein methyltransferases and how, relative to the time-frame of kinetic enzyme assays, this can generate changes in kinetic profiles shifting reciprocal plot patterns from random/ordered bi-bi to the real kinetic reaction mechanism plots of ping-pong. Although the ternary complexes of Rubisco LSMT with S-Adenosylhomocysteine and lysine and monomethyllysine were informative in regard to reaction mechanism, they were not helpful in identifying the mechanism used by Rubisco LSMT for determining substrate specificity. We were unsuccessful at obtaining ternary complexes of Rubisco LSMT with bound synthetic polypeptide substrates, as has been reported for several histone methyltransferases. However, we were able to model a polypeptide sequence corresponding to the N-terminal region of the LS of Rubisco into the apparent substrate binding cleft in Rubisco LSMT. Knowledge of the determinants of polypeptide substrate specificity are important for identifying possible alternate substrates, as well as the possibility of generating more desirable substrates amenable to site-directed mutagenesis experiments unlike Rubisco. We determined that Rubisco LSMT is capable of methylating synthetic polypeptide mimics of the N-terminal region of the LS, both free as well as conjugated to keyhole limpet hemacyanin, but with considerable less efficiency than intact holoenzyme.« less

  3. Experiments in Thermodynamics and Kinetics of Phosphine Substitution in (p-Cymene)RuCl[subscript 2](PR[subscript 3])

    ERIC Educational Resources Information Center

    Ozerov, Oleg V.; Fafard, Claudia M.; Hoffman, Norris W.

    2007-01-01

    This manuscript describes a set of three experiments that investigates the thermodynamic and kinetic aspects of phosphine substitution at a Ru center. In the first experiment, the students synthesize a Ru organometallic complex containing a phosphine ligand. In the second, equilibria for phosphine substitution involving several different…

  4. Cation-limited kinetic model for microbial extracellular electron transport via an outer membrane cytochrome C complex

    PubMed Central

    Okamoto, Akihiro; Tokunou, Yoshihide; Saito, Junki

    2016-01-01

    Outer-membrane c-type cytochrome (OM c-Cyt) complexes in several genera of iron-reducing bacteria, such as Shewanella and Geobacter, are capable of transporting electrons from the cell interior to extracellular solids as a terminal step of anaerobic respiration. The kinetics of this electron transport has implications for controlling the rate of microbial electron transport during bioenergy or biochemical production, iron corrosion, and natural mineral cycling. Herein, we review the findings from in-vivo and in-vitro studies examining electron transport kinetics through single OM c-Cyt complexes in Shewanella oneidensis MR-1. In-vitro electron flux via a purified OM c-Cyt complex, comprised of MtrA, B, and C proteins from S. oneidensis MR-1, embedded in a proteoliposome system is reported to be 10- to 100-fold faster compared with in-vivo estimates based on measurements of electron flux per cell and OM c-Cyts density. As the proteoliposome system is estimated to have 10-fold higher cation flux via potassium channels than electrons, we speculate that the slower rate of electron-coupled cation transport across the OM is responsible for the significantly lower electron transport rate that is observed in-vivo. As most studies to date have primarily focused on the energetics or kinetics of interheme electron hopping in OM c-Cyts in this microbial electron transport mechanism, the proposed model involving cation transport provides new insight into the rate detemining step of EET, as well as the role of self-secreted flavin molecules bound to OM c-Cyt and proton management for energy conservation and production in S. oneidensis MR-1. PMID:27924259

  5. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE PAGES

    Burke, Michael P.; Klippenstein, Stephen J.

    2017-08-14

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  6. Ephemeral collision complexes mediate chemically termolecular transformations that affect system chemistry [Ephemeral collision complexes induce chemically termolecular transformations that affect global chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Michael P.; Klippenstein, Stephen J.

    Termolecular association reactions involve ephemeral collision complexes—formed from the collision of two molecules—that collide with a third and chemically inert ‘bath gas’ molecule that simply transfers energy to/from the complex. These collision complexes are generally not thought to react chemically on collision with a third molecule in the gas-phase systems of combustion and planetary atmospheres. Such ‘chemically termolecular’ reactions, in which all three molecules are involved in bond making and/or breaking, were hypothesized long ago in studies establishing radical chain branching mechanisms, but were later concluded to be unimportant. Here, with data from ab initio master equation and kinetic-transport simulations,more » we reveal that reactions of H+O 2 collision complexes with other radicals constitute major kinetic pathways under common combustion situations. These reactions are also found to influence flame propagation speeds, a common measure of global reactivity. As a result, analogous chemically termolecular reactions mediated by ephemeral collision complexes are probably of significance in various combustion and planetary environments.« less

  7. Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex.

    PubMed

    Zhu, Guangyong; Xiao, Zuobing; Zhou, Rujun; Zhu, Yalun

    2014-05-25

    Flavor plays an important role and has been widely used in foods. Encapsulation can prevent the loss of volatile aromatic ingredients, provide protection and enhance the stability of the flavor. Kinetic and thermodynamic parameters are helpful in understanding the mechanism of molecular recognition between hosts and guests. This work focused on the study of production of a sweet orange flavor-β-cyclodextrin (CD) inclusion complex, and investigated the combination of flavor and β-CD by thermogravimetric analysis. Pyrolysis characteristics, kinetic and thermodynamic parameters of the flavor-β-CD inclusion complex were determined. The results showed that the flavor-β-CD inclusion complexes can form large aggregates in water. During thermal degradation of blank β-CD and flavor-β-CD inclusion complex, three main stages can be distinguished. The thermogravimetric (TG) curve of blank β-CD shows a leveling-off from room temperature to 250°C, while the TG curve of flavor-β-CD inclusion complex is downward sloping in this temperature range. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Primary photochemical processes for Pt(iv) diazido complexes prospective in photodynamic therapy of tumors.

    PubMed

    Shushakov, Anton A; Pozdnyakov, Ivan P; Grivin, Vjacheslav P; Plyusnin, Victor F; Vasilchenko, Danila B; Zadesenets, Andrei V; Melnikov, Alexei A; Chekalin, Sergey V; Glebov, Evgeni M

    2017-07-25

    Diazide diamino complexes of Pt(iv) are considered as prospective prodrugs in oxygen-free photodynamic therapy (PDT). Primary photophysical and photochemical processes for cis,trans,cis-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] and trans,trans,trans-[Pt(N 3 ) 2 (OH) 2 (NH 3 ) 2 ] complexes were studied by means of stationary photolysis, nanosecond laser flash photolysis and ultrafast kinetic spectroscopy. The process of photolysis is multistage. The first stage is the photosubstitution of an azide ligand to a water molecule. This process was shown to be a chain reaction involving redox stages. Pt(iv) and Pt(iii) intermediates responsible for the chain propagation were recorded using ultrafast kinetic spectroscopy and nanosecond laser flash photolysis. The mechanism of photosubstitution is proposed.

  9. Equilibrium and NMR studies on GdIII, YIII, CuII and ZnII complexes of various DTPA-N,N''-bis(amide) ligands. Kinetic stabilities of the gadolinium(III) complexes.

    PubMed

    Jászberényi, Zoltán; Bányai, István; Brücher, Ernö; Király, Róbert; Hideg, Kálmán; Kálai, Tamás

    2006-02-28

    Three DTPA-derivative ligands, the non-substituted DTPA-bis(amide) (L(0)), the mono-substituted DTPA-bis(n-butylamide) (L(1)) and the di-substituted DTPA-bis[bis(n-butylamide)] (L(2)) were synthesized. The stability constants of their Gd3+ complexes (GdL) have been determined by pH-potentiometry with the use of EDTA or DTPA as competing ligands. The endogenous Cu2+ and Zn2+ ions form ML, MHL and M(2)L species. For the complexes CuL(0) and CuL(1) the dissociation of the amide hydrogens (CuLH(-1)) has also been detected. The stability constants of complexes formed with Gd3+, Cu2+ and Zn2+ increase with an increase in the number of butyl substituents in the order ML(0) < ML(1) < ML(2). NMR studies of the diamagnetic YL(0) show the presence of four diastereomers formed by changing the chirality of the terminal nitrogens of their enantiomers. At 323 K, the enantiomerization process, involving the racemization of central nitrogen, falls into the fast exchange range. By the assignment and interpretation of 1H and 13C NMR spectra, the fractions of the diastereomers were found to be equal at pH = 5.8 for YL(0). The kinetic stabilities of GdL(0), GdL(1) and GdL(2) have been characterized by the rates of the exchange reactions occurring between the complexes and Eu3+, Cu2+ or Zn2+. The rates of reaction with Eu3+ are independent of the [Eu3+] and increase with increasing [H+], indicating the rate determining role of the proton assisted dissociation of complexes. The rates of reaction with Cu2+ and Zn2+ increase with rising metal ion concentration, which shows that the exchange can take place with direct attack of Cu2+ or Zn2+ on the complex, via the formation of a dinuclear intermediate. The rates of the proton, Cu2+ and Zn2+ assisted dissociation of Gd3+ complexes decrease with increasing number of the n-butyl substituents, which is presumably the result of steric hindrance hampering the formation or dissociation of the intermediates. The kinetic stabilities of GdL(0) and GdL(1) at pH = 7.4, [Cu2+] = 1 x 10(-6) M and [Zn(2+)] = 1 x 10(-5) M are similar to that of Gd(DTPA)2-, while the complex GdL2 possesses a much higher kinetic stability.

  10. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties.

    PubMed

    Xiao, Wendan; Zhang, Yibin; Li, Tingqiang; Chen, Bao; Wang, Huan; He, Zhenli; Yang, Xiaoe

    2012-01-01

    The toxicity of chromium (Cr) to biota is related to its chemical forms and consequently to the redox conditions of soils. Hexavalent Cr[Cr(VI)] may undergo natural attenuation through reduction processes. In this study, the reduction kinetics of Cr(VI) in seven soils and its relationships with soil properties were investigated with laboratory incubation experiments. The results indicate that the reduction of Cr(VI) can be described by a first-order reaction. The reduction rates of Cr(VI) in the seven soils decreased in the order: Udic Ferrisols > Stagnic Anthrosols > Calcaric Regosols > Mollisol > Typic Haplustalf > Periudic Argosols > Ustic Cambosols. Simple correlation analysis revealed that the reduction of Cr(VI) in soils was positively related to organic matter content, dissolved organic matter content, Fe(II) content, clay fraction, and to the diversity index of the bacterial community but negatively correlated with easily reducible Mn content. Using stepwise regression, the reduction of Cr(VI) in soil could be quantitatively predicted by the measurement of dissolved organic matter content, Fe(II) content, pH, and soil particle size distribution, with a fitting level of 95.5%. The results indicated that the reduction of Cr(VI) in natural soils is not controlled by a single soil property but is the result of the combined effects of dissolved organic matter, Fe(II), pH, and soil particle size distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Postharvest stilbene-enrichment of red and white table grape varieties using UV-C irradiation pulses.

    PubMed

    Cantos, Emma; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2002-10-23

    The red table grape varieties Flame, Red Globe, Crimson, and Napoleon, as well as the white varieties Superior, Dominga, and Moscatel Italica, were irradiated with a previously optimized UV-C postharvest irradiation protocol (510 W, 40 cm, 60 s). The induction kinetics of the stilbenes trans-resveratrol, trans-piceid, trans-piceatannol, trans-astringin, and viniferins was followed by using HPLC-DAD/MS/MS. The most inducible stilbenes were trans-resveratrol, trans-piceatannol, and viniferins. Both quantitative and qualitative differences were observed in both the stilbene induction kinetics and stilbene content in the seven table grapes analyzed here. The total resveratrol content ranged from 0.69 mg/100 g fw (Dominga) to 2.3 mg/100 g fw (Red Globe). The net resveratrol induction ranged from 3.4-fold (Flame) to 2315-fold (Red Globe). The highest viniferins content was observed in the variety Flame (0.73 mg/100 g fw), although the variety Red Globe presented the highest viniferins induction (175-fold). The highest content and induction of piceatannol (0.17 mg/100 g fw and 173-fold, respectively) was observed in the variety Flame. It should be stressed that taking into account the health-beneficial effects claimed for stilbenes, the UV-C irradiated table grapes can be considered as new functional fruits that can supply (a serving of unpeeled 200 g table grapes) the resveratrol content (depending on the variety) equivalent to more than seven glasses of red wine ( approximately 1.5 L) with high resveratrol content.

  12. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    PubMed

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Effect of Secondary Phases and Birefringence on Visible Light Transmission in Translucent alpha-Sialon Ceramics

    DTIC Science & Technology

    2016-07-06

    lenses / High Temperature Tubes and Glass a-Si3N4 6 ≈2.07 77.1 Oxygen Barrier / Passivation / Dielectric Layer in Semiconductor Devices and...1987). 77A. Rosenflanz and I.-W. Chen, "Kinetics of Phase Transformations in SiAlON Ceramics: Effects of Cation Size, Composition and Temperature ," J... oxygen content, neither smelled of ammonia anymore, suggesting that oxidation of the powders at room temperature had become kinetically limited. For

  14. Insight into the biochemical, kinetic and spectroscopic characterization of garlic (Allium sativum) phytocystatin: Implication for cardiovascular disease.

    PubMed

    Siddiqui, Mohd Faizan; Ahmed, Azaj; Bano, Bilqees

    2017-02-01

    Phytocystatins are cysteine proteinase inhibitors present in plants. They play crucial role in maintaining protease-anti protease balance and are involved in various endogenous processes. Thus, they are suitable and convenient targets for genetic engineering which makes their isolation and characterisation from different sources the need of the hour. In the present study a phytocystatin has been isolated from garlic (Allium sativum) by a simple two-step process using ammonium sulphate fractionation and gel filtration chromatography on Sephacryl S-100HR with a fold purification of 152.6 and yield 48.9%. A single band on native gel electrophoresis confirms the homogeneity of the purified inhibitor. The molecular weight of the purified inhibitor was found to be 12.5kDa as determined by SDS-PAGE and gel filtration chromatography. The garlic phytocystatin was found to be stable under broad range of pH (6-8) and temperature (30°C-60°C). Kinetic studies suggests that garlic phytocystatins are reversible and non-competitive inhibitors having highest affinity for papain followed by ficin and bromelain. UV and fluorescence spectroscopy revealed significant conformational change upon garlic phytocystatin-papain complex formation. Secondary structure analysis was performed using CD and FTIR. Garlic phytocystatin possesses 33.9% alpha-helical content as assessed by CD spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test.

    PubMed

    Ma, Yan; Shi, Yi; Hou, Deyi; Zhang, Xi; Chen, Jiaqi; Wang, Zhifen; Xu, Zhu; Li, Fasheng; Du, Xiaoming

    2017-04-01

    Mechanical soil aeration is a simple, effective, and low-cost soil remediation technology that is suitable for sites contaminated with volatile chlorinated hydrocarbons (VCHs). Conventionally, this technique is used to treat the mixed soil of a site without considering the diversity and treatability of different soils within the site. A laboratory test was conducted to evaluate the effectiveness of mechanical soil aeration for remediating soils of different textures (silty, clayey, and sandy soils) along a vertical profile at an abandoned chloro-alkali chemical site in China. The collected soils were artificially contaminated with chloroform (TCM) and trichloroethylene (TCE). Mechanical soil aeration was effective for remediating VCHs (removal efficiency >98%). The volatilization process was described by an exponential kinetic function. In the early stage of treatment (0-7hr), rapid contaminant volatilization followed a pseudo-first order kinetic model. VCH concentrations decreased to low levels and showed a tailing phenomenon with very slow contaminant release after 8hr. Compared with silty and sandy soils, clayey soil has high organic-matter content, a large specific surface area, a high clay fraction, and a complex pore structure. These characteristics substantially influenced the removal process, making it less efficient, more time consuming, and consequently more expensive. Our findings provide a potential basis for optimizing soil remediation strategy in a cost-effective manner. Copyright © 2016. Published by Elsevier B.V.

  16. The Differential Gibbs Free Energy of Activation and its Implications in the Transition-State of Enzymatic Reactions

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Riley, W. J.

    2016-12-01

    We propose a mathematical framework to introduce the concept of differential free energy of activation in enzymatically catalyzed reactions, and apply it to N uptake by microalgae and bacteria. This framework extends the thermodynamic capabilities of the classical transition-state theory in and harmonizes the consolidated definitions of kinetic parameters with their thermodynamic and physical meaning. Here, the activation energy is assumed to be a necessary energetic level for equilibrium complexation between reactants and activated complex; however, an additional energy contribution is required for the equilibrium activated complex to release reaction products. We call this "differential free energy of activation"; it can be described by a Boltzmann distribution, and corresponds to a free energy level different from that of complexation. Whether this level is above or below the free energy of activation depends on the reaction, and defines energy domains that correspond to "superactivated", "activated", and "subactivated" complexes. The activated complex reaching one of those states will eventually release the products from an energy level different than that of activation. The concept of differential free energy of activation was tested on 57 independent experiments of NH­4+ and NO3- uptake by various microalgae and bacteria at temperatures ranging between 1 and 45oC. Results showed that the complexation equilibrium always favored the activated complex, but the differential energy of activation led to an apparent energy barrier consistent with observations. Temperature affected all energy levels within this framework but did not alter substantially these thermodynamic features. Overall the approach: (1) provides a thermodynamic and mathematical link between Michaelis-Menten and rate constants; (2) shows that both kinetic parameters can be described or approximated by Arrhenius' like equations; (3) describes the likelihood of formation of sub-, super-, and activated complexes; and (4) shows direction and thermodynamic likelihood of each reaction branch within the transition state. The approach suites particularly well for calibration of kinetic parameters against experimentally acquired reaction dynamics measurements of nutrient biogeochemical cycles.

  17. Imino proton exchange and base-pair kinetics in the AMP-RNA aptamer complex.

    PubMed

    Nonin, S; Jiang, F; Patel, D J

    1997-05-02

    We report on the dynamics of base-pair opening in the ATP-binding asymmetric internal loop and flanking base-pairs of the AMP-RNA aptamer complex by monitoring the exchange characteristics of the extremely well resolved imino protons in the NMR spectrum of the complex. The kinetics of imino proton exchange as a function of basic pH or added ammonia catalyst are used to measure the apparent base-pair dissociation constants and lifetimes of Watson-Crick and mismatched base-pairs, as well as the solvent accessibility of the unpaired imino protons in the complex. The exchange characteristics of the imino protons identify the existence of four additional hydrogen bonds stabilizing the conformation of the asymmetric ATP-binding internal loop that were not detected by NOEs and coupling constants alone, but are readily accommodated in the previously reported solution structure of the AMP-RNA aptamer complex published from our laboratory. The hydrogen exchange kinetics of the non-Watson-Crick pairs in the asymmetric internal loop of the AMP-RNA aptamer complex have been characterized and yield apparent dissociation constants (alphaKd) that range from 10(-2) to 10(-7). Surprisingly, three of these alphaKd values are amongst the lowest measured for all base-pairs in the AMP-RNA aptamer complex. Comparative studies of hydrogen exchange of the imino protons in the free RNA aptamer and the AMP-RNA aptamer complex establish that complexation stabilizes not only the bases within the ATP-binding asymmetric internal loop, but also the flanking stem base-pairs (two pairs on either side) of the binding site. We also outline some preliminary results related to the exchange properties of a sugar 2'-hydroxyl proton of a guanosine residue involved in a novel hydrogen bond that has been shown to contribute to the immobilization of the bound AMP by the RNA aptamer, and whose resonance is narrow and downfield shifted in the spectrum.

  18. Linking photosynthesis and leaf N allocation under future elevated CO2 and climate warming in Eucalyptus globulus.

    PubMed

    Sharwood, Robert E; Crous, Kristine Y; Whitney, Spencer M; Ellsworth, David S; Ghannoum, Oula

    2017-02-01

    Leaf-level photosynthetic processes and their environmental dependencies are critical for estimating CO2 uptake from the atmosphere. These estimates use biochemical-based models of photosynthesis that require accurate Rubisco kinetics. We investigated the effects of canopy position, elevated atmospheric CO2 [eC; ambient CO2 (aC)+240 ppm] and elevated air temperature (eT; ambient temperature (aT)+3 °C) on Rubisco content and activity together with the relationship between leaf N and Vcmax (maximal Rubisco carboxylation rate) of 7 m tall, soil-grown Eucalyptus globulus trees. The kinetics of E. globulus and tobacco Rubisco at 25 °C were similar. In vitro estimates of Vcmax derived from measures of E. globulus Rubisco content and kinetics were consistent, although slightly lower, than the in vivo rates extrapolated from gas exchange. In E. globulus, the fraction of N invested in Rubisco was substantially lower than for crop species and varied with treatments. Photosynthetic acclimation of E. globulus leaves to eC was underpinned by reduced leaf N and Rubisco contents; the opposite occurred in response to eT coinciding with growth resumption in spring. Our findings highlight the adaptive capacity of this key forest species to allocate leaf N flexibly to Rubisco and other photosynthetic proteins across differing canopy positions in response to future, warmer and elevated [CO2] climates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Effect of garlic powder on acrylamide formation in a low-moisture model system and bread baking.

    PubMed

    Li, Jinwang; Zuo, Jie; Qiao, Xuguang; Zhang, Yongju; Xu, Zhixiang

    2016-02-01

    Acrylamide (AA) is of concern worldwide because of its neurotoxicity, genotoxicity and reproductive/developmental toxicity. Consequently, methods for minimizing AA formation during food processing are vital. In this study, the formation and elimination of AA in an asparagine/glucose low-moisture model system were investigated by response surface methodology. The effect of garlic powder on the kinetics of AA formation/elimination was also evaluated. The AA content reached a maximum level (674.0 nmol) with 1.2 mmol of glucose and 1.2 mmol of asparagine after heating at 200 °C for 6 min. The AA content was greatly reduced with the addition of garlic powder. Compared to without garlic powder, an AA reduction rate of 43% was obtained with addition of garlic powder at a mass fraction of 0.05 g. Garlic powder inhibited AA formation during the generation-predominant kinetic stage and had no effect on the degradation-predominant kinetic stage. The effect of garlic powder on AA formation in bread and bread quality was also investigated. Adding a garlic powder mass fraction of 15 g to 500 g of dough significantly (P < 0.05) reduced the formation of AA (reduction rate of 46%) and had no obvious effect on the sensory qualities of the bread. This study provides a possible method for reducing the AA content in bread and other heat-treated starch-rich foods. © 2015 Society of Chemical Industry.

  20. Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu

    2018-04-01

    A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.

  1. Kinetics of ascorbic acid degradation in un-pasteurized Iranian lemon juice during regular storage conditions.

    PubMed

    Abbasi, A; Niakousari, M

    2008-05-15

    The aim of this research was to determine shelf life stability of un-pasteurized lemon juice filled in clear or dark green glass bottles. Presence of light, time and temperature affect the ascorbic acid retention in citrus juices. Bottles were stored at room temperature (27 +/- 3 degrees C) and in the refrigerator (3 +/- 1 degrees C). Total soluble solids, total titrable acidity and pH value were measured every three weeks and analysis was carried out on ascorbic acid content by means of titration method in the presence of 2,6-dichlorophenol indophenol. The study was carried out for 12 weeks after which slight changes in color, taste and apparent texture in some samples were observed and ascorbic acid content reduced by 50%. Soluble solids content, pH value and total acidity were 5.5 degrees Brix, 2.73 and 5 g/100 mL, respectively which appeared not to be significantly influenced by storage time or conditions. Ascorbic acid content initially at 38.50 mg/100 mL was sharply reduced to about 22 mg/100 mL within the first three weeks of storage. The final ascorbic acid content of all samples was about 15 mg/100 mL. The deteriorative reaction of ascorbic acid in the juice at all conditions followed a first-order kinetic model with activation energy of 137 cal mol(-1).

  2. Inverse Modeling of Water-Rock-CO2 Batch Experiments: Potential Impacts on Groundwater Resources at Carbon Sequestration Sites.

    PubMed

    Yang, Changbing; Dai, Zhenxue; Romanak, Katherine D; Hovorka, Susan D; Treviño, Ramón H

    2014-01-01

    This study developed a multicomponent geochemical model to interpret responses of water chemistry to introduction of CO2 into six water-rock batches with sedimentary samples collected from representative potable aquifers in the Gulf Coast area. The model simulated CO2 dissolution in groundwater, aqueous complexation, mineral reactions (dissolution/precipitation), and surface complexation on clay mineral surfaces. An inverse method was used to estimate mineral surface area, the key parameter for describing kinetic mineral reactions. Modeling results suggested that reductions in groundwater pH were more significant in the carbonate-poor aquifers than in the carbonate-rich aquifers, resulting in potential groundwater acidification. Modeled concentrations of major ions showed overall increasing trends, depending on mineralogy of the sediments, especially carbonate content. The geochemical model confirmed that mobilization of trace metals was caused likely by mineral dissolution and surface complexation on clay mineral surfaces. Although dissolved inorganic carbon and pH may be used as indicative parameters in potable aquifers, selection of geochemical parameters for CO2 leakage detection is site-specific and a stepwise procedure may be followed. A combined study of the geochemical models with the laboratory batch experiments improves our understanding of the mechanisms that dominate responses of water chemistry to CO2 leakage and also provides a frame of reference for designing monitoring strategy in potable aquifers.

  3. Biocompatible interpolymer complex matrix tablets - an oral sustained release class-III antidiabetic drug

    NASA Astrophysics Data System (ADS)

    Ershadul Haque, S. K.; Sheela, A.

    2017-11-01

    Development of sustained release formulations of Metformin hydrochloride (Met) having low bioavailability and short half-life is one of the frontier areas of research towards achieving novel drug delivery systems. Towards the same, we have prepared interpolymer complexes (IPCs) of chitosan (CH) and two different viscosity grades of hydroxypropyl methylcellulose - HPMC (K4M and K100M) in various ratios, say, 4:6, 2:8, 1:9, respectively. The IPCs are characterized by Fourier transform infrared spectroscopy (FT-IR) and Thermo gravimetric analysis (TGA) techniques. Drug compatibility study is carried out by FT-IR and powder X-ray diffraction (XRD) techniques. The physical properties and drug content of formulated tablets are evaluated and found to be optimum. In addition, in vitro drug release kinetics is carried out at two different pH, say, 1.2 and 6.8. The release pattern from different polymeric matrices is shown in figure below: a) Chitosan, HPMC K4M and HPMC K100M b) IPCs of CH/HPMC K4M in [2:3, 1:4 and 1:9 ratios] c) IPCs of CH/HPMC K100M in [2:3, 1:4 and 1:9 ratios]. From the study, it has been observed that the drug release is sustained for a period of 12h in 1:9 ratio of CH: K100M IPC due to the formation of complex network matrix.

  4. Synchrotron Radiation Circular Dichroism (SRCD) Spectroscopy - An Enhanced Method for Examining Protein Conformations and Protein Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Wallace; R Janes

    CD (circular dichroism) spectroscopy is a well-established technique in structural biology. SRCD (synchrotron radiation circular dichroism) spectroscopy extends the utility and applications of conventional CD spectroscopy (using laboratory-based instruments) because the high flux of a synchrotron enables collection of data at lower wavelengths (resulting in higher information content), detection of spectra with higher signal-to-noise levels and measurements in the presence of absorbing components (buffers, salts, lipids and detergents). SRCD spectroscopy can provide important static and dynamic structural information on proteins in solution, including secondary structures of intact proteins and their domains, protein stability, the differences between wild-type and mutant proteins,more » the identification of natively disordered regions in proteins, and the dynamic processes of protein folding and membrane insertion and the kinetics of enzyme reactions. It has also been used to effectively study protein interactions, including protein-protein complex formation involving either induced-fit or rigid-body mechanisms, and protein-lipid complexes. A new web-based bioinformatics resource, the Protein Circular Dichroism Data Bank (PCDDB), has been created which enables archiving, access and analyses of CD and SRCD spectra and supporting metadata, now making this information publicly available. To summarize, the developing method of SRCD spectroscopy has the potential for playing an important role in new types of studies of protein conformations and their complexes.« less

  5. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    PubMed

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  6. Drug Release Kinetics and Front Movement in Matrix Tablets Containing Diltiazem or Metoprolol/λ-Carrageenan Complexes

    PubMed Central

    Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla

    2014-01-01

    In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer. PMID:25045689

  7. Drug release kinetics and front movement in matrix tablets containing diltiazem or metoprolol/λ-carrageenan complexes.

    PubMed

    Bettini, Ruggero; Bonferoni, Maria Cristina; Colombo, Paolo; Zanelotti, Laura; Caramella, Carla

    2014-01-01

    In this work we investigated the moving boundaries and the associated drug release kinetics in matrix tablets prepared with two complexes between λ-carrageenan and two soluble model drugs, namely, diltiazem HCl and metoprolol tartrate aiming at clarifying the role played by drug/polymer interaction on the water uptake, swelling, drug dissolution, and drug release performance of the matrix. The two studied complexes released the drug with different mechanism indicating two different drug/polymer interaction strengths. The comparison between the drug release behaviour of the complexes and the relevant physical mixtures indicates that diltiazem gave rise to a less soluble and more stable complex with carrageenan than metoprolol. The less stable metoprolol complex afforded an erodible matrix, whereas the stronger interaction between diltiazem and carrageenan resulted in a poorly soluble, slowly dissolving matrix. It was concluded that the different stability of the studied complexes affords two distinct drug delivery systems: in the case of MTP, the dissociation of the complex, as a consequence of the interaction with water, affords a classical soluble matrix type delivery system; in the case of DTZ, the dissolving/diffusing species is the complex itself because of the very strong interaction between the drug and the polymer.

  8. Relationship between femtosecond-picosecond dynamics to enzyme catalyzed H-transfer

    PubMed Central

    Cheatum, Christopher M.; Kohen, Amnon

    2015-01-01

    At physiological temperatures, enzymes exhibit a broad spectrum of conformations, which interchange via thermally activated dynamics. These conformations are sampled differently in different complexes of the protein and its ligands, and the dynamics of exchange between these conformers depends on the mass of the group that is moving and the length scale of the motion, as well as restrictions imposed by the globular fold of the enzymatic complex. Many of these motions have been examined and their role in the enzyme function illuminated, yet most experimental tools applied so far have identified dynamics at time scales of seconds to nanoseconds, which are much slower than the time scale for H-transfer between two heavy atoms. This chemical conversion and other processes involving cleavage of covalent bonds occur on picosecond to femtosecond time scales, where slower processes mask both the kinetics and dynamics. Here we present a combination of kinetic and spectroscopic methods that may enable closer examination of the relationship between enzymatic C-H→C transfer and the dynamics of the active site environment at the chemically relevant time scale. These methods include kinetic isotope effects and their temperature dependence, which are used to study the kinetic nature of the H-transfer, and 2D IR spectroscopy, which is used to study the dynamics of transition-state- and ground-state-analog complexes. The combination of these tools is likely to provide a new approach to examine the protein dynamics that directly influence the chemical conversion catalyzed by enzymes. PMID:23539379

  9. Modified unified kinetic scheme for all flow regimes.

    PubMed

    Liu, Sha; Zhong, Chengwen

    2012-06-01

    A modified unified kinetic scheme for the prediction of fluid flow behaviors in all flow regimes is described. The time evolution of macrovariables at the cell interface is calculated with the idea that both free transport and collision mechanisms should be considered. The time evolution of macrovariables is obtained through the conservation constraints. The time evolution of local Maxwellian distribution is obtained directly through the one-to-one mapping from the evolution of macrovariables. These improvements provide more physical realities in flow behaviors and more accurate numerical results in all flow regimes especially in the complex transition flow regime. In addition, the improvement steps introduce no extra computational complexity.

  10. Kinetics of the Decomposition of Hydrogen Peroxide Catalyzed by Ferric Ethylenediaminetetraacetate Complex

    PubMed Central

    Walling, Cheves; Partch, Richard E.; Weil, Tomas

    1975-01-01

    Added substrates, acetone and t-butyl alcohol, strongly retard the decomposition of H2O2 brought about by ferric ethylenediaminetetraacetate (EDTA) at pH 8-9.5. Their relative effectiveness and the kinetic form of the retardation are consistent with their interruption of a hydroxyl radical chain that is propagated by HO· attack both upon H2O2 and on complexed and uncomplexed EDTA. Similar retardation is observed with decompositions catalyzed by ferric nitrilotriacetate and hemin, and it is proposed that such redox chains may be quite a general path for transition metal ion catalysis of H2O2 decomposition. PMID:16592209

  11. Thermodynamics of axial substitution and kinetics of reactions with amino acids for the paddlewheel complex tetrakis(acetato)chloridodiruthenium(II,III).

    PubMed

    Santos, Rodrigo L S R; van Eldik, Rudi; de Oliveira Silva, Denise

    2012-06-18

    The known paddlewheel, tetrakis(acetato)chloridodiruthenium(II,III), offers a versatile synthetic route to a novel class of antitumor diruthenium(II,III) metallo drugs, where the equatorial ligands are nonsteroidal anti-inflammatory carboxylates. This complex was studied here as a soluble starting prototype model for antitumor analogues to elucidate the reactivity of the [Ru(2)(CH(3)COO)(4)](+) framework. Thermodynamic studies on equilibration reactions for axial substitution of water by chloride and kinetic studies on reactions of the diaqua complexes with the amino acids glycine, cysteine, histidine, and tryptophan were performed. The standard thermodynamic reaction parameters ΔH°, ΔS°, and ΔV° were determined and showed that both of the sequential axial substitution reactions are enthalpy driven. Kinetic rate laws and rate constants were determined for the axial substitution reactions of coordinated water by the amino acids that gave the corresponding aqua(amino acid)-Ru(2) substituted species. The results revealed that the [Ru(2)(CH(3)COO)(4)](+) paddlewheel framework remained stable during the axial ligand substitution reactions and was also mostly preserved in the presence of the amino acids.

  12. Kinetic study of lipase-catalyzed glycerolysis of palm olein using Lipozyme TLIM in solvent-free system

    PubMed Central

    Phuah, Eng-Tong; Lee, Yee-Ying; Tang, Teck-Kim

    2018-01-01

    Diacylglycerol (DAG) and monoacylglycerol (MAG) are two natural occurring minor components found in most edible fats and oils. These compounds have gained increasing market demand owing to their unique physicochemical properties. Enzymatic glycerolysis in solvent-free system might be a promising approach in producing DAG and MAG-enriched oil. Understanding on glycerolysis mechanism is therefore of great importance for process simulation and optimization. In this study, a commercial immobilized lipase (Lipozyme TL IM) was used to catalyze the glycerolysis reaction. The kinetics of enzymatic glycerolysis reaction between triacylglycerol (TAG) and glycerol (G) were modeled using rate equation with unsteady-state assumption. Ternary complex, ping-pong bi-bi and complex ping-pong bi-bi models were proposed and compared in this study. The reaction rate constants were determined using non-linear regression and sum of square errors (SSE) were minimized. Present work revealed satisfactory agreement between experimental data and the result generated by complex ping-pong bi-bi model as compared to other models. The proposed kinetic model would facilitate understanding on enzymatic glycerolysis for DAG and MAG production and design optimization of a pilot-scale reactor. PMID:29401481

  13. Electron transfer reaction of oxo(salen)chromium(V) ion with anilines.

    PubMed

    Premsingh, Sundarsingh; Venkataramanan, Natarajan Sathiyamoorthy; Rajagopal, Seenivasan; Mirza, Shama P; Vairamani, Mariappanadar; Rao, P Sambasiva; Velavan, K

    2004-09-06

    The kinetics of oxidation of 16 meta-, ortho-, and para-substituted anilines with nine oxo(salen)chromium(V) ions have been studied by spectrophotometric, ESIMS, and EPR techniques. During the course of the reaction, two new peaks with lambda(max) at 470 and 730 nm appear in the absorption spectrum, and these peaks are due to the formation of emeraldine forms of oligomers of aniline supported by the ESIMS peaks with m/z values 274 and 365 (for the trimer and tetramer of aniline). The rate of the reaction is highly sensitive to the change of substituents in the aryl moiety of aniline and in the salen ligand of chromium(V) complexes. Application of the Hammett equation to analyze kinetic data yields a rho value of -3.8 for the substituent variation in aniline and +2.2 for the substituent variation in the salen ligand of the metal complex. On the basis of the spectral, kinetic, and product analysis studies, a mechanism involving an electron transfer from the nitrogen of aniline to the metal complex in the rate controlling step has been proposed. The Marcus equation has been successfully applied to this system, and the calculated values are compliant with the measured values.

  14. Kinetics of UV laser radiation defects in high performance glasses

    NASA Astrophysics Data System (ADS)

    Natura, U.; Feurer, T.; Ehrt, D.

    2000-05-01

    High purity fluoride phosphate glasses are attractive candidates as UV transmitting materials. The calculated values for the ultraviolet resonance wavelength are comparable with those of pure silica glass or fluoride single crystal CaF2. The formation of radiation-induced defect centers leads to additional absorption bands in the VUV-UV-vis range. The damage and the healing behavior by lamps and lasers are investigated in dependence on phosphate content and the content of impurities, mainly transition metals. Experiments were carried out using pulsed lasers with a duration of femto- and nanoseconds at a wavelength of 248 nm. The initial slope of the induced absorption shows a nonlinear dependence on the pulse energy density. Resonant and non-resonant two-photon mechanisms were observed. Two-photon-absorption coefficients at 248 nm for samples with different phosphate contents were measured. Models of the kinetics of the radiation-induced defects were developed. The inclusion of energy transfer was necessary to explain the difference in the damage behavior for nanosecond (248 nm, 193 nm) and femtosecond (248 nm) laser pulses.

  15. The effect of high anionomer loading with silver nanowire catalysts on the oxygen reduction reaction in alkaline environment

    NASA Astrophysics Data System (ADS)

    Lemke, Adam J.; O'Toole, Alexander W.; Phillips, Richard S.; Eisenbraun, Eric T.

    2014-06-01

    The effect of ionomer content on the oxygen kinetics in fuel cells and metal-oxide batteries was investigated by varying ionomer loading with constant loadings of a silver nanowire catalyst. Silver nanowire inks were produced in which commercially available anionomer solution constituted 10, 25, 40, 50, and 75% of the total ink volume. Constant loadings of Ag nanowire catalyst were then deposited onto glassy carbon electrodes by varying the amount of ink deposited. These were then used in rotating disc electrode (RDE) experiments using a 0.1 M KOH electrolyte solution. From these experiments, using ORR polarization curves and Koutecky-Levich analysis, it was found that not only did the anionomer loading affect the total activity (given a constant Ag nanowire loading) but, that the anionomer content also had an impact upon the apparent kinetic limited current as well as whether the ORR proceeded through the 2e- or 4e- pathway. Although the total activity declined with very high anionomer loadings, the ORR appeared to proceed more through the 4e- pathway with increased anionomer content.

  16. Effect of Trace Levels of Si on Microstructure and Grain Boundary Segregation in DOP-26 Iridium Alloy

    NASA Astrophysics Data System (ADS)

    Pierce, Dean; Muralidharan, Govindarajan; Heatherly, Lee; Fox, Ethan

    2018-03-01

    The thermodynamics and kinetics of Silicon (Si) segregation to grain boundaries in Iridium alloy DOP-26 with added trace levels of Si of 6, 11, 29, and 36 wppm was studied by Auger Electron Spectroscopy. The four alloys were annealed at 1500 or 1535 °C for 19 or 76 hours followed by cooling at three different rates. Si enrichment at the grain boundaries (GB) increased with increasing bulk Si content, with the grain boundary Si enrichment factors ranging from 62 to 344, depending on the bulk Si content and the cooling rate. Grain boundary Si contents increased with decreasing cooling rate in all alloys, indicating that Si GB segregation is influenced by both thermodynamic and kinetic factors in the alloys and temperature ranges of the study. A Langmuir-McLean isotherm-based model was successfully used to predict the temperature dependence of GB Si segregation in DOP-26 alloys with Si additions and estimate the temperature independent free energy of Si segregation to grain boundaries in DOP-26.

  17. Adsorption and kinetics study of manganesse (II) in waste water using vertical column method by sugar cane bagasse

    NASA Astrophysics Data System (ADS)

    Zaini, H.; Abubakar, S.; Rihayat, T.; Suryani, S.

    2018-03-01

    Removal of heavy metal content in wastewater has been largely done by various methods. One effective and efficient method is the adsorption method. This study aims to reduce manganese (II) content in wastewater based on column adsorption method using absorbent material from bagasse. The fixed variable consisted of 50 g adsorbent, 10 liter adsorbate volume, flow rate of 7 liters / min. Independent variable of particle size with variation 10 – 30 mesh and contact time with variation 0 - 240 min and respon variable concentration of adsorbate (ppm), pH and conductivity. The results showed that the adsorption process of manganese metal is influenced by particle size and contact time. The adsorption kinetics takes place according to pseudo-second order kinetics with an equilibrium adsorption capacity (qe: mg / g) for 10 mesh adsorbent particles: 0.8947; 20 mesh adsorbent particles: 0.4332 and 30 mesh adsorbent particles: 1.0161, respectively. Highest removal efficience for 10 mesh adsorbent particles: 49.22% on contact time 60 min; 20 mesh adsorbent particles: 35,25% on contact time 180 min and particle 30 mesh adsorbent particles: 51,95% on contact time 150 min.

  18. Ozone delignification of pine and eucalyptus kraft pulps. 1: Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoes, R.M.S.; Castro, J.A.A.M.

    1999-12-01

    The kinetics of ozone delignification of unbleached pine and eucalyptus kraft pulps is studied at ultralow consistency in a stirred reactor. Ozone consumption was monitored with sensors located in both the liquid and gas phases of the reacting medium, and the results confirm the expectations, i.e., the very high oxidation rates. The experiments were carried out following two different approaches that give rise to very different ozone concentration profiles in the pulp suspension and to significant improvements in the statistical contents of the experimental data. In the development of the delignification model, special attention was paid to its validation andmore » thus different sets of data for training and validation were used, leading to high levels of confidence in the model. As far as the delignification is concerned, its rate can be described for both pulps by a pseudohomogeneous model with partial orders of 1 and 2 for ozone and lignin contents, respectively. However, the remaining parameters of the kinetic model are markedly different for the two pulps. The effect of temperature on the delignification rate is small and can be characterized by an activation energy close to 20 kJ/mol for both pulps.« less

  19. Status of the bioactive phytoceuticals during deep-fat frying of snack food using nutra-coconut oil.

    PubMed

    Maneesh Kumar, M; Faiza, Sheema; Debnath, Sukumar; Nasirullah

    2017-10-01

    The present study was carried out to study the physico-chemical changes that take place in both product and oil during the deep fat frying of a traditional savoury snack 'kodubale', at 120-160 °C for 120-600 s using coconut oil (CO) and nutra-coconut oil (NCO). Further, kinetic studies on moisture loss, oil uptake, color and degradation of β-carotene, total polyphenol content and antioxidant activity for kodubale was carried out during frying as a function of temperature and time. The study showed that the kinetic coefficients for above parameters increased with temperature and time and the data obtained were well fitted with first order kinetic model. The results also revealed that NCO fried product retained major phenolic acids due to the presence of antioxidants in the NCO which was enriched with flaxseed oil concentrate. The fatty acids profile of oil extracted from products obtained by frying using NCO was characterized with higher ω-3 and ω-6 fatty acids content as compared to same obtained using CO. However, the breaking strength and sensory characteristics of CO and NCO fried kodubale was found to have no significant difference ( p  < 0.05).

  20. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O productionmore » and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.« less

  1. Inverse modeling approach for evaluation of kinetic parameters of a biofilm reactor using tabu search.

    PubMed

    Kumar, B Shiva; Venkateswarlu, Ch

    2014-08-01

    The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.

  2. Global Kinetic Analysis of Mammalian E3 Reveals pH-dependent NAD+/NADH Regulation, Physiological Kinetic Reversibility, and Catalytic Optimum*

    PubMed Central

    Moxley, Michael A.; Beard, Daniel A.; Bazil, Jason N.

    2016-01-01

    Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD+/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD+ activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat. PMID:26644471

  3. Single-molecule enzymology of steroid transforming enzymes: Transient kinetic studies and what they tell us.

    PubMed

    Penning, Trevor M

    2016-07-01

    Structure-function studies on steroid transforming enzymes often use site-directed mutagenesis to inform mechanisms of catalysis and effects on steroid binding, and data are reported in terms of changes in steady state kinetic parameters kcat, Km and kcat/Km. However, this dissection of function is limited since kcat is governed by the rate-determining step and Km is a complex macroscopic kinetic constant. Often site-directed mutagenesis can lead to a change in the rate-determining step which cannot be revealed by just reporting a decrease in kcat alone. These issues are made more complex when it is considered that many steroid transforming enzymes have more than one substrate and product. We present the case for using transient-kinetics performed with stopped-flow spectrometry to assign rate constants to discrete steps in these multi-substrate reactions and their use to interpret enzyme mechanism and the effects of disease and engineered mutations. We demonstrate that fluorescence kinetic transients can be used to measure ligand binding that may be accompanied by isomerization steps, revealing the existence of new enzyme intermediates. We also demonstrate that single-turnover reactions can provide a klim for the chemical step and Ks for steroid-substrate binding and that when coupled with kinetic isotope effect measurements can provide information on transition state intermediates. We also demonstrate how multiple turnover experiments can provide evidence for either "burst-phase" kinetics, which can reveal a slow product release step, or linear-phase kinetics, in which the chemical step can be rate-determining. With these assignments it becomes more straightforward to analyze the effects of mutations. We use examples from the hydroxysteroid dehydrogenases (AKR1Cs) and human steroid 5β-reductase (AKR1D1) to illustrate the utility of the approach, which are members of the aldo-keto reductase (AKR) superfamily. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Data Pooling in a Chemical Kinetics Experiment: The Aquation of a Series of Cobalt(III) Complexes--A Discovery Chemistry Experiment

    ERIC Educational Resources Information Center

    Herrick, Richard S.; Mills, Kenneth V.; Nestor, Lisa P.

    2008-01-01

    An experiment in chemical kinetics as part of our Discovery Chemistry curriculum is described. Discovery Chemistry is a pedagogical philosophy that makes the laboratory the key center of learning for students in their first two years of undergraduate instruction. Questions are posed in the pre-laboratory discussion and assessed using pooled…

  5. Chemistry and Photochemistry of Anthocyanins and Related Compounds: A Thermodynamic and Kinetic Approach.

    PubMed

    Basílio, Nuno; Pina, Fernando

    2016-11-10

    Anthocyanins are identified by the respective flavylium cation, which is only one species of a multistate of different molecules reversibly interconverted by external inputs such as pH, light and temperature. The flavylium cation (acidic form) is involved in an apparent acid-base reaction, where the basic species is the sum of quinoidal base, hemiketal and cis - and trans -chalcones, their relative fraction depending on the substitution pattern of the flavylium cation. The full comprehension of this complex system requires a thermodynamic and kinetic approach. The first consists in drawing an energy level diagram where the relative positions of the different species are represented as a function of pH. On the other hand, the kinetic approach allows measuring the rates of the reactions that interconnect reversibly the multistate species. The kinetics is greatly dependent on the existence or not of a high cis - trans isomerization barrier. In this work, the procedure to obtain the energy level diagram and the rates of inter-conversion in the multistate in both cases (low or high isomerization barrier) are described. Practical examples of this approach are presented to illustrate the theory, and recently reported applications based on host-guest complexes are reviewed.

  6. Fiber-type differences in muscle mitochondrial profiles.

    PubMed

    Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D

    2003-10-01

    Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.

  7. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.

    PubMed

    Yuan, Xiu; Davis, James A; Nico, Peter S

    2016-02-16

    Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.

  8. Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson mechanism

    NASA Astrophysics Data System (ADS)

    Javad Azarhoosh, Mohammad; Halladj, Rouein; Askari, Sima

    2017-10-01

    In this study, a new kinetic model for methanol to light olefins (MTO) reactions over a hierarchical SAPO-34 catalyst using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism was presented and the kinetic parameters was obtained using a genetic algorithm (GA) and genetic programming (GP). Several kinetic models for the MTO reactions have been presented. However, due to the complexity of the reactions, most reactions are considered lumped and elementary, which cannot be deemed a completely accurate kinetic model of the process. Therefore, in this study, the LHHW mechanism is presented as kinetic models of MTO reactions. Because of the non-linearity of the kinetic models and existence of many local optimal points, evolutionary algorithms (GA and GP) are used in this study to estimate the kinetic parameters in the rate equations. Via the simultaneous connection of the code related to modelling the reactor and the GA and GP codes in the MATLAB R2013a software, optimization of the kinetic models parameters was performed such that the least difference between the results from the kinetic models and experiential results was obtained and the best kinetic parameters of MTO process reactions were achieved. A comparison of the results from the model with experiential results showed that the present model possesses good accuracy.

  9. Effects of CO addition on the characteristics of laminar premixed CH{sub 4}/air opposed-jet flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C.-Y.; Chao, Y.-C.; Chen, C.-P.

    2009-02-15

    The effects of CO addition on the characteristics of premixed CH{sub 4}/air opposed-jet flames are investigated experimentally and numerically. Experimental measurements and numerical simulations of the flame front position, temperature, and velocity are performed in stoichiometric CH{sub 4}/CO/air opposed-jet flames with various CO contents in the fuel. Thermocouple is used for the determination of flame temperature, velocity measurement is made using particle image velocimetry (PIV), and the flame front position is measured by direct photograph as well as with laser-induced predissociative fluorescence (LIPF) of OH imaging techniques. The laminar burning velocity is calculated using the PREMIX code of Chemkin collectionmore » 3.5. The flame structures of the premixed stoichiometric CH{sub 4}/CO/air opposed-jet flames are simulated using the OPPDIF package with GRI-Mech 3.0 chemical kinetic mechanisms and detailed transport properties. The measured flame front position, temperature, and velocity of the stoichiometric CH{sub 4}/CO/air flames are closely predicted by the numerical calculations. Detailed analysis of the calculated chemical kinetic structures reveals that as the CO content in the fuel is increased from 0% to 80%, CO oxidation (R99) increases significantly and contributes to a significant level of heat-release rate. It is also shown that the laminar burning velocity reaches a maximum value (57.5 cm/s) at the condition of 80% of CO in the fuel. Based on the results of sensitivity analysis, the chemistry of CO consumption shifts to the dry oxidation kinetics when CO content is further increased over 80%. Comparison between the results of computed laminar burning velocity, flame temperature, CO consumption rate, and sensitivity analysis reveals that the effect of CO addition on the laminar burning velocity of the stoichiometric CH{sub 4}/CO/air flames is due mostly to the transition of the dominant chemical kinetic steps. (author)« less

  10. In vitro gas production of foliage from three browse tree species treated with different dose levels of exogenous fibrolytic enzymes.

    PubMed

    López, D; Vázquez-Armijo, J F; López-Villalobos, N; Lee-Rangel, H A; Salem, A Z M; Borquez-Gastelum, J L; Domínguez-Vara, I A; Rojo-Rubio, R

    2016-10-01

    The aim of this study was to evaluate the effect of different dose levels of exogenous fibrolytic enzymes (EFE) on in vitro ruminal fermentation kinetics and energy utilization of foliages from three browse trees (Pithecellobium dulce, Heliocarpus velutinus and Guazuma ulmifolia). Mixture of EFE product was added to the leaves of the three browse tree species at three dose levels: 0 (control), 3.5 and 7.0 mg/g of DM. Chemical composition of the foliages, including plant secondary metabolites such as total phenolics (TP), saponins (SAP) and aqueous fraction (AF), was determined. In addition, in vitro assaying of ruminal gas production kinetics was determined for the three browse three foliages treated with EFE. P. dulce had the highest crude protein content (p < 0.05), whereas G. ulmifolia had the highest content of neutral detergent fibre and SAP (p < 0.05) and H. velutinus had the lowest content of TP (p < 0.05). The interaction between tree species and dose level of EFE was significant (p < 0.05) for gas production (GP) at 24 h of incubation, parameters b and c of the accumulated GP curve, short-chain fatty acids (SCFA) and metabolizable energy (ME). The lowest (p < 0.01) extent of accumulated GP as well as the b and c values occurred in G. ulmifolia at 0 mg EFE/g DM. P. dulce had the highest (p < 0.05) values for ME and SCFA at the highest dose of EFE. Tree species and dose level had significant (p < 0.05) effects on all parameters describing in vitro ruminal fermentation kinetics and energy utilization. Addition of EFE improved the fermentation kinetics of the browse species considered in this study. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  11. A kinetic model to explain the grain size and organic matter content dependence of magnetic susceptibility in transitional marine environments: A case study in Ria de Muros (NW Iberia)

    NASA Astrophysics Data System (ADS)

    Mohamed, Kais J.; Andrade, Alba; Rey, Daniel; Rubio, Belén.; Bernabeu, Ana María.

    2017-06-01

    Magnetic minerals in marine sediments are sensitive indicators of processes such as provenance changes, climatic controls, pollution, and postdepositional geochemical changes. Magnetic susceptibility is the bulk property of the sediments most commonly used to understand the magnetic characteristics of sediments. Before conclusions can be drawn from changes in this parameter, it is important to understand what factors and to what extent control changes in magnetic susceptibility. The magnetic susceptibility of surficial sediments in the Galician Rias Baixas, in NW Spain, has been shown to covary with sediment texture and organic matter content. Downcore, the magnetic properties of these sediments experience drastic changes as a result of strong dissolution caused by early diagenesis. In this paper, we further explore the relationship between these factors and formalize the observed covariations as the result of a simple second-order kinetic model dependent on the content of organic matter in surficial sediments in the Ria de Muros. The reanalysis of previously reported data from the Rias de Vigo and Pontevedra confirmed the validity of this model and suggested further controls such as wave climate and water depth in the rates at which magnetic susceptibility changes are controlled by organic matter content.

  12. Nitrogen balance and transformation in the nitrification process of coking wastewater and the influence on nitrification kinetics.

    PubMed

    Shan, Mingjun; Zhang, Yan; Kou, Lihong

    2014-01-01

    This paper describes the total nitrogen balance, and the direction and degree of nitrogen transformation during the nitrification process of coking wastewater. According to the actual nitrification process, the conventional nitrification kinetic equation was amended. After 48 h of nitrification, the total nitrogen content remained almost the same with error less than 0.6%. The total removal efficiency of NH4(+)-N was 91.1%, in which blow-off, producing cells and transforming to nitrate nitrogen accounted for 1.1, 17.8 and 72.2% respectively. Considering the influences of NH4(+)-N blow-off and conversion from cyanide, thiocyanide and organic nitrogen, the nitrification kinetic equation was amended as μ'=0.82·S/(0.48+S).

  13. Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud

    2016-11-01

    We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.

  14. Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular signaling and regulation. PMID:24278008

  15. Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts.

    PubMed

    Ochando, Thomas; Mouret, Jean-Roch; Humbert-Goffard, Anne; Sablayrolles, Jean-Marie; Farines, Vincent

    2017-08-01

    Available nitrogen, lipids, or oxygen are nutrients with major impact on the kinetics of winemaking fermentation. Assimilable nitrogen is usually the growth-limiting nutrient which availability determines the fermentation rate and therefore the fermentation duration. In some particular cases, as in Champagne, grape musts have high available nitrogen content and low turbidity, i.e., below 50 Nephelometric Turbidity Unit (NTU). In the case of low turbidity, the availability of lipids, particularly phytosterols, becomes limiting. In this situation, control of oxygenation, which is necessary for lipid synthesis by yeast, is particularly crucial during fermentation. To mimic and understand these situations, a synthetic medium simulating the average composition of a Champagne must was used. This medium contained phytosterol (mainly β-sitosterol) concentrations ranging from 0 to 8mg/L corresponding to turbidity between 10 and 90 NTU. Population reached during the stationary phase and the maximum fermentation rate are conditioned by the initial phytosterol concentration determining the amount of nitrogen consumption. An early loss of viability was observed when the lipid concentrations were very low. For example, the viability continuously decreased during the stationary phase to a final value of 50% for an initial phytosterol concentration of 1mg/L. In some fermentations, 10mg/L oxygen were added at the end of the growth phase to combine the effects of initial content of phytosterols in the musts and the de novo synthesis of ergosterol and unsaturated fatty acids induced by oxygen addition. Effect of oxygen supply on the fermentation kinetics was particularly significant for media with low phytosterol contents. For example, the maximum fermentation rate was increased by 1.4-fold and the fermentation time was 70h shorter with oxygen addition in the medium containing 2mg/L of phytosterols. As a consequence of the oxygen supply, for the media containing 3, 5 and 8mg/L of phytosterols, the assimilable nitrogen was completely exhausted and the fermentation kinetics, as well as the final populations and viabilities (greater than 90%), were identical for the 3 conditions. The impacts of the lipid content and additional oxygen on acetate, glycerol and succinate synthesis were also studied. The phytosterols decreased the acetate and increased the succinate synthesis, and oxygenation resulted in a decrease in succinate formation. This work highlights the similarities and differences between the effects of lipids and oxygen on fermentation kinetics and yeast metabolism. This research highlights the need for an optimal combined management of lipid content in the must via turbidity and oxygenation, particularly in nitrogen-rich musts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shcherbina, Natalia S.; Perminova, Irina V.; Kalmykov, Stephan N.

    2007-01-01

    Actinides in their higher valence states (e.g., MO{sub 2}{sup +} and MO{sub 2}{sup 2+}, where M can be Np, Pu, etc) possess a higher potential for migration and in turn pose a substantial environmental threat. To minimize this potential for migration, reducing them to lower oxidation states (e.g., their tetravalent state) can be an attractive and efficient remedial process. These lower oxidation states are often much less soluble in natural aqueous media and are, therefore, less mobile in the environment. The research presented here focuses on assessing the performance of quinonoid-enriched humic derivatives with regards to complexing and/or reducing Np(V)more » present in solution. These 'designer' humics are essentially derived reducing agents that can serve as reactive components of a novel humic-based remediation technology. The derivatives are obtained by incorporating different quinonoid-moieties into leonardite humic acids. Five quinonoid-derivatives are tested in this work and all five prove more effective as reducing agents for selected actinides than the parent leonardite humic acid, and the hydroquinone derivatives are better than the catechol derivatives. The reduction kinetics and the Np(V) species formed with the different derivatives are studied via a batch mode using near-infrared (NIR)-spectroscopy. Np(V) reduction by the humic derivatives under anoxic conditions at 293 K and at pH 4.7 obeys first-order kinetics. Rate constants range from 1.70 x 10{sup -6} (parent humic acid) to 1.06 x 10{sup -5} sec{sup -1} (derivative with maximum hydroquinone content). Stability constants for Np(V)-humic complexes calculated from spectroscopic data produce corresponding Log{beta} values of 2.3 for parent humic acid and values ranging from 2.5 to 3.2 at pH 4.7 and from 3.3 to 3.7 at pH 7.4 for humic derivatives. Maximum constants are observed for hydroquinone-enriched derivatives. It is concluded that among the humic derivatives tested, the hydroquinone-enriched ones are the most useful for addressing remedial needs of actinide-contaminated aquifers.« less

  17. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    PubMed

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  18. Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q.

    2017-11-01

    In order to reveal the adsorption mechanism of the ferric chloride modified humic acid on uranium, the influence of pH value and contact time of adsorption on uranium was studied through a series of batch experiments. Meanwhile, the adsorption kinetics was analyzed with pseudo-first order kinetic model and pseudo-second order kinetic model. The results show that adsorption is affected by the pH value of the solution and by contract time, and the best condition for adsorption on uranium is at pH=5 and the adsorption equilibrium time is about 80 min. Kinetics of HA-Fe adsorption on uranium accords with pseudo-second order kinetic model. The adsorption is mainly chemical adsorption, and complexes were produced by the reaction between uranium ions and the functional groups on the surface of HA-Fe, which can provide reference for further study of humic acid effecting on the migration of U(VI) in soil.

  19. Chloroperoxidase-catalyzed oxidation of 4,6-dimethyldibenzothiophene as dimer complexes: evidence for kinetic cooperativity.

    PubMed

    Torres, Eduardo; Aburto, Jorge

    2005-05-15

    A sigmoidal kinetic behavior of chloroperoxidase for the oxidation of 4,6-dimethyldibenzothiophene (4,6-DMDBT) in water-miscible organic solvent is for the first time reported. Kinetics of 4,6-DMDBT oxidation showed a cooperative profile probably due to the capacity of chloroperoxidase to recognize a substrate dimer (pi-pi dimer) in its active site. Experimental evidence is given for dimer formation and its presence in the active site of chloroperoxidase. The kinetic data were adjusted for a binding site able to interact with either monomer or dimer substrates, producing a cooperative model describing a one-site binding of two related species. Determination of kinetics constants by iterative calculations of possible oxidation paths of 4,6-DMDBT suggests that kinetics oxidation of dimer substrate is preferred when compared to monomer oxidation. Steady-state fluorometry of substrate in the absence and presence of chloroperoxidase, described by the spectral center of mass, supports this last conclusion.

  20. Understanding the cancer cell phenotype beyond the limitations of current omics analyses.

    PubMed

    Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara

    2016-01-01

    Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may become possible to improve the design of therapeutic strategies that would target cancer cells more specifically. © 2015 FEBS.

  1. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    NASA Astrophysics Data System (ADS)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-04-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  2. Mulliken Hush elucidation of the encounter (precursor) complex in intermolecular electron transfer via self-exchange of tetracyanoethylene anion-radical

    NASA Astrophysics Data System (ADS)

    Rosokha, S. V.; Newton, M. D.; Head-Gordon, M.; Kochi, J. K.

    2006-05-01

    The paramagnetic [1:1] encounter complex (TCNE)2-rad is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor ( TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE)2-rad by its intervalence absorption band at the solvent-dependent wavelength of λIV ˜ 1500 nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of HDA = 1000 cm -1. The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of HDA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy ( λ) and the electronic coupling element ( HDA) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes.

  3. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    PubMed

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  4. Repositioning of Thiourea-Containing Drugs as Tyrosinase Inhibitors.

    PubMed

    Choi, Joonhyeok; Jee, Jun-Goo

    2015-12-02

    Tyrosinase catalyzes two distinct sequential reactions in melanin biosynthesis: The hydroxylation of tyrosine to dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to dopaquinone. Developing functional modulators of tyrosinase is important for therapeutic and cosmetic purposes. Given the abundance of thiourea moiety in known tyrosinase inhibitors, we studied other thiourea-containing drugs as potential tyrosinase inhibitors. The thiourea-containing drugs in clinical use were retrieved and tested for their ability to inhibit tyrosinase. We observed that methimazole, thiouracil, methylthiouracil, propylthiouracil, ambazone, and thioacetazone inhibited mushroom tyrosinase. Except for methimazole, there was limited information regarding the activity of other drugs against tyrosinase. Both thioacetazone and ambazone significantly inhibited tyrosinase, with IC50 of 14 and 15 μM, respectively. Ambazone decreased melanin content without causing cellular toxicity at 20 μM in B16F10 cells. The activity of ambazone was stronger than that of kojic acid both in enzyme and melanin content assays. Kinetics of enzyme inhibition assigned the thiourea-containg drugs as non-competitive inhibitors. The complex models by docking simulation suggested that the intermolecular hydrogen bond via the nitrogen of thiourea and the contacts via thione were equally important for interacting with tyrosinase. These data were consistent with the results of enzyme assays with the analogues of thiourea.

  5. Molecular mechanisms of protein aggregation from global fitting of kinetic models.

    PubMed

    Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J

    2016-02-01

    The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and fitting the chosen models using an advanced minimization algorithm to yield the reaction orders and rate constants. Finally, we outline how to use this approach to investigate which targets potential inhibitors of amyloid formation bind to and where in the reaction mechanism they act. The protocol, from processing data to determining mechanisms, can be completed in <1 d.

  6. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia† †Electronic supplementary information (ESI) available. CCDC 1001632–1001634. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt02537k Click here for additional data file. Click here for additional data file.

    PubMed Central

    Alam, Israt S.; Arrowsmith, Rory L.; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W.; Dilworth, Jonathan R.

    2016-01-01

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under ‘cold’ and ‘hot’ biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. 68Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration. PMID:26583314

  7. IMMUNOREACTIONS INVOLVING PLATELETS

    PubMed Central

    Shulman, N. Raphael

    1958-01-01

    A steric and kinetic model for the sequence and mechanism of reactions leading to formation of a complex from an antibody, a haptene (quinidine), and a cell membrane (platelets), and to fixation of complement by the complex was deduced from the effects of varying the initial concentration of each component of the complex on the amount of complement fixed, from kinetic aspects of the sequential reactions, and from other chemical and physical properties of the various components involved. Theoretical results calculated using equations based on the model, which were derived by Dr. Terrell L. Hill, were similar in all respects to experimental results. Results of this study were consistent with the possibilities that the protein moiety of a haptenic antigen involved in development of an antibody which attaches to a cell is not necessarily a component of the cell, and that the cell reacts with the antibody by virtue of having a surface favorable for non-specific adsorption of certain haptene-antibody complexes. PMID:13525578

  8. Kinetics of the substitution of dehydroacetic acid in tris (dehydroacetato) Fe(III) complex by 8-hydroxyquinoline, di- and tetra-hydroxyquinone

    NASA Astrophysics Data System (ADS)

    Fouad, D. M.; Ismail, N. M.; El-Gahami, M. A.; Ibrahim, S. A.

    2007-06-01

    The ligand substitution reactions of dehydroacetic acid (Hdha) in [Fe(dha) 3] with second ligand such as 8-hydroxyquinoline (Hquin), 1,4-dihydroxyanthraquinone (H 2dhaq) and 1,4,5,8-tetra-hydroxyanthraquinone (H 4thaq) were investigated spectrophotometrically by in low polarity solvents like benzene, chloroform and dichloromethane. It is deduced that the substitution reaction takes place through one successive step. The reaction was performed at four different temperatures (5-25) °C, and it exhibits a first order dependence on the concentration of the starting complex. The observed rate constant depends on the concentration of both leaving and entering ligands. The evaluation of the kinetic data gives activation parameters which support an associative mechanism in the transition states and the higher rate of substitution of the dha in Fe(dha) 3 complex is due to entropy effect. The solid complexes were synthesized and characterized by elemental analysis, IR and UV-vis spectral techniques.

  9. Diff-invariant kinetic terms in arbitrary dimensions

    NASA Astrophysics Data System (ADS)

    Barbero G., J. Fernando; Villaseñor, Eduardo J.

    2002-06-01

    We study the physical content of quadratic diff-invariant Lagrangians in arbitrary dimensions by using covariant symplectic techniques. This paper extends previous results in dimension four. We discuss the difference between the even and odd dimensional cases.

  10. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…

  11. Synergistic influence of Al, Ni, Bi and Sn addition to a zinc bath upon growth kinetics and the structure of coatings

    NASA Astrophysics Data System (ADS)

    Kania, H.; Liberski, P.

    2012-05-01

    In this article the authors have analysed the current knowledge about the influence of alloy additions used in galvanizing baths. The optimum concentration of Al, Ni, Bi and Sn addition has been established. Some tests have been conducted to determine the synergistic effect of the addition of AlNiBiSn to a zinc bath upon the structure and growth kinetics of coatings. The structure of the coatings obtained on steel with low silicon contents and on Sandelin steel as well as their chemical composition have been revealed. It has been established that the addition of AlNiBiSn helps to reduce excessive growth of coating on Sandelin steel. The chemical composition and the structure of the coating on Sandelin steel are similar to the chemical composition and structure obtained on steel with regular silicon contents.

  12. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    NASA Astrophysics Data System (ADS)

    Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  13. Reduction of iron-bearing lunar minerals for the production of oxygen

    NASA Technical Reports Server (NTRS)

    Massieon, Charles; Cutler, Andrew; Shadman, Farhang

    1992-01-01

    The kinetics and mechanism of the reduction of simulants of the iron-bearing lunar minerals olivine ((Fe,Mg)2SiO4), pyroxene ((Fe,Mg,Ca)SiO3), and ilmenite (FeTiO3) are investigated, extending previous work with ilmenite. Fayalite is reduced by H2 at 1070 K to 1480 K. A layer of mixed silica glass and iron forms around an unreacted core. Reaction kinetics are influenced by permeation of hydrogen through this layer and a reaction step involving dissociated hydrogen. Reaction mechanisms are independent of Mg content. Augite, hypersthene, and hedenbergite are reduced in H2 at the same temperatures. The products are iron metal and lower iron silicates mixed throughout the mineral. Activation energy rises with calcium content. Ilmenite and fayalite are reduced with carbon deposited on partially reduced minerals via the CO disproportionation reaction. Reduction with carbon is rapid, showing the carbothermal reduction of lunar minerals is possible.

  14. On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines.

    PubMed

    Nevares, Ignacio; Martínez-Martínez, Víctor; Martínez-Gil, Ana; Martín, Roberto; Laurie, V Felipe; Del Álamo-Sanza, María

    2017-08-15

    Measuring the oxygen content during winemaking and bottle storage has become increasingly popular due to its impact on the sensory quality and longevity of wines. Nevertheless, only a few attempts to describe the kinetics of oxygen consumption based on the chemical composition of wines have been published. Therefore, this study proposes firstly a new fitting approach describing oxygen consuming kinetics and secondly the use of an Artificial Neural Network approach to describe and compare the oxygen avidity of wines according to their basic chemical composition (i.e. the content of ethanol, titratable acidity, total sulfur dioxide, total phenolics, iron and copper). The results showed no significant differences in the oxygen consumption rate between white and red wines, and allowed the sorting of the wines studied according to their oxygen consumption rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [Synergistic effect of cell kinetics-directed chemo-endocrine therapy on experimental mammary tumors].

    PubMed

    Ueki, H

    1987-11-01

    We tried to demonstrate that the cell kinetics-directed chemoendocrine therapy is more effective on hormone dependent breast cancer than empirical combination of the endocrine therapy and chemotherapy. Cell kinetics of each tumor was measured by flow cytometric analysis. Estrogen dependent human breast cancer cell line MCF-7 was used in vitro. In vivo, androgen dependent SC-115 carcinoma was transplanted to DDS mice. In vitro, tamoxifen was administered as the endocrine therapy. In vivo, we carried out testectomy on DDS mice. Effect of the endocrine therapy on the cell kinetics of the tumor was thought to be G1-S depression. High density 5FU was administered as the chemotherapeutic agents, whose content was 1 microgram/ml in vitro and 40 mg/kg in vivo. 5FU brought temporary decrease of cells in S phase. Only anteceding 5FU administration had synergistic effect in combination of 5FU and the endocrine therapy. 5FU was convinced to act more effectively on cells in S phase, so it was shown that cell kinetics-directed schedule was superior to the empirical treatment schedule in chemoendocrine therapy.

  16. Kinetic analysis of cooking losses from beef and other animal muscles heated in a water bath--effect of sample dimensions and prior freezing and ageing.

    PubMed

    Oillic, Samuel; Lemoine, Eric; Gros, Jean-Bernard; Kondjoyan, Alain

    2011-07-01

    Cooking loss kinetics were measured on cubes and parallelepipeds of beef Semimembranosus muscle ranging from 1 cm × 1 cm × 1 cm to 7 cm × 7 cm × 28 cm in size. The samples were water bath-heated at three different temperatures, i.e. 50°C, 70°C and 90°C, and for five different times. Temperatures were simulated to help interpret the results. Pre-freezing the sample, difference in ageing time, and in muscle fiber orientation had little influence on cooking losses. At longer treatment times, the effects of sample size disappeared and cooking losses depended only on the temperature. A selection of the tests was repeated on four other beef muscles and on veal, horse and lamb Semimembranosus muscle. Kinetics followed similar curves in all cases but resulted in different final water contents. The shape of the kinetics curves suggests first-order kinetics. Copyright © 2011 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  17. Development of a Kinetic Assay for Late Endosome Movement.

    PubMed

    Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc

    2014-08-01

    Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.

  18. Program Helps To Determine Chemical-Reaction Mechanisms

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Radhakrishnan, K.

    1995-01-01

    General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code developed for use in solving complex, homogeneous, gas-phase, chemical-kinetics problems. Provides for efficient and accurate chemical-kinetics computations and provides for sensitivity analysis for variety of problems, including problems involving honisothermal conditions. Incorporates mathematical models for static system, steady one-dimensional inviscid flow, reaction behind incident shock wave (with boundary-layer correction), and perfectly stirred reactor. Computations of equilibrium properties performed for following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. Written in FORTRAN 77 with exception of NAMELIST extensions used for input.

  19. Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects.

    PubMed

    Colle, Ines J P; Lemmens, Lien; Knockaert, Griet; Van Loey, Ann; Hendrickx, Marc

    2016-08-17

    Kinetic models are important tools for process design and optimization to balance desired and undesired reactions taking place in complex food systems during food processing and preservation. This review covers the state of the art on kinetic models available to describe heat-induced conversion of carotenoids, in particular lycopene and β-carotene. First, relevant properties of these carotenoids are discussed. Second, some general aspects of kinetic modeling are introduced, including both empirical single-response modeling and mechanism-based multi-response modeling. The merits of multi-response modeling to simultaneously describe carotene degradation and isomerization are demonstrated. The future challenge in this research field lies in the extension of the current multi-response models to better approach the real reaction pathway and in the integration of kinetic models with mass transfer models in case of reaction in multi-phase food systems.

  20. Kinetics of Mn3+-oxalate formation and decay in reactions catalyzed by manganese peroxidase of Ceriporiopsis subvermispora

    Treesearch

    Ulises Urzua; Philip J. Kersten; Rafael Vicuna

    1998-01-01

    The kinetics of Mn3+- oxalate formation and decay were investigated in reactions catalyzed by manganese peroxidase (MnP) from the basiomycete Ceriporiopsis subvermispora in the absence of externally added hydrogen peroxide. A characteristic lag observed in the formation of this complex was shortened by glyoxylate or catalytic amounts of Mn3+ or hydrogen peroxide. MnP...

  1. Teaching Thermodynamics and Kinetics to Advanced General Chemistry Students and to Upper-Level Undergraduate Students Using PV Diagrams

    ERIC Educational Resources Information Center

    Iyengar, Srinivasan S.; deSouza, Romualdo T.

    2014-01-01

    We describe how complex concepts in macroscopic chemistry, namely, thermodynamics and kinetics, can be taught at considerable depth both at the first-year undergraduate as well as upper levels. We begin with a careful treatment of PV diagrams, and by pictorially integrating the appropriate area in a PV diagram, we introduce work. This starting…

  2. Quantitative Connection Between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryo-EM and smFRET Investigations of the Ribosome

    PubMed Central

    Frank, Joachim; Gonzalez, Ruben L.

    2015-01-01

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describes transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy and single-molecule fluorescence resonance energy transfer studies of the bacterial ribosomal pretranslocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pretranslocation complex, which are observed in a cryogenic electron microscopy study, may not be observed in several single-molecule fluorescence resonance energy transfer studies. PMID:25785884

  3. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatlymore » accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.« less

  4. Crystal Structure of an LSD-Bound Human Serotonin Receptor.

    PubMed

    Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L

    2017-01-26

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT 2B . The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT 2B R and 5-HT 2A R-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Quantitative Connection between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryogenic Electron Microscopy and Single-Molecule Fluorescence Resonance Energy Transfer Investigations of the Ribosome.

    PubMed

    Thompson, Colin D Kinz; Sharma, Ajeet K; Frank, Joachim; Gonzalez, Ruben L; Chowdhury, Debashish

    2015-08-27

    At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy landscapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often only dynamic, single-molecule techniques can yield the kinetic data that describe transition-state energy barriers. Here we present a generalized framework based upon dwell-time distributions that can be used to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus characterize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying it to cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) studies of the bacterial ribosomal pre-translocation complex. Among other benefits, application of this framework to these data explains why two transient, intermediate conformations of the pre-translocation complex, which are observed in a cryo-EM study, may not be observed in several smFRET studies.

  6. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    PubMed

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  7. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells

    NASA Astrophysics Data System (ADS)

    Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2013-03-01

    The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d

  8. Mathematical modeling of olive mill waste composting process.

    PubMed

    Vasiliadou, Ioanna A; Muktadirul Bari Chowdhury, Abu Khayer Md; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Pavlou, Stavros; Vayenas, Dimitrios V

    2015-09-01

    The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Non-isothermal crystallization kinetics and characterization of biodegradable poly(butylene succinate-co-neopentyl glycol succinate) copolyesters.

    PubMed

    Xie, Wen-Jie; Zhou, Xiao-Ming

    2015-01-01

    Both biodegradable aliphatic neat poly(butylene succinate) (PBS) and poly(butylene succinate-co-neopentyl glycol succinate) (P(BS-co-NPGS)) copolyesters with different 1,4-butanediol/neopentyl glycol ratios were synthesized through a two-step process of transesterification and polycondensation using stannous chloride and 4-Methylbenzenesulfonic acid as the co-catalysts. The structure, non-isothermal crystallization behavior, crystalline morphology and crystal structure of neat PBS and P(BS-co-NPGS) copolyesters were characterized by (1)H NMR, differential scanning calorimetry (DSC), polarized optical microscope (POM) and wide angle X-ray diffraction (WAXD), respectively. The Avrami equation modified by Jeziorny and Mo's method was employed to describe the non-isothermal crystallization kinetics of the neat PBS and its copolyesters. The modified Avrami equation could adequately describe the primary stage of non-isothermal crystallization kinetics of the neat PBS and its copolyesters. Mo's method provided a fairly satisfactory description of the non-isothermal crystallization of neat PBS and its copolyesters. Interestingly, the values of 1/t1/2, Zc and F(T) obtained by the modified Avrami equation and Mo's method analysis indicated that the crystallization rate increased first and then decreased with an increase of NPGS content compared that of neat PBS, whereas the crystallization mechanism almost kept unchanged. The results of tensile testing showed that the ductility of PBS was largely improved by incorporating NPGS units. The elongation at break increased remarkably with increasing NPGS content. In particular, the sample with 20% NPGS content showed around 548% elongation at break. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Modelling the influence of carbon content on material behavior during forging

    NASA Astrophysics Data System (ADS)

    Korpała, G.; Ullmann, M.; Graf, M.; Wester, H.; Bouguecha, A.; Awiszus, B.; Behrens, B.-A.; Kawalla, R.

    2017-10-01

    Nowadays the design of single process steps and even of whole process chains is realized by the use of numerical simulation, in particular finite element (FE) based methods. A detailed numerical simulation of hot forging processes requires realistic models, which consider the relevant material-specific parameters to characterize the material behavior, the surface phenomena, the dies as well as models for the machine kinematic. This data exists partial for several materials, but general information on steel groups depending on alloying elements are not available. In order to generate the scientific input data regarding to material modelling, it is necessary to take into account the mathematical functions for deformation behavior as well as recrystallization kinetic, which depends alloying elements, initial microstructure and reheating mode. Besides the material flow characterization, a detailed description of surface changes caused by oxide scale is gaining in importance, as these phenomena affect the material flow and the component quality. Experiments to investigate the influence of only one chemical element on the oxide scale kinetic and the inner structure at high temperatures are still not available. Most data concerning these characteristics is provided for the steel grade C45, so this steel will be used as basis for the tests. In order to identify the effect of the carbon content on the material and oxidation behavior, the steel grades C15 and C60 will be investigated. This paper gives first approaches with regard to the influence of the carbon content on the oxide scale kinetic and the flow stresses combined with the initial microstructure.

  11. Formation kinetics and abundance of organic nitrates in α-pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Berkemeier, Thomas; Ammann, Markus; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    Formation of organic nitrates affects the total atmospheric budget of oxidized nitrogen (NOy) and alters the total aerosol mass yield from secondary sources. We investigated the formation of organic nitrate species during ozonolysis of α-pinene and subsequent formation of secondary organic aerosols (SOA) using the short-lived radioactive tracer 13N inside an aerosol flow reactor (Ammann et al., 2001). The results represent direct measurements of the organic nitrate content of α-pinene secondary aerosol and give insight into the kinetics of organic nitrate formation. Organic nitrates constituted up to 40 % of aerosol mass with a pronounced influence during the initial period of particle growth. Kinetic modelling, as well as additional experiments using OH scavengers and UV irradiation, suggests that organic peroxy radicals (RO2) from the reaction of α-pinene with secondarily produced OH are important intermediates in the organic nitrate formation process. Direct oxidation of α-pinene by NO3 was found to be a less efficient pathway for formation of particle phase nitrate. The organic nitrate content decreased very slightly with an increase of relative humidity on the experimental time scale. The experiments show a tight correlation between organic nitrate content and SOA number concentrations, implying that organic nitrates play an important role in nucleation and growth of nanoparticles. Since present in large amounts in organic aerosol, organic nitrates deposited in the lung might have implications for human health as they release nitric acid upon hydrolysis, especially in regions influenced by urban pollution and large sources of monoterpene SOA precursors. References Ammann et al. (2001) Radiochimica Acta 89, 831.

  12. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  13. Rugby versus Soccer in South Africa: Content Familiarity Contributes to Cross-Cultural Differences in Cognitive Test Scores

    ERIC Educational Resources Information Center

    Malda, Maike; van de Vijver, Fons J. R.; Temane, Q. Michael

    2010-01-01

    In this study, cross-cultural differences in cognitive test scores are hypothesized to depend on a test's cultural complexity (Cultural Complexity Hypothesis: CCH), here conceptualized as its content familiarity, rather than on its cognitive complexity (Spearman's Hypothesis: SH). The content familiarity of tests assessing short-term memory,…

  14. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease.

    PubMed

    Walkenhorst, W F; Green, S M; Roder, H

    1997-05-13

    The complex kinetic behavior commonly observed in protein folding studies suggests that a heterogeneous population of molecules exists in solution and that a number of discrete steps are involved in the conversion of unfolded molecules to the fully native form. A central issue in protein folding is whether any of these kinetic events represent conformational steps important for efficient folding rather than side reactions caused by slow steps such as proline isomerization or misfolding of the polypeptide chain. In order to address this question, we used stopped-flow fluorescence techniques to characterize the kinetic mechanism of folding and unfolding for a Pro- variant of SNase in which all six proline residues were replaced by glycines or alanines. Compared to the wild-type protein, which exhibits a series of proline-dependent slow folding phases, the folding kinetics of Pro- SNase were much simpler, which made quantitative kinetic analysis possible. Despite the absence of prolines or other complicating factors, the folding kinetics still contain several phases and exhibit a complex denaturant dependence. The GuHCl dependence of the major observable folding phase and a distinct lag in the appearance of the native state provide clear evidence for an early folding intermediate. The fluorescence of Trp140 in the alpha-helical domain is insensitive to the formation of this early intermediate, which is consistent with a partially folded state with a stable beta-domain and a largely disordered alpha-helical region. A second intermediate is required to model the kinetics of unfolding for the Pro- variant, which shows evidence for a denaturant-induced change in the rate-limiting unfolding step. With the inclusion of these two intermediates, we are able to completely model the major phase(s) in both folding and unfolding across a wide range of denaturant concentrations using a sequential four-state folding mechanism. In order to model the minor slow phase observed for the Pro- mutant, a six-state scheme containing a parallel pathway originating from a distinct unfolded state was required. The properties of this alternate unfolded conformation are consistent with those expected due to the presence of a non-prolyl cis peptide bond. To test the kinetic model, we used simulations based on the six-state scheme and were able to completely reproduce the folding kinetics for Pro- SNase across a range of denaturant concentrations.

  15. Kinetics of incorporation/redistribution of photosensitizer hypericin to/from high-density lipoproteins.

    PubMed

    Joniova, Jaroslava; Buriankova, Luboslava; Buzova, Diana; Miskovsky, Pavol; Jancura, Daniel

    2014-11-20

    By means of fluorescence spectroscopy we have studied the kinetics of interaction of a photosensitizer hypericin (Hyp) with high-density lipoproteins (HDL). Hyp is incorporated into HDL molecules as monomer till ratio Hyp/HDL ∼8:1 and above this ratio forms non-fluorescent aggregates. This number is different from that found in the case of Hyp incorporation into low-density lipoprotein (LDL) molecules (8:1 vs 30:1). The difference is mainly attributed to the smaller size of HDL in comparison with LDL molecule. Biphasic kinetics of Hyp association with HDL was observed. The rapid phase of incorporation is completed within seconds, while the slow one lasts several minutes. The kinetics of the association of Hyp molecules with free HDL, Hyp/HDL=10:1 complex and the redistribution of Hyp from Hyp/HDL=70:1 complex to free HDL molecules reveal a qualitative similar characteristics of these processes with those observed for the interaction of Hyp with LDL. However, the incorporation of Hyp into HDL in the "slow" phase is more rapid than to LDL and extend of Hyp penetration into lipoproteins in the fast phase is also much higher in the case of HDL. The lower concentration of cholesterol molecules in outer shell of HDL particles is probably the determining factor for the more rapid kinetics of Hyp incorporation to and redistribution from these molecules when comparing with LDL particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Pressure-induced silica quartz amorphization studied by iterative stochastic surface walking reaction sampling.

    PubMed

    Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan

    2017-02-08

    The crystal to amorphous transformation is a common phenomenon in Nature and has important impacts on material properties. Our current knowledge on such complex solid transformation processes is, however, limited because of their slow kinetics and the lack of long-range ordering in amorphous structures. To reveal the kinetics in the amorphization of solids, this work, by developing iterative reaction sampling based on the stochastic surface walking global optimization method, investigates the well-known crystal to amorphous transformation of silica (SiO 2 ) under external pressures, the mechanism of which has long been debated for its non-equilibrium, pressure-sensitive kinetics and complex product components. Here we report for the first time the global potential energy surface (PES) and the lowest energy pathways for α-quartz amorphization from first principles. We show that the pressurization at 15 GPa, the reaction condition, can lift the quartz phase energetically close to the amorphous zone, which thermodynamically initializes the amorphization. More importantly, the large flexibility of Si cation coordination (including four, five and six coordination) results in many kinetically competing routes to more stable dense forms, including the known MI, stishovite, newly-identified MII and TI phases. All these pathways have high barriers due to the local Si-O bond breaking and are mediated by amorphous structures with five-fold Si. This causes simultaneous crystal-to-crystal and crystal-to-amorphous transitions. The high barrier and the reconstructive nature of the phase transition are the key kinetics origin for silica amorphization under pressures.

  17. Multi-step cure kinetic model of ultra-thin glass fiber epoxy prepreg exhibiting both autocatalytic and diffusion-controlled regimes under isothermal and dynamic-heating conditions

    NASA Astrophysics Data System (ADS)

    Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.

  18. An Isotopic Exchange Kinetic Model to Assess the Speciation of Metal Available Pool in Soil: The Case of Nickel.

    PubMed

    Zelano, I O; Sivry, Y; Quantin, C; Gélabert, A; Maury, A; Phalyvong, K; Benedetti, M F

    2016-12-06

    In this study an innovative approach is proposed to predict the relative contribution of each mineral phase to the total metal availability in soils, which, in other words, could be called the available metal fractionation. Through the use of isotopic exchange kinetics (IEK) performed on typical Ni bearing phases (i.e., two types of serpentines, chlorite, smectite, goethite, and hematite) the isotopic exchange and metal-solid interaction processes are connected, considering both the thermodynamic and kinetic aspects. Results of Ni IEK experiments on mineral phases are fitted with a pseudo-first order kinetic model. For each Ni bearing phase, this allows to (i) determine the number and size of exchangeable pools (E Ni(i) ), (ii) assess their corresponding kinetic constants (k (i) ), and (iii) discuss the mechanism of Ni isotopic exchange at mineral surfaces. It is shown that all the phases investigated, with the only exception of hematite, present at least two distinct reactive pools with significantly different k (i) values. Results suggest also that metal involved in outer-sphere complexes would display isotopic exchange between 100 and 1000 times faster than metal involved in inner-sphere complexes, and that the presence of high and low affinity sites may influence the rate of isotopic exchange up to 1 order of magnitude. Moreover, the method developed represents a tool to predict and estimate Ni mobility and availability in natural soil samples on the basis of soil mineral composition, providing information barely obtained with other techniques.

  19. Metal speciation in landfill leachates with a focus on the influence of organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claret, Francis, E-mail: f.claret@brgm.fr; Tournassat, Christophe; Crouzet, Catherine

    Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmospheremore » to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.« less

  20. Kinetics and thermodynamics of irreversible inhibition of matrix metalloproteinase 2 by a Co(III) Schiff base complex

    PubMed Central

    Harney, Allison S.; Sole, Laura B.

    2012-01-01

    Cobalt(III) Schiff base complexes have been used as potent inhibitors of protein function through the coordination to histidine residues essential for activity. The kinetics and thermodynamics of the binding mechanism of Co(acacen)(NH3)2Cl [Co(acacen); where H2acacen is bis(acetylacetone)ethylenediimine] enzyme inhibition has been examined through the inactivation of matrix metalloproteinase 2 (MMP-2) protease activity. Co(acacen) is an irreversible inhibitor that exhibits time- and concentration-dependent inactivation of MMP-2. Co(acacen) inhibition of MMP-2 is temperature-dependent, with the inactivation increasing with temperature. Examination of the formation of the transition state for the MMP-2/Co(acacen) complex was determined to have a positive entropy component indicative of greater disorder in the MMP-2/Co(acacen) complex than in the reactants. With further insight into the mechanism of Co(acacen) complexes, Co(III) Schiff base complex protein inactivators can be designed to include features regulating activity and protein specificity. This approach is widely applicable to protein targets that have been identified to have clinical significance, including matrix metalloproteinases. The mechanistic information elucidated here further emphasizes the versatility and utility of Co(III) Schiff base complexes as customizable protein inhibitors. PMID:22729838

  1. Iron-catalyzed halogenation of alkanes: modeling of nonheme halogenases by experiment and DFT calculations.

    PubMed

    Comba, Peter; Wunderlich, Steffen

    2010-06-25

    When the dichloroiron(II) complex of the tetradentate bispidine ligand L=3,7-dimethyl-9-oxo-2,4-bis(2-pyridyl)-3,7-diazabicyclo[3.3.1]nonane-1,5-dicarboxylate methyl ester is oxidized with H(2)O(2), tBuOOH, or iodosylbenzene, the high-valent Fe=O complex efficiently oxidizes and halogenates cyclohexane. Kinetic D isotope effects and the preference for the abstraction of tertiary over secondary carbon-bound hydrogen atoms (quantified in the halogenation of adamantane) indicate that C-H activation is the rate-determining step. The efficiencies (yields in stoichiometric and turnover numbers in catalytic reactions), product ratios (alcohol vs. bromo- vs. chloroalkane), and kinetic isotope effects depend on the oxidant. These results suggest different pathways with different oxidants, and these may include iron(IV)- and iron(V)-oxo complexes as well as oxygen-based radicals.

  2. Direct Synthesis of Polymer Nanotubes by Aqueous Dispersion Polymerization of a Cyclodextrin/Styrene Complex.

    PubMed

    Chen, Xi; Liu, Lei; Huo, Meng; Zeng, Min; Peng, Liao; Feng, Anchao; Wang, Xiaosong; Yuan, Jinying

    2017-12-22

    A one-step synthesis of nanotubes by RAFT dispersion polymerization of cyclodextrin/styrene (CD/St) complexes directly in water is presented. The resulted amphiphilic PEG-b-PS diblock copolymers self-assemble in situ into nanoparticles with various morphologies. Spheres, worms, lamellae, and nanotubes were controllably obtained. Because of the complexation, the swelling degree of polystyrene (PS) blocks by free St is limited, resulting in limited mobility of PS chains. Consequently, kinetically trapped lamellae and nanotubes were obtained instead of spherical vesicles. During the formation of nanotubes, small vesicles first formed at the ends of the tape-like lamellae, then grew and fused into nanotubes with a limited chain rearrangement. The introduction of a host-guest interaction based on CDs enables the aqueous dispersion polymerization of water-immiscible monomers, and produces kinetically trapped nanostructures, which could be a powerful technique for nanomaterials synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Kinetics of thermolysis of lanthanum nitrate with hexamethylenetetramine: Crystal structure, TG-DSC, impact and friction sensitivity studies, Part-96

    NASA Astrophysics Data System (ADS)

    Nibha; Baranwal, B. P.; Singh, Gurdip; Singh, C. P.; Daniliuc, Constantin G.; Soni, P. K.; Nath, Yogeshwar

    2014-11-01

    The development of high energetic materials includes process ability and the ability to attain insensitive munitions (IM). This paper investigates the preparation of lanthanum metal nitrate complex of hexamethylenetetramine in water at room temperature. This complex of molecular formulae [La (NO3)2(H2O)6] (2HMTA) (NO3-) (H2O) was characterized by X-ray crystallography. Thermal decomposition was investigated using TG, TG-DSC and ignition delay measurements. Kinetic analysis of isothermal TG data has been investigated using model fitting methods as well as model free isoconversional methods. The sensitivity measurements towards mechanical destructive stimuli such as impact and friction were carried out and the complex was found to be insensitive. In order to identify the end product of thermolysis, X-ray diffraction patterns of end product was carried out which proves the formation of La2O3.

  4. Charge-transfer complexes of phenylephrine with nitrobenzene derivatives

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.

    2004-04-01

    The molecular charge-transfer complexes of phenylephrine with picric acid and m-dinitrobenzene have been studied and investigated by IR, 1H NMR electronic spectra in organic solvents and buffer solutions, respectively. Simple and selective methods are proposed for the determination of phenylephrine hydrochloride in bulk form and in tablets. The two methods are based on the formation of charge-transfer complexes between drug base as a n-donor (D) and picric acid, m-dinitrobenzene as π-acceptor (A). The products exhibit absorption maxima at 497 and 560 nm in acetonitrile for picric acid and m-dinitrobenzene, respectively. The coloured product exhibits an absorption maximum at 650 nm in dioxane. The sensitive kinetic methods for the determination phynylephrine hydrochloride are described. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time at 20 min.

  5. Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies.

    PubMed

    Dell'acqua, Simone; Pauleta, Sofia R; Monzani, Enrico; Pereira, Alice S; Casella, Luigi; Moura, José J G; Moura, Isabel

    2008-10-14

    The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.

  6. The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Sharma, H. N.; McLean, W.; Maxwell, R. S.; Dinh, L. N.

    2016-09-01

    A silica-filled polydimethylsiloxane (PDMS) composite M9787 was investigated for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environment applications at room temperature (˜300 K). The main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (˜30 ppm by volume of H2O) for even a couple of days was the formation, on the silica surface fillers, of ˜60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. The presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.

  7. A Combined Kinetic and Volatility Basis Set Approach to Model Secondary Organic Aerosol from Toluene and Diesel Exhaust/Meat Cooking Mixtures

    NASA Astrophysics Data System (ADS)

    Parikh, H. M.; Carlton, A. G.; Zhang, H.; Kamens, R.; Vizuete, W.

    2011-12-01

    Secondary organic aerosol (SOA) is simulated for 6 outdoor smog chamber experiments using a SOA model based on a kinetic chemical mechanism in conjunction with a volatility basis set (VBS) approach. The experiments include toluene, a non-SOA-forming hydrocarbon mixture, diesel exhaust or meat cooking emissions and NOx, and are performed under varying conditions of relative humidity. SOA formation from toluene is modeled using a condensed kinetic aromatic mechanism that includes partitioning of lumped semi-volatile products in particle organic-phase and incorporates particle aqueous-phase chemistry to describe uptake of glyoxal and methylglyoxal. Modeling using the kinetic mechanism alone, along with primary organic aerosol (POA) from diesel exhaust (DE) /meat cooking (MC) fails to simulate the rapid SOA formation at the beginning hours of the experiments. Inclusion of a VBS approach with the kinetic mechanism to characterize the emissions and chemistry of complex mixture of intermediate volatility organic compounds (IVOCs) from DE/MC, substantially improves SOA predictions when compared with observed data. The VBS model includes photochemical aging of IVOCs and evaporation of POA after dilution. The relative contribution of SOA mass from DE/MC is as high as 95% in the morning, but substantially decreases after mid-afternoon. For high humidity experiments, aqueous-phase SOA fraction dominates the total SOA mass at the end of the day (approximately 50%). In summary, the combined kinetic and VBS approach provides a new and improved framework to semi-explicitly model SOA from VOC precursors in conjunction with a VBS approach that can be used on complex emission mixtures comprised with hundreds of individual chemical species.

  8. Kinetics and Near-Infrared Spectroscopy of Organic Peroxy Radicals

    NASA Astrophysics Data System (ADS)

    Smarte, M. D.; Okumura, M.

    2016-12-01

    Organic peroxy radicals are important intermediates in atmospheric chemistry with fates that control the rate of radical propagation in an oxidation mechanism. Laboratory methods for detecting peroxy radicals are essential to measuring precise rate constants that constrain these fates. In this work, we discuss the use of near-infrared cavity ringdown spectroscopy to detect organic peroxy radicals for the purpose of laboratory kinetics measurements. We focus on chlorine-substituted peroxy radicals generated in the oxidation of alkenes by chlorine, a minor tropospheric oxidant found in marine and coastal regions. Previous kinetics experiments on peroxy radicals have largely used UV absorption spectroscopy via the dissociative B-X transition. However, the spectra produced are featureless and exhibit substantial overlap; determining the concentration profile of an individual peroxy radical can be an arduous task. In our work, we probe the forbidden peroxy radical A-X transition in the near-infrared. While this approach requires overcoming small cross sections ( 10-21 cm2), the A state is bound and leads to structured absorption spectra that may be useful in constraining the kinetics of mixtures of organic peroxy radicals formed in the oxidation of complex hydrocarbons. Only a few kinetics studies utilizing the A-X transition exist in the literature and they are focused on small, unsubstituted species. This presentation explores the ability of the A-X transition to unravel the kinetics of more complex peroxy radicals in laboratory experiments using several example systems: (1) Determining rate constants for the self and cross reactions of β-chloroethylperoxy and HO2. (2) Detecting the second generation of peroxy radicals formed from alkoxy radical decomposition in the chlorine-initiated oxidation of 2-butene. (3) Observing different rates of reactivity with NO across the pool of peroxy radical isomers formed in the chlorine-initiated oxidation of isoprene.

  9. The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane

    DOE PAGES

    Sharma, H. N.; McLean, W.; Maxwell, R. S.; ...

    2016-09-21

    We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less

  10. Effect of DNA Binding on Geminate CO Recombination Kinetics in CO-sensing Transcription Factor CooA*

    PubMed Central

    Benabbas, Abdelkrim; Karunakaran, Venugopal; Youn, Hwan; Poulos, Thomas L.; Champion, Paul M.

    2012-01-01

    Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role. PMID:22544803

  11. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA.

    PubMed

    Benabbas, Abdelkrim; Karunakaran, Venugopal; Youn, Hwan; Poulos, Thomas L; Champion, Paul M

    2012-06-22

    Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role.

  12. Binuclear cyclometalated organoplatinum complexes containing 1,1'-bis(diphenylphosphino)ferrocene as spacer ligand: kinetics and mechanism of MeI oxidative addition.

    PubMed

    Jamali, Sirous; Nabavizadeh, S Masoud; Rashidi, Mehdi

    2008-06-16

    The binuclear complex [Pt2Me2(ppy)2(mu-dppf)], 1, in which ppy = deprotonated 2-phenylpyridyl and dppf = 1,1'-bis(diphenylphosphino)ferrocene, was synthesized by the reaction of [PtMe(SMe2)(ppy)] with 0.5 equiv of dppf at room temperature. In this reaction when 1 equiv of dppf was used, the dppf chelating complex 2, [PtMe(dppf)(ppy-kappa1C)], was obtained. The reaction of Pt(II)-Pt(II) complex 1 with excess MeI gave the Pt(IV)-Pt(IV) complex [Pt2I2Me4(ppy)2(mu-dppf)], 3. When the reaction was performed with 1 equiv of MeI, a mixture containing unreacted complex 1, a mixed-valence Pt(II)-Pt(IV) complex [PtMe(ppy)(mu-dppf)PtIMe2(ppy)], 4, and complex 3 was obtained. In a comparative study, the reaction of [PtMe(SMe2)(ppy)] with 1 equiv of monodentate phosphine PPh3 gave [PtMe(ppy)(PPh3)], A. MeI was reacted with A to give the platinum(IV) complex [PtMe2I(ppy)(PPh3)], C. All the complexes were fully characterized using multinuclear (1H, 31P, 13C, and 195Pt) NMR spectroscopy, and complex 2 was further identified by single crystal X-ray structure determination. The reaction of binuclear Pt(II)-Pt(II) complex 1 with excess MeI was monitored by low temperature 31P NMR spectroscopy and further by 1H NMR spectroscopy, and the kinetics of the reaction was studied by UV-vis spectroscopy. On the basis of the data, a mechanism has been suggested for the reaction which overall involved stepwise oxidative addition of MeI to the two Pt(II) centers. In this suggested mechanism, the reaction proceeded through a number of Pt(II)-Pt(IV) and Pt(IV)-Pt(IV) intermediates. Although MeI in each step was trans oxidatively added to one of the Pt(II) centers, further trans to cis isomerizations of Me and I groups were also identified. A comparative kinetic study of the reaction of monomeric platinum(II) complex A with MeI was also performed. The rate of reaction of MeI with complex 1 was some 3.5 times faster than that with complex A, indicating that dppf in the complex 1, as compared with PPh 3 in the complex A, has significantly enhanced the electron richness of the platinum centers.

  13. On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25° C

    NASA Astrophysics Data System (ADS)

    Bruno, Jordi; Stumm, Werner; Wersin, Paul; Brandberg, Frederick

    1992-03-01

    We have studied the thermodynamics and kinetics of hematite dissolution in bicarbonate solutions under constant pCO 2. The solubility of hematite is increased in the presence of bicarbonate. We have established that the complexes responsible for this increase are FeOHCO 3 (aq) and Fe(CO 3) 2-. The stability constants of these complexes at the infinite dilution standard state are log β 11 = -3.83 ± 0.21 and log β 2 = 7.40 ± 0.11 , respectively (all errors are given at 2σ confidence level through this work). The rate of dissolution of hematite is enhanced in bicarbonate solutions. This rate of dissolution can be expressed as R diss = k 1[HCO 3-] 0.23 (mol m -2h -1), with k 1 = 1.42 10 -7h -1. The combination of the study of the surface complexation and kinetics of dissolution of hematite in bicarbonate solutions indicate that the dissolution of hematite is surface controlled and bicarbonate promoted. The rate of dissolution follows the expression R diss = k HCO 3-FeOH - HCO 3-}, where k HCO 3- = 1.1 10 -3 h -1. The implications of these findings in the oxic cycle of iron in natural waters are discussed, most importantly in order to explain the high-Fe(III) concentrations measured in groundwaters from the Poços de Caldas complex in Brazil.

  14. Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 2. Multi-frequency phase and modulation analysis evidences a loosely connected PSII pigment-protein complex.

    PubMed

    Moise, Nicolae; Moya, Ismaël

    2004-06-28

    We report the first direct decomposition of the fluorescence lifetime heterogeneity during multiphasic fluorescence induction in dark-adapted leaves by multi-frequency phase and modulation fluorometry (PMF). A very fast component, assigned to photosystem I (PSI), was found to be constant in lifetime and yield, whereas the two slow components, which are strongly affected by the closure of the reaction centers by light, were assigned to PSII. Based on a modified "reversible radical pair" kinetic model with three compartments, we showed that a loosely connected pigment complex, which is assumed to be the CP47 complex, plays a specific role with respect to the structure and function of the PSII: (i) it explains the heterogeneity of PSII fluorescence lifetime as a compartmentation of excitation energy in the antenna, (ii) it is the site of a conformational change in the first second of illumination, and (iii) it is involved in the mechanisms of nonphotochemical quenching (NPQ). On the basis of the multi-frequency PMF analysis, we reconciled two apparently antagonistic aspects of chlorophyll a fluorescence in vivo: it is heterogeneous with respect to the kinetic structure (several lifetime components) and homogeneous with respect to average quantities (quasi-linear mean tau-Phi relationship).

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, David; Wang, Daoyong; Adelberg, Mackenzie

    A novel sulfonated CNN pincer ligand has been designed to support CH and O 2 activation at a Pt(II) center. The derived cycloplatinated aqua complex 7 was found to be one of the most active reported homogeneous Pt catalysts for H/D exchange between studied arenes (benzene, benzene-d 6, toluene-d 8, p-xylene, and mesitylene) and 2,2,2-trifluoroethanol (TFE) or 2,2,2-trifluoroethanol-d; the TON for C 6D 6 as a substrate is >250 after 48 h at 80 °C. The reaction is very selective; no benzylic CH bond activation was observed. The per-CH-bond reactivity diminishes in the series benzene (19) > toluene ( p-CH:more » m-CH: o-CH = 1:0.9:0.2) > xylene (2.9) > mesitylene (1.1). The complex 7 reacts slowly in TFE solutions under ambient light but not in the dark with O 2 to selectively produce a Pt(IV) trifluoroethoxo derivative. The H/D exchange reaction kinetics and results of the DFT study suggest that complex 7, and not its TFE derivatives, is the major species responsible for the arene CH bond activation. Lastly, the reaction deuterium kinetic isotope effect, k H/k D = 1.7, the reaction selectivity, and reaction kinetics modeling suggest that the CH bond cleavage step is rate-determining.« less

  16. Kinetics of nonoxidative leaching of galena in perchloric, hydrobromic, and hydrochloric acid solutions

    NASA Astrophysics Data System (ADS)

    Núñez, C.; Espiell, F.; García-Zayas, J.

    1988-08-01

    Several kinetic studies are presented on the nonoxidative leaching of galena with solutions of hydrocloric, hydrobromic, and perchloric acid. The kinetic parameters were set up in terms of the mean ionic activities of the electrolytes. The apparent order of reaction for the mean ionic activity of perchloric acid is one. For hydrochloric acid the order of reaction over a wide range of concentrations is 3/2 with respect to its mean activity. For hydrobromic acid, whose anion has greater complex-forming power for lead than HC1, the order of reaction is 2. Activation energies are 64.4 kJ/mole for HC1, 71.5 kJ/mole for HC104, and 66.5 kJ mole for HBr. The complete kinetic equations are given for the three reactions.

  17. Following atomistic kinetics on experimental timescales with the kinetic Activation–Relaxation Technique

    DOE PAGES

    Mousseau, Normand; Béland, Laurent Karim; Brommer, Peter; ...

    2014-12-24

    The properties of materials, even at the atomic level, evolve on macroscopic time scales. Following this evolution through simulation has been a challenge for many years. For lattice-based activated diffusion, kinetic Monte Carlo has turned out to be an almost perfect solution. Various accelerated molecular dynamical schemes, for their part, have allowed the study on long time scale of relatively simple systems. There is still a desire and need, however, for methods able to handle complex materials such as alloys and disordered systems. In this paper, we review the kinetic Activation–Relaxation Technique (k-ART), one of a handful of off-lattice kineticmore » Monte Carlo methods, with on-the-fly cataloging, that have been proposed in the last few years.« less

  18. Kinetic Profiling of Catalytic Organic Reactions as a Mechanistic Tool.

    PubMed

    Blackmond, Donna G

    2015-09-02

    The use of modern kinetic tools to obtain virtually continuous reaction progress data over the course of a catalytic reaction opens up a vista that provides mechanistic insights into both simple and complex catalytic networks. Reaction profiles offer a rate/concentration scan that tells the story of a batch reaction time course in a qualitative "fingerprinting" manner as well as in quantitative detail. Reaction progress experiments may be mathematically designed to elucidate catalytic rate laws from only a fraction of the number of experiments required in classical kinetic measurements. The information gained from kinetic profiles provides clues to direct further mechanistic analysis by other approaches. Examples from a variety of catalytic reactions spanning two decades of the author's work help to delineate nuances on a central mechanistic theme.

  19. Oxidation of isoniazid by quinolinium dichromate in an aqueous acid medium and kinetic determination of isoniazid in pure and pharmaceutical formulations.

    PubMed

    Kulkarni, Raviraj M; Bilehal, Dinesh C; Nandibewoor, Sharanappa T

    2004-04-01

    The kinetics of oxidation of isoniazid in acidic medium was studied spectrophotometrically. The reaction between QDC and isoniazid in acid medium exhibits (4:1) stoichiometry (QDC:isoniazid). The reaction showed first order kinetics in quinolinium dichromate (QDC) concentration and an order of less than unity in isoniazid (INH) and acid concentrations. The oxidation reaction proceeds via a protonated QDC species, which forms a complex with isoniazid. The latter decomposes in a slow step to give a free radical derived from isoniazid and an intermediate chromium(V), which is followed, by subsequent fast steps to give the products. The reaction constants involved in the mechanism are evaluated. Isoniazid was analyzed by kinetic methods in pure and pharmaceutical formulations.

  20. The polyphenolics in the aqueous extract of Psidium guajava kinetically reveal an inhibition model on LDL glycation.

    PubMed

    Chen, Kuan-Chou; Chuang, Chao-Ming; Lin, Li-Yun; Chiu, Wen-Ta; Wang, Hui-Er; Hsieh, Chiu-Lan; Tsai, Tsuimin; Peng, Robert Y

    2010-01-01

    Guava [Psidium guajava L. (Myrtaceae)] budding leaf extract (PE) has shown tremendous bioactivities. Previously, we found seven major compounds in PE, i.e., gallic acid, catechin, epicatechin, rutin, quercetin, naringenin, and kaempferol. PE showed a potentially active antiglycative effect in an LDL (low density lipoprotein) mimic biomodel, which can be attributed to its large content of polyphenolics. The glycation and antiglycative reactions showed characteristic distinct four-phase kinetic patterns. In the presence of PE, the kinetic coefficients were 0.000438, 0.000060, 0.000, and -0.0001354 ABS-mL/mg-min, respectively, for phases 1 to 4. Computer simulation evidenced the dose-dependent inhibition model. Conclusively, PE contains a large amount of polyphenolics, whose antiglycative bioactivity fits the inhibition model.

  1. Responses of soil hydrolase kinetics to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, C.; Yang, Y.; Wang, H.; Chen, F.; Fu, X.; Fang, X.; Sun, X.

    2016-12-01

    Nitrogen (N) deposition and low soil phosphorus (P) content aggravate the P limitation in subtropical forest soils. However, the responses of soil organic matter related hydrolyase kinetics to N and P additions in subtropical plantations are still not clear. We tested the hypothesis that P application can improve the potential maximum activities of soil carbon (C) and N related hydrolayase but substrate demand (Km) may tradeoff the catalytic efficiency of the enzymes. Thirty 20m×20m plots were established in November 2011 and six different treatments were randomly distributed with five replicates in the Chinese fir plantations in subtropical China. The ongoing treatments are control (CK, no N and P application), low N addition (N1:50 kg N ha-1 yr-1), high N addition (N2: 100 kg N ha-1 yr-1), P addition (P: 50 kg P ha-1 yr-1), low N andP addition (N1P: 50 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1) and high N and P addition (N2P: 100 kg N ha-1yr-1and 50 kg P ha-1 yr-1). Soil enzyme kinetic parameters for b-1,4-glucosidase (βG), β-1,4-N-acetylglucosaminidase (NAG), and acid phosphatase (aP) were measured in November 2015. The substrate affinities (Km) of βG and NAG were not affected by N or /and P additions. However, the substrate affinities of aP were decreased by N additions (N1, N2) with higher Km values than the other treatments. N additions (N1, N2) or higher N combined P additions (N2P) increased Vmax and catalytic efficiencies for βG, while with P addition treatments (N1P, N2P, and P) decreased Vmax and catalytic efficiencies for aP. The effects of N combined P treatments (N1P and N2P) on kinetic parameters (Vmax, Km) and catalytic efficiencies for AP were similar to P treatment, indicating that P had stronger effects on organic phosphorus hydrolysis than N in the research site. The N additions (N1 and N2) did not affect the catalytic efficiencies for NAG despite of their positive responses to Vmax for NAG compared with CK. The catalytic efficiencies of aP and NAG were negatively correlated with soil TP and available P contents, and both the enzyme kinetics for aP exhibited strong negative correlations with TP and available P contents. However, the Vmax for BG and NAG were positively correlated with SOC contents, but were negatively correlated with soil pH.

  2. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    EPA Science Inventory

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  3. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Rapp, Teresa L.; Phillips, Susan R.; Dmochowski, Ivan J.

    2016-01-01

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, lightdriven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes…

  4. Nanointerface-driven reversible hydrogen storage in the nanoconfined Li-N-H system

    DOE PAGES

    Wood, Brandon C.; Stavila, Vitalie; Poonyayant, Natchapol; ...

    2017-01-20

    Internal interfaces in the Li 3N/[LiNH 2 + 2LiH] solid-state hydrogen storage system alter the hydrogenation and dehydrogenation reaction pathways upon nanosizing, suppressing undesirable intermediate phases to dramatically improve kinetics and reversibility. Finally, the key role of solid interfaces in determining thermodynamics and kinetics suggests a new paradigm for optimizing complex hydrides for solid-state hydrogen storage by engineering internal microstructure.

  5. Evidence for Alkene cis-Aminocupration, an Aminooxygenation Case Study: Kinetics, EPR Spectroscopy, and DFT Calculations

    PubMed Central

    Paderes, Monissa C.; Belding, Lee; Fanovic, Branden; Dudding, Travis; Keister, Jerome B.

    2012-01-01

    Alkene difunctionalization reactions are important in organic synthesis. We have recently shown that copper(II) complexes can promote and catalyze intramolecular alkene aminooxygenation, carboamination, and diamination reactions. In this contribution, we report a combined experimental and theoretical examination of the mechanism of the copper(II)-promoted olefin aminooxygenation reaction. Kinetics experiments revealed a mechanistic pathway involving an equilibrium reaction between a copper(II) carboxylate complex and the γ-alkenyl sulfonamide substrate and a rate-limiting intramolecular cis-addition of N–Cu across the olefin. Kinetic isotope effect studies support that the cis-aminocupration is the rate-determining step. UV/Vis spectra support a role for the base in the break-up of copper(II) carboxylate dimer to monomeric species. Electron paramagnetic resonance (EPR) spectra provide evidence for a kinetically competent N–Cu intermediate with a CuII oxidation state. Due to the highly similar stereochemical and reactivity trends among the CuII-promoted and catalyzed alkene difunctionalization reactions we have developed, the cis-aminocupration mechanism can reasonably be generalized across the reaction class. The methods and findings disclosed in this report should also prove valuable to the mechanism analysis and optimization of other copper(-II) carboxylate promoted reactions, especially those that take place in aprotic organic solvents. PMID:22237868

  6. Carbon reactivation kinetics in GaAs: Its dependence on dopant precursor, doping level, and layer thickness

    NASA Astrophysics Data System (ADS)

    Mimila-Arroyo, J.; Bland, S.; Barbé, M.

    2002-05-01

    The reactivation kinetics of the acceptor behavior of carbon, its dependence on dopant precursors, doping level, layer thickness, and annealing temperature, as well as the behavior of carbon-hydrogen complexes in GaAs grown by metalorganic chemical vapor deposition are studied. Independent of the carbon source, in the "as grown" material, systematically carbon hydrogen complexes are present and the hole concentration is lower than the corresponding carbon concentration. The carbon reactivation kinetics was achieved by ex situ rapid thermal annealing through a series of multistage annealing experiments and assessed at each annealing stage by infrared absorption, hydrogen secondary ion mass spectroscopy profiling, and hole concentration measurements. Carbon reactivation occurs solely by the debonding of hydrogen from the isolated carbon acceptor and its out-diffusion from the sample. The carbon reactivation kinetics can be treated as a first order one with an activation energy, Ea=1.42±0.01 eV, independent of doping precursors, doping level, and layer thickness. The reactivation constant results to decrease as doping level and layer thickness increase. An empirical formula has been obtained that allows one to calculate the reactivation constant as a function of the carbon doping, layer thickness, and annealing temperature, allowing one to determine the optimal carbon reactivation conditions for any C:GaAs layer.

  7. The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code

    PubMed Central

    Fischer, Frédéric; Huot, Jonathan L.; Lorber, Bernard; Diss, Guillaume; Hendrickson, Tamara L.; Becker, Hubert D.; Lapointe, Jacques; Kern, Daniel

    2012-01-01

    Helicobacter pylori catalyzes Asn-tRNAAsn formation by use of the indirect pathway that involves charging of Asp onto tRNAAsn by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNAAsn binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNAAsn is bound by ND-AspRS which releases the Asp-tRNAAsn product much slower than the cognate Asp-tRNAAsp; this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNAAsn before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn. PMID:22362756

  8. The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code.

    PubMed

    Fischer, Frédéric; Huot, Jonathan L; Lorber, Bernard; Diss, Guillaume; Hendrickson, Tamara L; Becker, Hubert D; Lapointe, Jacques; Kern, Daniel

    2012-06-01

    Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.

  9. Kinetics of the reduction of bushveld complex chromite ore at 1416 °C

    NASA Astrophysics Data System (ADS)

    Soykan, O.; Eric, R. H.; King, R. P.

    1991-12-01

    The kinetics of the reduction of chromite ore from the LG-6 layer of the Bushveld Complex of the Transvaal in South Africa were studied at 1416 °C by the thermogravimetric analysis (TGA) technique. Spectroscopic graphite powder was employed as the reductant. The aim of this article is to present a kinetic model that satisfactorily describes the solid-state carbothermic reduction of chromite. A generalized rate model based on an ionic diffusion mechanism was developed. The model included the contribution of the interfacial area between partially reduced and unreduced zones in chromite particles and diffusion. The kinetic model described the process for degrees of reduction from 10 to 75 pet satisfactorily. It was observed that at a given particle size, the rate of reduction was controlled mainly by interfacial area up to about 40 pet reduction, after which the rate was dominated by diffusion. On the other hand, for a given degree of reduction, the contribution of the interfacial area to the rate increased, while that of diffusion decreased, with a decrease in the particle size. The value of the diffusion coefficient for the Fe2+ species at 1416 °C was calculated to be 2.63 x 10-2 cm2/s.

  10. [The use of natural and synthetic hydrophilic polymers in the formulation of metformin hydrochloride tablets with different profile release].

    PubMed

    Kołodziejczyk, Michał Krzysztof; Kołodziejska, Justyna; Zgoda, Marian Mikołaj

    2012-01-01

    Metformin hydrochloride after buformin and phenformin belongs to the group of biguanid derivatives used as oral anti-diabetic drugs. The object of the study is the technological analysis and the potential effect of biodegradable macromolecular polymers on the technological and therapeutic parameters of oral anti-diabetic medicinal products with metformin hydrochloride: Siofor, Formetic, Glucophage, Metformax in doses of 500mg and 1000mg and Glucophage XR in a dose of 500 mg of modified release. Market therapeutic products containing 500 and 1000 mg of metformin hydrochloride in a normal formulation and 500 mg of metformin hydrochloride in a formulation of modified release were analyzed. Following research methods were used: technological analysis of tablets, study of disintegration time of tablets, evaluation of pharmaceutical availability of metformin hydrochloride from tested therapeutic products, mathematical and kinetic analysis of release profiles of metformin hydrochloride, statistical analysis of mean differences of release coefficients. The percentage of excipients in the XR formulation is higher and constitutes 50.5% of a tablet mass. However, in standard formulations the percentage is lower, between 5.5% and 12.76%. On the basis of the results of disintegration time studies, the analysed therapeutic products can be divided into two groups, regardless the dose. The first one are preparations with faster (not fast!) disintegration: Glucophage i Metformax. The second group are preparations with slower disintegration, more balanced in the aspect of a high dose of the biologically active substance: Formetic and Siofor. Products with a lower content of excipients (Metformax, Glucophage) disintegrate in a faster way. The disintegration rate of the products with a higher content of excipients (Formetic, Siofor) is slower. The appearance of metformin hydrochloride concentration in the gastrointestinal contents, balanced in time, caused by a slower disintegration-dissolving of a tablet, is conducive to the reduction of gastrointestinal side effects and better tolerance of the therapeutic product by a patient. The study on pharmaceutical availability indicated relevant kinetic differences between tested therapeutic products. They are particularly visible between standard formulations and the one with prolonged release (Glucophage XR500). Its release profile bears features of kinetics similar to zero-order reactions. Tested therapeutic products contain a large amount of the biologically active substance in relation to the content of excipients. A higher content of excipients in a single tablet mass distinguishes Siofor in comparison with Glucophage i Metformax. The excipients used in the formulations of tested preparations are comparable. A higher percentage of binding agents (HPMC, PVP) is observed, but there is a lack of typical disintegrants which results in a longer disintegration time up to 15 minutes. Siofor disintegrates at the same time as Formetic, but longer than Glucophage i Metformax. Considering the large content of the active substance and pharmacological properties of metformin hydrochloride, such a disintegration might have beneficial consequences, because the amount of the free active substance in the gastrointestinal tract will increase over the longer time period what will reduce the level of gastrointestinal side effects. The release profiles of metformin hydrochloride from tested therapeutic products are comparable. The Glucophage XR 500 formulation with the release kinetics of metformin hydrochloride similar to the zero-order kinetics is completely different from the others. The above is confirmed by the mathematical analysis of release profiles of metformin hydrochloride from tested preparations where equations of lines describing the release profile are characterized by similar values of correlation coefficients.

  11. Defining Nitrogen Kinetics for Air Break in Prebreath

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2010-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe(PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. METHODS: Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without airbreaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and airbreaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the airbreak was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = (Delta)P defined decompression dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. RESULTS: The log likelihood (LL) without decompression dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. CONCLUSION: The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included airbreaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an airbreak in PB within the narrow range of tested conditions.

  12. Defining Nitrogen Kinetics for Air Break in Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny

    2009-01-01

    Actual tissue nitrogen (N2) kinetics are complex; the uptake and elimination is often approximated with a single half-time compartment in statistical descriptions of denitrogenation [prebreathe (PB)] protocols. Air breaks during PB complicate N2 kinetics. A comparison of symmetrical versus asymmetrical N2 kinetics was performed using the time to onset of hypobaric decompression sickness (DCS) as a surrogate for actual venous N2 tension. Published results of 12 tests involving 179 hypobaric exposures in altitude chambers after PB, with and without air breaks, provide the complex protocols from which to model N2 kinetics. DCS survival time for combined control and air breaks were described with an accelerated log logistic model where N2 uptake and elimination before, during, and after the air break was computed with a simple exponential function or a function that changed half-time depending on ambient N2 partial pressure. P1N2-P2 = delta P defined DCS dose for each altitude exposure, where P2 was the test altitude and P1N2 was computed N2 pressure at the beginning of the altitude exposure. The log likelihood (LL) without DCS dose (null model) was -155.6, and improved (best-fit) to -97.2 when dose was defined with a 240 min half-time for both N2 elimination and uptake during the PB. The description of DCS survival time was less precise with asymmetrical N2 kinetics, for example, LL was -98.9 with 240 min half-time elimination and 120 min half-time uptake. The statistical regression described survival time mechanistically linked to symmetrical N2 kinetics during PBs that also included air breaks. The results are data-specific, and additional data may change the conclusion. The regression is useful to compute additional PB time to compensate for an air break in PB within the narrow range of tested conditions.

  13. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    DOEpatents

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  14. Kinetics and mechanism of electron transfer reaction of single and double chain surfactant cobalt(III) complex by Fe2+ ions in liposome (dipalmitoylphosphotidylcholine) vesicles: effects of phase transition

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi

    2015-05-01

    In this study, we report the kinetics of reduction reactions of single and double chain surfactant cobalt(III) complexes of octahedral geometry, cis-[Co(en)2(4AMP)(DA)](ClO4)3 and cis-[Co(dmp)2(C12H25NH2)2](ClO4)3 (en = ethylenediamine, dmp = 1,3-diaminopropane, 4AMP = 4-aminopropane, C12H25NH2 = dodecylamine) by Fe2+ ion in dipalmitoylphosphotidylcholine (DPPC) vesicles at different temperatures under pseudo first-order conditions. The kinetics of these reactions is followed by spectrophotometry method. The reactions are found to be second order and the electron transfer is postulated as outer sphere. The remarkable findings in the present investigation are that, below the phase transition temperature of DPPC, the rate decreases with an increase in the concentration of DPPC, while above the phase transition temperature the rate increases with an increase in the concentration of DPPC. The main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes. Besides, comparing the values of rate constants of these outer-sphere electron transfer reactions in the absence and in the presence of DPPC, the rate constant values in the presence of DPPC are always found to be greater than in the absence of DPPC. This is ascribed to the double hydrophobic fatty acid chain in the DPPC that gives the molecule an overall tubular shape due to the intervesicular hydrophobic interaction between vesicles surface and hydrophobic part of the surfactant complexes more suitable for vesicle aggregation which facilitates lower activation energy, and consequently higher rate is observed in the presence of DPPC. The activation parameters (ΔS# and ΔH#) of the reactions at different temperatures have been calculated which corroborate the kinetics of the reaction.

  15. Complete Proteomic-Based Enzyme Reaction and Inhibition Kinetics Reveal How Monolignol Biosynthetic Enzyme Families Affect Metabolic Flux and Lignin in Populus trichocarpa[W

    PubMed Central

    Wang, Jack P.; Naik, Punith P.; Chen, Hsi-Chuan; Shi, Rui; Lin, Chien-Yuan; Liu, Jie; Shuford, Christopher M.; Li, Quanzi; Sun, Ying-Hsuan; Tunlaya-Anukit, Sermsawat; Williams, Cranos M.; Muddiman, David C.; Ducoste, Joel J.; Sederoff, Ronald R.; Chiang, Vincent L.

    2014-01-01

    We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants. PMID:24619611

  16. Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage.

    PubMed

    Remini, Hocine; Mertz, Christian; Belbahi, Amine; Achir, Nawel; Dornier, Manuel; Madani, Khodir

    2015-04-15

    The stability of ascorbic acid and colour intensity in pasteurised blood orange juice (Citrus sinensis [L.] Osbeck) during one month of storage was investigated at 4-37 °C. The effects of ascorbic acid fortification (at 100, 200 mg L(-1)) and deaeration, temperature/time storage on the kinetic behaviour were determined. Ascorbic acid was monitored by HPLC-DAD and colour intensity by spectrophotometric measurements. Degradation kinetics were best fitted by first-order reaction models for both ascorbic acid and colour intensity. Three models (Arrhenius, Eyring and Ball) were used to assess the temperature-dependent degradation. Following the Arrhenius model, activation energies were ranged from 51 to 135 kJ mol(-1) for ascorbic acid and from 49 to 99 kJ mol(-1) for colour intensity. The effect of storage temperature and deaeration are the most influent factors on kinetics degradation, while the fortification revealed no significant effect on ascorbic acid content and colour intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends with and without Impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Eric; Mathieu, Olivier; Morones, Anibal

    This Final Report documents the entire four years of the project, from October 1, 2013 through September 30, 2017. This project was concerned with the chemical kinetics of fuel blends with high-hydrogen content in the presence of impurities. Emphasis was also on the design and construction of a new, high-pressure turbulent flame speed facility and the use of ignition delay times and flame speeds to elucidate the diluent and impurity effects on the fuel chemistry at gas turbine engine conditions and to also validate the chemical kinetics models. The project was divided into five primary tasks: 1) Project Management andmore » Program Planning; 2) Turbulent Flame Speed Measurements at Atmospheric Pressure; 3) Experiments and Kinetics of Syngas Blends with Impurities; 4) Design and Construction of a High-Pressure Turbulent Flame Speed Facility; and 5) High-Pressure Turbulent Flame Speed Measurements. Details on the execution and results of each of these tasks are provided in the main report.« less

  18. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Chloroplast biogenesis at cold-hardening temperatures. Kinetics of trans-Δ3-hexadecenoic acid accumulation and the assembly of LHCII.

    PubMed

    Krol, M; Huner, N P; Williams, J P; Maissan, E

    1988-02-01

    Etiolated seedlings developed at cold-hardening temperatures (5°C) exhibited etioplasts with considerable vesiculation of internal membranes compared to etioplasts developed at 20°C regardless of the osmotic concentration employed during sample preparation. This vesiculation disappeared during exposure to continuous light at 5°C. This transformation of 5°C and 20°C etioplasts to chloroplasts under continuous light at 5° and 20°C respectively proceeded normally with the initial development of non-appressed lamellae and the subsequent appearance of granal stacks. However, chloroplasts developed at 5°C exhibited fewer lamellae per granum than chloroplasts developed at 20°C.Although the polypeptide complements of etioplasts and chloroplasts developed at 5° or 20°C were not significantly different, monomeric light harvesting complex (LHCII3) was assembled into oligomeric light harvesting complex (LHCII1) during chloroplast biogenesis at 20°C (oligomer:monomer =1.8) whereas monomeric LHCII predominated at 5°C (oligomer:monomer =0.3). Low temperature fluorescence emission spectra of isolated thylakoids indicated that both the F685/F735 and F695/F735 were significantly higher after greening at 5°C than at 20°C. In addition, chloroplast biogenesis at 5°C was associated with a low ratio of trans-Δ3-hexadecenoic acid (0.5) in phosphatidylglycerol whereas at 20°C biogenesis was associated with a high ratio (1.6). Comparative kinetics indicated that the maximization of the trans-Δ3-hexadecenoic acid level precedes the assembly of monomeric LHCII into oligomeric LHCII during biogenesis at 20°C. It is suggested that low developmental temperatures modulate the assembly of LHCII by reducing the trans-Δ3-hexadecenoic acid content of phosphatidylglycerol such that monomeric or some intermediate form of LHCII predominates.

  20. Kinetics of protein physicochemical changes induced by heating in meat using mimetic models: (1) relative effects of heat and oxidants.

    PubMed

    Promeyrat, A; Daudin, J D; Gatellier, P

    2013-05-01

    Optimizing the nutritional quality of cooked meat needs a better understanding of the mechanisms responsible for protein changes induced by heating. The relative contributions of chemical and thermal effects on protein physicochemical changes were studied using meat models. Two models were tested: a basic model made of an aqueous suspension of myofibrillar proteins, and a complex model, in which oxidants were added in physiological concentrations. Various heating time-temperature combinations were applied to both models in the ranges 45-90 °C and 5-120 min. Protein oxidation was evaluated by carbonyl and free thiol contents. Conformational changes of proteins were assessed by measurements of surface hydrophobicity and aggregation. Carbonyl formation was weakly affected by the thermal process alone but exacerbated by oxidants. A synergistic effect of oxidants and heat treatments on protein oxidation was noted. Changes in protein hydrophobicity and aggregation were dominated by the thermal process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Development of starch-gelatin complex microspheres as sustained release delivery system

    PubMed Central

    Hari, B. N. Vedha; Praneetha, T.; Prathyusha, T.; Mounika, K.; Devi, D. Ramya

    2012-01-01

    The starch was isolated from jackfruit seeds and evaluated for its preformulation properties, like tapped density, bulk density, and particle size. The fourier transform infrared (FTIR) analysis was done and compared with that of the commercially available starch which confirmed the properties. Using the various concentrations of jackfruit seed starch, the microspheres were prepared, combining with gelatin by ionotropic gelation technique. The developed microspheres were subjected to analysis of particle size, drug content, entrapment efficiency, and percentage yield. The spectral analysis confirmed the presence of drug and absence of interactions. Scanning electron microscope image showed that the particles were in spherical shape with a rough surface. The in vitro drug release in water for 12 hours proved to be in the range of 89 to 100%. The various kinetic models were applied using release data to confirm the mechanism of drug. It was concluded that the jackfruit starch-gelatin microspheres gave satisfactory results and met pharmacopieal limits. PMID:23057005

  2. Improved electrochemical properties of amorphous Mg 65Ni 27La 8 electrodes: Surface modification using graphite

    NASA Astrophysics Data System (ADS)

    Wu, D. C.; Li, Lu; Liang, G. Y.; Guo, Y. L.; Wu, H. B.

    Amorphous Mg 65Ni 27La 8 alloy is prepared by melt-spinning. The alloy surface is modified using different contents of graphite to improve the performances of the Mg 65Ni 27La 8 electrodes. In detail, the electrochemical properties of (Mg 65Ni 27La 8) + xC (x = 0-0.4) electrodes are studied systematically, where x is the mass ratio of graphite to alloy. Experimental results reveal that the discharge capacity, cycle life, discharge potential characteristics and electrochemical kinetics of the electrodes are all improved. The surface modification enhances the electrocatalytic activity of the alloy, reduces the contact resistance of the electrodes and obstructs the formation of Mg(OH) 2 on the alloy surface. An optimal content of graphite has been obtained. The (Mg 65Ni 27La 8) + 0.25 C electrode has the largest discharge capacity of 827 mA h g -1, which is 1.47 times as large as that of the electrode without graphite, and the best electrochemical kinetics. Further increasing of graphite content will lead to the increase of contact resistance and activation energy for charge-transfer reaction of the electrode, resulting in the degradation of electrode performance.

  3. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis.

    PubMed

    Berkemeier, Thomas; Ammann, Markus; Mentel, Thomas F; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-06-21

    The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.

  4. Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets.

    PubMed

    Ortiz, Jaime; Lemus-Mondaca, Roberto; Vega-Gálvez, Antonio; Ah-Hen, Kong; Puente-Diaz, Luis; Zura-Bravo, Liliana; Aubourg, Santiago

    2013-08-15

    In this work the drying kinetics of Atlantic salmon (Salmo salar L.) fillets and the influence of air drying temperature on colour, firmness and biochemical characteristics were studied. Experiments were conducted at 40, 50 and 60°C. Effective moisture diffusivity increased with temperature from 1.08×10(-10) to 1.90×10(-10) m(2) s(-1). The colour difference, determined as ΔE values (from 9.3 to 19.3), as well as firmness (from 25 to 75 N mm(-1)) of dried samples increased with dehydration temperature. The lightness value L(∗) and yellowness value b(∗) indicated formation of browning products at higher drying temperatures, while redness value a(∗) showed dependence on astaxanthin value. Compared with fresh fish samples, palmitic acid and tocopherol content decreased in a 20% and 40%, respectively, with temperature. While eicosapentaenoic acid (EPA) content remained unchanged and docosahexaenoic acid (DHA) content changed slightly. Anisidine and thiobarbituric acid values indicated the formation of secondary lipid oxidation products, which is more relevant for longer drying time than for higher drying temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Analysis of factors predicting speed of hematologic recovery after transplantation with 4-hydroperoxycyclophosphamide-purged autologous bone marrow grafts.

    PubMed

    Rowley, S D; Piantadosi, S; Marcellus, D C; Jones, R J; Davidson, N E; Davis, J M; Kennedy, J; Wiley, J M; Wingard, J R; Yeager, A M

    1991-03-01

    We previously described the predictive value of graft colony-forming units granulocyte macrophage (CFU-GM) content after 4-hydroperoxycyclophosphamide (4-HC) purging for the duration of aplasia after autologous bone marrow transplantation. Despite the uniform 4-HC concentration, we observed heterogeneity in CFU-GM survival and the kinetics of engraftment. We have now analysed patient and graft characteristics for 154 patients undergoing autologous transplantation with 4-HC purged grafts to further define this heterogeneity. Patients transplanted for the treatment of malignant lymphoma reached a peripheral blood granulocyte count of greater than 0.5 x 10(9)/l (median, 20 versus 40 days; p less than 0.001) and platelet transfusion independence (median, 30 versus 70 days; p less than 0.001) significantly faster than patients transplanted for acute non-lymphoblastic leukemia. Other diagnostic groups were intermediate. These differences were independent of graft CFU-GM content. Multiple other patient and graft factors including patient age, peripheral blood counts on day of harvest, and amounts of other hematopoietic progenitors also predicted the kinetics of engraftment in univariate and multivariate analysis. Cytomegalovirus infection during the aplastic period predicted a delay in granulocyte (p = 0.024) but not platelet recovery (p = 0.174). This analysis demonstrates that multiple patient, graft, and post-transplant factors predict the engraftment capacity of autografts, and the kinetics of engraftment with 4-HC purged grafts. The multiple predictive factors explain a significant portion of the variability in engraftment kinetics observed after transplantation with 4-HC purged autografts.

  6. Influence of chemical composition of zirconium alloy E110 on embrittlement under LOCA conditions - Part 1: Oxidation kinetics and macrocharacteristics of structure and fracture

    NASA Astrophysics Data System (ADS)

    Nikulin, S. A.; Rozhnov, A. B.; Belov, V. A.; Li, E. V.; Glazkina, V. S.

    2011-11-01

    Exploratory investigations of the influence of alloying and impurity content in the E110 alloy cladding tubes on the behavior under conditions of Loss of Coolant Accidents (LOCA) has been performed. Three alloys of E110 type have been tested: E110 alloy of nominal composition Zr-1%Nb (E110), E110 alloy of modified composition Zr-1%Nb-0.12%Fe-0.13%O (E110M), E110 alloy of nominal composition Zr-1%Nb with reduced impurity content (E110G). Alloys E110 and E110M were manufactured on the electrolytic basis and alloy E110G was manufactured on the basis of zirconium sponge. The high temperature oxidation tests in steam ( T = 1100 °C, 18% of equivalent cladding reacted (ECR)) have been conducted, kinetics of oxidation was investigated. Quantitative research of structure and fracture macrocharacteristics was performed by means of optical and electron microscopy. The results received were compared with the residual ductility of specimens. The results of the investigation showed the existence of "breakaway oxidation" kinetics and white spalling oxide in E110 and E110M alloys while the specimen oxidation kinetics in E110G alloy was characterized by a parabolic law and specimens had a dense black oxide. Oxygen and iron alloying in the E110 alloy positively changed the macrocharacteristics of structure and fracture. However, in general, it did not improve the resistance to embrittlement in LOCA conditions apparently because of a strong impurity influence caused by electrolytic process of zirconium production.

  7. Genomic Variation, Host Range, and Infection Kinetics of Closely Related Cyanopodoviruses from New England Coastal Waters

    NASA Astrophysics Data System (ADS)

    Veglia, A. J.; Milford, C. R.; Marston, M.

    2016-02-01

    Viruses infecting marine Synechococcus are abundant in coastal marine environments and influence the community composition and abundance of their cyanobacterial hosts. In this study, we focused on the cyanopodoviruses which have smaller genomes and narrower host ranges relative to cyanomyoviruses. While previous studies have compared the genomes of diverse podoviruses, here we analyzed the genomic variation, host ranges, and infection kinetics of podoviruses within the same OTU. The genomes of fifty-five podoviral isolates from the coastal waters of New England were fully sequenced. Based on DNA polymerase gene sequences, these isolates fall into five discrete OTUs (termed RIP - Rhode Island Podovirus). Although all the isolates belonging to the same RIP have very similar DNA polymerase gene sequences (>98% sequence identity), differences in genome content, particularly in regions associated with tail fiber genes, were observed among isolates in the same RIP. Host range tests reveal variation both across and within RIPs. Notably within RIP1, isolates that had similar tail fiber regions also had similar host ranges. Isolates belonging to RIP4 do not contain the host-derived psbA photosynthesis gene, while isolates in the other four RIPs do possess a psbA gene. Nevertheless, infection kinetic experiments suggest that the latent period and burst size for RIP4 isolates are similar to RIP1 isolates. We are continuing to investigate the correlations among genome content, host range, and infection kinetics of isolates belonging to the same OTU. Our results to date suggest that there is substantial genomic variation within an OTU and that this variation likely influences cyanopodoviral - host interactions.

  8. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants

    USGS Publications Warehouse

    Li, H.; Sheng, G.; Chiou, C.T.; Xu, O.

    2005-01-01

    Plant uptake is one of the environmental processes that influence contaminant fate. Understanding the magnitude and rate of plant uptake is critical to assessing potential crop contamination and the development of phytoremediation technologies. We determined (1) the partition-dominated equilibrium sorption of lindane (LDN) and hexachlorobenzene (HCB) by roots and shoots of wheat seedlings, (2) the kinetic uptake of LDN and HCB by roots and shoots of wheat seedlings, (3) the kinetic uptake of HCB, tetrachloroethylene (PCE), and trichloroethylene (TCE) by roots and shoots of ryegrass seedlings, and (4) the lipid, carbohydrate, and water contents of the plants. Although the determined sorption and the plant composition together suggest the predominant role of plant lipids for the sorption of LDN and HCB, the predicted partition with lipids of LDN and HCB using the octanol-water partition coefficients is notably lower than the measured sorption, due presumably to underestimation of the plant lipid contents and to the fact that octanol is less effective as a partition medium than plant lipids. The equilibrium sorption or the estimated partition can be viewed as the kinetic uptake limits. The uptakes of LDN, PCE, and TCE from water at fixed concentrations increased with exposure time in approach to steady states. The uptake of HCB did not reach a plateau within the tested time because of its exceptionally high partition coefficient. In all of the cases, the observed uptakes were lower than their respective limits, due presumably to contaminant dissipation in and limited water transpiration by the plants. ?? 2005 American Chemical Society.

  9. Mixed La-Li heterobimetallic complexes for tertiary nitroaldol resolution.

    PubMed

    Tosaki, Shin-ya; Hara, Keiichi; Gnanadesikan, Vijay; Morimoto, Hiroyuki; Harada, Shinji; Sugita, Mari; Yamagiwa, Noriyuki; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2006-09-13

    A kinetic resolution of tertiary nitroaldols derived from simple ketones is described. Mixed BINOL/biphenol La-Li heterobimetallic complexes gave the best selectivity in retro-nitroaldol reactions of racemic tertiary nitroaldols. By using a mixture of La-Li3-(1a)3 complex (LLB 2a) and La-Li3-(1b)3 (LLB* 2b) complex in a ratio of 2/1, chiral tertiary nitroaldols were obtained in 80-97% ee and 30-47% recovery yield.

  10. Kinetics of FeII-polyaminocarboxylate oxidation by molecular oxygen

    NASA Astrophysics Data System (ADS)

    Wilson, Jessica M.; Farley, Kevin J.; Carbonaro, Richard F.

    2018-03-01

    Complexation of iron by naturally-occurring and synthetic organic ligands has a large effect on iron oxidation and reduction rates which in turn affect the aqueous geochemistry of many other chemical constituents. In this study, the kinetics of FeII oxidation in the presence of the polyaminocarboxylate synthetic chelating agents ethylene glycol tetraacetic acid (EGTA) and trimethylenediamine-N,N,N‧,N‧-tetraacetic acid (TMDTA) was investigated over the pH range 5.50-8.53. Batch oxidation experiments in the presence of molecular oxygen were conducted using a 2:1 M concentration ratio of polyaminocarboxylate (ligand, L) to FeII. The experimental data resembled first order kinetics for the oxidation of FeII-L to FeIII-L and observed rate constants at pH 6.0 were comparable to rate constants for the oxidation of inorganic FeII. Similar to other structurally-similar FeII-polyaminocarboxylate complexes, oxidation rates of FeII-EGTA and FeII-TMDTA decrease with increasing pH, which is the opposite trend for the oxidation of FeII complexed with inorganic ligands. However, the oxidation rates of FeII complexed with EGTA and TMDTA were considerably lower (4-5 orders of magnitude) than FeII complexed to ethylenediaminetetraacetic acid (EDTA). The distinguishing feature of the slower-reacting complexes is that they have a longer backbone between diamine functional groups. An analytical equilibrium model was developed to determine the contributions of the species FeIIL2- and FeII(H)L- to the overall oxidation rate of FeII-L. Application of this model indicated that the protonated FeII(H)L species are more than three orders of magnitude more reactive than FeIIL2-. These rate constants were used in a coupled kinetic equilibrium numerical model where the ligand to iron ratio (TOTL:TOTFe) and pH were varied to evaluate the effect on the FeII oxidation rate. Overall, increasing TOTL:TOTFe for EGTA and TMDTA enhances FeII oxidation rates at lower pH and inhibits FeII oxidation rates at higher pH. Finally, this work demonstrates that the rate of FeII oxidation is very sensitive to the identity and structure of the polyaminocarboxylate chelating agent, which has implications for any metal or organic chemical that reacts either directly or indirectly with iron.

  11. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines.

    PubMed

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Suárez-Lepe, Jose Antonio; Han, Shunyu; Benito, Santiago

    2018-02-01

    Today, many non-Saccharomyces strains have been verified can be positive for the development of wine anthocyanin and aroma in different fermentation scenarios. Moreover, oenological tannins are widely used in wine industry to improve the colour profile and aroma complexity. The aim of this work is to analyze the fermentation characters of non-Saccharomyces strains and investigate the effects of pre-fermentative addition of oenological tannins on the wine components as well as sensory properties. For this purpose, five selected non-Saccharomyces strains and grape seed tannin were used to carry out the different fermentation trials. As a result, the grape seed tannin were less likely to influence growth kinetics of non-Saccharomyces strains. Schizosaccharomyces pombe has been proved can be effective to reduce the malic acid content while increase the level of vinylphenolic pyranoanthocyanin, which is positive for wine colour stability. Pre-fermentative use of oenological tannin was verified could be beneficial for the wines fermented with non-Saccharomyces regarding the improvement of wine colour, anthocyanin composition and the complexity of volatile compounds. Nevertheless, sensory analysis showed that oenological tannin could be less effective to modify the aroma impression of non-Saccharomyces wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Single-particle fusion of influenza viruses reveals complex interactions with target membranes

    NASA Astrophysics Data System (ADS)

    van der Borg, Guus; Braddock, Scarlett; Blijleven, Jelle S.; van Oijen, Antoine M.; Roos, Wouter H.

    2018-05-01

    The first step in infection of influenza A virus is contact with the host cell membrane, with which it later fuses. The composition of the target bilayer exerts a complex influence on both fusion efficiency and time. Here, an in vitro, single-particle approach is used to study this effect. Using total internal reflection fluorescence (TIRF) microscopy and a microfluidic flow cell, the hemifusion of single virions is visualized. Hemifusion efficiency and kinetics are studied while altering target bilayer cholesterol content and sialic-acid donor. Cholesterol ratios tested were 0%, 10%, 20%, and 40%. Sialic-acid donors GD1a and GYPA were used. Both cholesterol ratio and sialic-acid donors proved to have a significant effect on hemifusion efficiency. Furthermore, comparison between GD1a and GYPA conditions shows that the cholesterol dependence of the hemifusion time is severely affected by the sialic-acid donor. Only GD1a shows a clear increasing trend in hemifusion efficiency and time with increasing cholesterol concentration of the target bilayer with maximum rates for GD1A and 40% cholesterol. Overall our results show that sialic acid donor and target bilayer composition should be carefully chosen, depending on the desired hemifusion time and efficiency in the experiment.

  13. Methods and applications of HPLC-AMS (WBio 5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucholz, B A; Clifford, A J; Duecker, S R

    Pharmacokinetics of physiologic doses of nutrients, pesticides, and herbicides can easily be traced in humans using a {sup 14}C-labelled compound. Basic kinetics can be monitored in blood or urine by measuring the elevation in the {sup 14}C content above the control predose tissue and converting to equivalents of the parent compound. High Performance Liquid Chromatography (HPLC) is an excellent method for the chemical separation of complex mixtures whose profiles afford estimation of biochemical pathways of metabolism. Compounds elute from the HPLC systems with characteristic retention times and can be collected in fractions that can then be graphitized for AMS measurement.more » Unknowns are identified by coelution with known standards and chemical tests that reveal functional groupings. Metabolites are quantified with the {sup 14}C signal. Thoroughly accounting for the carbon inventory in the LC solvents, ion-pairing agents, samples, and carriers adds some complexity to the analysis. In most cases the total carbon inventory is dominated by carrier. Baseline background and stability need to be carefully monitored. Limits of quantitation near 10 amol of {sup 14}C per HPLC fraction are typically achieved. Baselines are maintained by limiting injected {sup 14}C activity <0.17 Bq (4.5 pCi) on the HPLC column.« less

  14. Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter.

    PubMed

    Nagampalli, Raghavendra Sashi Krishna; Quesñay, José Edwin Neciosup; Adamoski, Douglas; Islam, Zeyaul; Birch, James; Sebinelli, Heitor Gobbi; Girard, Richard Marcel Bruno Moreira; Ascenção, Carolline Fernanda Rodrigues; Fala, Angela Maria; Pauletti, Bianca Alves; Consonni, Sílvio Roberto; de Oliveira, Juliana Ferreira; Silva, Amanda Cristina Teixeira; Franchini, Kleber Gomes; Leme, Adriana Franco Paes; Silber, Ariel Mariano; Ciancaglini, Pietro; Moraes, Isabel; Dias, Sandra Martha Gomes; Ambrosio, Andre Luis Berteli

    2018-02-22

    The active transport of glycolytic pyruvate across the inner mitochondrial membrane is thought to involve two mitochondrial pyruvate carrier subunits, MPC1 and MPC2, assembled as a 150 kDa heterotypic oligomer. Here, the recombinant production of human MPC through a co-expression strategy is first described; however, substantial complex formation was not observed, and predominantly individual subunits were purified. In contrast to MPC1, which co-purifies with a host chaperone, we demonstrated that MPC2 homo-oligomers promote efficient pyruvate transport into proteoliposomes. The derived functional requirements and kinetic features of MPC2 resemble those previously demonstrated for MPC in the literature. Distinctly, chemical inhibition of transport is observed only for a thiazolidinedione derivative. The autonomous transport role for MPC2 is validated in cells when the ectopic expression of human MPC2 in yeast lacking endogenous MPC stimulated growth and increased oxygen consumption. Multiple oligomeric species of MPC2 across mitochondrial isolates, purified protein and artificial lipid bilayers suggest functional high-order complexes. Significant changes in the secondary structure content of MPC2, as probed by synchrotron radiation circular dichroism, further supports the interaction between the protein and ligands. Our results provide the initial framework for the independent role of MPC2 in homeostasis and diseases related to dysregulated pyruvate metabolism.

  15. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model.

    PubMed

    Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi

    2017-09-19

    Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.

  16. The Kinetic Chain Revisited: New Concepts on Throwing Mechanics and Injury.

    PubMed

    Chu, Samuel K; Jayabalan, Prakash; Kibler, W Ben; Press, Joel

    2016-03-01

    The overhead throwing motion is a complex activity that is achieved through activation of the kinetic chain. The kinetic chain refers to the linkage of multiple segments of the body that allows for transfer of forces and motion. The lower extremities and core provide a base of support, generating energy that is transferred eventually through the throwing arm and hand, resulting in release of the ball. The kinetic chain requires optimal anatomy, physiology, and mechanics and is involved in all 6 phases of overhead throwing: windup, stride, arm cocking, acceleration, deceleration, and follow-through. Breaks or deficits in the kinetic chain can lead to injury or decreased performance. Through an understanding of the mechanics and pathomechanics seen in each phase of throwing, the clinician can better evaluate and screen for potential kinetic chain deficits in the overhead throwing athlete. The purpose of this article is to review the biomechanics of the overhead throwing motion, the role of the kinetic chain in throwing, and the clinical evaluation and management of abnormal throwing mechanics and related injuries. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Assessing Complexity in Learning Outcomes--A Comparison between the SOLO Taxonomy and the Model of Hierarchical Complexity

    ERIC Educational Resources Information Center

    Stålne, Kristian; Kjellström, Sofia; Utriainen, Jukka

    2016-01-01

    An important aspect of higher education is to educate students who can manage complex relationships and solve complex problems. Teachers need to be able to evaluate course content with regard to complexity, as well as evaluate students' ability to assimilate complex content and express it in the form of a learning outcome. One model for evaluating…

  18. Clustering of low-valence particles: structure and kinetics.

    PubMed

    Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François

    2014-08-01

    We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.

  19. Navigating ligand protein binding free energy landscapes: universality and diversity of protein folding and molecular recognition mechanisms

    NASA Astrophysics Data System (ADS)

    Verkhivker, Gennady M.; Rejto, Paul A.; Bouzida, Djamal; Arthurs, Sandra; Colson, Anthony B.; Freer, Stephan T.; Gehlhaar, Daniel K.; Larson, Veda; Luty, Brock A.; Marrone, Tami; Rose, Peter W.

    2001-03-01

    Thermodynamic and kinetic aspects of ligand-protein binding are studied for the methotrexate-dihydrofolate reductase system from the binding free energy profile constructed as a function of the order parameter. Thermodynamic stability of the native complex and a cooperative transition to the unique native structure suggest the nucleation kinetic mechanism at the equilibrium transition temperature. Structural properties of the transition state ensemble and the ensemble of nucleation conformations are determined by kinetic simulations of the transmission coefficient and ligand-protein association pathways. Structural analysis of the transition states and the nucleation conformations reconciles different views on the nucleation mechanism in protein folding.

  20. Regulation of GLUT4 activity in myotubes by 3-O-methyl-d-glucose.

    PubMed

    Shamni, Ofer; Cohen, Guy; Gruzman, Arie; Zaid, Hilal; Klip, Amira; Cerasi, Erol; Sasson, Shlomo

    2017-10-01

    The rate of glucose influx to skeletal muscles is determined primarily by the number of functional units of glucose transporter-4 (GLUT4) in the myotube plasma membrane. The abundance of GLUT4 in the plasma membrane is tightly regulated by insulin or contractile activity, which employ distinct pathways to translocate GLUT4-rich vesicles from intracellular compartments. Various studies have indicated that GLUT4 intrinsic activity is also regulated by conformational changes and/or interactions with membrane components and intracellular proteins in the vicinity of the plasma membrane. Here we show that the non-metabolizable glucose analog 3-O-methyl-d-glucose (MeGlc) augmented the rate of hexose transport into myotubes by increasing GLUT4 intrinsic activity without altering the content of the transporter in the plasma membrane. This effect was not a consequence of ATP depletion or hyperosmolar stress and did not involve Akt/PKB or AMPK signal transduction pathways. MeGlc reduced the inhibitory potency (increased K i ) of indinavir, a selective inhibitor of GLUT4, in a dose-dependent manner. Kinetic analyses indicate that MeGlc induced changes in GLUT4 or GLUT4 complexes within the plasma membrane, which enhanced the hexose transport activity and reduced the potency of indinavir inhibition. Finally, we present a simple kinetic analysis for screening and discovering low molecular weight compounds that augment GLUT4 activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Computational Design of a Novel Medium-Carbon, Low-Alloy Steel Microalloyed with Niobium

    NASA Astrophysics Data System (ADS)

    Javaheri, Vahid; Nyyssönen, Tuomo; Grande, Bjørnar; Porter, David

    2018-04-01

    The design of a new steel with specific properties is always challenging owing to the complex interactions of many variables. In this work, this challenge is dealt with by combining metallurgical principles with computational thermodynamics and kinetics to design a novel steel composition suitable for thermomechanical processing and induction heat treatment to achieve a hardness level in excess of 600 HV with the potential for good fracture toughness. CALPHAD-based packages for the thermodynamics and kinetics of phase transformations and diffusion, namely Thermo-Calc® and JMatPro®, have been combined with an interdendritic segregation tool (IDS) to optimize the contents of chromium, molybdenum and niobium in a proposed medium-carbon low-manganese steel composition. Important factors taken into account in the modeling and optimization were hardenability and as-quenched hardness, grain refinement and alloying cost. For further investigations and verification, the designed composition, i.e., in wt.% 0.40C, 0.20Si, 0.25Mn, 0.90Cr, 0.50Mo, was cast with two nominal levels of Nb: 0 and 0.012 wt.%. The results showed that an addition of Nb decreases the austenite grain size during casting and after slab reheating prior to hot rolling. Validation experiments showed that the predicted properties, i.e., hardness, hardenability and level of segregation, for the designed composition were realistic. It is also demonstrated that the applied procedure could be useful in reducing the number of experiments required for developing compositions for other new steels.

  2. Degradation of the insecticide propoxur by electrochemical advanced oxidation processes using a boron-doped diamond/air-diffusion cell.

    PubMed

    Guelfi, Diego Roberto Vieira; Gozzi, Fábio; Sirés, Ignasi; Brillas, Enric; Machulek, Amílcar; de Oliveira, Silvio César

    2017-03-01

    A solution with 0.38 mM of the pesticide propoxur (PX) at pH 3.0 has been comparatively treated by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF), and photoelectro-Fenton (PEF). The trials were carried out with a 100-mL boron-doped diamond (BDD)/air-diffusion cell. The EO-H 2 O 2 process had the lowest oxidation ability due to the slow reaction of intermediates with • OH produced from water discharge at the BDD anode. The EF treatment yielded quicker mineralization due to the additional • OH formed between added Fe 2+ and electrogenerated H 2 O 2 . The PEF process was the most powerful since it led to total mineralization by the combined oxidative action of hydroxyl radicals and UVA irradiation. The PX decay agreed with a pseudo-first-order kinetics in EO-H 2 O 2 , whereas in EF and PEF, it obeyed a much faster pseudo-first-order kinetics followed by a much slower one, which are related to the oxidation of its Fe(II) and Fe(III) complexes, respectively. EO-H 2 O 2 showed similar oxidation ability within the pH range 3.0-9.0. The effect of current density and Fe 2+ and substrate contents on the performance of the EF process was examined. Two primary aromatic products were identified by LC-MS during PX degradation.

  3. Beneficial use of meat and bone meal combustion residue: "an efficient low cost material to remove lead from aqueous effluent".

    PubMed

    Deydier, Eric; Guilet, Richard; Sharrock, Patrick

    2003-07-04

    Meat and bone meal (MBM) combustion residues, a natural apatite-rich substance, was evaluated as a low cost substitute for hydroxyapatite in lead sequestration from water effluents. The thermal behaviour of crude meat and bone meal was followed by TGA and 24% inorganic residue was collected. The resulting ashes were characterised by powder X-ray diffraction (XRD), particle size distribution, specific surface area (BET), and elemental analysis confirming apatite contents, with high level of phosphate (56.3%) and calcium (36.8%). Mechanism and kinetics of lead removal by this bioinorganic material were investigated and compared to mechanisms and kinetics involved with synthetic apatite. Batch metal removal experiments were carried out with 500 and 1500ppm (mg/kg) Pb(2+) solutions. Lead concentration, calcium and pH were monitored. We observed that the mechanism is similar to that occurring for pure apatite, and involved both surface complexation and calcium hydroyapatite (CaHA), Ca(10)(PO(4))(6)(OH)(2), dissolution followed by less soluble Pb(10)(PO(4))(6)(OH)(2) precipitation, as confirmed by XRD analysis of ashes after incubation with lead solution. Our results show that this natural apatite-rich material removes in a few minutes a large quantity of lead (275mg/g capacity) which remains however lower than the theoretical maximum capacity (if calcium were totally substituted by lead). Meat and bone meal combustion residues represent a valuable alternative apatite source for environmental application.

  4. Polymerization- and Solvent-Induced Phase Separation in Hydrophilic-rich Dentin Adhesive Mimic

    PubMed Central

    Abedin, Farhana; Ye, Qiang; Good, Holly J; Parthasarathy, Ranganathan; Spencer, Paulette

    2014-01-01

    Current dental resin undergoes phase separation into hydrophobic-rich and hydrophilic-rich phases during infiltration of the over-wet demineralized collagen matrix. Such phase separation undermines the integrity and durability of the bond at the composite/tooth interface. This study marks the first time that the polymerization kinetics of model hydrophilic-rich phase of dental adhesive has been determined. Samples were prepared by adding varying water content to neat resins made from 95 and 99wt% hydroxyethylmethacrylate (HEMA) and 5 and 1wt% (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl1]-propane (BisGMA) prior to light curing. Viscosity of the formulations decreased with increased water content. The photo-polymerization kinetics study was carried out by time-resolved FTIR spectrum collector. All of the samples exhibited two-stage polymerization behavior which has not been reported previously for dental resin formulation. The lowest secondary rate maxima were observed for water content of 10-30%wt. Differential scanning calorimetry (DSC) showed two glass transition temperatures for the hydrophilic-rich phase of dental adhesive. The DSC results indicate that the heterogeneity within the final polymer structure decreased with increased water content. The results suggest a reaction mechanism involving both polymerization-induced phase separation (PIPs) and solvent-induced phase separation (SIPs) for the model hydrophilic-rich phase of dental resin. PMID:24631658

  5. Impurity incorporation, deposition kinetics, and microstructural evolution in sputtered Ta films

    NASA Astrophysics Data System (ADS)

    Whitacre, Jay Fredric

    There is an increasing need to control the microstructure in thin sputtered Ta films for application as high-temperature coatings or diffusion barriers in microelectronic interconnect structures. To this end, the relationship between impurity incorporation, deposition kinetics, and microstructural evolution was examined for room-temperature low growth rate DC magnetron sputtered Ta films. Impurity levels present during deposition were controlled by pumping the chamber to various base pressures before growth. Ar pressures ranging from 2 to 20 mTorr were used to create contrasting kinetic environments in the sputter gas. This affected both the distribution of adatom kinetic energies at the substrate as well as the rate of impurity desorption from the chamber walls: at higher Ar pressures adatoms has lower kinetic energies, and there was an increase in impurity concentration. X-ray diffraction, high-resolution transmission electron microscopy (HREM), transmission electron diffraction (TED), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and x-ray photoelectron. spectroscopy (XPS) were used to examine film crystallography, microstructure, and composition. A novel laboratory-based in-situ x-ray diffractometer was constructed. This new set-up allowed for the direct observation of microstructural evolution during growth. Films deposited at increasingly higher Ar pressures displayed a systematic decrease in grain size and degree of texturing, while surface morphology was found to vary from a nearly flat surface to a rough surface with several length scales of organization. In-situ x-ray results showed that the rate of texture evolution was found to be much higher in films grown using lower Ar pressures. These effects were studied in films less than 200 A thick using high resolution x-ray diffraction in conjunction with a synchrotron light source (SSRL B.L. 7-2). Films grown using higher Ar pressures (above 10 mTorr) with a pre-growth base pressure of 1 x 10--6 Torr had grains less than 10 nm in diameter and significant amorphous content Calculated radial distribution functions show a significant increase in average inter-atomic spacing in films grown using higher base pressures and Ar pressures. The amorphous content in the films was determined via comparison between ideal crystalline diffraction patterns and actual data. Thinner films grown at higher Ar pressures had relatively greater amorphous content. Real-time process control using the in-situ diffractometer was also demonstrated. The effects observed are discussed in the context of previous theories and experiments that document room-temperature sputter film growth. The changes in film microstructure observed were impurity mediated. Specifically, oxygen desorbed from the chamber walls during growth were incorporated into the film and subsequently limited grain development and texturing. A second phase consisting of amorphous Ta2O5 formed between the grain nuclei. Adatom kinetics played a role in determining surface morphology: at low Ar pressures (2 mTorr) significant adatom kinetic energies served to flattened the film surface, though impurity levels dominated grain development even in these conditions.

  6. Solid state isostructural behavior and quantified limiting substitution kinetics in Schiff-base bidentate ligand complexes fac-[Re(O,N-Bid)(CO)3(MeOH)](n).

    PubMed

    Brink, Alice; Visser, Hendrik G; Roodt, Andreas

    2014-12-01

    A range of N,O-donor atom salicylidene complexes of the type fac-[M(O,N-Bid)(CO)3(L)](n) (O,N-Bid = anionic N,O-bidentate ligands; L = neutral coordinated ligand) have been studied. The unique feature of the complexes which crystallize in a monoclinic isostructural space group for complexes containing methanol in the sixth position (L = MeOH) is highlighted. The reactivity and stability of the complexes were evaluated by rapid stopped-flow techniques, and the methanol substitution by a range of pyridine type ligands indicates significant activation by the N,O-salicylidene type of bidentate ligands as observed from the variation in the second-order rate constants. In particular, following the introduction of the sterically demanding and electron rich cyclohexyl salicylidene moiety on the bidentate ligand, novel limiting kinetic behavior is displayed by all entering ligands, thus enabling a systematic probe and manipulation of the limiting kinetic constants. Clear evidence of an interchange type of intimate mechanism for the methanol substitution is produced. The equilibrium and rate constants (25 °C) for the two steps in the dissociative interchange mechanism for methanol substitution in fac-[Re(Sal-Cy)(CO)3(MeOH)] (5) by the pyridine type ligands 3-chloropyridine, pyridine, 4-picoline, and DMAP are k3 (s(-1)), 40 ± 4, 13 ± 2, 10.4 ± 0.7, and 2.11 ± 0.09, and K2 (M(-1)), 0.13 ± 0.01, 0.21 ± 0.03, 0.26 ± 0.02, and 1.8 ± 0.1, respectively.

  7. Multiple choice questions can be designed or revised to challenge learners' critical thinking.

    PubMed

    Tractenberg, Rochelle E; Gushta, Matthew M; Mulroney, Susan E; Weissinger, Peggy A

    2013-12-01

    Multiple choice (MC) questions from a graduate physiology course were evaluated by cognitive-psychology (but not physiology) experts, and analyzed statistically, in order to test the independence of content expertise and cognitive complexity ratings of MC items. Integration of higher order thinking into MC exams is important, but widely known to be challenging-perhaps especially when content experts must think like novices. Expertise in the domain (content) may actually impede the creation of higher-complexity items. Three cognitive psychology experts independently rated cognitive complexity for 252 multiple-choice physiology items using a six-level cognitive complexity matrix that was synthesized from the literature. Rasch modeling estimated item difficulties. The complexity ratings and difficulty estimates were then analyzed together to determine the relative contributions (and independence) of complexity and difficulty to the likelihood of correct answers on each item. Cognitive complexity was found to be statistically independent of difficulty estimates for 88 % of items. Using the complexity matrix, modifications were identified to increase some item complexities by one level, without affecting the item's difficulty. Cognitive complexity can effectively be rated by non-content experts. The six-level complexity matrix, if applied by faculty peer groups trained in cognitive complexity and without domain-specific expertise, could lead to improvements in the complexity targeted with item writing and revision. Targeting higher order thinking with MC questions can be achieved without changing item difficulties or other test characteristics, but this may be less likely if the content expert is left to assess items within their domain of expertise.

  8. Complex Event Processing for Content-Based Text, Image, and Video Retrieval

    DTIC Science & Technology

    2016-06-01

    NY): Wiley- Interscience; 2000. Feldman R, Sanger J. The text mining handbook: advanced approaches in analyzing unstructured data. New York (NY...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval...ARL-TR-7705 ● JUNE 2016 US Army Research Laboratory Complex Event Processing for Content-Based Text , Image, and Video Retrieval

  9. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William; Lukin, Vyacheslav S.

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

  10. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.

    PubMed

    Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda

    2014-01-01

    Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.

  11. Linear prediction and single-channel recording.

    PubMed

    Carter, A A; Oswald, R E

    1995-08-01

    The measurement of individual single-channel events arising from the gating of ion channels provides a detailed data set from which the kinetic mechanism of a channel can be deduced. In many cases, the pattern of dwells in the open and closed states is very complex, and the kinetic mechanism and parameters are not easily determined. Assuming a Markov model for channel kinetics, the probability density function for open and closed time dwells should consist of a sum of decaying exponentials. One method of approaching the kinetic analysis of such a system is to determine the number of exponentials and the corresponding parameters which comprise the open and closed dwell time distributions. These can then be compared to the relaxations predicted from the kinetic model to determine, where possible, the kinetic constants. We report here the use of a linear technique, linear prediction/singular value decomposition, to determine the number of exponentials and the exponential parameters. Using simulated distributions and comparing with standard maximum-likelihood analysis, the singular value decomposition techniques provide advantages in some situations and are a useful adjunct to other single-channel analysis techniques.

  12. A two-fluid study of oblique tearing modes in a force-free current sheet

    DOE PAGES

    Akçay, Cihan; Daughton, William; Lukin, Vyacheslav S.; ...

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Because kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicatemore » that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. As a results this theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.« less

  13. Study of Cleanliness of High Nitrogen Steel in ESR

    NASA Astrophysics Data System (ADS)

    Xuwei, Tang; Rong, Zhu

    This paper compares inclusions in high nitrogen steel before and after ESR process, analyzes the influence of slag systems and total oxygen content in consumable ingots. The total oxygen content is reduced apparently during ESR process, which indicates good effects on removal of inclusions. In the experiment, it shows that different slag systems will affect the result of inclusions removal significantly; proper w(CaO/Al2O3) will reduce the level of inclusions and total oxygen content in ESR ingots. In ESR process, the type and chemical composition of inclusions have no difference when oxygen content in consumable ingots is different, which means O content in consumable ingots have no direct relationship with cleanliness of ESR ingots. In typical inclusions, w(MnO)/w(MnO+Al2O3)≈0.23 0.32. The total oxygen content of ESR ingots keeps between 20 30ppm when the oxygen contents in consumable ingots are diverse from 40 to 100ppm. Meanwhile, this paper studies desulfurization process of high nitrogen steel in ESR, analyzes the influence of slag systems a nd remelting rates on desulfurization efficiency. The results indicate that the average size and quant ity of sulfide inclusion decrease after ESR process. The typical inclusion after ESR process is MnS+Al2O3. Slag system with proper CaO content has higher sulfur partition ratio, which leads to better desulfurization effect. The desulfurization rate changes greatly with different remelting rates, which indicates the kinetic parameter has more influence in desulfurization. The reason of this phenomenon is that the process of desulfurization can be considered as a non-equilibrium reaction, which differs with thermodynamic equilibrium. In kinetic study, it is founded that the desulfurization efficiency increases with higher remelting area, sulfur partition and lower remelting rate, which is different from experiment. The desulfurization efficiency decreases firstly and then recovers when remelting rate drops. The enrichment of sulfide in slag results in resulfurization in steel, which leads to lower desulfurization efficiency.

  14. Complexation of rice starch/flour and maize oil through heat moisture treatment: Structural, in vitro digestion and physicochemical properties.

    PubMed

    Chen, Xu; He, Xiaowei; Fu, Xiong; Zhang, Bin; Huang, Qiang

    2017-05-01

    This study investigated structural, in vitro digestion and physicochemical properties of normal rice starch (NRS)/flour (NRF) complexed with maize oil (MO) through heat-moisture treatment (HMT). The NRS-/NRF-MO complex displayed an increased pasting temperature and a decreased peak viscosity. After HMT, less ordered Maltese and more granule fragments were observed for NRS-/NRF-MO complex. Meanwhile, more aggregation was observed in the HMT samples with higher moisture contents. We found that higher onset temperature, lower enthalpy change and relative crystallinity of the NRS-/NRF-MO complex were associated with a higher moisture content of HMT samples. The higher moisture content of HMT was also favorable for the amylose-lipid complex formation. Differences in starch digestion properties were found for NRS-MO and NRF-MO complex. All of the NRS/NRF complexed MO after cooking showed lower rapidly digestible starch (RDS) contents compared with the control sample, therein NRS-/NRF- MO 20% exhibited the highest sum of the slowly digestible starch and resistant starch contents. In general, HMT had a greater impact on the in vitro digestion and physicochemical properties of flour samples compared with starch counterparts. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Understanding titanium-catalysed radical-radical reactions: a DFT study unravels the complex kinetics of ketone-nitrile couplings.

    PubMed

    Streuff, Jan; Himmel, Daniel; Younas, Sara L

    2018-04-03

    The computational investigation of a titanium-catalysed reductive radical-radical coupling is reported. The results match the conclusions from an earlier experimental study and enable a further interpretation of the previously observed complex reaction kinetics. Furthermore, the interplay between neutral and cationic reaction pathways in titanium(iii)-catalysed reactions is investigated for the first time. The results show that hydrochloride additives and reaction byproducts play an important role in the respective equilibria. A full reaction profile is assembled and the computed activation barrier is found to be in reasonable agreement with the experiment. The conclusions are of fundamental importance to the field of low-valent titanium catalysis and the understanding of related catalytic radical-radical coupling reactions.

  16. Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model.

    PubMed

    Moors, Samuel L C; Deraet, Xavier; Van Assche, Guy; Geerlings, Paul; De Proft, Frank

    2017-01-01

    Electrophilic aromatic sulfonation of benzene with sulfur trioxide is studied with ab initio molecular dynamics simulations in gas phase, and in explicit noncomplexing (CCl 3 F) and complexing (CH 3 NO 2 ) solvent models. We investigate different possible reaction pathways, the number of SO 3 molecules participating in the reaction, and the influence of the solvent. Our simulations confirm the existence of a low-energy concerted pathway with formation of a cyclic transition state with two SO 3 molecules. Based on the simulation results, we propose a sequence of elementary reaction steps and a kinetic model compatible with experimental data. Furthermore, a new alternative reaction pathway is proposed in complexing solvent, involving two SO 3 and one CH 3 NO 2 .

  17. GCKP84-general chemical kinetics code for gas-phase flow and batch processes including heat transfer effects

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1984-01-01

    A general chemical kinetics code is described for complex, homogeneous ideal gas reactions in any chemical system. The main features of the GCKP84 code are flexibility, convenience, and speed of computation for many different reaction conditions. The code, which replaces the GCKP code published previously, solves numerically the differential equations for complex reaction in a batch system or one dimensional inviscid flow. It also solves numerically the nonlinear algebraic equations describing the well stirred reactor. A new state of the art numerical integration method is used for greatly increased speed in handling systems of stiff differential equations. The theory and the computer program, including details of input preparation and a guide to using the code are given.

  18. The Biotin/Avidin complex adhesion force

    NASA Astrophysics Data System (ADS)

    Balsera, Manel A.; Izrailev, Sergei; Stepaniants, Sergey; Oono, Yoshitsugu; Schulten, Klaus

    1997-03-01

    The vitamin Biotin and the protein avidin form one of the strongest non-covalent bonds between biological molecules. We have performed molecular and stochastic dynamic modeling of the unbinding of this complex(Izrailev et al., Biophysical Journal, In press). These simulations provide insight into the effect of particular residues and water on the tight binding of the system. With the aid of simple phenomenological models we have related qualitatively our results to Atomic Force Microscopy adhesion force measurements (E.-L. Florin, V. T. Moy and H. E. Gaub Science) 264:415-417 and kinetic dissociation experiments( A. Chilcotti and P. S. Stayton, J. Am. Chem. Soc.) 117:10622-10628. We will discuss the difficulties preventing a more quantitative understanding of the unbinding force and kinetics.

  19. In situ investigation of complex BaSO4 fiber generation in the presence of sodium polyacrylate. 1. Kinetics and solution analysis.

    PubMed

    Wang, Tongxin; Cölfen, Helmut

    2006-10-10

    Simple solution analysis of the formation mechanism of complex BaSO(4) fiber bundles in the presence of polyacrylate sodium salt, via a bioinspired approach, is reported. Titration of the polyacrylate solution with Ba(2+) revealed complex formation and the optimum ratio of Ba(2+) to polyacrylate for a slow polymer-controlled mineralization process. This is a much simpler and faster method to determine the appropriate additive/mineral concentration pairs as opposed to more common crystallization experiments in which the additive/mineral concentration is varied. Time-dependent pH measurements were carried out to determine the concentration of solution species from which BaSO(4) supersaturation throughout the fiber formation process can be calculated and the second-order kinetics of the Ba(2+) concentration in solution can be identified. Conductivity measurements, pH measurements, and analytical ultracentrifugation revealed the first formed species to be Ba-polyacrylate complexes. A combination of the solution analysis results and optical microscopic images allows a detailed picture of the complex precipitation and self-organization process, a particle-mediated process involving mesoscopic transformations, to be revealed.

  20. Hyperpolarized 89Y NMR spectroscopic detection of yttrium ion and DOTA macrocyclic ligand complexation: pH dependence and Y-DOTA intermediates

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Kovacs, Zoltan; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging physics technique used to enhance the signal strength in nuclear magnetic resonance (NMR) and imaging (MRI) experiments for nuclear spins such as yttrium-89 by >10,000-fold. One of the most common and stable MRI contrast agents used in the clinic is Gd-DOTA. In this work, we have investigated the binding of the yttrium and DOTA ligand as a model for complexation of Gd ion and DOTA ligand. The macrocyclic ligand DOTA is special because its complexation with lanthanide ions such as Gd3+ or Y3+ is highly pH dependent. Using this physics technology, we have tracked the complexation kinetics of hyperpolarized Y-triflate and DOTA ligand in real-time and detected the Y-DOTA intermediates. Different kinds of buffers were used (lactate, acetate, citrate, oxalate) and the pseudo-first order complexation kinetic calculations will be discussed. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

Top